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1. Introduction.

Let py be a prime, ['o(po), as usual, the congruence subgroup of I' = PSLy(Z).

To(po) = {(‘; 2) €T

Let Sx(T'o(po),n) be the space of the cusp forms of weight ¥ and nebentypus 5. For
f € Sk(To(po),n), A €T the period polynomial is defined by

cEOmodpo}.

o) = | T FleA) =)z + ) .

Here the integral has to be taken along the line z = ¢¢, t > 0. For any function f, defined

on the upper half plane H, and A = ((z 3) € GLF(IR) and any integer k we use
£.az+b -
(fled)(z) = (det(4))? f(— ez )7

Since f is a cusp form f|gA(z) is exponentially decreasing for z — 0,i00, the above
integral is absolutely convergent. The period polynomial ps(A) depends only on the left
coset of A in T'g(po) \ I'. Some behaviours of the period polynomials have been studied
in [An] and [Sk] . The aim of this paper is to study the connection between the period
polynomial of f and its Petersson scalar product. We will generalize a result in [KZ] p243
or [Ha] p280. The main result of this paper is the following:

Theorem: Denote A; := (2 _12) fort =0,1,..,p0+1, T = ([1] 1) Then the

Petersson scalar product of two cusp forms f,g € Sn4+2(To(po),n) can be represented as

the sum of the period polynomials of f and g:

Po
(£:9) = ~ g 2 (Ter(Aer). (4 = (o (4. Ty (Aix))
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where (-, ) a 1s a pairing which will be defined in §4. In order to prove the main theorem we
first describe the Shapiro isomorphism and the Eichler-Shimura isomorphism explicitly. In

84 we define and calculate the Petersson scalar product of two cusp forms in the cohomology

of PO(PD)'

2. The Eichler-Shimura Isomorphism.

We consider the following I'g(pg)-module

Mn = { i avzvyn—v

v=0

’aue@},

rz’y" 7" = (az + cy)’ (b +dy)" ", r= ( 2)

where n > 0. The group I acts on M, via

o R

Let n: (Z/po)* — € * be a Dirichlet character and @[] the ring generated by @ and
the values of . Set M, , = M, ® @ [7] . We define an operation of I'¢(py) on M, , via

r.z’y" 7" = p(d)(az + cy)’(bz + dy)" 7", r= (i 3) .

Then the Eichler-Shimura isomorphism says that the following sequence

0 — Snt2(To(Po)sn) @ Snta(To(po)y 1) o H (To(po), May ® C) —

—~ P H'To(po)s May ®C) = 0

8 a cusp

is exact, where s runs over cusps with respect to T'g(po) and To(po)s :=

{r €To(po)|rs=s} =< T, > is a cyclic infinite group. We describe now the map
¢:
¢+ Snt2(To(po),n) — H'(To(po), Mu,y ® C)

$s(r) = / " o) en 4 p)de.

Denote H the upper half plane, H = H U@ U {co}, we show now:
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Lemma: Foranyr € I and t9,t, € H

/ f@) @z + )" / (Flag2r)(2)(zz + y)"dz. 21)

Proof: Let r = (2 3) Put z=ru = %, then dz = (cu + d)~%du. The integral can

be rewritten as

rty t u b
/ R G Cse

+ )™ (cu + d) " *du

131

= flru)(cu + d) """ %((az + cy)u + (bz + dy))"du

to

(Flasar)(e)(az +cv)z + bz + dy)ds

to

ty
=7 | (flag2r)(2)(zz +y)"dz.
to
- qed -
So for r,s € T'o(po) and f € Sn4+2(To(po),n) we have

rs0
bs(rs) = ] F(2)(wz + y)dz
= [ 1@ rurde [ )@+ s
0 r0 .
80
=650+ [ Flar)(e)es + s

= $4(r) + n(r)r / T ez rwtdz (flagar = 0())
= ¢s(r) + r.ds(s).

