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Abstract

In the paper, we construct the theory of problems of Sobolev type in spaces
of functions having the given type of asymptotic expansion near “boundary”
manifolds. Such problems arise, for example, in the theory of potentials of zero
range in the nuclear physics. Moreover, the corresponding operator algebra
is constructed. The finiteness theorems (Fredholm property) are established
and the index is calculated.
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Introduction

1. As it follows from the title, the aim of the paper is to investigate a new class
of Sobolev problems!, that is, Sobolev problems in spaces with asymptotics. To
motivate the statements of problems presented below, we first consider some phys-
ical situations leading to the necessity of consideration of the Sobolev problems in
spaces with asymptotics, namely, the examination the internuclear forces, that is,
the theory of Schrédinger equation with potentials of zero range.

2. It seems that? it was E. Wigner [3] who first mentioned that the forces
of internuclear interaction must act at a very short distance and be very strong.
From this remark, the possibility of idealization of the internuclear interaction as

IConcerning the “classical” Sobolev problems see, for example, [1], [2] and the bibliography
therein.

2The short notes presented below do not give any historical priorities as well as the full bibli-
ography. The aim of these notes i3 to acquaint the reader with some physical papers which served
as the starting point for the constructing the mathematical theory presented in the main part of
the paper.



an interaction determined by a potential of zero range comes in a very natural way.
This idea was realized by H. Bethe and R. Peierls [4] as early as in 1935 and have
born a lot of exactly solvable models of systems with point interaction (see [5]). The
review of these models and a rather full bibliography the reader can find in the book
[6].

The further generalization of the short-range interaction theory to N-particle
problems meets serious difficulties. L. H. Thomas have noticed that the energy of
the base state can tend to —oo as the interaction radius tends to zero (falling to the
center, or collapse, see [7]). The reason for this phenomenon became clear after the
appearance of the rigorous mathematical verification of the two-particle problem by
F. Berezin and L. Faddeev [8], and by R. Minlos and L. Faddeev [9] appeared soon
after the former one. The matter is (as it is shown in the paper by F. Berezin and
L. Faddeev) that the description of systems with potentials of zero range is performed
with the help of self-adjoint extensions of the Laplace operator with the initial
domain consisting of functions vanishing near the center of interaction. However,
the paper by R. Minlos and L. Faddeev shows that all self-adjoint extenstons of the
Laplace operator corresponding to the pairwise interactions are not bounded from
below and, hence, the energy of the system can be of arbitrary negative value.

One of possible approaches to overcome this difficulty is mentioned in the cited
paper by R. Minlos and L. Faddeev. Namely, if one involves into the boundary
condition the operator of the convolution type in the impulse variable, then one
arrives at semi-bounded self-adjoint extensions. However, the interaction in the
system constructed is not more a pairwise one. Later on, such extensions were
considered by S. Albeverio, R. Hoegh-Krohn, and L. Streit [10]. The fundamental
investigation of the three-particle problems one can find in [11}, {12].

The first attempt of constructing a selfadjoint extension of the Laplace opera-
tor corresponding to the pairwise interaction is due to Yu. Shondin {13] who has
considered an extension in the space L, (R®) @ C instead of L, (R®) (we remark
that, physically, such extensions correspond to physical systems with internal de-
grees of freedom). In future, similar extensions using more wide Hilbert spaces were
considered by B. Pavlov [14], [15].

In the recent time, the described field is developed in the works of a lot of
mathematicians (see papers by S. Albeverio, K. Makarov, V. Melezhik {16] — [18]
and others).

3. Let us show, on the simplest example, how the above considered physical
problem leads to the necessity of investigation of Sobolev problems in spaces with
asymptotics. Consider the operator A on the three-dimensional space as an operator



with the following domain of definition:
D= {u(z) € H*(R®)| u =0 near z =0}. (1)

This operator is a symmetric one, and it possesses self-adjoint extensions. Under
the quantum mechanics spirit, each extension of this kind describes some quantum-
mechanical system. One of these extensions is the operator A with H?(R?) as
the domain of definition — this is a self-adjoint operator corresponding to a free
one-dimensional particle. However, there are a lot of self-adjoint extensions of the
former operator different from the latter one. It is natural to suppose that all these
extensions describe a quantum particle in the potential field concentrated at the
origin. So, there arises a problem of description of all self-adjoint extensions of the
operator A with (1) as the domain of definition.

It occurs (see, for example, [17]) that all self-adjoint extensions of the operator
in question can be described as the operator A considered on subspaces of the space

~ C
b= {u(m)=;+uo(m), uo () € H? (R”')} (2)
defined by homogeneous “boundary conditions” of the type
C + aug (0) = 0.

Spaces of the type (2) are naturally named spaces with asymptotics since their ele-
ments are sums of the asymptotics C/r and the smooth component ug lying in the
space H? (R®) to which the first summand does not belong.

The easiest way of investigating such operators is to consider the corresponding
resolvent. This resolvent is the resolving operator for the following problem:

(A= AD)u(@) = f(3),
{ C + aug {0) =0, (3)

for f (z) € Ly (R®) if the solution is searched from the class D determined by relation
(2). The comparison = in (3), means that the first equation is fulfilled everywhere
except for the origin. The latter problem is the simplest example of the Sobolev
problem in spaces with asymptotics. At the same time, we have obtained the form
of “boundary conditions” to be used in spaces with asymptotics (we emphasize that
usual boundary conditions cannot be used here since functions of the form (2) do
not admit restrictions to the origin).

3By H?, or, more generally, H*, we denote usual Sobolev spaces of order s (see, e. g. [19]).



Below we investigate possible statements of Sobolev problems in spaces with
asymptotics and construct the following operator calculus — the powerful tool of
investigation of such problems.

Acknowledgements. We are grateful to Konstantin Makarov who attracted
our attention to problems for the Schrodinger equation with zero-range potentials
and listed the literature references on this topic. A lot of discussions with him
in the summer of 1995 in the working group of Professor B.-W. Schulze (Potsdam
University, Germany) greatly stimulated the appearance of this paper.

1 Examples

We begin with the consideration of the simplest examples of a Sobolev problem in
spaces with asymptotics. Here we shall not present the exact definitions of spaces
with asymptotics and encounter the exact indices of Sobolev spaces. We restrict
ourselves only by some intuitive notions sufficient for initial understanding of the
problem. All definitions will be refined during the consideration of the examples
below and will be finally formulated in the exact manner in the subsequent sections.

So, let M be a smooth n-dimensional manifold and X be its smooth submanifold
of codimension v. Roughly speeking, the element of the space with asymptotics are
functions on the pair (M, X) having the form

my—1 :
In’

u(,t) =30 r Y Sl (3,0) + o (,). (4)
J= '

k

near X. Here and below we use the following special coordinate systems* near
X: z € R}™Y are coordinates along the submanifold X, ¢ € R} are coordinates
transversal to X, and (r,w) are polar coordinates in the plane RY, r € [0,1], w €
S¥~1 (S¥~! being a unit sphere in the Cartesian space RY). The function ug(z,t)
must belong to some function space, say, H* (M), consisting of functions smooth

enough so that this space does not include any term

lnjr
Si(x k
T k( )J_'UJ (13:“‘)

involved into the right-hand part of representation (4).

1For the corresponding notions to be global, it is convenient to fix a structure of the bundle
over a tube neighborhood of the submanifold X. Then t (or (r,w)) can be treated as coordinates
in a fiber of this bundle.



We remark that, for integer nonnegative Si(z), functions of the form r5*()y*(z,w) can occur

to be of infinite smoothness for some special choice of amplitudes uF

. For example, in the two-
dimensional case r cos ¢ = z and rsin ¢ = y (where r, ¢ are polar coordinates) are infinitely smooth
functions. However, we require that s is such that the inclusion rS*@u*(z,w) € H*(M) is not

valid for all smooth amplitude functions u*(z,w).

We suppose that for any given space with asymptotics the following objects are
fixed:

i) Smooth functions Si(z), k =1,2,... N on X; subject to the conditions®

Sk(z) # S;(z) for k # 3

i) The set of multiplicities my € Z, given for each k =1.2.... N;

iii) The set of function spaces for the coefficients u} (z,w) on X x §*~1 (the exact
choice of these spaces will be presented below);

iv) The number s characterizing smoothness of the remainder up (z,¢) in (4)
(below we shall use the Sobolev spaces H? (M) for the description of the smoothness
of remainders in (4)).

We denote by
T={S(z), mi | k=12....N}

the set of degrees (with multiplicities) involved in asymptotic expansions (4) of

functions from the considered space with asymptotics. This space will be denoted
by H} (M, X).

In the examples below we shall consider mainly the equation (comparison)
(—A+Nu(z,t) = f(z,1) (5)

which is fulfilled at all points of the manifold M except for the submanifold X. We
have tried to choose these examples in such a way that all main features of the
general theory can be transparently shown.

1.1 The case of a zero-dimensional submanifold (one-term
asymptotics)

1. Our first example is the example of equation (5) considered in the three-
dimensional Cartesian space R® = M with the origin as the submanifold X. So, A

5This requirement means, in essence, that we do not include continuous asymptotics or branch-
ing asymptotics into consideration (see {20]).



is here the Laplace operator in R?, t = (¢!,12,#%):

A= & + & + A r—a—2+ 2 +A
T (Bt T (ar?)? T (B13)* |\ or ar v

Here by A, we denote the Laplace operator on the sphere S? (the “angular part”
of the Laplace operator A).
We shall consider equation

(6)

(-=A+1Du(t)=f() (7)

in the following function spaces. Suppose that the right-hand part f(2) in (7) is of
the form

f@) =17 faca(w) + fo (1), (8)
fo(t) € H*"?(R?) with some real a. The smoothness of the function f,_s (w) will
be determined later, now we suppose only that

§>1/2and a < s—3/2.

The first inequality means that the space H*"?(R?) does not contain distributions
concentrated at a single point and the second that r®=2f,_»(w) ¢ H*~?(R?). The
solution to (7) will be searched in the space of function having the form

u(t) = r°ua(w) + uo (1) (9)

with ug () € H*(R?). This representation correspond to one-term asymptotics of
the solution u(t). The latter means that we consider the operator (—A + 1) as an
operator in the following spaces with asymptotics:

(—A+1) : Hi g (M, X) = HZ o (M, X).

