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Abstract

We shall give a bound for the orders of the torsion groups of min-

imal algebraic surfaces of general type whose first Chern numbers are

twice the Euler characteristics of the structure sheaves minus 1, where

the torsion group of a surface is the torsion part of the Picard group.

Namely, we shall show that the order is at most 3 if the Euler char-

acteristic is 2, that the order is at most 2 if the Euler characteristic is

greater than or equal to 3, and that the order is 1 if the Euler charac-

teristic is greater than or equal to 7. Moreover for each integer λ = 2,

3 and 4, we shall construct a family of surfaces above whose torsion

groups are isomorphic to the cyclic group of order 2, and whose Euler

characteristics are λ.

0 Introduction

In the present paper, we shall give a bound for the orders of the torsion groups
Tors(X) = TorPic(X)’s of minimal algebraic surfaces X’s with c21 = 2χ(O)−1
and χ(O) ≥ 2. Here as usual, c1 and χ(O) are the first Chern class and
the Euler characteristic of the structure sheaf, respectively, and the group
Tors(X) is the torsion part of the Picard group of X. We shall also construct
a family of X’s as above with χ(O) = λ and Tors(X) ' Z/2 for each integer
2 ≤ λ ≤ 4.

In classification theories of the numerical Godeaux surfaces (i.e., minimal
surfaces of general type with c21 = 1 and χ(O) = 1), one fixes the torsion
group or the fundamental group as an additional invariant, and finds concrete
descriptions for each case . For example, Miyaoka and Reid independently
showed that if the torsion group Tors(X) is Z/5, then the fundamental group
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is isomorphic to Z/5, and the canonical model of the universal cover is a
quintic surface in P3 ([11], [14]). It is well-known that the order ]Tors(X) is
at most 5.

Similar theories have been developed for some other cases of invariants.
For example, minimal surfaces with c21 = 2 and χ(O) = 2 are classified in
[4] and [3], while surfaces with c21 = 2χ(O)− 2 having non-trivial torsion are
studied in [5]. In [12], the author gave a complete description for minimal
algebraic surfaces X’s with c21 = 3, χ(O) = 2 and Tors(X) ' Z/3.

In the present paper, we consider the case c21 = 2χ(O) − 1, and give a
bound for the orders of the torsion groups Tors(X)’s. Namely, we shall show
that ]Tors(X) ≤ 3 for χ(O) = 2, that ]Tors(X) ≤ 2 for χ(O) ≥ 3, and that
]Tors(X) = 1 for χ(O) ≥ 7. We shall also construct a family of examples
with χ(O) = λ and Tors(X) ' Z/2 for each integer 2 ≤ λ ≤ 4. Note that
the line c21 = 2χ(O) − 1 is parallel to the Noether line, and that the case
χ(O) = 1 on this line is that of the numerical Godeaux surfaces. The case
χ(O) = 2 and Tors(X) ' Z/3 is the one for which the author gave a concrete
description in [12]. Thus our bound is sharp for the cases χ(O) = 2, 3 and 4.

In order to obtain the bound for the orders of the torsion groups, we use
a method due to Miyaoka and Reid ([11], [14]): we take an unramified cover
corresponding to torsion divisors, and study its canonical map. We employ
Horikawa’s method ([6]) to study the canonical map. In order to construct
the examples X’s with Tors(X) ' Z/2, we use a combination — though not
exactly, but in a sense — of the Campedelli construction ([1, p.234]) and the
Godeaux construction ([1, p.234]): we take double covers of P

1 × P
1, and

take their quotients by certain free actions of Z/2.
In Section 1, we give some lemmas, and state our main results. In Sec-

tion 2, we study the case Z/3 ⊂ Tors(X). In Section 3, we study the case
]Tors(X) = 4 or 5, and give a proof of the bound. Finally in Section 4, we
construct the families of X’s with Tors(X) ' Z/2.

The bound given in this paper is not best possible for the case 5 ≤ χ(O) ≤
6. In the subsequent paper, the author shall give a complete description for
the surfaces of the case χ(O) = 4 and Tors(X) ' Z/2, and exclude the case
5 ≤ χ(O) ≤ 6 and Tors(X) ' Z/2. Throughout this paper, we work over
the complex number field C.
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Let S be a compact complex manifold of dimension 2. We denote by
c1(S), pg(S) and q(S), the first Chern class, the geometric genus and the
irregularity of S, respectively. The torsion group Tors(S) = TorPic(S) is
the torsion part of the Picard group of S. If V is a complex manifold, KV

is a canonical divisor of V . For a coherent sheaf F on V , we denote by
hi(F) and χ(F), the dimension of the i-th cohomology group and the Euler
characteristic of F, respectively. Let f : V → W be a morphism to a complex
manifold W , and D a divisor on W . We denote by f ∗(D) and f−1

∗ (D) the
total transform and the strict transform of D, respectively. The symbol ∼
means a linear equivalence of divisors. We denote by Σd → P1 the Hirzebruch
surface of degree d. The divisors ∆0 and Γ are its minimal section and its
fiber, respectively. Throughout this paper, X is a minimal algebraic surface
of general type with c21 = 2χ(OX) − 1.

1 Main results and some lemmas

The following is Deligne’s lemma for our case. For a general form of this
lemma, see for example [2, Theorem14].

Lemma 1.1. Let X be a minimal algebraic surface of general type with c21 =
2χ(OX) − 1, and π : Y → X an unramified cover of finite degree m. Then

m ≤ 6 and q(Y ) = 0.

Proof. Apply Noether’s inequality to Y , and use the unbranched covering
trick.

¿From the lemma above, we infer the following:

Lemma 1.2. Let X be a surface as in Lemma 1.1 with χ(OX) = λ. Then

pg(X) = λ− 1, q(X) = 0 and ]Tors(X) ≤ 6.

The bound given in Lemma 1.2 is not sharp. In this paper, we sharpen
the bound to some extent. Namely, we shall show the following theorem.

Theorem 1. Let X be a minimal algebraic surface of general type with c21 =
2χ(OX) − 1. Then the following hold :

i) if χ(OX) = 2, then ]Tors(X) ≤ 3,
ii) if χ(OX) ≥ 3, then ]Tors(X) ≤ 2,
iii) if χ(OX) ≥ 7, then ]Tors(X) = 1.

Moreover we construct a family of examples with χ(O) = λ and Tors(X) '
Z/2 for each integer λ = 2, 3 and 4. Namely, we shall show the following :
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Theorem 2. There exists a family of minimal algebraic surfaces X’s of

general type with c21 = 2χ(OX) − 1, χ(OX) = 4 − k and Tors(X) ' Z/2 for

each integer 0 ≤ k ≤ 2.

Meanwhile for the case χ(OX) = 2 and ]Tors(X) = 3, we have the fol-
lowing theorem. See [12] for a proof of Theorem 3.

Theorem 3 ([12]). Let X be a minimal algebraic surface of general type

with c21 = 3, χ(OX) = 2 and Z/3 ⊂ Tors(X). Then both the torsion group

Tors(X) and the fundamental group π1(X) are Z/3, and the canonical model

of the universal cover of X is a complete intersection in P4 of type (3, 3).
Moreover, if a canonical divisor of X is ample, then the number of moduli of

X is 14.

Corollary 1.1. The bound given in Theorem 1 is sharp for the case 2 ≤
χ(OX) ≤ 4.

By Lemma 1.2, we have only to consider the case ]Tors(X) ≤ 6. Following
Miyaoka and Reid ([11], [14]), we take an unramified Galois cover Y of X
corresponding to torsion divisors to show Theorem 1. We employ Horikawa’s
method ([6]) to study the canonical map ΦKY

of Y . In what follows, X
is a minimal algebraic surface of general type with c21 = 2χ(OX) − 1 and
χ(OX) = λ ≥ 2.

Let us give a lemma which we shall use in the construction of the families
given in Theorem 2. Let W be a compact connected complex manifold, and
G a group acting on W . Let B be an effective reduced divisor on W such
that B ∼ nF for a non-trivial divisor F and an integer n ≥ 2. Then we
have a Galois cover V →W of mapping degree n with branch locus B. The
variety V is a subvariety of the total space of the line bundle F . We assume
that the divisors B and F are stable under the action of G. We say that
an action of G on V is a lifting of the one on W , if the action of G on V
and that on W are compatible with the projection V → W . Let us give a
criterion for the existence of a lifting. Let h be a meromorphic function on
W corresponding to the principal divisor B − nF . Then cg = (g∗h)/h is a
non-zero constant function for any g ∈ G, and g 7→ cg gives a character c of
G. Let Char(G) be the character group of G, and Ψ the endomorphism of
Char(G) given by χ 7→ nχ. We denote by Im(Ψ) the image of the morphism
Ψ : Char(G) → Char(G).

