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Dedicated to the memory of Prof. Christopher Hooley (1928–2018)

Abstract. Let p be a prime. If an integer g generates a subgroup of index t in
(Z/pZ)∗, then we say that g is a t-near primitive root modulo p. We point out the
easy result that each coprime residue class contains a positive natural density subset
of primes p not having g as a t-near primitive root and prove a more difficult variant.

1. Introduction

1.1. Background. Given a set of primes S, the limit

δ(S) = lim
x→∞

#{p : p ∈ S, p ≤ x}
#{p : p ≤ x}

,

if it exists, is called the natural density of S. (Here and in the sequel the letter p is
used to denote a prime number.)

For any integer g 6∈ {−1, 0, 1}, let Pg be the set of primes p such that g is a primitive
root modulo p, that is p - g and the multiplicative order of g modulo p, ordp(g), equals
p− 1 = #(Z/pZ)∗, and so g is a generator of (Z/pZ)∗. In 1927, Emil Artin conjectured
that the set Pg is infinite if g is not a square; moreover he also gave a conjectural
formula for its natural density δ(Pg); see [12] for more details. There is no explicit
value of g known for which Pg can be unconditionally proved to be infinite. However
Heath-Brown [3], building on earlier fundamental work by Gupta and Murty [2], showed
that, given any three distinct primes p1, p2 and p3, there is at least one i such that Ppi
is infinite.

In 1967, Hooley [4] established Artin’s conjecture under the Generalized Riemann
Hypothesis (GRH) and determined δ(Pg). Ten years later, Lenstra [7] considered a
wide class of generalizations of Artin’s conjecture. For example, under GRH he showed
that the primes in Pg that are in a prescribed arithmetic progression have a natural
density and gave a Galois theoretic formula for it. This was worked out explicitly by the
first author [9, 11], who showed that δ(Pg) = rgA, with rg an explicit rational number
and the Artin constant

A =
∏
p

(
1− 1

p(p− 1)

)
= 0.373955 . . . .
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Using a powerful and very general algebraic method, this result was rederived in a very
different way by Lenstra et al. [8].

For any integer t ≥ 1, let

Pg(t) = {p : p - g, p ≡ 1 (mod t), ordp(g) = (p− 1)/t}.
If p is in Pg(t), then it is said to have g as a t-near primitive root. Assuming GRH, the
first author [13] determined δ(Pg(t)) in case g > 1 is square-free.

A more refined problem is how the primes in Pg(t) are distributed over arithmetic
progressions. To this end, let a, d ≥ 1 be coprime integers and define

Pg(t, d, a) = {p : p ≡ a (mod d), p ∈ Pg(t)}.
By the prime number theorem for arithmetic progressions,

(1.1) #{p : p ≤ x, p ≡ a (mod d)} ∼ x

ϕ(d) log x
,

where ϕ denotes Euler’s totient function. A straightforward combination of the ideas
used in the study of near-primitive roots and those for primitive roots in arithmetic
progression, allows one to show, assuming GRH, that δ(Pg(t, d, a)) exists and derive a
Galois theoretic expression δG(Pg(t, d, a)) for it (see Hu et al. [6, Theorem 3.1]). More-
over, it can be unconditionally shown (see [6, Equation (3.7)]) that

(1.2) lim sup
x→∞

#{p ≤ x : p ∈ Pg(t, d, a)}
π(x)

≤ δG(Pg(t, d, a)),

where as usual π(x) denotes the prime counting function. The proof is obtained essen-
tially by doing the simple asymptotic sieve up to a range in which the unconditional
Chebotarev density theorem is valid.

On the basis of insights from [8], we know that δG(Pg(t, d, a)) equals a rational
multiple of the Artin constant A, where the rational multiple can be worked out in full
generality. However, this is likely to produce a result involving several case distinctions
(as in the restricted case where t = 1 and in the case where t is arbitrary and g
is square-free). In the much less general case g = 4 and t = 2, the expression was
explicitly worked out in [6]; see Section 1.3 for more background.