Before investigating the stated problem let us consider some analogy. The matter is that the
equation for the operator —A + 1 is, in essence, investigated as an equation with right-hand parts
of the special form with the help of undefined coefficients method. The similar problem for an
ordinary differential equation has the form (cf. (6))

Pm (x%) v=1, (10)

where
Pn(p) = amp™ + ...+ a1p+ap

is a polynomial in p, € R, the function f(z) has the following special form:

f(z)=z°Qn(Inz),

7



and @, is an arbitrary polynomial in In z of order not more than n. The space of functions of such
form is denoted by F, ,.

Let us search for a solution to (10) in the space F,,. The operator P, (xd/dz) can be
considered as a linear operator in finite-dimensional spaces:

d
P, (z‘&;‘) -}-n,u_’}-n,a: (11)

and, hence, it can be written in a matrix form with the help of some base in ¥, ,. The most

convenient base is .

In" z
ep(z) =z°k—!, E=0,...,n.
Then the matrix of the operator (11) is an upper triangle matrix with P, (a) on the diagonal:
Pn(e) ...«
0 Pn(a)
0 0 -ov Pn(e)

Now we see that:

1) If Pm{a) # 0 (non-resonance case), then the operator (11) is an isomorphism, that is,
equation (10) is uniquely solvable in the space F, 4.

2) If Pn(a) = 0 (resonance case), then the homogeneous equation corresponding to (10), has
nontrivial solutions, and non-homogeneous equation (10) is solvable not for any right-hand part
J{z), that is, the operator in question has nontrivial kernel and cokernel.

The more detailed analysis shows that the kernel and cokernel of operator (11) have dimension
equal to the multiplicity my of the root a of equation Pn,(p) = 0. Hence, for the unique solvability
it is necessary, first, to add to (11) m, additional conditions (for example, of the Cauchy type)
as well as pose m, additional requirements on the right-hand part f(z) for the equation to be
solvable.

Now let us turn our mind to the consideration of problem (7). In this case the
function space (8) (of special right-hand parts) can be represented as a direct sum®

Ha—?(s?) D Hs—'Z(R3),

f(t) A (fnr-2(w)> fo(t))a
and space (9), of the left-hand parts is

H*(S*) ® H*(R),
u(t) & (ta(w), uo(t))-

5For simplicity we suppose that a ¢ N (see the footnote 18 on page 29 below).




Let us calculate the representation of the operator —A + 1 corresponding to the
splitting of the considered spaces into the direct sums. To do this, we substitute
relation (9) into equation (7) thus obtaining

—r* A+ ala+ D] ua(w) + Uy (W) + (—A 4+ 1) up(t) = 72 fo_a2(w)+ fo(t). (12)

One can notice that the right-hand part of the latter equation does not contain
terms of the form r®p (w), whereas the left-hand part does contain such a term. So,
if we want to rewrite this equation in the matrix form, it is necessary to choose an
index s of the Sobolev space in such a way that ¢ (w) € H*~% (R?) for sufficiently
smooth function ¢ (w). This last requirement will be fulfilled if s < a + 7/2. Thus,
in the case considered the number s must belong to the half-interval

[max(1/2,a + 3/2),a + 7/2).

Under this requirements, there are two kind of terms in both sides of equation (12).
These are, first, terms from the space H*~?(R3), and, second, all the rest terms.
Equating terms of these kinds in both parts of (12) we arrive at the following system
of equations for the functions u, (w) and ue (2):

{ (=A + Nuo(t) + rus(w) = folt),

(13)
—[Au + ala + 1] ua(w) = faz(w),

or, in the “matrix” form

-A+1 r® up(t) \ _ fo(t)
0 —A, + ala+1) Ua(w) /= \ fa—2(w) /-

Clearly, the latter matrix is invertible iff both operators on the diagonal are
invertible. What concerns the operator —A 41, it is invertible since for s > 1/2 the
comparison in (13) becomes an equality, and the operator —A + 1 is invertible in
H*(R?) for any s. The different situation takes place for the operator —A,+a(a+1).
This operator is uniquely invertible on the sphere §? for o # —1,0,1,2,... (non-
resonance case), and has nontrivial kernel and cokernel for = —1,0,... (resonance
case).

The unique invertibility of the operator —4A,, + a(a — 1) for a # —1,0,1, ... follows from the
well- known fact that the eigenvalues for the Laplace operator on the sphere equal a{a — 1) for
(64 E Z+.

So, we see that equation (7) is uniquely solvable in spaces (8), (9) with asymp-
totics for the non-resonance values of a.



Let us consider now the resonance case, e. g. « = —1. In this case s € [1/2,5/2)
and equation (12) becomes

_Ayuy (W) 4 b (w)

r3 r

ranwo =200,

and the corresponding system of equations for u_;(w) and up(?) is

(15)

Let us analyze the obtained system. First of all, one can see that the second
equation in (15) has nonzero kernel and cokernel. The reason for this phenomenon
is that (as we have already mentioned above) we are considering the resonance case.
This means that the homogeneous equation corresponding to equation (7)

(-A+1D)u@ @) =0

(we recall that the equation must be fulfilled outside the origin) has a nontrivial

solution
e—r

©) () =
u (1) =C "

with an arbitrary constant C' which admits the following asymptotic expansion
C
(1) = ~+ud’ (1),

where u{ (t) € H* (R®) (for the above chosen values of s). The set of constants
form exactly the kernel of the second equation in (15).

Below, we shall show how one can get rid of the kernel of the equation in question,
and now we concentrate our attention at dealing with its cokernel. We shall consider
the two different methods.

2. From the first glance, to eliminate the cokernel of the equation in question one should use
the following procedure. For simplicity, let us consider an equation of Fuchsian type with constant
coefficients and a special right-hand part

(})2 Wz) - y(z) = 2°

on the real line RL. It is not hard to see that for any o except for o = 1 there exist a particular
solution of this equation of the form Cz® with some coefficient C. However, say, for @ = 1 the
particular solution of the equation in question must be searched in the form

¥y (z)=zlnz.

10



So one can see that the mulliplicily of solulion to an equation of the Fuchsian lype is increased by
one in the (simple) resonance case.

Similar to the case considered, one can search for the solution to equation (5) for & = —1 with
right-hand part (8) in the form

u(t) = - [u Vw)nr+u® l(w]-i-un ). (16)

As above, substituting this expression into equation (5) one obtains

_ln_rAw ul, W)+ = [-—Awu?_l (W) + uly (W)]

Inr ,

+—U- 1(&))-{- u_]((d)'{‘( A+1)Ug(t)—f—3( )

+ fo (). (17)

Equating terms with equal smoothness, we arrive at the following system of equations for the
functions u! | (w}, u?, (w), and uo (1):

(~A+uo () = fot) = BIul () ~ 1) (w),
Ayul, (w)=0,
—Awﬂgl (w) = foa(w) - ul-l (@),

From the second equation of the last system, one easily finds that u!, (w) = const, and the exact
value of this constant can be determined from the third equation (more exactly, from the solvability
condition for this equation). Since the compatibility conditions for the equation —A, u = f is the
orthogonality of its right-hand part to the space of constants, we obtain

W @)= 3 [ f-2@) da.
S2

(ds, being the volume element on the unit sphere). The functions %, (w), and ug () can now be
easily found.

In spite of the fact that with the help of this method one can guarantee the existence of
solution of the given form for any right-hand part f (¢), this method has a serious defect. Namely,
the operator (—A + 1) cannot be considered as an operator from functions having the form (16)
to the space of functions having the form (8). Actually, expression (17) shows that the result of
application of the operator —A + 1 to the function of the form (16} is a function of the form

%lﬁa(u*) Inr+ f25(w)] + fo(t), (18)

instead of (8) for « = —1. Thus, to consider —A + 1 as an operator in the corresponding function
spaces one has to allow the functions with the multiplicity 1 on the right in equation (5). In this
case, however, we are again in the resonance situation, and the multiplicity must be enlarged once
more. It is easy to see that the process of enlarging the multiplicity will not stop at any stage. This
is the reason why it is better to use another method of eliminating the cokernel of the operator in

question.”

7Of course, one can consider spaces of functions of the form (16) with u', from the kernel of
the operator A,. However, such spaces will depend on the operator under consideration.

11



3. Namely, to eliminate the cokernel of the operator considered, we shall slightly
modify the initial problem by including the so-called coboundary terms into the
right-hand part of the equation. More precisely, we shall consider the comparison

(~A+Du®) =/ () + 5 (19)

instead of (7). Here c is a new unknown number which must be found in the process
of solving the equation, and the function f (z,t) has, as above, the form (8).

Searching for a solution to equation (19) in the form (9) with @ = —1, we arrive
at the following system of equations for the unknowns u_; (w), uo (t), and ¢

(A + 1) uo(t) + 22 = fy 1),
Aoy (@) + ¢ = —fos (),

(20)

or, in the matrix form,
—A+1 0 uolt fo(?)
(5 ) (““,f‘“) ) -(20)

Now the constant ¢ must be chosen in such a way that the second equation in
the latter system is solvable for the given right-hand part f_; (w). Rewriting this
equation in the form

Aju_y (W) =—-fs3(w)—c (21)

and taking into account the fact that the image of the operator A, consists of
functions orthogonal to constants, we have

1
c= _ngf-s (w) ds,.
Sz

The solution of the second equation in (20) is
U (W) = =A% (f-s (W) + ) +4,

where by AJ! we have denoted the resolving operator for equation (21) defined on
the image of the operator A,, and the constant d is an arbitrary constant which
appears as an element of the kernel of the operator A,. Now due to the invertibility
of the operator —A + 1 on the whole space R?, the first equation of (20) gives

o (t) = (—A + 1) [fo(t) - E‘Lr(“’l] :

12



The latter formula completes the process of solving equation (19). Now the only
thing rest is to eliminate the kernel of the operator, that is, to pose a condition for
determining the arbitrary constant d involved into the obtained solution of equation
(19). This will be done in the next point.

4. The usual way of stating boundary conditions is to prescribe some concrete
values of the unknown (u (t) in our case) or, more general, of the result of application
of some differential operator to this function, at the boundary point. Unfortunately,
in the above considered case this is not possible: the unknown, in general, does not
admit the restriction to the origin (we recall that the origin plays role of the only
boundary point in our example). However, it is possible to consider the following
two functions to be used in the future boundary conditions (we remark that these
functions are involved into the boundary conditions of the problem which was con-
structed in the Introduction in the process of investigation of zero-range potentials):

e the coefficient u_; (w) involved into the asymptotic expansion of the unknown
function u (t) near the origin (see formula (9));

o the restriction uq (0) of the regular part ug () to the origin (here we suppose
that the number s belongs to the interval (1/2,5/2).