Lemma 1.3. The action of G on W lifts to one on V , if and only if c ∈
Im(Ψ). If c ∈ Im(Ψ), then there exist exactly ]ker(Ψ) liftings of the action of

G, where ker(Ψ) is the kernel of the morphism Ψ .
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Proof. See Appendix.
For a proof of the following theorem, see [6].

Theorem 4 (Horikawa). Let S be a minimal algebraic surface of general

type with pg ≥ 3 whose canonical system |K| is not composite with a pencil.

We denote by π : S̃ → S a composite of quadric transformations such that the

variable part |L| of |π∗K| is free from base points. Then K2 ≥ L2 ≥ 2pg − 4.
Moreover, if K2 = L2, then the canonical system |K| has no base points. If

L2 = 2pg − 4, then any general member of |L| is a non-singular hyperelliptic

curve.

2 The case Z/3 ⊂ Tors(X)

In this section, we study the case Z/3 ⊂ Tors(X).

Proposition 2.1. Let X be a surface as in Lemma 1.1 with Z/3 ⊂ Tors(X).
Then χ(OX) = λ ≤ 2

LetX be a surface as in Lemma 1.1 with Z/3 ' T ⊂ Tors(X). We assume
χ(OX) = λ ≥ 3, and derive a contradiction. Assume that χ(OX) = λ ≥ 3.
We have an unramified Galois triple cover π : Y → X corresponding to the
subgroup T ' Z/3. We have

K2
Y = 3(2λ− 1), pg(Y ) = 3λ− 1, q(Y ) = 0

by Lemma 1.1. We denote by G = Gal(Y/X) the the Galois group of π : Y →
X. We study the canonical map ΦKY

: Y − − → P3λ−2 and the canonical
image Z = ΦKY

(Y ) of Y using the action on Y of the Galois group G. Let
|M | and F be the variable part and the fixed part of |KY |, respectively. We
have a natural isomorphism

H0(Y,OY (mKY )) '
⊕

χ∈Char(G)

H0(X,OX(mKX −Dχ))

for each m ≥ 1, where Dχ’s are the torsion divisors corresponding to the
characters χ’s ofG. In particular, |KY | is spanned by the pull-back of divisors
on X, and so are |M | and F . Let p : Ỹ → Y be the shortest one among
all composites of quadric transformations such that the variable part |L| of
|p∗M | is free from base points. We have

|p∗KY | = |p∗M | + p∗F = |L| + E + p∗F,

where E is an exceptional divisor. We take p : Ỹ → Y in such a way that
the action G on Y lifts to one on Ỹ . Since |M | and F are spanned by the
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pull-back of divisors on X, we have M 2 ≡ MF ≡ F 2 ≡ 0 mod 3. Moreover
we have E2 ≡ 0 mod 3, since E is stable under the action of G on Ỹ . It
follows

L2 = M2 + E2 ≡ LE = −E2 ≡MF ≡ KY F ≡ 0 mod 3. (1)

Lemma 2.1. The canonical map ΦKY
: Y −− → P

3λ−2 is a rational map of

degree 2 onto a nondegenerate surface of minimal degree 3λ− 3 in P3λ−2.

Proof. The canonical map ΦKY
is not birational, since we have K2

Y −
(3pg(Y ) − 7) = 7 − 3λ < 0. Moreover, by this together with q(Y ) = 0, the
canonical system |KY | is not composite with a pencil (see [9, Theorem 1.1]).
It follows

degΦKY
=

L2

degZ
≤ K2

Y

pg(Y ) − 2
= 2 +

1

λ− 1
,

hence degΦKY
= 2. So by (1), we have L2 ≡ 0 mod 6. Meanwhile by

Theorem 4, we have

K2
Y = 3(2λ− 1) ≥ L2 ≥ 2pg(Y ) − 4 = K2

Y − 3.

Thus we have L2 = 6λ− 6, hence the assertion follows.
By the lemma above, we have LE + MF + KY F = 3, where each term

of the right side of this equality is a non-negative integer divisible by 3.
Moreover by the Riemann-Roch theorem, we have M 2 + MKY = 2M2 +
MF ≡ 0 mod 2, hence MF ≡ 0 mod 6. It follows MF = 0. Thus by
Hodge’s index theorem, we have LE = 3 and F = 0, which implies that the
morphism p : Ỹ → Y is the blowing-up of Y at three simple base points of
the canonical system |KY |. We denote by ΦL = ΦKY

◦ p : Ỹ → P3λ−2 the
morphism associated with the linear system |L|.

We put n = pg(Y ) − 1 = 3λ− 2. Note that we have n ≡ 1 mod 3. Thus
from a classification of surfaces of minimal degree (see [7, Lemma 1.2] or
[13]), we infer the following :

Lemma 2.2. Let Z = ΦKY
(Y ) ⊂ P

n be the canonical image of our surface

Y . Then Z is either

Case 1) the Hirzebruch surface Σd embedded into Pn by |∆0 + n−1+d
2

Γ |, where

n− d− 3 is a non-negative integer, or

Case 2) a cone over a rational curve of degree n − 1 in Pn−1, that is, the

image of the Hirzebruch surface Σn−1 by |∆0 + (n− 1)Γ |.

Note that the action of G = Gal(Y/X) on Ỹ induces one on Z. We
exclude both Case 1) and Case 2) in Lemma 2.2.
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Lemma 2.3. The case 1) in Lemma 2.2 is impossible.

Proof. Assume that the canonical image Z = ΦKY
(Y ) is the Hirzebruch

surface Σd embedded into P
n by |∆0 + n−1+d

2
Γ |. There exist an unramified

Galois triple cover π̃ : Ỹ → X̃ and a composite r : X̃ → X of quadric
transformations such that r ◦ π̃ = π ◦ p and Gal(Ỹ /X̃) ' Gal(Y/X) hold.
If d ≥ 1, then the minimal section ∆0 is the unique (−d)-curves on Z. If
d = 0, then we can take ∆0 in such a way that ∆0 is stable under the action
of G on Z, since we have G ' Z/3. In both cases, there exists a member
∆1 ∈ |∆0| stable under the action of G on Z. Let ΦΓ : Z → C0 = P

1 be the
morphism associated with the linear system |Γ |. Then the action of G on
Z induces one on C0. There exists a point on C0 stable under the action of
G on C0, since C0 is rational. Thus there exists a member Γ1 ∈ |Γ | stable
under the action of G on Z. The total transforms Φ∗

L(∆1) and Φ∗
L(Γ1) are

both stable under the action of G on Ỹ , hence the pull-back by π̃ of divisors
on X̃. Thus we have Φ∗

L(∆1) · Φ∗
L(Γ1) ≡ 0 mod 3, which contradicts the

equality Φ∗
L(∆1) · Φ∗

L(Γ1) = 2.

Lemma 2.4. The case 2) in Lemma 2.2 is impossible.

