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1. IntroductiQn.

Let Po be a prime, ro(po), as usual, the congruence subgroup of r = PSL2(~)'

Let Sk(rO(PO),1]) be the space of the cusp forms of weight k and nebentypus 1]. For

J E Sk(rO(PO),1]), A E r the period polynomial is defined by

riOO

Pf(A) = 10 (J]kA)(Z)(XZ + y)k-2dz.

Here the integral has to be taken along the line z = it, t ~ 0. For any function J, defined

on the upper half plane H, and A = (: ~) E GLt(lR) and any integer k we use

k az + b k
(flkA)(Z) = (det(A))2" J( d)(cZ + d)- .

cz +
Since J is a cusp fonn JlkA(Z) is exponentially decreasing for z ----+ 0, ioo, the above

integral is absolutely convergent. The period polynomial Pf ( A) depends only on the left

coset of A in ro(po) \ r. Some behaviours of the period polynomials have been studied

in [An] and [Sk]. The aim of this paper is to study the connection between the period

polynomial of J and its Petersson scalar product. We will generalize a result in [KZ] p243

or [Ha] p280. The main result of this paper is the following:

(
0 -1) . (1 1)Theorem: Denote Ai:= 1 i for l = 0,1, ···,Po + 1, T = ° 1 . Then the

Peterssan scalar product of two cusp {arms /, 9 E Sn+2(rO(PO), 1]) can be represented as

the surn of the period polynomials of J and g:
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where (', ')M is a pairing which will be defined in §4. In order to prove the main theorem we

first describe the Shapiro isomorphism and the Eichler-Shimura isomorphism explicitly. In

§4 we define and calculate the Petersson scalar product of two cusp forms in the cohomology

of fo(po).

2. The Eichler-Shimura Isomorphism.

We consider the following fo(po)-module

where n > O. The group r acts on Mn via

Let 1] : (7L / Po)* -+ (f;. be a Dirichlet character and 6J [1]] the ring generated by lQ and

the values of 1]. Set M n,t1 = Mn 0 ~ [1]] . We define an operation of ro(po) on M n,t1 via

Then the Eichler-Shimura isomorphism says that the following sequence

s a cusp

18 exact, where s runs over CU8pS with respect to ro(po) and ro(po).. .­

{ r E ro(po) I rs = s} =< T.. > is a cyclic infinite group. We describe now the map

</>:

(ro
</>j(r) = Jo J(z)(xz + y)ndz.

Denote H the upper half plane, H = H U 4J U {oo}, we show now:
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Lemma: For any r E r and to, t 1 E H

j rt 1 1t1
f(z)(xz + y)ndz = r (fln+2 r )(Z)(xz + y)ndz.

rto to
(2.1)

Pr L t r = (~ ;). Pd Z = ru =E.hen dz =C1 + d) ldu TL integral can

be rewritten as

j rt1 1t1 au + b
f(z)(xz + y)ndz = f(ru)(x d + y)n(cu + d)-2du

rto to cu +

1
t1

= f(ru)(cu + d)-n-2((ax + cy)U + (bx + dy))ndu
to

1
t1

= (fln+2r)(Z)((ax + cy)Z + (bx + dy))ndz
to

1
t1

= r (fln+2 r )(Z)(XZ + y)ndz.
to

- qed -

So for r, s E rO(PO) and f E Sn+2(rO(PO), 77) we have

i.e. tP/ is a cocycle in Zl(ro(po), M n ,'1 Q9 (17).

3. The Shapiro Lemma.

We denote by Wn ,'1 the co-induced module of M n ,'1 on r.
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The operation of r on W n ,'1 is defined by

(a.f)(r) := f(ra), a,r E r, f E Wn ,'1

By the Shapiro lemma there is a canonical isomorphism

We describe now this isomorphism. Let P : W n ,'1 -+ M n ,'1 be a map which sends a

function f to f (1). Then the Shapiro isomorphism is the composition

On the other hand the map i : M n ,'1 -+ W n ,'1 defined by

i(m)(r) = {T.m, if r E ~o(po)
0, otherwlse

is a homomorphism. The inverse of the Shapiro isomorphisms is then the composition

-] 1 ( () ) i. ] ( () ) cores ] ( )5 : H r o Po ,Mn ,'1 -+ H r o Po 1 W n ,'1 -+ H r, W n ,11

(cf. [AS] §1). In order to determine the isomorphism 5-1 we consider the structur of the

r-module Wn,110 Let

(0 -1)
ai = 1 i' i = 0, 1, 000, po - 1,

{ad is then a set of representatives of r with respect to ro(po):

po

r = UrO(po)ai.
i=O

An element J E Wn, '1 is detennined by the values f (ao )1 f (a 1), 0'" f (apo) by using the

condition J( ror) = rojer). The dimension of Wn ,'1 is

(Po + 1) . dim(Mn ,'1) = (Po + 1)(n + 1).
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In other words, Wn ,71 is generated by the elements (wo, Wl, ... , wpo ) with Wi E M n ,71.

