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ON THE MILNOR FIBRATIONS OF WEIGHTED

HOMOGENEOUS POLYNOMIALS
Alexandru Dimca

Let w= (wo,... .wn) be a set of integer positive weights and denote by S the
polynomial ring C[xo,.. .xn] gracded b_y the conditions deg (xi)= w.. For any graded'
object M we denote by Mk the homogeneous component of M of degree k. Let f € SN be
a weighted homogeneous polynomial of degree N.

The Milnor" fibration of f is the locally trivial fibration f:Cnﬂ\f‘l(O)—)C\{_ﬂ},
with . tipical fiber F = fﬁl(l) and geometric  monodromy h:F—=F.
h(x) = (twoxo. - ,twnxr']) for t=exp(27i/N). Since hN =1, it follows that the
(complex) monodromy operator h* : H'(F) — H'(F) is diagonalizable and has eigenvalues
in the group G = {ta; a=0..... N - 1} of the N-roots of unity.

We denote by H’(F)a the eigenspace corresponding to tﬁe eigenvalue ™8, for
-a=0... ,N-1.

When f has an isolated singulerity at the origin. the only nontrivial cohomology
group HX(F) is for k=n and the dimensior;s dim Hn(F)a are known by the work of
Brieskorn [2]. But as soon as { has a nonisolated singulerity, it seems that even the Betti
numbers bk(F) are known only in some special cases, see, fér instance [9]. [14], [17). [22],
[25].

The first main result of our paper is an explicit formula for the cohomology groups

Hk(F) and for the eigenspaces Hk(F)a. Let {) be the complex of global algebraic
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n+l

differential forms on € ~, graded by the convention'deg(ﬁdxi/\ L Adx y=
. . . . 1 '

k

SPpH W, t..w forue Sp. We introduce a new differential on .Q, namely
1 k

Dy(w) = dw) - (jwl /MdfAW, for u)eﬂ; with |w] = p the degree of w and d the usual
exterior differential. similar to Dolgachev (8], p. 61. | ‘

For a=10....,N-1 we denote by ‘O'(a) the subcomplex in ..O. given by

;?Oﬂ.-a+sN'

T Toa Df—closed form wWéE .Of‘*l we can associate the element & (W) = [i*A (Lb)]
in the de Rham cohomology group HYE ), where A is the contraction with the Euler
vector field (as in [12], p.467 in the homogeﬁeous cﬁse and [8), p. 43 in the weighted

homogeneous case) and i : F —> (:“+1 denotes the inclusion.

Theorem A

—

The - maps 8 : Hkﬂ(.ﬂ:,Df) —> ﬁk(F) and 6: Hk+1( ﬂ.(a).Df);—-v'ﬁk(F)a are

isomorphisms for any k >0.a=0....,N-1, with B denoting reduced cohomology.

The proof of this Theorem depends on a‘ comparision between speétra.l sequences
naturally associated to the two sides .of these equalities see (1.8j.

Our second main theme is that these spectral sequences can be used to perfo'r;m

explicit computations and to derive interesting numerical formulas, in spite of the fact

that the El-terrn has infinitely many nonzero entries and that degeﬁeration at the
Ez-term happens only in special cases (see (3.10) and (3.11) below). ,

The eigenspaces H'(F)  are particularly interesting. If P =P(w) denotes the weighted
projective space Proj(S), V the hypersurface {'= 0 in P aﬁd U = P~V the complement,
then there is a natural identification H'(F)o = H(U). We establish an iﬁclusion Eetween

the filtration on H'(F)o induced by the spectral sequence mentioned above and the

(mixed) Hodge filtration on H'(U). having a substantial consequence for explicit




computations and extending to the singular case an important result of Griffiths [12],
see (2.7.ii) below."
To prove the analogous result for these filtrations on the whole H'(F), we establish

first some subtle properties of the Poincaré residue operator

n+l

R :HE€ < F)os HUE) (see (1.6), (1.20), (1.21) and (2.6)) which may be useful in

their own.
Note that the Betti numbers b, (V) are completely determined by b, (U) and hence

one can get by our method at least upper bounds for all bk(V) as well as the exact value

of the top interesting one (i.e. b (V) where m = dim ™ X(

n+m-1

msing) in a finite number
of steps see (2.8).

Then we specialize to the case when f has & 1-dimensional singulﬁr locus,a situation
already studied (without the weighted honiogeneity assumption) by N. Yomdin and, more
recently and more completely, by D. Siersma, R. Pellikaan, D. van Straten, T de Jong.
We relate the spectral sequence (Er(f)o’dr) to some new s[ﬁectral sequences associated

to the transversal singularities of f, these being the intersections of r}0) with

transversals to each irreducible éomponent of f-l(O) \we hope that these intricate

sing’
locel spectral sequences will pley a fundamental role in uncerstanding better even the

isolated hypersurface singularities (see for instance the nice characterization (3.10") of

weighted homogeneous singularities). Concerning the numerical invariants in this case,
we get interesting and effective formulas for the Euler characteristics%(V) and 7((1’)
extending in highly nontrivial way the known formulas for the homogeneous case (we
éonjecture them to hold in general and chéck them under certain assumptions on the
transversal singulerities of f. see (3.19.ii)).

The last section is devoted to explicit computations with our spectral sequence. The

first two of them are just simple illustrations of our technigue. while the third offers a



more subtle example, for which we know no other method to get even the Betti numbers
for V. It is interesting to remark that if one wénts to compute the Euler characteristic
X(V) in this case using Theorem (3.1) in Szafraniec [26], then one is led to compute
bases of Milnor algebras (and signatures of bilinear forms defined on them) of a huge
dimension (z67) and this is an impossible task even for a computer!

A more theoretical application (improving a result of Scherk [20]) is given in the
end, the key point in the proof being again an explicit computation with the spectral
sequence. |

A basic open problem is to decide whether the spectral sequence (Er(f), dr) or its

local analog (Er(g,o), dr) degenerates always in a finite number of steps and, in the

affirmative case. to determine a bound for this number in terms of other invariants of {

—

or g.

1. Some spectral sequences

In this section we shall use many notations and results from Dolgachev [8] without

explicit reference.

Let A : _n_k — nl('l denote the contraction with the Euler vector field
Zwixi 3/3 x;. For k > 1 we put _ﬁ_k - ker (A : ._O_k—»_nl(-l) = im (D ﬂkﬂ—-)ﬂk)
and let _()_; denote the associated sheaf on P. One has also the twisted sheaves
ﬂ;(s), for anyse Z.

Let i : U —» P denote the inclusion and put ﬂg(s) = i:-‘ n;‘,(s).

The Milnor fiber F is an affine smooth variety and according to Grothendieck [13]
one has H'(F) = H'(T"(F, -Q‘F)). Let p: F—>U denote the canonical projection and note

that

. . N-1 '
Wy  opy L= 690 _QU(-a)

a=



-5.-.

. N-1
If welet A; = (U, .QU(-a)) and A" = @ A, then we clearly have
' &=0

(1.2) H'(F) = H(A), H’(F)a = H'(A’G)
There is a natural increasing filtration F s on'A;, related to the order of the pole a

form in A; has along V, namely

(1.3) FSA'L =0 fors <0and FSAL ={w/t‘°‘; Wé_Q'lN_a} for. s > 0 similar to [12].

But for obvious technical reasons it is more convenient to consider the decreasing

filtration.

S _ i
(1.4) FAg =F A,

The filtration F° is compatible with d, exhaustive (i.e. A; =U FSA;) and bounded
above (FMIA' = 0). Here d denotes the differential of the complex A; which is induced
by the exterior differential d in _Q.F.via (1.1) and whieh is given explicitly by the

formula
(L8 d(@/%) = d(WrSY, where d(w) = fdw - (Jwl/NATAW.

By the general theory of spectral seguences e.g. [is], p- 44 we get the next

geometric spectral sequence.