Proof. Assume that the canonical image Z = ΦKY
(Y ) is the image of the

Hirzebruch surface Σn−1 by |∆0 + (n − 1)Γ |. In this case, Z is a cone over
a rational curve C0 ' P1 of minimal degree n− 1 in Pn−1. We denote by p0

the vertex of Z. Let Λ0 be the linear system which consists of the pull-back
by ΦL of all hyperplanes containing p0 in P

n. We denote by Λ and F ′, the
variable part and the fixed part of Λ0, respectively. Then Λ = |(n − 1)D|
holds for a linear pencil |D| without fixed components (see [7, Lemma 1.5]).
We have LF ′ = 0, since ΦL(F ′) ⊂ {p0}. Thus we obtain 2(n − 1) = L2 =
(n− 1)((n− 1)D2 +DF ′), hence D2 = 0 and DF ′ = 2. Meanwhile we have

Λ0 = P(V ) ⊂ |L| = P(H0(OỸ (L)))

for a linear subspace V ⊂ H0(OỸ (L)). Since the vertex p0 is stable un-
der the action of G on Z, the subspace V is stable under the action of G
on H0(OỸ (L)). We therefor infer, since G ' Z/3, that V is spanned by
eigenvectors of τ ∗0 , where τ0 is a generator of G. Thus Λ0 is spanned by
divisors stable under the action of G on Ỹ , hence so are Λ and F ′. Since
D2 = 0, we have a morphism ΦΛ : Ỹ → Pn−1 associated with the linear
system Λ = |(n− 1)D|. Here the image ΦΛ(Ỹ ) = C0 ⊂ Pn−1 is a nonsingular
rational curve of minimal degree n− 1, and the surface Z is a cone over C0.
The action of G on Ỹ induces one on C0, since F ′ is stable under the action of
G on Ỹ . This action on C0 has a fixed points, since C0 ' P1. It follows that

7



there exists a member C ∈ |D| stable under the action of G on Ỹ . Now we
derive a contradiction as follows. Both F ′ and C are stable under the action
of G on Ỹ . Then by the same method as in the proof of Lemma 2.3, we
obtain DF ′ = CF ′ ≡ 0 mod 3, which contradicts the equality DF ′ = 2.

This completes the proof of Proposition 2.1.

3 The case ]Tors(X) = 4 or 5 and a proof of

Theorem 1

In this section, we exclude the case ]Tors(X) = 4 and the case ]Tors(X) = 5.
Moreover we shall give a proof of Theorem 1.

Proposition 3.1. Let X be a surface as in Lemma 1.1 with χ(OX) = λ ≥ 2.
Then ]Tors(X) 6= 4.

To prove the proposition above, we assume ]Tors(X) = 4, and derive a
contradiction. Let X be a surface as in Lemma 1.1 with ]Tors(X) = 4 and
χ(OX) = λ ≥ 2. We have an unramified Galois quadruple cover π : Y → X
corresponding to the torsion group Tors(X). We have

K2
Y = 4(2λ− 1), pg(Y ) = 4λ− 1, q(Y ) = 0

by Lemma 1.1. Since K2
Y = 2pg(Y )− 2, our surface Y is of one of the several

types given in [10]. We shall exclude all the types for our Y using the action
on Y of the Galois group Gal(Y/X) of π. First, we have the following lemma.

Lemma 3.1. The canonical system |KY | has no base points. Moreover, the

canonical map ΦKY
: Y → P4λ−2 is a holomorphic map of degree 2 onto its

image Z = ΦKY
(Y ), hence degZ = 4λ− 2.

Proof. We study the canonical map ΦKY
: Y − − → P4λ−2 using the

Galois group G = Gal(Y/X). Let |M | and F be the variable part and the
fixed part of the linear system |KY |, respectively. We denote by p : Ỹ → Y
the shortest one among all composites of quadric transformations such that
the variable part |L| of |p∗M | is free from base points. We have

|p∗KY | = |p∗M | + p∗F = |L| + E + p∗F,

where E is an exceptional divisor. By the same method as in Section 2, we
obtain L2 ≡ 0 mod 4. Meanwhile, by the results given in [10, Section 3] (or
Theorem 4), we have

K2
Y = 4(2λ− 1) ≥ L2 ≥ 2pg(Y ) − 4 = 4(2λ− 1) − 2.
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Thus we obtain L2 = K2
Y = 4(2λ− 1), which implies that |KY | is free from

base points. We have degΦKY
= 2, since pg(Y ) ≥ 6 (see [10, Section 3]).

Lemma 3.2. The case λ ≥ 3 is impossible. If λ = 2, then there exists a

composite of three quadric transformations W → P2 such that Z ⊂ P6 is the

image of the morphism Φ−KW
: W → P

6 associated with the anti-canonical

system | −KW |.

Proof. By the results given in [10, Section 3], Z is either i) the Veronese
embedding into P8 of a quadric in P3 for n = 8, or ii) the image of P2 by the
rational map associated with the linear system |3l − ∑9−n

i=1 xi|, where l is a
line on P2 and xi’s are points on P2 which are possibly infinitely near. The
case i) does not occur for our Z, since n = 4λ− 2 ≡ 2 mod 4. Thus our Z is
as in the case ii). By n = 4λ− 2 ≤ 9, we obtain λ = 2 and n = 6.

Thus our surface Y is of the type found in Theorem 3.2. of [10]. In what
follows, we assume λ = 2.

Proposition 3.2. Let ΦKY
: Y → Z and Φ−KW

: W → Z be the morphisms

as in the case λ = 2 of Lemma 3.2. Then there exists a unique morphism

f : Y → W such that ΦKY
= Φ−KW

◦f . The branch locus B of f is a member

of the linear system | − 4KW |. Moreover, the double cover Y ′ of W branched

along B has at most rational double points as its singularities, and Y is the

minimal desingularization of Y ′.

Proof. See Horikawa [10, Theorem 3.2].

Lemma 3.3. Let f : Y → W be the morphism as in Proposition 3.2. Then

the action of the Galois group G = Gal(Y/X) on Y induces one on W . This

action on W has the following two properties :
i) W has no (−1)-curves which are stable under the action of G,

ii) W has no (closed) points which are stable under the action of G.

Proof. The first assertion is trivial; since Φ−KW
: W → Z is the minimal

desingularization, the natural action of G on Z induces one on W .
Let us show that this action on W has the property i). Assume that W

has a (−1)-curve C ′ stable under the action of G. Then f ∗(C ′) is stable under
the action of G on Y , hence a pull-back of a divisor on X. In particular, we
have f ∗(C ′)2 ≡ 0 mod 4, which contradicts f ∗(C ′)2 = −2.

Next, we show that this action on W has the property ii). Assume that
W has a point x stable under the action of G. We denote by qx : Wx → W
the quadric transformation at x. Take the fiber product Y ×W Wx of Y
and Wx over W , the reduction of this fiber product, the normalization of
this reduction, and the minimal desingularization of this normalization. We
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denote by Yx, this minimal desingularization. Then there exists a morphism
fx : Yx → Wx and a composite px : Yx → Y of quadric transformations
satisfying f ◦ px = qx ◦ fx. The action of G on Y induces one on Yx and one
on Wx. Now let Ex be the exceptional curve of the first kind appearing by
qx : Wx →W . Then the total transform f ∗

x(Ex) is stable under the action of
G on Yx. Thus by the same method as in the proof of Lemma 2.3, we infer
f ∗

x(Ex)
2 ≡ 0 mod 4, which contradicts f ∗

x(Ex)
2 = −2.

Corollary 3.1. The Galois group G = Gal(Y/X) is not isomorphic to Z/4.

Proof. Assume that G ' Z/4. Take an automorphism τ0 of W cor-
responding to a generator of G. Then τ0 has fixed points, since we have
χ(OW ) = 1.

By the corollary above, we have only to exclude the case G ' Z/2⊕Z/2.
In what follows, we assume that G is isomorphic to Klein’s four-group Z/2⊕
Z/2.

Let q : W = W3 → P2 = W0 be the composite of three quadric transfor-
mations as in Lemma 3.2. We have q = q1 ◦ q2 ◦ q3, where qi : Wi →Wi−1 is
a quadric transformation of Wi−1 at xi for each 1 ≤ i ≤ 3. We denote by Ei

the exceptional curve of the first kind appearing by qi. By E ′
i, we denote the

strict transform on W of Ei. We use the same symbol Ei for the total trans-
form on W of the exceptional divisor Ei. We determine the configuration of
xi’s using the following lemma.

Lemma 3.4. Let C be a (−d)-curve on W which is not exceptional with

respect to q. If 0 ≤ d ≤ 2, then C is a strict transform on W of a line on P2

passing exactly d+ 1 of the three points xi’s.

