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QUADRATIC CATEGORIES AND SQUARE RINGS

HaNs JOACHIM BAUES, MANFRED HARTL, TEIMURAZ PIRASHVILI

We consider quadratic categories which generalize the classical additive cate-
gories. An additive category A is a category for which morphism sets are abelian
groups and the composition fg is bilinear, and for which sums exist in A. A qua-
dratic category (@ is slightly more general in the sense that morphism sets are groups

and the composition fg is linear in ¢ and quadratic in f. This implies that mor-
phism sets are groups of nilpotency degree 2. We describe below many examples of
quadratic categories in algebra and topology which motivate the systematic study
of quadratic categories started here; it may be considered as an extension of the
investigation of quadratic functors in [4].

The properties of a quadratic category and its subcategories lead to the new notion
of a “square ring” which is exactly the quadratic analogue of the classical notion of
a “ring”. Indeed each object X in an additive category A yields an endomorphism
ring given by all morphisms X — X in 4; similarly each object in a quadratic
category yields the endomorphism square ring End(X) of X. The initial object in
the category of rings is the ring Z of integers for which the category of modules is
the category of abelian groups. We here determine the initial object Z,;; in the
category of square rings for which the category of modules is the category of groups
of nilpotency degree 2.

We compute various square rings explicitly, for example, the endomorphism square
rings of the suspended projective planes LR P, and ZCP,. This yields as an ap-
plication an algebraic description of the homotopy category of all Moore spaces
M(V,2) where V is a Z/2 -vector space; in fact this category is equivalent to the
full category of free objects in the category of 2-restricted nil(2) -groups.

There has been recently a lot of interest in operads [9]. In fact, operads O = {O,}
with O, = 0 for n > 3 are the same as special square rings. Therefore the theory
of square rings shows naturally how the theory of operads has to be modified in
order to deal with nilpotent groups.

Typeset by AuS-TEX



§1 ADDITIVE CATEGORIES AND MODULES

We first recall some basic notation and facts concerning additive categories;
compare [10]. We do this since we are going to introduce the analogous notation
and facts for ‘quadratic categories’; in fact, the theory of quadratic categories has
to be a canonical extension of the theory of additive categories.

(1.1) Definition. A category A is preadditive if the morphism sets A(X,Y) are
abelian groups and the composition law is bilinear. Moreover Aisan additive category
if in addition for all objects X, Y there is given a diagram

X2XvVY Sy
™ T2
with 7127 = 1y, roi2 = 1y and 4177 + 2272 = lxvy. Here X VY is called a
biproduct; this is a sum and a product in A [10]. Moreover A has a zero object
*. A zero morphism 0 € A(X,Y’) is given by X — % — Y; this is also the neutral
element of the abelian group A(X,Y’). A preadditive category R is the same as
an Ab -category (i.e. a category enriched over the monoidal category (Ab,®) of
abelian groups). Such a category is also called a ringoid; in fact, if R has only one
object then R is the same as a ring.

(1.2) Definition. Let R be a ringoid. Then the biproduct completion of R,

i: R C Add(R),

is given as follows. The objects of Add(R) are the n-tuples X = (Xy,... ,Xn) of
objects in R with 0 < n < co. The morphisms are the corresponding n1a1:r1ces of
morphisms in R. The inclusion 7 carries the object X to the tuple of length 1 given
by X. The category Add(R) is an additive category with distinguished biproducts
given by

XUY = (X1,..., Xn,Y1,...,Y2)
for X =(Xy,...,X,) and Y =(Y1,...,Y%).

A functor F : R — B between ringoids is additive if F(f + ¢) = F(f) + F(g) for
fig € R(X,Y). If B is an additive category there is a unique additive functor

(1.3) F: Add(R) - B
with Fi = Fand F(XIIY) = F(X)VF(Y). Thisis the freeness property of Add(R).
For example if R is a ring then Add(R) in the category of finitely generated free
R-modules.

Let R be a full subcategory of an additive category A and let R be the full subcat-
egory of A consisting of finite biproducts (n > 0) X;V...vX,in A with X; € R.
Then one obtains an equivalence of additive ca.tegories
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*) : Add(R) <

[=v8

which is the additive extension € = 7 of the inclusion j : I C E In particular for
the additive category A one has the equivalence of additive categories

(**) e: Add(4) — A

which is the additive extension of the identity on A.

(1.4) Remark. Let R be a ringoid. A family X of objects in R is a set [ together
with a function X : I — Ob(R) where Ob(R) is the class of objects in R; we also
write X = {X;}ies. Such families are the objects in the category add(R) with

Q C Add(R) C add(R)

Morphismsin add(R) from X = {X}ie; toY = {¥;};¢J are the matrices (a;—)(,',j)ejx_]
of elements a; € R(X:, X;) such that for 1 € I almost all elements in (aj—)jej are
zero morphisms. For example for a ring R the category add(R) = mod(R) is the
category of free R-modules. In particular add(Z) = ab is the category of free abelian
groups. Clearly add(R) is again an additive category with the biproduct X II Y

given by the family {X;,Y;}ier jeu-

We now introduce some notations on theories. A theory T is a category in which
finite sums exist. A model of a theory T is a functor

(1.5) F:T°% —» Set

from the opposite category T°” of T to the category of sets such that F' carries
a sum in I to a product in Set. Let Model(T) be the corresponding category of

models; morphisms are natural transformations. For example for a ringoid R the
category Add(R) is a theory.

A (right) @ -module M is an additive functor

(1.6) M: R — Ab

Let Mod(R) be the category of such R -modules. Module homomorphisms M —
M' are the natural transformations. Then one has the canonical isomorphism of
categories.

(1.7) Lemma. Mod(R) = Model(Add(R))

Here the isomorphism carries the module M to the composition Add(R)°? M,
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Ab %3 Set where M is the additive extension of M in (1.3) and ¢ is the forgetful

functor. Clearly if R is a ring then Mod(R) is the classical category of right R-
modules.

We also shall use quadratic functors on additive categories. For this recall the
following classical notation of Eilenberg-Mac Lane [7].

