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Abstract

In the paper, we construct the theory of problems of Sobolev type in spaces
of functions having the given type of asymptotic expansion near "boundary"
manifolds. Such problems arise, for example, in the theory of potentials of zero
range in the nuclear physics. Moreover, the corresponding operator algebra
is constructed. The finiteness theorems (Fredholm property) are established
and the index is calculated.
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Introduction

1. As it follows from the title, the aim of the paper is to investigate a new dass
of Sobolev problems l

, that is, Sobolev problems in spaees with asymptotics. To
motivate the statements of problems presented below, we first eonsider same phys
ieal situations leading to the neeessity of eonsideration of the Sobolev problems in
spaces with asymptotics, namely, the examination the internuclear forees, that is,
the theory of Sehrödinger equation with potentials of zero range.

2. It seems that'l it was E. Wigner [3] who first mentioned that the forees
of internuc1ear interaetion must aet at a very short distanee and be very strang.
From this remark, the possibility of idealization of the internuc1ear interaetion as

lConcerning the "classical" Sobolev problems see, for example, PL [2] and the bibliography
therein.

2The short notes presented below do not give any historical priorities as weil as the fuH bibli
ography. The aim of these notes is to acquaint the reader with some physical papers which served
as the starting point for the constructing the mathematical theory presented in the main part of
tbe paper.
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an interaction determined by a potential 0/ zero range comes in a very natural way.
This idea was realized by H. Bethe and R. Peierls [4] as early as in 1935 and have
born a lot of exactly solvable models of systems with point intera.ction (see [5]). The
review of these models and a rather full bibliography the reader can find in the book
[6].

The further generalization of the short-range intera.ction theory to N -particle
problems meets serious difficulties. L. H. Thomas have noticed that the energy of
the base state can tend to -00 as the interaction radius tends to zero (falling to the
center, or collapse, see [7]). The reason for this phenomenon became clear after the
appearance of the rigorous mathematical verification of the two-particle problem by
F. Berezin and L. Faddeev [8], and by R. Minlos and L. Faddeev [9] appeared 8000

after the former one. The matter is (as it is shown in the paper by F. Berezin and
L. Faddeev) that the description of systems with potentials of zero range is performed
with the help of self-adjoint extensions of the Laplace operator with the initial
domain consisting of functions vanishing near the center of interaction. However,
the paper by R. Mi~los and L. Faddeev shows that all selJ-adjoint extensions 0/ the
Laplace operator corresponding to the pairwise interactions are not bounded from
below and, hence, the energy of the system can be of arbitrary negative value.

One of possible approaches to overcome this difficulty is mentioned in the cited
paper by R. Minlos and L. Faddeev. Namely, if one involves into the boundary
condition the operator of the convolution type in the impulse variable, then one
arrives at semi·bounded self~adjoint extensions. However, the interaction in tbe
system constructed is not more a pairwise one. Later on, such extensions were
considered by S. Albeverio, R. Hoegh-Krohn, and L. Streit [10]. The fundamental
investigation of the three-particle problems one can find in [lI}, [12].

The first attempt of constructing a selfadjoint extension of the Laplace opera
tor corresponding to the pairwise interaction is due to Yu. Shondin [13] who has
considered an extension in the space L2 (R3

) ffi C instead of L2 (R3
) (we remark

that, physically, such extensions correspond to physical systems with internal de
grees of freedom). In future, similar extensions using more wide Hilbert spaces were
considered by B. Pavlov [14]' [15].

In the recent time, the described field is developed in the works of a lot of
mathematicians (see papers by S. AIbeverio, K. Makarov, V. Melezhik [16] - [18]
and others).

3. Let us show, on the simplest example, how the above considered physical
problem leads to the necessity of investigation of Sobolev problems in spaces with
asymptotics. Consider the operator .6. on the three-dimensional space as an operator
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with the following domain of definition3 :

D = {u (x) E H 2 (R3) IU =0 near x = O} . (1)

This operator is asymmetrie one, and it possesses self-adjoint extensions. Under
the quantum mechanies spirit, eaeh extension of this kind deseribes some quantum
mechanieal system. One of these extensions is the operator ß with H2 (R3

) as
the domain of definition - this is a self-adjoint operator corresponding to a free
one-dimensional partide. However, there are a lot of self·adjoint extensions of the
former operator different from the latter one. It is natural to suppose that all these
extensions deseribe a quantum partide in the potential field eoneentrated at the
origin. So, there arises a problem of description of all self-adjoint extensions of the
operator ß with (1) as the domain of definition.

It occurs (see, for example, [17]) that all self-adjoint extensions of the operator
in question ean be deseribed as the operator ß considered on subspaces of the space

(2)

defined by homogeneous "boundary conditions" of the type

C + QUo (0) = o.

Spaces of the type (2) are naturally named spaces with asymptotics since their ele
ments are sums of the asymptotics CIr and the smooth component Uo lying in the
space H 2 (R3 ) to whieh the first summand does not belong.

The easiest way of investigating such operators is to consider the corresponding
resolvent. This resolvent is the resolving operator for the following problem:

{
(~- AI) u (x) =f (x),
C + Q'Uo (0) = 0,

(3)

for f (x) E L2 (R3
) if the solution is searchecl from the dass Ddetermined by relation

(2). The comparison == in (3), means that the first equation is fulfilled everywhere
except for the origin. The latter problem is the simplest example of the Sobolev
problem in spaces with asymptotics. At the same time, we have obtained the form
of "boundary conditions" to be used in spaces with asymptotics (we emphasize that
usual boundary conditions cannot be used here since functions of the form (2) do
not admit restrictions to the origin).

3By H 2 , or, more generally, H', we denote usual Sobolev spaces of order s (see, e. g. [19]).
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Below we investigate possible statements of Sobolev problems in spaces with
asymptotics and construct the following operator calculus - the powerful tool of
investigation of such problems.

Acknowledgements. We are grateful to Konstantin Makarov who attracted
our attention to problems for the Schrödinger equation with zero-range potentials
and listed the literature references on this topic. A lot of discussions with hirn
in the summer of 1995 in the working group of Professor B.-W. Schulze (Potsdam
University, Germany) greatly stimulated the appearance of this paper.

1 Examples

We begin with the consideration of the simplest examples of a Sobolev problem in
spaces with asymptotics. Here we shall not present the exact definitions of spaces
with asymptotics and encounter the exact indices of Sobolev spaces. We restrict
ourselves only by some intuitive notions sufficient for initial understanding of the
problem. All definitions will be refined during the consideration of the examples
below and will be finally formulated in the exact manner in the subsequent sections.

So, let M be a smooth n-dimensional manifold and X be its smooth submanifold
of codimension v. Roughly speeking, the element of the space with asymptotics are
functions on the pair (M, X) having the form

(4)

near X. Here and below we use the following special coordinate systems4 near
X: x E R:-v are coordinates along the submanifold X, t E Rr are coordinates
transversal to X, and (r, w) are polar coordinates in the plane R~, r E [0, 1], w E
sv-l (sv-l being a unit sphere in the Cartesian space Rr). The function Uo (x, t)
must belong to same function space, say, HlJ (M), consisting of functions smooth
enough so that this space does not include any term

In i r
rS.dx) __u~ (x w)

'I J 'J.

involved into the right-hand part of representation (4).

4For the corresponding notions to be global, it is convenient to fix a structure of the bundle
over a tube neighborhood ofthe Bubmanifold X. Then t (or (r,w)) can be treated as coordinates
in a fiber of this bundle.
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We remark that, for integer nonnegative SI:(Z), functions of the form rS.(r)ul:(z,w) can occur

to be of infinite smoothness for some special choice of amplitudes ul:. For example, in tbe two

dimensional case r C08 <p =z and r sin <p =y (where T, <p are polar coordinates) are infinitely smooth

functions. However , we require that 8 is such that the inclusion TS.(r)UI:(z,w) E H'(M) is not

valid for aH smooth amplitude functions UI:(Z, w).

We suppose that for any given space with asymptotics the following objects are
fixed:

i) Smooth functions Sk( x), k = 1,2, ... N on X; subject to the conditions5

ii) The set of m ultiplicities m k E Z+ giyen for each k = 1.2.... N;
iii) The set of function spaces for t he coefficients uJ(x, w) on X x 51/-1 (the exact

choice of these spaces will be presented below);
iv) Th e number s characterizing smoothness of t he remainder Uo (x, t) in (4)

(below we shall use the Sobolev spaces H6 (M) for the description of the smoothness
of remainders in (4)).

We denote by
T = {Sk(X), ffik 1 k = 1.2.... N}

the set of degrees (with multiplicities) involved in asymptotic expansions (4) of
functions from the considered space with asymptotics. This space will be denoted
by Hf(M,X).

In the examples below we shall consider mainly the equation (comparison)

(-ß+ l)u(x,t) == f(x,t) (5)

which is fulfilled at all points of the manifold M except for the submanifold X. We
have tried to choose these examples in such a way that all main features of the
general theory can be transparently shown.

1.1 The case of a zero-dimensional submanifold (one-term
asymptotics)

1. Our first example is the example of equation (5) considered in the three
dimensional Cartesian space R 3 = M with the origin as the submanifold X. So, ß

5This requirement means, in essence I that we do not include continuous asymptotics or branch
ing asymptotics into consideration (see [20]).
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is here the Laplace operator in R~, t = (tl, t2
, t3

):

(6)

Here by .6.w we denote the Laplace operator on the sphere 52 (the "angular part"
of the Laplace operator .6.).

We shall consider equation

(-.6+1)u(t) = /(t) (7)

in the following function spaces. Suppose that the right-hand part /(t) in (7) is of
the form

/(t) = r
O

-
2/ Q _2(W) + /0 (t), (8)

/0 (t) E H·-2(R3
) with some realo. The smoothness of the function /0-2 (w) will

be determined latet, now we suppose only that

s ~ 1/2 and 0 ::::; S - 3/2.

The first inequality means that the space HJJ-2(R3) does not contain distributions
concentrated at a single point and the second that r o

-
2 /Q-2(W) tt H·-2(R3 ). The

solution to (7) will be searched in the space of function having the form

(9)

with Uo (t) E HJJ (R3 ). This representation correspond to one-term asymptotics of
t he solution u(t). The lat ter means that we consider the operator (-.6. + 1) as an
operator in the following spaces with asymptotics:

(-.6 + 1) : H(Q,o) (M, X) ~ Hr;!2.0) (M, X).