Proof. Let l be a line on P2. We have C ∼ m0q
∗(l) − ∑3

i=1miEi for
certain integers mi’s, where q∗(l) is the total transform of l by q. Note that
mi ≥ 0 for any 1 ≤ i ≤ 3, since C is not exceptional with respect to q. We
have

m2
0 −

3∑

i=1

m2
i = −d, 3m0 −

3∑

i=1

mi = 2 − d, (2)

since C2 = −d and CKW = d− 2. By the equalities above, we obtain

5

3∑

i=1

m2
i +

∑

1≤i<j≤3

(mi −mj)
2 +

3∑

i=1

(mi + d− 2)2 = 9d+ 4(2 − d)2 ≤ 18,

hence
∑3

i=1m
2
i ≤ 3. Thus, we have m2

i = mi for any 1 ≤ i ≤ 3. From this
together with the equalities (2), we infer m0 = 1 and

∑3
i=1mi = d+1. Thus,

we have the assertion.
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Now, we study the configuration of xi’s. First, we consider the case in
which no two of the three points xi’s are infinitely near. This case is divided
into the following two cases : the case 1-1) and the case 1-2).

1-1). The case in which no line on P2 includes the set {x1, x2, x3}. In
this case, W has no (−2)-curves. There exist exactly six (−1)-curves on W ,
that is, three exceptional divisors of the first kind appearing by q and three
(−1)-curves coming from lines on P2.

1-2). The case in which the three points x1, x2 and x3 lie on a line on P
2

. In this case, {E1, E2, E3} is the set of all (−1)-curves on W . The Galois
group G acts on the set {E1, E2, E3}. Since G is isomorphic to Klein’s four-
group, at least one of the Ei’s is stable under the action of G on W , which
contradicts the property i) in Lemma 3.3. Thus the case 1-2) is excluded.

Second, we consider the case in which x1 and x2 are distinct points on
P2, and the point x3 is infinitely near to x2. Let L1,2 be the unique line on
P2 passing the two points x1 and x2. This case is divided into the following
two cases : the case 2-1) and the case 2-2).

2-1). The case in which x3 does not lie on the strict transform (q1 ◦
q2)

−1
∗ (L1,2) by q1 ◦ q2 of the line L1,2. Let L2,3 be the line on P2 whose strict

transform (q1 ◦ q2)−1
∗ (L2,3) passes x3. In this case, the strict transform E ′

2 is
the unique (−2)-curve on W , and there are exactly four (−1)-curves on W :
E1, E3, q

−1
∗ (L1,2), and q−1

∗ (L2,3). Let q′ : W → W ′ be the blowing down of
two (−1)-curves E3 and q−1

∗ (L1,2). Then W ′ is isomorphic to the Hirzebruch
surface Σ0 of degree 0, where we may assume ∆0 = q′∗(E

′
2) and Γ = q′∗(E1)

are a minimal section and a fiber of Σ0 → P
1, respectively. Note that E3 and

q−1
∗ (L1,2) are the only (−1)-curves on W intersecting E ′

2. Thus E3 +q−1
∗ (L1,2)

is stable under the action ofG = Gal(Y/X) onW , which induces an action on
W ′. Since G ' Z/2⊕Z/2, there exists a non-trivial element g0 ∈ G such that
both E3 and q−1

∗ (L1,2) are stable by the corresponding involution g0|W of W .
Then q′(E3), q

′(q−1
∗ (L1,2)), and ∆0 = q′∗(E

′
2) are all stable by the involution

g0|W ′ of W ′ corresponding to g0. From this, we see easily that at least one
out of the three curves E1, E

′
2, and q−1

∗ (L1,2) lies in the fixed locus of g0|W .
Moreover, if E ′

2 is in the fixed locus of g0|W , then so is a curve q′∗(∆), where
∆ ∈ |∆0| is a certain member distinct from ∆0. This shows that the branch
divisor B ∈ | − 4KW | of f intersects the fixed locus of g0|W , since q′∗(∆),
E1, and q−1

∗ (L1,2) are non-singular rational curves with selfintersection 0,
−1, and −1, respectively. Take a point x ∈ B fixed by g0|W . Then since
the double cover Y ′ in Proposition 3.2 has at most rational double points as
its singularities, the set f−1(x) includes a fixed point of the automorphism
g0 ∈ Gal(Y/X), which contradicts the definition of π : Y → X. Thus the
case 2-1) is excluded.

2-2). The case in which x3 lies on the strict transform (q1 ◦ q2)−1
∗ (L1,2) by
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q1◦q2 of the line L1,2. In this case, {E ′
2, q

−1
∗ (L1,2)} is the set of all (−2)-curves

on W , where q−1
∗ (L1,2) is the strict transform of L1,2 by q. The curve E3 is

the unique (−1)-curve intersecting all (−2)-curves on W , hence stable under
the action of G. This contradicts the property i) in Lemma 3.3. Thus the
case 2-2) is excluded.

Finally, we consider the case in which all xi’s are infinitely near, namely,
the case in which x2 is infinitely near to x1, and x3 is infinitely near to x2.
Let L1,2 be the unique line on P

2 such that x2 lies on the strict transform
q1

−1
∗ (L1,2). Note that W has no (−3)-curves, since the anti-canonical system

|−KW | has no fixed components. Thus, x3 does not lie on the strict transform
q2

−1
∗ (E1). This case is divided into the following two cases: the case 3-1) and

the case 3-2).
3-1). The case in which x3 does not lie on the strict transform (q1 ◦

q2)
−1
∗ (L1,2) by q1 ◦ q2. In this case, {E ′

1, E
′
2} is the set of all (−2)-curves

on W , hence E ′
1 ∩ E ′

2 is a point stable under the action of G on W . This
contradicts the condition ii) in Lemma 3.3. Thus the case 3-1) is excluded.

3-2). The case in which x3 lies on the strict transform (q1 ◦ q2)−1
∗ (L1,2) by

q1 ◦ q2. In this case, E3 is the unique (−1)-curves on W , hence stable under
the action of G on W . This contradicts the property i) of Lemma 3.3, and
the case 3-2) is excluded.

Thus we have the following.

Lemma 3.5. The three points xi’s are in a general position. Namely x1, x2

and x3 are distinct three points of P2 which do not lie on a line. The surface

W has exactly six (−1)-curves, that is, Ei’s for 1 ≤ i ≤ 3 and the strict

transforms q−1
∗ (Li,j) for 1 ≤ i < j ≤ 3, where Li,j is the unique line on P2

passing xi and xj.

By Lemma 3.3, we obtain a group homomorphism µ : G → Aut(W )
corresponding to the action ofG onW , where Aut(W ) is the group of analytic
automorphisms of W . We study the conjugacy class of µ(G) in Aut(W ). Let
(X0 : X1 : X2) be a homogeneous coordinate of P2 such that x1 = (1 : 0 : 0),
x2 = (0 : 1 : 0) and x3 = (0 : 0 : 1). For (a, b) ∈ C× × C×, we denote by
ϕ(a,b) the automorphism of W corresponding to the automorphism (X0 : X1 :
X2) 7→ (X0 : aX1 : bX2) of P2. Then we have an exact sequence

0 → C
× × C

× → Aut(W ) → D6 → 0, (3)

where D6 is the dihedral group of degree 6. Here, the morphism C× ×
C× → Aut(W ) is given by (a, b) 7→ ϕ(a,b), and the morphism α : Aut(W ) →
D6 corresponds to transitions of six (−1)-curves on W . Let ϕσ and ϕτ be
automorphisms of W which correspond to the Cremona transform (X0 : X1 :
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X2) 7→ (X2X0 : X0X1 : X1X2) and the automorphism (X0 : X1 : X2) 7→
(X0 : X2 : X1), respectively. Then we have the following equalities:

(ϕσ)6 = idW , (ϕτ )
2 = idW , ϕσ ◦ ϕτ ◦ ϕσ ◦ ϕτ = idW ,

where the morphism idW is the unit of the automorphism group of W . Thus
the short exact sequence (3) splits. Putting σ = α(ϕσ) and τ = α(ϕτ ), we
see that σ and τ form a set of generators of D6.

1). First, we consider the case ](α ◦ µ)(G) = 4. In this case, the sub-
group (α◦µ)(G) is a Sylow 2-subgroup of D6, hence conjugate to a subgroup
〈σ3, τ〉 ⊂ D6 generated by σ3 and τ . Thus, replacing q : W → P2 if nec-
essary, we can take the morphism q in such a way that the subgroup µ(G)
is generated by ϕ3

σ ◦ ϕ(bc2,b) and ϕτ ◦ ϕ(c, 1
c
) in Aut(W ), where b ∈ C and

c ∈ C are certain non-zero constants. Then two points of W corresponding
to (1 : 1/(c

√
b) : 1/

√
b) and (1 : −1/(c

√
b) : −1/

√
b) ∈ P

2 are stable under
the action of G on W , which contradicts the property ii) in Lemma 3.3. Thus
the case 1) is excluded.