For any r E f there exist always ri E fo(po) with air = riaj for same j. Let

wEH1(f0 (Po) )Mn ,71 ), s E f l

(S-lw)(r)(s) =cores(i",w)(r)(s) = L a;l(i",w)(rd(s)

= L(i",w)(rd(sa;l) = sail.w(rd for sai 1 E fo(po).

In particular, (S-lw)(r)(ai) = w(rd, i. e.,

Combining this with the Eichler-Shimura isomorphism we obtain a map <1>:

(3.1)

Since the group r is generated by S = (~ -~), Q = (~ -~), and T = SQ =

( ~ ~), the cohomology dass CI! J is determined by the value CI! J( S), <I>J(T). A simple

computation shows that

and

aoS = apo

aiS = Siaj i· j == -1 mod Po,

apoS = ao

(
-j -1)Si = 1 + ij i E f 0 (po) ,

where U := (_p~ ~). We calculate CI! J(T), CI!AB). Because
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we have <I!f(T) = (0, ... ,0,4>f(T)). Denote Pf:= Jooo f(z)(xz + y)ndz , then

(TO
~f(T)= Jo j(z)(xz+y)ndz

{oe {TO
= Jo f(z)(xz+y)ndz+ Joo f(z)(xz+y)ndz

100 lTO
= f(z)(xz + y)ndz + f(z)(xz + y)ndz

o Too

= ['" j(z)(xz + ytdz + T. J~ j(z)(xz + y)ndz

= (1 - T).l°O j(z)(xz + ytdz

= (1 - T).Pf.

It follows that

<I>f(T) = (1- T).(O, ... ,O,Pj) (3.2)

In particular, it implies that <P f is a dass in H~(r, Wn ,'1)' the cuspidal cohomology groups

of ro(po). Similarly, <PfeS) can be written in the form

(3.3)

FUrthennore, the integral 4>f (Sd can be represented by the period polynomial of f for

°< i < PO:

,pf(Sj) = 15
;0 j(z)(xz + ytdz = 15

;4;"" j(z)(xz +y)ndz (ajoo = 0)

= [~OO j(z)(xz + y)ndz = ai J:""U!n+2 ai)(Z)(Xz + y)ndz

= aj J~(fln+2ai)(z)(Xz+ ytdz.

The period polynomial of f for an element A E r is defined by

pf(A):=100

Uln+2 A )(z)(xz + ytdz

6



(cf. [An]). For I = (~ ~) we see that N(I) = Pf. Therefore we obtain a relation

between the period polynomial and the cohomology dass

4. Petersson scalar product in the COhOlTIology groups.

There is a well-known pairing on Mn,f}:

(3.4)

1. (', ')M is non-degenerate.

2. (', ')M is hermitian, i.e. (v,w)M = (V,W)M.

3. (rv,rw)M = (V,W)M for r E r, V,W E Mn.

Ftom the diagram

where the map p, i are given in §3:

p(l) := 1(1), O( )( )._ {x.rn, xE ro(po)
1. 7n X.- 0 h' ,, ot erWlse

we can define a reduced pairing (', ')w on Wn,f} by setting:

Po

(v,w)w := L(v(a;),w(a;))M' 'Vv,w E Wn ,'1

i=O
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which has the properties:

1. (', ')w is non-degenerate.

2. (', ')w is hermitian.

3. (r.v, r.w)w = (v, w)w for v, w E W n ,l1 and r E r.

4. (w, i(m))w = (p(w), m)M for w E W n ,l1 , m E M n ,l1;

1. and 2. follow easily from the properties of (', .)M.

Proof of 3.: For r E r there are ri E ro(po) with air = riaj for some j. So

(r.v,r.w) = L((r.v)(ad,(r.w)(ai))M = L(v(air),w(air))M

= L(riv(aj),riw(aj))M = L(v(aj),w(aj))M = (v,w)w.

Proof of 4.:

Po Po

(w,i(m))w = L(w(ad,i(m)(ad)M = L (w(ad,ai. 7n )M
i=O i=O, aiEfo(po)

=(w(l), m)M = (p(w), m)M.