le. ¢y is a cocycle in Z}(To(po), Mp,, @ ).
3. The Shapiro Lemma.
We denote by W, , the co-induced module of M, , on T

Wa,n = Coind (y)Mnq = {f: T = May| f(ror) = ro.f(r), ro € To(po) }
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The operation of I' on Wy, , is defined by

(a.f)(r):=f(ra), ar€l, feWu,

3

By the Shapiro lemma there is a canonical isomorphism
HI(FO(PO)’Mn,n) = H(T, Wan)-

We describe now this isomorphism. Let p : W, , — M, , be a map which sends a

function f to f(1). Then the Shapiro isomorphism is the composition
S: H'(T, Wa,n) = HI(PO(PO):WR,U) 5 HI(PO(PO)a Mp ).
On the other hand the map i : M, , — W, , defined by

if r € Po (po)
otherwise

i) ={ 7o
0,
is 2 homomorphism. The inverse of the Shapiro isomorphisms is then the composition
$™'+ H'(To(po), Ma,) = H'(To(po), Wa,y) 5" H'(T, W)

(cf. [AS] §1). In order to determine the isomorphism S~ we consider the structur of the
I'-module W, ,. Let

0 -1 . 1 0
ai=(1 z)a z=0a1’°-‘7p0_1a aPo‘_‘(O 1)1

{a;} is then a set of representatives of I' with respect to I'g(po):
Po
P = U Fo(pg)a,‘.
=0

An element f € W, , is determined by the values f(ayq), f(a1),..., f(ap,) by using the
condition f(ror) = rof(r). The dimension of W, , is

(po +1) - dim(Mn,q) = (po + 1)(n +1).
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In other words, W, , is generated by the elements (wo,w;,...,wp,) With w; € My ,.

For any r € [ there exist always r; € Do(pg) with a;r = ria; for some j.
weE HI(PO(PO)a Mnﬂr)rs er,

(571w)(r)(s) =cores(inw)(r)(s) = 3 a7} (uw)(ri)(s)
=Y (iaw)(ri)(sa;?) = saj ' w(ri)  for sa7* € To(po)-
In particular, (S~'w)(r)(a;) = w(r:), i. e.,
(57w)(r) = (@(ra), s @(rpo)) € Wi .
Combining this with the Eichler-Shimura isomorphism we obtain a map &:
& : Suia(To(po)ym) 5 H'(Tolpo), Mny ®€) &5 H'(I, W, @ C)

p(r) = (¢s(ro)y s 85(rp,)) E Wpy ®C

for r € T and a;r = r;a;.

Let

(3.1)

Since the group I' is generated by S = (0 "(1)) , Q@ = (O _1), and T = SQ =

1 1 1

(1 1), the cohomology class ®; is determined by the value ®;(S), ®,(T). A simple

01

computation shows that

a0.5'= Ap,
.o -5 -1
a;S = Sia; i-j=-1mod pg, Si:(l-f—i-; z-)EI‘Q(JD:)),
QpeS = Qg
and
. ay@ =Ta
aiT:-aH-l’ ? =011:---:P0 -2 afg_—‘T_q:lO
4T = .
Gpo 1_ Uaop a‘.Q:Siaj+1, 1=2,3,...,p0—1
apy I = Tap, ap, @ =
0

1 0

where U = (
—po 1

). We calculate ®¢(T), ®¢(S). Because

s((§ T)=0 s0=0,



we have ®¢(T) = (0,...,0,¢7(T)). Denote ps := f0°° f(z)(zz + y)™dz, then

To
¢5(T) = | f(z)(zz +y)"d=

oo T0
RO CTR R I OTER

oo
To

- / " f() ez 4 y)de + [ ez + s

= [ i@ +uras+ 1 [ s e e
—a-1). [ )z +rds
=(1-T).pys.