Second, we consider the case ](α ◦µ)(G) = 2. The dihedral group D6 has
exactly three conjugate classes which are represented by elements of order 2,
namely, those represented by σ3, τ and σ3τ respectively.

2-1). The case in which the subgroup (α ◦ µ)(G) is conjugate to 〈σ3〉 in
D6. In this case, we can take the morphism q in such a way that the subgroup
µ(G) is generated by ϕ3

σ ◦ϕ(a,b) and ϕ(c,d) in Aut(W ), where a, b, c, and d are
certain non-zero complex numbers with c2 = d2 = 1. We have (c, d) 6= (1, 1),
since the case (c, d) = (1, 1) violates the property ii) in Lemma 3.3. Thus by
equalities

ϕσ ◦ (ϕ3
σ ◦ ϕ(a,b)) ◦ ϕ−1

σ = ϕ3
σ ◦ ϕ( a

b
,a), ϕσ ◦ ϕ(−1,1) ◦ ϕ−1

σ = ϕ(−1,−1),

ϕ−1
σ ◦ (ϕ3

σ ◦ ϕ(a,b)) ◦ ϕσ = ϕ3
σ ◦ ϕ(b, b

a
), ϕ−1

σ ◦ ϕ(1,−1) ◦ ϕσ = ϕ(−1,−1),

we have only to consider the case (c, d) = (−1,−1). In this case, the (−1)-
curve E1 = q−1(x1) is a component of the fixed locus of the automorphism
ϕ(c,d) = ϕ(−1,−1). We denote by ψ0 ∈ G = Gal(Y/X) the automorphism of
Y corresponding to ϕ(−1,−1). By equivalence B ∼ −4KW , where the curve
B is the branch divisor of f : Y → W as in Proposition 3.2, we see that
B ∩ E1 6= ∅, which shows existence of a fixed point x ∈ B of ϕ(−1,−1). Now
since the double cover Y ′ in Proposition 3.2 has at most rational double points
as its singularities, the set f−1(x) includes a fixed point of the automorphism
ψ0 ∈ G of Y . This contradicts the definition of π : Y → X, hence the case
2-1) is excluded.

2-2). The case in which the subgroup (α ◦ µ)(G) is conjugate to 〈τ〉 in
D6. In this case, replacing q if necessary, we can take the morphism q in
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such a way that the subgroup (α ◦ µ)(G) is generated by τ in D6. Then the
(−1)-curves E1 and q−1

∗ (L2,3) are stable under the action of G on W , which
contradicts the property i) in Lemma 3.3. Thus the case 2-2) is excluded.

2-3). The case in which the subgroup (α ◦ µ)(G) is conjugate to 〈σ3 ◦ τ〉
in D6. In this case, replacing q if necessary, we can take the morphism q in
such a way that the subgroup (α ◦ µ)(G) is generated by σ3 ◦ τ in D6. Then
by equalities (σ3 ◦ τ)(q−1

∗ (L1,2)) = E2 and (σ3 ◦ τ)(q−1
∗ (L1,3)) = E3, we see

that two points q−1
∗ (L1,2)∩E2 and q−1

∗ (L1,3)∩E3 are stable under the action
of G on W . This contradicts the property ii) in Lemma 3.3. Hence the case
2-3 is excluded.

3). Finally, we consider the case in which ](α◦µ)(G) = 1. In this case, any
(−1)-curves on W are stable under the action of G on W , which contradicts
the property i) in Lemma 3.3. Hence the case 3) is excluded.

Thus we have proved the following lemma, which, together with Lemma
3.2, completes the proof of Proposition 3.1:

Lemma 3.6. The case λ = 2 in Lemma 3.2 is impossible.

Let us exclude the case ]Tors(X) = 5.

Proposition 3.3. Let X be a surface as in Lemma 1.1 with χ(OX) = λ ≥ 2.
Then ]Tors(X) 6= 5.

Proof. Let X be a surface as in Lemma 1.1 with χ(OX) = λ ≥ 2 and
Tors(X) ' Z/5, and π : Y → X the unramified Galois cover of degree 5
corresponding to Tors(X). Then Y is a minimal algebraic surface of general
type with K2

Y = 2pg(Y ) − 3 and pg(Y ) = 5λ − 1 ≥ 9. Thus the canonical
system |KY | has a unique base point ([8, Section 1]), and this base point is
a fixed point of any automorphism of Y . This contradicts the assumption
that π : Y → X is an unramified Galois cover of degree 5.

Proof of Theorem 1.

Now we are ready to prove Theorem 1. Let X be a minimal algebraic
surface as in Theorem 1 with χ(OX) ≥ 2. Since Z/3 ⊂ Z/6, we have
]Tors(X) 6= 6 by Proposition 2.1 and Theorem 3. Thus by Lemma 1.2,
Propositions 2.1, 3.1 and 3.3, we have i) and ii) in Theorem 1. The bound
iii) immediately follows from the following theorem due to Xiao.

Theorem 5 (Xiao, Corollary 4 in [15]). Minimal regular surfaces of

general type with c21 < (8/3)(χ(O) − 2) are algebraically simply connected.

4 A family of X’s with Tors(X) ' Z/2

In this section, we construct a family of X’s as in Lemma 1.1 with χ(OX) =
4 − k and Tors(X) ' Z/2 for each integer 0 ≤ k ≤ 2. Let W = P1 × P1 be
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the Hirzebruch surface of degree 0, and (X0 : X1) and (Y0 : Y1) homogeneous
coordinates of P1. We define an involution ι0 of W by

ι0 : ((X0 : X1), (Y0 : Y1)) 7→ ((X1 : X0), (Y1 : Y0)).

We put x = X1/X0 and y = Y1/Y0. Let G be a group of automorphisms
of W generated by ι0. Then G ' Z/2 acts naturally on W , and W has
exactly 4 fixed points of ι0, namely p1 : (x, y) = (1, 1), p2 : (x, y) = (1,−1),
p3 : (x, y) = (−1, 1) and p4 : (x, y) = (−1,−1). Let q : W0 → W be the
blowing-up of W at 2k+ 2 points w1, . . . , w2k+2, where {w2j+1}0≤j≤k is a set
of distinct k + 1 points on W \ {p1, . . . , p4}, and w2j+2 = ι0(w2j+1) for each
integer 0 ≤ j ≤ k. The action of G on W lifts to one on W0. We denote
by E0

i = q−1(wi) the exceptional curve of the first kind lying over wi for
1 ≤ i ≤ 2k + 2. Let q′ : W2 →W0 be the blowing-up of W0 at two points w′

1

and w′
2, where w′

1 ∈ E0
1 and w′

2 = ι0(w
′
1) ∈ E0

2 . We denote by E∨
i = q′−1(w′

i)
the exceptional curve of the first kind lying over w′

i for i = 1, 2. We use the
same symbol E0

i for the total transform on W2 of the divisor E0
i . We put

q̄ = q ◦ q′ : W2 →W . Note that the action of G on W lifts to one on W2.

Lemma 4.1. Assume that the configuration of the k+ 1 points w2j+1’s (0 ≤
j ≤ k) and that of w′

1 are sufficiently general. Then there exists a reduced

curve B′
2 on W2 satisfying the following five conditions :

1) B′
2 ∈ |q̄∗(8∆0 + 8Γ ) − ∑

i=1,2 3(E0
i + E∨

i ) − ∑
3≤i≤2k+2 4E0

i |,
2) B′

2 ∩ q′−1
∗ (E0

i ) = ∅ for i = 1, 2,
3) B′

2 ∩ q̄−1({p1, . . . , p4}) = ∅,
4) B′

2 has at most negligible singularities,

5) B′
2 is stable under the action of G on W2.

Note that
∑

3≤i≤2k+2 4E0
i = 0 if k = 0. We shall give a proof of the lemma

above at the end of this section. We define a reduced curve B2 on W2 by

B2 = B′
2 +

∑

i=1,2

q′
−1
∗ (E0

i ).

Then B2 is stable under the action of G, and singularities of B2 are at most
negligible ones. Moreover we have B2 ∼ 2F2, where

F2 ∼ q̄∗(4∆0 + 4Γ ) −
∑

i=1,2

(E0
i + 2E∨

i ) −
∑

3≤i≤2k+2

2E0
i .