Before investigating the stated problem let us consider some analogy. The matter is that the
equation for the operator -.6. + 1 is, in essence , investigated as an equation with right-hand parts
of the special form with the help of undefined coefficients method. The similar problem for an
ordinary differential equation has the form (cf. (6))

(10)

where
Pm(p) = Gmpm + ... + alP + Go

is a polynomial in P, xE R I , the function J(x) has the following special form:
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and Qn is an arbitrary polynomial in In x of order not more than n. The space of functions of such
form ia denoted by :Fn,0'

Let us search for a solution to (10) in the space :Fn,o. The operator Pm (xd/dx) can be
conaidered as a linear operator in finite-dimensional spaces:

(11)

and, hence, it can be written in a matrix form with the help of BOrne base in :Fn,o. The most
convenient base is

()
0 lnt x k 0

e.l: x =x~, = ,... ,n.

Then the matrix of the operator (11) is an upper tdangle matrix with Pm(a) on the diagonal:

o

Now we see that:
1) Ir Pm(a) # 0 (non.Tfsonance case), then the operator (11) is an isomorphism, that ia,

equation (10) is uniquely solvable in the space :Fn,o.
2) Ir Pm(o:) = 0 (resonance case), then the homogeneous equation corresponding to (10), has

nontrivial solutions, and non-homogeneous equation (10) is solvable not for any right-hand part
f(x), that is, the operator in question has nontrivial kernel and cokernel.

The more detailed analysis shows that the kernel and cokernel of operator (11) have dimension

equal to the multiplicity mo of the root 0: of equation Pm(p) = O. Hence, for the unique solvability

it is necessary, first, to add to (11) mo additional conditions (for example, of the Cauchy type)

as weil as pose mo additional requirements on the right-hand part f(x) for the equation 10 be

solvable.

Now let us turn our mind to the consideration of problem (7). In this case the
function space (8) (of special right-hand parts) can be represented as a direct sum6

f(t) H (!o-2(W), Jo(t)),

and space (9), of the left-hand parts is

H II (S2) EB H II (R3
),

u(t) H (uo(w), uo(t)).

6For simplicity we suppose that 0' l/:. N (see the footnote 18 on page 29 below).

8



Let us calculate the representation of the operator -6. + 1 corresponding to the
splitting of the considered spaces into the direct sums. Ta do this, we substitute
relation (9) ioto equation (7) thus obtaining

One can notice that the right-hand part of the latter equation does not contain
terms of the form ratp (w), whereas the left-hand part does contain such a. term. So,
if we want to rewrite this equation in the matrix form, it is necessary to choose an
index S of the Sobolev space in such a way that r°<p (w) E HtJ-2 (R3 ) for sufficiently
smooth function tp (w). This last requirement will be fulfilled if s < 0' + 7/2. Thus,
in the case considered the number s must belong to the half-interval

[max(1/2, O' +3/2),0' + 7/2) .

Under this requirements, there are two kind of terms in both sides of equation (12).
These are, first, terms from the space H·-2 (R3 ), and, second, all the rest terms.
Equating terms of these kinds in both parts of (12) we arrive at the following system
of equations for the functions U a (w) and Uo (t):

{
(-~ + 1)uo(t) + rOuo(w~- fort),

-[6.", +a(a + l)J uo(w) - /a-2(W),

or, in the "matrix" form

(
-6. + 1 rO ) ( uo(t)) (/o(t))

o -6.",+0'(0'+1) uo(w) - /o-2(W) .

(13)

Clearly, the latter matrix is invertible iff both operators on the diagonal are
invertible. What concerns the operator -6. +1, it is invertible since for s ~ 1/2 the
comparison in (13) becomes an equality, and the operator -6. + 1 is invertible in
HtJ(R2) for any s. The different situation takes place for the operator -6.",+0'(0'+1).
This operator is uniquely invertible on the sphere 52 for 0' =1= -1,0, 1,2, ... (non
resonance case), and has nontrivial kernel and cokernel for Q' = -1,0, ... (resonance
case).

The unique invertibility of the operator - Ö w + a (n - 1) for 0' 1= -1, 0, 1, ... follows from the

well- known fact that the eigenvalues for the Laplace operator on the sphere equal n(a - 1) for

a: E Z+.

SO, we see that equation (7) is uniquely solvable in spaces (8), (9) with asymp
totics for the non-resonance values of a.
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Let us consider now the resonance case, e. g. a = -1. In this case s E [1/2,5/2)
and equation (12) becomes

ß w U -1 (w) U -1 (w) (A ) () f -3 (w) t ( )
- 3 + + - L.l + 1 Uo t = 3 + Jot ,

r r r

and the corresponding system of equations for u-dw) and uo(t) is

{
(-ß+l)uo(t)+ u- 1)w) =/o(t),

ß wU-l (w) = -/-3 (w) .

(14)

(15)

Let us analyze the obtained system. First of all, one can see that the second
equation in (15) has nonzero kernel and cokernel. The reason for this phenomenon
is that (as we have already mentioned above) we are considering the resonance case.
This means that the homogeneous equation corresponding to equation (7)

(we recall that the equation must be fulfilled outside the origin) has a nontrivial
solution

u(O) (t) = C e-
r

r

with an arbitrary constant C which admits the following asymptotic expansion

where u~O) (t) E /16 (R3) (for the above chosen values of s). The set of constants
form exactly the kernel of the second equation in (15).

Below, we shall show how one can get rid of the kerne! of the equation in question,
and now we concentrate our attention at dealing with its cokernel. We shall consicler
the two different methocls.

2. From the first glance, to eliminate the cokernel of the equation in question one should use
the following procedure. For simplicity, let us consider an equation of Fuchsian type with constant
coefficients and a special right-hand part

(x :xry(x) - y(x) =x·

on the real line R~. It is not hard to see that for any 0' except for 0' = ± 1 there exist a particular
solution of this equation of the form Cxo with some coefficient C. However, say, for 0' = 1 the
particular solution of the equation in question must be searched in the form

y. (x) = x In x.
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So one can see that the multiplicity 0/ solution to an equation 0/ the Fuchsian type is increased by
one in the (simple) resonance ca~e.

Similar to the case considered, one ean search for the solution to equation (5) for Q' = -1 with
right-hand part (8) in the form

1
u(t) = - [u~l(w)lnr+u~l(w)] +ua(t). (16)

r

As above, substituting this expression into equation (5) one obtains

_I~r~U~l (w) + ~ [-6owu~dw) + U~l (w)]

+ In r U~l (w) + ~U~l (w) + (-60 + 1) Uo (t) = I_~w) + 10 (t).
r r

(17)

Equating terms with equal smoothness, we arrive at the following system of equations for the
functions u: 1 (w), u~l (w), and Ua (t):

(

(-ß + 1) Uo (t) = 10 (t) - I~r U:l (w) - ~UC:l (w),

8 w u: 1 (w) = 0,

-6owuC: 1 (w) = 1-3 (w) - U:l (w),

From the second equation of the last system, one easily finds that u: 1 (w) = const, and the exact
value of this eonstant ean be determined from the third equation (more exactly, from the solvability
condi tion for this equation). Since the compatibili ty cond i tions for the equation - 8 w u = f is the
orthogonality of its right-hand part to the space of constants, we obtain

u:dw) = ~2 J1-3 (w) dsw .

s~

(dsw being the volume element on the unit sphere). The functions uC: 1 (w), and Ua (t) ean now be
easily found.

In spite of the fact that with the help of this method ODe ean guarantee the existence of
solution of the given form for any right-hand part 1 (t), this method has a seriollB defect. Namely,
the operator (-8 + 1) cannot be considered as an operator from fu nctions having the form (16)
to tbe spaee of functions having the form (8). Actually, expression (17) shows that the result of
application of the operator -,6, + 1 to the function of the form (16) is a function of the form

(18)

instead of (8) for n =-1. Thus, to consider -8 + 1 as an operator in the eorresponding function

spaees one has to allow the functions with the multiplieity 1 on the right in equation (5). In this

CaBe, however, we are again in the resonance situation, and the multiplicity must be enlarged onee

more. It is easy to see that the process of enlarging the multiplieity will not stop at any stage. This

is the reason why it is better to use another method of eliminating the eokernel of the operator in

question.7

70f course, one ean consider spaces of functions of the form (16) with u: 1 from the kernel of
the operator ß w . However, such spaces will depend on the operator under consideration.
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3. Namely, to eliminate the cokernel of the operator considered, we shall slightly
modify the initial problem by inc1uding the so-called coboundary terms into the
right-hand part of the equation. More precisely, we shall consider the comparison

c
(-L\ + l)u(t) =f(t) + 3"'

r
(19)

instead of (7). Here cis a new unknown number which must be fouod in the process
of solving the equation, and the function f (x, t) has, as above, the form (8).

Searching for a solution to equation (19) in the form (9) with Q' = -1, we arrive
at the following system of equations for the unknowns U-l (w), Uo (t), and c:

{

(-L\ + 1) Uo (t) + u_1)w) = /0 (t),

L\wu -1 (w) + c = - / -3 (w) ,

or, in the matrix form,

(20)

Now the constant c must be chosen in such a way that the second equation in
the latter system is solvable for the given right-hand part /-3 (w). Rewriting this
equation in the form

(21)

and taking into account the fact that the image of the operator L\w consists of
functions orthogonal to constants, we have

c = - ~2 Jf -3 (w) dsw •

52

The solution of the second equation in (20) is

U-l (w) = _L\;:1 (/-3 (w) + c) + d,

where by L\c: 1 we have denoted the resolving operator for equation (21) defined on
the image of the operator L\w, and the constant d is an arbitrary constant which
appears as an element of the kernel of the operator L\w' Now due to the invertibility
of the operator -L\ + 1 on the whole space R 3

, the first equation of (20) gives

12



The latter formula completes the process of solving equation (19). Now the only
thing rest is to eliminate the kernel of the operator, that is, to pose a condition for
determining the arbitrary constant d involved into the obtained solution of equation
(19). This will be done in the next point.

4. The usual way of stating boundary conditions is to prescribe some concrete
values of the unknown (u (t) in our case) or, more general, of the result of application
of some differential operator to this function, at the boundary point. Unfortunately,
in the above considered case this is not possible: the unknown, in general, does not
admit the restriction to the origin (we recall that the origin plays role of the only
boundary point in our example). However, it is possible to consider the following
two functions to be used in the future boundary conditions (we remark that these
functions are involved into the boundary conditions of the problem which was con
structed in the Introduction in the process of investigation of zero-range potentials):

• the coefficient U-l (w) involved into the aSYlnptotic expansion of the unknown
function u (t) near the origin (see formula (9»;

• the rest riction Uo (0) of the regular part Uo ( t) to the origin (here we suppose
that the number s belongs to the interval (1/2,5/2).

