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ABSTRACT. Let p be a prime. If an integer g generates a subgroup of index ¢ in
(Z/pZ)*, then we say that g is a t-near primitive root modulo p. We point out the
easy result that each coprime residue class contains a positive natural density subset
of primes p not having g as a t-near primitive root and prove a more difficult variant.

1. INTRODUCTION
1.1. Background. Given a set of primes S, the limit

5(5) — i #P PES P}
avoo fH{p: p <}
if it exists, is called the natural density of S. (Here and in the sequel the letter p is
used to denote a prime number.)

For any integer g & {—1,0,1}, let P, be the set of primes p such that g is a primitive
root modulo p, that is p { g and the multiplicative order of g modulo p, ord,(g), equals
p—1=#(Z/pZ)*, and so g is a generator of (Z/pZ)*. In 1927, Emil Artin conjectured
that the set P, is infinite if ¢ is not a square; moreover he also gave a conjectural
formula for its natural density §(P,); see [12] for more details. There is no explicit
value of g known for which P, can be unconditionally proved to be infinite. However
Heath-Brown [3], building on earlier fundamental work by Gupta and Murty [2], showed
that, given any three distinct primes p;, p2 and ps, there is at least one ¢ such that P,
is infinite.

In 1967, Hooley [4] established Artin’s conjecture under the Generalized Riemann
Hypothesis (GRH) and determined 6(P,). Ten years later, Lenstra [7] considered a
wide class of generalizations of Artin’s conjecture. For example, under GRH he showed
that the primes in P, that are in a prescribed arithmetic progression have a natural
density and gave a Galois theoretic formula for it. This was worked out explicitly by the
first author [9, 11], who showed that §(P,) = r,A, with 7, an explicit rational number
and the Artin constant

A:H(1—p(p;_1)) = 0.373955. ...
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Using a powerful and very general algebraic method, this result was rederived in a very
different way by Lenstra et al. [8].
For any integer ¢t > 1, let

Py(t) ={p: ptg, p=1(modt), ordy(g) = (p —1)/t}.
If p is in P,(t), then it is said to have g as a t-near primitive root. Assuming GRH, the
first author [13] determined §(P,(t)) in case g > 1 is square-free.
A more refined problem is how the primes in P,(t) are distributed over arithmetic
progressions. To this end, let a,d > 1 be coprime integers and define

Py(t,d,a) ={p: p=a (mod d), p € P,(t)}.

By the prime number theorem for arithmetic progressions,

(1.1) #{p: p<z, p=a(mod d)}wm,

where ¢ denotes Euler’s totient function. A straightforward combination of the ideas
used in the study of near-primitive roots and those for primitive roots in arithmetic
progression, allows one to show, assuming GRH, that §(P,(¢,d, a)) exists and derive a
Galois theoretic expression dg(Py(t,d, a)) for it (see Hu et al. [6, Theorem 3.1]). More-
over, it can be unconditionally shown (see [6, Equation (3.7)]) that

(1.2) lim sup TP S TP E Pyt da)}
T—00 77'(-1')

where as usual 7(z) denotes the prime counting function. The proof is obtained essen-

tially by doing the simple asymptotic sieve up to a range in which the unconditional

Chebotarev density theorem is valid.

On the basis of insights from [8], we know that dq(Py(t,d,a)) equals a rational
multiple of the Artin constant A, where the rational multiple can be worked out in full
generality. However, this is likely to produce a result involving several case distinctions
(as in the restricted case where ¢ = 1 and in the case where ¢ is arbitrary and g
is square-free). In the much less general case ¢ = 4 and ¢ = 2, the expression was
explicitly worked out in [6]; see Section 1.3 for more background.

< 5@(Pg<t, d, a)),

1.2. Our considerations. In this paper we study, motivated by the following ques-
tions, the distribution of primes not having a prescribed near-primitive root in arith-
metic progressions.

Questions. Lett > 1 and g ¢ {—1,0,1} be integers. Let a,d be positive coprime
integers.

A) Is the set

Qy(t,d,a) ={p: p=a (mod d), p & Py(t)}
infinite?
B) Does the set Q,(t,d,a) have a natural density and can it be computed?
Since Py(t,d,a)UQ,(t,d,a) = {p: p=a (mod d)}, if §(P,(t,d,a)) exists, then using
(1.1) we have
6<Qg(t7 d, CL)) = 1/90(d) - 6(Pg(t7 d, CL))
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Question B can currently be answered only assuming GRH. However, in this approach

it is far from evident under which conditions on the parameters g,t,d and a we have

0(Qy(t,d,a)) > 0, thus guaranteeing the infinitude of the set Q,(¢,d, a).
Unconditionally using (1.2) we infer that

lim nf FLE7PE Qb da)} 1
@00 m(x) p(d)
If there exists a prime py 1 t satisfying both py = a (mod d) and pg # 1 (mod t), then
all the primes p = py (mod dt) are in Q4(¢,d,a) (due to t{ (p—1)). By (1.1), there are
infinitely many primes p = po (mod dt), and they have a positive natural density. Thus,
the first question is only non-trivial when p = a (mod d) implies p | t or p = 1 (mod t),
which is true if and only if

(1.3) t|d and t](a—1).