(1.8) Definition. Let A be an additive category. A functor T : A — Ab is termed
quadratic if T(0) = 0 and the cross-effect bifunctor

TX|Y)=kernel (T(XVY) -5 T(X)ST(Y)) with r=(r.,r.),
1s biadditive. Equivalently the functor T' is quadratic iff the induced function

A(A4, B) 5 Hom(T(A), T(B))

is quadratic for all objects A,B in A, see (2.1). The functor T is additive iff
T(X|Y)=0foral X,Y.

Examples of quadratic functors Ab — Ab are ®?%, A%, Sym?, T'; compare [4] and
(12, 13] where quadratic functors are studied. Examples of left additive and right
quadratic bifunctors are the functors

Hom(~,T): Ab°" x Ab — Ab

which carry (A, B) to Hom(A,T(B)) where T : Ab — Ab is quadratic. In a
similar way we define the bifunctor Ezt(—,T) on 4b which is left additive and
right quadratic.

§2 QUADRATIC CATEGORIES

We introduce the notion of a quadratic category which is the “quadratic ana-
logue” of an additive category. In a quadratic category the morphism sets are
groups which need not to be abelian. Here we write the group structure (also of a
non-abelian group) additively since we write the composition law multiplicatively.

We say that a function ¢ : G — G’ between groups is linear if (z,y € G)

e(z +y) =o(z) + ¢(y).
Moreover ¢ is gquadratic if the function (}), : Gx G — G’ given by the “cross effect”

(2.1) (x| y)e =z +y) —ply) — o(z)

is linear in z and y and (z | y), is central in G'. Clearly ¢ is linear if and only if
(D =0.
(2.2) Definition. A category @ is prequadratic if the morphism sets @(X,Y") are

groups and if the composition law f o g is linear in g and quadratic in f. This
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means more precisely the following. Consider for X Ly & Zin Q the induced
functions -

with fi(g) = ¢*(f) = f og. Then f, is linear for all Z € Q and g is quadratic for
all X € Q. Hence for f, f' € Q(Y,X) the cross effect

(FIf)=(f+1Yog—Fog—fogeQZX)

is linear in f and f’ and central in @(Z,X). We say that a morphism ¢ in Qis
linear if ¢g* is linear for all X. - o

The prequadratic category @ is termed a quadratic category if @ has a zero object

+ and if for all objects X,Y there is given a diagram of linear morphisms

i i2
A2XVYSY

rl ry
withrit) = 1x, roig = ly and 437y +1979 = 1xvy. Wecall X VY a quadratic biproduct
in Q.

We shall see that an additive category is the same as a quadratic category for
which all morphisms are linear. Clearly a full subcategory R of a quadratic category
Q is prequadratic. Let ﬁ be the biproduct completion of R in @, i.e. the full
subcategory of Q consisting of finite quadratic biproducts X, V .. VX, in Q with

A; € B Then ‘the structure of R as a prequadratic category does not determine

E so that the direct analogue of (1.3) (*) is not true. Therefore there arises the
problem of adding “structure” to R in such a way that R together with the structure

determines R. We specify this additional structure of R via the notion of “square
ringoid” in §3.

(2.3) Remark. We call @ in (2.2) also a left quadratic category since @ has a left
quadratic composition law. Using duality we can define a right quadratic category
P by the condition that the opposite category P°7 is a left quadratic category.
Then the composition fog in P is linear in f and ‘quadratic in ¢ and for biproducts
in P the maps 11,22,71,72 are e linear. All results below refer to (left) quadratic
categories; there are obvious dual results for right quadratic categories.

We now describe various examples of quadratic categories. Let Top®/ ~ be the

homotopy category of pointed topological spaces. Suspensions and loop spaces give
rise to the following quadratic categories of the “metastable range” of homotopy
theory.

(2.4) Ezample. Let n > 2 and let



E(n,3n —3) C Top*/ ~

be the full subcategory consisting of suspensions X which are (n — 1) -connected
(3n — 3) -dimensional CW-spaces. Then L(n,3n — 3) is a (left) quadratic category.
The group structure for the set [XX, £Y] of morphisms is given by the suspension
ZX. The left distributivity law of homotopy theory shows that the composition in
E(n,3n —3) is left quadratic, see Appendix [5]. Quadratic biproducts are one point

unions (EX) V (2Y) = Z(X VYY) of suspensions.
(2.5) Ezample. Let n > 2 and let

Q(n,3n — 1) C Top*/ =~

be the full subcategory consisting of loop spaces QX which are (n — 1) -connected
CW-spaces with m;QX = 0 for ¢ > 3n — 1. Then 2(n,3n — 1) is a right quadratic
category. The group structure for the set [QX, Q}_’] of morphisms is given by the
loop space 2. Quadratic biproducts are products (X) x (YY) = Q(X x Y) of
loop spaces. '

(2.6) Ezample. Let Gr be the category of groups. A group G has nilpotency degree
2 if all triple commutators in G vanish. Then G is also termed a nil-group. Let
Nil C Gr be the full subcategory of nil-groups. The free nil group (M), generated
by a set M is given by the quotient (M)nii = (M)/T3(M) where (M) is the free
group generated by M and where '3 (M) is its subgroup of triple commutators. Let
nil C Nil be the subcategory of free nil groups. Then nil is a quadratic category.
The group structure of Gr((M)nir, (N)nit) is given by (f + g)(m) = f(m) + g(m)

for m € M. One readily checks that the disjoint union M UN yields the quadratic
biproduct (M),-“'[ Vv (N)ni; = (M U N)m'[.

We now describe some basic properties of prequadratic, resp. quadratic, categories
Q. The zero morphism 0 € Q(Y, X) is given by the neutral element in the group

(Y,X). For g € Q(Z,Y) let —g be the inverse of g. Moreover let 2 = 2x €
(X, X) be the double of the identity: i.e. 2x = 1y + 1y where 1y is the identity
of X.

2
Q

(2.7) Lemma. In a prequadratic category Q we have the formulas

foO0=0 and 0og=0,
riig =0 and rqt; =0 for a quadratic biproduct,
(=flg=—-(fg)+(f |
1y =F+f=f~f==f-f+f+f
where f, f' € Q(Y,X) and g € Q(Z,Y).
If ) has a zero obejct * then the first formula implies that 0 € Q(Y, X) coincides

with ¥ — % = X. Moreover the last formula shows that commutators in Q(Y, X)
are central. Therefore one gets



(2.7) Addendum. All morphism groups Q(Y,X) in a prequadratic category Q
are groups of nilpotency degree 2. o o

Proof of (2.7). We have f0 = f(0 + 0) = f0-- f0 so that f0 = 0. Moreover since

()4 is bilinear we get

(0}0)y =0=(0+0)g — 0g — 0g = Og.