What for the second quantity mentioned above, it can be used in the “boundary
condition” without any additional transformation. Quite another situation takes
place for the first of these two unknowns. The matter is that the kernel of the
considered equation is one-dimensional whereas the set of coefficients u_; (w) of the
asymptotics form an infinite-dimensional function space. Therefore, before using
these coefficients in our future boundary condition, one must extract some “compo-
nent” from the coefficient u_; (w) in such a way that the set of these “components”
form some one-dimensional space. Below, we shall use the constant component

Piu_; (w) o '[u_l (w) ds.,

5?2

which is, in essence, the projection of the function u_, (w) to the subspace of constant
functions® (this motivates the name “projector” for the operator P, which we shall
use below).

As a result of the considerations above, we arrive at the following “boundary
condition” which can eliminate the kernel of the equation in question:

Piu_y (w) +yi*uo (t) = g. (22)

8We recall that the space of constants form a kernel of the operator A,,.

13



Here « is some constant, :* is a restriction to the origin, and g plays the role of the
right-hand part of the introduced boundary conditions. The considerations above
show that equation (19) with boundary condition (22)

{(—A+1)u(t)=f(t)+;%,

23
Piu_y (w) +7i"uo (t) = g, (2)

is equivalent to the following system of equations with respect to the unknowns
u_y (w), uo(t), and c:

(=8 + Duo(t) + 258 = 10y,
Ajuy (W)+e=—f_3(w), (24)
Piu_ (w)+97"ue (t) = g,

or, in the matrix form

-A+1 7t 0 uo(t) fo(t)
( 0 -A, -1 ) ( u_y(w) ) = (f_a(w) ) . (25)
o P 0 c g

Now the solution of problem (23) can be constructed within the following four steps:
1) Determination of the constant ¢ so that the second equation in (24) is solvable

with respect to u_, (w):
c= ——11;2— /f_g (w) dsy.
Sz

2) Determination of the function u_, (w) as a particular solution to the second
equation in (24):
o (@) = A7 [f3 (W) + ] +d,

where, as above, d is an arbitrary constant, and the application of the operator AJ!
is well-defined since the function f_z(w) + ¢ belongs to the image of the operator
A,

3) Determination of the ug () as the function depending on the arbitrary constant
d from the first equation in (24):

w(®) = <A+ 17 o0+ 182 s lw) + df - d(-a+ 1) 1

(we have used here the fact that the operator —A + 1 is invertible in R?).

14



4) Determination of the arbitrary constant d. For this one substitutes the latter
expression into the “boundary conditions” (the last equation in (24)), thus obtaining

~P[AZ [fos (@) + cl] + Vad
+7i (=A+ )7 {fo () + 18T s (@) + )} —drit(-a+ 1) L=,
(vi-vir(-a+ )7 Hd=P{as s (@) + )
—yit (=8 + 1) {fo () + AT s () + o]}
Hence, one has

_RAS fs @ el =yt (A + DT {fo(8) + 2AZ [f-s () + ]}

d - =11
Vi—yi(mA+1)7 ¢

for each v such that the denominator does not vanish.
This completes the determination of the solution to problem (23).

This method of constructing a solution to problem (23) allows one to choose
the ezact function spaces {or this problem. As it was already told, the functions
up (t) and fo (t) belong to the spaces H® (M) and H*~% (M), respectively, where s
is chosen as it was described above. Now we can see that the functions u_; (w) and
f-3 (w) can be treated as elements from H*®(S?) and H*~%(S?), respectively, since
the functions u(t) and f(t), being elements of spaces (8), (9) with asymptotics must
belong to the space H*® outside X (in our case, everywhere except for the point
t=0).

5. Let us now interpret the obtained technique of solving Sobolev problems in
spaces with asymptotics. The matter is that, in essence, for solving these problems
we have used the equivalent statements in the operator form. Namely, system (24)

of equations for the unknowns u_; (w), up (t), and ¢ can be rewritten in the following
9
m®:

0 -A, —-B u(w) )= faalw) |,
” Pl 0 c q
where the operators A and B are defined as follows:
1
A‘U_] (w) = ;u_l (LU) (26)

®The corresponding matrix was already written down above (see formula (25). However, the
operators r~! and —1, involved into (25) must be interpreted more precisely since they change the
number of arguments of the corresponding function.
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(the latter function is understood as a function on the manifold M = R?), and
Be=c-1(w), (27)

that is, the action of the operator B gives the constant function ¢ on the unit sphere.
Let us first interpret the operator B. It is easy to check that the operator (27) is
exactly the adjoint for the operator

P : H*(S?) - C, Piu(w)= /u-l (w) dsq,
52

for any value of s. In other words,
B=P : C > H™*(S.
Actually, one has

(Piu_y (w),c) = c/u-l (w) ds, = ]c- 1 (w)uoy (w) ds, = {u_y (w), Be) .

52 52

Similar, the operator (26) can be interpreted as an adjoint to the operator

Pay: H (M) - H? (Sz), Pipu(t) = /%u(r,w)r’drdsw
M

for s > —1/2, that is
A=P;, : H(S?) —» H™ (M)

for s > —1/2. Now the operator equation corresponding to problem (23) becomes

—A+1 Py, 0 uo (t folt
0 AL P | [ ua) = fs)
" Pl 0 c g

The above obtained matrix will be called a matriz operator or simply operator when
the meaning of this word is clear from the context. Below, we shall use more general
operators of this kind, chosen in such a way that they form an operator algebra
closed with respect to the conjugation operation. However, to see the main features
of these operators, we need two more examples.
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1.2 The case of a zero-dimensional submanifold (multi-
term asymptotics)

Here we consider the problem for the operator (—A 4 1) in spaces with asymptotics
tncluding more than one term. We shall consider here only the resonance case; all
the considerations for the non-resonance case the reader can carry out by himself or
herself. Since all the effects can be seen in the case when two terms of asymptotics
is taken into account, we consider the comparison

(-A+1Nu(t)=/(1) (28)

with functions u () and f (¢) having the form

u(t) = “"T(“’) + 1y (w) + uo (£), (29)

HOES + o (). (30)

The principle of choosing the functional spaces are just the same as in the above
considered example and we omit deriving the exact values of the indices of the
corresponding Sobolev spaces, postponing these considerations until the end of this
subsection.

Now, substituting expressions (29) and (30) into equation (28) and equating
terms of one and the same equal smoothness, we obtain the system of equations for
the unknowns u_; (w), u; (w), and ue (t):

foaw) | f-1r(W)

r3

(A 4+ Dup(t) = fo(t) — ruy (w).
Ay () = fos (@), (31)
= Ay +2)uy (w) = foy (W) —uy (W),
Again, we see that the last two equations in system (31) have nontrivial kernels and
cokernels. The first equation was considered in the previous subsection.

It is easy to see that the kernel of the third equation in (31) consists of the
angular parts of linear functions, that is,

Ker (A, +2) = {C'wy + C?wy + Cuws},

where w = (w;,wq,ws3) is a point of the two-dimensional unit sphere. Consequently
(since the operator A, is a self-adjoint one), the image of the operator A, +2 consists
of functions orthogonal to the kernel of this operator. Now the considerations similar
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to those of the previous subsection lead us to the following statement of the problem
for the operator —A + 1, involving boundary and coboundary conditions:

(A +Du(t) = f(O) + 22+ (clon + cwr + Gun)
Plu_l (Ld) + a_li"uo (t) =g, (32)
Pou (W) +elitug (t) = ¢, 7 = 1,2,3,

(to be short, we do not use here boundary conditions of the most general form).
One can check that the corresponding equation for the matrix operator is

_A+1 0 P> 0 0 0 0 wo fo
( 0 —A, 0 ~P* 0 0 0 (u_l Y ( fos )
0 1 —(Au+2) 0 P P P ul fi
a_li" P] 0 0 0 0 0 C_3 = g9-1
ald 0 P, 0 0 0 0 c '
als® 0 P., 0 0 0 0 c 9:
a3t 0 P, 0 0 0 ojkc:;) \ & /

Now one can derive that:

1. The function u (t) must belong to the Sobolev space H* (M) with an s such
that any function of the form r¢ (w) belongs to H*~? (M) but not to H* (M).
This means that s € [5/2,9/2).

2. The functions u_; (w) and u; (w) must belong to H* (5?).

3. The functions f_3(w) and f.; (w) must belong to H*~2(S?).

Under these requirements there exists a unique solution to problem (32). The
simple verification of this fact is left to the reader.

1.3 The case of a higher dimensional submanifold

In this subsection, we consider Sobolev problems in spaces with asymptotics in the
case when the submanifold X has a non-zero dimension. In this case, new effects
arise connected with the appearance of operator families parameterized by points of
X in the matrix operators in question.

1. Let us consider first the Sobolev problem for the equation

(A +Du(tz)= f(t,z) (33)
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in the space M = R* with X = R!. Here z € R! is a coordinate along X, whereas
t € R3 are transversal coordinates. For simplicity, we shall consider here a one-term
asymptotic expansions. So, suppose that the right-hand part of equation (33) has
the form!°

f-3 (“"7 I)

f(t,:l:) = T+f0(ta$)1
and let us search for solutions to (33) in the form

1 (wa I)

u(t$x)=u- +u0(t’$)1

r

where the functions f_3(w,z), fo(t,z), u—1 (w,z), and ug (¢, z) belong to the corre-
sponding Sobolev spaces (the exact values of indices of these spaces will be deter-
mined below). As above, one must pose the corresponding boundary and cobound-
ary conditions, thus arriving at the following problem'!:

(_A-i-l)u(t,I):f(t?I)-}-%%l’ (34)
P]U—l (wax) =g (:B) :

Since in the space R* the operator A has the form
19 (,0 1 5
A-ﬁa(fa)+ﬁ&*5§’

we arrive at the following system of equations for the unknowns u_, (w, z), uo (¢, z),
and c(z):

(8 + Do (t,2) + buss (0,0) + 155 (0,2) = fo(1,3),
—Ayu_y (w, 1) = ¢(z) = fo3 (w,z), (35)

Piu_y (w,z) =g ().
The procedure of solving this system goes through the following four steps:

1. Determination of the function ¢(z) so that the solution to the second equation
in (35) does exist for each fixed z:

c(z) = ‘v% f fos (w, ) dse. (36)
52

We remark (this is very important) that the variable z is just a parameter in
the second equation in (35).