Let f2 : Y2 → W2 be the double cover of W2 with branch locus B2, and
Ỹ → Y2 the minimal desingularization of Y2. Then we obtain a surjective
morphism f : Ỹ → W2 of mapping degree 2 with branch locus B2. We have
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f ∗(q′−1
∗ (E0

i )) = 2Ei for a (−1)-curve Ei on Ỹ for each i = 1, 2. We denote
by p : Ỹ → Y the blowing-down of the two (−1)-curves E1 and E2. Then we
see easily that

K2
Y = 2(2(4 − k) − 1), χ(OY ) = 2(4 − k). (4)

Lemma 4.2. Assume that the configuration of the k+ 1 points w2j+1’s (0 ≤
j ≤ k) and that of w′

1 are sufficiently general. Then the fixed part of the

canonical system |KỸ | is
∑

i=1,2 2Ei, and the variable part of |KỸ | is free

from base points. In particular, Y is minimal.

Proof. Since W is a rational surface, we have |KỸ | = f ∗|KW2
+F2|, where

F2 +KW2
∼ q̄∗(2∆0 + 2Γ ) −

∑

i=1,2

E∨
i −

∑

3≤i≤2k+2

E0
i .

We study the linear system |KW2
+F2|. We denote by Lwi

the unique member
of |Γ | passing wi, and by Mwi

the unique member of |∆0| passing wi, where
1 ≤ i ≤ 2k + 2.

First, we give a proof for the case k = 0 or 1. Assume that k = 0 or 1.
The linear system |q̄∗(∆0 + Γ ) − ∑

i=1,2E
∨
i | + |q̄∗(∆0 + Γ ) − ∑

3≤i≤2k+2E
0
i |

is a subsystem of |F2 +KW2
|. Note that both Lw1

+Mw2
and Lw2

+Mw1
are

members of |∆0 + Γ | passing w1 and w2. Thus the fixed part of |q̄∗(∆0 +
Γ ) − ∑

i=1,2E
∨
i | is

∑
i=1,2 q

′−1
∗ (E0

i ), and the variable part of |q̄∗(∆0 + Γ ) −∑
i=1,2E

∨
i | is free from base points. Moreover |q̄∗(∆0 + Γ ) − ∑

3≤i≤2k+2E
0
i |

is free from base points. Thus the assertion follows for the case k = 0 or 1.
Next we give a proof for the case k = 2. Take a member C1 of |2∆0 + Γ |

passing the 5 points w1, w3, w4, w5 and w6. This is possible, since dim |2∆0+
Γ | = 5. Let C2 be a member of |2∆0 +Γ | passing the 5 points w1, w2, w3, w5

and w6. Then the 4 members C1 +Lw2
, C2 +Lw4

, ι∗0(C1)+Lw1
= ι∗0(C1 +Lw2

)
and ι∗0(C2) + Lw3

= ι∗0(C2 + Lw4
) of |2∆0 + 2Γ | pass the 6 points w1, . . . , w6,

hence they are corresponding to members of |KW2
+ F2|. We use these 4

divisors to study the canonical system |KỸ |.
Let C ′

1, C
′′
1 and D be effective divisors on W satisfying C1 = C ′

1 +D and
ι∗0(C1) = C ′′

1 +D, where C ′
1 and C ′′

1 have no common irreducible components.
Then we have ι∗0(D) = D and C ′′

1 = ι∗0(C
′
1). Let us show that D = 0,

namely, that C1 and ι∗0(C1) have no common irreducible components, on the
assumption that the configurations of w2j+1’s (0 ≤ j ≤ 2) are sufficiently
general. We see easily that if the configuration of the 3 points w2j+1’s (0 ≤
j ≤ 2) is sufficiently general, then the following five conditions are satisfied :

i) no members of |2∆0 + Γ | stable under ι0 pass the 3 points w1, w3, w5,
ii) each member of |∆0| contains at most one out of the 6 points w1, . . . , w6,
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iii) each member of |Γ | contains at most one out of the 6 points w1, . . . , w6,
iv) no members of |∆0 + Γ | stable under ι0 pass the 2 points w3 and w5,
v) no members of |2∆0 + Γ | passing the 4 points w3, . . . , w6 are tangent
to Lw1

at w1.
Assume that D ∈ |2∆0 +Γ |. Then D ∈ |2∆0 + Γ | is stable under ι0, and

passes the 3 points w1, w3, w5, which contradicts the condition i). Thus we
have D /∈ |2∆0 + Γ |.

Assume that D ∈ |2∆0|. Then we have C1 ∈ |∆0| + |∆0| + |Γ |, which
contradicts the conditions ii) and iii). Thus we have D /∈ |2∆0|.

Assume that D ∈ |∆0 + Γ |. Then C ′
1 ∈ |∆0| contains at most one out

of the 5 points w1, w3, . . . , w6 by the condition ii). Thus, since ι∗0(D) = D,
the divisor D passes the 4 points w3, w4, w5 and w6. This contradicts the
condition iv). Thus we have D /∈ |∆0 + Γ |.

Assume that D ∈ |∆0|. Then D is a member of |∆0| stable under ι0.
Note that w1, . . . , w6 ∈ W \ {p1, . . . , p4}, where {p1, . . . , p4} is the set of all
fixed points of ι0 on W . Thus by the condition ii), the divisor D contains
none of the 6 points w1, . . . , w6. It follows that both C ′

1 and C ′′
1 = ι∗0(C

′
1)

contain the 4 points w3, w4, w5 and w6, which contradicts C ′
1 ·C ′′

1 = 2. Thus
we have D /∈ |∆0|.

Assume that D ∈ |Γ |. Then we have C1 ∈ |∆0| + |∆0| + |Γ |, which
contradicts the conditions ii) and iii). Thus we have D /∈ |Γ |.

Thus, by the argument above, the divisors C1 and ι∗0(C1) have no common
irreducible components. Moreover C1 and Lw1

have no common irreducible
components by the conditions ii) and iii). By the condition v), we have
C1 ∩ Lw1

= w1 + w7 for a certain point w7 6= w1 on W . It follows

(C1 + Lw2
) ∩ (ι∗0(C1) + Lw1

) = w7 + w8 +
∑

1≤i≤6

wi,

where w8 = ι0(w7). ¿From this we infer that the fixed part of |KW2
+ F2| is∑

i=1,2 q
′−1
∗ (E0

i ), and that the base locus of the variable part of |KW2
+ F2|

is at most q̄−1({w7, w8}) on the assumption that the configuration of the 4
points w1, w3, w5 and w′

1 are sufficiently general.
By the same method as in the case of C1, we see that if the configuration

of w1, w3, w5 and w′
1 are sufficiently general, then

(C2 + Lw4
) ∩ (ι∗0(C2) + Lw3

) = w′
7 + w′

8 +
∑

1≤i≤6

wi,

where w′
7 ∈ Lw3

and w′
8 ∈ Lw4

are certain points on W . It follows that the
base locus of the variable part of |KW2

+ F2| is at most q̄−1({w′
7, w

′
8}). Thus
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the assertion follows for the case k = 2, since we have {w7, w8} ∩ {w′
7, w

′
8} =

∅.
In what follows, we assume that the configuration of the k + 1 points

w2j+1’s (0 ≤ j ≤ k) and that of w′
1 are sufficiently general as in Lemma 4.2,

hence that Y is minimal. We put

F2 = q̄∗(
∑

i=1,2

2(Lwi
+Mwi

)) −
∑

i=1,2

(E0
i + 2E∨

i ) −
∑

3≤i≤2k+2

2E0
i ,

where Lwi
and Mwi

are the divisors as in the proof of Lemma 4.2. Then the
divisors B2 and F2 are stable under the action of G. Let h be a meromorphic
function on W2 corresponding to the principal divisor B2 − 2F2. Then cι0 =
(ι∗0h)/h is a non-zero constant. We use the same symbol pi for the point onW2

lying over the fixed point pi ∈ W of ι0. Since {p1, . . . , p4}∩supp(B2−2F2) =
∅, we infer h(p1) 6= 0, hence cι0 = 1. Thus by Lemma 1.3, there exist exactly
two liftings to Y2 of the action of G on W2.