1.2. Our considerations. In this paper we study, motivated by the following ques-
tions, the distribution of primes not having a prescribed near-primitive root in arith-
metic progressions.
Questions. Let t ≥ 1 and g 6∈ {−1, 0, 1} be integers. Let a, d be positive coprime
integers.
A) Is the set

Qg(t, d, a) = {p : p ≡ a (mod d), p 6∈ Pg(t)}
infinite?
B) Does the set Qg(t, d, a) have a natural density and can it be computed?

Since Pg(t, d, a)∪Qg(t, d, a) = {p : p ≡ a (mod d)}, if δ(Pg(t, d, a)) exists, then using
(1.1) we have

δ(Qg(t, d, a)) = 1/ϕ(d)− δ(Pg(t, d, a)).
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Question B can currently be answered only assuming GRH. However, in this approach
it is far from evident under which conditions on the parameters g, t, d and a we have
δ(Qg(t, d, a)) > 0, thus guaranteeing the infinitude of the set Qg(t, d, a).

Unconditionally using (1.2) we infer that

lim inf
x→∞

#{p ≤ x : p ∈ Qg(t, d, a)}
π(x)

≥ 1

ϕ(d)
− δG(Pg(t, d, a)).

If there exists a prime p0 - t satisfying both p0 ≡ a (mod d) and p0 6≡ 1 (mod t), then
all the primes p ≡ p0 (mod dt) are in Qg(t, d, a) (due to t - (p− 1)). By (1.1), there are
infinitely many primes p ≡ p0 (mod dt), and they have a positive natural density. Thus,
the first question is only non-trivial when p ≡ a (mod d) implies p | t or p ≡ 1 (mod t),
which is true if and only if

(1.3) t | d and t | (a− 1).

In this note we will see that answering Question A is actually also rather easy in
case (1.3) is satisfied. The answer to Question A is yes, and we can be even a little bit
more precise on using Kummerian extensions of cyclotomic number fields Q(ζn) with
ζn = e2πi/n.

Proposition 1.1. Let g 6∈ {−1, 0, 1} and t ≥ 1 be integers. Let a, d be positive coprime
integers. Then, for any integer q > 2 coprime to 2dt, the set Qg(t, d, a) contains a
positive natural density subset of primes p having natural density

1

[Q(ζd, ζq, g1/q) : Q]
.

The field degree [Q(ζd, ζq, g
1/q) : Q] = [Q(ζlcm(d,q), g

1/q) : Q] is not difficult to compute
for any given g, d and q; see [10, Lemma 1] for the general result (which is a direct
consequence of [15, Proposition 4.1]). Using this computation the maximum density
of the q-dependent subsets arising in Proposition 1.1 can be determined; see the next
section for an example. If ` is a prime factor of q, then Q(ζd, ζ`, g

1/`) ⊆ Q(ζd, ζq, g
1/q),

and so a priori the maximum occurs in an odd prime.
We will also establish a more difficult variant of Proposition 1.1. Letting g, t, d, a be

as in Proposition 1.1, we define the set

Rg(t, d, a) = {p : p - g, p ≡ a (mod d), p ≡ 1 (mod t), ordp(g) | (p− 1)/t}.

Clearly, we have Pg(t, d, a) ⊆ Rg(t, d, a). Our purpose is to show that if Rg(t, d, a) is
not empty, then Rg(t, d, a) contains a positive density subset of primes not contained
in Pg(t, d, a).

Theorem 1.2. Let g 6∈ {−1, 0, 1} and t ≥ 1 be integers. Let a, d be positive coprime
integers. Suppose the set Rg(t, d, a) is not empty. Then, for any integer q > 2 coprime
to 2dgt, the set Rg(t, d, a) contains a subset of primes p for which g is a non t-near
primitive root modulo p having natural density

1

[Q(ζd, ζqt, g1/qt) : Q]
.
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Again, given d, g and t, the maximum density of the q-dependent subsets arising in
the theorem can be determined, and for this it suffices to consider primes q - 2dgt.

