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ELLIPTIC GENERA. MODULAR FORMS OVER KO. t

AND THE BROWN-KERVAlRE INVARIANT

by

Serge Ochanine

Let n~O be the oriented cobordism ring and A any commutative Q-algebra.

An elliptic genus over A, aß originally defined in [14], is a ring homomorphism

satisfying

1: cp [G:P2i] u2i = (1 - 26'u2 + ru4)-1/2 .

i~O

Here

are two parameters in A which determine cp completely.

In the most interesting universal examples, A is the ring ~ [ [q] ] of formal

power series over ~ t and far any oriented manifold V, cp [V] is the q-expansion of

a level 2 modular form whose values at the two cusps are, up to an inessential factor, the
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'" '"
A-genus A [V] and the signature u(V) (cf. [9], [5], [10], [23], [8]).

Though defined for oriented manifolds, the elliptic genera reveal their most striking

properties, such as rigidity (constancy) under compact Lie group actions ([3], [15]) or

integrality ([6]), on spin manifolds. Both rigidity and integrality rely on the fact

noticed by E. Wiiten ([22]) that in the universal examples, the coefficients of f{J [V]

are indices of twisted Dirac operators, therefore K0-chara.cteristic numbers.

In ibis paper we consider a refined elliptic genus

whose values are q-expansions of level 2 modular forms over the coefficient ring KO.

of the real K-theory. In dimensions divisible by 4, ßq [V] ia essentially the above

universal genus f{J [V] . On the other hand, in dimensions Sm + 1, 8m + 2, ßq [V]

is a modular form over If2 (in the sense of J.-P. Serre [18]), and can be expressed as a

2
polynomial in the basic form € = 1: q(2n-1) :

n~l

It turns out thai aO is the Atiyah invariant while am is the KO-part of the

Brown-Kervaire invariant of V .

Being a refinement of an elliptic genus, ßq retains at least a few of the properties

of the latter. For example, M. Bendersky ([2]) recently proved that ßq [V] = 0 for a

spin manifold V admitting an odd type semi-free circle action, which implies the
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vanishing of both the Atiyah invariant and the KO-part of the Brown-Kervaire

invariant*). It seems very likely that Bendersky's theorem can be reversed: we

conjecture that ßq [V] = 0 if and only if V is spin cobordant to (or at least has the

same KO-<:haracteristic numbers as) a spin manifold arlmitting an odd type semi-free

circle action.

I would like to thank W. Hoyt, N. Katz and D. Rohrlich for helpful advice on

modular forms. I a.m grateful to F. Hirzebruch and R. Stong for their interest in my

work. I am particularly indebted to M. Bendersky, P. Landweber and H. Miller for their

useful comments.

1 D±niti nf \ . Let E N areal vectr hudle ave X .mi g A\ and Si(E)

respeetively for the exterior and the symmetrie powers of E, and

At(E) = 1: Ai(E)t
i

,

i~O

St(E) = 1: Si(E)t
i

,

i~O

one defines the Witten eharacteristie class eq ([22], cf. [10]) by

e (E) = ~ (A 2 -1(E) ~ S 2 (E)) .
q n2:1 --q n q n

*) For a proof valid for all odd type actions see [16].
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For any E, Bq(E) ia a formal power series in q whose coefficients are virtual vector

bundles over X. Moreover, one has

e (E) = 1 - E • q + ...q

and

Therefore <3 q canonically extends to KO(X) :

Bq : KO(X) ---t KO(X) [[q]] .

Let ßq(E) be defined by

Then

where

-.."I'

bi(E) ~ KO(X) (i > 0)
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and

It is easy to see that bi(i ~ 0) are stable KO-eharacteristic classes and can be

expressed as polynomials in the Pontrjagin classes 1ri defined by (cf. [21]):

where

t
u = (1+i)2 .

For example

and, more generally,
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Let now yn be a closed spin manifold, and [yn] E. KOn(yn) be the

fundamental dass of yn in real K-theory.-

Definition:

ßq [yn] = ßq(TY) [yn] = l bi [yn] qi ,

i~O

where TY ia the tangent bundle of Vn and

is the KO-eharacteristic number corresponding to bi .