Lemma 4.3. There exists a unique free action of G on Ỹ which is obtained

by lifting the action on W2. This action on Ỹ induces one on Y free from

fixed points.

Proof. The fiber f−1
2 (pi) is a set of 2 points for each 1 ≤ i ≤ 4. We take

the unique lifting to Y2 of the action of G such that the induced action of G
on f−1

2 (p1) is free from fixed points. We obtain an action of G on f−1
2 (pi) by

restricting this lifting. Since {p1, . . . , p4} is the set of all fixed points of the
action of G on W2, it only needs to show that the action of G on f−1

2 (pi) is
free for any 2 ≤ i ≤ 4.

Let Ls be a member of |Γ | given by x− s = 0, and Ms a member of |∆0|
given by y − s = 0 for each s ∈ P1 = C ∪ {∞}. Then we have q̄−1(L1) ' P1

and Oq̄−1(L1)(F2) ' OP1(4). Putting Ui = q̄−1(L1) \ {pi} (i = 1, 2), we have
q̄−1(L1) =

⋃
i=1,2 Ui. For each i = 1, 2, we take a coordinate zi on Ui such

that ι0 : zi 7→ −zi on Ui and z1z2 = 1 on U1 ∩ U2 hold. Note that the fixed
point p1 ∈ U2 is given by z2 = 0, and that the fixed point p2 ∈ U1 is given by
z1 = 0. Let

⋃
i=1,2 Ui × C be the total space of the line bundle Oq̄−1(L1)(F2).

We take a fiber coordinate ζi on Ui × C such that

ζ1 =
ζ2
z4
2

. (5)

Let gi = 0 be a defining equation of B2|q̄−1(L1) on Ui such that g1 = g2/z
8
2 .

Then f−1
2 (q̄−1(L1)) is a subvariety of

⋃
i=1,2 Ui×C locally defined by ζ2

i −gi =
0. Since B2 is stable under the action of G, the function ι∗0g1/g1 = ι∗0g2/g2 is
holomorphic on q̄−1(L1), hence a constant. ¿From this together with g2(p1) 6=
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0, we infer ι∗0gi = gi for i = 1, 2. Thus, since the action of G on f−1
2 (p1) is

non-trivial, the automorphism of f−1
2 (q̄−1(L1)) corresponding to ι0 ∈ G is

given by (z2, ζ2) 7→ (−z2,−ζ2) on U2 × C. By this together with (5), we see
that this automorphism is given by (z1, ζ1) 7→ (−z1,−ζ1) on U1 × C. Thus
the action on f−1

2 (p2) is free from fixed points.
Note that we have p1, p3 ∈ q̄−1(M1) and p3, p4 ∈ q̄−1(L−1). Using M1 and

L−1 in place of L1, we see that the action of G on f−1
2 (pi) is free for i = 3, 4

in the same way. Thus the assertion follows.

Proposition 4.1. Let X be a quotient of Y by the free action of G given

in Lemma 4.3. Then X is a minimal algebraic surface of general type with

c21 = 2χ(O) − 1, χ(O) = 4 − k and Tors(X) ' Z/2.

Proof. Since the projection π : Y → X is an unramified Galois cover
of degree 2, we infer from (4) and Lemma 4.2 that X is a minimal surface
with c21 = 2χ(O) − 1, χ(O) = 4 − k and Z/2 ⊂ Tors(X). The isomorphy
Tors(X) ' Z/2 follows from Theorem 1.

Finally, we give a proof of Lemma 4.1. We take the homogeneous coordi-
nates (X0 : X1) and (Y0 : Y1) as in the beginning of this section such that w1

is given by (x, y) = (0, 0). Let C3 be the unique member of |∆0 + Γ | whose
strict transform on W0 passes w′

1. Then C3 is defined by µx + νy = 0 for
certain constants µ and ν ∈ C. The point w2j+1 is given by (x, y) = (αj, βj)
for each integer 1 ≤ j ≤ k, where αj and βj ∈ C are certain constants.

Put ηι0(X0, X1;Y0, Y1) = η(X1, X0;Y1, Y0) for each homogeneous poly-
nomial η(X0, X1;Y0, Y1) ∈ H0(OW (l∆0 + mΓ )) of bidegree (l, m). Then
η 7→ ηι0 gives an involution of H0(OW (l∆0 + mΓ )), and this involution in-
duces an action of G = 〈ι0〉 ' Z/2 on H0(OW (l∆0 + mΓ )). Let V +

(l,m) be

the space consisting of all elements in H0(OW (l∆0 +mΓ )) stable under this
action. We denote by Λ+

(l,m) = P(V +
(l,m)) the subsystem of |l∆0 + mΓ | cor-

responding to the subspace V +
(l,m). If D is an effective divisor on W2, we

denote by Λ+
(l,m)(D) the space consisting of all members C’s of Λ+

(l,m) such

that q̄∗C − D is effective. We put Λ̃+
(l,m)(D) = q̄∗(Λ+

(l,m)(D)) − D. More-

over we put Λ+ = Λ+
(8,8)(

∑
i=1,2 3(E0

i + E∨
i ) +

∑
3≤i≤2k+2 4E0

i ) and Λ̃+ =

Λ̃+
(8,8)(

∑
i=1,2 3(E0

i + E∨
i ) +

∑
3≤i≤2k+2 4E0

i ).
Proof of Lemma 4.1.

First, we give a proof for the case k = 1. In what follows, we assume that
α1, β1, µ and ν are sufficiently general. Then we have dimΛ+

(2,2)(
∑

i=1,2(E
0
i +

E∨
i ) +

∑
i=3,4E

0
i ) = 1. It is easily verified that the base locus of this linear

pencil is {wi}1≤i≤4 ∪ {w9, w10}, where the point w9 is given by

x =
β1(µβ1 + να1)

µα1 + νβ1

and y =
α1(µβ1 + να1)

µα1 + νβ1

,
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and w10 = ι0(w9). We use the same symbol wi for the point on W2 lying over
wi ∈ W , where i = 9, 10. It is also easily verified that Λ̃+

(2,2)(
∑

i=3,4E
0
i ) is

free from base points. Thus from

3Λ̃+
(2,2)(

∑

i=1,2

(E0
i + E∨

i ) +
∑

i=3,4

E0
i ) + Λ̃+

(2,2)(
∑

i=3,4

E0
i ) ⊂ Λ̃+,

we infer that the base locus of Λ̃+ is at most {w9, w10}. Meanwhile, since
ι∗0(C3) passes w1, we have

2(C3 + ι∗0(C3) + Lα1
+ L1/α1

+Mβ1
+M1/β1

) ∈ Λ+,

where Ls and Ms are the divisors as in the proof of Lemma 4.3 for each
s ∈ C ∪ {∞}. Thus, since C3 + ι∗0(C3) + Lα1

+ L1/α1
+ Mβ1

+ M1/β1
passes

neither w9 nor w10, we infer that the linear system Λ̃+ is free from base
points. By Bertini’s theorem, any general member B ′

2 of Λ̃+ satisfies all the
conditions given in Lemma 4.1.

Next, we give a proof for the case k = 0. In what follows, we assume that µ
and ν are sufficiently general. Then we have dimΛ+

(2,2)(
∑

i=1,2(E
0
i +E∨

i )) = 2.