What for the second quantity mentioned above, it can be used in the "boundary
condition" without any additional transformation. Quite another situation takes
place for the first of these two unknowns. The matter is that the kernel of the
considered equation is one-dimensional whereas the set of coefficients U-l (w) of the
asymptotics form an infinite-dimensional function space. Therefore, before using
these coefficients in our future boundary condition, one must extract some "compo
nent" from the coefficient U-l (w) in such a way that tbe set of these "components"
form some one-dimensional space. Below, we shall use the constant component

PtU-I (w) ~JU_I (w) ds""

52

which is, in essence, the projection of the function U-I (w) to the subspace of constant
functions8 (this motivates the name "projector" for the operator PI which we shall
use below).

As a result of the considerations above, we arrive at the following "boundary
condition" which can eliminate the kernel of the equation in question:

(22)

8We recaIi that the space of constants form a kernel of the operator d w.
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Here 1 is some constant, i· is a restrietion to the origin, and 9 plays the role of the
right-hand part of the introduced boundary conditions. The considerations above
show that equation (19) with boundary condition (22)

{
(-~+l)u(t)=f(t)+:§-,

PItl-I (w) + li-uo (t) = g: (23)

is equivalent to the following system of equations with respect to the unknowns
U-I (w), Uo (t), and c:

or, in the matrix form

{

(-~ + 1) Uo (t) + U-I)w) = /0 (t) ,

~wU-I (w) +c = -1-3 (w) l

PI tl-I (w) + li·uo (t) = 9,

(24)

Now the solution of problem (23) can be constructed within the following four steps:
1) Determination of the constant c so that the second equation in (24) is solvable

with respect to U-I (w):

c = -~J/-3 (w) dsw •
~

8')

2) Determination of the function tl-I (w) as a particular solution to the second
equation in (24):

tl-I (w) = _~:I [/-3 (w) +c] +d,

where, as above, d is an arbitrary constant, and the application of the operator ~:I
is well-defined since the function f-3(W) + c belongs to the image of the operator
~w.

3) Determination of the Uo (t) as the function depending on the arbitrary constant
d from the first equation in (24):

(we have used here the fact that the operator -~ + 1 is invertible in R 3
).
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4) Determination of the arbitrary constant d. For this one substitutes the latter
expression into the "boundary conditions" (the last equation in (24)), thus obtaining

-PI [ß;1 [/-3 (w) + cl] + \l2d

+,i- (-ß +1)-1 {la (t) + }ß;1 [/-3 (w) +c]} - d,i- (-ß + 1)-1 } = 9,

or
{ V2 - ,i- (- ß + 1) -1 } } d = PI {ß;1 [I-3 (w) +c]}

-,i- (-ß + 1)-1 {la (t) + }ß;I [/-3 (w) +cl}.
Hence, one has

d = PI [ß;1 [/-3 (w) + c]] -,i- (-ß +1)-1 {la (t) + ~ß:l [/-3 (w) + cl}
\12 -,i-(-ß+ 1)-1 ~

for each I such that the denonlinator does not vanish.
This completes the determination of the solution to problem (23).

This method of constructing a solution to problem (23) allows one to choose
the exact function spaces for this problem. As it was al ready told, the functions
Ua (t) and /a (t) belong to the spaces Ha (M) and Ha-2 (M), respectively, where s
is chosen as it was described above. Now we can see that the functions U-1 (w) and
/-3 (w) can be treated as elements from Ha (52) and Ha-2 (52), respectively, since
the functions u(t) and /(t), being elements of spaces (8), (9) with asymptotics must
belong to the space Ha outside X (in our case, everywhere except for the point
t = 0).

5. Let us now interpret the obtained technique of solving Sobolev problems in
spaces with asymptotics. The Inatter is that, in essence, for solving these problems
we have used the equivalent statements in the operator form. Namely, system (24)
of equations for the unknowns U_I (w), Ua (t), and c can be rewritten in the following
form9

:

( -~~+ 1 -}w -:B ) ( U~~c~~) ) = ( l:g~~) ),
where the operators A and Bare defined as folIows:

1
AU_l (w) = -U_I (w)

r
(26)

9Tbe corresponding matrix was already written down above (see formula (25). However, the
operators r- 1 and -1, involved into (25) mllst be interpreted more precisely since they change the
number of arguments of the corresponding function.
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(the latter function is understood as a function on the manifold M = R 3
), and

Bc=c·1(w), (27)

that is, the action of the operator B gives the constant function c on the unit sphere.
Let us first interpret the operator B. It is easy to check that the opera.tor (27) is
exactly the adjoint for the operator

PI : H' (52) -; C, PIU_I (w) = JU_I (w) dsw

52

for any value of s. In other words,

B= P;

Aetually, one has

(P1U-l (w) ,c) = cJU_I (w) dsw =Jc·} (W)U_I (w) dsw = (U_I (w), Bc).

52 52

Similar, the operator (26) ean be interpreted as an adjoint to the operator

"P I/r: H' (M) -; H' (52), "Pl/ru(t) = J~u(r,w)r2drdsw
M

for s > -1/2, that is

for s > -1/2. Now the operator equation corresponding to problem (23) becomes

The above obtained matrix will be called a matrix operatoror simply operator when
the meaning of this word is clear from the context. Below, we shall use more general
operators of this kind, chosen in such a way that they form an operator algebra
closed with respect to the conjugation operation. However, to see the main features
of these operators, we need two more examples.

16



1 .. 2 The case of a zero-dimensional submanifold (multi-
term asymptotics)

Here we eonsider tbe problem for tbe opera.tor (-.60 + 1) in spaees witb asymptotics
including more than one term. We sha11 eonsider bere only tbe resonanee ease; a11
tbe eonsiderations for the non-resonanee ease the reader ean carry out by himself or
herself. Since all the effects can be seen in the case when two terms of asymptotics
is taken into account, we consider the comparison

(-.60+ 1)u(t) =I(t)

with functions u (t) and I (t) having the form

U-I (w)
u(t)= +ruI(w)+UO(t),

r

I( ) - 1-3(w) I-I(w) r ()t - 3 + + JO t .
r r

(28)

(29)

(30)

The principle of choosing the functional spaces are just the same as in the above
considered example and we omit deriving the exact values of the indices of the
eorresponding Sobolev spaees, postponing these considerations until the end of this
subsection.

Now, substituting expressions (29) and (30) into equation (28) and equating
terms of one and the same equal smoothness, we obtain the system of equations for
the unknowns U-I (w), Ul (w), and Uo (t):

{

(-.6. + 1) Uo (t) = lo(t) - rUI (w).

-.6.w U-I (w) = 1-3 (w) ,

- (.6.w + 2) Ul (w) = I-I (w) - U-I (w) ,

(31)

Again, we see that the last two equations in system (31) have nontrivial kerneis and
cokernels. The first equation was considered in the previous subsection.

It is easy to see that the kernel of tbe third equation in (31) consists of tbe
angular parts of linear functions, that is,

where w = (WI' W~l, WJ) is a point of the two-dimensional unit sphere. Consequently
(since the operator ß w is a self-adjoint one), the image of the operator ß w +2 consists
of functions orthogonal to the kernel of this operator. Now the considerations similar

17



to those of the previous subsection lead us to the following statement of the problem
for the operator -ß +1, involving boundary and coboundary conditions:

{

L + 1) u (t =!'t)+3 +r etwi + +QW3) ,

PI U-l (w) +0'-1 1 Uo (t) = 9-1,
. .

PWjUl(w)+O'~i·uo(t)=9i, j= 1,2,3,

(32)

(to be short, we do not use here boundary conditions of the most general form).
One can check that the corresponding equation for the matrix operator is

-ß+ 1 0 p. 0 0 0 0 Uo /0T

0 -~w 0 p. 0 0 0 U-l /-3-1

0 1 - (~w + 2) 0 p. p. p. Ul 11Wl W'J '013'. PI 0 0 0 0 0 C-3 = 9-1O'-I Z

0'1 i· 0 PW1 0 0 0 0 Cl 911 1

O'2 i· 0 PW'J 0 0 0 0 c2
9;1 1

O'3 i· 0 PWJ 0 0 0 0 c3
9~1 1

Now one can derive that:

1. The function u (t) must belong to the Sobolev space Ha (M) with an s such
that any function of the form np (w) belongs to H6-2 (M) but not to H6 (M).
This means that s E [5/2,9/2).

2. The functions U-l (w) and Ul (w) must belong to H6 (52).

3. Tbe functions 1-3 (w) and 1-1 (w) must belong to H6-2 (52).

Under these requirements there exists a unique solution to problem (32). The
simple verification of this fact is left to the reader.

1.3 The case of a higher dimensional submanifold

In this subsection, we consider Sobolev problems in spaces with asymptotics in the
case when the submanifold X has a non-zero dimension. In this case, new effects
arise connected with the appearance of operator families parameterized by points of
X in tbe matrix operators in question.

1. Let us consider first the Sobolev problem for tbe equation

(-ß+ l)u(t,x) = I(t,x)

18
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in the space Al = R 4 with X = R 1• Here xE R 1 is a coordinate along X, whereas
t E R 3 are transversal coordinates. For simplicity, we shall consider here a one-term
asymptotic expansions. So, suppose that the right-hand part of equation (33) has
the form lO

( ) f-3(W,X) ()f t, x = 3 + /0 t, x ,
r

and let us search for solutions to (33) in the form

( )
U-I (w, x) ()

u t , X = + UD t, X 1

r

where the functions /-3 (w, x), /0 (t, x), U-I (W, x), and UD (t, x) belong to the corre
sponding Sobolev spaces (the exact values of indices of these spaces will be deter
mined below). As above, one must pose the corresponding boundary and cobound
ary conditions, thus arriving at the following probiernIl:

{
(-ß + 1) u (t, x) = / (t, x) + C~~ ) ,

P1U-I (w,x) = 9 (x).
(34)

(35)

Since in the space R4 the operator .6 has the form

1 fJ ( 2 8 ) 1 8
2

ß = r 2 8r r 8r + r2.6w + fJx 2'

we arrive at the following system of equations for the unknowns U-I (w, x), UD (t, x),
and c(x):

{

-0 + l)unix + =%1 (w, x) + } 8~:21 (w,x) = 10 (t,x),

-ßwU-I (W, x) - c(x) - /-3 (W, x),

PI U -I (w, x) = 9 (x) .

The procedure of solving this system goes through the following four steps:

1. Determination of the function c(x) so that the solution to the second equation
in (35) does exist for each fixed x:

c(x) = -~2 J1-3 (w,x) dSW I (36)
52

We remark (this is very important) that the variable x is just a parameter in
the second equation in (35).