One can easily see that ßq defines a ring homomorphism (genus)

Considered as 7I/8-graded, the ring KO. is generated by two elements 1] and

lJ) of degree 1 and 4 respectively aubject to the relations

3 2
21] = 1] = f/w = 0 J W = 4 .

ClearlyJ ßq preserves the degree mod 8 .

Let
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* **ph : KO (X) ----+ H (X;(l)

be the Pontrjagin character defined as the composition

*KO (X)

* **For X = point one has KO (X) ~ KO. and H (X;~) ~ Q , and ph is entirely

determined by

ph(f/) = 0, ph(w) = 2 .

In particular, ph is integral:

ph : KO. -----i 71 .

Composing ß with ph leads to a genusq

CPq = ph 0 ßq : n:pin
---+ 1l [[qJ J

such that

<Pq [Vn] = 1: ph(bi [Vn] )qi = 1: ph(bi(TV))<it(TV) [Vn] qi ,

i~O i~O

A A

where 2L(TY) is the total 21-class of y n . In particular, the constant term of

<Pq [Vn] is the A-genus A[Vn] .
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Theorem 1 ([10]) [23]). <l'q is the restrietion to n:pin of an elliptic genus

with parameters

6=-~-3 l ( l d)qn

n~l dln
d odd

e = 1: ( 1: d3) qn

n~l dln
n/d od

o

2. Modular forms over graded rings. It turns out that ßq [Vn] can be interpreted as a

modular form of degree n over the graded ring KO•.

If r is a subgroup of SL2(1l) of finite index, let M~(4:) be the graded ring of

modular forms over 4: for r. Thus Mr (4:) is the group of forms of weight w. Wew

will always identify a modular form from M~(() with its q--expansion. This way

Mr(4:) becomes a subring in 4: [[ql/h]] ) where h is the smallest positive integer

such that [~ ~] belongs to r.

Let now M~(ll) be the aubring of M~(() of forms having integral q--expansions
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For any graded commutative ring with unit

the canonical injection

M~(71) ---+ 11 [[ql/h]]

extends to a ring homomorphisID

We define Mr (R.) to be the image o{ this homomorphism, and will call its elements

modular {orms over R* {or r.

Notice that Mr(R*) is canonically a graded R*-algebra:

M
r

(R*) = EB M
r

(Rn) ,
n

where Mr (Rn) is the set o{ {orms from Mr (R*) whose coefficients are in Rn. We

refer to the elements of Mr (R ) as forms of degree n.n

I{ {or a certain n, Rn has no torsion, then
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is an isomorphism. In this case,

where

We will say that forms from M~(Rn) have weight w.

In the general situation, a form F E. Mr (Rn) may come from integral forms of

different weightsJ and the weight of F cannot be defined correcdy. Instead, one defines

an increasing filtration of Mr (Rn) as follows: a form F E. Mr (Rn) has filtration 5 f if

F is the image of an element of

i.e. if

F=Er.F.,
_J J

where Fj ~ M;(ll) are forms of weight S f .
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3. Modular forms over KO*. From now on r will designate the group r 0(2) of

matrices

such that c == O(mod 2) . The series 5 and e of theorem 1 are the basic examples of

modular farms for r 0(2) . More preciBely, let

50 = - 85 = 1 + 24q + 24q2 + 96q3 + ...

Proposition 1 (cf. [8J, Anhang I).

(i)

(ii) o

r .
Consider now M (KO*). For n == O(mod 4) , one haB KOn ~ 11 . Thus

It follows that:

(a) a modular form oI degree n = 8m and weight w over KO* can be written in a

unique way as a polynomial P(50,e) oI weight w with integer coefficients;
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(b) a modular form of degree n = Sm + 4 and weight w over KO* can be written

in a unique way as wP(b'OJc), where P(60,e) is a polynomial of weight w with

integer coefficients.

Notice now that one has 60 == l(mod 2) . Let e be the reduction mod 2 of

c E. II [[q] ] . It is easy to see that

2e= l q(2n-1) = q + q9 + q25 + ...
n~l

For n = Sm + r(r = 1,2) , one has KOn = rF2r{ and the map

is essentially the reduction mod 2 :

where P(60,c) is a polynomial with integer coefficients and P is its reduction mod 2 .