The compositions of cup product and the above pairing give us two scalar product on the

cohomologies:

1 1 U 2 (. ·)w< ',' >w: He (r, W n,l1) @ H (r, W n,l1) ~ He (r, W n,l1 0 W n,'1) ~

(·~lV H;(r, dJ [7]]) ~ ~ [7]] .

where H;(*, *) denotes the cohomology group with compact support. A simple conse­

quence of the property 4. is then:
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Now we determine the scalar product < .,. >w explicitly. For two cocycle 4> E Z1(r, Wn ,71)

and 'lj; E Zl(r, Wn ,'1) the cup product </; u l/J is given by

(4) U 1f;)(a, b) = </;(a) 0 a'lj;(b) E Wn,f] ® Wn,f] , Va, bE r.

The isomorphism f* is already calculated in [Hab] p278:

Because (1 + S)</;(5) = 0 and (1 + Q + Q2)'lj;(Q) = 0, the scalar product < ',. >w can be

written as

< <p,,p >w=~( <p(S), S,p(S))w + H(<p( Q), Q,p(Q))w + (<p(Q), Q,p(Q2»W)

- (</;(S), S1f;(Q))w

= - ~(<p(S),,p(S))w +H(<p(Q), Q,p(Q»w + (<p(Q), (Q + Q2),p(Q))w)

+ (</;(S),'lj;(Q))w

=(q,(S),,p(Q))w - ~(q,(S), ,p(S))w + ~(q,(Q), (Q - l),p(Q))w.

For </;,'lj; E H~(r, Wn,f]) one has </;(S) = 1f;(Q),'lj;(S) = 7jJ(Q) and it follows that

1 1
< 4>,'lj; >w = (</>(S),'lj;(S))w - 2"(</>(S),1f;(S))w + "3e</;(S),eQ -l)7jJ(S))w

= ~ ( <p(S), ,peS)) w +2(<p(S), Q,p(S»w)

= ~ ( <p( S), ,peS)) w + (Q-l <p(S),,p(S))w + (<p(S), Q,p(S))w)

= H(q,(Q),,p(S))w + (Q2q,(Q),,p(S»w + (<p(S), Q,p(S))w)

= ~ ( -(Qq,(S), ,p(S))w + (<p(S), Q,p(S»w)

= H(T<p(S),,p( S))w - (<p(S), T,p(S»w).

We consider the following exact sequence:

--+ ...
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The image j*(H~(r,Wn ,,,») is the cuspidal cohomology H~(f,Wn ,,,). For a dass 4> E

H~(r, Wn ,,,) one has 4>(T) = (I-T)w for some w E Wn,q. We set 4>'(S) = 4>(S) -(l-S)w

and 4>'(Q) = </>'(S), the </>' is then a dass in H~(r,Wn ,f1)' Le., </>'(T) = 0, and the image

j*( <p') = <p. We define then a bilinear form< ',' > on H~ (f, Wn ,f1) by

On the other hand, one can define a pairing on Sn+2(rO(PO), 11)· For a vector (~) E d7 2

the n + I-dimensional column vector (:) n is defined by

(uv)n , (n n-l . n-l n)= U ,u v,.",UV ,v

The matrix e with respect to the pairing (', .)M has the property

(4.1)

For any f E Sn+2 (f0 (po), 1]) we denote 5( f) = f (z) (;) n dz. 5 is thus a homomorphism from

Sn+2(rO(PO),1]) to the de-Rham cohomology group H~(fo(po) \ H, M n'f1)' The integral

A(/, g) = [ '5(f) A 05(g)
Jro(po)\H

defines a pairing on H;(fo(Po) \ H, Mn,,,) ~ H~(ro(po), M n,f1) "-' H;(f, Wn,q). As shown

in [HiJ p279 we have A(/, g) =< <PJ, <P g >. By a simple computation we see that '5(/) /\

05(g) = -(2i)n+llgyndx A dy which yields

A(f, g) = r ,5(f) /\ 05(g) = _(2i)n+l r fgyn dx A dy = _(2i)n+l (f, g),
Jro(po)\H Jro(po)\H

where (I, g) is the well-known Petersson scalar product. It follows that

(4.2)

(cf. [HidaJ p279 or [KZ] p244).
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We calculate the value < ~ I, ~g >. In view of formulas (3.2),(3.3) we have

and

T<I>f(S)(ad = tPf(aiT ) = tPf(ai+l) = <PI(Si+1), i = 0,1, ... ,Po - 2

TtPf(S)(apo -1) = <I>f(apo-1T) = <I>j(Uo:o) = UPj

T<I>j(S)(apo ) = ~f(apoT) = tPj(Tapo ) = -Tpj,

i.e., TCIJj(S) = (</>f(Sl)'''',</>I(Spo-l),UPf,-Tpj). We'll show

Theorem: Denote Ai := (~ -~) for i = 0,1, ... ,Po + 1. Then the Peterssan sealar

produc t oE two cusp forms f, 9 E S n+ 2(r0 (po), 1]) can be represen ted as tbe sum of tbe

period polynomiaJs of f and g:

Proof: For i = 0, ... ,po - 1 we have Ai = ai, Apo = UAo, Apo+1 = UAl- we get

Po

< PI, Pg >= ~ L(eTP/(S)(ai), (p~(S))(ai))M - ((P/(S)(ai),(TP~(S))(ai))M)
i=O

For i = 1, ... ,Po - 2 we find that

(T<I>j(S)(ai), <p~(S)(ai» h1 - (<I>j( S)(ai), TtI>~(S)(ai»)M

=( 4> j(Si+1), l/Jg(Si)M - (4) j(Sd, </>g(Si+l» M

=( -ai+1Pf(ai+1), -aipg(ad)M - (-aiPI(ad, -ai+14>g(ai+1»M (from (3.4))

=(aiT pf(ai+1),aiPg(ai)M - (aiPf(ai),aiTif;g(ai+l»M ( because aiT = ai+l)

=(Tpf(ai+1), pg(ad )A1 - (pf(ad, T</>g( ai+l»M

=(Tpf(A i+1 ), pg(Ai)M - (Pf(Ad, T</>g(A i+1»M.

We consider the terms i = 0, Po - 1, Po. It is easy to prove the following properties:

</>f(Sl) = (1 - T-1)pI, 4>f(Spo-1) = U(l - T)pf

Pf(Ao) = -AÜ
1PI, p/(Apo - 1) = -TAÖ

1(1 - T)p/, p/(A1 ) = -Ai'" 1 (1 - T-1)PI

pf(Apo ) = p/(Ao), PI(Apo+1 ) = p/(A1 ),
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Applying the above identities, the pairings can be written as

(T<Pi(S)(ao), <p~(S)(aO))M - (<I>j(S)(ao), T<p~(S)(aO))M

=( <PI(Sl), pg)M - (Pg, <Pg(Sd)M

=((1- T-1)PI,Pg)M - (PI,(l- T-1)pg)M

=(TpI' pg)M - (PI, TPg)M

(T<pj(S)(a po -1)' <p~(S)(apo-1))M - (<pi(S)(apo -1)' T<p~(S)(apo-1))M

=(UPI,f/Jg(Spo-1))M - (f/Jj(Spo-1),UPg)M

=(UPI, U(l - T)Pg)M - (U(l - T)PI' Upg)M

=(PI' (1 - T)Pg)M - ((1 - T)PI,Pg)M

=(TpI' Pg)M - (PI, Tpg)M

(T<Pi(S)(a po ), q>~(S)(apo»M - (<pi(S)(a po ), T<p~(S)(apo»M

=(-TpI, -Pg)M - (-Pi' -Tpg)M

=(TpI,Pg)M - (PI,Tpg)M

and

(Tp j(A1), pg(Ao»1\1 - (p I( Ao), T pg(A1»M

=(TAll (1 - T-1)p j, _A-;;l pg)M - (_A-;;l Pj, -TA~l (1 - T-1)Pg)M

=((1- T-1)PI,Pg)M - (pj,(l - T-1)pg)M

=((TpI' pg)M - (PI, TPg)M

(Tpj(A po ), Pg(Apo - 1)M - (PI(A po - 1), Tpg(Apo»M

=(Tpj(Ao), pg(Apo- 1»M - (Pi(A po - 1), Tpg(Ao»M

=( -TA-;;l Pj, -TA-;;l(l - T)Pg)M - (-TA-;;l(l - T)PI' -TA-;;l pg)M

=(pj,(l-T)pg)M - ((1- T)Pj,Pg)M

=((TPI, pg)M - (PI, TPg)M

(Tp j(Apo+1 )' Pg(Apo»M - (p I(Apo )' Tpg(A po+1 »M

= (TPI (Al)' P9 ( Ao))M - (PI (Ao), T P9 ( Al))M )

=(-TA~l(l - T-1)PI' -Aal pg)M - (_A-;;l PI, -TAl 1(1 - T- 1 )Pg)M

=((1 - T-1)pI, pg)M - (PI, (1 - T- 1 )Pg)M

=((Tpil pg)M - (Pi, TPg)M'
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This completes the proof of the theorem.

- qed-
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