Max-Planck-Institut für Mathematik Bonn

Primes in arithmetic progressions and non-primitive roots
by

Pieter Moree
Min Sha

Max-Planck-Institut für Mathematik
Preprint Series 2019 (7)

Primes in arithmetic progressions and non-primitive roots

Pieter Moree Min Sha

Max-Planck-Institut für Mathematik
Vivatsgasse 7
53111 Bonn
Germany

Department of Computing
Macquarie University
Sydney, NSW 2109
Australia

PRIMES IN ARITHMETIC PROGRESSIONS AND NON-PRIMITIVE ROOTS

PIETER MOREE AND MIN SHA
Dedicated to the memory of Prof. Christopher Hooley (1928-2018)

Abstract

Let p be a prime. If an integer g generates a subgroup of index t in $(\mathbb{Z} / p \mathbb{Z})^{*}$, then we say that g is a t-near primitive root modulo p. We point out the easy result that each coprime residue class contains a positive natural density subset of primes p not having g as a t-near primitive root and prove a more difficult variant.

1. Introduction

1.1. Background. Given a set of primes S, the limit

$$
\delta(S)=\lim _{x \rightarrow \infty} \frac{\#\{p: p \in S, p \leq x\}}{\#\{p: p \leq x\}}
$$

if it exists, is called the natural density of S. (Here and in the sequel the letter p is used to denote a prime number.)

For any integer $g \notin\{-1,0,1\}$, let \mathcal{P}_{g} be the set of primes p such that g is a primitive root modulo p, that is $p \nmid g$ and the multiplicative order of g modulo $p, \operatorname{ord}_{p}(g)$, equals $p-1=\#(\mathbb{Z} / p \mathbb{Z})^{*}$, and so g is a generator of $(\mathbb{Z} / p \mathbb{Z})^{*}$. In 1927, Emil Artin conjectured that the set \mathcal{P}_{g} is infinite if g is not a square; moreover he also gave a conjectural formula for its natural density $\delta\left(\mathcal{P}_{g}\right)$; see [12] for more details. There is no explicit value of g known for which \mathcal{P}_{g} can be unconditionally proved to be infinite. However Heath-Brown [3], building on earlier fundamental work by Gupta and Murty [2], showed that, given any three distinct primes p_{1}, p_{2} and p_{3}, there is at least one i such that $\mathcal{P}_{p_{i}}$ is infinite.

In 1967, Hooley [4] established Artin's conjecture under the Generalized Riemann Hypothesis (GRH) and determined $\delta\left(\mathcal{P}_{g}\right)$. Ten years later, Lenstra [7] considered a wide class of generalizations of Artin's conjecture. For example, under GRH he showed that the primes in \mathcal{P}_{g} that are in a prescribed arithmetic progression have a natural density and gave a Galois theoretic formula for it. This was worked out explicitly by the first author $[9,11]$, who showed that $\delta\left(\mathcal{P}_{g}\right)=r_{g} A$, with r_{g} an explicit rational number and the Artin constant

$$
A=\prod_{p}\left(1-\frac{1}{p(p-1)}\right)=0.373955 \ldots
$$

[^0]Using a powerful and very general algebraic method, this result was rederived in a very different way by Lenstra et al. [8].

For any integer $t \geq 1$, let

$$
\mathcal{P}_{g}(t)=\left\{p: p \nmid g, p \equiv 1(\bmod t), \operatorname{ord}_{p}(g)=(p-1) / t\right\} .
$$

If p is in $\mathcal{P}_{g}(t)$, then it is said to have g as a t-near primitive root. Assuming GRH, the first author [13] determined $\delta\left(\mathcal{P}_{g}(t)\right)$ in case $g>1$ is square-free.

A more refined problem is how the primes in $\mathcal{P}_{g}(t)$ are distributed over arithmetic progressions. To this end, let $a, d \geq 1$ be coprime integers and define

$$
\mathcal{P}_{g}(t, d, a)=\left\{p: p \equiv a(\bmod d), p \in \mathcal{P}_{g}(t)\right\} .
$$

