The Petersson Scalar Product in the Cohomology of $\Gamma_{0}\left(p_{0}\right)$

by

Xiangdong WANG

Max-Planck-Institut für Mathematik

Gottfried-Claren-Straße 26
D-5300 Bonn 3

The Petersson Scalar Product in the Cohomology of $\Gamma_{0}\left(p_{0}\right)$

by

Xiangdong WANG

1. Introductiọn.

Let p_{0} be a prime, $\Gamma_{0}\left(p_{0}\right)$, as usual, the congruence subgroup of $\Gamma=P S L_{2}(\mathbb{Z})$.

$$
\Gamma_{0}\left(p_{0}\right)=\left\{\left.\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \Gamma \right\rvert\, c \equiv 0 \bmod p_{0}\right\}
$$

Let $S_{k}\left(\Gamma_{0}\left(p_{0}\right), \eta\right)$ be the space of the cusp forms of weight k and nebentypus η. For $f \in S_{k}\left(\Gamma_{0}\left(p_{0}\right), \eta\right), A \in \Gamma$ the period polynomial is defined by

$$
\rho_{f}(A)=\int_{0}^{i \infty}\left(\left.f\right|_{k} A\right)(z)(x z+y)^{k-2} d z
$$

Here the integral has to be taken along the line $z=i t, t \geq 0$. For any function f, defined on the upper half plane H, and $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in G L_{2}^{+}(\mathbb{R})$ and any integer k we use

$$
\left(\left.f\right|_{k} A\right)(z)=(\operatorname{det}(A))^{\frac{k}{2}} f\left(\frac{a z+b}{c z+d}\right)(c z+d)^{-k}
$$

Since f is a cusp form $\left.f\right|_{k} A(z)$ is exponentially decreasing for $z \rightarrow 0, i \infty$, the above integral is absolutely convergent. The period polynomial $\rho_{f}(A)$ depends only on the left coset of A in $\Gamma_{0}\left(p_{0}\right) \backslash \Gamma$. Some behaviours of the period polynomials have been studied in [An] and [Sk]. The aim of this paper is to study the connection between the period polynomial of f and its Petersson scalar product. We will generalize a result in [KZ] p243 or [Ha] p280. The main result of this paper is the following:

Theorem: Denote $A_{i}:=\left(\begin{array}{rr}0 & -1 \\ 1 & i\end{array}\right)$ for $i=0,1, \ldots, p_{0}+1, T=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$. Then the Petersson scalar product of two cusp forms $f, g \in S_{n+2}\left(\Gamma_{0}\left(p_{0}\right), \eta\right)$ can be represented as the sum of the period polynomials of f and g :

$$
(f, g)=-\frac{1}{6(2 i)^{n+1}} \sum_{i=0}^{p_{0}}\left(\left(T \rho_{f}\left(A_{i+1}\right), \rho_{g}\left(A_{i}\right)\right)_{M}-\left(\rho_{f}\left(A_{i}\right), T \rho_{g}\left(A_{i+1}\right)\right)_{M}\right)
$$

where $(\cdot, \cdot)_{M}$ is a pairing which will be defined in $\S 4$. In order to prove the main theorem we first describe the Shapiro isomorphism and the Eichler-Shimura isomorphism explicitly. In $\S 4$ we define and calculate the Petersson scalar product of two cusp forms in the cohomology of $\Gamma_{0}\left(p_{0}\right)$.

2. The Eichler-Shimura Isomorphism.

We consider the following $\Gamma_{0}\left(p_{0}\right)$-module

$$
M_{n}=\left\{\sum_{v=0}^{n} a_{v} x^{v} y^{n-v} \mid a_{v} \in \mathbb{Q}\right\},
$$

where $n>0$. The group Γ acts on M_{n} via

$$
r x^{v} y^{n-v}=(a x+c y)^{v}(b x+d y)^{n-v}, \quad r=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)
$$

Let $\eta:\left(\mathbb{Z} / p_{0}\right)^{*} \rightarrow \mathbb{C}^{*}$ be a Dirichlet character and $\mathbb{Q}[\eta]$ the ring generated by \mathbb{Q} and the values of η. Set $M_{n, \eta}=M_{n} \otimes \mathbb{Q}[\eta]$. We define an operation of $\Gamma_{0}\left(p_{0}\right)$ on $M_{n, \eta}$ via

$$
r . x^{v} y^{n-v}=\eta(d)(a x+c y)^{v}(b x+d y)^{n-v}, \quad r=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) .
$$

Then the Eichler-Shimura isomorphism says that the following sequence

$$
\begin{gathered}
0 \rightarrow S_{n+2}\left(\Gamma_{0}\left(p_{0}\right), \eta\right) \oplus \overline{S_{n+2}\left(\Gamma_{0}\left(p_{0}\right), \eta\right)} \xrightarrow{\phi \oplus \bar{\phi}} H^{1}\left(\Gamma_{0}\left(p_{0}\right), M_{n, \eta} \otimes \mathbb{C}\right) \rightarrow \\
\\
\rightarrow \bigoplus_{s \text { a cusp }} H^{1}\left(\Gamma_{0}\left(p_{0}\right)_{s}, M_{n, \eta} \otimes \mathbb{C}\right) \rightarrow 0
\end{gathered}
$$

is exact, where s runs over cusps with respect to $\Gamma_{0}\left(p_{0}\right)$ and $\Gamma_{0}\left(p_{0}\right)_{s}:=$ $\left\{r \in \Gamma_{0}\left(p_{0}\right) \mid r s=s\right\}=<T_{s}>$ is a cyclic infinite group. We describe now the map ϕ :

$$
\begin{gathered}
\phi: S_{n+2}\left(\Gamma_{0}\left(p_{0}\right), \eta\right) \rightarrow H^{1}\left(\Gamma_{0}\left(p_{0}\right), M_{n, \eta} \otimes \mathbb{C}\right) \\
\phi_{f}(r)=\int_{0}^{r 0} f(z)(x z+y)^{n} d z
\end{gathered}
$$