As e= q + ... J the powers of € are linearly independent over rF2 . Therefore:

(c) a modular form F of degree n = Sm + r(r = 1,2) and filtration ~ f over KO.

can be written in a unique way aB rlQ(E) , where



-13 -

and 4s ~ f . The filtration of F is exact1y 4s if and only if as f 0 .

The additive structure of Mr(KO.) is completely described by (a), (b), and (c).

The ring structure is given by the following theorem.

Theorem 2.

(i) The kerne! of

is the principal ideal generated by 1/ ~ (50 - 1) .

(ii) The commutative KO*-algebra Mr (KO*) is generated by 50 and E:

subject to the single relation 1] 50 = 1] •

The proof is immediate from the above description of

r
KO* ~ M*(ll) ---+ KO* [[q]] .

4. ßq [Vn] aB a modular form. We will now see that ßq [Vn] is a modular form. of

degree n over K0* .
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Theorem 3.

(i)

(ü)

(üi)

If n = 4s , then ßq(n:pin) is the set of all modular forms of degree n and

weight 2s over KO*.

H n = Sm + r (r = 1,2) , then ß ({}spin) is the set of all modular forms ofq n

degree n and filtration ~ 4m over KO•.

Prcof. Part (iü) clearly follows from (i), (ii) and the above description of Mr (KO.) .

Part (i) is a simple consequence of the definition of ft'q , the description of ph and

the following theorem:

Theorem 4 ([6], cf. [10]). For any spin manifold V4s
J tpq [V4s] is a modular form

from M~s(ll). More precisely,

o

The prcof of the remaining part (ii) relles on the following construction due to

R.E. Stong (cf. [21], p. 341, for the details):

Let SI be the circle equipped with its non-trivial spin structure. SI represents
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the non-zero element of n~pin ~ 0= 2 . If V is an (Sm + 2)-dimensional spin manifold,

then SI x V is the boundary of a compact spin manifold U , On the other hand, 2S"l

is the boundary of a compact spin manifold M2 . Therefore one can form. a cIosed

(Sm + 4)-dimensional spin manifold T(V) by glueing together two copies of U and

- M2 x V along

Though involving arbitrary choicea of M2 and U, this construction induces a

well-defined homomorphism

nS p insp in
T:uSm+2 --+ nSm+4 80=2'

Let

be the isomorphism which sends '? to w~ 1 ,

Proposition 2 (cf. [21), p. 343). If e is a polynomial in the Pontrjagin classes 1ri ,

then one has in KO4.8 0=2 :

e[T(V)] 8 1 =t(e[V] ) .

Roughly speaking, e[V] ia the reduction mod 2 of e[T(V)] .

o
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be the ideal oI classes with va.nishing Pontrjagin

KO--<:haracteristic numbers. Proposition 2 implies that Tinduces a homomorphism

N .

"s P 1 n /T : iHSm+2 ISm+2

N

--+

Proposition 3 (cf. [21] J p. 344). T is an i80morphism. o

The coefficients of ßq [V] are Pontrjagin KO-cl1aracteristic numbers. Therefore

one has:

in (KO4 e IF2) [[q]] . Hy theorem 3 (i),

where P(50,t:) ia a polynomial of weight 4m + 2 in 50,t: with integer coefficients.

Therefore

is a modular form of degree Sm + 2 and filtration ~ 4m over KO•. Proposition 3

implies that all such forms can be obtained !rom spin manifolds V, and this settles the

case of manifolds of dimension Sm + 2 .

The proof in the case oI (Sm + 1)-dimensional manifolds is similar. Instead oI T
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one considers the multiplication by SI homomorphisID

S . n spin n S P i n
. Ui8m --t Ui8m+l'

If e is a polynomial in the classes 1ri , then

for any spin manifold M. Thus S induces a homomorphisID

N. •

S n SpIn / n S P 1 n / I
: Ui8m 18m --t u8m+l 8m+l'

Proposition 4 (cf. [21J, p. 344). S is onto.