By the prime number theorem for arithmetic progressions,

$$
\begin{equation*}
\#\{p: p \leq x, p \equiv a(\bmod d)\} \sim \frac{x}{\varphi(d) \log x} \tag{1.1}
\end{equation*}
$$

where φ denotes Euler's totient function. A straightforward combination of the ideas used in the study of near-primitive roots and those for primitive roots in arithmetic progression, allows one to show, assuming GRH, that $\delta\left(\mathcal{P}_{g}(t, d, a)\right)$ exists and derive a Galois theoretic expression $\delta_{G}\left(\mathcal{P}_{g}(t, d, a)\right)$ for it (see Hu et al. [6, Theorem 3.1]). Moreover, it can be unconditionally shown (see [6, Equation (3.7)]) that

$$
\begin{equation*}
\limsup _{x \rightarrow \infty} \frac{\#\left\{p \leq x: p \in \mathcal{P}_{g}(t, d, a)\right\}}{\pi(x)} \leq \delta_{G}\left(\mathcal{P}_{g}(t, d, a)\right) \tag{1.2}
\end{equation*}
$$

where as usual $\pi(x)$ denotes the prime counting function. The proof is obtained essentially by doing the simple asymptotic sieve up to a range in which the unconditional Chebotarev density theorem is valid.

On the basis of insights from [8], we know that $\delta_{G}\left(\mathcal{P}_{g}(t, d, a)\right)$ equals a rational multiple of the Artin constant A, where the rational multiple can be worked out in full generality. However, this is likely to produce a result involving several case distinctions (as in the restricted case where $t=1$ and in the case where t is arbitrary and g is square-free). In the much less general case $g=4$ and $t=2$, the expression was explicitly worked out in [6]; see Section 1.3 for more background.
1.2. Our considerations. In this paper we study, motivated by the following questions, the distribution of primes not having a prescribed near-primitive root in arithmetic progressions.
Questions. Let $t \geq 1$ and $g \notin\{-1,0,1\}$ be integers. Let a, d be positive coprime integers.
A) Is the set

$$
\mathcal{Q}_{g}(t, d, a)=\left\{p: p \equiv a(\bmod d), p \notin \mathcal{P}_{g}(t)\right\}
$$

infinite?
B) Does the set $\mathcal{Q}_{g}(t, d, a)$ have a natural density and can it be computed?

Since $\mathcal{P}_{g}(t, d, a) \cup \mathcal{Q}_{g}(t, d, a)=\{p: p \equiv a(\bmod d)\}$, if $\delta\left(\mathcal{P}_{g}(t, d, a)\right)$ exists, then using (1.1) we have

$$
\delta\left(\mathcal{Q}_{g}(t, d, a)\right)=1 / \varphi(d)-\delta\left(\mathcal{P}_{g}(t, d, a)\right)
$$

Question B can currently be answered only assuming GRH. However, in this approach it is far from evident under which conditions on the parameters g, t, d and a we have $\delta\left(\mathcal{Q}_{g}(t, d, a)\right)>0$, thus guaranteeing the infinitude of the set $\mathcal{Q}_{g}(t, d, a)$.

Unconditionally using (1.2) we infer that

$$
\lim _{x \rightarrow \infty} \inf _{x \rightarrow \infty} \frac{\#\left\{p \leq x: p \in \mathcal{Q}_{g}(t, d, a)\right\}}{\pi(x)} \geq \frac{1}{\varphi(d)}-\delta_{G}\left(\mathcal{P}_{g}(t, d, a)\right)
$$

If there exists a prime $p_{0} \nmid t$ satisfying both $p_{0} \equiv a(\bmod d)$ and $p_{0} \not \equiv 1(\bmod t)$, then all the primes $p \equiv p_{0}(\bmod d t)$ are in $\mathcal{Q}_{g}(t, d, a)($ due to $t \nmid(p-1))$. By (1.1), there are infinitely many primes $p \equiv p_{0}(\bmod d t)$, and they have a positive natural density. Thus, the first question is only non-trivial when $p \equiv a(\bmod d)$ implies $p \mid t$ or $p \equiv 1(\bmod t)$, which is true if and only if

$$
\begin{equation*}
t \mid d \quad \text { and } \quad t \mid(a-1) \tag{1.3}
\end{equation*}
$$

In this note we will see that answering Question A is actually also rather easy in case (1.3) is satisfied. The answer to Question A is yes, and we can be even a little bit more precise on using Kummerian extensions of cyclotomic number fields $\mathbb{Q}\left(\zeta_{n}\right)$ with $\zeta_{n}=e^{2 \pi i / n}$.