Denote H the upper half plane, $\bar{H}=H \cup \mathbb{Q} \cup\{\infty\}$, we show now:

Lemma: For any $r \in \Gamma$ and $t_{0}, t_{1} \in \bar{H}$

$$
\begin{equation*}
\int_{r t_{0}}^{r t_{1}} f(z)(x z+y)^{n} d z=r \int_{t_{0}}^{t_{1}}\left(\left.f\right|_{n+2} r\right)(z)(x z+y)^{n} d z \tag{2.1}
\end{equation*}
$$

Proof: Let $r=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$. Put $z=r u=\frac{a u+b}{c u+d}$, then $d z=(c u+d)^{-2} d u$. The integral can be rewritten as

$$
\begin{aligned}
\int_{r t_{0}}^{r t_{1}} f(z)(x z+y)^{n} d z & =\int_{t_{0}}^{t_{1}} f(r u)\left(x \frac{a u+b}{c u+d}+y\right)^{n}(c u+d)^{-2} d u \\
& =\int_{t_{0}}^{t_{1}} f(r u)(c u+d)^{-n-2}((a x+c y) u+(b x+d y))^{n} d u \\
& =\int_{t_{0}}^{t_{1}}\left(\left.f\right|_{n+2} r\right)(z)((a x+c y) z+(b x+d y))^{n} d z \\
& =r \int_{t_{0}}^{t_{1}}\left(\left.f\right|_{n+2} r\right)(z)(x z+y)^{n} d z
\end{aligned}
$$

- qed -

So for $r, s \in \Gamma_{0}\left(p_{0}\right)$ and $f \in S_{n+2}\left(\Gamma_{0}\left(p_{0}\right), \eta\right)$ we have

$$
\begin{aligned}
\phi_{f}(r s) & =\int_{0}^{r s 0} f(z)(x z+y)^{n} d z \\
& =\int_{0}^{r 0} f(z)(x z+y)^{n} d z+\int_{r 0}^{r s 0} f(z)(x z+y)^{n} d z \\
& =\phi_{f}(r)+r \int_{0}^{s 0}\left(\left.f\right|_{n+2} r\right)(z)(x z+y)^{n} d z \\
& =\phi_{f}(r)+\eta(r) r \int_{0}^{s 0} f(z)(x z+y)^{n} d z \quad\left(\left.f\right|_{n+2} r=\eta(r) f\right) \\
& =\phi_{f}(r)+r \cdot \phi_{f}(s) .
\end{aligned}
$$

i.e. ϕ_{f} is a cocycle in $Z^{1}\left(\Gamma_{0}\left(p_{0}\right), M_{n, \eta} \otimes \mathbb{C}\right)$.

3. The Shapiro Lemma.

We denote by $W_{n, \eta}$ the co-induced module of $M_{n, \eta}$ on Γ.

$$
W_{n, \eta}=\operatorname{Coind}_{\Gamma_{0}\left(p_{0}\right)}^{\Gamma} M_{n, \eta}=\left\{f: \Gamma \rightarrow M_{n, \eta} \mid f\left(r_{0} r\right)=r_{0} . f(r), r_{0} \in \Gamma_{0}\left(p_{0}\right)\right\}
$$

The operation of Γ on $W_{n, \eta}$ is defined by

$$
(a . f)(r):=f(r a), \quad a, r \in \Gamma, \quad f \in W_{n, \eta}
$$

By the Shapiro lemma there is a canonical isomorphism

$$
H^{1}\left(\Gamma_{0}\left(p_{0}\right), M_{n, \eta}\right) \cong H^{1}\left(\Gamma, W_{n, \eta}\right)
$$

We describe now this isomorphism. Let $p: W_{n, \eta} \rightarrow M_{n, \eta}$ be a map which sends a function f to $f(1)$. Then the Shapiro isomorphism is the composition

$$
S: H^{1}\left(\Gamma, W_{n, \eta}\right) \xrightarrow{\text { res }} H^{1}\left(\Gamma_{0}\left(p_{0}\right), W_{n, \eta}\right) \xrightarrow{p^{*}} H^{1}\left(\Gamma_{0}\left(p_{0}\right), M_{n, \eta}\right) .
$$

On the other hand the map $i: M_{n, \eta} \rightarrow W_{n, \eta}$ defined by

$$
i(m)(r)=\left\{\begin{array}{cl}
r . m, & \text { if } r \in \Gamma_{0}\left(p_{0}\right) \\
0, & \text { otherwise }
\end{array}\right.
$$

is a homomorphism. The inverse of the Shapiro isomorphisms is then the composition

$$
S^{-1}: H^{1}\left(\Gamma_{0}\left(p_{0}\right), M_{n, \eta}\right) \xrightarrow{i_{*}} H^{1}\left(\Gamma_{0}\left(p_{0}\right), W_{n, \eta}\right) \xrightarrow{\text { cores }} H^{1}\left(\Gamma, W_{n, \eta}\right)
$$

(cf. [AS] §1). In order to determine the isomorphism S^{-1} we consider the structur of the Γ-module $W_{n, \eta}$. Let

$$
a_{i}=\left(\begin{array}{rr}
0 & -1 \\
1 & i
\end{array}\right), \quad i=0,1, \ldots, p_{0}-1, \quad a_{p_{0}}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right),
$$

$\left\{a_{i}\right\}$ is then a set of representatives of Γ with respect to $\Gamma_{0}\left(p_{0}\right)$:

$$
\Gamma=\bigcup_{i=0}^{p_{0}} \Gamma_{0}\left(p_{0}\right) a_{i} .
$$

An element $f \in W_{n, \eta}$ is determined by the values $f\left(a_{0}\right), f\left(a_{1}\right), \ldots, f\left(a_{p_{0}}\right)$ by using the condition $f\left(r_{0} r\right)=r_{0} f(r)$. The dimension of $W_{n, \eta}$ is

$$
\left(p_{0}+1\right) \cdot \operatorname{dim}\left(M_{n, \eta}\right)=\left(p_{0}+1\right)(n+1)
$$