1%Here, as above, (r,w) are the polar coordinates in the plane RY.
11To be short, we consider here the boundary condition which does not involve the operator i*.
The general case can be considered similar to the preceding subsection.
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2. Determination of the function u_; (w,z):
uer (@,0) = —AZ [fos (w,2) + ¢ (2)] +d(3), (37)

where, as above, AZ! is an operator defined on the image of the operator A,
and d(z) is an arbitrary function.

3. Determination of the function ug () as the function depending on the arbitrary
constant d from the first equation in (24):

- 2
w(t2)= (- + 107 {fota)+ F (14 L7) AT oo (@r2) + e (2)]
-1] 0?
—(—a+1)tl (1 +5?)d(z)
(38)
(we have used here the fact that the operator —A + 1 is invertible in R*).

4. Determination of the arbitrary function d(z). For this one substitutes the
latter expression into the “boundary conditions” (the last equation in (24)),
thus obtaining

P, [AZ [ea (w,2) + e (a)]] + Vad (2) = g (=),

or

1 -
d(e) =y {9(2)+ P [A5 (foa (w,2) +c(2))] } (39)
This completes the construction of solution to problem (34).

The above scheme of solving system (35) shows that problem (34) is well-posed
and uniquely solvable in the following function spaces:

1) foa(w,z) € H (X x §%), fo(t,z) € H*(RY);

2) u_y (w,z) € HY(X x 5%), uo(t,z) € H*(R?);

3) (z) € H*(X);

4) g(z) € H*(X).

Actually, if f_3 (w,z) € H**~*(X x S§?), then formula (36) determines ¢(z) as an
element from H*"2(X). Later on, formula (37) shows that u_; (w,z) € H*(X x 5%),
provided that d(z) € H*(X). Under the same assumption, formula (38) determines

up(z,t) as an element from H*(R?). Finally, the function d(z), determined from
(39) belongs to H3(R!), as required.
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The corresponding operator equation has the form

~a+1 Py, (14 2) o uo (L, z) fo(t,z)
0 -A, —P; ug(wyz) | = foalw,z)
0 P, 0 c(z) g(z)

2. We shall consider here one more example of “one-dimensional” situation
(that is, the situation when the manifold X is one-dimensional). The necessity of
consideration of this example can be understood from the following reasons.

As it was already mentioned, one of the important features of the theory is that
the equation for the main term of the asymptotic expansion (u_; (w,z) in the above
considered case) contains the tangent variable z only as a parameter. From the other
hand, this equation determines the powers of r which are involved into the asymp-
totic expansions of solutions to homogeneous equation. These powers determine, in
turn, for which types of spaces with asymptotics the resonance phenomenon does
occur. However, if the mentioned equation involves the parameter z, it is clear that
these powers can be functions of z. Here we shall try to understand, what changes
must be done in our considerations in order to include this phenomenon.

Let
YA
B S TLR

be an elliptic differential operator of the second (for simplicity) order. Using polar
coordinates (r,w) in the t-plane, it is convenient to write down this operator as a
differential operator on the manifold X with operator-valued coefficients in ¢-plane

as a fiber. One has )
t=n Jdz Ggg T oo

where
a; = Ag (r,w, :t:)

is a function (a differential operator of zero order),

~ 1 0
a = ; |:A(l] (r,w,x) (TE) + A} (rvaxa Dw)]

is a differential operator of order 1, and

- 1

g = —
r

2
Ad(r,w, T) (r—(,%) + Ag(r,w,x,D,) (raa ) + A} (r,w,z,D,)

r
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is a differential operator of order 2. All operators A% (r,w,z, D, ) are supposed to
be differential operators of order k& with smooth coefficients and, therefore, admit
the expansion in powers of r:

Af (r,w,z,D,) = A¥ (0,w,z, D,) + rBf (r,w,z,D.).

First of all, let us examine conormal solutions to the homogeneous equation

a (t,:r:, —i%, —i;—z) u(t,z) =0,
that is, solutions of the form
u(t,z) = 5@y (w,z) + uo (¢, z). (40)

The direct computations show that the coefficient u;(w,z) of the latter expansion
satisfies the equation

[Ag (0,w,z,D,) + Ay (0,w, z, D,,) S (=) + A (0,w, z) (S (:r))z] uy (w,z) =0, (41)

which is (for z fixed) none more than a spectral family with parameter S = S (z).
This fact shows that the spectrum of this family can depend on z and this is the
motivation of consideration of conormal asymptotics with power S dependent on z.

Remark 1 Here, we must attract the reader’s attention to one important point of
the theory in question. The fact is that, in essence, we had obtained a family (in z)
of spectral families of differential operators

A(z) = A (0,w,z,D,) + 2zA (0,w, z, D,) + 22 A (0,w, z)

with the spectral parameter z. Since the operator @ is elliptic, this family is mero-
morphically invertible. In general, the spectrum of this family depends on z:

Spec A(z) = {z = 5(=)},

where S(z) is a multivalued function in z. The set of z such that different branches
{5:(z), S2(z),...} of this function coincide with one another is none more than a
set of focal points for solutions to the corresponding homogeneous equation. Since
in this paper we do not consider branching asymptotics, we require that focal points
are absent. This means, in particular, that:

1. The branches Sx(z) of the multivalued function S(z) are regular functions in
z on the whole manifold X.
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2. The dimension of the kernel of the family .A(z) is constant along X (we remark
that, due to the fact that A(z) is invertible for some z one has

dimKer.A(z) = dimCoker.A(z).

So, we arrive at the following problem for the operator @ in spaces with asymp-

totics:

au(t,z) = f(t,z)+ 5% (z) p* (w,2),

i*ug (t,z) + Pouy (w,z) =g (z),
where u (t,z) is supposed to be of the form (40), f(t,z) has similar asymptotic
expansion

f,2) =72 (w,2) + fo(t,2),

with S (z) replaced by S (z) — 2, and the functions ¢ (w, z) and ¢* (w, z) determine
kernel and cokernel of equation (41), respectively'?.
The operator equation corresponding to such a problem is

fi P 0 Uo(t,l') fo (t,I)
0 @ -P. u (w,z) | =1 filw,z) |,
* P, 0 c(r) g (z)

where @, is the operator
a, = A5(0,w,z,D,) + A} (0,w,z, D,) S {z) + A3 (0,w,z) (S (2))?,

involved into equation (41), and P* is a sum of compositions of adjoint projection
operators P, for 1 equal to one of the functions

5@ Inir, 5 =0,1,2 and r* @t nir ;=01
with differential operators A3, Aj, A3 in y of order not more than two with coeffi-

cients depending on (w, ).

1.4 Summary of results. Program of investigation in the
general case.

In this subsection we shortly resume the results of the considerations of the examples
above and try to list main questions to be investigated below in the framework of
the general theory as well as the main objects to be introduced and investigated.

12To be short, we suppose that the kernel and the cokernel of the operator involved into (41)
are both one-dimensional.
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1. Geometrical situation. By (M, X) we denote, as above, a smooth manifold
M and its smooth submanifold of codimension v. Let (z,t) be coordinates on M
near X such that the equation of X ist = 0. We denote by Ux a tube neighborhood
of X in M and suppose that some bundle structure over X is chosen and fixed on
Uyx. For simplicity, we suppose that

Ux =~ {X x[0,1] x $*'} /{X x {0} x ¥}
and denote by (r,w) the standard polar coordinates on the ball
{10,1] x $*7'} / {{0} x $*7'}

in the t-space. Clearly, the above assumption is fulfilled iff the conormal bundle of
X in M is trivial.

2. Function classes. Here we shall consider function spaces with one-term
asymptotics. The generalization of the theory to the general case is quite a simple
task.

The following function spaces will be used:

1. For solutions of our future equation we use spaces with asymptotics. For
one-term asymptotic expansions such a space is described near X as follows!>:

u€ H;'l (M’X) < u :rS(I)ul (w,l‘)-}-uo(t,l')

(T is an asymptotic type defined by T = (S(z),0); for the definition see the
beginning of Section 1) with

ui (,2) € H' (X x §°1), ua(t,2) € H* (M),
where S{z) + v/2 < s < S(z)+v/2+ 1. This means that
r5@uy (w,2) ¢ H* (M), but POy, (w, 1) € H*™ (M),

where m is the order of the operator involved in the considered problem?!?.

13Essentially, the function u;(w, z) (as well as the function u,(w, z) below) are a function on the
subbundle of unit balls of the normal bundle Njs(X). This subbundle is naturally interpreted as
the set of directions of approach to X.

14More exactly, one should use the functions rs(’)x(r), where x(r) is a cut-off function, that is,
x(r) = 1 near the origin and x(r) = 0 for » > 1/2. For simplicity, we omit this function in the
sequel.
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2. For right-hand parts of our equation we use the similar spaces, e. g.:
feH;™ (M, X) & f= rSE@m £ (W, 2) + fo(t, ),
T; = (S(z) — m,0), with
filw,z) € H™ (X x 57"), fo(t,z)€ H™™(M).

3. For right-hand parts of “boundary conditions” and for cokernel functions ¢(z}
we use the Sobolev spaces H? (X) with corresponding values of o.

3. Operators. To formulate the problem in question and to introduce the
corresponding operator algebra, we need the following operators:

1. “Projectors”

Py @ H° (M) - H° (X x §*71),

0

Py [u(r,w,z)] = /u(r,w,a:)qb(r) r? dr, (42)
0
defined for any function ¢ (r) of the type ¢ (r) = r51(®) Inir with some smooth

S1(z), j being a nonnegative integer for ¢ > — miny Si(z) — v/2.

2. The corresponding “coprojectors”, that is, conjugate operators for Py:
g PTO) g p ¥

Py H7 (X x 8"y = H™ (M),

Py [ (,2)] = (1) u (w, 7). (43)
3. “Projectors”

P, : H° (X x S*') = H(X),

Pl = [ u@a)o (o) do, (44)

defined for any smooth function ¢ (w,z) € C* (X x S*~!) for any values of s,
and their conjugates

P : H°(X) - H? (X x§*1),
P [v(z)] =v(z)p(w,2). (45)
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4. Usual boundary and coboundary operators (see [2], [21])
* 0 H*(M) — H*"*(M),
.2 HO*H/3 (M) — H™* (M),

defined (and continuous) for any s > v/2.

4. The problem under consideration. We investigate the following Sobolev
problem:
au = f + r%@)=mP*.c(z) outside X,
{ i* Bug + Pouy =g,

with respect to the unknowns u(z,t) and ¢(z), where

(46)

u =Py (w,z) + uo (¢, ).