Proposition 1.1. Let $g \notin\{-1,0,1\}$ and $t \geq 1$ be integers. Let a, d be positive coprime integers. Then, for any integer $q>2$ coprime to $2 d t$, the set $\mathcal{Q}_{g}(t, d, a)$ contains a positive natural density subset of primes p having natural density

$$
\frac{1}{\left[\mathbb{Q}\left(\zeta_{d}, \zeta_{q}, g^{1 / q}\right): \mathbb{Q}\right]} .
$$

The field degree $\left[\mathbb{Q}\left(\zeta_{d}, \zeta_{q}, g^{1 / q}\right): \mathbb{Q}\right]=\left[\mathbb{Q}\left(\zeta_{\operatorname{lcm}(d, q)}, g^{1 / q}\right): \mathbb{Q}\right]$ is not difficult to compute for any given g, d and q; see [10, Lemma 1] for the general result (which is a direct consequence of [15, Proposition 4.1]). Using this computation the maximum density of the q-dependent subsets arising in Proposition 1.1 can be determined; see the next section for an example. If ℓ is a prime factor of q, then $\mathbb{Q}\left(\zeta_{d}, \zeta_{\ell}, g^{1 / \ell}\right) \subseteq \mathbb{Q}\left(\zeta_{d}, \zeta_{q}, g^{1 / q}\right)$, and so a priori the maximum occurs in an odd prime.

We will also establish a more difficult variant of Proposition 1.1. Letting g, t, d, a be as in Proposition 1.1, we define the set

$$
\mathcal{R}_{g}(t, d, a)=\left\{p: p \nmid g, p \equiv a(\bmod d), p \equiv 1(\bmod t), \operatorname{ord}_{p}(g) \mid(p-1) / t\right\}
$$

Clearly, we have $\mathcal{P}_{g}(t, d, a) \subseteq \mathcal{R}_{g}(t, d, a)$. Our purpose is to show that if $\mathcal{R}_{g}(t, d, a)$ is not empty, then $\mathcal{R}_{g}(t, d, a)$ contains a positive density subset of primes not contained in $\mathcal{P}_{g}(t, d, a)$.

Theorem 1.2. Let $g \notin\{-1,0,1\}$ and $t \geq 1$ be integers. Let a, d be positive coprime integers. Suppose the set $\mathcal{R}_{g}(t, d, a)$ is not empty. Then, for any integer $q>2$ coprime to $2 d g t$, the set $\mathcal{R}_{g}(t, d, a)$ contains a subset of primes p for which g is a non t-near primitive root modulo p having natural density

$$
\frac{1}{\left[\mathbb{Q}\left(\zeta_{d}, \zeta_{q t}, g^{1 / q t}\right): \mathbb{Q}\right]} .
$$

Again, given d, g and t, the maximum density of the q-dependent subsets arising in the theorem can be determined, and for this it suffices to consider primes $q \nmid 2 d g t$.

Note that for any integer $q \geq 2$, each prime in $\mathcal{R}_{g}(q t, d, a)$ is not contained in $\mathcal{P}_{g}(t, d, a)$. So, Theorem 1.2 is derived directly from the following proposition, which might be of independent interest.

Proposition 1.3. Let $g \notin\{-1,0,1\}$ and $t \geq 1$ be integers. Let a, d be positive coprime integers. Suppose the set $\mathcal{R}_{g}(t, d, a)$ is not empty. Then, for any positive integer q coprime to $2 d g t$, we have

$$
\delta\left(\mathcal{R}_{g}(q t, d, a)\right)=\frac{1}{\left[\mathbb{Q}\left(\zeta_{d}, \zeta_{q t}, g^{1 / q t}\right): \mathbb{Q}\right]}
$$

1.3. An application. Proposition 1.1 has an application to Genocchi numbers G_{n}, which are defined by $G_{n}=2\left(1-2^{n}\right) B_{n}$, where B_{n} is the $n^{\text {th }}$ Bernoulli number. The Genocchi numbers are actually integers. As introduced in [6], if a prime $p>3$ divides at least one of the Genocchi numbers $G_{2}, G_{4}, \ldots, G_{p-3}$, it is said to be G-irregular and G-regular otherwise. The first fifteen G-irregular primes [1] are

