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QUADRATIC CATEGORIES AND SQUARE RINGS

HANS .JOACHIM BAUES, rvIANFRED HARTL, TEIMURAZ PIRASHVILI

\Ve consider quadratic categories which generalize the classical additive cate
gories. An additive category A is a category for which morphism sets are abelian
groups and the composition fg is bilinear, and for which sums exist in A. A qua
dratic category Q is slightly more general in the sense that morphism sets are groups

and the composition fg is linear in g and quadratic in f. This implies that rnor
phism sets are groups of nilpotency degree 2. We describe below many examples of
quadratic categories in algebra and topology which motivate the systematic study
of quadratic categories started here; it may be considered as an extension of the
investigation of quadratic functors in [4].

The properties of a quadratic category and its subcategories lead to the new notion
of a ~square ring" which is exactly the quadratic analogue of the classical notion of
a "ring". Indeed each object }{ in an additive category A yields an endornorphism
ring given by all morphisms X ~ X in A; similarly each object in a quadratic
category yields the endomorphism square ring End(X) of ..}{. The initial object in
the category of rings is the ring Z of integers for which the category of modules is
the category of abelian groups. We here determine the initial object Znil in the
category of square rings for which the category of modules is the category of groups
of nilpotency degree 2.

vVe compute various square rings explicitly, for example, the endomorphism square
rings of the suspended projective planes ~lR.P2 and ~CP2. This yields as an ap
plication an algebraic description of the homotopy category of all NIoore spaces
lvI(V,2) where V is a Z/2 -vector space; in fact trus category is equivalent to the
fuH category of free objects in the category of 2-restricted nil(2) -groups.

There has been recently a lot of interest in operads [9]. In fact, operads 0 = {On}
with On = 0 for n '2: 3 are the same as special' square rings. Therefore the theory
of square rings shows naturally how the theory of operads has to be modified in
order to deal with nilpotent groups.



§ 1 ADDITIVE CATEGORIES AND MODULES

We first recall some basic notation and facts concerning additive categories;
cOlnpare [10]. VVe do this since we are going to introduce the analogous notation
and facts for 'quadratic categories'; in fact, the theory of quadratic categories has
to be a canonical extension of the theory of additive categories.

(1.1) Definition. A category A is preadditive if the morphism sets A(X, Y) are
abelian groups and the composition law is bilinear. Moreover Ais an additive category
if in addition for all objects X, Y there is given a diagram -

with 'I i 1 = Ix, '2i2 = 1y and i 1 '1 + i 2 1 2 = lxvY' Here X V Y is called a
bipfoduct; this is a sum and a product in A [10]. Moreover A has a zero object
*. A zero morphism 0 E A(X, Y) is given by X -t * -t Yj thi-;is also the neutral
element of the abelian group A(X, Y). Apreadditive category R is the same as
an Ab -category (i.e. a category enriched over the Inonoidal category (Ab, CO) of
abelian groups). Such a category is also called a ringoid; in fact, if R has only one
object then R is the same as a ring. -

(1.2) Definition. Let R, be a ringoid. Then the biproduct cOlnpletion of R,

i : R C Add(R),

is given as follows. The objects of Add(R) are the n-tuples X = (Xl, . .. ,Xn ) of
objects in R with 0 ::; n < 00. The morphisms are the corresponding nlatrices of
morphismsln R. The inclusion i carries the object X to the tuple of length 1 given
by X. The category Add(R.) is an additive category with distinguished biproducts
given by

~Y Il y~ = (Xl, . . . ,Xn, Yt , • •• ,Y'k)

for X=(X1 , ... ,Xn ) and Y=(Yl, ... ,Yk ).

A functor F : R -t B between ringoids is additive if F(f + g) = F(f) + F(g) for
f, 9 E R(X, Y). If B is an additive category there is a unique additive functor

(1.3)

with Pi = Fand P(XIlY) = P(X)VPp!'). This is the freeness property of Add(R).
For eXaInple if R is a ring then Add(R) in the category of finitely generated free
R,-modules.

Let R be a full subcategory of an additive category A and let R be the fuH subcat
egory of A consisting of fini te bipraducts (n 2: 0) XIV ... V X n in A with Xi E R.
Then oneobtains an equivalence of additive categaries - -
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(*)

which is the additive extension f = Jof the inclusion j : R C R. In particular for
the additive category A one has the equivalence of additive categories

(**)

which is the additive extension of the identity on A.

(1.4) Remark. Let R be a ringoid. A family X of objects in R is a set I together
with a function X :1 -+ Ob(R) where Ob(R) is the class of objects in Rj we also
write X = {Xi}iEI. Such families are the objects in the category add(R) with

R c Add(R) c add(R)

Morphisms in add(R) from X = {Xi} iEI to Y = {Yj} jE} are the matrices (Q~) (i ,j) EI x}

of elements Q~ E R(Xi,Xj) such that for i E lalmost all elements in (Q~)jEJ are
zero nl0rphisms. For example for a ring R the category add(R) = mod(R) is the
category offree R-modules. In particular add(Z) = ab is the category offree abelian
groups. Clearly add(R) is again an additive category with the biproduct X II Y
given by the family {Xi, Yj}iEI,jE}'

We now introduce some notations on theories. A theory T is a category in which
finite sums exist. A model of a theory T is a functor

(1.5) F : TOp --+ Set

frorn the opposite category T°l' of T to the category of sets such that F carries
a surn in T to a product in Set. Let]"1adel (T) be the corresponding category of
nlodels; morphislns are natural transfonnations. For example for a ringoid R the
category Add(R) is a theory.

A (right) R -module !VI is an additive functor

(1.6)

Let ]vIod(R) be the category of such R -Illodules. Module homomorphisms M -+
M' are th~ natural transformations. Then one has the canonical isomorphism of
categories.

(1.7) Lemma. Mod(R) = Model(Add(R.))
--- ---

M
Here the isomorphism carries the module M to the cOlnposition Add(R)OP --+
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Ab~ Set where M is the additive extension of M in (1.3) and 4J is the forgetful
functor. Clearly if R is a ring then M od(R) is the classical category of right R-
modules. --

We also shall use quadratic functors on additive categories. For this recall the
following classical notation of Eilenberg-Mac Lane [7].

{1.8} Definition. Let A be an additive category. A functor T : A --+ Ab is termeel
guadratic if T(O) = 0 and the cross-effect bifunctor --

T(X IY") = kernel (T(X V Y) ~ T(){) ffi T(Y)) with 7' = (rh, T2*),

is biadelitive. Equivalently the functor T is quaelratic iff the induced function

A(A, B) ~ H om(T(A), T(B))

is quadratic for all ob j ects A, B in A, see (2.1). The functor T is addi tive iff
T(X I }'~) = 0 for all X, Y.

Examples of quadratic functors Ab --+ Ab are 0 2 , A2 , Sy7n2 , r; compare [4] anel
[12, 13] where quadratic functors~'e studied. Exampies of Ieft additive anel right
quadratic bifunctors are the functors

H o7n(-, T) : Abop x Ab --+ Ab

which carry (A, B) to H om(A, T(B)) where T : Ab --+ Ab is quadratic. In a
similax way we define the bifunctor Ext(-, T) on Ab which is left additive and
right quadratic. -

§ 2 QUADRATIC CATEGORIES

We introcluce the notion of a quadratic category which is thc "quadratic ana
Iogue" of an additive category. In a quadratic category the rllorphisrll sets are
groups which neeel not to be abelian. Here we write the group structure (also of a
non-abelian group) additively since we write the composition law multiplicatively.

We say that a function <p : G --+ G' between groups is linear if (x, y E G)

<p(x + y) = <p(x) + <p(y).

Moreover<p is quadratic if the function (l)lp : G x G --+ G' given by the "cross effect"

(2.1) (x I y)lp = <p(x + y) - r.p(y) - <p(x)

is linear in x anel y anel (x I Y)lp is central in G'. Clearly cp is linear if anel only if
(Dlp = O.

{2.2} Definition. A category Q is preguadratic if the rnorphism sets Q(X, }'~) are

groups anel if the compositionlaw fog is linear in 9 anel quaelraticln f. This
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lneans more precisely the following. Consider for X ~ Y ?- Z in Q the induced

functions

1* : Q(Z, Y) -t Q(Z, X)
- -

g* : Q(Y, X) -t Q(Z, X)

with I*(g) = g*(/) = log. Then 1* is linear for all Z E Q and g* is quadratic for
-

all X E Q. Hence for I, f' E Q(Y, X) the cross effect

(I I I')g = (/ + f') 0 9 - f' 0 9 - log E Q(Z, X)

is linear in 1 and f' and central in Q(Z, X). We say that a morphisln 9 in Q is

linear if g* is linear for all )(.

The prequadratic category Q is termed a guadratic category if Q has a zero object

* and if for all objects X, Ythere is given a diagram of linear morphislllS

with Tl i 1 = Ix, 1'2i2 = 1y and i 1Tl +i2T2 = lxvY' We call XVY a quadratic biproduct
in Q.

We shaU see that an additive category is thc same as a quadratic category for
which all morphisms are linear. Clearly a full subcategory R of a quadratic category

Q is prequadratic. Let R be the biproduct c0111pletion of R in Q, i.e. the fnU

subcategory of Q consisting of finite qnadratic biproducts Xl V ... \1 X n in Q with

Xi E R. Then t"he structure of R as a prequadratic category does not detennine

R so that the direct analogue of (1.3) (*) is not true. Therefore there arises the
problem of aclding "structure" to R in such a way that R together with the structure

determines R. We specify this additional structure of R via the notion of "square
ringoid" in §3. -

{2.3} Remark. We caU Q in (2.2) also a left quadratic category since Q has a left

quadratic composition law. Using duality we can define a right quadratic category
P by the condition that the opposite category pop is a left quadratic category.
Then the cOlnposition log in P is linear in fand quadratic in 9 and for biproducts
in P the maps i 1, i 2 , Tl, T2 are linear. All results below refer to (Ieft) quadratic
categories; there are obvious dual results for right quadratic categories.