For a quadratic biproduct we have

ro(tary +iar) =1 lxvy =12
721171 + Tolgry = 91Ty + Ty

so that roiyry = 0. Therefore ry¢; = rpiyryéy = 04;. Next we have 0 = f + (—f)
and therefore

_(f|f)g =(f|_f)g =(f+(_f))9"(—f)g-fg
=—(-flg—fg

Finally we get

(F1f 2y =(f + )0y +1v) = f(ly + 1y) = f(ly + 1)
=f+f+f+f=-f-f=f-f
=f+(f'+f-F-H—-f

This yields the commutator formula since (f | /)2, = (—f | =f')2, is central.
g.e.d.

(2.8) Lemma. Linear morphisms in a prequadratic category Q form a subcategory
which we denote by Linear (Q). -

Proof. Let g,g’ be linear. Then gg' is linear since

(fi + f2)99" = f299' — fr99

(*) = ((/ + f2)g = fa9— fr9)d’
(**) =0g'=0

Here (*) holds since ¢’ is linear and (**) is true since g is linear.

q.e.d.

Remark. For example in (2.4) the linear maps are the co-H -maps and in (2.5) the
linear maps are the H-maps. The linear maps in nil are obtained by all homomor-
phisms By — En given by functions M — N U {0} so that Linear (nil) = Set” is
the category of pointed sets. T



(2.9) Lemma. A quadratic biproduct X VY is a sum in Q, that is

(i1,22) : QA VY, Z) = Q(X, Z) x Q(Y, Z)
is a bijection. Moreover (1},13) is an isomorphism of groups.

Proof. 17,13 are homomorphisms since ¢; and 7, are linear. The inverse j of (i],13)
carries (a,b) to ary 4 bry. In fact

3, 83)(w) = j(uir, uis)
= uilh + ’tt?:g?‘g
= u(iﬂ"l -+ ?:2?‘2)

=ulyvy =u

(11,72)3(a,b) = (i1,13)(ar1 + br2)
= (ary1y + braty, aryia + broiy)
= (a,b)

q.e.d.
A quadratic biproduct in @ in general is not a product but we have the following

property of the morphism se?Q(Z,X VY). For objects X,Y,Z let @(Z,X |Y) be
the kernel of o —

r = (T14,72s) :g(Z,X VY) — g(Z,X) X Q(Z,Y)

(2.10) Lemma. This kernel defines a functor

Q D@7 xQxQ Ab

which we call the cross effect functor on the quadratic category @ and

QZ X |Y) B Q(ZXVY) 5 Q(Z,X) x Q(2,Y)

is a central extension of groups which is natural in Z, X and Y. Here 11, is the
inclusion. Moreover the functor Q( ,|) is additive in each variable Z, XY

Proof. v is surjective since r(iya + i2b) = (r1(t1a + 22b), r2(i1a + i2b)) = (a,b). We
define

12 : Q(Z,,X vV Y) — Q(A,X | Y)
by ri2(u) = z'l_?l(u —1arau — fyryu). In fact ryo(u) € M(Z,X | Y) since
rriz(u) = (ri(u — igrou — iyryu), ro(u — tgrou — iy u))
= (riu — ru, rou — rou) = (0,0)
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Moreover 13 is surjective since for v € Q(Z,X | V) we have ryv = 0 and ryv = 0

and hence r13(v) = v — iar9v — {;7v = v. Now we can write

‘!‘12(‘&) = (7:17°1 4 igrz)u — 1y - iz}"gu = (i11‘1 | iz'l‘g)u

and hence r12(u) is central in the group @(Z, X VY') since cross effects are central.
Next we see that Q(Z,X |Y) is linear in Z. In fact, for f+ f': Z — Z' we have

(w = 1y9v)

ia(f+ v =(F+ )iy =w(f + f)
= w.f +w,f =i12(f*v+ f*v)

since w, is linear. Moreover we show that @(Z,X | Y) is linear in X and Y. For
this we observe that fVg: X VY — X’V Y’ satisfies the formula

fVg=ifri +izgr
so that for v € Q(Z, X | Y) with w = i19v

u2(f,9)sv = (f Vg)einv
= (11 fr1 + tagre)w
=iy friw + iagraw + (4 fr1 | 2972w
= (11 fr1 | 12972)w

since 7yw = 0 and row = 0. Here the cross effect is linear in f and ¢ since r; and
ro are linear and since the cross effect is bilinear.

q.e.d.
(2.11) Corollary. One has a bijection of sets

QZXVY) = Q(Z.X) x Q(2,Y) x QZ,X | Y)

which carries u to (rqu, rou,r12(u)) and the inverse carries (a, b, v) to i32v+1i1a+1i2b.
The bijectioon is natural in X andY.

In an additive category a biproduct is a sum and a product. In a quadratic
category a quadratic biproduct X VY is a sum and satisfies property (2.11) so that
X VY is a product iff for all Z the group @Q(Z,X |Y) is trivial.

(2.12) Definition. The cross effect functor Q( ,|) of a quadratic category @ is

endowed with the following structure maps H, P,T. For X V X we have the mor-
phisms

pr X > X VX p=1 +i
{V:X\/X—>X,v=(lx,1x)
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We define functions H and P,

Q(2,X) -5 Q(2,X | X) -5 Q(2,X),

by H(w) = r12(psw) and P(v) = .(712v). Moreover we define the interchange map

T:Q(Z,X|Y)~Q(3,Y|X)

by the commutative diagram

Q(Z,X |Y) 2 Q(Z,X VY)

I I
Q2,Y | X) —5 Q(Z,Y V X)

wheret : XVY — Y VX isdefined by t7; = 15, tio = 1;. Since ¢, is a homomorphism
we see that T is an isomorphism of abelian groups and clearly 77 = 1 since #t = 1.

Let C be a category with a zero object and finite sums. We recall that a cogroup
in C is a tuple (X,p,v) where X is an object in C and where p: X — X VX
v: X — X are morphisms with the following properties.