It follows that

and the result follows from (i) and the description of Mr (KO.) .

Cl

5. Characteristic classes ai . Let h(q) = q + ... be any series !rom 11 [ [qJ J whose

reduction mod 2 is

21: q(2n-l) = q + q9 + q25 + ...
n~l
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For example, one can take h(q) =E( q) . _Another possible choice for h(q) is the

Ramanujan series

ß(q) = q n (1 - qn)24 = q - 24q2 + 252q3 - ... *)

n!:l

For any real vector bundle E over X define

0t(E) E KO(X) [[tJ J

by

where

t = h(q) .

Since the leading term of h(q) is q, this series is invertible in 11 [ [q]] , therefore

Qt(E) is well-de:6ned. Clearly J one has

If

*) It is an amusing exercise to show that ß:: e(mod 2) and even, as noticed by P.
Landweber, ß:: E(mod 16) .



-19-

then a.(E) is a polynomial in the Pontrjagin classes 1r.(E) such that
1 1

,-......./

~(E) ~ KO(X) (i > 0)

and

a.(E) = (-1)i1l'.(E) + lower terms.
1 1

Notice that while ai(E) depends on the choice of h(q) I its reduction mod 2 , that is

its image in KO(X) GD IF2 is independent of any choice.

By definition of ai ' lor auy spin manifold Vn one has:

where

On the other hand, the reduction mod 2 of ßq [Vn] is of the form (cf. Section 3):
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where ai E. KOn GD 0=2 and m = [n/S] . Comparing these two expressions leads to the

following:

Theorem 5.

(i) For i > [n/S] ,one has ~ [yn] GD 1 = 0 in KOn GD 0=2 .

(ü) One has in (KOn GD [f2) [ [q]] :

where m = [n/S] .

6. The Brown-Kervaire invariant. Notice that for n = Sm + 2 I the constant term

aO[yn] = 1[yn] is the so-c,,?ed Atiy~ invariant ([1]). We will see now that

, am [yn] has an interpretation in terms of the Brown-Kervaire invariant of y n .

Let yn, n = Sm + 2 , be a spin manifold. As mentioned earlier, SI)( Y = DU ,

where U ia a compact spin manifold. It ia ahown in [13] that the signature u(U) ia

divisible by 8, and that

k(Y) = u(U)/S ~ [f2

is a spin cobordism invariant satisfying
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k(Sl )( SI )( M) = u(M) mod 2

for all 8m-dimensional spin manifolds M. For a large dass of manifolds, including all

complex-6pin manifolds ([20J), k(V) agrees with the Brown-Kervaire invariant

( [4J). For a general spin manifold V, k(V) can be thought of as the KO-part of the

Brown-Kervaire invariant (cf. [13] for the details).

More generally, one defines an invariant ,,(vn) E. KOn S IF2 by

u(Y) ,n:: 0 (mod 8)

K. (Vn
) =

k(Sl )( V)1] ,n:: 1 (mod 8)

k(V) 1]2 ,n == 2 (mod 8)

(u(V)/16)w ,n == 4 (mod 8)

The multiplicative properties of k are summarized by saying that " defines a ring

homomorphism

spin 0 oOI.lF
K : n* ----+ K * v 2'

A new proof of tbis will be given later.

Theorem 6. Let yn be a spin manifold. Then
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in KOn S (f2 ,where m = [n/8] .

Proof. Consider first the case when n = Sm + 4 . According to theorem 3,

ß [ n] I. tI 1'2m+l 1'2m-l l' m)q Y = W\aOUO + a1uO e + ... + amuOe ,

where ai E. 11 . Then

[ n] (1'2m+l 1'2m-l l' m)
<Pq Y = 2 aOu0 + a1Uo e + ... + amuOe .

H we consider <Pq as an elliptic genus over II [ö,e] J the signature u(yn) ia obtained

by specializing 6 = 1 , e = 1 J or 60 = - 8 I e = 1 . Thus,

and

On the other hand, by theorem 5,

therefore
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If n = Sm + 2 ) proposition 2 gives

t(am [Vn]) = am [T(Y)] mod 2

= (u(T(Y))/16)w mod 2

by the previous case.