IOHere, as above, (T, w) are the polar coordinates in the plane Rr
llTo be short, we consider here the boundary condition which does not involve the operator i"'.

The general case can be considered similar to the preceding subsection.
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2. Determination of the function li-I (W, x):

li-I (W, x) = _ß:1
[/-3 (W, x) +c(x)] +d (x), (37)

where, as above, ß;:l is an operator defined on the image of the operator ß w ,

and d (x) is an arbitrary function.

3. Determination of the function tlo (t) as the function depending on the arbitrary
constant d from the first equation in (24):

Uo ( t, x) = (-ß + 1)-1 {/o (t, x) + } (1 + ::2) ß:1 [/-3 (W, x) + c ( x)] }

1 1 ( 8
2

)- (-ß + 1)- r 1+ 8x2 d (x)
(38)

(we have used here the fact that t he operator - ß + 1 is invertible in R 4
).

4. Determination of the arbitrary functioo d (x). For this one substitutes the
latter expression ioto the "boundary conditions" (the last equation in (24)),
thus obtaining

- PI [ß:1[/-3 (W, x) + c (x)]) + V; d (x) = 9 (x) ,

or
1

d (x) = V
2

{g (x) + PI [L\:1 (/-3 (W, x) + c (x))]} . (39)

This completes the construction of solution to problem (34).

The above scheme of solving system (35) shows that problem (34) is well-posed
and uniquely solvable in the following function spaces:

1) f-3(W,X) E H",1J-2(X x 52), /o(t,x) E H"-2(R4);

2) tl-I (W, x) E H"(X x 52), uo(t, x) E H"(R4
);

3) c(x) E H"(X);
4) g(x) E H·(X).

Actually, if /-3 (W, x) E H"'''-'J.(X X5'J.), then formula (36) determines c(x) a.s an
element from H"-2(X). Later on, formula (37) shows that tl-I (W, x) E H"(X x 5'J.),
provided that d(x) E H"(X). Under the same assumption, formula (38) determines
uo(x, t) as an element from H3(R4 ). Finally, the function d(x), determined from
(39) belongs to H 3 (R1

), as required.
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The corresponding operator equation has the form

p;/r ( 1 + ::2)
-ßw

Pt

o ) ( Uo (t, X)) (10 (t, x) )
-Pt U_t(W,x) = 1-3 (W,X)

o C(X) g(x)

2. We shall consider here one more example of "one-dimensional" situation
(that is, the situation when the manifold X is one-dimensional). The necessity of
consideration of this example can be understood from the following reasons.

As it was already mentioned, one of the important features of the theory is that
the equation for the main tenn of the asymptotic expansion (U-l (w, x) in the above
considered case) contains the tangent variable x only as a parameter. From the other
hand, this equation determines the powers of r which are involved inta the asymp
totic expansions of solutions to homogeneaus equation. These powers determine, in
turn, for whieh types of spaces with asymptotics the resonanee phenomenon does
oeeUT. However, if the mentioned equation involves the parameter x, it is clear that
these powers can be funetions of x. Here we shall try to understand, what changes
must be done in our eonsiderations in order to include this phenomenon.

Let ....... ( .8.8)a=a t,x,-1
8t

,-t
8x

be an elliptie differential operator of the seeond (for simplicity) order. Using polar
coordinates (r, w) in the t-plane, it is eonvenient to write down this operator as a
differential operator on the manifold X with operator-valued eoeffieients in t-plane
as a fiber. One has ....... ....... (8)2 ....... a .......

a = a2 8x + al 8x + ao,

where
a2 = A~ (r,w, x)

isa funetioD (a differential operator of zero order),

is a differential operator of order 1, and

aa = :2 [Ag (r,w, x) (r:r)2+ Ab (r,w, x, D,") (r:r) + A~ (r,w, x, D,")]
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is a differential operator of order 2. All operators Ar (r, w, x, Dw ) are supposed to
be differential operators of order k with smooth coefficients and, therefore, admit
the expansion in powers of r:

First of all, let us examine conormal solutions to the homogeneous equation

a (t,x, -i :t' -i:x) u (t, x) = 0,

that is, solutions of the form

u (t, x) = rS(r)Ul (w, x) +Uo (t, x). (40)

The direct computations show that the coefficient ut{w, x) of the latter expansion
satisfies the equation

which is (for x fixed) none more than a spectral family with parameter S = S (x).
This fact shows that the spectrum of this family can depend on x and this is the
motivation of consideration of conormal asymptotics with power S dependent on x.

Remark 1 Here, we must attract the reader's attention to one important point of
the theory in question. The fact is that, in essence, we had obtained a lamily (in x)
01 spectral lamilies 01 differential operators

A (z) = A~ (0, w, x, Dw) + zA~ (0, w, x, Dw) + z2 Ag (0, w, x)

with the spectral parameter z. Since the operator a is elliptic, this family is mera
morphically invertible. In general, the spectrum of this family depends on x:

SpecA(z) = {z = S(x)},

where S(x) is a multivalued function in x. The set of x such that different branches
{SI (x), S2(X), ... } of this function coincide with one another is none more than a
set of loeal points for solutions to the corresponding homogeneous equation. Since
in this paper we do not consider branching asymptotics, we require that loeal points
are absent. This means, in particular, that:

1. The branches Sk(X) of the multivalued function S(x) are regular functions in
x on the whole manifold X.
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2. The dimension of the kernel of the family A(z) is constant along X (we remark
that, due to the fact that A(z) is invertible for some zone has

dimKerA(z) = dimCokerA(z).

So, we arrive at the following problem for the operator a in spaces with asymp
totics:

{
~u (t, x) = f (t, x) + r S(x)-2 c(x) 4'''' (w, x) ,
1 Uo (t, x) + PlpU I (w, x) = 9 (x) ,

where U (t, x) is supposed to be of the form (40), / (t, x) has similar asymptotic
expansIon

f (t, x) = r S
(x)-2/1 (w, x) + /0 (t, x),

with S (x) replaced by S (x) - 2, and the functions 4' (w, x) and cp'" (w, x) determine
kernel and cokernel of equation (41), respectivelyl2.

The operator equation corresponding to such a problem is

where (Lw is the operator

o
-p;.

o ) (
Uo (t, X)) (10 (t, x) )
UI(W,X) = 11 (w,x) ,

c(x) g(x)

aw= A~ (0, w, x, Dw) + A~ (0, w, x, Dw) S (x) +Ag (0, w, x) (S (x)) 2
,

involved into equation (41), and P'" is a sum of compositions of adjoint projection
operators P; for 1jJ equal to one of the functions

rS(x) In jr J. = 0 1 2 and rS(x)-l In jr J" - 0 1, , , , -,

with differential operators A5, A&, Ag in y of order not more than two with coeffi
eients depending on (w,x).

1.4 Summary of results. Program of investigation in the
general case.

In this subsection we shortly resume the results of the considerations of the examples
above and try to list main questions to be investigated below in the framework of
the general theory as weIl as the main objects to be introduced and investigated.

12To be ahort, we suppose that the kernel and the cokernel of the operator involved into (41)
are both one-dimensional.
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1. Geometrical situation. By (M, X) we denote, as above, a smooth manifold
M and its smooth submanifold of codimension v. Let (x, t) be coordinates on M
near X such that the equation of X is t = O. We denote by Ux a tube neighborhood
of X in M and suppose that some bundle structure over X is chosen and fixed on
Ux. For simplicity, we suppose that

ux :: {X x [0,1] X S~-l } / {X x {O} X S~-l }

and denote by (r, w) the standard polar coordinates on the ball

in the t-space. Clearly, the above assumption is fulfilled iff the conormal bundle of
X in M is trivial.

2. Function classes. Here we shall consider function spaces with one-term
asymptotics. The generalization of the theory to the general case is quite a simple
task.

The following function spaces will be used:

1. For solutions of our future equation we use spaces with asymptotics. For
one-term asymptotic expansions such aspace is described near X as follows l3 :

uEHTt(M,X) <=> u=rS(x)Ul(W,X)+uo(t,x)

(Tl is an asymptotic type defined by Tl = (S(x),O); for the definition see the
beginning of Section 1) with

Ul (w,x) E H· (X X S~-l), uo(t,x) E HtJ(M) l

where S(x) + v/2 ::; s < S(x) + v/2 + 1. This means that

rS(x)ul (w,x) ~ HtJ (M), but rS(x)-m+l Ul (w,x) E HtJ- m (M),

where m is the order of the operator involved in the considered problem14 .

13 Essentially, the function u1(w, x) (as weil as the function u I (w I x) below) are a fu nction on the
subbundle of unit balls of the normal bundle NM(X). This subbundle is naturally interpreted as
the set of directions of approach to X.

14More exactly, one should use the functions rS(r)x(r), where x(r) is a cut-off function, that is,
x(r) = 1 near the origin and x(r) = 0 for r > 1/2. For simplicity, we omit this function in the
sequel.
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2. For right.hand parts of our equation we use the similar spaces, e. g.:

/ E Hj.;m (M,X) {:> / = rS(x)-m /1 (w,x) + /0 (t,x),

T2 = (S(x) - m, 0), with

/1 (w, x) E H6
-

m (X X SV-I) , /0 (t, x) E H6
-

m (M).

3. For right-hand parts of "boundary conditions" and for cokernel functions c(x)
we use the Sobolev spaces HU (X) with corresponding values of (7.

3. Operators. Ta formulate the problem in question and to introduce the
corresponding operator algebra, we need the following operators:

1. "Projectors"

00

P,p [u (r,w, x)] = Ju (r,w, x) tP (r) r2 dr,
o

(42)

defined for any function 'lj; (r) of the type 'lj; (r) = rS • (x) In j r with same smooth
Sdx), j being a nonnegative integer for a > - minx SI(X) - v/2.

2. The corresponding "coprojectors", that is, conjugate operators for 'Pt/J:

'P; : H-u (X x SV-I) -+ H-U (M) ,

'P; [u (w, x)] = 'lj; (r) u (w, x).

3. "Projectors"

Pcp : HU (X X SV-I) -+ HU (X) ,

P",[u(w,x)J= Ju(w,x)<p(w,x)dsw,
Sv-l

(43)

(44)

defined for any smooth function <p (w, x) E Coo (X X SV-I) for any values of s,
and their conjugates

P; : H-u (X) -+ H-u (X X SV-I) ,

p; [v (x)] = v (x) <p (w, x) .
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4. Usual boundary and coboundary operators (see [2], [21])

i* H· (M) ~ HlJ-lI!'J (M),

l* H--+lI/'l (M) ---+ H-lJ (M) ,

defined (and continuous) for any s > v /2.