(1,00 =1, (0,1)p =1 (counit property)
(2.13) (Ivpp=(pVvl)y (coassociativity)
(Lv)p=0 (coinverse)

A cogroup X induces the structure of a group on the morphism set C(X, Z) for all
Z. The group structure is obtained by a + b = (a,b)u with inverse —a = av. A
map f : Y — X between cogroups is a co-H-map if uf = (f V f)u. Such a map
induces a homomorphism between groups f* : C(X, Z) =+ C(Y, Z).

(2.14) Lemma. Each object X in a quadratic category @ is canonically a cogroup
such that the group structure of Q(X, Z) coincides with the induced group struc-
ture. Amap f: X =Y inQ is linear iff f is a co-H-map, this is the case, if and
only if H(f) = 0. -

Proof. We obtain the cogroup structure of X by p = ¢ +42 : X - X VX and
v=—1xy:X = X. Now H(f) =0 iff 212 H(f) = 0 where

i12H(f) = tigri2p.(f)
= puf —iorouf —uripf
= (i1 +i2)f —i2f — s f
= (11 +22)f — (fV i1 +142)
=uf = (fV Hu
This completes the proof of (2.14).
q.e.d.
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§ 3 SQUARE RINGOIDS

Quadratic categories @ with cross effect M = Q( ,|) and structure maps

T,H,P in (2.12) satisfy properties which are condensed in the following notion
of a ‘square ringoid’.

(8.1) Definition. A square ringoid

(B,M,T,H,P)

is given by a category R together with the following data. All morphism sets
R(X,Y’) are groups (written additively) and

(i) M:R?xRxR— Ab

is a functor which is linear in each variable. That is, for morphisms f, g,k in It the
function M which carries (f, g, k) to M(f,g,h) = f*(g, h)« is linear in each variable
f,g and h respectively. Next

(i) T:M(X,Y,2)= M(X,2,Y)

is a natural isomorphism with 77 = 1. Moreover H and P denote functions

(iii) R(X,Y) L mx,v,v) 5 R(X,Y)

for all objects X,Y in R. These data satisfy the following properties (1)...(7).
(1) P is a homomorphism which maps to the center of the group B(X,Y’) and

P is natural in X and Y, that isfor z: X -+ X' andy: Y = Y’ in Q we

have o
2*P = Pz* and P(y,y)s = y P

Moreover for a € M(X, X', X') and § € M(Y,Y",Y’) the induced maps

(z, PB), (Pa,y)s : M(Z,X,Y) = M(Z,X',Y")

are trivial, that is

(z,PB)s = (Payy)s = 0.

(2) For a,b € R(X,Y) we have a +b € R(X,Y) by the group structure of
R(X,Y) and H satisfies

H(a+b) = H(a) + H(b) + (a,b), H(2x).

Moreover H is a derivation, that is, for X Ly zm R one has the
formula

11



H(fg) =(f,f)+H(g) + g H(f).

(3) T=HP —1on M(X,Y,Y)
(4) PT =P on M(X,Y,Y)
(5) TH = H + v where for a € R(X,Y)

Vu(a) = a’H(2y) — (a,a), H(2x)
(6) For X Lf’ Y& Zin L we have the ‘quadratic left distributivity law’
(f+fYog=Ffog+fog+P(f f)H(g)
(7) For X Lyl g R we have the ‘linear right distributivity law’
folg+g)=fog+fog"

By (7) and (6) we see that R is a prequadratic category.

(8.2) Remark. Let R be a square ringoid. Then beside (1)...(7) above the following
equations hold. By (6) one has for X M Y & Z the cross effect formula

(a) (f1f)e = P(f, f)).H(g)

This implies by (2.7) the formula

(b) (=flg =—(fg9) + P(f, )« H(g)
and for a,b € R(X,Y") we get
(c) bta—b—a=-b—a+b+a=Pa,b).H2x).

Moreover ‘double cross effects’ vanish in R, that is, for W & x Lyt Zand
W <> Y in R we have

(d) ((wlv)rly)g =0=(y|(ulv)s)g

This follows from (a) since we have (Pa,y), = 0 = (z, PG)s by (1) above.
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(3.3) Theorem. Each quadratic category Q with cross effect M = Q( ,|) and
structure maps T, H, P as defined in § 2 is a square ringoid. o

The proposition implies that each full subcategory R of a quadratic category @ has
the structure of a square ringoid. o

Proof of (8.8). (1) We obtain P by the composition

P:Q(Z,X | X) & Q(Z,X v X) T4 Q(2,X)

where 112 is central and </, is surjective since 7i; = lx. Hence P is central.
Moreover we get the naturality of P since 7;2 is natural in Z (by the definition

of @( ,|) in (2.10)) and since Z(fV f) = fv, r+(f V f) = fry for 7 = 1,2.
For the proof of (Pa,y)s = 0 we first observe that for £ € Q(X, X’ | X") with
12§ € Q(X, X' v X") the induced map B

0=(i126,1)s : Q(Z, X | Y) = Q(Z,X' VX" | Y)

is trivial. This follows since by (2.10) the map
QZ, X' VX" |Y) 5 QZ,X' |Y)®Q(Z,X"|Y)
given by (r1,1), and (r2,1). is an isomorphism. Hence we get (i126,1)x = 0

since r1i12 = 0 and rpt;2 = 0. Since Pa = y,ij2a we obtain (Pa,y). =
(V,y)«(t12a,1), = 0. Similarly one gets (X, Pf). = 0.

(4) PT =P isa consequence of t=+.
(7) is part of the definition of a prequadratic category.
(6) This formula is obtained by

Pf, ) H(g) = P(f, f')oriz(u9) |
= V«(fV F)ultars | 1272) g, see proof (2.10),
= V(fV )llisrs + iara)pg — t2ropg — irr1p9]
=(f+fg-Ffa-fo

(3) We have the commutative diagram in @
YVY Y, v £, YVY
wn | Tvvv
YVYVYVY 1Yt YVYVYVY

which we use in the following equations with v € Q(X,Y | Y).
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HPv = rigpte Vs t12(v)
=r12(VVY)(IVEVL), (1t V p)irgv
=112(V V )+ (1 VEV 1)aisa (g, p)v