By definition,

T(V) = (2U) U(- M2 )( Y) I

where 8 U = S"t )( Y . Thus

u(T(Y)) = 2u(U) .

On the other hand,

k(V) =u~U) = ~(TfX)) mod 2 .

Comparing with the above expression for t(a [yn]), we obtain:m
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Ifn=Bm+1,

therefore

~since the multiplication by 1] is an isomorphism K01 -----............., K02 .

Finally, if n = Bm , then

Corollary 1. 1;: n:pin
--+ KO* ~ IF2 is a ring homomorphism.

o

Proof. Let V1 and V2 be two spin manifolds of dimension n1 and n2 respectively,

and let

Hy theorem 6,
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" (VI x V2) = &m [V1 x V2] = . l. \ [VI] &i
2

[V2] .
l I +12=m

Notice that m ~ mi + ID2 . H m = mi +~ , then theorem 5 (i) and theorem 6 imply:

H m > ml + ID2 J then theorem 5 (i) givea

and one has to check that

Hut ID > mi + m2 ia poasible only in one of the following cases:

(1)

since w2 :i O(mod 2) .

(2)

n1 == n2 == 4(mod 8) . In this case

n1 == 5,6,7(mod 8) or ~:: 5,6,7(mod 8) .

In this case K. (V1) cr I'; (V2) is zero. o
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Corollary 2. Let yn J n = Sm + r (r = 1,2) be a spin manifold. The filtration of

ß [yn] is exaet1y 4m if and only if ,,(Vn) f 0 .q

This follows from theorem 6 and the deseription of Mr (KOSm+r) in section 3. 0

7. The SU=ease. Theorem 3 deseribes the subring M* = ßq(n:pin
) ( Mr (KO*) .

Using the reaults of [6] one can easily determine the image of the special unitary

cobordism ring n~U under ßq . We will foeus on the dimensions Sm + 1, Sm + 2

leaving the easier remaining cases to the reader.

Theorem 7.

(i)

(ii)

H n = Sm + 1 J then ßq(n~U) Cßq(n:pin
) is the subgroup of forms of the

form llP(c2) where P is a polynomial of degree ~ m/2 over (f2 .

If n =Sm + 2 J then ß (OSU) =ß (Ospin) .
q n q n

Corollary. If Mn, n = Sm + 1 , ia an SU-manifold J then

for all odd i. For instanee,
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Proof.

(i) According to [6] J an element from cpq(n~~) can be written aa

where P, Q are two polynomials with integer coefficients. On the other hand, one haa

nSU = [51] . nSU
8m+l 8m

where SI is the circle SI equipped with its non-trivial SU-structure (cf. [21], chap.

X). Therefore,

and the reault follows.

Part (ii) is an immediate consequence of the following proposition.

Proposition 5. The canonical map

08 P in /
8m+2 I8m+ 2

is onto. In other words, any spin manifold of dimension 8m + 2 has the same

KO--<:haracteristic numbers as an SU-manifold.
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Proof. Notice first that the homomorphism T used in the proof of theorem 4 can be

defined using SU-manifolds: there is a homomorphisID

c SU SU
T : {}Sm+2 --+ {}Sm+4 ~ IF2

which preaerves the mod 2 KO-eharacteristic numbers. Let I; ( n~U be the ideal of

classes with vanishing KO-eharacteristic numbers. Then TC inducea a homomorphism

N

C SU / c ( SU / c ) ~ IF
T : {}Sm+2 ISm+ 2 --+ {}Sm+4 ISm+ 4 2 J

and there is a commutative diagram

N

nSU / c TC
I ({}~~+4 / I~m+4) ~ IF2Sm+2 ISm+ 2

Al
N

l~
s p in / T • (n~~~~ / I Sm+ 4) ~ [f2nSm+ 2 ISm+ 2

in which '" and I' are induced by the forgetful homomorphism. One has to show that

A is onto. It is w'ell known (cf. [19]) that

is onto. As ISm+ 4 = Tors n~~~~ , this implies that I' is onto. Thus to prove the
N

proJX)sition, it will suffice to show that TC is onto.
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Let B. ( f!~OITors be the aubring o~ claases represented by U-manifolds with

spherical determinant. According to Stong ([21] , p. 282), B. is a polynomial algebra