V....re now describe various examples of quaelratic categories. Let Top* / ~ be the

homotopy category of pointed topological spaces. Suspensions and loop spaces give
rise to the following quadratic categories of the "metastable range" of hOlnotopy
theory.

(2.4) Example. Let n 2:: 2 and let
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~(n, 3n - 3) C Top* I ~
be the fuH subcategory consisting of suspensions ~X which are (n - 1) -collnected
(3n - 3) -dimensional CW-spaces. Then ~(n, 3n - 3) is a (Ieft) quadratic category.
The group structure for the set [~X, ~Y] of rllorphisms is given by the suspension
~X. The left distributivity law of homotopy theory shows that the composition in
~(n, 3n - 3) is left quadratic, see Appendix [5]. Quadratic biproducts are one point
unions (~X) V (EY) = ~(X V Y) of suspensions.

(2. 5) Example. Let n 2:: 2 and let

n(n,3n - 1) C Top* I ~
be the fuH subcategory consisting of loop spaces nx which are (n - 1) -connected
CVl-spaces with trift..\ = 0 for i > 3n - 1. Then n(n, 3n - 1) is a right quaclratic
category. The group structure for the set [nX, S1Y] of morphisms is given by the
loop space ny. Quadratic biproducts are products (nX) x (ny) = S1(X x y~) of
loop spaces. .

(2.6) Example. Let Gr be the category of groups. A group G has nilpotency degree
2 if aH tripie commutators in G vanish. Then G is also termed a nil-group. Let
fl il c Gr be the fuH subcategory of nil-groups. The free nil group (lvI)nil generated
by a sclM is giyen by the quotient (M) nil = (lvI) Ir3 (M) where (]l.1) is the free
group generated by ]1.1 and where r 3 (M) is its subgroup of triple corllillutators. Let
nil C Nil be the subcategory of free nil groups. Then nil is a quaclratic category.

The group structure of Gr( (lvI}nil, (N)ni,) is givell by (J+ 9)(1n) = f( m) + g( n~)

for 71~ E M. Olle readily checks that the disjoint union lvI U lV yields the quadratic

biproduct (M)nil V (N)nil = (M U N}nil.

We now describe some basic properties of prequadratic, resp. quadratic, categories
Q. The zero 1110rphislll 0 E Q(Y, X) is given by the neutral element in the group

Q(Y, X). For 9 E Q(Z, Y) let -g be the inverse of g. Moreover let 2 = 2x E

Q(X, X) be the double of the identity; i.e. 2x = Ix + Ix where Ix is the identity

of X.

(2.7) Lemllla. In a prequadratic category Q we have t]le formulas

f 0 0 = 0 ancl 0 0 9 = 0,

rl i 2 = 0 and r2 i 1 = 0 for a quadratic biproduct,

(-/)g = -(fg) + (f I f)g,

(/ I f'hl' = f' + f - f' - f = - f' - / + /' + f
where /, f' E Q(Y, X) alld 9 E Q(Z, Y).

If Q has a zero obejct * then the first formula implies that 0 E Q(Y, X) coincic1es

with Y --+ * --+ X. Moreover the last formula shows that COffirllutators in Q(Y, )[)
are central. Therefore one gets
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(2.7) Addendum. All Inorpbisln groups Q(Y, X) in a prequadratic category Q
are groups oi nilpotency degree 2. -

Proof of (2.7). We have fO = f(O + 0) = fO + JO so that fO = O. Moreover since
(I)9 is bilinear we get

(0 IO)g = 0 = (0 + O)g - 09 - Og = Og.

For a quadratic biproduct we have

1'2(i1 ' 1 + i21 2) = 12 IxvY = 12

'2 i l 1 1 + 1'2 i21 2 = '2 i l 1'1 +12

so that 12il1l = O. Therefore '2il = 12il '1 i l = 0 i 1 • Next wc have 0 = f + (- j)
and therefore

-(f I f)g = (f l-f)g = (1 + (-f»g - (-f)g - fg

= -(-f)g - fg

Finally we get

(f I f'hy = (f + I')(ly + Iy) - 1'(ly + Iy) - f(ly + 11")

= f + f' + f +/' - I' - I' -'- f - f
= f + (I' +1- f' - I) - f

This yields the commutator formula since (I I I'hy = (-I I - /'hy is central.

q.e.d.

(2.8) Lelnnla. Linear morphisms in a prequadratic category Q {onn a subcategory

wbic11 we denote by Linear (Q).

Proof. Let g, g' be linear. Then gg' is linear since

(*)

(**)

(/1 + 12)gg' - f2gg' - 11gg'

= ((fl + 12)g - /2g - flg)g'

= Og' = 0

Here (*) holds since g' is linear and (**) is true since 9 is linear.

q.e.d.

Remark. For exalnple in (2.4) the linear lnaps are the co-H -maps and in (2.5) the
linear maps are the H-maps. The linear lnaps in nil are obtained by all hOlllolnor
phislns EM --+ EN given by functions M --+ N U {O} so that Linear (nil) = Set* is
the category of pointed sets. - -
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(2.9) Lenllna. A quadratic biproduct X V Y is a sum in Q, tbat is

(i~, i;) : Q(X V Y, Z) = Q(X, Z) X Q(Y, Z)

is a bijection. Moreover (ii, ii) is an isomorphism of groups.

Proot. i i ,i 2are homomorphisms since i 1 and i 2 are linear. The inverse j of (i i ,i2)
carries (a, b) to aT1 + bT2. In fact

j(i~,i~)(u) = j(ui1,ui2)

= Ui 11't + Ui21'2

=u(i1rl + i2T 2)

= u lxvY = u

(i~ , i;)j (a, b) = (ii, i;) (a1'l + bT2)

= (a1'} i 1 + bT2i], art i 2 + bT2i2)

= (a, b)

q.c.d.
A quadratic biproduct in Q in general is not a product hut we have the following

property of the lnorphism set Q(Z, X V Y). For objccts X, Y, Z let Q(Z, X IY) he

the kernel of

l' = (rh, T2*) : Q(Z, X V Y) --+ Q(Z, X) X Q(Z, Y)
- -

(2.10) Lenlma. Tllis kerne] defines a functor

Q( ,I): QOP X Q x Q --+ Ab
- -

wbicb we call tbe cross effect functor on the quadratic category Q and

Q(Z,X IY) ~ Q(Z,X V Y) ..: Q(Z,X) X Q(Z, Y)

i8 a central extension of groups whidl is natural in Z, X and Y. Here i 12 i8 the
indusion. Moreover the functor Q( , I) is additive in each variable Z, X, Y.

Proot. T is surjective since 1'(i 1 a +i2b) = (1'1 (i l a +i2b), 1'2 (i l a + i2b)) = (a, b). Vve
define

1'12 : Q(Z,.3; V Y) --+ Q(A, X IY)

TTI2(U) = (1'1 (u - i2T2U - i 1Tl u), 1'2(U - i2r2u - i 1 1'1 u))

= (1'1 U - Tl U, T2 U - r2 u) = (0,0)
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Moreover 1'12 is surjective since for V E Q(Z, X I Y) we have Tl V = 0 anel T2V = 0

anel hence 1'12 (V) = V - i21'2V - i 11'l V = v. Now we can writc

T12(U) = (i1 T l + i 2T2)U - i1TIU - i2,T 2 U = (i 1 1'1 I i 2 r'2)u

anel hence 1'12 (u) is central in the group Q(Z , X VY) since cross effects are central.

Next we see that Q(Z,X I Y) is linear in Z. In fact, for f + I' : Z --+ Z' we have

(w = i 12 V)

i 12 (1 + f')*v = (I + f')*i 12 V = w*(f + f')

= w*f + w.I' = i 12 (f*v + f'*v)

since w * is linear. Moreover we show that Q(Z, X I Y) is linear in X anel Y. For

this we observe that f V 9 : X V Y --+ X' V Y' satisfies thc formula

f V 9 = i]/T1 + i 2gT2

so that for v E Q(Z, X IY) with w = i 12 V

i 12 (!, g)*v = (I V g)*i 12 V

= (i]fT] + i 2gT2)W

= i 1 /T\ W + i2gT2'W + (i, f T1 I i 2gT2)w

= (i1f1'l 1 i 2gT2)w

since 1'] W = 0 and T2W = O. Here the cross effect is linear in fand 9 since T1 anel
1'2 are linear and since the cross effect is bilinear.

q.e.d.

(2.11) Corollary. One has a bijcction of sets

Q(Z,X V Y) = Q(Z,X) x Q(Z, Y) X Q(Z,X I Y)
- - -

which carries U to (Tl u, 1'2 u, 1'12 (u)) and the inverse carries (a, b, v) to i 12 v+i] a +i2 b.
The bijectioon is natural in X and Y.

In an additive category a biproduct is a surn and a product. In a quadratic
category a quaclratic biproduct X VY is a sum and satisfies property (2.11) so that
X V Y is a product iff for a11 Z the group Q(Z, X IY) is trivial.