(1.6) Proposition

There is an E, -spectral sequence (Er(f)a, dr) with

gt 5+t S, . ,.5+], .
1—:51 =H (FA/F A}

&8

and converging to the cohomology eigenspace H'(F)a. P

Moreover one can sum these spectral sequences for a= 0,...,N-1 and get a
spectral sequence (Er(f).dr) converging to H(F). And (Er(f)o’ dr) and (Er(f)’ dr) are in

fact spectral sequences of algebx;as converging to their limits as algebras. Note that



H’(E‘)ogH‘(U), either using the fact that U= F/G, G acting on F via the geometric
menodromy or the fact that "Q.U is a resolution of € [24].

We pass now te the construetion of seme purely algebraic spectral sequences. Let

s¥t+l
{N-a

nomogeneous differential form & . Neote that the associated total complex B;f with

(Ba,d',d"_) be the double eomplex B:‘t s , @ =d and d"(w) = - jw}/Ndf AW for a

@ BZ ot , D#d +d"is preeisely the eomplex (ﬂ(a) H Df)
s+tzk

Similarly B' s@B", = (ohes D)
Consider the decreasing filtration FP on B;a given by FPBE =P pok"s and similarly

A
s>p
on B'. Using the econtraction operator A, we define the next complex morphisms,

a

compdtible with the filtrations:

8 :B;l.----rz‘-&;i end § : B ~—> A’
§ s Awx™ for wesd!

Note that B' and A" are in fact differential graded algebras, but 6 is not

compatible with the products.

(1.7) Proposition

There is an E, -spectral sequence ('Er(f)a’dr) with

+
E:s,t s t

S*l
i (F°B: /F a)

and converging to the cohomology H'(B'H). The operator 8 induces a morphism

Sr : (E(1),.d )~ (E (f),.d) of spectral sequences -

Moreover one can sum these spectral sequences 'Er(f)a and get a spectral sequence
('Er(f)’dr) converging to H'(B’) and a morphism ('Er(f),dr)—-b(Er(f),dr). The proof of
these facts is standard e.g. [16], p. 49. Let ’I:::,(f)o (resp. ‘é’!'_(f)) denote the reduced

spectral sequence associated to E r(f)o (resp. Er(f)) which is obtained by replacing the



(o]

term at the origin E ©-%%:-¢ by zero. For a # 0, we putf (), =E(f)
1 oo ’ ! r'a r a

P~

We clearly have natural morphisms gr : 'Er(f);—? Er(f)a, Jr : 'Er(f)——:"f::_(f)

induced by 6 . We can state now a basie result.

(1. 8) Theorem

Poar

The morphisms 5:' are isomorphisms for r > 1 and they induce isomorphisms

(H(B,) = H'(F), and H'(B) = H'(F).

Proof

1 n+1A.

Since F™''B = F =0, the filtrations F are strongly convergent [16], p. 50 and

L d

hence it is enough to show that § 1 is an isomorphism. The vertical columns in 'El(f)

correspond to certain homogeneous components in the Koszul complex K'.

(1.9) K : 0—9-_0_095, _(11 ..EE; _c'i_'fﬂ_nﬂ__’ 0

of the partial derivatives fi =(91)/(3 xi), i=0,..,n in S. To describe | the vertical
columns in El(f) is more subtle. Note that fK' is a subcomplex in K* and let K* denote
the quotient complex K'/fK'. There is a map DK — 'R"l induced by A which is a

complex morphism and hence K- = ker A is a subcomplex in K'.
'Y ‘e v . B~y
Let A denote the composition K'=>» K*—> K" ~,

Then the vertical lines in El(f) correspond to certain homogeneous components in

Pt

the cohomology  groups H'(flz'). The morphism S corresponds to

1
Z *, H(K") — H'(ﬁ'_l) and a well-defined inverse for A* is given by the map

2

(1.10) YV :HE H—=HEK), V[AW)] = [df A AW)ANDL

‘To check this. use that df AW = 0 implies 0 = A(df AW ) = Nfw -~ df A A(w).

(1.11) Example

Assume that f has an isolated singularity at the. origin. Then fo,... ,fn form a



regular sequence in S and we get ‘Egi’t(f)ﬁl =0 for s + t# n and

n-t.t

n+l
1 (

'E (f)ac:H K") = Q(f)

tN-a tN-a- w

where Q(f) = S/(fo,.. ,fn), WS W bW Moreover, the Poincarée series for Q(f)
(see for instance [7], p. 109) implies that Q(i')k =0fork>(n+1)N-2w. Hence in this
case all our spectral sequences are finite and degenerate at the El—term (the

degeneracy of the component a = 0 being equivalent to Griffiths’ Theorem 4.3 in {12]).

-1,n+1
1 .

size of the spectral sequence ’Er(f).

Note that one can have 'E (f)a # 0. In general, one has the next result about the

(1. 12) Proposition

'E.':.’t(f) =0foranyr>lands+t< ne- m, where m = dim f_l(O)sing-

Proof

The result [ollows using the description of 'Ei’t(f) in terms of the Koszul complex

and Greuel generalized version of the de Rham-Lemma, see [11], (1.7).

(1.13) Corollary
HF) =0 for k<n-m.

This result is implied also by {15], but (1.12) will be used below in (2.8) in a crucial
way. |
Now we show that our complexes can be used to deseribe very explicitly the Poincare’

residue  isomorphism R:Hk+l( n+l

—~ 4
C --F)—-)Hk(F) and the Sebastiani~Thom

isomorphism.

When X is a smooth complex manifold and D is a smooth closed hypersurface in X
there is a Gysin exact sequence

’ ¥ ~ .
(1.14)... =15 1x) 5 ¥ lai~p) B By — - - -



where i* is induced by the inclusion i : X~ D —>» X and R is the Poincare’residue, see for
instance [24], § 8.
Let C'f denote the complex L) with the differential D, introduced above (up to a

shift C; = B'!) and note that

. —— n+l * )
(1. 15) K : Cf—"l € ~ F.Jﬂcn+1\F

X (W) =w - ADW))/N( - 1)

is a morfism - of differential graded algebras (i.e. dx(Ww)= Df(w) " and
of (wll\_ﬂdz) = o((ﬁJl) A X Uz)).

Using the definition of the Poincare residue as in [12], p.290 it follows that

(1.16) Rek(w)=(-D¥/N§ ().

Since R is an isomorphism by using (1.14) in the case X = Cn+1, D=F and 5 is an
isomorphism by Theorem A, it follows that X : H'(Cf)—ar ve™ F) is an isomorphism
too.

To discuss the Sebastiani - Thom isomorphism (see for instance [17])), we introduce a
new complex associated to f, namely Ef whieh is the complex .Q. with the differential
Diw=dw -df AW .

Define 9 :Ef -—-)Cf to be the C-linear map which on a homogeneous form J

with k = {w] acts by the formula (9 (W)= Z(k)’bc) , where A (k) =1 for k<N and
Ak} = (k = N) o (k= tNMN""for tN <k <{t+ DN, 1> L.
Then it is obviuos that 9 induces a complex iéomorphism between the corresponding
reduced complexes. In particular we get isomorphisms 9: Ht((_ff) --)Ht(cf) for any
t> 1.

Let w'=(w_,...,wl) be a new set of weights and '€ Clyg:--- .y, be a

homogeneous polynomial of degree N with respect to these weights. Then it is easy to

check that
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(1.17) Cp, = C,®Cy,

and that there is no such result for Cf+f,.
Using the isomorphisms 2] and Theorem A we get the Sebastiani - Thom

isomorphism

18) 5Em= O BrEeiiE)
s+t=k-1

where F', F" denote the Milnor fibers of f' and f + ' respectively.

Keeping trace of the homogeneous components in (1.17) we get

H(F"), =0 (7, ®f"(F)_,
c

with ¢=90,...,N-1 and 'f-i"(F')N = ﬁ’(F')o. When ' = yg, Example (1.11) shows that
'ﬁ"(F')o =0 and ﬁ'(F’)c = <6‘(yg_c_1dyo)>, a 1-dimensional vector gpace for

e=1,...,N-1. 1t  follows  that  dim 'ﬁk(F")o = dim T¥"1(F) where

#0

i'r, - © we,
e=1,N-1
This equality of dimensions is related to the next geometric setting. Let H: Vo = 0

denote the hyperplane at infinity in the compactification P{w,l) of Cn+1, let

V"< P(w,1) be the hypersurface given by f(x)--yi:'I = 0 and set U" = P(w,1) ~ V",
Since HAU"=U, U"\H=C" ! \F, the Gysin sequence (1.14) applied to X = U",

D=H N U"gives

¥ X
—H%um L gke™l R, ) —

(As a matter of fact U" may be singular and then to apply (1.14) one has to do as

follows. Let q P, P(w.1) be the covering map induced by

and let G be the corresponding group of covering transformations.