4. The problem under consideration. We investigate the following Sobolev
problem:

{
~u.....- f + rS(x)-m P;.c(x) outside X,
1 Buo + PcpUI = 9,

with respect to the unknowns u(x, t) and c(x), where

u = rS(x)uI (w,x) + Uo (t,x).

Here

(46)

(47)

(48)

..... ( .a .a)
a = a t, x, - t at - Zax

is an elliptic differential operator on AI of order m, B is some differential operator,
and <p, <p* are some smooth functions. The operator a is considered as an operator
In spaces

a : IJ~I (M, X) ---+ H~;m (M, X),

and Tb T2 are the above asymptotic types.

5. Operator algebra. The solution to the problem considered will be carried
out in tbe framework of an appropriate operator algebra. The elements of this
algebra corresponding to problem (46) is

(
a P* 0 ) ( Uo ) ( /0 )

.0..... aw P;. Ul = I.
:* B Pcp 0 c 9

(the definition of operator P* and the operator family aw is quite similar to that con
sidered in the end of tbe previous section15 on the exarnple of differential operator of
second order in R 4

). In particular, the operator P* is a finite surn of "coprojectors"
P~ with different functions t,b(r)). The form of the obtained operator gives rise to
the guess tbat one should investigate more general operators of tbe form

(
a p. Ci.)
p..... aw P;. .

i*B Pcp ax

15The explicit form of these operators will be presented while constructing the general theory.

26



6. Problems to be solved. Here is the list of problems to be solved for the
investigation elliptic differential equations in spaces with asymptotics:

1. One should describe the operator algebra which is closed with respect to con
jugation and contains the resolving operators for Sobolev problems of the type
(46). In doing so, one should take into account that the operator in this alge·
bra must be of more general structure than (48). Actually, in the product of
operators of the form (48) there arise additional terms, such as terms of the
form i.Cii· or p.ap (where Ci is some pseudodifferential operator on X X S~-l)

in the upper left corner of the matrix, terms of the form P;.CiPIp in the middle
of the matrix (here Ci is some pseudodifferential operator on X), and so on.
Clearly, such an operators must be described in rather general terms. One of
the possible descriptions can be performed similar to the papers [22], [21] by
the authors since the operators Ptb and PIp introduced here are strongly related
with operators 1r. and 1r. introduced in the above cited paper. Actually, if we
denote by 1r the projection

x X S~-l -+ X
1

then one has
PIp = r.p 0 1r ••

Here by r.p we have denoted the operator of multiplication by the function
r.p (w, x). The connection between the operator P and the corresponding pro
jection is a little bit more complicated since the corresponding functions 'ljJ (r)
may have a singularity at the origin. However, the above connection allows one
to describe the elements of an operator algebra, for instance, with the help of
Fourier integral operators similar to the results of the papers [22], [21]. Clearly,
one should investigate the action of these operators on the above introduced
functional spaces.

2. One should prove the corresponding pseudodifferentiality theorems. For exam
pIe, the fact that the operators

PlpaP;. and P,p"iiP;

are pseudodifferential operators on the manifolds X and X x S~-l, respectively,
for any pseudodifferential operator Ci must be proved.

3. One should formulate the conditions of ellipticity of the operators of the con
structed algebra and prove the corresponding finiteness theorems. These con
ditions are written down in the form of ellipticity of some pseudodifferential
operators.
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4. Finally, one should derive thc formulas for the index of an element of the
operator algebra provided that this element is an elliptic one.

The answers to all these questions the reader will find in the next section.

To conclude this section we remark that one can use weighted Sobolev spaces for
the investigation of the Sobolev problems in spaces with asymptotics as weIl; the
results will be quite similar to that obtained here for the classical Sobolev spaces.
We have chosen the considerations in the classical Sobolev spaces since these spaces
are the most appropriate ones in consideration of the Sobolev problems (see [1], [2],
[21]).

Besides, the same technique can be applied to the investigation of differential
equations on manifolds with singularities in spaces with asymptotics.

2 Spaces with asymptotics

2.1 Main definitions

In this section, we present the exact definitions of spaces with asymptotics to be
used in tbe sequel for constructing the Sobolev problems theory.

So, let M be a smooth manifold of dimension n and X be its smooth submanifold
of codimension v. As above, we use the coordinates (r,w, x) in a tubular neighbor
hood Ux of X. For simplicity, we assurne that Ux is diffeomorphic to the direct
product X x V, where V is a v-dimensional unit disko

Definition 1 The tuple

is named an asymptotic type for the given index S of the Sobolev space. Here:

1. {Sk} is a sequence of complex numbers in the complex plane C", depending
on the parameter x contained as a whole in the half-plane Re S ~ S - v /2 and
invariant with respect to the shift by +1 in the plane C". We suppose that
Sk(X) #- Sj(x) for k #-j. These numbers will be called degrees.

2. {mk} is a tuple of positive integers called 7nuItiplicities of the corresponding
values of Sie.

The requirement Re S :::; 8 - v /2 expresses the fact that all the terms of asymptotic expansion

written in the explicit form do not belong to the space H'(M) used for the remainder.
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Definition 2 The Sobolev space16 IIT(Al, X) 01 order s with asymptotic type T is
a spa.ce of functions u (t, x), subject to the following condi tions:

1. u (t, x) E Hl~c (M \ X) 17, that is, the function u (t, x) belongs to the Sobolev
space of order s everywhere outside X.

2. The function u (t, x) admits the following representation:

where
uj (w,x) E H!J (X x SY-l),

uo(t,x) E H!J(M).

Here X (r) is a cut-off function equal to 1 near the origin which vanishes identi
cally for sufficiently large r. This function must be chosen in such a way that the
loeal coordinates (r,w, x) are defined on its support supp X (r).

We remark that the space HT(M, X) can be treated as a direct sum l8 of Sobolev
spaces H!J (X X S&I-l) for eoefficients uj (w, x), k = 1, ... , N, j = 0, ... , mk - 1 and
the space H6 (M) for regular component Uo (t, x) of the corresponding element. Due
to this treatment, the space IIf (M, X) has a natural structure of a Banach space
which will be used in the sequel while considering the continuity of operators acting
in spaces of the above described type.

2.2 Boundedness theorems

Let us examine the action of differential operators in spaces Hf (M, X). For simplic
ity we shall consider the case when the set of degrees Sk involved into tbe asymptotic
type considered is a latti ce originated from S (x) wit h the step 1, that is,

Sk(X) = S(x) + k, k = 0, . .. ,N-l

16As it was shown above, it can be necessary to consider Sobolev spaces having different smooth
ness along X aod in transversal variables. We restrict ourselves here by the consideration of "ho
mogeneous" Sobolev spaces since the needed generalization is not a hard task though leads 10
significant complication of formulas.

17The space Htoc(M\X), consists of functions u (t, x) such that for any COO-function 1/J with
support in M\X the product 1/Ju belongs to H'(M).

ISThe 8pace Hf can faB to be a direct surn of spaces H' only in the case when one of numbers
S is a nonnegative integer. For example, the function T cos ep in the plane R2 is infinitely smooth
and, hence, the expansion u = rcosep + Uo is ambiguous. In such exceptional cases we shall use
the direct surn avoiding the consideration of aspace of the type Hf itself.
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(we recall that the set {Sk} must be invariant under the shift by 1 in the s-plane,
so that the considered set of degrees is a minimal one). We shall use the following
affirmations on the action of projectors and coprojectors in spaces with asymptotics.

Proposition 1 Let Hf (M, X) be a Sobolev space with the asymptotic type T and
Q' be areal number subJect to the inequality Q' > s - v /2. Then for any function

tf;(r) = !(d/dr)itf;(r)1 ~ Cro for anyj ~ 0 the operators

P.;, : Hf (M,X) ~ H· (X X SV-I)

and

are continuous.

Proposition 2 Let c.p (w, x) E H·(X X Sy-l be an arbitrary smooth function on
X X sv-I. Then the operators

and

are continuous.

The proof of these affirmations goes by the direct estimates of norms of operators
given by explicit formulas (42) and (45).

The following affirmation takes place.

Proposition 3 Let ....... ( .8.8)
a=a t,x,-lat,-lax

be a differential operator of order m in (t, x) wilh smoolh coeffidents. Suppose that
mk+l ~ mk+ 1 tor all k = 0, ... , N -1. Then the operatora delermines a continuous
mapping 0/ Banach spaces

(50)

where T - m is an asymptotic type detennined hy degrees Bk - m with muItiplicities

mk·
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The requirement m.l:+l ~ ml;: + 1 is needed due to the fact that the application of the operator

r8/8x enlarges the multiplicity by 1 (see below).

Proof. Since the Bana.ch structure of Hf(M, X) is induced by its representation
in the form of the direct sum

(51)

determined with the help of decomposition (49), and the same affirmation takes
place for the space H;.-=-: (M, X), for the proof of the theorem one has to:

1. Write down the operator (50) as the matrix in accordance to representation
(51) of Hf(M,X) and silnilar representation of HT__~(AI,X).

2. Verify that all elements of the obtained matrix are continuous operators in the
corresponding Sobolev spaces.

Let us proceed with the first step of this process.
Let

( .a . a ) -m ( a D . a)a t,x,-tat,-t ax =r GI r,w,x,r ar , w,-tr ax
be the expression of the operator a in (r,w,x). One has

where Goj (r,w, x, Dw ) are differential operators of order m - j - 10'1 on the sphere
sv-I. Let us apply the operator a to the function u (t, x) E 1fT(M, X), written
down in the form (49):

N m/l:-l·

'" S ( ) """' InJr k ....XX (r) w r Ic r W -.,-ui (w, x) + auo (t, x).
k=1 i=O J.

Let us compute the first term on the right in the latter formula. Ta da this, we
remark that

a ( s (x)lnir) S ( ) s (x)lnir s (x) Ini-1rr- r k -- = k x r k -- + r kai j! j! (j - I)!
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for j ;::: 1,

as well as

I

_. ~ ( Sk(x)lnir) __ .ask (x) Sk(x)+llni+lr
lr a ,r., - lai r .,.

x J. x J.

Using the last two formulas and expanding the coefficients of the operator a in
powers of r, one can show that the function au is representable as a finite linear
combination of functions (we recall that Sk ( x) = S (x) + k)

In jr
c.pkjl (r) = rS(~)+k-mX(1) (r) -.,-, k = 0,1, ... , j = 0, ... , mk-1, I = 0, ... , m, (52)

J.

of the form

au = 2:: (2:: akjlk'l' (r, w, x, Dw , Dx ) u7,' (w, X)) c.pkjl (r), (53)
k,j,l k',I'

where Dx = -iß/ax (the properties of differential operators akilk'l' (r,w,x, Dw , Dx)
will be refined below).