In other words, $W_{n, \eta}$ is generated by the elements ($w_{0}, w_{1}, \ldots, w_{p_{0}}$) with $w_{i} \in M_{n, \eta}$. For any $r \in \Gamma$ there exist always $r_{i} \in \Gamma_{0}\left(p_{0}\right)$ with $a_{i} r=r_{i} a_{j}$ for some j. Let $\omega \in H^{1}\left(\Gamma_{0}\left(p_{0}\right), M_{n, \eta}\right), s \in \Gamma$,

$$
\begin{aligned}
\left(S^{-1} \omega\right)(r)(s) & =\operatorname{cores}\left(i_{*} \omega\right)(r)(s)=\sum a_{i}^{-1}\left(i_{*} \omega\right)\left(r_{i}\right)(s) \\
& =\sum\left(i_{*} \omega\right)\left(r_{i}\right)\left(s a_{i}^{-1}\right)=s a_{i}^{-1} \cdot \omega\left(r_{i}\right) \quad \text { for } s a_{i}^{-1} \in \Gamma_{0}\left(p_{0}\right)
\end{aligned}
$$

In particular, $\left(S^{-1} \omega\right)(r)\left(a_{i}\right)=\omega\left(r_{i}\right)$, i. e.,

$$
\left(S^{-1} \omega\right)(r)=\left(\omega\left(r_{0}\right), \ldots, \omega\left(r_{p_{0}}\right)\right) \in W_{n, \eta}
$$

Combining this with the Eichler-Shimura isomorphism we obtain a map Φ :

$$
\begin{gather*}
\Phi: S_{n+2}\left(\Gamma_{0}\left(p_{0}\right), \eta\right) \xrightarrow{\phi} H^{1}\left(\Gamma_{0}\left(p_{0}\right), M_{n, \eta} \otimes \mathbb{C}\right) \xrightarrow{S^{-1}} H^{1}\left(\Gamma, W_{n, \eta} \otimes \mathbb{C}\right) \\
\Phi_{f}(r)=\left(\phi_{f}\left(r_{0}\right), \ldots, \phi_{f}\left(r_{p_{0}}\right)\right) \in W_{n, \eta} \otimes \mathbb{C} \tag{3.1}
\end{gather*}
$$

for $r \in \Gamma$ and $a_{i} r=r_{i} a_{j}$.
Since the group Γ is generated by $S=\left(\begin{array}{rr}0 & -1 \\ 1 & 0\end{array}\right), Q=\left(\begin{array}{rr}0 & -1 \\ 1 & 1\end{array}\right)$, and $T=S Q=$ $\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$, the cohomology class Φ_{f} is determined by the value $\Phi_{f}(S), \Phi_{f}(T)$. A simple computation shows that

$$
\left\{\begin{array}{l}
a_{0} S=a_{p_{0}} \\
a_{i} S=S_{i} a_{j} \quad i \cdot j \equiv-1 \bmod p_{0}, \quad S_{i}=\left(\begin{array}{rr}
-j & -1 \\
1+i j & i
\end{array}\right) \in \Gamma_{0}\left(p_{0}\right),
\end{array}\right.
$$

and

$$
\left\{\begin{array} { l }
{ a _ { i } T = a _ { i + 1 } , \quad i = 0 , 1 , \ldots , p _ { 0 } - 2 } \\
{ a _ { p _ { 0 } - 1 } T = U a _ { 0 } } \\
{ a _ { p _ { 0 } } T = T a _ { p _ { 0 } } }
\end{array} \quad \left\{\begin{array}{l}
a_{0} Q=T a_{p_{0}} \\
a_{1} Q=T^{-1} a_{0} \\
a_{i} Q=S_{i} a_{j+1}, \quad i=2,3, \ldots, p_{0}-1 \\
a_{p_{0}} Q=a_{1}
\end{array}\right.\right.
$$

where $U:=\left(\begin{array}{rr}1 & 0 \\ -p_{0} & 1\end{array}\right)$. We calculate $\Phi_{f}(T), \Phi_{f}(S)$. Because

$$
\phi_{f}\left(\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)\right)=0, \quad \phi_{f}(U)=0
$$

we have $\Phi_{f}(T)=\left(0, \ldots, 0, \phi_{f}(T)\right)$. Denote $\rho_{f}:=\int_{0}^{\infty} f(z)(x z+y)^{n} d z$, then

$$
\begin{aligned}
\phi_{f}(T) & =\int_{0}^{T 0} f(z)(x z+y)^{n} d z \\
& =\int_{0}^{\infty} f(z)(x z+y)^{n} d z+\int_{\infty}^{T 0} f(z)(x z+y)^{n} d z \\
& =\int_{0}^{\infty} f(z)(x z+y)^{n} d z+\int_{T \infty}^{T 0} f(z)(x z+y)^{n} d z \\
& =\int_{0}^{\infty} f(z)(x z+y)^{n} d z+T \cdot \int_{\infty}^{0} f(z)(x z+y)^{n} d z \\
& =(1-T) \cdot \int_{0}^{\infty} f(z)(x z+y)^{n} d z \\
& =(1-T) \cdot \rho_{f}
\end{aligned}
$$

It follows that

$$
\begin{equation*}
\Phi_{f}(T)=(1-T) \cdot\left(0, \ldots, 0, \rho_{f}\right) \tag{3.2}
\end{equation*}
$$