$$
17,31,37,41,43,59,67,73,89,97,101,103,109,113,127 .
$$

The G-regularity of primes can be linked to the divisibility of certain class numbers of cyclotomic fields. Let S be the set of infinite places of $\mathbb{Q}\left(\zeta_{p}\right)$ and T the set of places above the prime 2. Denote by $h_{p, 2}$ the (S, T)-refined class number of $\mathbb{Q}\left(\zeta_{p}\right)$ and $h_{p, 2}^{+}$be the refined class number of $\mathbb{Q}\left(\zeta_{p}+\zeta_{p}^{-1}\right)$ with respect to its infinite places and places above the prime 2 (for the definition of the refined class number of global fields, see for example Hu and Kim [5, Section 2]). Define $h_{p, 2}^{-}=h_{p, 2} / h_{p, 2}^{+}$. It turns out that $h_{p, 2}^{-}$is an integer (see [5, Proof of Proposition 3.4]). Recall that a Wieferich prime is an odd prime p such that $2^{p-1} \equiv 1\left(\bmod p^{2}\right)$.

Theorem 1.4. [6, Theorem 1.5]. Let p be an odd prime. Then, if p is G-irregular, we have $p \mid h_{p, 2}^{-}$. If furthermore p is not a Wieferich prime, the converse is also true.

It is easy to show that if $\operatorname{ord}_{p}(4) \neq(p-1) / 2$, then p is G-irregular; see [6, Theorem 1.6]. Hence, taking $g=4$ and $t=2$ in Proposition 1.1 and noting that we have $\left[\mathbb{Q}\left(\zeta_{d}, \zeta_{q}, 4^{1 / q}\right): \mathbb{Q}\right]=\varphi(d) q(q-1)$ for any prime $q \nmid 2 d$, we arrive at the following result.

Proposition 1.5. Let a, d be positive coprime integers. Let q be the smallest prime not dividing $2 d$. The set of G-irregular primes p satisfying $p \equiv a(\bmod d)$ contains a subset having natural density

$$
\frac{1}{\varphi(d) q(q-1)}
$$

This result is a weaker version of Theorem 1.11 in [6], however its proof is much more elementary, and it still shows that each coprime residue class contains a subset of G-irregular primes having positive natural density.

2. Preliminaries

Given any integers $d, n \geq 1$ put $K_{n}=\mathbb{Q}\left(\zeta_{d}, \zeta_{n}, g^{1 / n}\right)$. For a coprime to d, let σ_{a} be the endomorphism of $\mathbb{Q}\left(\zeta_{d}\right)$ over \mathbb{Q} defined by $\sigma_{a}\left(\zeta_{d}\right)=\zeta_{d}^{a}$. Let C_{n} be the conjugacy class of elements of the Galois group $G_{n}=\operatorname{Gal}\left(K_{n} / \mathbb{Q}\right)$ such that for any $\tau_{n} \in C_{n}$,

$$
\begin{equation*}
\left.\tau_{n}\right|_{\mathbb{Q}\left(\zeta_{d}\right)}=\sigma_{a},\left.\quad \tau_{n}\right|_{\mathbb{Q}\left(\zeta_{n}, g^{1 / n}\right)}=\mathrm{id} \tag{2.1}
\end{equation*}
$$

where 'id' stands for the identity map. Note that either C_{n} is empty, or C_{n} is non-empty and $\left|C_{n}\right|=1$. The latter case occurs if and only if

$$
\begin{equation*}
\left.\tau_{n}\right|_{\mathbb{Q}\left(\zeta_{d}\right) \cap \mathbb{Q}\left(\zeta_{n}, g^{1 / n}\right)}=\mathrm{id} \tag{2.2}
\end{equation*}
$$

If this condition is satisfied, then by the Chebotarev density theorem (in its natural density form, cf. Serre [14], the original form being for Dirichlet density), the primes unramified in K_{n} and with Frobenius C_{n} have natural density $1 /\left[K_{n}: \mathbb{Q}\right]$. Note that the primes unramified in K_{n} are exactly the primes $p \nmid d g n$. The first condition on τ_{n} ensures that the primes $p \nmid d g n$ having τ_{n} as Frobenius satisfy $p \equiv a(\bmod d)$. Likewise the second condition ensures that such primes satisfy $\operatorname{ord}_{p}(g) \mid(p-1) / n$.