If we set U= q-l(U"), H= q 1(I-l), then there is a Gysin sequence associated to X = T,
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(117 C, n*C;®Cy
and that there is no such result for Cf+f,.

Using the isomorphisms B and Theorem A we get the Sebastiani - Thom

isomorphism

1.18) fKEm= O TEmeiteE
s+t=k-1

where F') F" denote the Milnor fibers of f and f + f* respectively.

Keeping trace of the homogeneous components in (1.17) we get

H(F"), =0H (F),@H (F)_,
c

with ¢=0,...,N-1 and '}.I"(F')N = -ﬁ‘(F')o. When ' = yg}, Example (1.11) shows that

'}T'(F')'D:U and ﬁ'(F')C=<5(y§-c'1dyo)>, a 1-dimensional vector space for
~k-1

c=1,... ,N-1. It follows that dim ﬁk(F“)o =dimH (F)#O where
H(F), = D wm,
e=]1,N-1

This equality of dimensions is related to the next geometric setting. Let H: Yo = 0
denote the hyperplane at infinity in the compactification P(w,1) of Cn+1, let.
- V' P{w,1} be the hypersurface given by f(x)=— yg =0 an.d set U" = P(w,1)~ V"

Since HNU"=U, U'\H= Cn+1 N F, the Gysin sequence (1.14) applied to X = U",

D=H N U" gives

% .
—H¥um L gke™l n R gkl —

(As a matter of fact U" may be singular and then to apply (1.14) one has to do as
4

follows. Let g :Pn+1—--> P(w.1) be the covering map induced by

and let G be the corresponding group of covering transformations.

If we set U= q-l(U"), H= q'l(H). then there is a Gysin seguence associated to X = Flj,
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D=Hn ’ff And the E-invariant part of this exact sequence is precisely the exact
sequence which we have written above).

Note that

dim HXC"™ I F) = dim 85 XF) = dim T¥ XF) 4 *+ dim 'ﬁk'l(r)o = dim HYU") + dim T* " L(u).

It follows tﬁat the first and the last map in the above exact sequence are trivial. Note

n+1

also that the geometric monodromy h acts on € "~ F and hence it makes sense to

n+l

define H3(C \F)#J as above.

It will be clear from what follows that the image of i* is precisely Hk(cn+1-..F)

#0
_and hence we can write the next diagram of isomorphisms:
Kiomy oo weKpprmy o 1KpeeN*1 R, k-1
A
o §.
(1.19) oK
k+1 : k
H (Cf+f,) . 'H {Cf)¢0
A © 4
g , 6
k+1, = . . ¥ K=
H (Cf+f,)o < H™( f)#)
Here \// is defined in a natural way: if W e,Hk(Ef)c (i.e. & is a sum DJl +.o..4 bJp of

homogeneous forms such that IwilE -¢ modulo N) then YW (w)=wA yg' ldyo'
The formula (1.16) tells us that the triangle in the diagram (1.19) is commutative up

to a constant. The big rectangle in the diagram is commutative in a similar way by the
next result.

(1.20) Lemma

Ri* § 97//=-1/N §6



Proof.

We have to show that both sides of this equality yield the same result when applied
to an element W=, +...+ Q)p éﬂk(a.f)c as above. Since these computations are
rather tedious, we treat here only the case p=2 and let the reader check that the
géneral case is completely similar.

So let W= W +W, with g=tN-c= ]wll
\wz\ - l""1l > N the forms &), and W, are themselves cycles in Hk('(-.‘,“f)c and the

end g+N= |w2\ (when

~ proof is easier!).

The condition 'ﬁf W = 0 is equivalent to
(i) df AW, =0

(i) af Aw | = d W, S
(iii) 0 = duw . | |
It is easy to see that

i*§ By w) = o*utw /e - Dy w e - Y

To compute the residue of this element we proceed as follows. First we apply A to the

equality (i) and get

{iv) Wy/(f - 1)+ W, =df A& (W )N - 1))

Next we can divicie this equality by (f - 1)° and get

(v) @/t - D™+ Wt - 1)° = ~4(A (W )/Ns(E - 1)°) + G /NI - 15,
If we apply A to (i), we get

dA(W,) = (@ + N) Wy + AAA(W ) - NE

This should be put in (v), one should apply once more this trick getting a term

ébntaining dA( wl) and then replace this by g u)l as follows by applying A to (iii).



- _ 1S '_ s+1
Let A = W, /s(f - 1)° + &, /(f - 1)

n+l1

and note that As is a closed form on € "~ F for any s > 1. The above computation

implies that the associated cohomology classes satisfy [As] ={{q - N(s - 1))/Ns)[As_1]
and hence

RIA, )= (A @/tRIA T = (DX T A @/NtI/NE (W) + S (w))l.
This ends the proof of (1.20) in this case.
(1. 21) Remark

There is a nice geometric consequence of the existence of the diagram (1.19). One

can think of the weighted projective sphce P(w.1) as a compactification of C'“’iF such

+
that the complement P(w,1)~ (C" N F) consists of two irreducible components. namely

V" and H. Using the isomorphism o , it follows that any cohomology class in

n+l

H’(Cn+1\ F) can be represented by a closed differential form on €" "\ F having a pole

of order 1 along V" and a pole (possibly of a higher order) along H.

On the other hand, the isomorphism i*§ O ¢/ shows that any class in B c™l Flyg

can be represented by a closed differential form on Cnﬂ\- F having & pole on V" and no

poles at all along H. It can be shown similerly that any class in H'(c"ﬂ\ F)0 can be

represented by a form having a pole of order 1 along H and a pole along V". It would be
nice to have a more geometric understanding of this phenomenon.

In conclusion, the natural isomorphism HK(E) = Hk(F)°® Hk(l-‘)#0 = B eH

Un).

shows that it is enough to concentrate on the cohomology groups H'(U) and this is what

‘we do in the next two sections.
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2. The relation with the Hodge filtration

Let us consider the decreasing filtration F° on H'(U) defined by the filtration F° on

A;), namely
(2.1) FSH*(U) = im {H'(fSA'O)—-, H(A}) = H'(U)}

On the other hand there is on H'(U) the decreasing Hodge filtration F:l introduced by

Deligne [5].

(2. 2) Theorem

H

One has FSH(U) S F 5" H*(U) for any s and FOH"(U) = Fhﬂ'm) = F9H'(U) = H'(U).

Proof

Let p: P"— P be the projection presénting P as the quotient of P" under the group
G(w), the product of cyclic groups of orders W,

Then T = p*(f) = f(x:O, - ,x:n) is & homogeneous polynomial of degree N and let U
be the complement of the hypersurface f=o0inP".

Since H'(U) can be identified to the fixed part in ﬁ'(fj‘) under the group G(w) and
since the monomorphism p* : HY(U)—>H(D) is clearly compatible with the filtrations .
F* and F;, it is enough to prove (2.2) for U. |

To simplify the notation, we assume that w = (1,...,1) from the beginning. Then U
is smooth and it is easier to describe the construction of the Hodge filtration [24).

Let p: X —P" be a proper modification with X smoﬁth, D= p_l(V) a divisor with
‘normal crossings in X and U= X\D isomorphic to U via p.