In particular, it implies that Φ_{f} is a class in $H_{p}^{1}\left(\Gamma, W_{n, \eta}\right)$, the cuspidal cohomology groups of $\Gamma_{0}\left(p_{0}\right)$. Similarly, $\Phi_{f}(S)$ can be written in the form

$$
\begin{equation*}
\Phi_{f}(S)=\left(0, \phi_{f}\left(S_{1}\right), \ldots, \phi_{f}\left(S_{p_{0}-1}\right), 0\right) \tag{3.3}
\end{equation*}
$$

Furthermore, the integral $\phi_{f}\left(S_{i}\right)$ can be represented by the period polynomial of f for $0<i<p_{0}$:

$$
\begin{aligned}
\phi_{f}\left(S_{i}\right) & =\int_{0}^{S_{i} 0} f(z)(x z+y)^{n} d z=\int_{0}^{S_{i} a_{j} \infty} f(z)(x z+y)^{n} d z \quad\left(a_{j} \infty=0\right) \\
& =\int_{a_{i} \infty}^{a_{i} S_{\infty}} f(z)(x z+y)^{n} d z=a_{i} \int_{\infty}^{S \infty}\left(\left.f\right|_{n+2} a_{i}\right)(z)(x z+y)^{n} d z \\
& =a_{i} \int_{\infty}^{0}\left(\left.f\right|_{n+2} a_{i}\right)(z)(x z+y)^{n} d z
\end{aligned}
$$

The period polynomial of f for an element $A \in \Gamma$ is defined by

$$
\rho_{f}(A):=\int_{0}^{\infty}\left(\left.f\right|_{n+2} A\right)(z)(x z+y)^{n} d z
$$

(cf. [An]). For $I=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$ we see that $\rho_{f}(I)=\rho_{f}$. Therefore we obtain a relation between the period polynomial and the cohomology class

$$
\begin{equation*}
\phi_{f}\left(S_{i}\right)=-a_{i} \rho_{f}\left(a_{i}\right) \quad \text { for } 0<i<p_{0} \tag{3.4}
\end{equation*}
$$

4. Petersson scalar product in the cohomology groups.

There is a well-known pairing on $M_{n, \eta}$:

$$
\begin{gathered}
(\cdot, \cdot)_{M}: M_{n, \eta} \otimes M_{n, \eta} \rightarrow \mathbb{Q}[\eta] \\
(v, w)_{M}:=\sum_{i=0}^{n}(-1)^{i}\binom{n}{i}^{-1} v_{i} \bar{w}_{n-i}
\end{gathered}
$$

for $v=\sum v_{i} x^{i} y^{n-i}, w=\sum w_{i} x^{i} y^{n-i} \in M_{n, \eta}$. The form $(\cdot, \cdot)_{M}$ has the following properties:

1. $(\cdot, \cdot)_{M}$ is non-degenerate.
2. $(\cdot, \cdot)_{M}$ is hermitian, i.e. $\overline{(v, w)}_{M}=(v, w)_{M}$.
3. $(r v, r w)_{M}=(v, w)_{M}$ for $r \in \Gamma, v, w \in M_{n}$.

$$
\left(r_{0} \cdot v, r_{0} \cdot w\right)_{M}=(v, w)_{M} \text { for } r_{0} \in \Gamma_{0}\left(p_{0}\right), v, w \in M_{n, \eta} .
$$

From the diagram

$$
\begin{array}{ccccc}
M_{n, \eta} & M_{n, \eta} & \xrightarrow{(\cdot,)_{M}} & \mathbb{Q}[\eta] \\
\downarrow p & \dagger i & & \\
W_{n, \eta} & \oplus & W_{n, \eta} & \rightarrow & \mathbb{Q}[\eta]
\end{array}
$$

where the map p, i are given in $\S 3$:

$$
p(f):=f(1), \quad i(m)(x):=\left\{\begin{array}{cl}
x . m, & x \in \Gamma_{0}\left(p_{0}\right) \\
0, & \text { otherwise }
\end{array}\right.
$$

we can define a reduced pairing $(\cdot, \cdot)_{W}$ on $W_{n, \eta}$ by setting:

$$
(v, w)_{W}:=\sum_{i=0}^{p_{0}}\left(v\left(a_{i}\right), w\left(a_{i}\right)\right)_{M}, \quad \forall v, w \in W_{n, \eta}
$$

which has the properties:

1. $(\cdot, \cdot)_{W}$ is non-degenerate.
2. $(\cdot, \cdot)_{W}$ is hermitian.
3. $(r . v, r . w)_{W}=(v, w)_{W}$ for $v, w \in W_{n, \eta}$ and $r \in \Gamma$.
4. $(w, i(m))_{W}=(p(w), m)_{M}$ for $w \in W_{n, \eta}, m \in M_{n, \eta}$;
5. and 2 . follow easily from the properties of $(\cdot, \cdot)_{M}$.

Proof of 3.: For $r \in \Gamma$ there are $r_{i} \in \Gamma_{0}\left(p_{0}\right)$ with $a_{i} r=r_{i} a_{j}$ for some j . So

$$
\begin{aligned}
(r . v, r . w) & =\sum\left((r . v)\left(a_{i}\right),(r . w)\left(a_{i}\right)\right)_{M}=\sum\left(v\left(a_{i} r\right), w\left(a_{i} r\right)\right)_{M} \\
& =\sum\left(r_{i} v\left(a_{j}\right), r_{i} w\left(a_{j}\right)\right)_{M}=\sum\left(v\left(a_{j}\right), w\left(a_{j}\right)\right)_{M}=(v, w)_{W}
\end{aligned}
$$

Proof of 4.:

$$
\begin{aligned}
(w, i(m))_{W} & =\sum_{i=0}^{p_{0}}\left(w\left(a_{i}\right), i(m)\left(a_{i}\right)\right)_{M}=\sum_{i=0, a_{i} \in \Gamma_{0}\left(p_{0}\right)}^{p_{0}}\left(w\left(a_{i}\right), a_{i} . m\right)_{M} \\
& =(w(1), m)_{M}=(p(w), m)_{M} .
\end{aligned}
$$