In particular, in case $\mathbb{Q}\left(\zeta_{d}\right)$ and $\mathbb{Q}\left(\zeta_{n}, g^{1 / n}\right)$ are linearly disjoint over \mathbb{Q}, that is,

$$
\begin{equation*}
\mathbb{Q}\left(\zeta_{d}\right) \cap \mathbb{Q}\left(\zeta_{n}, g^{1 / n}\right)=\mathbb{Q}, \tag{2.3}
\end{equation*}
$$

we have $\left|C_{n}\right|=1$, and the primes $p \nmid d g n$ with Frobenius C_{n} satisfy $p \equiv a(\bmod d)$ and $\operatorname{ord}_{p}(g) \mid(p-1) / n$, and they have natural density $1 /\left[K_{n}: \mathbb{Q}\right]$.

3. Proofs

3.1. Proof of Proposition 1.1. Since q is odd, the extension $\mathbb{Q}\left(\zeta_{q}, g^{1 / q}\right)$ of $\mathbb{Q}\left(\zeta_{q}\right)$ is non-abelian and

$$
\mathbb{Q}\left(\zeta_{d}\right) \cap \mathbb{Q}\left(\zeta_{q}, g^{1 / q}\right)=\mathbb{Q}\left(\zeta_{d}\right) \cap \mathbb{Q}\left(\zeta_{q}\right)=\mathbb{Q}\left(\zeta_{\operatorname{gcd}(d, q)}\right)=\mathbb{Q}
$$

as $\operatorname{gcd}(q, d)=1$. Thus (2.3) is satisfied and consequently there is a set with natural density $1 /\left[K_{q}: \mathbb{Q}\right]$ of primes p satisfying $p \equiv a(\bmod d)$ and $\operatorname{ord}_{p}(g) \mid(p-1) / q$. Since by assumption $q \nmid t$, it follows that for these primes $p, \operatorname{ord}_{p}(g) \neq(p-1) / t$, and so for them g is a non t-near primitive root. This completes the proof.
3.2. Proof of Proposition 1.3. From now on we assume that g, t, a and d are as in Proposition 1.3. The proof of Proposition 1.3 rests on the Chebotarev density theorem and the following lemma. Recall that $K_{n}=\mathbb{Q}\left(\zeta_{d}, \zeta_{n}, g^{1 / n}\right)$.

Lemma 3.1. Put $I_{n}=\mathbb{Q}\left(\zeta_{d}\right) \cap \mathbb{Q}\left(\zeta_{n}, g^{1 / n}\right)$. Then, for any positive integer q coprime to $2 d g t$, we have $I_{q t}=I_{t}$.

Proof. Since $I_{t} \subseteq I_{q t}$, it suffices to show that $\left[I_{q t}: \mathbb{Q}\right]=\left[I_{t}: \mathbb{Q}\right]$. Obviously $[d, t]=r t$ for some positive integer r. By elementary Galois theory and noticing that $\operatorname{gcd}(q, d t)=1$, we see that

$$
\left[I_{q t}: \mathbb{Q}\right]=\frac{\left[\mathbb{Q}\left(\zeta_{d}\right): \mathbb{Q}\right] \cdot\left[\mathbb{Q}\left(\zeta_{q t}, g^{1 / q t}\right): \mathbb{Q}\right]}{\left[\mathbb{Q}\left(\zeta_{d}, \zeta_{q t}, g^{1 / q t}\right): \mathbb{Q}\right]}=\frac{\varphi(d)\left[\mathbb{Q}\left(\zeta_{q t}, g^{1 / q t}\right): \mathbb{Q}\right]}{\left[\mathbb{Q}\left(\zeta_{q r t}, g^{1 / q t}\right): \mathbb{Q}\right]}
$$

and, similarly, $\left[I_{t}: \mathbb{Q}\right]=\varphi(d)\left[\mathbb{Q}\left(\zeta_{t}, g^{1 / t}\right): \mathbb{Q}\right] /\left[\mathbb{Q}\left(\zeta_{r t}, g^{1 / t}\right): \mathbb{Q}\right]$. Then, by Lemma 1 of [10] and noticing $\operatorname{gcd}(q, 2 d g t)=1$, it is straightforward to deduce that $\left[I_{q t}: \mathbb{Q}\right]=\left[I_{t}\right.$: $\mathbb{Q}]$.

We remark that the condition $\operatorname{gcd}(q, 2 d g t)=1$ cannot be removed. For example, choosing $g=21, d=3, t=10, q=7$ and using [11, Lemma 2.4], we have $I_{t}=\mathbb{Q}$ and $I_{q t}=\mathbb{Q}\left(\zeta_{d}\right)=\mathbb{Q}(\sqrt{-3}) \neq I_{t}$.