The sum on the right in (53) can be split into the following three subsums:

a) The subsum involving terms with 1= 0, such that Re S (x) +k :::; s - v/2.
b) The subsum involving terms with I = 0, such that Re S (x) + k > s - v /2 .
c) The subsum involving terms with I > O.

The terms contained in the second and third sums, as weIl as the corresponding
functions c.pkjl (r), we shall call inessential.

It is easy to see that these terms are elements from the space H6-m (M), such that
the norms of these elements in the space 1/6-m (M) can be evaluated via H~ (M)
norms of the corresponding coefficients Ut,' (w, x), since orders of the operators

clearly do not exceed m.
Later on, the following is valid for the terms from the first subsum:

• the coefficients of the operators akjOk'l' (r, w, x, Dw , D x ), involved in this subsum
do not depend on r (since the expansion of coefficients of the initial operator
can be done up to a sufficiently high order so that the remainders of these
expansions will be included into one of the last two subsums);
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• the matrix containing the operators akjOk'fl (r, w, x, Dw , Dx ), is a triangle one
with respect to a lexicographic ordering of pairs (k,j) such that (k,j) < (k',j')
for k > k' or k = k', j < j' (it is clear that for (k, j) < (k', j') the functioll
c.p kjO (r), determined by (52) dccreases faster than the function c.p Je'1'0 (r));

• the operators involved to the diagonal blocks of the above mentioned matrix
(that is, corresponding to the indices k = k'), do not contain differentiation in
x;

• each diagonal block with the number k is, in turn, a triangle matrix with one
and the same operator

on the diagonal.

a~ = a(O,w,x,S(x) + k,D"",O) (54)

So, we have derived the matrix representation of the operator a in terms of
expansions (51); to be short, we shall use the block form for matrices, including
coefficients corresponding one and the same value of k in one and the same block.
Denoting by U le the vector

Je (k Je)tU = UO, ••• u m .... _ 1 ,

we have

".. Po Pi PN- IUo a Uo

UO

° AO
* * uo

W

".. U1 0 0 Al * UI
(55)a = w

UN - 1 0 0 0 A N - 1 UN - I
w

In the latter formula:

• Pi are sums of composi tions of coproj ectors p;(T) wi th c.p (r) = c.p kjl (r) of
the form (45) and differential operators of order not more than m over all
inessential functions c.plejl (r);

• * denote matrices of differential operators of order not more than m on the
manifold X X sv-I.,
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• by A~ we denote triangle matrices of differential operators of order not more
than m on 5/.1-1 with coefficients smooth in x:

.......k

* *ar,u

0 .......k

*Ak =
ar,u

r,u

0 0 .......k
ar,u

with operator (54) on the diagonal.

Let us check the continuity of elements involved into matrix (55) in the corre
sponding Sobolev spaces. It is clear that all the operators Ci~, as weIl as all the
operators marked with stars are continuous from H'(X x 5/.1-1) to H6-rn(x X S/.I-I),
since all these operators are differential operators of order not more than m. It is
clear also that the operator

is continuous. The only thing rest is to check that all the operators P; are continuous
In spaces

Pi : H6 (X x S/.l-I) -+ H6
-

m (M).

This affirmation is directly follows from the definition of the set of inessential func
tions lpkjl.

Remark 2 Ir an asymptotic type T contains severallattices originated from 5 (x),
noncomparable with one another modulo integers then the operator Ci can be repre
sented in the form

.......
a=

a P~ p;
o AI 0
o 0 A 2

p*L
o
o (56)

o 0 0 AL

where L is the number of lattices, and Aj are blocks of the form

AO
r,u

o

o o
corresponding to these lattices.

Remark 3 While proving Proposition 3 we have derived the matrix form of the
operator agiven by formula.s (55) and (56).
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3 An algebra of matrix operators

3.1 Sobolev problems and corresponding operators

In this section, we investigate the correspondence between Sobolev problems in their
general statements and the corresponding matrix operators. As above, for simplicity,
we restriet ourselves by the case when the asymptotic type considered contains only
one lattice of the form

Sie (x) = S (x) + k, k = 0, 1, ... , N - 1.

The changes to be done for the consideration of the general case are quite evident.

Let Hf (M, X) be a Sobolev space with the asymptotic type T and let a be an
operator of the above described type. Then, due to Proposition 1, this operator
determines a continuous mapping

Consider the following problem:

where the first equation is valid evcrywhere on Al exccpt for the submanifold X.
Here uj (w, x) and Uo (t, x) are functions involved into expansion (49), P;:j and Pi,plcj
are operators (44) and (45) corresponding to some smooth functions 'Pkj (w) and

'Pkj (w), Bkj , Rb, and Clej are pseudodifferential operators on manifolds X X SJI-l
and M, respectively, and L is some integer. It is supposed that the functions u and
f belong to 1/T(M, X) and HT-=-: (AI, X), correspondingly.

Let UB write down the operator equation corresponding to problem (57):

(
Ci p. 0) (uo) ( /0 )

. 0~ Aw P;. U = F .
z· B Pi,p 0 c 9

The latter equation uses the following notation.

1. By U, we denote a vector with components {uj (w, x)} lexicographically or-
dered. Sinlilar, c is a vector wi th components {df

J
• (x) } . ,i

,I
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2. By F, we denote a vector containing the asymptotics components of the right
hand part f of problem (57).

3. By P., we denote astring containing the operators P~, ... ,PN-1 , involved
into the description (55) of the operator a.

4. A, is a triangle matrix with differential operators of order not more than m
as its elements. The diagonal elements of this matrix are formed from the
operators lit, defined by (54).

5. P;. is a diagonal matrix with operators P;Zj involved into the right-hand

part of (57) as its elements. Similar, the matrix PI{) is built from the operators

Pl{)kjBL, involved into the left-hand part of the boundary condition of problem
(57).

6. Finally, B is a matrix with operators Sb involved into the left-hand part of
the boundary conditions of (57) as its elements.

To simplify the notation, we shall carry out the theory for spaces with one-term
asymptotics. The changes needed for the consideration of the general case are clear
enough though lead to significant complication of formulas.

3.2 Geometrie situation and the eorresponding mappings
of funetional spaees

So, let us consider the space Hf (M, X) with the asymptotic type T determined by
a single point19 s = S (x) for any x E X with multiplicity 0 and let Hf__: (M, X)
be a Sobolev space with asymptotics corresponding to the asymptotic type T - m,
determined by a single point s = S (x) - m with multiplicity O. Let a be, as above,
a differential operator on Al with infinitely smooth coefficients.

Consider the corresponding matrix operator

(58)

where, in the case considered, all operators involved in the latter matrix are scalar
ones. Dur aim is to widen the set of operators of the form (58) up to an operator
algebra with involution. To solve this problem, let us consider the geometrical

I91n the case of one-term asymptotic expansions the above mentioned lattices reduce up to one
point each.
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Ux = x X DII

7rl

tr X X 5 11
-

1
1

7r2

X

Diagram 1.

situation in more detail. Since all differences between the considered case and the
case of elliptic operators on smooth manifolds without boundary are concentrated
in a neighborhood of X, we shall carry out all the considerations in a tubular
neighborhood Ux of X.

As it was alredy mentioned, we suppose that Ux = X X DII, where DII is a unit
disk in the v-dimensional Cartesian space. The geometrical mappings connected
with Ux are drawn on Diagram 1.

The operators involved into this diagram determine the operators 1r-, 1ri, 1r;, and

7r- H· (X) -+ HtJ (X X DII), tr- [u (x)] = u (x) 0 1 (t);

1ri HtJ (X x 5 11
-

1
) -+ Ha (X X DII), tri [u (w, x)] = u (w, x) 0 1 (r) j

11"; HtJ (X) -+ HtJ (X X 5 11
-

1 ) 1 1r; [u (x)J = u (x) 0 1 (w);

i- : HtJ (X X DII) -+ H·-1I/2 (X) 1 i- (u (t, x)] = u (0, x) 1

the latter mapping being defined for s > v /2.
In turn, these operators determine the adjoint operators in the Sobolev space

scale with respect to the following parings:

(u, v) = Ju (x) v (x) dx
x
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in aspace of functions on X (we suppose that a nondegenerate positive measure is
fixed on X and that the coordinates x are chosen in such a way that the density of
this measure equals 1),

(u,v) = j u(w,x)v(w,x)dswdx,

XxSIl
- 1

on the manifold X x sv-l (here by ds""" we denote the standard volume element on
the unit (v - 1)-dimensional sphere), and

(u,v) = j u(t,x)v(t,x)dtdx,
M

on the manifold M (more exactly, on the tubular neighborhood X x Dv-l of the
manifold X j by dt we denote v-dimensional volume element in RV). These adjoint
operators are realized in the Sobolev spaces in the following way:

Jr. :H-6(XxDV) -+ H-6(X), Jr.[u(t,x)] = ju(t,x)dt;

D'"

1

Jrh :H-6(XxDV) -+ H-6(XxSV- 1), Jrl.[u(r,w,x)] = j u(t,x)rV-1dr;

o

Jr2. : H-6 (X X SV-I) -+ H-6 (X) , Jr2. [u (w, x)] = j u (w, x) dsw;

5"'-1

and the latter mapping is defined for s > v /2. All these mappings are drawn on
Diagram 2.

On this diagram, we do not show the exact values of indices of the Sobolev spaces
in question and denote all functional spaces by the letter :F.

While constructing an operator algebra one has to take into account that the
compositions of matrix operators of the form (58) contains operators of more general
form than that included into the initial operators of the form (58). Clearly, at any
place in the matrix of an operator inclucled in the algebra unclcr construction, only
compositions of the operators involved into the latter diagram with pseudoclifferen
tial operators acting on the required manifolcls can appear. For example, operators
in the upper left corner of the matrix must take functions on M into functions on
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:F(X x DV)

1rh 1r*
1

11". 1r. :F (X X SV-I) Z. i*

1r2* 1r.
2

:F(X)

Diagram 2.

the same manifold. Operators standing in the seeond row of the first eolumn must
take funetions on M into funetions on X X sv-I, ete.

It is dear that the number of operators involved into such eompositions inereases
infinitely and the description of elements of the eonstrueted algebra beeomes quite
transcendental. Fortunately, some of the above mentioned eompositions oeeur to be
pseudodifferentialoperators. The similar situation takes plaee in the eonstruction of
the operator algebra corresponding to tbe situation of a single embedding (dassieal
Sobolev problems, see [2], [211), a.s weIl as in tbe eonsideration of some dass of
non-Ioeal problems eorresponding to a pointed bundle (see [221).