The compositions of cup product and the above pairing give us two scalar product on the cohomologies:

$$
\begin{aligned}
&<\cdot, \cdot>_{M}: H_{c}^{1}\left(\Gamma_{0}\left(p_{0}\right), M_{n, \eta}\right) \otimes H^{1}\left(\Gamma_{0}\left(p_{0}\right), M_{n, \eta}\right) \xrightarrow{\cup} H_{c}^{2}\left(\Gamma_{0}\left(p_{0}\right), M_{n, \eta} \otimes M_{n, \eta}\right) \xrightarrow{(\cdot \cdot)_{M}} \\
& \stackrel{(\cdot \cdot)_{M}}{\rightarrow} H_{c}^{2}\left(\Gamma_{0}\left(p_{0}\right), \mathbb{Q}[\eta]\right) \xrightarrow[\rightarrow]{\epsilon^{*}} \mathbb{Q}[\eta] \\
&<\cdot, \cdot>_{W}: H_{c}^{1}\left(\Gamma, W_{n, \eta}\right) \otimes H^{1}\left(\Gamma, W_{n, \eta}\right) \xrightarrow{\hookrightarrow} H_{c}^{2}\left(\Gamma, W_{n, \eta} \otimes W_{n, \eta}\right) \xrightarrow{(\cdot, \cdot)_{w}} \\
& \stackrel{(\cdot)^{w}}{\rightarrow} H_{c}^{2}(\Gamma, \mathbb{Q}[\eta]) \xrightarrow{\epsilon^{*}} \mathbb{Q}[\eta] .
\end{aligned}
$$

where $H_{c}^{*}(*, *)$ denotes the cohomology group with compact support. A simple consequence of the property 4 . is then:

$$
<S(\phi), S(\psi)>_{M}=<\phi, \psi>_{W}, \quad \forall \phi \in H_{c}^{1}\left(\Gamma, W_{n, \eta}\right), \psi \in H^{1}\left(\Gamma, W_{n, \eta}\right) .
$$

Now we determine the scalar product $\langle\cdot, \cdot\rangle_{W}$ explicitly. For two cocycle $\phi \in Z_{c}^{1}\left(\Gamma, W_{n, \eta}\right)$ and $\psi \in Z^{1}\left(\Gamma, W_{n, \eta}\right)$ the cup product $\phi \cup \psi$ is given by

$$
(\phi \cup \psi)(a, b)=\phi(a) \otimes a \psi(b) \in W_{n, \eta} \otimes W_{n, \eta}, \quad \forall a, b \in \Gamma
$$

The isomorphism ϵ^{*} is already calculated in [Hab] p278:

$$
\epsilon^{*}(u)=\frac{1}{2} u(S, S)+\frac{1}{3}\left(u(Q, Q)+u\left(Q, Q^{2}\right)\right)-u(S, Q), \quad \forall u \in H_{c}^{2}(\Gamma, Q[\eta]) .
$$

Because $(1+S) \phi(S)=0$ and $\left(1+Q+Q^{2}\right) \psi(Q)=0$, the scalar product $\left.<\cdot, \cdot\right\rangle_{W}$ can be written as

$$
\begin{aligned}
<\phi, \psi>_{W}= & \frac{1}{2}(\phi(S), S \psi(S))_{W}+\frac{1}{3}\left((\phi(Q), Q \psi(Q))_{W}+\left(\phi(Q), Q \psi\left(Q^{2}\right)\right)_{W}\right) \\
& -(\phi(S), S \psi(Q))_{W} \\
= & -\frac{1}{2}(\phi(S), \psi(S))_{W}+\frac{1}{3}\left((\phi(Q), Q \psi(Q))_{W}+\left(\phi(Q),\left(Q+Q^{2}\right) \psi(Q)\right)_{W}\right) \\
& +(\phi(S), \psi(Q))_{W} \\
= & (\phi(S), \psi(Q))_{W}-\frac{1}{2}(\phi(S), \psi(S))_{W}+\frac{1}{3}(\phi(Q),(Q-1) \psi(Q))_{W}
\end{aligned}
$$

For $\phi, \psi \in H_{c}^{1}\left(\Gamma, W_{n, \eta}\right)$ one has $\phi(S)=\psi(Q), \psi(S)=\psi(Q)$ and it follows that

$$
\begin{aligned}
<\phi, \psi>_{W} & =(\phi(S), \psi(S))_{W}-\frac{1}{2}(\phi(S), \psi(S))_{W}+\frac{1}{3}(\phi(S),(Q-1) \psi(S))_{W} \\
& =\frac{1}{6}\left((\phi(S), \psi(S))_{W}+2(\phi(S), Q \psi(S))_{W}\right) \\
& =\frac{1}{6}\left((\phi(S), \psi(S))_{W}+\left(Q^{-1} \phi(S), \psi(S)\right)_{W}+(\phi(S), Q \psi(S))_{W}\right) \\
& =\frac{1}{6}\left((\phi(Q), \psi(S))_{W}+\left(Q^{2} \phi(Q), \psi(S)\right)_{W}+(\phi(S), Q \psi(S))_{W}\right) \\
& =\frac{1}{6}\left(-(Q \phi(S), \psi(S))_{W}+(\phi(S), Q \psi(S))_{W}\right) \\
& =\frac{1}{6}\left((T \phi(S), \psi(S))_{W}-(\phi(S), T \psi(S))_{W}\right)
\end{aligned}
$$

We consider the following exact sequence:

$$
\cdots \rightarrow H_{c}^{1}\left(\Gamma, W_{n, \eta}\right) \xrightarrow{\dot{j}_{*}^{*}} H^{1}\left(\Gamma, W_{n, \eta}\right) \rightarrow H^{1}\left(\Gamma_{\infty}, W_{n, \eta}\right) \rightarrow \cdots
$$