Proof of Proposition 1.3. By Lemma 3.1 it follows that

$$
\begin{equation*}
I_{q t}=I_{t} \tag{3.1}
\end{equation*}
$$

By assumption, $\mathcal{R}_{g}(t, d, a)$ is not empty. Then, this implies that the two automorphisms in (2.1) are compatible and hence (2.2) is satisfied, which leads to the conclusion that $\mathcal{R}_{g}(t, d, a)$ is not only non-empty, but even has a positive natural density, moreover $\delta\left(\mathcal{R}_{g}(t, d, a)\right)=\left[K_{t}: \mathbb{Q}\right]^{-1}$ by the discussions in Section 2. So, there must be a $\tau_{t} \in C_{t}$ such that $\left.\tau_{t}\right|_{I_{t}}=\mathrm{id}$, which by (3.1) implies the existence of an automorphism $\tau_{q t} \in$ $C_{q t}$ such that $\left.\tau_{q t}\right|_{I_{q t}}=$ id. Then, it follows from the discussions in Section 2 that $\delta\left(\mathcal{R}_{g}(q t, d, a)\right)=\left[K_{q t}: \mathbb{Q}\right]^{-1}$.

3.3. Proof of Theorem 1.2.

Proof of Theorem 1.2. A direct consequence of Proposition 1.3.

Acknowledgement

The research of Min Sha was supported by a Macquarie University Research Fellowship. The authors thank Christine McMeekin and Peter Stevenhagen for very helpful discussions and feedback. The latter pointed out a serious oversight in an earlier version. The feedback of the referee is also gratefully acknowledged.

References

[1] Genocchi irregular primes, On-line encyclopedia of integer sequences, sequence A321217.
[2] R. Gupta and M.R. Murty, A remark on Artin's conjecture, Invent. Math. 78 (1984), 127-130.
[3] D.R. Heath-Brown, Artin's conjecture for primitive roots, Quart. J. Math. Oxford Ser. (2) 37 (1986), 27-38.
[4] C. Hooley, On Artin's conjecture, J. Reine Angew. Math. 225 (1967), 209-220.
[5] S. Hu, M.-S. Kim, The (S, \{2\})-Iwasawa theory, J. Number Theory 158 (2016), 73-89.
[6] S. Hu, M.-S. Kim, P. Moree and M. Sha, Irregular primes with respect to Genocchi numbers and Artin's primitive root conjecture, preprint, 2018, available at https://arxiv.org/abs/1809. 08431.
[7] H.W. Lenstra, Jr., On Artin's conjecture and Euclid's algorithm in global fields, Invent. Math. 42 (1977), 202-224.
[8] H.W.Lenstra, Jr., P. Moree and P.Stevenhagen, Character sums for primitive root densities, Math. Proc. Cambridge Philos. Soc. 157 (2014), 489-511.
[9] P. Moree, On primes in arithmetic progression having a prescribed primitive root, J. Number Theory 78 (1999), 85-98.
[10] P. Moree, On the distribution of the order and index of $g(\bmod p)$ over residue classes I, J. Number Theory 114 (2005), 238-271.
[11] P. Moree, On primes in arithmetic progression having a prescribed primitive root II, Funct. Approx. Comment. Math. 39 (2008), 133-144.
[12] P. Moree, Artin's primitive root conjecture - a survey, Integers 12A (2012), A13.
[13] P. Moree, Near-primitive roots, Funct. Approx. Comment. Math. 48 (2013), 133-145.
[14] J.-P. Serre, Quelques applications du théorème de densité de Chebotarev, Inst. Hautes Études Sci. Publ. Math. 54 (1981), 323-401.
[15] S.S. Wagstaff, Jr., Pseudoprimes and a generalization of Artin's conjecture, Acta Arith. 41 (1982), 141-150.

Max-Planck-Institut für Mathematik, Vivatsgasse 7, D-53111 Bonn, Germany
E-mail address: moree@mpim-bonn.mpg.de
Department of Computing, Macquarie University, Sydney, NSW 2109, Australia
E-mail address: shamin2010@gmail.com

[^0]: 2010 Mathematics Subject Classification. 11N13, 11N69.
 Key words and phrases. Primitive root, near-primitive root, Artin's primitive root conjecture, arithmetic progression.