It follows that
@ 4(T) = (1= T).(0,..,0, ) (3.2)

In particular, it implies that ®; is a class in H ;(F, W), the cuspidal cohomology groups
of To(po). Similarly, ®4(S) can be written in the form

(I'f(s) = (0? ¢f(Sl)1“'7 ¢f(SP0—1)70)' (33)

Furthermore, the integral ¢(S;) can be represented by the period polynomial of f for
0<z<pg:

S;0 S';a,-oo
i) = TZ "dz = z2)Mzz dz a;joo =
b4(S) / f(2)(zz +y)nd j F(2)(zz +) (aj00 = 0)
a;Soo Soo
= [ et vds=a [ (flase)@)es + s
0
=& [ (Flnsaes)(e)oz +)"de
The period polynomial of f for an element A € I" is defined by
pr(A)i= [ (o Aoz +y)ds
0
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(cf. [An])). For I = (1 O) we see that ps(I) = ps. Therefore we obtain a relation

01

between the period polynomial and the cohomology class
#5(S;) = —aips(a;}) for 0 <7 < po (3.4)
4. Petersson scalar product in the cohomology groups.

There is a well-known pairing on M,, ,:

('1’)M . Mn,r)®Mn,|7 - Q[U]

(v, w)p = i(-l)i (?) _lvi'“_’n—i

i=0
forv =3 v;z'y" ", w = wiz'y" "' € M, ,. Theform (-, )ps has the following properties:
1. (-, -)sm 1s non-degenerate.
2. (+,*)a is hermitian, i.e. WM = (v,w)pm.
3. (rv,rw)py = (v,w)p forr € T, v, w € M,,.
(ro.v,ro.w)p = (v,w)m for ro € To(pe), v,w € My .
From the diagram
My, ® Mo, 2 Q[

lp Te
Won @ Wiy - @ [n]

where the map p, 1 are given in §3:

P =S, i) = { T ST

otherwise

we can define a reduced pairing (-, -)w on W, , by setting:

Po

(v! w)W = Z(v(a;),w(ai))M, Vo, w € Wn,q

=0



which has the properties:

1. (-,")w is non-degenerate.

2. (+,-)w is hermitian.

3. (rv,rw)w = (v,w)w for vyw € W, , and r €T
4. (w,i(m))w = (p(w),m)p for w € Wy 5, m € M, ;
1. and 2. follow easily from the properties of (-,+)ars.

Proof of 3.: For r € I there are r; € I'g(po) with a;r = r;a; for some j. So

(rv,rw) = Z((r.v)(a J(raw)(ai))m = Z(v(a,r) w(a;r))m
= Z("t (a;),riw(a;))m Z(”(aJ swia;)m = (v, whw.

Proof of 4.:
(w,i(m)w =Y (w(a),i(m) @) = > (w(a:),aem)m
i=0 i=0, a;€le(po)

'_"(w(l)v m)M = (p(w), m)M—

The compositions of cup product and the above pairing give us two scalar product on the

cohomologies:

<y >pt HY(To(po), M ) @ H' (To(po), Mng) = HZ(To(po), Mn,q @ M) Co
G, )
M HHTo(p0), @[0]) S @)
<y >t BT, Way) ® HY(T, W) S HA(D,Way @ Way) "2
C B2, QM) S Q.

where H}(*,*) denotes the cohomology group with compact support. A simple conse-

quence of the property 4. is then:

< S(8),5(%) >m=< ¢, ¥ >w, Vo€ HYT,Wny), € H'(D, W, ,).
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Now we determine the scalar product < -, - >w explicitly. For two cocycle ¢ € Z} (T, W, ;)
and ¢ € Z}(T, W,,,) the cup product ¢ U ¢ is given by

(pUY)a,b) =¢(a)@ap(b) e Wy @ Why, Va,bel.