The image $j^{*}\left(H_{c}^{1}\left(\Gamma, W_{n, \eta}\right)\right)$ is the cuspidal cohomology $H_{p}^{1}\left(\Gamma, W_{n, \eta}\right)$. For a class $\phi \in$ $H_{p}^{1}\left(\Gamma, W_{n, \eta}\right)$ one has $\phi(T)=(1-T) w$ for some $w \in W_{n, \eta}$. We set $\phi^{\prime}(S)=\phi(S)-(1-S) w$ and $\phi^{\prime}(Q)=\phi^{\prime}(S)$, the ϕ^{\prime} is then a class in $H_{c}^{1}\left(\Gamma, W_{n, \eta}\right)$, i.e., $\phi^{\prime}(T)=0$, and the image $j^{*}\left(\phi^{\prime}\right)=\phi$. We define then a bilinear form $<\cdot, \cdot>$ on $H_{p}^{1}\left(\Gamma, W_{n, \eta}\right)$ by

$$
<\phi, \psi>:=<\phi^{\prime}, \psi^{\prime}>_{W}, \quad \forall \phi, \psi \in H_{p}^{1}\left(\Gamma, W_{n, \eta}\right)
$$

On the other hand, one can define a pairing on $S_{n+2}\left(\Gamma_{0}\left(p_{0}\right), \eta\right)$. For a vector $\binom{u}{v} \in \mathbb{C}^{2}$ the $n+1$-dimensional column vector $\binom{u}{v}^{n}$ is defined by

$$
\binom{u}{v}^{n}={ }^{t}\left(u^{n}, u^{n-1} v, \ldots, u v^{n-1}, v^{n}\right)
$$

The matrix Θ with respect to the pairing $(\cdot,)_{M}$ has the property

$$
t\binom{u}{v}^{n} \Theta\binom{x}{y}^{n}=\left(\operatorname{det}\left(\begin{array}{ll}
u & x \tag{4.1}\\
v & y
\end{array}\right)\right)^{n}
$$

For any $f \in S_{n+2}\left(\Gamma_{0}\left(p_{0}\right), \eta\right)$ we denote $\delta(f)=f(z)\binom{z}{1}^{n} d z$. δ is thus a homomorphism from $S_{n+2}\left(\Gamma_{0}\left(p_{0}\right), \eta\right)$ to the de-Rham cohomology group $H_{p}^{1}\left(\Gamma_{0}\left(p_{0}\right) \backslash H, \widetilde{M}_{n, \eta}\right)$. The integral

$$
A(f, g)=\int_{\Gamma_{0}\left(p_{0}\right) \backslash H}{ }^{t} \delta(f) \wedge \Theta \overline{\delta(g)}
$$

defines a pairing on $H_{p}^{1}\left(\Gamma_{0}\left(p_{0}\right) \backslash H, \widetilde{M}_{n, \eta}\right) \cong H_{p}^{1}\left(\Gamma_{0}\left(p_{0}\right), M_{n, \eta}\right) \cong H_{p}^{1}\left(\Gamma, W_{n, \eta}\right)$. As shown in [Hi] p279 we have $A(f, g)=<\Phi_{f}, \Phi_{g}>$. By a simple computation we see that ${ }^{t} \delta(f) \wedge$ $\Theta \overline{\delta(g)}=-(2 i)^{n+1} f \bar{g} y^{n} d x \wedge d y$ which yields

$$
A(f, g)=\int_{\Gamma_{0}\left(p_{0}\right) \backslash H}{ }^{t} \delta(f) \wedge \Theta \overline{\delta(g)}=-(2 i)^{n+1} \int_{\Gamma_{0}\left(p_{0}\right) \backslash H} f \bar{g} y^{n} d x \wedge d y=-(2 i)^{n+1}(f, g)
$$

where (f, g) is the well-known Petersson scalar product. It follows that

$$
\begin{equation*}
(f, g)=-\frac{1}{(2 i)^{n+1}}<\Phi_{f}, \Phi_{g}> \tag{4.2}
\end{equation*}
$$

(cf. [Hida] p279 or [KZ] p244).

We calculate the value $\left\langle\Phi_{f}, \Phi_{g}\right\rangle$. In view of formulas (3.2),(3.3) we have

$$
\Phi_{f}^{\prime}(S)=\Phi_{f}(S)-(1-S)\left(0, \ldots, 0, \rho_{f}\right)=\left(\rho_{f}, \phi_{f}\left(S_{1}\right), \ldots, \phi_{f}\left(S_{p_{0}-1}\right),-\rho_{f}\right)
$$

and

$$
\begin{aligned}
& T \Phi_{f}^{\prime}(S)\left(a_{i}\right)=\Phi_{f}^{\prime}\left(a_{i} T\right)=\Phi_{f}^{\prime}\left(a_{i+1}\right)=\phi_{f}\left(S_{i+1}\right), \quad i=0,1, \ldots, p_{0}-2 \\
& T \Phi_{f}^{\prime}(S)\left(a_{p_{0}-1}\right)=\Phi_{f}^{\prime}\left(a_{p_{0}-1} T\right)=\Phi_{f}^{\prime}\left(U \alpha_{0}\right)=U \rho_{f} \\
& T \Phi_{f}^{\prime}(S)\left(a_{p_{0}}\right)=\Phi_{f}^{\prime}\left(a_{p_{0}} T\right)=\Phi_{f}^{\prime}\left(T \alpha_{p_{0}}\right)=-T \rho_{f},
\end{aligned}
$$

i.e., $T \Phi_{f}^{\prime}(S)=\left(\phi_{f}\left(S_{1}\right), \ldots, \phi_{f}\left(S_{p_{0}-1}\right), U \rho_{f},-T \rho_{f}\right)$. We'll show