Note that for any integer q ≥ 2, each prime in Rg(qt, d, a) is not contained in
Pg(t, d, a). So, Theorem 1.2 is derived directly from the following proposition, which
might be of independent interest.

Proposition 1.3. Let g 6∈ {−1, 0, 1} and t ≥ 1 be integers. Let a, d be positive coprime
integers. Suppose the set Rg(t, d, a) is not empty. Then, for any positive integer q
coprime to 2dgt, we have

δ(Rg(qt, d, a)) =
1

[Q(ζd, ζqt, g1/qt) : Q]
.

1.3. An application. Proposition 1.1 has an application to Genocchi numbers Gn,
which are defined by Gn = 2(1 − 2n)Bn, where Bn is the nth Bernoulli number. The
Genocchi numbers are actually integers. As introduced in [6], if a prime p > 3 divides
at least one of the Genocchi numbers G2, G4, . . . , Gp−3, it is said to be G-irregular and
G-regular otherwise. The first fifteen G-irregular primes [1] are

17, 31, 37, 41, 43, 59, 67, 73, 89, 97, 101, 103, 109, 113, 127.

The G-regularity of primes can be linked to the divisibility of certain class numbers of
cyclotomic fields. Let S be the set of infinite places of Q(ζp) and T the set of places
above the prime 2. Denote by hp,2 the (S, T )-refined class number of Q(ζp) and h+p,2 be
the refined class number of Q(ζp + ζ−1p ) with respect to its infinite places and places
above the prime 2 (for the definition of the refined class number of global fields, see for
example Hu and Kim [5, Section 2]). Define h−p,2 = hp,2/h

+
p,2. It turns out that h−p,2 is

an integer (see [5, Proof of Proposition 3.4]). Recall that a Wieferich prime is an odd
prime p such that 2p−1 ≡ 1 (mod p2).

Theorem 1.4. [6, Theorem 1.5]. Let p be an odd prime. Then, if p is G-irregular, we
have p | h−p,2. If furthermore p is not a Wieferich prime, the converse is also true.

It is easy to show that if ordp(4) 6= (p− 1)/2, then p is G-irregular; see [6, Theorem
1.6]. Hence, taking g = 4 and t = 2 in Proposition 1.1 and noting that we have
[Q(ζd, ζq, 4

1/q) : Q] = ϕ(d)q(q−1) for any prime q - 2d, we arrive at the following result.

Proposition 1.5. Let a, d be positive coprime integers. Let q be the smallest prime not
dividing 2d. The set of G-irregular primes p satisfying p ≡ a (mod d) contains a subset
having natural density

1

ϕ(d)q(q − 1)
.

This result is a weaker version of Theorem 1.11 in [6], however its proof is much
more elementary, and it still shows that each coprime residue class contains a subset of
G-irregular primes having positive natural density.
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2. Preliminaries

Given any integers d, n ≥ 1 put Kn = Q(ζd, ζn, g
1/n). For a coprime to d, let σa be

the endomorphism of Q(ζd) over Q defined by σa(ζd) = ζad . Let Cn be the conjugacy
class of elements of the Galois group Gn = Gal(Kn/Q) such that for any τn ∈ Cn,

(2.1) τn
∣∣
Q(ζd)

= σa, τn
∣∣
Q(ζn,g1/n)

= id,

where ‘id’ stands for the identity map. Note that either Cn is empty, or Cn is non-empty
and |Cn| = 1. The latter case occurs if and only if

(2.2) τn
∣∣
Q(ζd)∩Q(ζn,g1/n)

= id.