(2.12) De{inition. The cross effect functor Q( , I) of a quadratic category Q is

endowed with the following structure Inaps H, P, T. For X V X we have the mor
phisms

{
P : X --+ X V X, p = i] + i2

\J:){ V X --+ X, \J = (lx,lx)
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We define functions H and P,

Q(Z,X) ~ Q(Z,X !X) ~ Q(Z,X),
- - -

by H(w) = T12(J-L.W) and P(v) = V.(i 12V). NIoreover we define tbe interchange map

T : Q(Z, ~X: IY) ~ Q( Z, Y I X)

by the commutative diagram

Q(Z,X!Y)

lr
Q(Z, Y- IX)

i12
----+) Q(Z,X V Y)

1t.

112 ) Q(z, Y V X)

(2.13)

where t : X VY ---7 YvX is defined by ti 1 = i 21 t-i2 = i 1. Since t. is a hOlll0morphisll1
we see that T is an isomorphisln of abelian groups and clearly TT = 1 since tt = 1.

Let C be a category with a zero object and finite SUIUS. We recall that a cogroup
in C is a tuple (.\"", p, v) where X is an object in C and where J-L : X -+ X V X
v : X -+ X ar~ morphisms with the following properties.

\

(1, O){l = 1, (0, 1)p = I (counit propcrty)

(1 V J-L)J-L = (J-L V 1)J-L (coassociativity)

(1, v)J-L = 0 (coinverse)

A cogroup X induces the structure of a group on the 1110rphism set C(X, Z) for all
Z. The group structure is obtained by a + b = (a, b)J-L with inverse -a = av. A
map I : Y ---7 X between cogroups is a co-H-map if {li = (I V I){l. Such a Inap
induces a hOlnomorphism between groups f· : C(X, Z) ---7 C(Y, Z).

(2.14) Lemlua. Each object X in a quadratic category Q is callonically a cogroup

sucb tbat tbe group structure of Q(~\"", Z) coincides witb tbe induced group struc

ture. A map I : X ---7 Y in Q is linear Hf I is a co-H-lnap, tl1is is tbc case, iE and

only iE H(f) = O.

Proo(. V\Te obtain the cogroup structure of X by p = i 1 + i 2 : .Y ---7 X V )( and
1/ = -lx: X ---7 X. Now H(f) = 0 iff i 12 H(f) = 0 where

i 12 H(f) = i 121'12P.(f)

= J-Lf - i2T 2J-Lf - i 1Tl pi
= (i 1 + i2 )1 - i 2! - i 1f
= (i 1 + i2 )f - (f V f)(i 1 + i 2 )

= J-LI - (/ V f){l

This cOlnpletes the proof of (2.14).

q.e.d.
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§ 3 SQUARE RINGOIDS

Quaelratic categories Q with cross effect Ai = Q( , I) anel structure Inaps

T, H, P in (2.12) satisfy properties which are conclensed in the following notion
of a 'square ringoiel'.

(3.1) Definition. A square ringoid

(R.,M,T,H,P)

is given by a category R together with the following elata. All morphis1l1 sets
R(X, y~) are groups (written aelelitively) anel

(i) NI : ROP x R x R --+ Ab
- -

is a functor which is linear in each variable. That is, for morphisms f, g, h in R the
function M which carries (f, g, h) to M(j, 9, h) = f* (9, h)* is linear in each variable
/, 9 anel h respectively. Next

(ii) T : M(X, Y, Z) ~ M(X, Z, Y)

is a natural isomorphisIll with TT = 1. Moreover H anel P elenote functiolls

(iii) R(X, Y) ~ M(X, Y, Y) ~ R(X, Y)

for all objects ~Y, Y in R. These elata satisfy the following properties (1) ... (7).

(1) P is a homomorphism which maps to the center of the group R(X, }!'") anel
P is natural in X anel Y', that is for x : X --+ X' anel y : yr --+ Y' in Q we

have

x*P = Px* anel

Nloreover for a E NI()';, X', )(') ancl ß E M(Y, }l"', Y') thc inducecl 111aps

(x, P ß) *, (P cx, y) * : A1(Z, X, Y) --+ IvI (Z, X' , Y')

are trivial, that is

(x, Pß). = (Pa, y). = O.

(2) For a, b E R(X, Y) we havc a + b E R.(X, }l") by the grollp structure of
R(X, Y) anel H satisfies

H(a + b) = H(a) + H(b) + (a,b).H(2x).

Moreover H is a derivation, that is, for X ~ y ~ Z in R one has the
formula
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H(fg) = (!, f)*H(g) + g* H(j).

(3) T = HP - 1 on AI(X, y~, Y)
(4) PT = P on M(X, Y, y~)

(5) TH = H + \lH where for a E R(X, Y)

\lH(a) = a· H(2y) - (a, a).H(2x)

(6) For X ~ Y ~ Z in R we have the 'quadratic left distributivity law'

(I + f') 0 9 = fog + f' 0 9 + P(I, 1').H(g)

(7) For X ~ Y fd- Z in R we have the 'linear right distributivity law'

1 0 (g + g') = log + log'.

By (7) and (6) we see that R is a prequadratic category.

(9.2) Remark. Let R be a square ringoid. Then beside (1) ... (7) above the following

equations hold. By (6) one has for X ~ Y ~ Z the cross effect formula

(a) (I I f')~ = P(I,I')*H(g)

This implies by (2.7) the formula

(b) (- f)g = -(fg) + P(f, !).H(g)

and for a, b E R(X, Y) we get

(c) b + a - b - a = -b - a + b+ a = P(a, b).H(2x).

Moreover 'double cross effects' vanish in R, that is, for W ~ X J- y ~ Z and

lV~ Y in R we have

(cl)

This follows from (a) since we have (Pa, y). = 0 = (x, Pß). by (1) above.
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(3.3) Theorenl. Eac1] quadratic category Q with cross effect M == Q( , I) allel

structure maps T, H, P as denned in §2 is a-;quare ringoid.

The proposition implies that each full subcategory R of a quadratic category Q has

the structure of a square ringoicl.

Proof of (3.3). (1) Vve obtain P by the composition

where i12 is central and V. is surjective since ViI == Ix. Hence P is ccntral.
Moreover we get the naturality of P since i lZ is natural in Z (by the definition
of Q( ,I) in (2.10)) anel since v(1 V I) == Iv, 1'r(! V I) == Irr for T == 1,2.

For the proof of (Pa, V). == 0 we first observe that for ~ E Q(X,~Y' I ~Y") with

ilZE E Q(X, X' V X") the inclucecl map

o== (iIZ~, I). : Q(Z, ..Y IY) --+ Q(Z, X' V X" IY)

is trivial. This follows since by (2.10) the map

Q(Z,X' V X" IY) ~ Q(Z,X' IY) EB Q(Z,X" J Y)

given by (1'1,1). anel (1'Z, I). is an isolnorphism. Hence we get (i1ZC I). = 0
since rl i lZ == 0 and 1'Z i lZ == O. Since Pa == \7. i lZ a we obtain (Pa, V). ==
(\7,y).(i lza, I). == O. Silnilarly one gets (X,Pß). == O.

(4)

(7)

(6)

PT == P is a consequence of V t == V.

is part of the definition of a prequadratic category.

This formula is obtaineel by

P(!, j').H(g) == P(j, j').7'IZ(pg)

= \7.(1 V 1').(iIrl I iZTZ)Jlg, see proof (2.10),

== \7(! V 1')[(i1Tl + i Z7'z)/-lg - iZTZ/-lg - ilTl/-lg]

== (f + f')g - f' 9 - ! g.

(3) vVe have the COllllllutative diagram in Q

Y V y~

JLV J11
'V) Y

Y V Y V Y V Y 1~1 1'~ V Y V Y V Y

which we use in the following equations with v E Q(X, Y IY).

13



H P v = r121l • \7. i 12 ( V )

= 1'12(\7 V \7).(1 V t V l).({l V J-1).i 12V

= 1'12 (\7 V \7). (1 Vt VI). i12 (J-1, J.l). V

Since Q(X, Y I Z) is linear in }, and Z by (2.10) we get

({l, p).v = (il + i2 , i 1 + i 2 ).v

= (il,id. v + (iI,i2).v + (i 2,id.v + (i2,i2).v

observe that

T12(\7 V \7)*(1 V t V 1).i12 (i 1 ,id. = 1'12(\7 V \7).(1 V t V 1).(i1 V id.i 12

= 1'12 i 1 \l. i 12

=0

since Tl2ih = O. SiluiIarly

7'12(\7 V \7)*(1 V t V 1).i 12 (i2, i 2 ). = 0

On the other hand we get

1'12(\7 V \7).(1 VtV 1).i12 (i1 ,iz). =idcntity

1'12(\7 V \7).(1 V t V 1)*i12 (i2,i1 )* = T

This compietes the proof of (3).

(5) For a E Q(X, :V) we have

i12 TH(a) = i 12TT12J-1.(l = t*i 12 1'12J-1.a

Here we can use for v = p.a the fonnula

i 12 l'12 V + (i 1T.). V + (i 2 T2 ). V = V

which follows from the definition of 1'12 in (2.10). Hence we obtain

i12 TH(a) = t.(id - (i21'2). - (i 17't}*){l.(l

= t*(J-1*(l - (i21'2P)*a - (i 1 T IP).a)

= t*(J.l*(l - i2a - i 1 a)

= (i2 + it}*a - i 1a - i2 (l

14



On the other hand we have

where

Hence we have to show

(i 2 + i1 ).(l - i1a - i2a + i1a + i2a - (i 1 + i2).a = i12 \7H (a)

Here the commutator rule (8) shows

-i1a - i2a + i1a + i2(l, = -(-iza - iJ(l, + iza + i1 a)

= -P(i1a, i2a).H(2x)

= -i1z (a,a).H(2x)

(i z + id.a - (i] + iz).a = a·(i2+i 1 - i] - i2)

= a* P(i 1 , iz).H(2y)

= a*i12 H(2x) = i 12 a* H(2y).