Theorem: Denote $A_{i}:=\left(\begin{array}{rr}0 & -1 \\ 1 & i\end{array}\right)$ for $i=0,1, \ldots, p_{0}+1$. Then the Petersson scalar product of two cusp forms $f, g \in S_{n+2}\left(\Gamma_{0}\left(p_{0}\right), \eta\right)$ can be represented as the sum of the period polynomials of f and g :

$$
(f, g)=-\frac{1}{6(2 i)^{n+1}} \sum_{i=0}^{p_{0}}\left(\left(T \rho_{f}\left(A_{i+1}\right), \rho_{g}\left(A_{i}\right)\right)_{M}-\left(\rho_{f}\left(A_{i}\right), T \rho_{g}\left(A_{i+1}\right)\right)_{M}\right)
$$

Proof: For $i=0, \ldots, p_{0}-1$ we have $A_{i}=a_{i}, A_{p_{0}}=U A_{0}, A_{p_{0}+1}=U A_{1}$. we get

$$
<\Phi_{f}, \Phi_{g}>=\frac{1}{6} \sum_{i=0}^{p_{0}}\left(\left(T \Phi_{f}^{\prime}(S)\left(a_{i}\right),\left(\Phi_{g}^{\prime}(S)\right)\left(a_{i}\right)\right)_{M}-\left(\left(\Phi_{f}^{\prime}(S)\left(a_{i}\right),\left(T \Phi_{g}^{\prime}(S)\right)\left(a_{i}\right)\right)_{M}\right)\right.
$$

For $i=1, \ldots, p_{0}-2$ we find that

$$
\begin{align*}
& \left(T \Phi_{f}^{\prime}(S)\left(a_{i}\right), \Phi_{g}^{\prime}(S)\left(a_{i}\right)\right)_{M}-\left(\Phi_{f}^{\prime}(S)\left(a_{i}\right), T \Phi_{g}^{\prime}(S)\left(a_{i}\right)\right)_{M} \\
= & \left(\phi_{f}\left(S_{i+1}\right), \phi_{g}\left(S_{i}\right)\right)_{M}-\left(\phi_{f}\left(S_{i}\right), \phi_{g}\left(S_{i+1}\right)\right)_{M} \\
= & \left(-a_{i+1} \rho_{f}\left(a_{i+1}\right),-a_{i} \rho_{g}\left(a_{i}\right)\right)_{M}-\left(-a_{i} \rho_{f}\left(a_{i}\right),-a_{i+1} \phi_{g}\left(a_{i+1}\right)\right)_{M} \quad \text { (from (3.4)) } \tag{3.4}\\
= & \left.\left(a_{i} T \rho_{f}\left(a_{i+1}\right), a_{i} \rho_{g}\left(a_{i}\right)\right)_{M}-\left(a_{i} \rho_{f}\left(a_{i}\right), a_{i} T \phi_{g}\left(a_{i+1}\right)\right)_{M} \quad \text { (because } a_{i} T=a_{i+1}\right) \\
= & \left(T \rho_{f}\left(a_{i+1}\right), \rho_{g}\left(a_{i}\right)\right)_{M}-\left(\rho_{f}\left(a_{i}\right), T \phi_{g}\left(a_{i+1}\right)\right)_{M} \\
= & \left(T \rho_{f}\left(A_{i+1}\right), \rho_{g}\left(A_{i}\right)\right)_{M}-\left(\rho_{f}\left(A_{i}\right), T \phi_{g}\left(A_{i+1}\right)\right)_{M} .
\end{align*}
$$

We consider the terms $i=0, p_{0}-1, p_{0}$. It is easy to prove the following properties:

$$
\begin{aligned}
& \phi_{f}\left(S_{1}\right)=\left(1-T^{-1}\right) \rho_{f}, \quad \phi_{f}\left(S_{p_{0}-1}\right)=U(1-T) \rho_{f} \\
& \rho_{f}\left(A_{0}\right)=-A_{0}^{-1} \rho_{f}, \quad \rho_{f}\left(A_{p_{0}-1}\right)=-T A_{0}^{-1}(1-T) \rho_{f}, \quad \rho_{f}\left(A_{1}\right)=-A_{1}^{-1}\left(1-T^{-1}\right) \rho_{f} \\
& \rho_{f}\left(A_{p_{0}}\right)=\rho_{f}\left(A_{0}\right), \quad \rho_{f}\left(A_{p_{0}+1}\right)=\rho_{f}\left(A_{1}\right)
\end{aligned}
$$