If this condition is satisfied, then by the Chebotarev density theorem (in its natural
density form, cf. Serre [14], the original form being for Dirichlet density), the primes
unramified in Kn and with Frobenius Cn have natural density 1/[Kn : Q]. Note that
the primes unramified in Kn are exactly the primes p - dgn. The first condition on τn
ensures that the primes p - dgn having τn as Frobenius satisfy p ≡ a (mod d). Likewise
the second condition ensures that such primes satisfy ordp(g) | (p− 1)/n.

In particular, in case Q(ζd) and Q(ζn, g
1/n) are linearly disjoint over Q, that is,

(2.3) Q(ζd) ∩Q(ζn, g
1/n) = Q,

we have |Cn| = 1, and the primes p - dgn with Frobenius Cn satisfy p ≡ a (mod d) and
ordp(g) | (p− 1)/n, and they have natural density 1/[Kn : Q].

3. Proofs

3.1. Proof of Proposition 1.1. Since q is odd, the extension Q(ζq, g
1/q) of Q(ζq) is

non-abelian and

Q(ζd) ∩Q(ζq, g
1/q) = Q(ζd) ∩Q(ζq) = Q(ζgcd(d,q)) = Q,

as gcd(q, d) = 1. Thus (2.3) is satisfied and consequently there is a set with natural
density 1/[Kq : Q] of primes p satisfying p ≡ a (mod d) and ordp(g) | (p − 1)/q. Since
by assumption q - t, it follows that for these primes p, ordp(g) 6= (p − 1)/t, and so for
them g is a non t-near primitive root. This completes the proof.

3.2. Proof of Proposition 1.3. From now on we assume that g, t, a and d are as in
Proposition 1.3. The proof of Proposition 1.3 rests on the Chebotarev density theorem
and the following lemma. Recall that Kn = Q(ζd, ζn, g

1/n).

Lemma 3.1. Put In = Q(ζd)∩Q(ζn, g
1/n). Then, for any positive integer q coprime to

2dgt, we have Iqt = It.

Proof. Since It ⊆ Iqt, it suffices to show that [Iqt : Q] = [It : Q]. Obviously [d, t] = rt for
some positive integer r. By elementary Galois theory and noticing that gcd(q, dt) = 1,
we see that

[Iqt : Q] =
[Q(ζd) : Q] · [Q(ζqt, g

1/qt) : Q]

[Q(ζd, ζqt, g1/qt) : Q]
=
ϕ(d)[Q(ζqt, g

1/qt) : Q]

[Q(ζqrt, g1/qt) : Q]
,
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and, similarly, [It : Q] = ϕ(d)[Q(ζt, g
1/t) : Q]/[Q(ζrt, g

1/t) : Q]. Then, by Lemma 1 of
[10] and noticing gcd(q, 2dgt) = 1, it is straightforward to deduce that [Iqt : Q] = [It :
Q]. �

We remark that the condition gcd(q, 2dgt) = 1 cannot be removed. For example,
choosing g = 21, d = 3, t = 10, q = 7 and using [11, Lemma 2.4], we have It = Q and
Iqt = Q(ζd) = Q(

√
−3) 6= It.

Proof of Proposition 1.3. By Lemma 3.1 it follows that

(3.1) Iqt = It.

By assumption, Rg(t, d, a) is not empty. Then, this implies that the two automorphisms
in (2.1) are compatible and hence (2.2) is satisfied, which leads to the conclusion that
Rg(t, d, a) is not only non-empty, but even has a positive natural density, moreover
δ(Rg(t, d, a)) = [Kt : Q]−1 by the discussions in Section 2. So, there must be a τt ∈ Ct
such that τt|It = id, which by (3.1) implies the existence of an automorphism τqt ∈
Cqt such that τqt|Iqt = id. Then, it follows from the discussions in Section 2 that
δ(Rg(qt, d, a)) = [Kqt : Q]−1. �

3.3. Proof of Theorem 1.2.

Proof of Theorem 1.2. A direct consequence of Proposition 1.3. �
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