(. DB
a=allt,r, zat 18:5

is an elliptic differential operator on M of order m, B is some differential operator,
and ¢, ¢* are some smooth functions. The operator @ is considered as an operator
in spaces

Here

a: Hy (M, X) - H;™ (M, X),
and Ty, T, are the above asymptotic types.

5. Operator algebra. The solution to the problem considered will be carried
out in the framework of an appropriate operator algebra. The elements of this
algebra corresponding to problem (46) is

a ’P' 0 Uo fg
0 G, P w | =1 A (47)
#B P, 0 c g

(the definition of operator P* and the operator family @, is quite similar to that con-
sidered in the end of the previous section!® on the example of differential operator of
second order in R*). In particular, the operator P* is a finite sum of “coprojectors”
Py, with different functions ¥(r)). The form of the obtained operator gives rise to
the guess that one should investigate more general operators of the form

a P Ci.
P & P. . (48)
"B P, @,

'5The explicit form of these operators will be presented while constructing the general theory.
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6. Problems to be solved. Here is the list of problems to be solved for the
investigation elliptic differential equations in spaces with asymptotics:

1. One should describe the operator algebra which is closed with respect to con-
jugation and contains the resolving operators for Sobolev problems of the type
(46). In doing so, one should take into account that the operator in this alge-
bra must be of more general structure than (48). Actually, in the product of
operators of the form (48) there arise additional terms, such as terms of the
form i,a:* or P*@P (where @ is some pseudodifferential operator on X x §*~1)
in the upper left corner of the matrix, terms of the form P;.@P, in the middle
of the matrix (here @ is some pseudodifferential operator on X), and so on.
Clearly, such an operators must be described in rather general terms. One of
the possible descriptions can be performed similar to the papers [22], [21] by
the authors since the operators Py, and P, introduced here are strongly related
with operators 7* and 7. introduced in the above cited paper. Actually, if we
denote by 7 the projection

T X xS o X,

then one has
P,=pon".

Here by ¢ we have denoted the operator of multiplication by the function
¢ (w, z). The connection between the operator P and the corresponding pro-
jection is a little bit more complicated since the corresponding functions ¥ (r)
may have a singularity at the origin. However, the above connection allows one
to describe the elements of an operator algebra, for instance, with the help of
Fourier integral operators similar to the results of the papers [22], [21]. Clearly,
one should investigate the action of these operators on the above introduced
functional spaces.

2. One should prove the corresponding pseudodifferentiality theorems. For exam-
ple, the fact that the operators

P,aP;. and PyaP;

are pseudodifferential operators on the manifolds X and X x5!, respectively,
for any pseudodifferential operator @ must be proved.

3. One should formulate the conditions of ellipticity of the operators of the con-
structed algebra and prove the corresponding finiteness theorems. These con-
ditions are written down in the form of ellipticity of some pseudodifferential
operators.
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4. Finally, one should derive the formulas for the index of an element of the
operator algebra provided that this element is an elliptic one.

The answers to all these questions the reader will find in the next section.

To conclude this section we remark that one can use weighted Sobolev spaces for
the investigation of the Sobolev problems in spaces with asymptotics as well; the
results will be quite similar to that obtained here for the classical Sobolev spaces.
We have chosen the considerations in the classical Sobolev spaces since these spaces
are the most appropriate ones in consideration of the Sobolev problems (see [1], [2],
[21]).

Besides, the same technique can be applied to the investigation of differential
equations on manifolds with singularities in spaces with asymptotics.

2 Spaces with asymptotics

2.1 Main definitions

In this section, we present the exact definitions of spaces with asymptotics to be
used in the sequel for constructing the Sobolev problems theory.

So, let M be a smooth manifold of dimension n and X be its smooth submanifold
of codimension v. As above, we use the coordinates (r,w, z) in a tubular neighbor-
hood Ux of X. For simplicity, we assume that Uy is diffeomorphic to the direct
product X x D%, where D” is a v-dimensional unit disk.

Definition 1 The tuple
T ={S,m k=1,2,... N}
is named an asymplotic type for the given index s of the Sobolev space. Here:

1. {S:} is a sequence of complex numbers in the complex plane C,, depending
on the parameter z contained as a whole in the half-plane Re § < s —v/2 and
invariant with respect to the shift by +1 in the plane C,. We suppose that
Si(z) # S;(z) for k # j. These numbers will be called degrees.

2. {m} is a tuple of positive integers called multiplicities of the corresponding
values of Sg.

The requirement Re S < s — v/2 expresses the fact that all the terms of asymptotic expansion
written in the explicit form do not belong to the space H*{M) used for the remainder.
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Definition 2 The Sobolev space'® H3 (M, X) of order s with asymptotic type T is
a space of functions u (¢, z), subject to the following conditions:

1. u(t,z) € HL (M \ X) "7, that is, the function u (¢, z) belongs to the Sobolev
space of order s everywhere outside X.

2. The function u (¢, z) admits the following representation:

mi—1

u(t,z) = Z k(@) Z

k=1 1=0

lnr

(w,z) +uo(t, ), (49)

where

uf (w,z) € H* (X x §¥71),
uo{t,z) € H*(M).

Here x (r) is a cut-off function equal to 1 near the origin which vanishes identi-
cally for sufficiently large r. This function must be chosen in such a way that the
local coordinates (r,w, x) are defined on its support supp x (r).

We remark that the space H3 (M, X) can be treated as a direct sum'® of Sobolev
spaces H* (X x §¥~!) for coeflicients uf (w,z), k=1,...,N,j=0,...,m; — 1 and
the space H* (M) for regular component up (t, z) of the corresponding element. Due
to this treatment, the space 4 (M, X) has a natural structure of a Banach space
which will be used in the sequel while considering the continuity of operators acting
in spaces of the above described type.

2.2 Boundedness theorems

Let us examine the action of differential operators in spaces H7 (M, X). For simplic-
ity we shall consider the case when the set of degrees S involved into the asymptotic
type considered is a lattice originated from S (x) with the step 1, that is,

Se(z)=S(z)+k k=0,...,N—1

16 A5 it was shown above, it can be necessary to consider Sobolev spaces having different smooth-
ness along X and in transversal variables. We restrict ourselves here by the consideration of “ho-
mogeneous” Sobolev spaces since the needed generalization is not a hard task though leads to
significant complication of formulas.

'"The space H{.(M\X), consists of functions u (¢, z) such that for any C*-function ¥ with
support in M\ X the product {u belongs to H*{(M).

18The space H} can fail to be a direct sum of spaces H* only in the case when one of numbers
S is a nonnegative integer. For example, the function r cos ¢ in the plane R? is infinitely smooth
and, hence, the expansion u = rcos¢ + up is ambiguous. In such exceptional cases we shall use
the direct sum avoiding the consideration of a space of the type Hj itself.
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(we recall that the set {S¢} must be invariant under the shift by 1 in the s-plane,
so that the considered set of degrees is a minimal one). We shall use the following
affirmations on the action of projectors and coprojectors in spaces with asymptotics.

Proposition 1 Let H (M, X) be a Sobolev space with the asymptotic type T and
a be a real number subject to the inequality a > s — v/2. Then for any function

Y(r) = ‘(d/dr)j;b(r) < Cr® for any 7 > 0 the operators

Py i Hp(M,X) — H* (X x §7)

and

Py s H™? (X xS’”_l) — Hp* (M, X)

are confinuous.

Proposition 2 Let p(w,z) € H*(X x S)*~! be an arbitrary smooth function on
X x S¥~1. Then the operators

P, : H* (X x &) = H*(X)

and

P 5 H-—a(x) H (X X Su—-l)

v

are continuous.

The proof of these affirmations goes by the direct estimates of norms of operators
given by explicit formulas (42) and (45).
The following affirmation takes place.

a=a t:::—i2 —ii
- Y, T A

be a differential operator of order m in (t,z) with smooth coefficients. Suppose that
Mig1 2 Me+1 forallk=0,..., N—1. Then the operator@ determines a continuous
mapping of Banach spaces

Proposition 3 Let

@ : Hyp(M,X) — H7 (M, X), (50)

where T —m s an asymplotic type determined by degrees S;. — m with multiplicities
M.
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The requirement mgy; > mi + 1 is needed due to the fact that the application of the operator
rd/ Oz enlarges the multiplicity by 1 (see below).

Proof. Since the Banach structure of H4(M, X) is induced by its representation
in the form of the direct sum

Hy (M, X)= & & H'(X x $Y) @ H* (M), (51)

k=1 j=0

determined with the help of decomposition (49), and the same affirmation takes
place for the space Hy . (M, X), for the proof of the theorem one has to:

1. Write down the operator (50) as the matrix in accordance to representation
(51) of H3(M, X) and similar representation of Hj_T (M, X).

2. Verify that all elements of the obtained matrix are continuous operators in the
corresponding Sobolev spaces.

Let us proceed with the first step of this process.

Let
Loi? DY _ )
altzx, zat, 26:1: =r""q rw:cra, zrax

be the expression of the operator @ in (r,w, z). One has

—-m “ a\* ;) 3
=T Z Z aoj(r,w,:B,Dw)( 17‘8—:[:) (ra) ,

i=0 \Jal<m-;

Q)

where a,; (r,w, z, D,) are differential operators of order m — j — |a| on the sphere
§¥~1. Let us apply the operator @ to the function u(t,z) € H% (M, X), written
down in the form (49):

m a o 6 J
au=r"" z Z Qaj (r,w, 2, D) ( zra—) (ra—)
T r

3=0 \lelgm—j

N me—1

X Z rSe(=) Z;

k=1

i
lnr k

(w,z +au0(t z).

Let us compute the first term on the right in the latter formula. To do this, we
remark that

a Sk(-"—') lnjr) _ S;,(:c) ]an‘ Sk(a:) ]n
g (FOT) = S s o n
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for 3 21,
rd/or (rs"‘(‘)) = S (z) @)

as well as

oz! dr 7!

Using the last two formulas and expanding the coefficients of the operator @ in
powers of r, one can show that the function au is representable as a finite linear
combination of functions (we recall that Si{z) = S(z) + k)

9 (,sk(r)lf‘l) = _;95:(@) s @miln?r

in’r
7!