The isomorphism €* is already calculated in [Hab) p278:

e(w) = u(S,5) + 3 (@, Q) +u(Q, @) ~u(S5,Q), Vue HAT,Q])

Because (1 + 5)¢(S) = 0 and (1 + Q + @%)¥(Q) = 0, the scalar product < -, >w can be

written as
< b >w=5(8(8), SHENw + 3 (@), QU@)w + ($(Q), Q@ )w)
~ (4(5), SHQ)w

=~ 5(85),9(Nw + 3 (@), QHQw +($(@), (@ + Q*)(@)w)
(49, H@)w

=(#(5), U@)w = 5(HS), HS)w + 5(HQ) (@ = R @)w-
For ¢,9 € HY(I', W, ,) one has ¢(S) = ¥(Q),¥(S) = ¥(Q) and it follows that

<t >w = (BS),BE)w ~ 5(H(S), U)W + 5(4(5),(@ ~ VY(S)w

((#(9), (5w +2$(5), Q¥(SHw )

((8(5), 9(S)w + Q7 6(S), B(S)w + (4(5), QH(S)w )

1
6
1
6
= (4@, 9(S)w + (@@, B(S)w +(4(5), QUS)Hw)
= %(-(Qq&(S), H(S)w + (8(5), Q¢(S))w)

= 2 ((T4(S), B(SNw ~ (B, TH(S)w).

We consider the following exact sequence:

o HND, W) 5 HYT,Way) = H'(Teo,Way) = -+
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The image j*(H}(T,Wr,,)) is the cuspidal cohomology H}(T,W,,). For a class ¢ €
H}(T,W,,,) one has ¢(T) = (1 - T)w for some w € Wy ;. Weset ¢'(S5) = ¢(S)—(1-S)w
and ¢'(Q) = ¢'(S), the ¢ is then a class in H}(I', W, ,), i.e., ¢'(T) = 0, and the image
7*(¢') = ¢. We define then a bilinear form < -,- > on H;(I‘, Wy,n) by

< ¢, >=< ¢, ¢' >w, Vé,% € Hy(L,Wn,).

On the other hand, one can define a pairing on Sn4+2(To(po), 7). For a vector (:) cqg?

the n + 1-dimensional column vector (:)n is defined by

n
U - o=
( ) = (u",u™ o, w0

v

The matrix © with respect to the pairing (-, -)as has the property

(o) rm(: 3

For any f € Syn4+2(To(po),n) we denote 6(f) = f(z)(f)"dz. § is thus a homomorphism from
Sa+2(To(po),n) to the de-Rham cohomology group H)(Fo(po) \ H, AFZ,,,,,). The integral

A(f,q) = / 6(f) A O(g)
Co(po)\H

defines a pairing on H,(To(po) \ H, Mn,,,) = H,(To(po), Mn,y) = HY)(T, W, ;). As shown
in [Hi] p279 we have A(f,g) =< &, P, >. By a simple computation we see that *§(f) A

08(g) = —(2:)"*! fgy"dz A dy which yields

A(f,g) = ] '5(f) A OF(g) = —(2i)" / fay"de A dy = —(26)"(f, ),
To(po)\H r

o{po)\H

where (f, g) is the well-known Petersson scalar product. It follows that

(f)g)z_(zi);n.i.]<¢fa¢’g> (42)

(cf. [Hida] p279 or [KZ] p244).
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We calculate the value < ®4,®, >. In view of formulas (3.2),(3.3) we have

1(S)=24(8) = (1= 5X0,...,0,p5) = (ps,65(51)s -1, 81(Spo—1) —p7)
and
TP (S)a;) = (aiT) = Y(aiv1) = ¢5(Si41), 1=0,1,...,pp — 2
T®%(S)(apo-1) = ¥f(ap,—1T) = ®(Uexo) = Upy
T®4(S)(ap,) = ®y(ap, T) = ¥y(Tap,) = ~Tps,
ie., T®(S) = (#7(51), s &5(Spom1 ), Ups, —Tpy). We'll show

0 -1
1 1

product of two cusp forms f,g € Spy2(To(po),n) can be represented as the sum of the