Since Q(X,Y | Z) is linear in " and Z by (2.10) we get

(s p)ev = (i1 + 42,01 +12)4v

= (i],i])*v -+ (il,ig)*v + (iz,il),'v + (ig,iz)*v

Observe that

T‘lg(v vV V)*(l Viv 1)*i12(i1,i1), = T}g(v \ V)t(l ViV 1)*(21 \% 'i])*ilz
= T1211 Vs 112
=0

since 712114« = 0. Similarly

7‘12(‘{7 v V)t(l Viv 1)*i12(i2,‘i2)* =0
On the other hand we get

T‘lg(v vV V)*(l Viv 1)*2'12(2'1,2.2)* = identity
Tlg(v A V).(l Viv l)*ilg(ig,il)* =T

This completes the proof of (3).
(5) For a € Q(X,Y’) we have
i12TH(a) = 1197 maptea = teliariopisa

Here we can use for v = p,a the formula

1127120 + (1171).v + (fgr2)yv = v

which follows from the definition of 712 in (2.10). Hence we obtain

inH(a) = t*(Zd - (?:27‘2),, — (2.]7‘1 )*)pt*(l

= ty(psa — (12r2p)ra — (t17148) v 0)
= tu(pea —12a — 110)
(

= ‘ig + 1'1)*(1 ad 1'1(1 - 2:2(1.
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On the other hand we have

i2(H + Vula) =i2H(a) + 412 Y (a)

where

t1i2H (@) = t1arigpaa = (i1 +12)s@ — 2.0 — 1140
Hence we have to show

(12 + i1 )ha —t1a —i2a+1a+i2a — (11 +12)sa =112 Vi (a)

Here the commutator rule (8) shows

—z'la — ‘1:2& + ila + T:Q(L = —(—1'20. - ?:](1, + igﬂ - i]a)
= _P(ija,iza) H(2x)
= —i1a(a,a), H(2x)

since P(z1,i2)s = i12. Moreover

(22 +11)va — (41 +i2)sa = a(ia + 11 — 11 — 12)
=a*P(i1,12). H(2y)
= Cl*ile(Zl\’) = i]ga*H(Qy).

This completes the proof of (5).

(2) We use the formula (see (2.14))

isz((z) = (11 +i2)a— taa — 11

Thus we get

tigH(a +b) = (i1 +i2){a+b) —iz(a +b) — i1 (a + b)
(il +2'2)a +(21 +12)b —-igb—iga— i]b— ila
?:]QH((I) + 'i10'. + Igb 4 212H(b) + ilb -+ Zgb - Zgb - 1:2(! - 'le — i](l

I

= ilg(H(a) -+ H(b)) + i]ﬂ, + (iga -+ Zlb - iga et 11b) - i](l
= i]z(H(a) + H(b)) + a4+ P(ila,igb)*H(2‘\’) - 114
= i12(H(a) + H(b) + (a,b)« H(2x))

In the last equation we use P(i1,12)s = 132. This completes the proof of (2).
For the proof of the derivation property of H we first obtain the following formulas.
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u2H(fg) = (1 +12)fg - i2fg —ir fg
n2(f, Fe H(g) = (fV fleinzH(g) = (f V f)«((i1 + i2)g — G2g — 119)
(eafri +iafre)(in +1i2)g — (21 fri +i2fra)izg — (infry + iafra)irg
=(i1f +i2f)g —iafg—isfg
t2g" H(f) = g% H(f) = ((t1 +i2)f —iaf — i1 f)g

These formulas imply

n2(H(f9) = (f, )+ H(g) —¢"H(f)) =

I

(
(4
(i +12)fg — fg — [(ia +i2) fg + (= Flg+ P((ir +i2)fg — FYHg) (with f=1i1f+isf)
(4

= —P(f, /)« H(g) + P((i1 +i2)f, F) H(g)
= P((i1 +i2)f — f, f)H(g)
= P(P(il,iz)*H(f),f)*H(g) =0 by (1)

Hence H is a derivation since 72 is injective. This completes the proof of (3.3).

q-e.d.

§4 BIPRODUCT COMPLETION OF SQUARE RINGOIDS

In this section we describe the quadratic analogue of the biproduct completion
of a ringoid in (1.2).

(4.1) Definition. A functor F : Q — Q' between prequadratic categories is linear
if F induces a homomorphism between groups

F:Q(X,Y)— Q(FX,FY)

for X,Y € @ and if F carries linear maps to linear maps.

Hence a linear functor carries a quadratic biproduct to a quadratic biproduct. This
implies that a linear functor F' between quadratic categories induces a natural
transformation

Fy: Q(X,Y | 2) = Q(FX,FY | FZ)

compatible with T, H, P in (3.2). Hence (F, Fy) is a morphism of square ringoids
defined as follows.

(4.2) Definition. A morphism F : R — R’ between square ringoids is a linear
functor F : R — ﬁ' of the underlying prequadratic categories together with a
natural transformation in Ab
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Fy: M(X,Y,Z) » M'(FX,FY,FZ)
such that Fy is compatible with 7', H and P respectively, that is:

RT=TF; on M(X,Y,Z)
FikH=H'F on R(X)Y)

FP=PF, on M(X,Y,Y)
for all X,Y,Z € R.

We now are able to describe the universal property of the biproduct completion
Add(R) of a square ringoid R. First Add(R) is a quadratic category and 7 : B —

Add(R) is a morphism of square ringoids such that for any quadratic ca.tegor_y Q

and any morphism F : B — @ between square ringoids there is a unique linear

functor

(4.3) F:Add(R) —+Q with Fi=F.

Here F is the quadratic analogue of (1.3). The following results justifies the selection
of properties used in the definition of a square ringoid.

(4.4) Theorem. For a square ringoid there exists the biproduct completion 1 :
R — Add(R).
If @ is a quadratic category then any full subcategory j: B C @ has the structure

of a square ringoid. Let E be the full subcategory of ) consisting of finite quadratic
biproducts X V...V X, with X; € £ Then o

(4.5) e: Add(R) —» R

with € = j is a linear equivalence between quadratic categories. Compare (1.3) (*).
As in (1.4) one can extend the definition of Add(R) in (4.7) below for ‘families of
objects in &’ and one obtains this way

(4.6) R C Add(R) C add(R).

We leave this to the reader. The proof of (4.4) relies on the following construction
of Add(R).