SU I cand f!8m+4 ISm+ 4 (BSm+ 4 is exactly the subgroup 2B8m+ 4 ·

Let MSm+ 4 be an SU-manifold, and let W8m+ 4 be a U-manifold with

apherical determinant such that [M] = 2 [W] in B8m+ 4 . Dualizing the determinant

of W gives an SU-manifold yBm+2 and we have

W = U U(- 0 2 )( V)

where U ia an SU-manifold with boundary SI)( V , namely the complement of a

tubular neighbourhood of V in W (cf. [13]).

By definition, TC
( [V]) is represented by the manifold Z = (2U) U(- M2

x V) ,

where M2 is an SU-manifold such that 8M2 = 251 . It is easy to see that Z is

cobordant to 2W as a U-manifold. Therefore Z and 2W have the same rational

Pontrjagin numbers. Hence Z and M have the same KO--eharacteristic numbers, that

is represent the same element in n~~+4 I I~m+4 . 0

8. Final remarks. 10
. According to theorem 6, the reduction mod 2 of the dass am

measures the KO-part of the Brown-Kervaire invariant in dimension Sm + 2 . For

ins t ance,
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Other sequences aO,a1,... having the same property have been constructed in [13J.

For example,

where L2m is the reduced mod 2 Hirzebruch's polynomial, is such a sequence. A

simple comparison of the first few terms shows thai ihe new classes &m have far fewer

terms. Besides, they have better multiplicative properties. The classes &m have been

used in [17] to represent k(V) as the index of a twisted Dirac operator on V .

Notice that the mod 2 reduction of h(q) is of the form q + o(q8) . Therefore one

has

for m 5 8 . Thus in dimensions n 5 71, K, (V) is measured by the Witten class

b [n/SJ

o2 . The genus

'{J : n~O --+ Mr(ll [1/2] )
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was used by Landweber, Ravenel and Stong ([12]) to construct an elliptic (co)homology

theory Ef-f-. ([10] J [llJ). Namely they s~owed that

is a homology theory. Here Mr (11 [1/2]) is considered as an O~O - module via tp.

By analogy with the Conner-Floyd isomorphism ([7])

one can ask whether the functor

where M. CMr(KO.) ia the image of ßq deacribed in Theorem 3 (iii), ia a homology

theory. A positive answer to this question would provide a way of etiminating the

undesirable 1/2 in the definition of Ef-f... ().
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A YANISffiNG THEOREM FOR THE ELLIPTIC GENUS

by

Serge Ochanine

Let

tp: ~O --+ ~ [o,e]

be the universal rational elliptic genus defined by

1: tp[(P2i] u2i = (1 - 2ou2 + eu4)-1/2 .

i~O

It is a simple consequence of the rigidity theorem of Bott and Taubes [3] that tp [V] = 0

for any spin manifold V admitting an odd type cirde action. Indeed, substituting for 0

and e two algebraically independent complex numbers gives an embedding ~ [o,e] e:..-+ (

hence a non degenerate elliptic genus over (:. The corresponding equivariant genus

tp 1 [V] is an elliptic function <p(u) for any oriented Sl-manifold V (cf. [5]).
S

Moreover, if V is a spin manifold and the action is odd, then

<p(u + w) = - <p(u)
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for a certain half period tu ([5] I proposition 7 (ii)). On the other hand, according to [3],

<p(u) is constant. Therefore rp[V] = rp 1 [V] = 0 .
S

In the present note we extend the above vanishing theorem to the refined elliptic

genus

introduced in [6]. The first results in this direction were obtained by M. Bendersky [1]

who proved that ßq [V] = 0 for auy spin mauifold V admitting an odd type semifree

tircle action. Bendersky's proof follows from a detailed study of Borsari 's exact sequence

[2] . Our proof, valid for any odd type action, is based on a simple geometrical

construction and on the strict multiplicativity of elliptic genera.