It oecurs that the results of the last eited paper ean be used in tbe construction
of the operator algebra induding matriees (58). In doing so, however, it is neeessary
to represent the operators involved into Diagram 2 in a somewhat different form.
This will be done in the next subsection.

3.3 Graphie sehemes and matrix operators

To deseribe tbe above mentioned representation we remark that the disk DV ean be
eonsidered as a eylinder over the sphere sv-l (with shrinked lower boundary):

D V = sv-l X [0,1] / sv-l X {O} .
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So, functions on Ux = X x DV can be treated as functions on X x sv-l X [0, 1] and vice
verse (we remark that the values of the functions considered on a set of zero measure
is not essential for the definition of Sobolev spaces at least for nonnegative values of
the Sobolev index). Functions from this space are characterized both by differential
properties of the function in question on the open cylinder X x sv-l X (0,1] and by
the behavior of this function as r ~ O.

Later on, if we represent the tubular neighborhood of X as a cylinder, the em
bedding of X in M is induced by

X X sv-l X {O} -4 X X sv-l X [0,1] .

The operator i- can be thus represented as a composition

.... 1 .
t = ~11"'~ ... 01.h,

"'v-l

where Vv - l is a Riemannian volulne of the (v - l)-dimensional unit sphere. Taking
into account the relations

7r'" = 7r; 07ri,

7r. = 7r2. 0 7rh,

which are the consequences of the naturality of the operation *, one sees that the
tuple of operators involved into Diagram 3 (where iJv is the deleted disk) can be
used instead of the tuple 7r., 11";, 7r;, i\ 7r., 7rh, 7r~ ... and i•.

Clearly, one has to control carefully the behavior of symbols of pseudodifferential
operators near r = O.

Now operators which can appear while computing compositions of an arbitrary
number of matrices of the type (58) in any place of the resulting matrix can be
described in the form of convenient graphical form allowing one to obtain easily
the general form of the operator matrix invariant with respect to compositions and
conjugations. Let us illustrate this on several examples.

The possible compositions of operators from the latter diagram and pseudodiffer
ential operators which can appear in the upper left corner of the result are illustrated
by the Diagram 4.

The horizontal lines on this diagram denote the function spaces given on the
corresponding manifolds (from above to below: X x Sv-l X [0,1], X X sv-I, X),
each arrow denotes one of the operators drawn on Diagram 3, and the endpoints of
these arrows correspond to pseudodifferential operators. So, the set 1 of arrows on
Diagram 4 represents one of operators of the form

AihB1I";C1I"2.Di';E,
Ai 1010 B1I";C7r2. D1rl ... E,
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F (x x DV) = F(X X sv-l X [0,1])

7rh 7r. '.1 2.] 2.h

F (X X SV-])

11"2. 7r.
2

F(X)

Diagram 3.

1 2

Diagram 4,
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A1r; B1riC1r'J.Di"; E,
A1r;B7r;C1r'J.D1r1.E,

where A, B, C, jj a.nd Eare some pseudodifferential operators on the corresponding
manifolds. Such sets of arrows will be called graphie sehemes, the arrows themselves
will be called edges and their endpoints will be called vertexes. So, each edge of the
graphic scheme represents one of the operators from Diagram 3, and each vertex
represents a pseudodifferential operator on the eorresponding manifold. We remark
that one and the same graphie seheme.includes several types of compositions of
operators from Diagram 3 with pseudodifferential operators.

Later on, all pseudodifferential operators used for the eonstrueting operators
corresponding to graphie schemes are operators on the corresponding manifolds
with smooth symbols. The only exeeption is that one can use the multiplication by
a function 1/J(r) subject to the estimates

(59)

with some fixed Q' in the composition with one of the operators 1rt- or 1ri.
Let us describe the action of operators corresponding to graphie schemes in the

Sobolev space scale. Clearly, it suffiees to eonsider the action of elementary operators
of the form

sinee the action of pseudodifferential operators in Sobolev spaees is weil known.
Moreover, the operators i·, i., 71'"., 71'". in the Sobolev space seale are also examined
(see, e. g. [22]). So, the following result must be proved:

Lemma 1 Let 1/J(r) be a funetion vanishing outside some neighborhood of the origin
subject to estimates (59). Then the operators 71'"1- 1/J(r) and 1f'(r )71'" i are continuous in
the following function spaees:

1'(r)1r;: H"(X X SV-1) ~ HS(X X bV),

7rt-1/J(r) : H-tJ(X X b V
) ~ H-·(X X 5V

-
1

),

for s < v/2 + Q - 2.

Proof. Sinee the operators eonsidered are adjoint to eaeh other, it is sufficient to
prove the eontinuity of the first one. Clearly, we have

1f'(r)1r;[u(W, x)] = 1'(r)u(w,x)
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(60)

and, henee,

IlljJ(r)1r~[u(w,x)]II$ ~ IlljJ(r)II,' Ilu(w,x)II, = c· Ilu(w,X)1l6'

sinee for s < 11/2 + 0' - 2 the funetion tP(r) belangs to the spaee H6(DII). This
eompletes the proof.

Let us introduee now some terminology. Suppose that an operator eorresponding
to same graphie scheme is given. Then one ean eonstruct a chain of the Sobolev
spaees eorresponding to this operator. For example, such a chain corresponding to
the operator

determined by tbe graphie sebeme 2 on Diagram 4 (where l/J1(r) and tP2(r) are
functions of the above described type subject to the inequality (59)), is

H'(X x iJV) ~ H$-mc(x X iJV) 1f
h .!:(r) H$-mc (X X 5 11 - 1) !

The number mA + mB + mc will be called the orde.,:J° of the operator (60). The
operator itself will be ealled admissible for the given index S of a Sobolev spaee if
inequalities needed for the eorresponding operator to be continuous are fulfilled on
eaeh step; for example, operator (60) is admissible for given s if

V 11
S - mc < 2' + 0'2 - 2, s - mB - mc < 2' +0'1 - 2,

where 0'1 and 0'2 are numbers involved into estimate (59) for the funetions l/J1 and
l/J2' respectively. The following affirmations are direct consequences of Lemma 1 and
the defini tions above.

Proposition 4 Let Abe an operator of order m eorresponding some graphie seheme
admissible for some index S of a Sobolev spaee. Then this operator is eontinuous in
spaees

where Mi and Mj are mani/oids from the list (X X DV, X X sv-1, X), eorresponding
to the origin and the endpoint of the eonsidered graphie seheme, respeetive1y.

20More exactly, by Sobolev order, so th at, for instance, the orders of the operators ii and i h

are both equal to v /2.
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(61)

The following affirmation is also quite evident.

Proposition 5 Let A and B be the two operators 0/ orders mA and ma eorre
sponding to the graphie sehemes EA and Ea such that the endpoint 0/ the scJ:eme
EA eoineides with the origin 0/ the seheme Ea . Suppose that the operators A and
jj are admissible for sand s - mA, respeetively, for some given s. Then the eompo
sition jj 0 A is a well-defined operator admissible for s. This operator eorresponds
to the concatenation EAEB of graphie schemes EA and EB •

Later on, i/ A is an operator 0/ order m corresponding to agraphie seheme EA
admissible tor some s, then A· is the operator adndssible /or -(s-m). This operator
corresponds to the graphie scherne EÄ 1 obtained Irom EA by inversion 0/ direetions
of all its arrows.

Proposition 6 The composition 01 the two operators corresponding to the two con
sequent arrows 0/ any graphie seheme such that first 0/ them goes up and the other
goes down by one step, is a pseudodifferential operator.

Proof of this affirmation goes in one and the same way for all operators subject
to conditions of Proposition 6. So, we present the proof for one of these operators,
e. g.

where A is some pseudodifferential operator on X X DV.
To carry out the proof (cf. [21]), we use the well-known Hörmander criterium [23]

of pseudodifferentiality of an operator applying the latter operator to the function of
the form e"S(r,w)c.p(x, w), where S(x, w) and c.p(x, w) are smooth functions on X xs v - 1 •

We have
AtP2( r )1t";[e"S(r,w)c.p(x, w)] = A{e"S(x,w)c.p(x, w)tP2(r)}.

Since A is a pseudodifferential operator, the expansion

00

A1/J2(r)1I";[e"S(x,w)c.p(x,w)] = e"S(x,w) L ),m-j Fj(r,x,w)
j::::O

takes place, where F (r, x, w) are same functions dependi ng on the derivatives of the
functions Sand c.p up to a certain order. We remark that the functions Fj(r, w, x)
have not more than power increase in r.

Applying the operator 1rhtPdr) to the latter formula, we obtain

00 1

7l"1o,pI(r)A,p2(r)7l";[e~S(x,w)'f'(x,w)] = e~S(x,w) L >..m-j J,pJ(r)Fj(r, x,w)r"-J dr,
}::::O 0
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1 2 3

Diagram 5.

4

where the integration must be treated as an applieation of a distribution in r to the
test funetion equal to unity on [0,1]. The existenee of the latter expansion proves
the pseudodifferential eharaeter of operator (61).

The affirmation proved motivates the following terminology. The set of the two
subsequent edges of a. graphie seheme will be ealled redueible if the first of them
goes upwards and the seeond goes downwards. Agraphie seheme is called simple if
it does not eontain reducible subschemes. For example, the graphie sehemes 1 and
2 on Diagram 4 are simple ones, and the sehemes 3 and 4 are not. Moreover, 1 and
2 are the only simple sehemes among all sehemes with the same endpoints.

Let us present some more graphie sehemes corresponding to the interseetion of
the first column and the seeond row of the matrix. These sehemes are drawn on
Diagram 5.

Here sehemes 1 and 2 are simple, and a11 the rest are not. Moreover, 1 and 2 are
the only simple schemes among a11 schemes with the same position in the matrix.
Generally, /or each position in the matrix there exist only a finite number 0/ simple
sehemes.

Denote by A ij a finite surn of operators eorresponding to agraphie seheme with
the origin on ith and the endpoint on jth level.

The above considerations lead us to the fo11owing statement.

Theorem 1 The opemtor

eontaining finite sums 0/ operators corresponding to simple graphie sehemes deter-
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mine a continuous mapping

if alt the operators involved into the j th column are admissible for the index Sj. The
set A of matrix operators of this kind form an algebra with involution.

3.4 Ellipticity and finiteness theorems

In this subsection, we investigate the question of ellipticity for operators of the above
introduced algebra. In other words, we a.re intended to derive the conditions under
which the corresponding operators are a.lmost invertible21 • To make our presenta
tion more transparent, we shall consider matrix operators corresponding to Sobolev
problems in spaces with one-term asymptotics

u(x,t) = r S(x)u1(X,W)+uo{x,t),
f(x,t) = r S (r)-mf1(x,w)+fo(x,t),

where m is an order of the corresponding elliptic differential operator a, and the
functions Uj, fj belong to the corresponding Sobolev spaces.