Applying the above identities, the pairings can be written as

$$
\begin{aligned}
& \left(T \Phi_{f}^{\prime}(S)\left(a_{0}\right), \Phi_{g}^{\prime}(S)\left(a_{0}\right)\right)_{M}-\left(\Phi_{f}^{\prime}(S)\left(a_{0}\right), T \Phi_{g}^{\prime}(S)\left(a_{0}\right)\right)_{M} \\
= & \left(\phi_{f}\left(S_{1}\right), \rho_{g}\right)_{M}-\left(\rho_{g}, \phi_{g}\left(S_{1}\right)\right)_{M} \\
= & \left(\left(1-T^{-1}\right) \rho_{f}, \rho_{g}\right)_{M}-\left(\rho_{f},\left(1-T^{-1}\right) \rho_{g}\right)_{M} \\
= & \left(T \rho_{f}, \rho_{g}\right)_{M}-\left(\rho_{f}, T \rho_{g}\right)_{M} \\
& \left(T \Phi_{f}^{\prime}(S)\left(a_{p_{0}-1}\right), \Phi_{g}^{\prime}(S)\left(a_{p_{0}-1}\right)\right)_{M}-\left(\Phi_{f}^{\prime}(S)\left(a_{p_{0}-1}\right), T \Phi_{g}^{\prime}(S)\left(a_{p_{0}-1}\right)\right)_{M} \\
= & \left(U \rho_{f}, \phi_{g}\left(S_{p_{0}-1}\right)\right)_{M}-\left(\phi_{f}\left(S_{p_{0}-1}\right), U \rho_{g}\right)_{M} \\
= & \left(U \rho_{f}, U(1-T) \rho_{g}\right)_{M}-\left(U(1-T) \rho_{f}, U \rho_{g}\right)_{M} \\
= & \left(\rho_{f},(1-T) \rho_{g}\right)_{M}-\left((1-T) \rho_{f}, \rho_{g}\right)_{M} \\
= & \left(T \rho_{f}, \rho_{g}\right)_{M}-\left(\rho_{f}, T \rho_{g}\right)_{M} \\
& \left(T \Phi_{f}^{\prime}(S)\left(a_{p_{0}}\right), \Phi_{g}^{\prime}(S)\left(a_{p_{0}}\right)\right)_{M}-\left(\Phi_{f}^{\prime}(S)\left(a_{p_{0}}\right), T \Phi_{g}^{\prime}(S)\left(a_{p_{0}}\right)\right)_{M} \\
= & \left(-T \rho_{f},-\rho_{g}\right)_{M}-\left(-\rho_{f},-T \rho_{g}\right)_{M} \\
= & \left(T \rho_{f}, \rho_{g}\right)_{M}-\left(\rho_{f}, T \rho_{g}\right)_{M}
\end{aligned}
$$

and

$$
\begin{aligned}
& \left(T \rho_{f}\left(A_{1}\right), \rho_{g}\left(A_{0}\right)\right)_{M}-\left(\rho_{f}\left(A_{0}\right), T \rho_{g}\left(A_{1}\right)\right)_{M} \\
= & \left(T A_{1}^{-1}\left(1-T^{-1}\right) \rho_{f},-A_{0}^{-1} \rho_{g}\right)_{M}-\left(-A_{0}^{-1} \rho_{f},-T A_{1}^{-1}\left(1-T^{-1}\right) \rho_{g}\right)_{M} \\
= & \left(\left(1-T^{-1}\right) \rho_{f}, \rho_{g}\right)_{M}-\left(\rho_{f},\left(1-T^{-1}\right) \rho_{g}\right)_{M} \\
= & \left(\left(T \rho_{f}, \rho_{g}\right)_{M}-\left(\rho_{f}, T \rho_{g}\right)_{M}\right. \\
& \left(T \rho_{f}\left(A_{p_{0}}\right), \rho_{g}\left(A_{p_{0}-1}\right)\right)_{M}-\left(\rho_{f}\left(A_{p_{0}-1}\right), T \rho_{g}\left(A_{p_{0}}\right)\right)_{M} \\
= & \left(T \rho_{f}\left(A_{0}\right), \rho_{g}\left(A_{p_{0}-1}\right)\right)_{M}-\left(\rho_{f}\left(A_{p_{0}-1}\right), T \rho_{g}\left(A_{0}\right)\right)_{M} \\
= & \left(-T A_{0}^{-1} \rho_{f},-T A_{0}^{-1}(1-T) \rho_{g}\right)_{M}-\left(-T A_{0}^{-1}(1-T) \rho_{f},-T A_{0}^{-1} \rho_{g}\right)_{M} \\
= & \left(\rho_{f},(1-T) \rho_{g}\right)_{M}-\left((1-T) \rho_{f}, \rho_{g}\right)_{M} \\
= & \left(\left(T \rho_{f}, \rho_{g}\right)_{M}-\left(\rho_{f}, T \rho_{g}\right)_{M}\right. \\
& \left(T \rho_{f}\left(A_{p_{0}+1}\right), \rho_{g}\left(A_{p_{0}}\right)\right)_{M}-\left(\rho_{f}\left(A_{p_{0}}\right), T \rho_{g}\left(A_{p_{0}+1}\right)\right)_{M} \\
= & \left.\left(T \rho_{f}\left(A_{1}\right), \rho_{g}\left(A_{0}\right)\right)_{M}-\left(\rho_{f}\left(A_{0}\right), T \rho_{g}\left(A_{1}\right)\right)_{M}\right) \\
= & \left(-T A_{1}^{-1}\left(1-T^{-1}\right) \rho_{f},-A_{0}^{-1} \rho_{g}\right)_{M}-\left(-A_{0}^{-1} \rho_{f},-T A_{1}^{-1}\left(1-T^{-1}\right) \rho_{g}\right)_{M} \\
= & \left(\left(1-T^{-1}\right) \rho_{f}, \rho_{g}\right)_{M}-\left(\rho_{f},\left(1-T T^{-1}\right) \rho_{g}\right)_{M} \\
= & \left(\left(T \rho_{f}, \rho_{g}\right)_{M}-\left(\rho_{f}, T \rho_{g}\right)_{M} .\right.
\end{aligned}
$$

This completes the proof of the theorem.

Acknowledgements: The author is grateful for the support received from the DFG during the preparation of this paper.

References

[An] J.A. Antoniadis:
Modulformen auf $\Gamma_{0}(m)$ mit rationalen Perioden
in preparation.
[AS] A. Ash and G. Stevens:
Cohomology of arithmetic groups and congruences between systems of Hecke eigenvalues J. reine angew. Math. 356 (1986) p192-220
[Ha] K. Haberland:
Perioden von Modulformen einer Variabler und Gruppenkohomologie I,II,III Math. Nachr. 112 (1983) p245-315
[Hi] H. Hida:
Congruences of cusp forms and special values of their zeta function Invent. Math. 63 (1981) p225-261
[KZ] W. Kohnen and D. Zagier:
Modular forms with rational periods
In: Proc. of Durham symposium on modular forms, Ellis Harwood (1984)
[Sk] N.-P. Skoruppa:
Binary quadratic forms and the Fourier coefficients of elliptic and Jacobi forms to appear in: J. reine und angew. Math.