This completes the proof of (5).

(2) We use the formula (see (2.14))

Thus we get

i1zH(a + b) = (i1 + iz)(a + b) - iz(a + b) - i1 (a + b)

= (i1 + iz)a + (i 1 + iz)b - izb - iza - i1b - i1a

=i12 H(a) +i 1a + izb + i12 H(b) + i1b+ izb - izb - iza - i1b - i 1 a

= i 12 (H(a) + H(b)) + i 1a + (iza + i 1b - iza - i 1b) - iJa

= i1z (H(a) + H(b)) + ija + P(i 1 a, izb).H(2x) - i 1a

=i1z (H(a) + H(b) + (a, b)*H(2x))

In the last equation we use P (i 1 1 i 2 ). = i 12. This COIllpietes the proof of (2).

For the proof of the derivation property of H we first obtain the following formulas.
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I;

i1Z H(fg) = (i1 + iz)fg - izlg - i1fg

i 1Z (!, f).H(g) = (I v f).i 12 H(g) = (I V !)*((i] + iz)g - izg - i1g)

= (i 1fr 1 + iz!r2) (i 1 + iz)g - (i 1f7'1 + izlrz )iZ9 - (i1 fr] + izlrz )i] 9

= (i1f + izf)g - izfg - i]fg

i1Z g* H(f) = g*i]z H(f) = ((i] + iz)1 - i2f - i 1 f)9

These formulas imply

i1Z (H(lg) - (I, f)*H(g) - g* H(f)) =

= (i1 + i2)lg - izlg - i1 fg + i1fg + i2fg - (i 11 + izl)g - ((i 1 + i2 )f - (itf + izf))g

= (i] + i2 )fg -lg - [(i] + iz)fg + (-l)g + P((i] + iz)fg -1)Hg] (with ! = i11 + i~~/)

= (i] + iz)fg -19 - [-lg + p(I,I).H(g)] - (i 1 + iz)lg - P((i 1 + iz)fl -1).H(g)

= -p(I,!)*H(g) + P((i 1 + iz)!,]).H(g)

= P((i 1 + i z)! - ], f).H(g)

= P(P(i 11 iz)*H(f), f).H(g) = 0 by (1).

Hence H is a derivation since i 12 is injective. This completes the proof cf (3.3).

q.e.d.

§4 BIPRODUCT COMPLETION OF SQUARE RINGOIDS

In this section we describe the quadratic analogue of the biproduct cOlllpletion
of a ringoid in (1.2).

(4.1) Definition. A functor F : Q ----t Q' between prequadratic categories is linear

if Finduces a homolllorphislu betweengroups

F : Q(X,Y) ----t Q'(FX, FY)
- -

for X, Y E Q and if F carries linear maps to linear lnaps.

Hence a linear functor carries a quadratic biproduct to a quadratic biproduct. This
implies that a linear functor F between quadratic categories induces a natural
transformation

F~ : Q(X, l' I Z) ----t Q'(FX,FY I FZ)
- -

eonlpatible with T, H, P in (3.2). Henee (F, F~) is a morphism of square ringoicls
defined as follows.

(4.2) Definition. A lnorphism F : R ----t R' between square ringoids is a linear

fUBetor F : R ----t R f of the underlying prequadratie categories together with a
natural transformation in Ab
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Fö : A1(X, Y, Z) --+ ]\lI'(FX, FY, FZ)

such that Fö is compatihle with T, Hand P respectively, that is:

FöT == T' Fö on M(X, Y, Z)

FöH == HfF on R(){, Y)

FP==P'Fö on M(X,Y,Y)

for all X, Y, Z E R.

We now are ahle to clescribe the universal property of the biprocluct completion
Add(R) of a square ringoid R. First Add(R) is a quadratic category and i : R --+
Add(R) is a morphism of square ringoids such that for any quadratic category Q

and any rTIorphism F : R --+ Q between square ringoids there is a unique linear

functor

(4.3) P : Add(R) --+ Q with Pi == F.

Here P is the quadratic analogue of (1.3). The following resultsjustifies the selection
of properties used in the definition of a square ringoid.

(4.4) Theoreln. For a. square ringoid thcre exists thc biproduct completioll i :
R. --+ Add(R).

If Q is a quadratic category then any fuH subcategory j : R C Q has the structure
- -

of a square ringoid. Let R be the fuH subcategory of Q consisting of finite quaclratic

biproducts Xl V ... V X r with Xi E R. Then

(4.5)

with € == J is a linear equivalence between quadratic categories. COlnpare (1.3) (*).
As in (1.4) one cau extend the definition of Add(R) in (4.7) below for 'families of
objects in R' and one obtains this way -- -

(4.6)

We leave this to the reader. The proof of (4.4) relies on the following construction
of Add(R).

(4.7) Definition. Givcn a square ringoid R we define the quaclratic category Q ==
Add(R) as follows. The objects of Q are the finite tuple of objects in R which we

denote by -
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Xl II X z II ... II Xx = (Xl, ... ,Xx), X 2:: 1.

We define for Y E R the group

where X denotes the product of sets. The group structure on this set is given by
the formula

=(li + If, fij + I/j +Oij)

= (li, fj)*H(2y)

Moreover we define the group

as a product of groups. An element in this group is denoted by I = (Iik , fi~)

with 1 ::; k ::; y and 1 ::; i < J ::; x. Now let 9 = (gi:, gkl) be an element in
Q(ZI II ... II Zz, Yl II ... II Yy ). Then the composition is defined by

where the coordinates are given as follows.

(/g); = Il gr + fl 9~ +... + Ir g; +L P(/t, /1)*91.1
k<l

(f9)fj = L(9Z)* fi~
k

+ L ((/i
k

l fj)*9kl + (fI, f})* T 9kl + (f19;, Ij9k)*H(2z,))
k<l

Using the properties of a square ringoid one now can check that the composition is
associative and that Add(R) is a weH clefinecl quadratic category with the universal
property of the biproduct cOIl1pletion of R in (4.4).

§5 QUADRATIC CATEGORIES AS LINEAR EXTENSIONS 01" ADDITIVE CATEGORIES

vVe show that all quadratic categories can be obtained by certain linear exten
sions of additive categories. This gives rise to nlany examples of quadratic categories
and it also yields a kind of classifieation of quadratic categories.

(5.1}Detinition. Let C bc a eatcgory and let D : cop x C ~ Ab be a bifunetor (also
tenned C -bimodule). We say that

D~E~C

is a linear extension of the eategory C by D if (a), (b) and (c) hold; eOIl1pare [6].

18



(a) E and C have the same objects anel p is a fuH fllnctor which is the identity on
objects~

(b) For each / : A --+ B in C the abelian group D(A, B) acts transitively aud
effectively on the subset p-l (J) of lTIorphism in E. vVe write Jo + 0' for the
action of 0' E D(A, B) on Jo E p-l (f). Any /0 E p-l (J) is called a lift of /.

(c) The action satisfies the linear distributivity law:

(Jo +O')(gO + ß) = Jogo + f*ß + g*o:

A ITIap between linear extensions is a diagram

D + E
p

) C)

ld lf l~
D' ) E' p

) C'

where E, <p are fllnctors with p' E = <pp and d : D (AB) --+ D' (<p A, <pB) is a natural
transformation satisfying E(Jo + 0:) = E(/O) + d(0:). If <p and d are the identity then
E is called an equivalence of linear extensions.

We call D >-t E ~ I< a weak linear extension if there is a linear extension
- -

D >-t E --+ C as above together with an equivalence of categories C ..:;. K such that

E --+ C -=+ I( coincides with q.
There is~ canonical bijection

(5.2)

Here lvf(C,D) is the set of equivalence classes of linear extensions and H 2 (C,D)
is the cohomology of C with coefficients in D; [6]. We now describe exarnples of
linear extensions of categories

(5.S) Example. Recall that ab anel nil elenote the categories of free abeliean groups
and free nil-groups respectively; see (2.6). Then there is a linear extension

obtained as follows. The functor p carries (lvf)nil to the abelianisation Z [M] which
is the free abelian group generated by lv.l. One has the c1assical central extension

where q is the abelianization anel where w is the COlnmutator map. Now the action
of 0: E Hom(Z[N], A2Z[Ml) on /0 : (N)nil --+ (M)nil E nil is given by (/0 + a)(x) =
/o(x) + wo:q(x). In this exanlple ab is an additive category and nil is a quaelratic

- -
category; see (2.6).

d
(5.4) Example. Let A be an abelian group anel let Z[N] >-t Z[M] -* A be a free
resolution of A. We choose a lTIap
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8 : VSI ---t VSI
N M

between Olle point unions of 1- sphcres which induces d in honl0logy, H 1 (8) = d. Let
M A be the 11lappillg cone of 8. Thell the suspension 1I.1(A, n) = L: n

-
I AIA , n 2:: 2,

is a Moore space of A in degree n. Let Mn be the full homotopy category of such
Moore spaces M(A, n), A E Ab, alld let p : Mn ---t Ab be the homology functor

which carries M(A, n) to A. The suspension functor L: : lvln ---t M n +1 is full for

n = 2 and is an isomorphism of categories for n = 3. The category M 2 is quaclratic
alld the category Mn, n 2:: 3, is additive. Moreover one has the following diagraul
in which the rows aud the colunln are weak linear extensions; COlnpare V.3a in [2].

ld
Ext(-, r) +)

Ext( -, &JZ/2)

1+
M 2 L) M3

IIE 1q

M2 P Ab

Here we use for B E Ab the natural exact sequence

which induces for A E Ab the binatural exact sequence

Ext(A, &i B) ~ Ext(A, r B) ~ Ext(A, B ® Z/2) ---t 0

Hence the image P*Ext(A, 0 2 B) is a Ab-bimodulc which via q is also an M 3
_

bimodule. The map d in the diagram is the inclusion such that (d, E", q) is a lnap
between linear extensions.