(4.7) Definition. Given a square ringoid R we define the quadratic category @ =
Add(R) as follows. The objects of @ are the finite tuple of objects in R which we

denote by

17



X] HXQHHXQ;:(X], ,X;,;),CCE 1.
We define for Y € R the group

Q(Y,XIH...HXx)=(

||'><a

Q(Y,Xi)) x( x M(Y,X;,XJ-)>

1<i<3<z

where x denotes the product of sets. The group structure on this set is given by
the formula

{ (fhfl ) ( :J) :(f1+f:1fl.?+ :J+5'J)
6ij = (fi, f;)+H(2y)

Moreover we define the group

QYViLl... Y, X, ...TIX,) =

I| X

Q(Ykl -'Xl HXI)

as a product of groups. An element in this group is denoted by f = (fF, f,-‘:;-)
with 1 <k <yand1 <7 < j <2 Nowlet g = (97,97, be an element in
Q_(Z; OH...I0IZ,,Y,10...0Y),). Then the composition is defined by

fg=((f9)i,(f9)i;)

where the coordinates are given as follows.

(fo)i=flat+ flgs+.. .+ flas+ ) P(FE fh)aai

k<t

(f9)i; = Z(gk) 5

+Z FiYegio+ (FL 5T gbu + (Flgis fgi)eH(22,))

k<l

Using the properties of a square ringoid one now can check that the composition is
associative and that Add(R) is a well defined quadratic category with the universal
property of the biproduct completion of R in (4.4).

§5 QUADRATIC CATEGORIES AS LINEAR EXTENSIONS OF ADDITIVE CATEGORIES

We show that all quadratic categories can be obtained by certain linear exten-
sions of additive categories. This gives rise to many examples of quadratic categories
and it also yields a kind of classification of quadratic categories.

(5.1)Definition. Let C be a category and let D : C°P x € — Ab be a bifunctor (also
termed C -bimodule). We say that

D

IItlj

g
if (a

is a linear extension of the category C by

), (b) and (c) hold; compare [6].




(a) E and C have the same objects and p is a full functor which is the identity on
objects.

(b) For each f : A — B in C the abelian group D(A4, B) acts transitively and
effectively on the subset p~!(f) of morphism in E. We write fo 4+ « for the

action of &« € D(A, B) on fo € p~1(f). Any fo € p~1(f) is called a lift of f.
(¢) The action satisfles the linear distributivity law:

(fo+ a)(go + B) = fogo+ fB+ 9"

A map between linear extensions is a diagram

p 2t E ¢

I

D’ y B —2—

where ¢, ¢ are functors with p'e = pp and d : D(AB) = D'(pA, »B) is a natural
transformation satisfying e( fo + ) = €(fo) + d(a). If ¢ and d are the identity then
¢ 1s called an equivalence of linear extensions.

q . .. : . .
We call D — E —-» K a weak linear extension if there is a linear extension

D~ E — C as above together with an equivalence of categories ' 5 A such that
E-C 5 K coincides with g.
There is a canonical bijection

(5.2) m: M(C,D)= H*C,D)

-1 =

Here M(C, D) is the set of equivalence classes of linear extensions and H*(C, D)
is the cohomology of C with coefficients in D; [6]. We now describe examples of
linear extensions of categories

(5.8) Ezample. Recall that ab and nil denote the categories of free abeliean groups

and free nil-groups respectively; see (2.6). Then there is a linear extension

Hom(—, A?) o nil 2 ab

obtained as follows. The functor p carries (M), to the abelianisation Z[M] which
is the free abelian group generated by M. One has the classical central extension

AX(Z[M]) = (M) it = Z[M)]
where ¢ is the abelianization and where w is the commutator map. Now the action
of @ € Hom(Z [N}, A’Z[M]) on fo : (N)nit = (M)nit € nalis given by (fo +o)(z) =
fo(z) + wag(z). In this example gb is an additive category and nil is a quadratic

category; see (2.6).

d
(5.4) Ezample. Let A be an abelian group and let Z[N] >+ Z[M] —» A be a free
resolution of A. We choose a map
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a:\/s' - \/$
N M

between one point unions of 1- spheres which induces d in homology, H,(9) = d. Let
M 4 be the mapping cone of 0. Then the suspension M(A4,n) = 2"_1 My,n > 2,
is a Moore space of A in degree n. Let M™ be the full homotopy category of such
Moore spaces M(A,n),A € Ab, and let p M"™ — Ab be the homology functor
which carries M(A4,n) to A. The suspension functor 3 : M" — _M_""H 1s full for
n = 2 and is an isomorphism of categories for n = 3. The category M? is quadratic
and the category M" n > 3, is additive. Moreover one has the foll_owing diagram
in which the rows and the column are weak linear extensions; compare V.3a in [2].

Ext(—, ®Z/2)
+
P Ext(—,®%) —— M =, M
| e E
Ext(—,T) —— M* 2 Ab

Here we use for B € Ab the natural exact sequence

®BLTBSB®RZ/2-0
which induces for A € Ab the binatural exact sequence

Ext(4,®*B) = Ext(A,TB) <% Ext(4, B ® Z/2) — 0

Hence the image P,Ext(A,®*B) is a Ab-bimodule which via q is also an gg—
bimodule. The map d in the diagram is the inclusion such that (d, €, ¢) is a map
between linear extensions.

Motivated by such examples of quadratic categories we prove the following classi-
fication of quadratic categories in terms of linear extensions.

(5.6) Theorem. Each quadratic category @ is canonically part of a linear exten-
sion of categories -

+
DA Hg_»gadd

Here Q% is an additive category and Dp is an Qadd-bjmodule which is left additive
and right quadratic. We call Qadd the additive quotient of Q.

Proof. We define Q"dd and D as follows. The objects in Q“dd are the same as in

Q. Morphism sets—in Q_‘“M are given by the cokernel
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Q**(X,Y) = cokernel (P : QXY Y) = Q(X,Y))

This cokernel also defines the projection @ — Q“dd. The composition law in
Q"dd 1s induced by the composition law in . Using the properties in (3.1) and

(3.2) one readily checks that Q"dd is an additive category. We define the Q‘“M—
bimodule Da by o o

Da(X,Y) = image(P : g(X,YiY) — g(X,Y))

Then the additive Qadd- trifunctor @( , |) shows that Da is left additive and

right quadratic since P is a natural homomorphism. Moreover using the short exact
sequence of groups

0+ Da(X,Y) =+ Q(X,Y) = @*(X,Y) = 0

obtained by the definitions above we obtain the action of PA(X,Y) on Q(X,Y)

such that the linear extension of categories in (5.6) is well defined. The linear
distributivity law follows from property (z, P8). = (Po,y). = 0 in (3.2)(1) by use
of (3.2)(6). q.e.d.