It is easily verified that Λ̃+
(2,2)(

∑
i=1,2(E

0
i +E∨

i )) is free from base points. We
therefor infer, since we have

3Λ̃+
(2,2)(

∑

i=1,2

(E0
i + E∨

i )) + q̄∗Λ+
(2,2) ⊂ Λ̃+,

that Λ̃+ is free from base points. Thus any general member B ′
2 of Λ̃+ satisfies

all the conditions given in Lemma 4.1.
Finally, we give a proof for the case k = 2. In what follows, we assume

that α1, α2, β1, β2, µ and ν are sufficiently general. Then we see easily that
dimΛ+

(2,2)(
∑

1≤i≤6E
0
i ) = 1, and that the base locus of this linear system is

{wi}1≤i≤6 ∪ {w11, w12}, where the point w11 is given by

x =
(β1β2 − 1)(α1β2 − α2β1)

(β1 − β2)(α1α2 − β1β2)
and y =

(α1α2 − 1)(α1β2 − α2β1)

(α1 − α2)(α1α2 − β1β2)
,

and w12 = ι∗0(w11). We use the same symbol wi for the point on W2 ly-
ing over wi ∈ W , where i = 11, 12. The linear system Λ+

(2,2)(
∑

i=1,2(E
0
i +

E∨
i ) +

∑
3≤i≤6E

0
i ) has a unique member C4. The divisor C4 is smooth at

w1, . . . , w6, w11 and w12, since any distinct 2 members of Λ+
(2,2)(

∑
1≤i≤6E

0
i )

intersect each other transversally at these 8 points. We denote by C̄4 the
strict transform on W2 of C4. Then we have C̄4 = q̄∗(C4) −

∑
i=1,2(E

0
i +
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E∨
i ) − ∑

3≤i≤6E
0
i . It is also easily verified that dim Λ̃+

(2,2)(
∑

3≤i≤6E
0
i ) = 2,

and that this linear system has no base points. Thus from

3Λ+
(2,2)(

∑

i=1,2

(E0
i + E∨

i ) +
∑

3≤i≤6

E0
i ) + Λ+

(2,2)(
∑

3≤i≤6

E0
i ) ⊂ Λ+,

we infer that the base locus of Λ̃+ is at most C̄4.
The linear system Λ+

(4,4)(
∑

i=1,2 3E0
i +

∑
3≤i≤6 2E0

i ) has a unique member
C5. By the same method as in the proof of Lemma 4.2, we see that C4 and
C5 have no common irreducible components. Thus we have

C4 ∩ C5 = w13 + w14 +
∑

i=1,2

3wi +
∑

3≤i≤6

2wi, (6)

where w13 is a point on W and w14 = ι0(w13). If {w13, w14} = {w3, w4}
holds for general α1, . . . , ν, then we have {w13, w14} = {w5, w6} for general
α1, . . . , ν, which is a contradiction. Thus we have {w13, w14} ∩ {w3, w4} = ∅.
In the same way, we see {w13, w14} ∩ {w5, w6} = ∅. By the defining equation
of C5, we obtain multw1

C5 = 3. Thus, since the defining equation of C5 is
independent of µ and ν, we infer that {w13, w14} ∩ {w1, w2} = ∅ for general
µ and ν. Moreover by the defining equation of C4 and that of C5, we obtain
C4 ∩ {p1, . . . , p4} = ∅ and C5 ∩ {w11, w12} = ∅. It follows

{w13, w14} ∩ {w1, . . . , w6, w11, w12, p1, . . . , p4} = ∅. (7)

Let us use the same symbol wi for the point on W2 lying over wi ∈ W for
i = 13, 14. Then from (6), (7) and

2Λ+
(4,4)(

∑

i=1,2

3E0
i +

∑

3≤i≤6

2E0
i ) ⊂ Λ+,

we infer that the base locus of Λ̃+ is at most C̄4 ∩ C̄5 = {w13, w14}, where
C̄5 = q̄∗(C5)−

∑
i=1,2 3E0

i −
∑

3≤i≤6 2E0
i is the strict transform on W2 of C5.

Now let us show that w13 and w14 are at most ordinary double points
of general members of Λ̃+ using the argument above. Let C6 be a general
member of Λ+

(2,2)(
∑

1≤i≤6E
0
i ). We denote by C̄6 = q̄∗(C6) −

∑
1≤i≤6E

0
i the

strict transform on W2 of C6. Then since

Λ+
(2,2)(

∑

1≤i≤6

E0
i ) + Λ+

(2,2)(
∑

i=1,2

(E0
i + E∨

i ) +
∑

3≤i≤6

E0
i )

+ Λ+
(4,4)(

∑

i=1,2

3E0
i +

∑

3≤i≤6

2E0
i ) ⊂ Λ+,
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the divisor
∑

4≤i≤6 C̄i +
∑

i=1,2 2q′−1
∗ (E0

i ) is a member of Λ̃+. By C̄4 ∩ C̄6 =
{w11, w12} together with (6) and (7), we infer that both w13 and w14 are
ordinary double points of

∑
4≤i≤6 C̄i +

∑
i=1,2 2q′−1

∗ (E0
i ). Thus w13 and w14

are at most ordinary double points of general members of Λ̃+. Hence any
general member B′

2 of Λ̃+ satisfies all the conditions given in Lemma 4.1.

Remark 1. Note that if k = 0 or 1, then the isomorphism class of the quartet
(W0, ι0|W0

, q′∗(B2),
∑

i=1,2E
0
i ) depends only on the isomorphism class of X.

This is verified as follows. In the construction of X above, the morphism
π : Y → X is the unramified double cover corresponding to Tors(X), and
p : Ỹ → Y is the shortest one among all composites of quadric transfor-
mations such that the variable part of p∗|KY | is free from base points. The
morphism Φ−KW0

◦q′◦f is the canonical map of Ỹ , where Φ−KW0
: W0 → P6−2k

is the anti-canonical map of W0. We have degΦ−KW0
= 1 for k = 0, 1 and

degΦ−KW0
= 2 for k = 2. Thus if k = 0 or 1, then W0 is the minimal desingu-

larization of the normalization of the canonical image Z = ΦK
Ỹ
(Ỹ ) ⊂ P6−2k,

since Φ−KW0
contracts no (−1)-curves. Now since the divisor

∑
i=1,2E

0
i onW0

is the image by q′ ◦ f of the fixed part of p∗|KY |, we infer from the argument
above that the isomorphism class of the quartet (W0, ι0|W0

, q′∗(B2),
∑

i=1,2E
0
i )

depends only on the isomorphism class of X. Note also that q ′ : W2 → W0

is the blowing-up of W0 at all non-negligible singularities of q′∗(B2).

Appendix

Let us give a proof of Lemma 1.3. We use the same symbol g for the auto-
morphism of W corresponding to g ∈ G. Let {Ui}i∈I be an open covering of
W such that the divisor F is given by fi = 0 on Ui, where fi is a meromorphic
function on Ui. We take {Ui}i∈I in such a way that there exists a left action
of G on I such that g(Ui) = Ug·i for any g ∈ G. Let ∪i∈IUi × C be the total
space of the line bundle F , such that (p, ζi) ∈ Ui × C and (p, ζj) ∈ Uj × C

give the same point on ∪i∈IUi×C, if and only if ζi = (fi/fj)(p)ζj. We denote
by π : ∪i∈IUi →W the natural projection.

We take a system (hi)i∈I of defining equations of B such that hi =
(fi/fj)

nhj on Ui ∩ Uj hold. Here hi is a holomorphic function on Ui for
each i. Then the variety V is defined by ζn

i − hi = 0 on Ui × C. Since
hi/f

n
i = hj/f

n
j gives a meromorphic function on W corresponding to the

principal divisor B − nF , we have

g∗hg·i = cg(g
∗fg·i/fi)

nhi (8)

on Ui for each g ∈ G, where c : g 7→ cg is the Character of G given in Lemma
1.3. Take a constant c′g ∈ C× satisfying c′g

n = cg. Then

(p, ζi) 7→ (g(p), ζg·i) = (g(p), c′g(g
∗fg·i/fi)(p)ζi)
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gives an automorphism of ∪i∈IUi × C. This automorphism induces that of
V , say ψg, since (8) holds.

Now assume that the action of G on W lifts to that on V . We denote
by ϕg the automorphism of ∪i∈IUi × C corresponding to g ∈ G. Then from
ϕg = (ϕg ◦ ψ−1

g ) ◦ ψg and π ◦ (ϕg ◦ ψ−1
g ) = π, we infer that ϕg is given by

(p, ζi) 7→ (g(p), ζg·i) = (g(p), χg(g
∗fg·i/fi)(p)ζi), (9)

where χg ∈ C× is a constant such that χn
g = cg. Since g 7→ ϕg is an action of

G, we see that χ : g 7→ χg is a character of G. Thus we have c ∈ Im(Ψ).
Assume conversely that c ∈ Im(Ψ). We define an automorphism ϕχ,g of

V by (p, ζi) 7→ (g(p), ζg·i) = (g(p), χg(g
∗fg·i/fi)(p)ζi) for each χ ∈ Ψ−1(c) and

g ∈ G. Then it is easily verified that ϕχ : g 7→ ϕχ,g is a lifting of the action
of G on W . The set {ϕχ}χ∈Ψ−1(c) is that of all liftings of the action of G on
W .
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