Motivated by such examples of quadratic categories we prove the following classi
fication of quadratic categories in terms of linear extensions.

(5.6) Theorelu. Ead} quadratic category Q is canonically part oE a linear exten

sion of categories

Here Qadd is an additive category and D6, is an Qadd-bimodule which is leEt additive

and rigbt Cjuadratic. vVe call Qadd tbe additive--;uotient oE Q.

Proo[. VVe define Qadd and DD. as follows. The objects in Qadd are the S8Jne as in

Q. Nlorphism sets in Qadd are given by the cokernel
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Qadd(x, Y) = cokernel (P : Q(..:r, Y IY) --+ Q(X, V))
- -

This cokernel also defines the projection Q --+ Qadd. The conlposition law in

Qadd is induced by the COlllposition law in Q. Using the properties in (3.1) anel

(3.2) one readily checks that Qadd is an additive category. We define the Qadd_

bimodule D 6 by -

D6 (X, Y) = inlage(P : Q(X, YIY) --+ Q(X, V))

Then the additive Qadd_ trifunctor Q( ,I) shows that D6 is left additive anel

right quadratic since Pis a natural honl0morphislu. Moreovcr using the short exact
sequence of groups

obtained by the definitions above we obtain the action of P6(..Y, Y) on Q(X, Y)
such that the linear extension of categories in (5.6) is weH defined. The linear
distributivity law foHows from property (x, Pß)* = (Pa, y)* = 0 in (3.2)(1) by use
of (3.2)(6). q.e.d.

(5.7)Theorem. Suppose that Cl linear extcnsion of catcgories

(*)

is given 1vhere A is a.n additive category alld where D is an A-bimodu1e wlJich is
1eft additive and rigllt quadratic. Let R bc a full subcategory of A for whiclJ tllc
additive functor E : Add(R) --+ A is given by (1.3)(*). Then there is a quadratic
category Q together witha Inapbetween linear extensions

c;* D >Q > Add(R)

(**) 11 l~ l~
D >E A

If c; is a11 equivalence, for exaJnp1e ifR = A, then also e is an equivalence. Quadratic
biproducts in Q are lifts of biproducts in Add(R).

vVe prove this result in (6.11) below.

Since the eqivalence E : Add(A) --+ A incluces an isomorphism E* : H 2 (A, D) rv

H2 (Add (A ) 1 E*D) we see by (5.2) that the equivalence dass of the extension E in
(5.7)(*) can be identified with the equivalence dass of the extension Q in (5.7 j(**)
with R, = A.

- -
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(5.8)Addendum. For the extension Q in (5.7)(**) one has the following diagram in

which the rows anel the cohuun arelinear extensions of categories.

Dö. + >

E* D +

E*(D/D')

1+
Q Qadd

I1 1q

Q > Add(R)

Here Dö. = 6* D' is given by

D'(A,B) = inlage(D(A,BIB) C D(A,B V B) (l~. D(A,B))

for A, B E Ob( A) so that D' -7 D -7 D / D' is a short cxact sequence of A
birnodules. The functor q is an additive functor and the quotient D/D'is biadditive.

(5.9)Example. For the quadratic category Q = nil in (5.4) we have

Dö. ) Q ) Qadd

11 11 11

Hom(-,!\2) ) nil ab

For the quadratic category Q = ]V12 in (4.4) we have

Dö. ) Q ) Qadd

1I 11 11

P.Ext(-, EB2
) ) M Z ) ],,13

L

Moreover the diagrarn in (5.4) is (up to equivalences of categories) an example of
thc diagralu in (5.8).

§ 6 LIFTING SUMS IN LINEAR EXTENSIONS

A sunl of objects Xl, Xl in a category C is an object Xl V X z together with
nl0rphisluS ik : Xk -7 Xl V X z(k = 1,2) such that

is a bijection for a11 Z. Linear extensions behave very wen with respect to sums:

(6.1) Lenuna. Let D ~ E -» C be a linear extension and let (Xl VXz, i 1 , i 2 ) be
a surn in C SUc11 tlJat
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is an isomorphism. Then also

'"'"
is a SUln in E for aJl'y lift i k of i k (k = 1,2).

The proof is an easy exercise, compare 3.4 [8]. Now let A be an additive category
and consider a linear extension -

(6.2)

Clearly 0 is a zero object in E if and only if D(O, A) = D(A, 0) = 0 for all objects
A E A. We derive from (6.1) and the dual of (6.1).

(6.3) Proposition. If D is 1eft additive tben SUlns exist in E ill}(l if D is right
additive then products exist in E. Moreover if D is biadditive then E has in a
cannonical wa,Y the structure of an additive categor'y such for aJ1 object;-X, yP E A
the sequence -

D(X, Y) ~ E(X, Y) ~ A(X, Y)

is a short exact sequence of abe1ian groups. Here i carries 0' to 0 + 0:. In addition
the functor p respects sums, products and biproducts respective1y.

(6.4)Addendum. Let D be left additive and D(A, 0) = °for a11 A E A. Then E has
SUlllS anel a zero object. Hence for X, Y E E one has inclusions and~etractions

x ~ X vY r
x ) X and YÄXVYP~Y

with rxix = 1, ryi y = 1, rxiy = 0, ryix = O. Moreaver the fo11owing farmulas
are satisfied far f : X --+ Z, 9 : Y --+ Z, h : Y --+ W E E

(/ + 0:,9 + ß) = (/,g) + rxO' + ryß : X V Y --+ Z

(f + 0') V (h + ß) = f V h +1'X i z o O' + rYiw·ß: X V Y --+ Z V W

vVe now cansider the case when D in (6.3) is left additive and right quadratic. Then
o is a zero abject in E. Moreover for a sunl Y V Z in E the sequcnce

(6.5) D(X, YIZ) .±r E(X, Y V Z) .: E(..-Y, Y) x E(X, Z)

is exact, that is 1 the graup D (X, Y IZ) acts effectively on the set E (X, Y V Z) and
the set of orbits is E(X, Y) x E(X, Z) via r = (tyo, rz.). This is an iInmecliate
consequence of the definition oY the cross effect D(X, YIZ), see (1.8). Since this
cross effect is additive in Y and Z we derive from (6.5) that the lilap (TI2°, 7'13·, r23· ):

(6.6) E(X, Xl V X z V .\'"3) ~ E(X, Xl V ~\'"z) x E(X, Xl V .\'"3) X E(X, X z V X 3 )

is injective. Here Tij is the canonical retraction "-Yl V X z V X 3 --+ Xi V Xj for i < j.
We now consider cogroups in the category E, see (2.13).
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(6.7)Lenlma. If J.l : X -r X V X in E satisnes the counit property then there is a
unique v such that (X, /1, v) is a cogroup in E.

Hence we may call a morphism J-l -r X V X a cogroup structure of .Je if J-l satisfies
the counit property.

Proof of (6.7). The coassociativity follows from (6.6) since iij(p V l)fL = 1xvx =
rij(l VJ-l)J.l. In order to find v we take v' : X -r X in E which is a lift of -1 : X -r X
in A. Then there exist a E D(X, X) such that (1, v'); = OX,x+a where Ox,x is the
zero morphism X -r )e in E. Using (6.4) we have (1, v' - a)fL = ((1, v') - tia)J.l =
(1, V')fL - 0' = O. Hence v = v' - 0' is a coinverse. q.e.d.

{6.8} Proposition. Consider the linear extension E as in (6.2) where A is an

additive category and where D is left additive andrigl1t quadratic. Then each
object X in E has a cogroup structure and tbe group D(X, X IX) acts on the set
of cogroup structurcs of X transitively and cffcctively.

(6.9)Addendum. With the assumption on E in (6.8) let f-Lx : X -r X V X be a
cogroup structure for X E Ob E. Then J-lx-yields a group structure + on the set
E(X, Y) by x + Y = (x, Y)fLX. This structure is cOlnpatible with the ation of D on
E since we show

(*) (x + 0') + (y + ß) = (x + y) + (0' + ß)

for x, y E E(X, Y), 0, ß E D(.Y, Y~). Indeed by (5.4) we get

(x + a) + (y + ß) = (x + a, y + ß)fLX

= ((x,y) + riO' + r;ß))f-Lx

= (x, y)fLx + a + ß = (x + y) + (0' + ß).

Now (*) iluplies that

(**) o-r D(X, Y) ~ E(X, Y) -r A(X, Y) ---+ 0

is a central extension of groups and E(X, Y) is a nil-group. Here 0+ carries 0' to

OX,Y +0'.

\Vith the assumptions on D, E, A in (6.8) we consider the following diagrarn in E

X !IX > xvx

/1 i/v/
y It1' YVY>
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where f.lx and py are cogroup structures. Then the induced cliagram in A COlluuutes
so that there is a unique element -

(6.10)

with (f V f)px = (f.lY f) + 0'. This is the ohstrnction for f of heing a cogroup
morphism since 0' = 0 if and only if the diagram conlmutes.