(5.7)Theorem. Suppose that a linear extension of categories

*) DLE—A

is given where A is an additive category and where D is an A-bimodule which is
left additive and right quadratic. Let R be a full subcategory of A for which the
additive functor € : Add(R) — A is given by (1.3)(*). Then there is a quadratic
category Q together with a map between linear extensions

e*D y @ » Add(R)
() u Ik |
D » E » A

If ¢ is an equivalence, for example if R = A, then also€ is an equivalence. Quadratic
biproducts in @ are lifts of biproducts in Add(R).

We prove this result in (6.11) below.

Since the eqivalence ¢ : Add(A) — A induces an isomorphism &* : H*(4,D) =
H*(Add(A),e* D) we see by (5.2) that the equivalence class of the extension E in
( )( ) can be identified with the equivalence class of the extension Q in (5.7)(*%)
=A

||'Z’CJ
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(5.8)Addendum. For the extension @Q in (5.7)(**) one has the following diagram in
which the rows and the column are linear extensions of categories.

¢(D/D')

l+

; Qadd

o

>

P
1>

q

—
A
—

h

¢D —F

1o

— Add(R)

H

Here D = ¢* D’ is given by

D'(A, B) = image(D(A, B|B) ¢ D(4,B v B) "¥* D4, B))

for A,B € Ob(A) so that D' — D — D/D' is a short exact sequence of A-
bimodules. The functor ¢ is an additive functor and the quotient D/D’is biadditive.

(5.9)Ezample. For the quadratic category @ = nil in (5.4) we have
Da Q Qadd
|

Hom(—, A?) » nal

lis-

For the quadratic category @ = M % in (4.4) we have

-DA Q | Qadd

I | I

P,Ext(—,®2) —— M? — M?

Moreover the diagram in (5.4) is (up to equivalences of categories) an example of
the diagram in (5.8).

§6 LIFTING SUMS IN LINEAR EXTENSIONS
A sum of objects X, X; in a category C is an object X7 V X3 together with
morphisms iy : Xy = X7 V X2(k = 1,2) such that

(izaig) : C(Xl VX?:Z) = Q(X],Z) XQ(XLZ)

is a bijection for all Z. Linear extensions behave very well with respect to sums:

(6.1) Lemma. Let D » E -» C be a linear extension and let (X; V Xo,11,12) be .
a sum in C such that

(11,13) : D(X1 V X3, 2) = D(X1,2) @ D(X,, Z)
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is an isomorphism. Then also
(Xl Vv X?a ila 2'2)
is a sum in E for any lift ';k of ix{k = 1,2).

The proof is an easy exercise, compare 3.4 [8]. Now let A be an additive category
and consider a linear extension

(6.2) D—E>A

Clearly 0 is a zero object in £ if and only if D(0, A) = D(A,0) = 0 for all objects
A € A. We derive from (6.1) and the dual of (6.1).

(6.3) Proposition. If D is left additive then sums exist in E and if D is right
additive then products exist in E. Moreover if D is biadditive then E has in a

cannonical way the structure of an additive category such for all objects X,Y € A
the sequence

DIX,Y) s E(X,Y) % A(X,Y)

is a short exact sequence of abelian groups. Here ¢ carries & to 0 + «. In addition
the functor p respects sums, products and biproducts respectively.

(6.4)Addendum. Let D be left additive and D(A,0) = 0for all A € A. Then E has

sums and a zero object. Hence for X,Y € E one has inclusions and retractions
X Xxvy IS X and YL XVY DY

with rxix = 1,ryiy = l,7x1y = 0,7yvix = 0. Moreover the following formulas
are satisfied for f: X = Z,9: Y = Z,h:Y 2 WeE

(f+a,9+8)=(f,9)+ryxa+ry8: XVY > Z
(f"'a)v(h"'ﬁ)=f\/h+7‘}iz-a+r§,iw-ﬁ:X\/Y—)Z\/W

We now consider the case when D in (6.3) is left additive and right quadratic. Then
0 is a zero object in E. Moreover for a sum Y V Z in E the sequence

(6.5) D(X,Y|Z) 3 E(X,Y V Z) > E(X,Y) x E(X,2)

is exact, that is, the group D(X,Y|Z) acts effectively on the set E(X,Y V Z) and
the set of orbits is E(X,Y) x E(X,Z) viar = (ty.,rz-). This is an immediate
consequence of the definition of the cross effect D(X,Y|Z), see (1.8). Since this
cross effect is additive in Y and Z we derive from (6.5) that the map (712, 713+, 723+ ):

(66) Q(X,Xl vV Xz V;Yg) — E(X;Xl vV _Yz) X Q(X,_Xl V,¥3) X Q(X,XQ \% X:;)

is injective. Here r;; is the canonical retraction X; VXV X3 = X; VX for: < ;.
We now consider cogroups in the category E, see (2.13).
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(6.7)Lemma. Ifu: X = X VX in E satisfles the counit property then there is a
unique v such that (X, i, v) is a cogroup in E.

Hence we may call a morphism g = X V X a cogroup structure of X if u satisfies
the counit property.

Proof of (6.7). The coassociativity follows from (6.6) since rij;(uV 1)u = 1xvx =
ri;(1Vu)p. Inorder to find v we take v’ : X — X in E whichisaliftof -1 : X —» X

in A. Then there exist « € D(X, X) such that (1,7")u = Ox x +a where Ox x is the
zero morphism X — X in E. Using (6.4) we have (1,0 — o)u = ((1,v') —rie)u =
(1,v" )it —a = 0. Hence v = v’ — «v is a coinverse. q.e.d.

(6.8) Proposition. Consider the linear extension E as in (6.2) where A is an
additive category and where D is left additive and right quadratic. Then each
object X in E has a cogroup structure and the group D(X, X|X) acts on the set
of cogroup structures of X transitively and effectively.