— 6a(Py(t,d,a)).

In this note we will see that answering Question A is actually also rather easy in
case (1.3) is satisfied. The answer to Question A is yes, and we can be even a little bit

more precise on using Kummerian extensions of cyclotomic number fields Q((,) with
Cn — €2m‘/n'

Proposition 1.1. Let g € {—1,0,1} and t > 1 be integers. Let a,d be positive coprime
integers. Then, for any integer ¢ > 2 coprime to 2dt, the set Q,(t,d,a) contains a
positive natural density subset of primes p having natural density

1
[Q(Ca: Gg, 919) - Q]

The field degree [Q(C4, Cy» 979) : Q] = [Q(Clem(ag), 979) = Q] is not difficult to compute
for any given ¢,d and ¢; see [10, Lemma 1] for the general result (which is a direct
consequence of [15, Proposition 4.1]). Using this computation the maximum density
of the ¢g-dependent subsets arising in Proposition 1.1 can be determined; see the next
section for an example. If £ is a prime factor of ¢, then Q(Cy, ¢, 9+°) € Q(Cy, ¢y, 919,
and so a priori the maximum occurs in an odd prime.

We will also establish a more difficult variant of Proposition 1.1. Letting g,t,d, a be
as in Proposition 1.1, we define the set

Ry(t.d,a)={p: ptg, p=a(modd), p=1 (modt), ordy(g) | (p —1)/t}.

Clearly, we have Py(t,d,a) C R,(t,d,a). Our purpose is to show that if R,(¢,d,a) is
not empty, then R,(t,d, a) contains a positive density subset of primes not contained
in Py(t,d,a).

Theorem 1.2. Let g ¢ {—1,0,1} and t > 1 be integers. Let a,d be positive coprime
integers. Suppose the set Ry(t,d,a) is not empty. Then, for any integer ¢ > 2 coprime
to 2dgt, the set Ry(t,d,a) contains a subset of primes p for which g is a non t-near
primitive root modulo p having natural density

1
[Q(Ca, Carr g*2) = QL
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Again, given d, g and t, the maximum density of the ¢g-dependent subsets arising in
the theorem can be determined, and for this it suffices to consider primes ¢ 1 2dgt.

Note that for any integer ¢ > 2, each prime in R,(¢t,d,a) is not contained in
Py(t,d,a). So, Theorem 1.2 is derived directly from the following proposition, which
might be of independent interest.

Proposition 1.3. Let g ¢ {—1,0,1} and t > 1 be integers. Let a,d be positive coprime
integers. Suppose the set R,(t,d,a) is not empty. Then, for any positive integer q
coprime to 2dgt, we have

1
[Q(Cda tha gl/qt) : Q] ‘

1.3. An application. Proposition 1.1 has an application to Genocchi numbers G,,
which are defined by G,, = 2(1 — 2")B,,, where B, is the n'® Bernoulli number. The
Genocchi numbers are actually integers. As introduced in [6], if a prime p > 3 divides
at least one of the Genocchi numbers Gy, Gy, ..., Gp_3, it is said to be G-irregular and
G-regular otherwise. The first fifteen G-irregular primes [1] are

5(Rg(qta d, a)) =

17,31,37,41,43, 59, 67, 73,89, 97, 101, 103, 109, 113, 127.

The G-regularity of primes can be linked to the divisibility of certain class numbers of
cyclotomic fields. Let S be the set of infinite places of Q((,) and T the set of places
above the prime 2. Denote by hy, 5 the (S, T)-refined class number of Q((,) and hf, be
the refined class number of Q(¢, + ¢ ) with respect to its infinite places and places
above the prime 2 (for the definition of the refined class number of global fields, see for
example Hu and Kim [5, Section 2]). Define h,, = h,2/hf,. It turns out that k., is
an integer (see [5, Proof of Proposition 3.4]). Recall that a Wieferich prime is an odd
prime p such that 2°~! =1 (mod p?).

Theorem 1.4. [6, Theorem 1.5]. Let p be an odd prime. Then, if p is G-irreqular, we
have p | hy,o. If furthermore p is not a Wieferich prime, the converse is also true.

It is easy to show that if ord,(4) # (p — 1)/2, then p is G-irregular; see [6, Theorem
1.6]. Hence, taking ¢ = 4 and ¢ = 2 in Proposition 1.1 and noting that we have
[Q(Ca, ¢y, 4Y7) : Q] = ¢(d)q(g—1) for any prime g t 2d, we arrive at the following result.