From this point on it is more suitable to work with holomorphic differential forms
on our algebraic varieties. If ﬂU is this holomorphic sheaves complex, mU the

algebraic version of it and i:U—P" is the inclusion, then one has inclusions
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ic(aﬂb) CQi»n(*V) Ci, "QU’ where _Qim(,v) denotes the sheaves of meromorphic
differential forms on P" with polar singulariﬁa along V. By Grothendieck [13], the
inclusion i,,(a_o_ 'U) c _O_’Pn(:v) induces isomorphisms at the hypércohomology groups.
And the same is true for the inclusions _Q"X(log D)c _Q‘X(-:D) C s —Q‘ﬁ where
j: U~—»X is the inclusion, _O.'x(*D) is defined similarly to -()..Pn(#V) and _O.'X(log D) is
the complex of holomorphic differential forms with logarithmic poles along D [24).
Recall that there is a trivial filtration g on any complex K’, by defining [7'>SK' to
be the subcompléx of K" obtained by replacin; the first s terms in K" by 0. The-Hodge

filtration is given by
(2.3) F;Hj(U) = imlr l-lj(O"Zs .O.'X(IOg D)— Hj(_Q°X(log D))} ‘
via the identifications |
H'( L)} (og DY) = H(j, L) = B (L)) = W(D) = H'(V).
The filtration F° on the complex A;) is related to a filtration F> on the complex
_Qi?n(:\l) defined in the following way: Fsﬂi’n(*v) is the sheaf of merom‘orphic

j-forms on p" having poles of order at most j- s along V for j > s and Fsﬂi)n(u\/) =.0

forj<s.
Note that psﬂlpn(.v):’ -Qim«j - s)N) for j>s. We get next a filtration on the
complex Q_’X(tD) = p*(.ﬂ_‘ (xV)) by defining FSL):.(«D) = p*(Fs_Q * (V).
. ' pn X pn
‘At stalks level, a germ weﬂé‘:(: D)x belongs to B,S_O_JX(::D)X if and only if
p'(u)j-s°wé_0.jx i Where u = 0 is a local equation for V around the point y = p(x).
H

1 ..vk=0 is a local

a a
equation for D, then p*(u) vanishes on D and hence p*(u) = vl1 e vkkw for some germ

If Vl.-- .. ’Vn are local coordinates on X around x such that v

wE q x and integers &, > L
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Using the definitions, it follows that {13 (log D) F® ()] («D) for j>s and § > 0.

And _Q;(log D) =_Q; C FS_Q;(*D) for s 0. WE can state this as follows.
(2. 4) Lemma
. . s M-
() G35,y {10008 D) € F* (23 (D) for s 2 0
(i) {1 (log D) € F° L1 (D).

We can hence write the next commutative diagram

Nillog D) — H(F°LGDN B HELY (V)
P

*
H(Qy0ogD) = —=> H(Q5(eD) L HL (eV)

H( <T>s+1

Now H'(Q‘Pn(*\')) = H'(aﬂi}) = H‘(A;)) = H'(U). To compute H'(anim(tv)) we use the

Ez-spectral sequence Eg’q = Hp(Hq(Pn, K')) converging to H'(K"), where
K = Fs_(']_'Pn(-V) and Bott's vanishing theorem [8].
S..y 55 _ SipN MAS G _
It follows that Eg’o = HP(F Ao), ]:‘.2 = H(P ,_O_Pn) and Eg 9= 0 in the other cases.

This spectral sequence degenerates at E2 since one can represent the generator of B>

2
lby a d-harmonic form *6"' and hence d Y= 0. On the other hand rﬁ(y') =0, since ¥~

belongs to the kernel of the map HZS(Pn) —l—’-‘? HZS(U). In fact this map is zero for s > 0.
To see this, it is enough to show that i*(e) = 0, where ¢ = cl(@(l)) is the first Chem
class of the line bundle W(l) (in cohomology with complex,coefficients!). But Ni*(e) = 0,
since it corresponds to the Chern class of 0(N)’U and this line bundle has a section
(induced by f) without any zeros.

It follows that im([b) = F°H'(U) and this gives the first part in (2.2).

The similar diagram  associated to the inclusion (2.4. i) gives
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FOH'(U) = FH'(U) = H'(U).
To see that F% = FII_1 we relate the mixed Hodge structure on H'(U) to the mixed
Hodge structure on H'(V). Consider the exact sequence in cohomblogy with compact

supports of the pair (P", V)

(2.5) ——9H§(U) — BYp" — Hv) — H‘é*lw)—r...

This is an exact sequence of MHS (mixed Hodge structures) and it gives an

k+1(

isomorphism of MHS H, U) -:-"H’;(V), the primitive cohomology of V [10]. Poincare”

duality gives a natural identification (U is a @-homology manifold):
HYU) = Hom(Hzn_s(U), Hi“(U))

Since Hgn(U) :H2n(Pn)= C(-n), we get the following relations among mixed Hodge

numbers

hP YUY = n"7P MYy

This gives h®*¥H3(U)) = 0 for any q and s, which shows that F;H'(U) = FIl_IH'(U), ending

the proof of (2.2).

s+l
H

(e.g. when V is & quasi-smooth hypersurface or when V is a nodal curve in Pz), this

(2. 6) Remark. In spite of the fact that F°H'(U) = F> "H'(U) for any s in many cases

equality does not hold in general. A simple example is the next: take

Vi xlxylx +y) + z3] =0 the union of & smooth cubic curve in P2 with an inflexional

tangent. Then it is easy to show that in this case dim Fleﬂ(U) =2 >dim F%HZ(U) = L

s+1
H

the cohomology of the Milnor fiber F. The proof of this fact ean be reduced to (2.2) as

There is a similar inclusion F°H'(F)D F¥ “H'(F) among the analogous filtrations on

follows. The geometric monodromy h is an algebraic map and hence h™ preserves both



- 18 -

filtrations F° and F° on H'(F). If we define FSH'(F)B = FH'®E) N H'(F), it follows that

H
FSH'(F)=@FSH'(F)8. And one has a similar result for the Hodge filtration F;. In
a .
particular, it is enough to prove

) FSH'(F)ODF;”H‘(F)O and (ii) FH'(F)g > F;‘“H'(F)#] where

FSH'(F)¢0 = F°H'(F) NH'(Fl, = & F°H'(F), and similarly for F .

a#0 *
Now (i) is clearly implied by (2.2), since the isomorphism H'(U}-,E:P H'(F)oc,H'(F) is
clearly compatible with both filtrations.
To get (ii) from (2.2) we use the diagram (1.19) and the next two facts.

The Poincare residue map R is a morphism of MHS of type (-1, -1) and hence

s+l

o . I
Ri (FH H(U") = FHH (F)¢0.
Using the definition of the filtrations F° and (1.20) it follows that

Ri*(FSH (Uu") = F°

-1...
H (F)#o.
Note also that the filtration F° on H'(F) is very close to the filtrations considered by

Scherk and Steenbrink in the isolated singularity case in [21].

(2. 7} Corollary

() ES(0), =0 fors<0and EN(f) =0fors<-landa=1,...,N-1

(ii) Any element in Hk(U) can be represented by a differential k-form with a pole

along V of order at most k.

We note that (ii) can be regarded as an extension of Griffith's Theorem 4.2 in
{12). On the side of numerical computations of Betti numbers we get the following

important consequence. Recall that m = dim { I(O)Sing'
- (2. 8) Theorem

~_Let b;?(V) = dim HL(V) denote the primitive Betti numbers of V. Then




(i)b?(V)=0Ej<n-1£j>n-1+m;

(ii)_f-_‘g' k e[O.mlfﬂc} r > 1 one has

n-1+k

n-k-1
) _ . ,n-k-s
b L (V=b (U) < s§=0j dim E, (),

When k =m andr > n - m the above inequality is an equality.

Proof. Use (1.6), (1.7), (1.8). (1.12) and (2.7).

but we leave the details for the reader.

There is also an analog of (2.8) for dim HJ(F)a

3. The case of a 1-dimensional singular locus

We assume in this section that { has a 1-dimensional singular locus, namely

-1 _ n+l _ _ * : w

o), = {ze€™h atw =0} = {oJu U €%,
i=1,p

for some points aiecnﬂ, one in each irreducible component of {~ I(O)Sihg‘

If Hi is a small transversal to-the orbit C"ai at the point B s then the isolated

hypersurface singularity (Yi’ai) = (Hiﬂ f'l({]), ai) is called the transversal singularity of

{ along the brach C"'ai of the singular locus.

The weighted homogeneity of [ easily implies that the isomorphism class
(%equivalence) of the singularity (Yi,ai) does not depend on the choice of 8 (in the
ofbit C*a,) or of H..