This means that we consider an matrix operator corresponding to the following
problem

(62)

of the type (57). Here:

• the operator Ci is an elliptic pseudodifferential operator on M of order m:

a = r-ma (r,w, x, r :r' Dw , rDx)
near X;

• the operators C, BI, and 82 are some pseudodifferential operators on the
manifolds M and X X sv-I;

• the operator PtjI is defined by

(P"udj (x) = Judx,w),pj (x,w) dsw , j = 1, ... , N

S~-l

with some (smooth, for simplicity) functions "pj (x,w) on X x sv-I;

21That is, invertible modulo compact operators
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• the operator P; is defined by

N

(p;c) (x,W) = L <Pj (x,w) Cj (x)
j:::::l

with some smooth funetions <Pj (x,w), j = 1, ... , N;

• c and 9 are vector-valued functions on the manifold M, C = (Cl (x) , ... , CN (x)),
9 = (91 (x), ... ,9N (x)).

The corresponding operator equation has the form

where aw is defined similar to the formula (54) above:

aw = a (0, W, x, S (x) , Dw , 0) .

(63)

(64)

We remark that no eonneetion between the operator a and the projectors P; and P.;.,
is supposed. Dur aim is to derive the ellipticity conditions for operator (63) (and,
hence, to problem (62)) in terms of the operators involved into (63).

Since, as we have seen on the examples above, the nonresonance case is more
or less trivial, we shall consider the resonance case (whieh has also the physical
interest). This means that the operator (64) is degenerate, or, in other words, that
tbe number S (x) is a spectral number for the family

(Lw (z) = a (0, w, x, z, Dw, 0)

for any fixed value of x. Again, we assurne that the kernel and the cokernel of
operator (64) smoothly depend on the variable x along the manifold X.

Oue to the above assumptions, there exists a decompositions

(65)

where Keraw is isomorphie to the space of sections of some finite-dimensional bundle
K over the manifold X, and

(66)

where L2 (the cokernel of the operator aw ) is isomorphie to the space of seetions of
some other finite-dimensional bundle Cover X.
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Let us fix the mentioned bundles and isomorphisms. Then the decompositions
(65) and (66) become

HIJ'J (X X 8&1-1)

H t1'J (X X 8&1-1) =

LI EB H·'J (X, !() ,

Im aw EB H(1'J (X, C).
(67)
(68)

In accordance to decompositions (67) and (68), the action of the operator aw can
be written down in the form

(~ 0) (u~ ) = ( fi )o 0 u1 /1'1 1

where
~ : LI -+ Im~

is an isomorphism. Clearly, both L} and Im~ can be interpreted as sections of
infinite-dimensional bundles over X and ~ is a /umily 0/ isomorphisms in fibers of
these bundles.

So, the elliptieity 0/ the initial operator induees splitting 0/ the isomorphie part
0/ the corresponding /amily such that the reminder is finite-dimensional.

Now let us try to rewrite equation (63) in terms of the decompositions (67), (68).
To do this we denote by

'PO = ('P~, .. . ,'P~)
the orhtonormal (in the L2-sense) basis in the kernel of the operator aw , correspond
ing to the isomorphism in question, and by

the similar basis in the cokernel of this operator (we remark that the dimension of
kernel and cokernel of the operator aw are equal and we denote it by k). Then

• the relation Plpo P;o = lk takes place;

• the operator P;o Plpo is a projector to the kerne} of the operator aw since

Now the decomposition of the function Ul (w, x) corresponding to decomposition
(67) is

where
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1. u? = (1 - p;oPiPo) Ul is a projection of the function Ul on the space LI,

the space LI is automatically defined here as the image of the projector

(1 - p;oPiPo);

2. u~ = Pvfl (p;opvfl ) U1 = PtpOUl is a section of the bundle K identified with

Kera"" with the heip of the operator Ptpo.

Similar, the decomposition

is defined by

1. Jf = (1 - PJoP1/JO) 11 is a projectionof the function 11 on the space Imaw;

2. !f = P1/JO!1 is a section of the (finite-dimensional) bundle C identified with the
cokernel of the operator a"" with the help of the projector PVfJ.

Now, equation (63) can be rewritten as

...... 'P. p. 0a 0 1

(~f) (~)
0 (iil 0 (1 - PJ,o!.;,o) CP;"" (69)
0 0 0 Cl

i·BI P11/JB21

......
B21 0

Here

• Po is just a restriction of the operator p. to the space L1 i

• P;u~ = p·p;ou~ since the function p;ou~ is a function in (w,x) corresponding
to the section u~ of the bundle K;

• Pl1/JB21 is a restrietion of the operator P1/JB2 to the space LI;

• the operator Cl is defined by

this operator is a pseudodifferentialone in seetions of finite-dimensional bun
dIes due to Proposition 6;
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• the operator B22 is a pseudodifferential operator in sections of finite-dimensi
onal bundles defined by22

Let us reduce the obtained system to a pseudodifferential system on X by "exlud
ing unknowns" method omitting compact operators.

First, we derive the function Uo from the first equation

of system (69). The result is

where li-1 is the almost inverse for the operator a.
Second, we derive the unknown u? from the second equation

~u~ + (1 - PJpPWO ) CP;c = ft
of system (69). We obtain

u~ = (~)-l (~- (1 - PJpP1/Jo) CP;c).

(70)

(71 )

Equations (70) and (71) separate the "infinite-dimensional" part of the solution
expressing it via its "finite-dilnensional" part. Clearly, this is possible only under
the condition of ellipticity of the initial operator a.

Substituting relations (70) and (71) into the last two equations of system (69),
we arrive at the following system of equations for the unknowns c and ut:

(72)

where the operators ß 1 and ß 2 are (matrix, in general) pseudodifferential (due to
Proposition 6) operators given by

221n sorne sense, the operators Cl and 822 compare the boundary and coboundary operators
involved into the considered problem with projectors on kernel and cokernel of the corresponding
operator family. These operators play an essential role in the investigation of ellipticity of the
matrix operator in question.
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and the function 9 equals to

So, the ellipticity condition for matrix operator involved into equation (69) is
the requirement of ellipticity of the pseudodifferentia.l operator in (72). Due to the
particular form of this (matrix) operator this condition can be written down in the
form:

a) The operator a is elliptic.
b) The operator Cl is elliptic.
c) The operator ,6,1 is elliptic.

Definition 3 The opera.tor

-- p* p* 0a 0 1

0 an 0 (1 - PJ,o!"",) cp;
A= w (73)

0 0 0 Cl..... ..... .....
i*BI P11/JB21 B22 0

involved iota (63) is ca.lled to be elliptic if the conditions a) - c) above are fulfilled.

The following affirmation is valid:

Theorem 2 Let operator (73) be elliptic. Then it possesses the Fredholm property.

Proof. The earried out excluding of unknowns method supplies us with the matrix opera
tor (almost) inverse to operator (73). In partieular, the fini teness theorem in the eorresponding
spaees23 follows from this fact.

The form of the almost inverse for (73) is:

( ~1l
A12 .413 .414 ),A 21 A22 .423 .424 (74).431 A32 .433 .434

.441 A'.oI2 A.oI3 .444

where

23We are not presenting here the exact indices of the corresponding Sobolev spaces: these CUffi

bersome expressions hardly ean be applied for the conerete problems where they can easily COffi

pute<! directly.
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All = (i-I (1 +Pi.611j·B1(i-l) I

A12 ---lp. ('"'0)-1 ---lp• .6.-1a 0 aw - all

C· B ---lp. PB) (-::-0)-1X t 1a 0 - 1!JJ 21 aw I

..413 = ---Ip. (-::-0) -I (1 _ p. P. ) Cp·C- 1
a 0 aw !JJo 1/10 VJ 1

+---lp• .6.-1.6. 8- 1
all 2 1 I

..414 = _---lp• .6. -I
all 1

..422 = (0) -1aw 1

.423
(~ ) - 1 ( ) -- -- 1= a w 1- P~oP1/1o CP;Ci I

..431 = .6. -1 .• B --- 1
1 I 1a I

.432 = .6.-1C.B ---Ip. PB) ('""'0)-11 I 1a 0 - 11/1 21 aw I

..433 = .ä. - 1.6. 8- 1
1 2 1 1

..434 = .6.- 1
1 I

..443 = 8-1
1 1

aod aH the rest elements of the matrix vanish. The verification of the facts that (74) is an matrix

operator of the type described in Subsection 3.3 aod that (74) is almost inverse for (73) is left to

the reader.

Similar considerations can be used for deriving the ellipticity conditions for gen
eral matrix operators of the type described in the Subsection 3.3. We shall not carry
out these considerations here since they are rather complicated in form and we leave
them to the reader. We remark only that in this case the ellipticity condition for the
operator awill be replaced by the ellipticity condition for an operator of the form

with same p. and P involved into the algebra described in [22].

3.5 Index of a matrix operator

In this subsection, we present the computation of the index of the elliptic operator
from the above constructed algebra. Similar to the previous subsection, we restrict
ourselves by consideration of operator (73) corresponding to a Sobolev problem in
spaces with asymototics in the resonance case.

The computation of the index will be carried out with the help of a homotopy
connectiong the initial operator to the diagonal one (the similar procedure was used
in [2] for usual Sobolev problems).
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So, let us consider a homotopy

...... tPo tPi 0a

0 ao 0 t (1 - P~p... ) CP;
A(t) = IN

0 0 0 Cl
...... ......

B(t)ti- BI tP1VJB21 0

(75)

where the operator B(t) is gi Yen by

Operator (75), clearly, coincides with (73) for t = 1, and becomes

(

a 0

A(O)= 0 ~o 0
o 0

(76)

at t = O. As above, the ellipticity conditions for operator (75) are reduced to the
ellipticity of the operator a and the following pseudodifferential operator

acting on sections of finite-dimensional bundles over X. Here (this expression is not
essential in the sequel)

1-\ (t) = e (ti- Blalp~ - P11/JB21 ) (~)-l ClP;'P'

So, if the operator (73) is an elliptic one, then A (t) for each t E [0, 1] is elliptic,
as weIl. Therefore, the index of A (1) coincides with A (0), and we arrive at the
following statement:

Theorem 3 The index 01 matrix operator (73) equals to

index A = index A (1) = index A (0) = index a+ index Cl + index 1-\1'

Actually, the latter formula follows from the fact that the operator iI~ involved
into (76) is an isomorphism.
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