We recall briefly the definition of ßq (cf. [6]). Let E be any real vector bundle

over X. The Witten characteristic class Bq(E) e. KO(X) [[q]] is defined by

8 (E) = GD (A 2n-l (E) GD S 2n(E)) ,
q n~l -q q

where

At(E) = l Ai(E)ti

i~O

and



--3-

St(E) = l Si(E)t
i

.

i~O

H V is a closed spin n-manifold, ßq [V] is defined by

where KOn = KOn(point) . One has

where bi E. KO(BSO) are certain stable KO-eharacteristic classes and bi(TV) [V] are

the corresponding characteristic numbers. The map

defines a ring homomorphism (genus)

which is a refinement of a rational elliptic genus in the following sense. Let

be the Pontrjagin character, Le. the composition of the complexification KO* -----+ K*

and the ehern character. Then



-4-

cp = ph 0 ß : n:pin --+ 11 [ [q] ]
q q

is the restriction to O:pin of an elliptic genus over ~ [ [q]] with invariants

O=-~-3 l ( l d) qn

n~l dln
- d odd

€ = 1: ( 1: d3) qn .

n~l dln
n/d odd

Let now V be any connected closed spin n-manifold.

Theorem. H V admits an odd type drele action, then ßq [V] = 0 .

Proof. The vanishing of the universal genus cp implies the vanishing of cpq [V] . As

cpq [V] = ph(ßq [V]) t this in turn implies ßq [V] = 0 for n == O(mod 4) t for

ph : KOn [[q]] --+ 1l[ [q]]

is then injective.

The case of dimensions n:: l(mod 8) is easily reduced to that of dimensions

n :: 2(mod 8) by multiplyjng V by the drele with its non-trivial spin structure and

trivial Sl-action.

The proof in dimensions n = 8m + 2 ia based on the following construction. Let

M8m+4 be a elosed oriented manifold and suppose we are gjven an embedding
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n2
x V c......+ M and a spin structure on

W = M-int(D2 )( V)

inducing the non-trivial spin structure on each cirde

Sl )( {p} ( Sl )( V = 8 W .

Then V has a canonical spin structure and we have:

Proposition (cf. [4], § 16). For any a E. KO(BSO) one haB

A 2
a [V] = (ph( a(T~))2!(TM) [M]) · 1]

A A

where 2l(TM) is the total 2L-elass of M and 1] E. K01 = IF 2 is the generator. 0

In fact, M admits a spinC-structure and the coefficient of 1]2 is an integer.

Let now y 8m+2 be a connected spin manifold with an odd type cirde action

1J':8 )(V--+V.

Consider M = 83
x 1 V the total space of the fiber bundle associated with the Hopf

8

bundle S3 --+ 82 , and fiber V. M can be obtained by glueing together two copies of

n2 )( V ,say n'; )( V and n:)( V , using,the map
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f: SI )( V ----t SI )( V

given by

f(z,p) = (z,J.'(z,p)) .

The manifold

w = n:)( V ='M -int(n~ )( V)

has a unique spin structure compatible with the given spin structure on V . The map f

restricted to the cirele SI = SI )( {p} is given by

Z t--+ (z,J'(z,p)) .

1t can therefore be viewed as the inelusion of an orbit of the diagonal drele action on

SI )( V = aw . This action is even type. 1ndeed, the standard clrele action on SI

equipped with the trivial spin structure is odd type, and so ia the given action on V . 1t

follows that the spin structure on W induces the non-trivial spin structure on each cirele

SI )( {p} ( IJ W . On the other hand, it obvi'ously induces the given spin structure on V.

The proposition above gives

a [V] = (ph( a(TM))2L(TM) [M]) • TJ2

for any a E. KO(BSO) j in particular, one has:
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The rigidity theorem of Bott and Taubes [3] implies the strict multiplicativity of elliptic

genera over Q-algebras (cf. [5]), therefore

and

o

Corollary. Ha spin manifold V8m+2 admits an odd type circle action, then both the

Atiyah invariant a(V) and the KO-part of the Brown-Kervaire invariant, k(V) ,

vanish.

Indeed, a(V) and k(V) are two of the coefficients or ßq [V] when expressed as a

polynomial in the series

(cf. [6]).
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