@it (r) = rSEFE=m ) (1) L k=01,...,7=0,...,m=1,1=0,...,m, (52)

of the form

Gu = Z: (Z Qi tk'l (r,w, z, Dw) D.‘L‘) ulk" (wvz)) WPkji (T’) » (53)
kgl

k! 'Il

where D, = —i3/0z (the properties of differential operators axjuv (r,w, z, Do, D:)
will be refined below).
The sum on the right in (53) can be split into the following three subsums:

a) The subsum involving terms with | = 0, such that Re S (z) + k¥ < s —v/2.
b) The subsum involving terms with ! = 0, such that ReS(z)+ k> s—v/2.
¢) The subsum involving terms with { > 0.

The terms contained in the second and third sums, as well as the corresponding
functions @i (), we shall call inessential.

It is easy to see that these terms are elements from the space H*~™ (M), such that
the norms of these elements in the space H*~™ (M) can be evaluated via H* (M)-
norms of the corresponding coefficients uf (w, z), since orders of the operators

Atk (r,w, z, Dun D::) 3

clearly do not exceed m.
Later on, the following is valid for the terms from the first subsum:

o the coefficients of the operators ayjorp (r,w, z, Dy, D;), involved in this subsum
do not depend on r (since the expansion of coefficients of the initial operator
can be done up to a sufficiently high order so that the remainders of these
expansions will be included into one of the last two subsums);
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e the matrix containing the operators ayorr (r,w, z, Dy, D), is a triangle one
with respect to a lexicographic ordering of pairs (k, j) such that (k,7) < (¥',5)
for k > K or k =k, j < j' (it is clear that for (k,7) < (K',7') the function
@ijo (r), determined by (52) decreases faster than the function @iy (1));

e the operators involved to the diagonal blocks of the above mentioned matrix
(that is, corresponding to the indices ¥ = k'), do not contain differentiation in
T,

e cach diagonal block with the number & is, in turn, a triangle matrix with one
and the same operator

@& =a(0,w,z,5(z)+k, D,,0) (54)
on the diagonal.

So, we have derived the matrix representation of the operator @ in terms of
expansions (51}); to be short, we shall use the block form for matrices, including
coefficients corresponding one and the same value of k in one and the same block.
Denoting by U* the vector

U* = (ug, . .uiu“l)t ,

we have
uo a P Pr Phoy 1
U° 0 A % ... « Ue
| U =0 0 A ... « U . (55)
UN- 0 0 0 AN N

In the latter formula:

e P; are sums of compositions of coprojectors Py, with ¢ (r) = @ (r) of
the form (45) and differential operators of order not more than m over all
inessential functions g (1);

¢ » denote matrices of differential operators of order not more than m on the
manifold X x §¥~1;
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e by AF we denote triangle matrices of differential operators of order not more
than m on S*~! with coefficients smooth in z:

~k
aw *k v -+
Ak_ 0 aw >
w : : : : ?
o 0 ... gt

with operator (54) on the diagonal.

Let us check the continuity of elements involved into matrix (55) in the corre-
sponding Sobolev spaces. It is clear that all the operators @%, as well as all the
operators marked with stars are continuous from H*(X x §¥~!) to H* ™ (X x §*~1),
since all these operators are differential operators of order not more than m. It is

clear also that the operator
a: H'(M) - H™™(M)

is continuous. The only thing rest is to check that all the operators P} are continuous
in spaces

P HY(X x S5~} = H*™™(M).
This affirmation is directly follows from the definition of the set of inessential func-
tions @x;ji.

Remark 2 If an asymptotic type T contains several lattices originated from S (z),
noncomparable with one another modulo integers then the operator @ can be repre-
sented in the form

@ PP P
0 A O .0
a=10 0 Ay ... 0 , (56)
0 0 0 ... A
where L is the number of lattices, and A; are blocks of the form
A ek
0 j:’ e *
0 0 - AV

corresponding to these lattices.

Remark 3 While proving Proposition 3 we have derived the matriz form of the
operator @ given by formulas (55) and (56).
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3 An algebra of matrix operators

3.1 Sobolev problems and corresponding operators

In this section, we investigate the correspondence between Sobolev problems in their
general statements and the corresponding matrix operators. As above, for simplicity,
we restrict ourselves by the case when the asymptotic type considered contains only
one lattice of the form

Si(z)=S(z)+k k=0,1,...,N —1.

The changes to be done for the consideration of the general case are quite evident.

Let H} (M, X) be a Sobolev space with the asymptotic type T and let @ be an
operator of the above described type. Then, due to Proposition 1, this operator
determines a continuous mapping

@ HM (M, X) > HZ™ (M, X).

m

Consider the following problem:

~ R (57)
S Poey [Bigh (w,2)] +4* [Bhuo (6,2)] = o, 1=0,.., L,
kg

where the first equation is valid everywhere on M except for the submanifold X.
Here uf (w, z) and uo (t, z) are functions involved into expansion (49), Pt.;;,. and P,
are operators (44) and (45) corresponding to some smooth functions j; (w) and
ki (W), Ekj, ﬁé, and ékj are pseudodifferential operators on manifolds X x $¥~!
and M, respectively, and L is some integer. It is supposed that the functions u and

f belong to H{ (M, X) and H7Z7, (M, X), correspondingly.

Let us write down the operator equation corresponding to problem (57):

a 7’1' 0 Uo Jo
0 A, P. Ul=|F
*B P, 0 c g

The latter equation uses the following notation.

1. By U, we denote a vector with components {u;‘ (w,:z)} lexicographically or-

dered. Similar, ¢ is a vector with components {cf,r (:z:)} _ i

Yo
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2. By F, we denote a vector containing the asymptotics components of the right-
hand part f of problem (57).

3. By P*, we denote a string containing the operators Pg,...,Px_;, involved
into the description (55) of the operator @.

4. A, is a triangle matrix with differential operators of order not more than m
as its elements. The diagonal elements of this matrix are formed from the
operators a*, defined by (54).

5. Pj. is a diagonal matrix with operators P, involved into the right-hand
7
part of (57) as its elements. Similar, the matrix P, is built from the operators

Py, Eij, involved into the left-hand part of the boundary condition of problem
(57).

6. Finally, B is a matrix with operators E{) involved into the left-hand part of
the boundary conditions of (57) as its elements.

To simplify the notation, we shall carry out the theory for spaces with one-term
asymptotics. The changes needed for the consideration of the general case are clear
enough though lead to significant complication of formulas.

3.2 Geometric situation and the corresponding mappings
of functional spaces

So, let us consider the space H} (M, X) with the asymptotic type T' determined by
a single point!® s = S(z) for any z € X with multiplicity 0 and let H;_7 (M, X)
be a Sobolev space with asymptotics corresponding to the asymptotic type T' — m,
determined by a single point s = S (z) — m with multiplicity 0. Let @ be, as above,
a differential operator on M with infinitely smooth coefficients.

Consider the corresponding matrix operator

a P 0
o 4, P |, (58)
B P, 0

where, in the case considered, all operators involved in the latter matrix are scalar
ones. Our aim is to widen the set of operators of the form (58) up to an operator
algebra with involution. To solve this problem, let us consider the geometrical

185 the case of one-term asymptotic expansions the above mentioned lattices reduce up to one
point each.
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Ux =X x D

m

T X x §v1 i

2

Diagram 1.

situation in more detail. Since all differences between the considered case and the
case of elliptic operators on smooth manifolds without boundary are concentrated
in a neighborhood of X, we shall carry out all the considerations in a tubular
neighborhood Uy of X.

As it was alredy mentioned, we suppose that Ux = X x D, where D" is a unit
disk in the v-dimensional Cartesian space. The geometrical mappings connected
with Uy are drawn on Diagram 1.

The operators involved into this diagram determine the operators n*, #7, 73, and

)

™ : H'(X) > H* (X x D¥), m*[u(z)] =u(z) @1 (t);
o H* (X x §*7') - H* (X x DY), n}[u(w,z)] = u(w,z)@1(r);
7y H(X) = H*(X x5, mj[u(z)] =u(z) ®1(w);
i* : H* (X x D¥) = H*"*(X), i* [u(t,z)] = u(0,z),
the latter mapping being defined for s > v/2.

In turn, these operators determine the adjoint operators in the Sobolev space
scale with respect to the following parings:

(u, v) = /u(m)v(a:)dx

X
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in a space of functions on X (we suppose that a nondegenerate positive measure is
fixed on X and that the coordinates z are chosen in such a way that the density of
this measure equals 1),

(,v) = / 4 (0, 2) v (w, z) ds dz,

X xSv-1

on the manifold X x §¥~! (here by ds, we denote the standard volume element on
the unit (v — 1)-dimensional sphere), and

(u,v) =/u(t,z)v(t,:ﬂ) dtdz,

M

on the manifold M (more exactly, on the tubular neighborhood X x D¥~! of the
manifold X; by dt we denote v-dimensional volume element in R¥). These adjoint
operators are realized in the Sobolev spaces in the following way:

T, : H* (X x D¥Y) — H™*(X), T [u(t,z)] =/u(t,.'-:) dt;
Dv
e tH2 (X xD*) - H?(X x5, mulu(rw,z)]= /u(t,:r) v ldr,

0

ma t H* (X x §*71) —» H™*(X), Toa (U (w, z)] = /u(w,:::) ds,;

1. :H"+”/2(X) — H™* (X x D¥), Lju(z))=u(t,z)®6(t);

and the latter mapping is defined for s > v/2. All these mappings are drawn on
Diagram 2.

On this diagram, we do not show the exact values of indices of the Sobolev spaces
in question and denote all functional spaces by the letter F.

While constructing an operator algebra one has to take into account that the
compositions of matrix operators of the form (58) contains operators of more general
form than that included into the initial operators of the form (58). Clearly, at any
place in the matrix of an operator included in the algebra under construction, only
compositions of the operators involved into the latter diagram with pseudodifferen-
tial operators acting on the required manifolds can appear. For example, operators
in the upper left corner of the matrix must take functions on M into functions on
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F (X x D)

T 71';
™ T f(X X Su—l) im i
T2 71’;
F(X)
Diagram 2.

the same manifold. Operators standing in the second row of the first column must
take functions on M into functions on X x $¥~!, etc.

It is clear that the number of operators involved into such compositions increases
infinitely and the description of elements of the constructed algebra becomes quite
transcendental. Fortunately, some of the above mentioned compositions occur to be
pseudodifferential operators. The similar situation takes place in the construction of
the operator algebra corresponding to the situation of a single embedding (classical
Sobolev problems, see [2], [21]), as well as in the consideration of some class of
non-local problems corresponding to a pointed bundle (see [22]).