Remark. Let D' be the hifunctor on A given by D'(X, Y) = D();, Y I Y) and let
Cogr(E) be the category of cogroups in E anel cogroup morphisrTIs. Then

Cogr(E) ~ D'

is a linear covering of E by D' in the sense of IV.§ 4 [2]. Here V is the obstruction
operator given by (6.10) and cl> is the faithful forgetful fnnctor.

(6.11) Proof of (5.7). The linear extension Q in (5.7) (**) is the puH hack of E via

the functor c: : Add(R) --+ A. Hence for X, Y E Add(R) we have

Q(X, Y) = E(c:X, c:Y)

anel composition in Q is given by the composition in E. Vve now choose hy (6.8) for

each object A in Ob(R) C Oh(E) a cogronp structnre !-LA in E. Hence we obtain
for each object ..\. in Q a cogroup structure by set ting (see (1. 2) )

(1)

Here t23 : X II X II Y II Y --+ X II Y II X II Y is the interchange for the secol1d
and third factar. The cogroup structure /lX yields the group structure for the set
Q(X, Y) by setting as in (6.9)

(2) x +Y = (x, Y)/lX for x, Y E Q(X, Y).

Then clearly g* : Q(X, Y) --+ Q(X, Z) is linear far 9 : Y --+ Z. On the other hand
we have - -

(3) g*(x + y) - g*(y) - g*(x) = (x I y)*OIlXlIlY (9)

where (xIY)* : D(X, Y I Y) --+ D(X, Z I Z) is given hy the right quaelratic functor
D on A so that (x I y) * is linear in x and y and hence also (3) is linear in (x) and
(y). By (6.9) (**) also (3) is central in Q(X, Z). Accoreling to (1) the naturalruap

i] : ..\. -t X II Y anel i 2 : Y --+ ); II Y are morphisms of cogroups and this implies
the equality i] 1'1 + i2T'2 = 1xuy.

q.e.d.
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§ 7 SQUARE RINGS

Ringoids with only one object are the salue as rings. Thereforc square ringoids
with only one object are termed square rings. Each object X in a quadratic category
Q determines a square ring End(X) which is the endoluorphism square ring of X.

The examples of quadratic categories in §2 yield therefore many examples of square
rings. In particular we get thc square ring

(7.1) Znil = End(Z)

which is the endomorphism square ring of the objcct Z in the quadratic category
nil. V\Te shall see that Znil is completely described by

H P
Znil = (Z ---+ Z ---+ Z)

with P = 0 and H(x) = x(x -1)/2. In fact Znil is the initial object in the category
of square rings.

Each square ring Q yields a theory Add(Q) and hence a category of models M od(Q)
which is the category of (right) Q-modules if Q is a ring. For the initial object Znil
of thc category of square rings the category A1od(Znil) coincides with thc category
Nil of groups of nilpotency degrec 2; compare (7.11) below.

We now describe in luore detail thc algebraic notion of a square ring; this is thc
specialization of the axiolns of a square ringoid for the case of a single object.
We introduce a square ring in threc steps. First we define a square group which
describes the basic linear structure of square ring. A 'square ring' will be a 'square
group aver a ring R' with additionalluultiplicative structure.

(7.2) Definition. A square graup

is given by a group Me and an abelian group M ee . Both groups are written acldi
tively. Moreover P is a hOlnOlTIOrphism and H is a quadratic function, that is the
cross effect

(a Ib)H = H(a + b) - H(b) - H(a)

is linear in a, b E Qe. In addition the following properties are satisfied (x, Y E Me e)

I.

(1)

(2)

(3)

(4)

(Px 1 b)H = 0 and (a 1 PY)H = 0

P(a Ib)H = a + b - CL - b

PHP(x) = P(x) + P(x)

ß (a) = H P H (CL) + H (a + CL) - 4H (CL ) is linear in a
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By (1) and (2) P lnaps to the center of Me and by (2) cokernel of P is abelian.
Hence Me is a group of nilpotency degree 2. Let Square be the category of square
groups.

(7.3) Definition. A square group over a ring

is giyen by a ring R, a square group (H, P) as in (7.2), a hOlnomorphism E (denoted
by Ea = Ci for a E Qe) frOU1 the group Qe to the underlying abelien group of Rand
an elemcnt 1 E Q e with E( 1) = 1. Moreover the abelian group Q ee is an R 0 R 0 ROP

-module with action denoted by (t '9 s) . x . r E Qce for t, s, r E R, x E Qee. The
following additional properties hold where H(2) = H(l + 1).

(1) (a Ib)H = (b 0 Ci) . H(2),

(2) ~(a) = HPH(a) + H(a + a) - 4H(a) = H(2) . Ci

(3) T = HP - 1 is an isomorphisn1 of abelian groups satisfying

T((t 0 s) . x . r) = (s 0 t) . T(x) . r.

(7.4) Definition. A square ring

is given by a square group (H, P) for which Qe has the additional structure of a
lllonoid with unit 1 E Qe and multiplication a . b E Qe. This lllonoid structure
induces on R = cakernel (P) a ring structure such that

(
HP f)1 E Qe ---+ Qee -----+ Qe -----+ R

is a square group over the ring R. Here E is the quotient map far thc cokernel of P
with Ea = a. Moreover the multiplication a· b in Qe satisfies the following equations

(1)

(2)

(3)

(4)

(5)

(Py) . a = P(y· a)

a . (Py) = P((a 0 a) . y)

H(a . b) = (Ci 0 a) . H(b) + H(a) . b

(a + b) . c = a· c +b· c +P((a 0 b) . H(c))

a . (b + c) = a· b+ a . c

We also call Q a square ring extension of the ring Rand R. is the ring associatecl
to Q.
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(7.5) Le m m a. A.. square ring as cIefined in (7.4) is the same as a square ringoicI
in (3.1) T"vith only one object.

lvIorphisllls Q -+ Q' between square rings are given by homomorphislns Qe -+
Q~~ Qee -+ Q~e which respect a11 the structure described above. \Ve point out that
a square ring Q \vith Qee = 0 is the same as a ring so that the category of rings is
a full subcategory in the category of square rings.

\-Ve no\v consider the square ring Znil in (7.1). In fact Z nil is the initial object
in the category of square rings since there is a unique morphism Znil -+ Q which
carries 1 E Z = (Znil)e to 1 E Qe and 1 E Z = (Znll)ee to H(2) E Qee. By (7.4) (4)
we have in any square ring

(7.6) PH(2) = 0

so that Znil -+ Q is weIl defined. For a square ring Q we obtain the quadratic
categories Add(Q) and add( Q) in the same way as in (4.6). If Q is the endomorphisnl
square ring of an object ){ in a quadratic category Q then Add(Q) coincides with

the fuH subcategory of Q consisting of finite sums .}(-V ... V X with all summands

given by X. This implies the next proposition on the category nil of free nil-groups
in (2.6). Let fg - nil be the fuH subcategory of finitely generated free nil-groups.

(7.7) Proposition. One has equivalences of categories

fg - nil = Add (Znil)

nil = add (Znil)

Next we introduce for a square ring Q the notion of Q-module which generalizes
the classical not ion of a (right) R-module for a ring R.

(7. 8) Definition. Giyen a square ring Q we ob tain the category Add(Q) in (4.7)
which is a theory in the sense of (1.5). A Q-module jvI is a model of this theory:
that is

is a functor which carries a surn in Add(Q) to a product of sets. Let

lvIod(Q) = lvIodel(Add(Q))

be the category of Q-modules; compare (1.7). "Ve now describe a Q-module more
explicitely in terms of operators on a group.

(7.9) Definition. A Q-module 1\1 as defined in (7.8) is given by a group hI (which
\ve write additively) and by Q-operations which are functions

{
lvI x Qe --+ !vI, (m, a) I----t 7n . a

lvI 'x 1\1 x Qee --+ lvI, (ln, n, x) 1--+ [nl, n] . x
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For a, b E Qe, x, Y E Qee, nl" n E lvI the following relations hold where [M]
{[rn, n] . x; 1n, n E M, x E Qee} C M.

m . 1 = m, (rn . a) . b = 111, • (a . b), r/1 . (a + b) = m . a + r11, • b

(rn + n) . a = m . a + n· a + [rn, n] . H(a)

Tf1 . Px = [m, r11,] . x

[11~,n]' Tx = [n,m]' x

[m . a, 11 . b] . x = [rn, n] . (a 0 b) . x and ([r11, 1 n] . x) . a = [m, 11] • (x . a)

[m, n] . x is linear in m,11 and x

[11~ 1 n] . x = 0 for m E [M]

These equations imply that the COlllnlutator in lvI satisfies

11 + m - n - 1/1 = -n - 111 - 11 + nt = [m'l n] . H(2)

Hence lv[ is a group of nilpotency degree 2 anel [lvI] is central in lvI. MorphislllS
in the category 11.1od(Q) of Q-modules are hOlllolllorphisllls M -t M' which are
compatible with the Q-operations.

(7.10) Example. Given an object X in a quaclratic category Q we obtain the en

clomorphism square ring Q = End(X). Any object Y in Q therefore yields the

representable functor -

My : Add(Q) C Q -t Set

which carries the object X V... VX to the set Q(X V... VX, Y) of morphislllS in Q.

The functor lvIy is obviously a model of the theory Add(Q) and hence a Q-ll1odule.
We can define My as weH by the Q-operations --

lvIy = Q(X, Y)

m . a = 1/1 0 a (colnposition in Q)

[rn, n] . x = P(m, n)*x

given by the square ringoid structure of Q. This shows that the equations in (7.9)

are given by the corresponding equations in a square ringoid.