In this section we get a better understanding of the spectral sequence (Ermo’ dr) by
relating it to some spectral sequences associated to the transversal singularities (Yi’ai)
for i=1,...,p.

.First we describe the construction of these new ({local) spectral sequences.

Let g: (€",0) —> (C.0) be an analytic function germ and let (Y,0) = (g-l(O),o) be
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the hypersurface singularity defined by g. Let "ﬂ.g,o denote the localization of the
stalk at the origin of the holomorphic de Rham complex _an with respect to the
multiplicative system {g ;S > o} |
Choose & >0 small enough such that Y has a conic structure in the closed ball
{yec fy] < g} [4]). Let S =9 B and K = S N Y be the link of the singularity

(Y,o). Then Thm. 2 in [13] 1mp11es the followmg.

(3.1) Proposition
H'(SE\ K)~H'( _O.‘g’o)

One can construct a filtration F° on _O.'g o in ahalogy to (1.4), namely

S J = "S. j P S ] _ '.
F_Og,o-{u)/g'] ’weﬂC’}d} for j > s and Fﬂg,o-ot'or]<s.
(3. 2) Proposition

There is an E, -spectral sequence of algebras (Er(g,o), dr) with

s,t _ . s*t, s .
EY'=H (ch_Q_g’o)

- and converging to H'(SF_\ K) as an algebra.

Assume from now on that (Y.o0) is an isolated singularity and let L' = ('an o , dg)
denote the Koszul complex of the partial derivatives of g. In our case these denv’anves
form a regular seqguence and hence Hj(L')= 0 for j<n and H'L’) = M(g), the Milnor
algébra of the singularity (Y,o0), see for instance [7], p. 90. Let I" denote the quotient
complex L'/gL". If g: M(g) —> M(g) denotes the rnultlphcatlon by g, it follows that

Hj(I') =0 forj<n-1, y" (I ) = ker (g) and H™(I") = coker (g) = g‘) the TJur'ma algebra

of (Y,0), see [7]. p. 90.

There is the next analog of (1.8), computing E,(g,0) in terms of H{T')
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(3. 3) Lemma

The nonzero terms in El(g,o) are the following.,

W Ey®go) = (), fors €lom)

(ii) Ei’l(g.o)=ﬂ§ for se[0,n-3], there is an exact sequence

n~2 u .n-2.1 v : ' n-1,1 _ n n -
0 --r..ﬂ.Y — E; "(g,0)—rker(g)—0 end E; “(g0)= 'an,o/g'n'c",o’

where

..Q'Y=(.ﬂ'c

0 aenll ).
,o)/(g C“o+ En Cn,o)

n
]

(iii) E?-t-l’t(g,b) = ker (g). E'l‘-t’t(g,o) = T(g) for t > 2.

Proof. To get the more subtle point (ii), one uses the well-defined maps
u:)y — Ey g0l ule) = [(dg Ak )g)

v: E¥Yg0) — 1S HL),vl B/g) = [log A (b V/g)

and note that im (v)Cker (g) for s =n -~ 2.

(3. 4) Corollary

The only (possibly) nonzero terms in E,(g,0) are Eg,o = Eg’l = C and Eg'l-t’t, E;_t’t

for t > 1.

Proof. Use the exactness of the'de Rham complexes [11}:

0 —Cc—N° — ... —N" —
Cho Cho

0 —c —Ny— ... —-'_ﬂi}'l.

We can also describe the differentials
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—1- d
n-1-t,t 1En

~t,t _
1 1 =T

di: ker (g) = E
An(n-1)form o induces an element in ker @) if dgAX =g 8 and then
t - -
(3.5) dy{X}=[det - tf3]
(3. 6) Example

Assume that (Y,0) is a weighted homogeneous singularity of type

(wl_. cee WS N), i.e. (Y.0) is defined in suitable coordinates by a weighted homogeneous
polynomial g of degree N with respect to the weights w.

Then M(g) = T(g) = ker (g) and they are all graded C-algebras.

: - _pyitl - - N
Let of = Z( 1) “wixdx AL . ADXA ... Adx and note that dgA = Ngd

i=l,n _ :
with & =dx;A...Adx . It follows that the class of o generates ker (g). For a
. . .a__81 én al_, . ' '
monomial X~ = X) e :Fn of degree ‘x |— a,w, +...+a w one has by (3.9)

di (x%X ) = [(w + fxa’ - tN)xaUJn]

withw=w_, +,..w .
1 Sn -
It follows that ker at =coker gt =M(g) . Hence the E,-term E_(g,0) has finitely
1 1 tN-w 2 2

‘many nonzero entries and the spectral sequence Er(g,o) degenerates at E, (compare to
(1.11)).

The next result gives a large class of singularities having the E3-term of the
spectral sequence Er(g,o) with finitely many nonzero entries. The reader should have no

difficulty in checking that this class contains in particular the next more familiar
b

classes of singularities:

(i) all the non weighted homogeneous R—unimodal singularities, see for instance [0},

p.184 for a complete list;
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(ii) all the semi weighted homogeneous singularities (see [7}, p.115 for a definition) of

the form g = g, * g' with g weighted homogeneous of type (wl, ces WS N), g' weighted

homogeneoué of type (wl, cee WL N') and such that
N'>{n+1)N/2-w, -.. ~Wp

To state the result, note that there is & linear map di : ker(g) —> T(g) defined by taking

t = 0 in the formula (3.5).

(3.7) Proposition

Assume that the singularity Y : g = 0 satisfies the condition:

(i) g% = 0 in N(g) and & [(g) = 0 (resp. (i) p(g) - T(g) = 1.

n-1-t.t t . t | t
Then Ep """ = ker d', = (g) for t > 0 (resp. dim kerd,= 1 for t % 0 and the lines ker d

2 1
in ker(g) converge to the line C-g when t 3 co)and the E,-term Es(g,ﬂ) has finitely many

nonzero entries.

Proof

(i) Let K < M(g) be a vector suﬁspace which is a complement of the ideal
Ker (g) cM(g). ‘
Then multiplication by g induces a vector space isomorphism K = gK = {(g). For t large
enough, it is clear using (3.5) that ker dt1 =(g) and that the canonical projection
M(g) —T(g) induces an isomorphism K = coker dtl. |
Yia these isomérphisms we may regard dt2 as an endomorpl}ism of K fort > 0.

Next dtl(ag) =0 implies that we may write ang»Uh =dg Aot and the (n - 1)-form &
satisfies dX =dgAP + A gW, for some (n - 1)-form {3 and function germ A . But

then we have
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aet/gh) = (A -ta)w Mg + (Pt - g™ h - @Byt - gty

This shows that the endomorphism gt has a matrix of the form -t-Id + A+ B(t - 1)-1 for

2
A.B some constant matrices. It follows that for t >> 0 this matrix is invertible and this
clearly ends the proof. The proof in case (ii) is similar.

Now we come back to our global setting and assume first that we are in the

homogeneous case, i.e. W s e =W = 1. Let Z denote the s‘ingular locus of V.

Consider the restriction morphism

8 @ Ll V) — 0 (W),

and the associated morphisms

Gr;?: Gr;(ﬂ'Pn(*V)) — Grrsr(ni’v(*\/) 7)

A moment thought shows that Gr; §> is a quasi-isomorphism for s < 0. A computation

using an Ez-spectral sequenée as in the proof of (2.2) shows that

u-mr;(nl;n(m» = H'(GrpA;)

Assume from now“ on that Z is a finite set, namely Z = {al, e ,apﬁ . Note tﬁat the
singularity (V,ai) is precisely the transversal singularity of f along the line C""&li as
defined in the beginning of this section.

Choose the coordinates on P™ such that H : X, = 0 is transversal to V and
ZcC P’ H=c" Wwe denote again by all the corresponding points in c” and let

gy) = £(1,y).

Then _ﬂ_i)n(uv)! = & Ll 2.8, this identification being compatible with the
FlLp &

F filtrations. Thus we get

H(Grp( (Y mnj = @ HGH L)
8,8,
J'lsp J
We can restate these considerations in the next form.
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(3. 9) Theorem

The restriction map 3) induces a morphism g E (f) — @ E (g,a ) of spectral
FLp
sequences such that at the E -level 31 is an isomorphism for s < 0.