It occurs that the results of the last cited paper can be used in the construction
of the operator algebra including matrices (58). In doing so, however, it is necessary
to represent the operators involved into Diagram 2 in a somewhat different form.
This will be done in the next subsection.

3.3 Graphic schemes and matrix operators

To describe the above mentioned representation we remark that the disk D can be
considered as a cylinder over the sphere S$¥~! (with shrinked lower boundary):

DY =5""' x[0,1}/5" x {0}.
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So, functions on Ux = X x D" can be treated as functions on X x5*~!x[0, 1] and vice
verse (we remark that the values of the functions considered on a set of zero measure
is not essential for the definition of Sobolev spaces at least for nonnegative values of
the Sobolev index). Functions from this space are characterized both by differential
properties of the function in question on the open cylinder X x $*~! x (0, 1] and by
the behavior of this function as r — 0.

Later on, if we represent the tubular neighborhood of X as a cylinder, the em-
bedding of X in M is induced by

X xS x {0} & X x §*1 x [0,1].

The operator i* can be thus represented as a composition

1 .
T = T4 O 21uy

Vv-l

where V,_; is a Riemannian volume of the (v — 1)-dimensional unit sphere. Taking
into account the relations

T =7 om,

Tu = %24 O Mpay
which are the consequences of the naturality of the operation *, one sees that the
tuple of operators involved into Diagram 3 (where D" is the deleted disk) can be
used instead of the tuple =*, xy, 3, %, 7., 7., 7T2. and 1,.

Clearly, one has to control carefully the behavior of symbols of pseudodifferential
operators near r = 0.

Now operators which can appear while computing compositions of an arbitrary
number of matrices of the type (58) in any place of the resulting matrix can be
described in the form of convenient graphical form allowing one to obtain easily
the general form of the operator matrix invariant with respect to compositions and
conjugations. Let us illustrate this on several examples.

The possible compositions of operators from the latter diagram and pseudodiffer-
ential operators which can appear in the upper left corner of the result are illustrated
by the Diagram 4.

The horizontal lines on this diagram denote the function spaces given on the
corresponding manifolds (from above to below: X x S*~! x [0,1], X x §*7!, X),
each arrow denotes one of the operators drawn on Diagram 3, and the endpoints of
these arrows correspond to pseudodifferential operators. So, the set 1 of arrows on
Diagram 4 represents one of operators of the form

A BryCra.DitE,
“ m A oA -
At BriCm D E,
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F(X x D*) = F(X x §7' x [0,1))

Tiw ) 1] 11w

F(X x §1)

2w 11'2

F(X)

Diagram 3.

WAVRNAWLY.
v VWV

Diagram 4.
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PPN
AmiBriCro.DilE,
Ar BryOmy, By B
T PR UM /T8

where .2, B , c ) D and E are some pseudodifferential operators on the corresponding
manifolds. Such sets of arrows will be called graphic schemes, the arrows themselves
will be called edges and their endpoints will be called vertezes. So, each edge of the
graphic scheme represents one of the operators from Diagram 3, and each vertex
represents a pseudodifferential operator on the corresponding manifold. We remark
that one and the same graphic scheme includes several types of compositions of
operators from Diagram 3 with pseudodifferential operators.

Later on, all pseudodifferential operators used for the constructing operators
corresponding to graphic schemes are operators on the corresponding manifolds
with smooth symbols. The only exception is that one can use the multiplication by
a function ¥(r) subject to the estimates

(rf;)j »(r)

with some fixed « in the composition with one of the operators =, or #}.

Let us describe the action of operators corresponding to graphic schemes in the
Sobolev space scale. Clearly, it suffices to consider the action of elementary operators
of the form

< Cir® (59)

» 3 - x
‘ﬂ'ht,b(‘f'), ¢(r)7rl) 1 ey T2ey Mg,
since the action of pseudodifferential operators in Sobolev spaces is well known.

Moreover, the operators :*, 1., 7*, 7, in the Sobolev space scale are also examined
(see, e. g. [22]). So, the following result must be proved:

Lemma 1 Let (r) be a function vanishing outside some neighborhood of the origin
subject to estimates (59). Then the operators my.p(r) and Y(r)x} are continuous in
the following function spaces:

¢(r)ﬂ;: H’(X X SU-I) — H'(X x Du),
b0 ¢ (X % D) (X x §°°),
fors<v/2+4+a-2.

Proof. Since the operators considered are adjoint to each other, it is sufficient to
prove the continuity of the first one. Clearly, we have

Y(r)mifu(w, z)} = ¥(r) w(w, z)
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and, hence,

[ (r)mi[u(w, DI, < I, - llu(w, 2)ll, = C - [[u(w, 2)l],,

since for s < v/2 + a — 2 the function ¥(r) belongs to the space H*(D*). This
completes the proof.

Let us introduce now some terminology. Suppose that an operator corresponding
to some graphic scheme is given. Then one can construct a chain of the Sobolev
spaces corresponding to this operator. For example, such a chain corresponding to
the operator

Ay (r)a Briahs(r)C (60)

determined by the graphic scheme 2 on Diagram 4 (where #,(r) and ,(r) are
functions of the above described type subject to the inequality (59)), is

H'(X x D*) S H=me(X x D) "B geome(x x 5v71) 5

E) H:—ma—mC(X x Su—l) 1111(_"2‘"’1. Hs—mg—mc(X = Dy) i
4 HrmammEIme (X x DY),

The number m4 + mp + m¢ will be called the order®® of the operator (60). The
operator itself will be called admissible for the given index s of a Sobolev space if
inequalities needed for the corresponding operator to be continuous are fulfilled on
each step; for example, operator (60) is admissible for given s if

14

v
s—mc < -4 a;—2, s~-~m13—mc<2

2 +a —2,

where a; and a; are numbers involved into estimate (59) for the functions ¢, and
3, respectively. The following affirmations are direct consequences of Lemma 1 and
the definitions above.

Proposition 4 Let A be an operator of order m corresponding some graphic scheme
admissible for some indez s of a Sobolev space. Then this operalor is continuous in
spaces

A: H* (M) » H™™(M;),

where M; and M; are manifolds from the list (X x DY, X x §1, X), corresponding
to the origin and the endpoint of the considered graphic scheme, respectively.

2®More exactly, by Sobolev order, so that, for instance, the orders of the operators i} and ij.
are both equal to /2.
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The following affirmation is also quite evident.

Proposition 5 Let A and B be the two operators of orders m, and mpg corre-
sponding to the graphic schemes L4 and X such that the endpoint of the scheme
T4 coincides with the origin of the scheme Lp. Suppose that the operators A and
B are admissible for s and s —m, respectively, for some given s. Then the compo-
sition B o A is a well-defined operator admissible for 3. This operator corresponds
to the concatenation L pZp of graphic schemes ¥4 and Xp.

Later on, if A is an operator of order m corresponding lo a graphic scheme ¥4
admissible for some s, then A* is the operator admissible for —(s—m). This operator
corresponds to the graphic scheme £3' obtained from ¥4 by inversion of directions
of all its arrows.

Proposition 6 The composition of the two operators corresponding to the two con-
sequent arrows of any graphic scheme such that first of them goes up and the other
goes down by one step, is a pseudodifferential operator.

Proof of this affirmation goes in one and the same way for all operators subject
to conditions of Proposition 6. So, we present the proof for one of these operators,
e. g -

T (r) Ao (r) 7y, (61)
where A is some pseudodifferential operator on X x D¥.

To carry out the proof (cf. [21]), we use the well-known Hérmander criterium [23]
of pseudodifferentiality of an operator applying the latter operator to the function of

the form e**(=%)p(z, w), where S(z,w) and ¢(z,w) are smooth functions on X xS*~!.
We have

Aty (r)mi[e*Ep(z,w)] = A= Dp(z,w)a(r)).
Since A is a pseudodifferential operator, the expansion
Apa ()i Ep(a,w)] = X559 5 XTI (r,,0)
i=0

takes place, where F(r, z,w) are some functions depending on the derivatives of the
functions S and ¢ up to a certain order. We remark that the functions Fj(r,w,z)
have not more than power increase in r.

Applying the operator 7.1)1(r) to the latter formula, we obtain

- 1
m.t,b;(T)Ed)g(r)ﬂ;[e’\s(z"”)go(:c,w)] = Sl=w) Z ™ / () Fy(r, z,w)r* " dr,
j=0 0
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Diagram 5.

where the integration must be treated as an application of a distribution in r to the
test function equal to unity on [0,1]. The existence of the latter expansion proves
the pseudodifferential character of operator (61).

The affirmation proved motivates the following terminology. The set of the two
subsequent edges of a graphic scheme will be called reducible if the first of them
goes upwards and the second goes downwards. A graphic scheme is called simple if
it does not contain reducible subschemes. For example, the graphic schemes 1 and
2 on Diagram 4 are simple ones, and the schemes 3 and 4 are not. Moreover, 1 and
2 are the only simple schemes among all schemes with the same endpoints.

Let us present some more graphic schemes corresponding to the intersection of
the first column and the second row of the matrix. These schemes are drawn on
Diagram 5.

Here schemes 1 and 2 are simple, and all the rest are not. Moreover, 1 and 2 are
the only simple schemes among all schemes with the same position in the matrix.
Generally, for each position in the matriz there exist only a finite number of simple
schemes.

Denote by A;; a finite sum of operators corresponding to a graphic scheme with
the origin on ¢th and the endpoint on jth level.

The above considerations lead us to the following statement.

Theorem 1 The operator

All Al? A13
A= A21 A22 A23
A31 AS‘Z A33

containing finite sums of operators corresponding to simple graphic schemes deter-
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mine a continuous mapping
A: H'(M)® H*(X x S " )@ H*(X) - H(M)® H*(X x §*"") ® H*(X),

if all the operators involved into the jth column are admissible for the indez s;. The
set A of matriz operators of this kind form an algebra with involution.

3.4 Ellipticity and finiteness theorems

In this subsection, we investigate the question of ellipticity for operators of the above
introduced algebra. In other words, we are intended to derive the conditions under
which the corresponding operators are almost invertible?!. To make our presenta-
tion more transparent, we shall consider matrix operators corresponding to Sobolev
problems in spaces with one-term asymptotics

U(I,t) = TS{Z)UI(I1“’)+uU($’t):
flt) = 5O fi(z,0) + folz,1),

where m is an order of the corresponding elliptic differential operator @, and the
functions u;, f; belong to the corresponding Sobolev spaces.