Proposition 1.5. Let a,d be positive coprime integers. Let q be the smallest prime not
dividing 2d. The set of G-irreqular primes p satisfying p = a (mod d) contains a subset
having natural density

1
o(d)g(g—1)

This result is a weaker version of Theorem 1.11 in [6], however its proof is much
more elementary, and it still shows that each coprime residue class contains a subset of
G-irregular primes having positive natural density.
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2. PRELIMINARIES

Given any integers d,n > 1 put K, = Q(C4,Ca, g/™). For a coprime to d, let o, be
the endomorphism of Q({;) over Q defined by 0,((4) = (5. Let C,, be the conjugacy
class of elements of the Galois group G,, = Gal(K,,/Q) such that for any 7, € C,,,

(2.1) =id,

T"|@(<d) = Yo T"‘@(cn,gl/n)

where ‘id” stands for the identity map. Note that either C), is empty, or C,, is non-empty
and |C,| = 1. The latter case occurs if and only if

(2:2) Tl g(anangtm = 14

If this condition is satisfied, then by the Chebotarev density theorem (in its natural
density form, cf. Serre [14], the original form being for Dirichlet density), the primes
unramified in K, and with Frobenius C,, have natural density 1/[K, : Q]. Note that
the primes unramified in K, are exactly the primes p { dgn. The first condition on 7,
ensures that the primes p t dgn having 7,, as Frobenius satisfy p = a (mod d). Likewise
the second condition ensures that such primes satisfy ord,(g) | (p — 1)/n.

In particular, in case Q((q) and Q((y, g*/™) are linearly disjoint over Q, that is,

(2.3) Q(¢a) NQ6ns g™ = Q,

we have |C,| = 1, and the primes p 1 dgn with Frobenius C,, satisfy p = a (mod d) and
ord,(g) | (p — 1)/n, and they have natural density 1/[K, : Q).

3. PROOFS

3.1. Proof of Proposition 1.1. Since ¢ is odd, the extension Q((,, g/%) of Q((,) is
non-abelian and

Q&) N Q& g9) = Q(¢a) N Q) = Qlgearan) = Q,

as ged(q,d) = 1. Thus (2.3) is satisfied and consequently there is a set with natural
density 1/[K, : Q] of primes p satisfying p = a (mod d) and ord,(g) | (p — 1)/q. Since
by assumption ¢ { t, it follows that for these primes p, ord,(g) # (p — 1)/t, and so for
them g is a non t-near primitive root. This completes the proof.

3.2. Proof of Proposition 1.3. From now on we assume that g,¢,a and d are as in
Proposition 1.3. The proof of Proposition 1.3 rests on the Chebotarev density theorem
and the following lemma. Recall that K, = Q((y, ¢n, g*™).

Lemma 3.1. Put I,, = Q((4) NQ(¢n, gY™). Then, for any positive integer q coprime to
2dgt, we have I = I;.

Proof. Since I; C I, it suffices to show that [, : Q] = [I; : Q]. Obviously [d, t] = rt for
some positive integer r. By elementary Galois theory and noticing that ged(q, dt) = 1,
we see that

1, g = (@0 U [QGwg"™) U _ p(d)[QGs9"™) : T

[Q(Ca: Cgt, 9*9%) = Q QG gMet) Q)
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and, similarly, [; : Q] = ¢(d)[Q(¢, 1/t) : Q1/[Q(¢rt, ¢%Y) : Q). Then, by Lemma 1 of
[10] and noticing ged(q, 2dgt) = 1, it is straightforward to deduce that [I,; : Q] = [I; :

Q.

We remark that the condition ged(g,2dgt) = 1 cannot be removed. For example,
Choosing g=21,d=3,t =10, = 7 and using [11, Lemma 2.4], we have I; = Q and
qt - @(Cd) (V _3) # 1.
Proof of Proposition 1.3. By Lemma 3.1 it follows that
(3.1) Iy =1

By assumption, R,(¢, d, a) is not empty. Then, this implies that the two automorphisms
in (2.1) are compatible and hence (2.2) is satisfied, which leads to the conclusion that
Ry(t,d,a) is not only non-empty, but even has a positive natural density, moreover
8(Ry(t,d,a)) = [K; : Q]! by the discussions in Section 2. So, there must be a 7, € C,
such that 7|;, = id, which by (3.1) implies the existence of an automorphism 7, €

Cy such that 74|;,, = id. Then, it follows from the discussions in Section 2 that

§(Ry(qt,d,a)) = [Kyu : Q1. O

3.3. Proof of Theorem 1.2.

Proof of Theorem 1.2. A direct consequence of Proposition 1.3. 0J
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