(3. 10) Corollary

For a projective hypersurface V:f=0 with isolated singularities the next

statements are equivalent

(i) all the singularities of V are weighted homogeneous;

(i) EyND, =0 fors<o;

(iii) E;’t(f)o # 0 for finitely many pairs (s,t) .

Proof.

Using (3.6) and (3.9) we get (i) = (ii). The implication (ii)=»(iii) is obvious. To prove
(iii)=® (i) we compute the Euler Poincare characteristic 7(_(U) in two ways. First we use
the fact that U = PPNV and the well-known formula for /‘(_(V) given in (3.12) below and

get

AW = XU+ (- " lZp(Va)
i=1,p
where Uo is the complement of a smooth hypersurface V“_J inP".

‘Next using (1.8) and a standard property of spectral sequences we get

AKW)=1+ ) tam et .

where the sum is finite by our assumption. Choose m > n such that E;’t(f)o-'- 0 for
t >m. Then

A - 1= 0" IZ:(dlmE'z‘ 1- tt(r) —dlmEn tt(f) ) =
t=1.m
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= (-} Z @im E}7170Ne) - aim E) VD)) = (0P Hdim ENTT ™+ 1 witn

t=1,m 1 ‘
t.t-1 i,t
717_ Z . n-t.t-1. _ .  _n-
= 4 1Tl(dlm El (f)o dim El ! (f)o)

By (3.3.iii) and (3.9) it follows that

dimE’l"I"“’"‘(f) = ZT(V,&.)
o .4 i
l-l,p

" where T(V,ai) = dim T(g,ai) = dim Ker(g,ai) are the corresponding Tjurina numbers. On
the other hand, using the connection of El(f) with the Koszul complex, it is easy to see
that the sum fdoes not depend on f. Since one can compute f,(Ud) in the same way,

it follows that

AW = ZW )+ )" )3 T(V,a) .

i=1,p

B

Comparing the two formulas for ?L(U) we get p(V,ai) =T (V_.ai) for anyvi=1,...,pand

henece by K. Saito's Theorem (see for instavnce [7), p. 119 for a discussion) all the
singularities (V,ai) are weighted homogeneous.

Since for any isolated hypersurface singularity (Y,0) there is a projective
and such that (V.a.) ~(Y,0}, see for

1 1
instance (2], we get the next result using (3.6), (3.9) and (3.10).

hypersurface V having just one singular point a

(3.10') Corollary. /

For an isolated hypersurface singularity (Y.0) defined by g =0 in (Cn,D), the next

statements are equivalent:

(i (Y;O) is a weighted homogeneous singularity;

(ii") the spectral sequence Er(g_.O) degenerates at Ez;

(iii") E5'"(g,0) # 0 for finitely many pairs (s.t).
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We conjecture in analogy with (3.10" that the statements in (3.10) are equivalent to
the next stronger version of (ii):

(iv) the spectral sequence F.r(f )o degenerates at E,

(3. 11) Remark
Let f be a homogeneous polynomial such that V has an isolated singularity of the
in :

type considered,(3.7). Then Er(f)o surely does not degenerate at E,. Note that

f: (Cn+1,0) — (C,0) is concentrated in the terminology of [25], p. 206 and our spectr"al

sequence Er(f)o is a subobject in the huge spectral sequence considered in [25], p. 209.
Hence in this case that spectral sequenée does not degenerate at Ez‘and this gives a

negative answer to the question at the top of p. 209 in {25].

By Theorem (2.8) the interesting Betti numbers for V in the isolated singularities

case are just b__,(V). b (V) and we can get b (V) from E (f)o.

n-1

But oﬁe has a simple formula for the Euler-Poincar€ characteristic in this case [6}:

(312 XV =XV ) + (1" > WV,2,)

i=1,p

where V  denotes a smooth hypersurface in P" of degree N and p(V,ai) = dim M(g,ai) are
.the corresponding Milnor numbers.
In this way we get bn_l(V) knowing bn(V). We remark that there is a formula for

7.(1'-‘) similar to (3.12) and which appears in the special case n = 2 as Theorem 6. A in [9].

(3. 13) Proposition

KAF) = 1+ (1N - S AR 2 uv.a,)]
i=1,p
Proof.
If ¥ denotes the closure of F in Pn+1, one has},(F) =]L(f~‘-) \}’,(V). One then use

(3.12) and the remark that the singularities of F are just the N-fold suspensions of the
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singularities of V and hence

W(F, (a; : 0) = (N - Du(V.a)).

(3.14) Remark

An important invariant of the singularity f is the zeta function Z({h) of the

monodromy operator h. Explicitly one has

. i+1
Z(h) =T—[det (1-m*| etV - expz A <Kk
i>0 k>1 .

where A (hk) denotes the Lefschetz number of the map hk. Using the. second expression

above.-for Z(h) it follows that for any homogeneous polynomial f one has
2(n) = (1 - ) FEVN

When V has only isolated singularities, this formula may be used to compute dim Hn(F)a

for a=1,...,N-1 assuming that we know dim Hn‘l(F)a via computations with the’

spectral sequence Er(f) as in the remark after (2.8).

Next we describe briefly the additional facts necessary in order to treat the case

when { has arbitrary weights w = (wo, e _.wn).

First we have to include a group action in the local setting. Let G € U(n) be a finite

group and consider the induced action on C". Then the ball B and the sphere SE_ are

£

G-invariant subsets. Assume that Y : g = 0 is a reduced hypersurface singularity which

is also G-invariant (i.e. yeY, Y€ G= Y €Y fora represéntative Y of (Y.0)inB_ ).

£
There is an associated action of G on _O_'cn 0 given by ¥ -w= (Y'-l)*a.) . And there
is character X, : G=>C™ such that y™-g = X (¥)g for any ¥ €G. In this situation we

call (Y.0) a G-singularity. Note that this setting is larger than in Wall [27] where

on{takes ‘X.Y=1, but ecoincides (in the case of G eyelic) to the hyperquotient
singularity notion of M. Reid [19].

Let (D‘gGo,d) be the subcomplex in (_ﬂ.’g 0,d) consisting of the fixed elements under
b b
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the obvious action of G. If K' is any complex of C-vector spaces with G-actions

compatible with the differentials. then there is a natural isomorphism H(k'C) = H‘(K‘)G
which says that taking cohomology commutes with taking the fixed parts under G.
Moreover. in Proposition (3.1) both cohomology groups have natural G-actions and the

isomorphism considered there is compatible with these actions. It follows that

Gy G Gy
(3.15) H(Qg,o)-—H(ﬂg.o) = H'(S, N K)” = H'(S, ~ K)/G)

Next, using again the above commutativity, we get an El-‘spectral sequence
(Er(g,O)G,dr) consisting of the fixed parts of the spectral sequence described in (3.2) and
converging to H'((SE ~ K)/G).

Assume now that (Y.0) is an isolated singularity-*" and note that G acts on the
complex L' considered above. Since the G-action commutes with the differentials in L’
up-to multiplicative constants, it follows that there is an induced action on the
cohomology H'(L'). And one has exactly as in Wall [27] an isomorphism of G-vector

‘spaces
H'(L) = ME)QC W,

with (,Qn+1 =dx A .- Adxn. Let xo be the character of the action of G on

C wn+1. If W is any G-vector space and %,: G —r C* is a character we set
O . _
w' o= {w&w; Y ow= 7'(2')“' for al ¥~ eG}

With this notation, note that

- t
W /gt € Q'G if and only if W& L XY
g,0

Cho

Combining these remarks we get the next analog of (3.3.iii):
t y-1
n-t-1,t x’YIo

1t 1Y g,00% = ker (@)

21

(3.16) E

n-t,t

1 (g,o)G 2~ T(g)

E
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for all t > 2, where ker (g) and T(g) have the obviously induced G-actions.
We consider now the global setting. Let a g Cnﬂ\'[o} be a point in the singular

locus f'l(ﬂ) . Let Ga be the isotropy subgroup of a with respect to the C*-action on

sing

cm! given by

'Wo "Wn
tex = (t Xogreooat xn)

Then Ga is the finite cyelic group of the unity roots of order
ka = g.c.d.{ W the component atj of a is nonzero }

Take H to be a transversal to the orbit C*.a at the point a which is G _~invariant.