(7.11) Example. Recall that

H P
Znil = (Z ---+ Z ---+ Z)

is the endolllorphisnl square ring of Z in nil with P = 0 anel H(a) = a(a - 1)/2
for a E Z. We now show that a Znil -module can be identifiecl with a group of
nilpotency degree 2 so that we have an isomorphisIll of categories
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In fact, auy object M in Nil has canouically the structure of a Znil -module by the
Znil -operations

r11. • a = m + ... + m (a - fold sunl in M)

[m, n] . x = (n + ln - 11. - 7n) . x (x - fold SUffi in M)

for m, n E M anel a E (Znil)e = Z, X E (Znil)ee = Z. One reaclily checks that the
equations (7.9) for the Znil -operations are satisfiecl.

{7.12} Remark. For each square ringoid Qwith fiuitely lllany objects Xl, ... ,JYr we

obtain the square ring of the object Xl II ... II)(r in Add(Q). One can check that Q
-Illodules anel Q-modules can be identified so that one ha;-a canonical isolllorphism
of categories

Mod(Q) = Mod(Q)

This shows that for many purposes square ringoids cau be replaced by square rings.

§8 EXAMPLES OF SQUARE RINGS

"Ve here elescribe some examples of square rings which arise naturally in algebra
and topology.

{8.1} Factor square rings of Znil. Let r, s ~ 1 be integers with 7' I s if s is odd auel
2r I s if s is even. Then

Z~':, = (ZI1'l:!...t ZI s~ ZI1')

is the square ring with H(a) = a(a - 1)/2 and P = O. These are all square rings
Q for which there exists a surjcction Znil -» Q. Let NiZ r

,8 be the category of
nilr,s -groups which are the groups of nilpotcncy clegree~atisfyingthe relations
(7n, n E M)

o= 7n . r = m + ... + rn (7' - fold SUIll cf 7n)

o= (-m - n + m + n) . s

This is a free nilr,s -group if M is obtaineel by dividing out these relations in a free
nil -group; see (2.6). Let

/g - niC·"q C niZ r
,8 C Nizr,lJ

be the full subcategory offree nip',·q -groups anel finitely generateel free niF,8 -groups
respectively. Then we obtain as in (7.7) anel (7.11) equivalences of categories
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/9 - nir,!l = Add(Zr,~)= = nl1

nizr,!l = add(Zr,~)= = nl1

N 'zr,!l = M d('717'l~)1 0 /Uml

Thc Z :ltl -operations on a group M E N il"l!l are defined by the same fOrn1tllas as
the Znil-operations in (7.11). As an example we obtain the nil4l2 -groups which are
exactly the groups M for which the lower 2-central serics r rA1 satisfies r 3 M = 0;
they playa role for the unstable Adams spectral sequence [11]. Moreover we obtain
the following result which is an application of thc theory of this paper.

(8.2) Theorenl. Let M 2 (Z/2) be tlle hOlnotopy category oE lvloore spaces 1I1{1/, 2)
in degrce 2 oE Z /2 -vector spaces V. Then there is an equivalence oE categories

Proof. Let r.P2 be the suspension of the real projective plane; then r. P2 = 1I1(Z /2,2)
is the Moore space of Z/2 in degree 2. Moreovcr for a Z/2 -vector space V with
basis B the one point union

Vr.P2 = M(l/,2)
B

is a Moore space of V. This shows that

(8.3) 1112(71 /2) = add(End( r.P2))

by (2.4). Here the endomorphism square ring of r.P2 satisfies by a result of Barratt
[1]

(8.2)

Hcnce thc result in (8.2) follows fronl (8.1).

q.e.d.

(8.4) Endomorphism square rings of s'll,spended pseudo proiective planes r.Pn . Here
a pseudo projective plane

(1)

is obtained by attaching a 2-cell to a l-sphere by a lnap of degree n. For n = 2
this is the real projective plane. Clearly r.Pn = A1(71 In, 2) is a Moore space of the
cyclic group 7l/n. Using results in [3] we obtain the endomorphism square ring
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(2) H P
End(~Pn) = (Z/n x Z/n -r Z/n -r Z/n x Z/n)

where End(~Pn)e = Z/n x Z/n as a set with the monoid structure

(a,a)' (b,ß) = (ab, a2
. ß + b· a)

anel the (abelian) group strueture

(a, a) + (b, ß) = (a + b, a + ß + abn (12 - 1) /2) .

Moreover E12d(~Pn)ee = Z/12 as an abelian group anel H(a,a) = a anel P(x)
(0,2x). The eokernel of P is the ring R = Z/n which acts on End(~Pn)ee = Z/12
in the canonical way. One now ean show that for n = 2 this square ring coincieles
with (8.2) anel as in (8.3) we obtain the equivalenees of eategories

(3)

Here lvl2 (Z / n) is the fuU homotopy eategory of Moore spaces M (V, 2) for whieh V
is a free Z/n -module. By (2) we see that the right hand side of (3) is a purely
algebraic eategory.

(8.5) The R-localization of nil-groups. A ring R. is tenned' 2-binolnial if for a111' E
R the element r(r - 1) E R is uniquely 2-divisible so that r(1' - 1)/2 E R. Clearly
if 2 is invertible then R is 2-binomial. Also any subring R C Q of the rationals is
2-binomial. Given a 2-binomial ring R we obtain the square ring

(1) H P
R.nil = (R -r R -r R)

with H(1') = 1(1' -1)/2 and P = O. This generalizes the square ring Znd. Therefore
we may consider 'Rnil -modules as generalizations of nilpotent groups of order 2. The
morphism Znil -t Rnil induces Add(Znil) -t Add(Rnil) by the universal property
of Add in (4.3). Hence we obtaill the induced functor

which has a left adjoint

Nil -t Mod(RniL)

which carries G E ATil to GR E M od(RniL). Here GR is the R-loealization of G
which for R c Q is the classicallocalization of G; see for example [14], [16).

(8.6) Square rings with P = O. Let R be a ring and M be an R ® R 0 ROP -nloclule
satisfying

(80 t)· x· r = (t (9 s)· x· r
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for s, t, r E R and x E M. Moreover let H : R --+ M be a function for which

H(s + t) = Hs + Ht + (t (9 s)· H(2)

H(s . t) = (s @ s) . H(t) + H(s) . t

holds. Then

(1) R;;il = (R~ M ~ R)

is a square ring with P = °and conversely each square ring with P = °is obtained
this way. This gcneralizes the square ring Rnil of a 2-binomial ring R.

As an example of a square ring with P = °we describe the automorphim square
ring End(ECPz ) where epz is the complex projective plane. Let Z x z Z be the
subring of Z x Z consisting of all pairs a = (ao, al) with ao - al - °mod 2. Then
we have

(2) H P-o
End(ECPz ) = (JE x z Z ---+ Z --=-t z X z JE)

where H is defined by H(l, 1) = 0, H(0,2) = 1 and

H (a + b) - H (a) - H (b) = ao . bo

The R (9 R (9 ROP -modules JE with R = Z Xz Z is given by

(a (S> b) . k . c = ao . ba . k . CI

where a, b, cER and k E Z. The isomorphism

[ECPz, ECPz]= Z X Z Z

carries a map F to the degree (ao, al) in homology where ao = degree (H3F) and
al = degree (HsF). Clearly the algebraic deseription of End(ECPz ) above yields
an algebraie eharaeterization of the subeategory

Add(End ECPz) C Top· / ~

which is the fuH homotopy eategory eonsisting offinite one point unions ECPz V ... V

ECPz . This eategory was eornputed in different terms by Unsöld [17) who showed
that for Q = Add(ECPz) thc associated linear extension Q --+ Qadd = Add(R,) is

non-split~

(8.7) Square rings arising (rom operads. Let ]( be a eornmutative ring and let P
be an operad in the monoidal eatgeory of K-rnodules with thc monoidal structure
given by the tensor product. Recall that P consists of ](-nl0dules P(n), n 2:: 0,
with an action of the symmetrie group E n allel of eomposition laws I-l( i 1, ... ,ik; k):



for k, i l , ... ,ik 2: 0 where P(O) = ](. Moreover certain associativity and sYlnlnetry
properties hold [9J. It is wen known that an operacl P with P(n) = 0 for n 2: 2
is the same as a ](-algebra. An operacl with P (n) = 0 for n 2: 3 actually yields
canonically a square ring

Q(P) = (P(2h:2 EB P(l)~ P(2)~ P(2h~2 EB P(l))

where P(2h:2 = P(2)/(x - Xl I'V 0) is the module of coinvariants of the ~2 

action with t a generator of ~2' The function H is given by H(x, y) = x + x f

where x E P(2h:2 is the dass of x E P2 , y E P(1). Moreover P is defined by
P(x) = (x,O). Hence the cokernel of P is the li-module P(1) which is a ring R via
the lnultiplication {l(1; 1). Moreover P(2) is an R 0 R 0 ROp -Illodule by {l(1, 1; 2)
and J-l(2; 1). The structure of P(2h~2 EB P( 1) as a monoid is defined by

(XI,Yl)' (X2,Y2) = (Xl' Y2 + (YI ® YI)' X2, YI . Y2)'

One cau check that the axioms of an operad show that Q(P) is in this way a wen
defined square ring. Let niloperad(]() be the category of operads P with P(n) = 0

for n 2: 3 and let squarering be the category of square rings. Then the construction

of Q(P) above yields for ]( C Q a fun enlbedding

nilope1'ad(I() C squarering.