This means that we consider an matrix operator corresponding to the following
problem

(62)

au=f+ TS(’)_méP,;c,
" Biug + P!IJB?ul =g

of the type (57). Here:

e the operator @ is an elliptic pseudodifferential operator on M of order m:

a=r"a (r,w, :c,ri, Dw,er>
or

near X;

¢ the operators 6, ﬁl, and §2 are some pseudodifferential operators on the
manifolds M and X x 5¥~!;

o the operator Py is defined by
(Powr); (@)= [ w1 (2,0) 9 (2,0) diy 5 = Lo N

Sv—1

with some (smooth, for simplicity) functions ¥; (z,w) on X x S*7!;

2'That is, invertible modulo compact operators

46



o the operator P is defined by

N
(P30) (2,0) = 3 3 (2, &5 (2)

with some smooth functions p; (z,w), 7 =1,...,N;

e cand g are vector-valued functions on the manifold M, ¢ = (¢; (z),...,en (2)),
g={(g1(x),...,9n (z)).

The corresponding operator equation has the form

0 Ew CP‘; U = fl ) (63)
"By PyB, 0 ¢ g
where @, is defined similar to the formula (54) above:
@, =a(0,w,z,5(z),D.,0). (64)

We remark that no connection between the operator @ and the projectors P and Py
is supposed. Our aim is to derive the ellipticity conditions for operator (63) (and,
hence, to problem (62)) in terms of the operators involved into (63).

Since, as we have seen on the examples above, the nonresonance case is more
or less trivial, we shall consider the resonance case (which has also the physical
interest). This means that the operator (64) is degenerate, or, in other words, that
the number S (z) is a spectral number for the family

a,(2)=e¢(0,w,z,2,D,,0)

for any fixed value of z. Again, we assume that the kernel and the cokernel of
operator (64) smoothly depend on the variable z along the manifold X.
Due to the above assumptions, there exists a decompositions

H* (X x §°") = Ly ® Ker@,, (65)

where Ker a,, is isomorphic to the space of sections of some finite-dimensional bundle
K over the manifold X, and

H (X x §*7') = Im3, @ Ly, (66)

where Ly (the cokernel of the operator @,) is isomorphic to the space of sections of
some other finite-dimensional bundle C over X.
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Let us fix the mentioned bundles and isomorphisms. Then the decompositions
(65) and (66) become

H" (X x 8" = L@ H"(X,K), (67)
H* (X x 5*™Y) = Ima, @ H"(X,0). (68)

In accordance to decompositions (67) and (68), the action of the operator @, can
be written down in the form

wa=(50) ()= (7)

a . L, — Ima,

w

€

where

is an isomorphism. Clearly, both L; and Im3a, can be interpreted as sections of
infinite-dimensional bundles over X and @° is a family of isomorphisms in fibers of
these bundles.

So, the ellipticity of the initial operator induces splitting of the isomorphic part
of the corresponding family such that the reminder is finite-dimensional.

Now let us try to rewrite equation (63) in terms of the decompositions (67), (68).

To do this we denote by

@° = (¢%,..., %)

the orhtonormal (in the Lj-sense) basis in the kernel of the operator @, correspond-
ing to the isomorphism in question, and by

PO = (¥ %)

the similar basis in the cokernel of this operator (we remark that the dimension of
kernel and cokernel of the operator @, are equal and we denote it by k). Then

e the relation Ppo P;o = 1, takes place;
e the operator P}, Fyo is a projector to the kernel of the operator a, since

(P;o Py) (P;o Pp) = P (P P;o) Pyo = P13 Py = P Ppo;

Now the decomposition of the function u; (w, z) corresponding to decomposition
(67) is

0 1
uy = u; @y,

where
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1. u) = (1 - P;DPﬁ,o) uy is a projection of the function u, on the space L,

the space L; is automatically defined here as the image of the projector
(1= PoPo);

2. uy = Py (P‘;qu,o) u; = Pgou, is a section of the bundle K identified with
Kera, with the help of the operator Pj.

Similar, the decomposition
h=Ref
is defined by

1. = (1 - PJOP@) fi is a projectionof the function f; on the space Ima,;

2. f] = Py f1 is a section of the (finite-dimensional) bundle C identified with the
cokernel of the operator @, with the help of the projector Pye.

Now, equation (63) can be rewritten as

a ’z;; Py 0 R Yo fo
— * - 1}
I GRS Ll I IR D I I
0 0 0 Ci Uy 1
z.l"Bl PleJB?l B22 0 ¢ 9

Here

e P; is just a restriction of the operator P* to the space L;

o Piuj = P*Pjou; since the function PJou] is a function in (w, z) corresponding
to the section u} of the bundle K;

. Pwﬁgl is a restriction of the operator P,;,Eg to the space L;
e the operator 51 is defined by
Cy = PyCP;

this operator is a pseudodifferential one in sections of finite-dimensional bun-
dles due to Proposition 6;
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e the operator Egg is a pseudodifferential operator in sections of finite-dimensi-

onal bundles defined by?? R R
ng = P,J,BQP;D.

Let us reduce the obtained system to a pseudodifferential system on X by “exlud-
ing unknowns” method omitting compact operators.
First, we derive the function uy from the first equation

EUO + 'Pgu? + 'P,'u; = fo
of system (69). The result is
uo =37 (fo — Pyul — Pjuy), (70)

where @~! is the almost inverse for the operator @.
Second, we derive the unknown u{ from the second equation

@uf + (1= PjoPy) CPc = f}

of system (69). We obtain
wf = (@)™ (/= (1= PyuPw) CPc). (71)

Equations (70) and (71) separate the “infinite-dimensional” part of the solution
expressing it via its “finite-dimensional” part. Clearly, this is possible only under
the condition of ellipticity of the initial operator @.

Substituting relations (70) and (71) into the last two equations of system (69),
we arrive at the following system of equations for the unknowns ¢ and uj:

(21 f)()z(g) (72)

where the operators A, and A, are (matrix, in general) pseudodifferential (due to
Proposition 6) operators given by

A] = Egg—itéla—llp;,
Ay = (i*éla‘lvg-mﬁn) @)™ (1 = Py Py) CPL,

22In some sense, the operators C, and By compare the boundary and coboundary operators
involved into the considered problem with projectors on kernel and cokernel of the corresponding
operator family. These operators play an essential role in the investigation of ellipticity of the
matrix operator in question.
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and the function g equals to
G=g—iBia ' fot (i'é,a-lpg - Pwﬁz,) @)™ 1.

So, the ellipticity condition for matrix operator involved into equation (69) is
the requirement of ellipticity of the pseudodifferential operator in (72). Due to the
particular form of this (matrix) operator this condition can be written down in the
form:

a) The operator @ is elliptic.

b) The operator C, is elliptic.

c) The operator A, is elliptic.

Definition 3 The operator

a Py P 0
“~0 . * o ~ D
Aol oo o (1 PPy )er; )
0 0 0 Cy
i'B] P]¢,B21 Bzz 0

involved into (63) is called to be elliptic if the conditions a) — c) above are fulfilled.
The following affirmation is valid:

Theorem 2 Let operator (73) be elliptic. Then it possesses the Fredholm property.

Proof. The carried out excluding of unknowns method supplies us with the matrix opera-
tor (almost) inverse to operator (73). In particular, the finiteness theorem in the corresponding
spaces?3 follows from this fact.

The form of the almost inverse for (73) is:

An A Az Au
An Az Az Az
A Axz Az Az ’
Aq A Ags Ay

(74)

where

23We are not presenting here the exact indices of the corresponding Sobolev spaces: these cum-
bersome expressions hardly can be applied for the concrete problems where they can easily com-
puted directly.
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A, = a! (1+P;A;‘i'§16-'),
Anp = aipg (@) -a'prar!

x (i‘ Ba'p; - P1¢,§gl) @),
A = a'p @) (1- Py, Ps,) CPLCT!
+a~'PIAT ACTY,

A = —-@'PIATY,

Ap = (@),

A = (@) (1- P, Py) CPLET,

Ay = ATYi*BaTY,

Ay = ATt (i‘ﬁlﬁ"'PE - Pl-pgn) (ﬁg)-l )
Axyy = Aflﬁzéfl,

Ase = ATV,

ﬁ43 = éfl’

and all the rest elements of the matrix vanish. The verification of the facts that (74) is an matrix
operator of the type described in Subsection 3.3 and that (74) is almost inverse for (73) is left to
the reader.

Similar considerations can be used for deriving the ellipticity conditions for gen-
eral matrix operators of the type described in the Subsection 3.3. We shall not carry
out these considerations here since they are rather complicated in form and we leave
them to the reader. We remark only that in this case the ellipticity condition for the
operator @ will be replaced by the ellipticity condition for an operator of the form

a- 7 (@)

with some P* and P involved into the algebra described in [22].

3.5 Index of a matrix operator

In this subsection, we present the computation of the index of the elliptic operator
from the above constructed algebra. Similar to the previous subsection, we restrict
ourselves by consideration of operator (73) corresponding to a Sobolev problem in
spaces with asymototics in the resonance case.

The computation of the index will be carried out with the help of a homotopy
connectiong the initial operator to the diagonal one (the similar procedure was used
in [2] for usual Sobolev problems).
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So, let us consider a homotopy

@ P P 0
0 @ 0 t(1—PyPp)CP;
A1) = " (1= Fare) OF; | (75)
0 0 0 Ch
ti*B, tPyBn B(t) 0
where the operator B (t) is given by
B(t) = Bu— (1 - t*) " Bya~'Py.
Operator (75), clearly, coincides with (73) for t = 1, and becomes
a 0 0 O
0a& 0 0
AO=149 0 o & (76)
0 0 A O

at t = 0. As above, the ellipticity conditions for operator (75) are reduced to the
ellipticity of the operator @ and the following pseudodifferential operator

0o G

Ay A(t)
acting on sections of finite-dimensional bundles over X. Here (this expression is not
essential in the sequel)

At)= t? (ti"ﬁlﬁ"'Pa - Pld:§2l) (lfio)—l élpl‘so'

w

So, if the operator (73) is an elliptic one, then A (t) for each t € [0,1] is elliptic,
as well. Therefore, the index of A (1) coincides with A (0), and we arrive at the
following statement:
Theorem 3 The index of matriz operator (73) equals to

index A = index A (1) = index A (0) = index @ + index Ci + index A,.

Actually, the latter formula follows from the fact that the operator f[f, involved
into (76) is an isomorphism.
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