For instance, we may assume that 8, # 0 and then take H : X -8, = o.

We identify the germs (C",0) and (H,a) via the isomorphism P given by (yl,...,

yn)i-—»(a yn). Then the transversal singularity (Y,a)=(Hﬂ{'1(0),a) is in an

oYyt

obvious way a Ga—singularity and moreover

7:Y=N’ ;’o=""o+”'+wn=W

under the identification of the (multiplicative) group of the characters of Ga with the

{additive) group Z/kaz (the character t—>t™ corresponds to the class of m modulo kaz,

‘denoted again by m!).

Note that the germ (P,a) (resp.(V,a)) can be identified to (_H/Ga,a) (resp.(YlGa,a))
and hence the latter is a hyperquotient singularity in the sense of Reid [19].

.~ (-Ca : ~ N -Ca
It  follows  that 'O'P,a‘ 'an,o and _Q. p(¥V), = N g0 where

vga(y) = f(ao,yl, ces ,yn) is a local equation for (Y,a), compare with [24], § 5.

1(0) . __. Then we have,

Let Z CV be the finite set corresponding to the singular locus f sing

(with exactly the same proof) the next analog of Theorem (3.9):

(3.17) Theorem

The restriction map SJ :_Q‘P(.:V) '_7-0-'P(W) Z induces a morphism
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. G .
?r.: E{f) = PE (g_.a) 8 of spectral sequences such that at the E.-level gs,t is

ro ez @ 1 1 =

an isomorphism fors < 0.

As an application we derive now new formulas for the Euler characteristics %(V)

and ){.(F) similar to (3.12), (3.13). Our result should be compared to the more explicit

formulas of Siersma [22] (obtained in the very special case when f_l(O) is a

sing
- complete intersection and all the transversal singularities are of type Al) and,on the

other hand,to the very general formulas of Yomdin [28] (which involve some numerical
invariants defined topologically and hence difficult to compute in general concrete
cases).

L . /s
Consider the Poincare series

-

N N- '
PO=(1-t O.l-t -0 a-t" "= Eck(w,N)tk
. k>0

—

associated to the weighted homogenity type (w.N). Define next the virtual Euler

characteristics of order m of V and F by the formulas:

© (3.18) Xm(V(w,N)) =n+ (-1 Z, csN_w(w,N)

s=1,m

K (FWN) =1 1" Z, c (W.N)

s=1,mN-w
"where w = W ... +wn.
Note that if there is a weighted homogeneous polynomialf:)f type (w,N) having an
isolated singularity at the origin and if V' (resp. F') denotes the corresponding

hypersurface in P (resp. Milnor fiber) then
%m(V(w,N)) =7’_(V’) form >n

(resp.%m(F(w,N)) = }(F‘) for m > n+ 1). To see this you may find useful to read first

the proof of (3.19. ii) below!
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(3.19) Proposition

(i) Assume that a polynomial {' as above exists. Then

%(V) "7(,(\") +(-1) Z dim Mg, v

eEZ

%(F) =7-(F‘) +(-1)"! Z 2 dim M(g y~N- -wt]j

aeZ j=1,N

(ii) Assume that any transversal singularity =0 for a€ Z is either weighted
g €a lor g

homogeneous or satisfies the assumptions in (3.7). Then

AW = K (VW) + (1) E:dlmM(g ymN-w
m ael

RLE) = 7(mcr(w N) + (- 1)“ 1y Z dim Mg, )™ DN W]

8€Z J=1,N

for all m large enough. When all the singularities g, are weighted homogeneous, it is

enough to take m > n + 1.

Proof

On a formal level, note that ;he formulas in (i) are a special case of the formulas in
(ii). obtained by taking m divisible by all ka = ’Gal ,8€2Z. The proof of (i) is purely
topological and independent of our previous results. Let a,H. .,... be as above. We
rnay take ' close enough to [ sueh that for all agZ thé intersection
F,= BE N (f'ocp )" 1(0) can be identified to the Milnor fiber of the singularity (Y,a)L
Note also that Fa is Ga-invariant. Let B'(a) be the image of the small ball B& under the
natural projection  (C".,0) ~(H,a) —>(P,a). Then thére is a homeomorphism
vV~ Bo":.-V'\ E’, where B' = _J B'(a). Moreover B'(a) NV is contractible, while B'(a) \ V'

acz
can be identified to Fa/Ga and hence has middle Betti number

_ nl G_ .. -w
n ) a/G ) = dim (Fa) -dnnwuga)

as in [27). Then a Mayer-Vietories argument gives the result for 7(.(v). The result for
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X(F) then follows from that for 7((\/) as in the proof of (3.13).

To prove (ii) we use basically the same argument as in the proof of (3.10) (if
‘necessary starting the computations with the I~:3
together with (3.17) and (3.16). First we express the su.m ffrom the proof of (3.10) in

-term of the spectral sequence Er(f)o)

terms of the Poincaré series P(t). Following Siersma [22], we define a new grading on

Y by setting for a homogeneous p-form w e_ﬂ_p:
degw=(M-p+1N-w+ |wi

where |w] denote the degree of @ as defined in our introduction. Then multiplication

by df becomes a map of degree 0 and one has
P(t) = 2 D" 17 Kp Oyt
k=0,n+1
where P( ﬂk) is the Poincare series of _ﬂ.k with respect to this new grading [ 4.

Then it is obvious that

Y= - Z ConowW-N)

s=1.m
the ) '
To treat,case of transversal singularities covered by (3.7) one has to use the next

isomorphisms of vector spaces. which are clear by the proof of (3.7):

n-2-m,m+1

(g,0)C + E, (g,0C = ker @™ NV

I:.‘n-l-m,m

)(m+1)N-w _
) =

+(g

= ker (@)™ N W+ kKMNW _ rer (@) + K)PNTW 2 )NV,

The case of singularities in (3.7.ii) ean be treated similarly.

(3.20) Example

'The polynomial f = )c265 +x xll +X x8 +X x4 has degree N = 265 with respect to

o} 0”1 072 273
the weights w =(1,24,33,58). The singular set Z consists of one point, namely
a =(0,-1,1,0) with transversal singularity €a of type A3. The corresponding isotropy
group Ga is Z/3Z and acts on M(ga) such that dim M(ga)l'= 1 for any i. It is know that the

Poincare series P(t) is a polynbmial in this case, in spite of the fact that there is no
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isolated singularity ' of this homogeneity type (w,N), see [0], p.201. It follows that

K n(FO0,N)) = 1 - P(1) = -66515 for m > 0 and X (F) = X _(Fw,N)) + 265 = -66250.

_ . e - 95
Usimg a(sm:ﬁm% delinmaios Tt otfficionts of P, one gots Z(V)=25

(i) We conjecture that the formulas (3.19.ii) hold for any transversal singularities.

A —

(ii) If all the transversal singularities (Y,a) for a& Z have links which are
Q-homology spheres, then the hypersurface V is a Q-homology manifold and hence
satisfies the Poincare” duality over Q. In this case bn(V) = bn(Pn-l),and the remaining
interesting Betti number bn-l(V) can be determined from ?((V) once this Euler

characteristic is known.

For concrete computations it is useful to use the following general remark. Assume

that fl, ce ’fn is a regular sequence in S (this can be always achived by a linear change
of coordinates in the homogeneous case!). Then the Koszul complex K' (1.9) is

quasi-isomorphic to the complex
' f
(3.22) 0 — QD) =2 Q (D — 0

where Ql(f) = S/(fl,. .. ,fn) and fo dernotes multiplication by fo' An indication of the

dimensions of H" (k") = Q(f) and H™(K'), =ker (f_), _ can be obtained from the

k-n-1

exact sequence

fo
since the Poincaré series of Ql(f ) is known. \

4. Explicit computations
(4. 1) Example (Computation of HI(U))

. a a1 ’ ’ i
Let f = fll ae fkk be the decomposition of f in distinet irreducible factors. Then it

is known that bl(U) = bgn_z(\/) = k --1 and it is easy to check that the closed forms
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W, = (/1)) - (N;/N)XAD/(D)

where N, = deg (fi), i=1,...,k generate HI(U) with only one relation: E 8w, = 0.