This shows that a square ring is in a canonical way a non-abelian version of a
nil-operad. Therefore there exists a more general thcory of "non-abelian operads"
generalizing both the concept of square ring and the concept of operacl.

(8.8) Square rings arising {rom nilpotent algebras. Let R be a commlltative ring.
Then one has the following square rings where Rand R EB Rare groups given by
the additive structure of R anel where R EB R is a mOl1oid by

(x,y). (u,v) = (xu,x 2 y+yv)

Vle 110W define:

{

0 0
AR = (R ---+ R ---+ R)
H = P = 0 is trivial.

{

HP
0R = (R ffi R ---+ R, EB R ---+ R EB R)

H(x, y) = (y, y) and P(x, y) = (0, x +y)

{

HP
SR = (R EB R ---+ R ---+ R ffi R)

H(x, y) = 2y anel P(x) = (0, x)

{

HPr R = (R. ffi R ---+ R ---+ R ffi R)

H(x, y) = y and P(x) = (0, 2x)
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The corresponding modules are R-algebras of nilpotency degree 2 as in the following
table:

Q Q-Illodules

AR Lie algebras

oR associative algebras, Leibniz-algebras

SR COffilllutative algebras

r R divided power algebras

(8. 9) Restrictioll of square rings. Let Q be a square ring with associated ring R
and let R' be a subring of R. Then we obtain a square ring Q I R' which we call the
restri ction of Q to R'. Let p : Qe ---++ R be thc projection anel let Qe IR' = P-1 (R')
be the inverse image of R' C R. Then

is given by the structure lllaps Hand P in Q. This is a subobject of the square
ring Q.

(8.10) Monoid square rings. The free abelian group Z[M] generated by a monoid
M has the structure of a ring with lllultiplication incluced by the lllultiplication
of Ai[. This is the classical monoid ring of A1 which is the group ring if Ai[ is a
group. This construction has the following analogue for square rings. Let (Al)nil
be the free nil-group generatecl by the set 111, that is (M) nil = (M) / r 3 (111). V\Te
now consider the Al-objects in the category Nil which form the category M - Nil
with the subcategory M - nil of free objects. In fact (M)nil is the free object in
lvI - [\'il with one generat~Again !vI - nil is a quadratic category so that the
endomorphislll square ring -

is clefined. This is the monoid square ring given by the monoid M. More explicitly

is the unique square ring for which the following holds.

H(m) = 0

(a,b)H = {al 0 {b}

P( { a} 0 {b}) = a + b - a - b

Here {a} E JE [Al] is the abelianization of a E (lvI) nil. The underlying group
of Znil[M]e is the group (M)nill the unelerlying monoid structure of Znil[lvf]e is
uniquely gievn by
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m· n = 1nn E M for m, n E lvI

and (4), (5) in (7.4). The Z[M] 0 Z[M] 0 Z[M]OP -module structure of Znil[M]ee =
Z[lvI] 0 Z[M] is given by

(a 0 b) . (u 0 v) . m = (aum) 0 (bV11~)

for a, b, n, v E Z[lvfJ. One readily checks that one has equivalences of categories

Mod(Znil[M]) = M - Nil

add(Znil[M]) = lvI - nil

whieh eoineide wi th the corresponding equivalences in (7.11) if M isa point.

(8.11) Square rings arising [rom restricted Lie algebras. Let !( be a commutative
Z /2 -algebra and let

AK~tr= (R~R~R)

be the following square ring with P = 0 as in (8.6). Here R is the abelian group
given by the free !(-module

generated by the monornials 1, t, t 2 , • .•. This is a ring by the rnultiplication rnles

for k E !(, n,1n 2: 0, with tO = 1 E !(. Moreover R as an R 0 R 0 ROP -n10dule is
obtained by the action (CL, b, c, x E R)

(a 0 b) . x . c = ao . bo . x . c

where ao is the constant tenn of the polynomial a. Now H is the unique function
with properties as in (8.6) satisfying H(t) = 1. One readily verifies that the cate
gory af A!(str -modules caincides with the category of 2-restricted Lie !(-algebras
satisfying [[x, y], z] = O. Here the action of t corresponds to the operation x I---t X[2]

of a restricted Lie algebra. The 1110dules aver the factor square ring

are the 2-restricted Lie !(-algebras satsifying the relations [[x, y], z] = 0, (X[2l )[2] = 0
and [x, y][2] = O.
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§ 9 EQUIVALENCES OF SQUARE lUNGS

It is clear that two square rings Q and Q' are isomorphie, Q f"V Q', if and only if
there is an isomorphism

(9.1) 'IjJ : Add(Q) ~ Add(Q')

of quadratie eategories whieh is the identity on objeets. Here the isomorphisIll 'IjJ is
an isomorphism of eategories whieh is linear in the sense of (4.1). We say that Q
and Q' are eguivalent if there is an isomorphism 'IjJ as in (9.1) of categories which
not neeessarily needs to bc linear. Such an equivalencc induces an iS0l110rphism of
module categories

(9.2) }v!od(Q) ~ M od(Q')

since an equivalenee 'Ij; is an isonl0rphism of theories; compare (1.5) and (7.8). \\Te
now study explicit eonditiol1s which show that square rings Q and Q' are equivalent.
For this we need the following construction.

(9.9) Definition. Given a square ring

anel an element eE Qee we define a new square ring

as folIows. Here Q~ as a lllonoid in the same as Qe. Yet the group structure of Q~,
denoted by a EB b, is defined by

(1) a EB b = a +b+P( (Ci 0 b) . e)

for a, b E Qe. Moreover He is given by the formula

(2)

The funetion P for Qe coincides with P in Q. This shows that the associated ring
R of Qe coincides with thc associated ring of Q. Moreover M ee in Q€ is thc same
R ® R ® ROP -module as in Q. \\Te point out that the element 2 = 1 + 1 in Qe
does not coincide wi th the element 2e = 1 EB 1 in Q~, in fact, 2e = 2 + P ~ . A
straightforward hut somewhat tedious proof shows:

(9.4) Le ,TIma. Qe is a well defined square ring for allY eE Qe e .

We point out that for Q = Z~'i~ and e= 1 E Qee we have Q€ = Q. Using Qe
above we can characterize equivalence of square rings as folIows.
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(9.5) Proposition. Two square rings Q and Q' are equivalent iE and only iE tllere
is ~ E Qee such tllat Qe is isomorphie to Q'.

This in particular ilnplies by (9.2) that one has an isomorphisIll of categories

(9.6)

There is a nice classical example of this isonl0rphism obtained by the Malcev
correspondence between rational nilpotent Lie algebras and uniquely divisible nilpo
tent groups. For nilpotency degree 2 this correspondence in thc sense of Lazard
gives us an isomorphism

(9.7)

for 1/2 E R c Q. Here by (8.5) the lcft hand side is the category of R-local groups
G in Nil and the right hand side is by (8.8) the category of R-Lie algebras L of
nilpotency degree 2. The Malcev correspondence (9.7) carries L to the group G
given by the set L with the group law

x . y = x +y + (1/2)[x, y]

This is the nil-case of the classical Baker-Campbell-Hausdorfffonnula, see [15J. We
now obtain a new interpretation of this correspondence by use of the notion of
equivalence of square rings, namely:

{9.8} Lemma. For ~ = -1/2 E R, there is a canonical isomorphisIll (AR)e = B.nit .

For this compare the definitions of AR and R.nil above. Now one can check that
the isomorphism (AR)e = Rnil yields via (9.6) exactly the Malcev correspondence
(9.7). In this sense we can consider the isolDorphism of categories in (9.6) as a
generalization of the Malcev correspondence.

(9.9) Proof of (9.5). The objects of Add(Q) and Add(Q') are given by nUIDbers
0,1,2, ... where n E N corresponds to the n-fold sunl 1 II 1 II ... II 1. Let

7/J : Add(Q') ~ Add(Q) = Q

be an isomorphism of categories which is the identity on objects. The cogroup
structure p' : 1 -r 1 II 1 in Add(Q') is carried via 7/J to a cogroup structure 7/J(p') :
1 -r 1 II 1 in Add(Q) where 'l/J(J.l-') needs not to coincide with JL = i 1 + i 1 . Hence
there is ~ E Qee Q(1,1 11) with

i12(~) = -J-l + 'ljJ(JL')

We claiIn that there is now an isonl0rphism Qe I'V Q' of square rings.

q.e.d.

(9.10) Definition. vVe say that a square ring Q is abelian if each Q-IDodule 1\1.[ E

Mad(Q) is an abelian group 01' equivalently Add(Q) has abelian Ham-sets. This
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is the case if and only if H(2) = O. We say that Q is of abelian type if there is
an equivalence Q t'V Q' where Q' is abelian. This is the case if and only if there is
~ E H(2) such that the equation

H(2) = 2~ - HP(~) = ~ - T(~)

holds. Hence if Qee is 2-divisible and P = 0 then Q is of abelian type. For example
for 1/2 E R c Q the square ring AR is of abelian type. One can check that
Q = End(EPn ) in (8.4) for 2 J n is not of abelian type though Qe is an abelian
group in this case. Moreover End(EPn ) is abelian if 11 is odd. We point out that
for 11 even and a = [in, in] E 1T2n_lsn the square ring End(ECa ) is not abelian but
of abelian type since Ea = O.

(9.11) Example. Let !{ = Z[1/2] C Q and let

niloperad(!() C squarering

be the inclusion in (8.7) which carries the nil-operad P to Q(P). Given any square
ring Q such that the associated ring R contains 1/2 there is a niloperad P with .
Q(P) equivalent to Q. Compare the Malcev correspondence in (9.7).
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