Theorem: Denote A; := ( ) for z = 0,1,...,p0 + 1. Then the Petersson scalar

period polynomials of f and g:

(fi9)= *@i—l),,—ﬁ > ((TPf(Ai+l)a pe(Ai))m — (Pf(Ax‘)aTPg(Ai+1))M)
=0

Proof: For i =0,...,p0o — 1 we have A; = a;, A,, = UAo, Apo+1 = UA;1. we get

1?0

<25 ® >= ¢ Z((T‘P}(S)(as),(‘P;(S))(ae))M - ((‘I’}(S)(ae),(T‘I’;(S))(as))M)

1=0
Fori=1,..,po — 2 we find that
(T2(S)(ai), @y(S)(ai))m — (5(S)(ai), T2,(S) (@) m
=(@5(Siv1), 8g(Si))m — (85(5:), Bg(Sit1))m
=(=ait1p5(ai+1), —aipg(ai))m — (—aips(ai), —aiv164(ait1))m (from (3.4))
=(aiTps(ait1), aipg(ai))m — (aips(ai), ;T ¢g(ait1))m ( because ;T = ait1)
=(Tps(ait1), pgai))m — (psai), Tdg(ait1))m
=(Tps(Ais1), po(Ai)IM — (ps(Ai), Tg(Ais1))m-
We consider the terms i = 0,py — 1,po. It is easy to prove the following properties:
$5(S1) =1 =T Nps, ¢5(Spo—1) =U(1 = T)py
pr(Ao) = —Ag pp,  pr(Ape—1) = =TAGT (1 =T)ps, py(A1) = —AT'(1 =T ")p;
pi(Apo) = ps(Ao), ps(Apos1) = ps(A1),
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Applying the above identities, the pairings can be written as

(T®'(S)(ao), B3 (S)@0))m — (24(S)(a0), TR (S) (@0))m
=(¢5(51),pg)nr — (Pgs $¢(S1))m
=1 =T ps )M = (P11 =T )pg)m
=(Tps,pe)m — (P, Trg)m

(T®4(S)(apo—1) By (S)(apo—1))m — (25(S)(@po—1), T2 (S) apo—1))m
=(Ups,84(Spa-1))m = (85(Spo=1), Usg)
=Ups, UL =T)pg)m — (UL =T)ps,Upg)m
=(ps, (1 = T)pg)m — (1 = T)ps,pg)m
=(Tps,p6)M — (p5, Tpg)m

(T24(S)(apy), Be(S)ape))m — (25(S)ap ), TRL(S) ape))m
=(=Tps,~pg)m —(—pf, —Tpg)m
=(Tpg,pg)m — (pf, TPg)M

(Tos(A1), pe(Ao))nr — (ps(A0), Tpy(A1))m
=(TAT (L =T Yps, = A7 pg)m — (=45 o1, —TAT (1 =T pg)m
=((1 =T ps,p9)m = (s, (1 =T )pg)m
=((Tps;pg)M — (ps, Tpg)m

(Tpi(Ape) Po(Ape—1))ar — (P£(Apo=1), Trg(Ape)) M
=(Tps(Ao), Pg(Apo—1))ar — (ps(Apo—1), Tpg(Ao))m
=(~TA7' ps, —TAT (1 = T)pg)ss — (=T A7 (1 - T)ps, ~T A7 py)m
=(ps, (1 =T)pg)m = (1 = Tog, pg)m
=((Tps, pg)m — (ps, Trg)m

(Tos(Aps+1)s P(Ape )t — (P5(Apo)s Trg(Apet+1))m
=(Tps(A1),ps(A0))m — (ps(Aa), Tpy(A1))m)
=(=TAT' (A =T ps, =45 p)mt — (A7 ps, —=TAT (1 = T7 )pg) a
=((1 =T Yos,p9)m — (s, (1 =T Yoy )m

=((Tps,pg)m — (pg, Tpg)m.
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This completes the proof of the theorem.
- qed -
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