Compare to (2.7.ii).
(4. 2) Example (with isolated singularities for V).

Let f = xyz(x +y + 2), n = 2. Then V consists of 4 lines in gener-al position in
P2 and its topology is simple to describe. However, the dimensions of the eigenspaces
H'(F), are more subtle invariants.
- First we compute explicit bases for the homogeneous components of Q(f):

: Q(t‘)0 =<, Q(f)1 = <X,¥,2>, Q(f)2 = <x2,y2,zz,xy,yz,zx>

Q(t’)3 = <x3,y3.23,x2y,yzz,zzx,xyz> and

Q) = <xk,yk,zk,xk-ly,yk-lz,zk_1x> for k > 4.

Then we look for the elements in Hz(K') and define:

(A)xy =x(x + 2y +2)dy A dz + y(2x + y + z)dx A dz
and wyz’ wzx by eyclic symmetry.
Then df A ‘ny =df A wyz =df A wzx =0 and these three forms give a basis for
2,...
HA(K") .
The six forms x wxy’ y "‘)xy’ y(.dyz, z Q)yz, z W, ., X a)zx generate H(K'). with

one relation among them (their sum is trivial).

And the six forms x wxy, yku)xy, ... form a basis fo H(K)
3

k+4 for any k > 2.

It is now easy to compute dl1( : Hz(K')k——-* H (K')k and the nontrivial kernels and

cokernels are listed below together with Eg’o(f)o:
0,0 _ 0,2 . 0.2 L1 _
E (), = Ey' (), = By (fl,=E;) (), =C

0,1 _ 11 _ 3
BZ (f)O-E2 (f)o—C
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The computations also show that the spectral sequence degenerates at E2 and hence
we get the complete results. One can restate them by saying that the monodromy

operator h* acts trivially on HX(F)=C, H (F) =c? and its action on H (F) = C5 has
characteristic polynomial (t - 1) (t + 1)(t + 1)
(4. 3) Example (with nonisolated singularities for V)

An irreducible cubic surface in P3 with nonisolated singularities is projectively

equivalent to one of the next normal forms {3]
(i) 2 cone on the nodal cubic curve;
(ii) 2 cone on the cuspidal cubic curve;
(iii) $' : x 2z + yzt =
(iv)S:x2z+y3+xyt=D

The topology of the surfaces (i)-(iii) can be described easier e.g. using [18], so that

we concentrate on the last case: f = xzz + y3 + xyt. The homogeneous components of

‘Q(f) are given by

Q(f)b = <1> and Q(f)k = <z,1:>k + <zk'1x, zkuly, zk-2y2> fork>1,.

where (z._.t>k denotes the vector space of all homogeneous polynomials in z.t of degree

k. Hence dim Q(f)k. =k +4 for k> 2. Consider now the differential forms:
Ul = xdx AdyAdz + ydxAdy A-dt
“)2 = xdx A dz Adt + tdx Ady Adt - 3ydx Ady Adz
ws = td;-c/\dy Adz - 2zdX AdyAdt + xdy./\ dz Adt
Then some tedious computations show that:
H,3(K')4 =Wy, W, a)3>

. 3 . _
HYK) = <z,t>) W, + 2,0, W, + <x W,y Wy, y W,
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K- k-1_ k-1 k-2 2
H(K)k+4=<z,t>ku)2+<z,t>kl{)3+<z XZ Y,z Tyl

3
for k > 2. This last vector space has dimension 2k + 5.
And similarly one gets HZ(K')W4 = <z_.t>ki.d , with W = (6yz - tz)dx Ady - xtdxAdz -
- ytdx A dt - 3xydy A dz - 3yZdyA dt. |

After these complicated formulas it comes as a surprise that the spectral sequence
E r(f ) degenerates at E2 and the only nonzero terms are
ES(), = E%20), = £%%1), = C.

It follows that H'(S) zH'(PZ) and hence S has the same rational homotopy type as PZ,

according to Berceanu {1], who has proved that a projective complete intersection (with
arbitrary singularitiés) is an intrinsically formal space.

Concerning the Milnor fiber one has HO(F) = C with trivial action of h*, HZ(F) =c?
with the characteristic polynomial of h* equal to t2 +t+1and Hl(F) = Hs(F) = Q.
Our next result is an improvement of Corollary (3.11) in Seherk [20] (to see the
connexion between these two results have a look at the exact sequences (1.3) in [20]1).

Let (Y,0) be an isolated hypersurface singularity given by g = 0 in Cc". We define the

p~-constant determinacy order of (Y,0) (denote by p-det(Y.0)) to be the smallest integer

s > 0 such that the family gt =g+ th (t €1[0,1)) is p-constant for any h &€ (yl, e ,yn)s
with small enough coefficients. Note that p-det(Y.0) can be easily computed for larg_e'
classes of singularities (e.g. weighted homogeneous or Newton nondegenerate
sinéularities) and is always less or equal to the strongly ﬂx—determinancy order O(g),

L]
see [7], p. 75. In Scherk's notation, one has.

. . +1
S = min {J; (yl, N ,yn)j C (g,gl, cee ,gn)} <Ofg)-2
(4.4) Proposition

Let VCP" be a hypersurface having just one singular point a and such that

N = deg(V) > p-det{V.a).
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Then b _,(V)=b__,(V.)~-u(V.a)and b (V) =b_ (V ), where V is a smooth hypersurface

Jn P" with deg(Vo) = N.

Proof.

Choose the coordinates on P" such that a=(1:0: ... :0) and H : X, = 0 is transversal to
V. If f=0 is an equation for V, then we set g(y) = f(l,yl, ces ,yn) = gz(y) ... +gN(y),
with g @ homogeneous polynomial of degree k. Using the assumptions, we can find a
continuous family
gt(y) = g;(y)+ . +gtN(y) for t €(0,1]
with the properties:
| (i)g°=g,gl=gkfork<N-1; ,
(ii) For any t > 0. the hypersurfaces in pn!

Wit:git=0fori=N-l,N

are smooth and intersect transversally;

(iii) gt is & p-constant family;

(iv) The projective hypersurfaces vt with the affine equations gt =0 have no
singularities except a.

According to [6], the cohomology of vlis determined by a lattice morphism

$ t, Ltl s L'— Tt = LY/Raart

where Ltl (resp. LY) is the Milnor lattice of the singularity gt = 0 (resp. gtN = 0). Wﬁen t
varies, these Milnor lattices are constant and hence tl:e mqrphism uf’t has to be
constant too.

Hence H'(V) = H'(V1) and so we can assume from the beginning that En-1' &N
satisfy{he condition (ii). |

\
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Let Lf :LlL.i.-v L —L be the lattice morphism in this case. We have to show that
i(Ll)ﬂRadL = 0, where i is the embedding of Milnor lattices arising from the small
deformation g' (y) = g(r-y}-r'N (r > 0) of the singularity g = 0, see [6], poof of (1.2).

But we may think of gr as being a even smaller deformation {of order r_z) of the
germ g' = gN_'l-r'l *EN which is a small deformation of gne If L' denotes the Milnor
lattice of the singularity g'=0, then the inclusion i above factorizes as
Llu-» L' L_—J> L and hence it is enough to.show that
(v) (L) N RadL = 0

Now j is related to the cohomology of the hypersurface V'c P" with the affine
equation En-1 T ENT 0. Note that V' has just one singular point too, namely a. By a
p-constant argument as above, we can assume that

gk(y)=y';+...+y§for k=N-1,N.

Next (v} is equivalent to Hg(V’) =0 and we show this using the spectral sequence
1 is
injective. And this follows easily using the fact that a base for H™(K) is given by the

Er(f’) for f‘=x°gN_l(x1,... ,xn)+gN(x1,... xn). It is enough to show that d
8o an . o . e

forms %o+ ¥ *w) with ai< N-2fori=1,....,nand W SWA .- A L()n, where

the 1-forms '

Wy = X, dx + {(N - l)xo + Nx, ldx,

are the obvious solution of the equation
a= 2w,
k=l.n
Compare to [22]. [25], but note that here the transversal type is not Al for N > 3.
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