(6.9)Addendum. With the assumption on E in (6.8) let px : X' = X VX be a
cogroup structure for X € ObE. Then ux yields a group structure + on the set
E(X,Y) by z+y = (z,y)px. This structure is compatible with the ation of D on

F since we show

(*) +a)+y+h)=@+y)+(a+p)

for z,y € E(X,Y), 0,8 € D(X,Y). Indeed by (5.4) we get

(z+a)+(y+8)=(z+a,y+pBux
= ((z,y) + ria+r38))ux
= (2, y)pa +a+ = (z+y) +(a+5).

Now (*) implies that

(%) 0— D(X,Y) 25 B(X,Y) - A(X,Y) =0

is a central extension of groups and E(X,Y") is a nil-group. Here 0% carries « to
Oxy +c.

With the assumptions on D, E, A in (6.8) we consider the following diagram in E

X 2y xvx

fl lfo

Y —2 4, vyvYy
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where px and py are cogroup structures. Then the induced diagram in A commutes
so that there is a unique element

(610) a = O;Lx,#v(f) € D(X:Y | Y)

with (f V flux = (uyvf) + o This is the obstruction for f of being a cogroup
morphism since o = 0 if and only if the diagram commutes.

Remark. Let D’ be the bifunctor on A given by D'(X,Y) = D(X,Y | Y) and let
Cogr(E) be the category of cogroups in E and cogroup morphisms. Then

Cogr(E) 2 p

is a linear covering of E by D' in the sense of IV.§4 [2]. Here O is the obstruction
operator given by (6.10) and ¢ is the faithful forgetful functor.

(6.11) Proof of (5.7). The linear extension @ in (5.7) (**) is the pull back of E via
the functor € : Add(R) —+ A. Hence for X, Y € Add(R) we have

Q(X,Y) = E(eX,eY)

and composition in @ is given by the composition in E. We now choose by (6.8) for

each object A in Ob(R) C Ob(E) a cogroup structure p4 in E. Hence we obtain

for each object X in @ a cogroup structure by setting (see (1.2))

(1) pxuy = tog(px U py)

Here to3 : X OHXIOIYHONY - XIIY I X OV is the interchange for the second
and third factor. The cogroup structure py yields the group structure for the set
Q(X,Y) by setting as in (6.9)

(2) z4y=(z,ypux for zyeQX)Y)

Then clearly g. : @Q(X,Y) = Q(X, Z) is linear for g : ¥ — Z. On the other hand
we have - B

(3) g (z+y)~ g7 (y) — 9" (z) = (= | yY}Oux v (9)

where (zly). : D(X,Y | Y) > D(X,Z | Z) is given by the right quadratic functor
D on A so that (z | y). is linear in z and y and hence also (3) is linear in (x) and
(y). By (6.9) (**) also (3) is central in Q(X,Z). According to (1) the natural map
i1: X > XY and iy : ¥ — X II Y are morphisms of cogroups and this implies
the equality 117y + 1272 = lx1y.

q.e.d.
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§ 7 SQUARE RINGS

Ringoids with only one object are the same as rings. Therefore square ringoids
with only one object are termed square rings. Each object X in a quadratic category
Q determines a square ring End(X) which is the endomorphism square ring of X.
The examples of quadratic categories in § 2 yield therefore many examples of square
rings. In particular we get the square ring

(7.1) Znit = End(Z)

which is the endomorphism square ring of the object Z in the quadratic category
n=il. We shall see that Z,;; is completely described by

Zoi=(Z 5z L 7)

with P = 0 and H(z) = z(z —1)/2. In fact Z, is the initial object in the category
of square rings.

Each square ring @) yields a theory Add(Q) and hence a category of models Mod(@)
which is the category of (right) Q-modules if Q is a ring. For the initial object Z i
of the category of square rings the category Mod(Z,,;) coincides with the category
Nil of groups of nilpotency degree 2; compare (7.11) below.

We now describe in more detail the algebraic notion of a square ring; this is the
specialization of the axioms of a square ringoid for the case of a single object.
We introduce a square ring in three steps. First we define a square group which
describes the basic linear structure of square ring. A ‘square ring’ will be a ‘square
group over a ring R’ with additional multiplicative structure.

(7.2) Definition. A square group

M=(M, 5 M, 5 M)

is given by a group M, and an abelian group M,.. Both groups are written addi-
tively. Moreover P is a homomorphism and H is a quadratic function, that is the
cross effect

(alb)y :H(a+b)—H(b)—H(a)

is linear in a,b € Q.. In addition the following properties are satisfied (z,y € Me.)

(1) (Pz |b)u=0 and (a|Py)p =0

(2) Pla|b)py=a+b—a—0>

(3) PHP(z) = P(z) + P(z)

(4) A(a) = HPH(a) + H(a+a) —4H(a) is linear in a
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By (1) and (2) P maps to the center of M, and by (2) cokernel of P is abelian.
Hence M, is a group of nilpotency degree 2. Let Square be the category of square
groups.

(7.8) Definition. A square group over a ring

Q=(1€Qc -5 Qe 2 Q. = R)

1s given by aring R, a square group (H, P) as in (7.2), a homomorphism ¢ (denoted
by ea = a for a € @.) from the group Q. to the underlying abelien group of R and
an element 1 € ¢}, with €(1) = 1. Moreover the abelian group Q.. is an RQ RQ R°P
-module with action denoted by (t @ s)-z -7 € Q.. for t,s,7 € R, z € Q.. The
following additional properties hold where H(2) = H(1 + 1).

(1) (a]b)u =(boa) H(2),
(2) A{a) =HPH(a)+ H(a+a)—4H(a) = H(2)-a
(3} T=HP—1 isanisomorphism of abelian groups satisfying

T(t®s) - z-7)=(s®¢t)-T(z)-r.

(7.4) Definition. A square ring

Q:(Qe _E*Qeei)Qe)

1s given by a square group (H, P) for which @, has the additional structure of a
monoid with unit 1 € ¢, and multiplication a - b € .. This monoid structure
induces on R = cokernel (P) a ring structure such that

(1€ Q25 Qe Q. -5 R)

is a square group over the ring R. Here € is the quotient map for the cokernel of P
with ea = a. Moreover the multiplication a-b in @}, satisfies the following equations

(1)

(2) )

(3) H(a-b)=(a®a) - Hb) + H(a)-b

(4) (a+b)-c=a-c+b-c+P((@aeb) H(c))
(5) a-(b+c)=a-b+a-c

We also call Q@ a square ring extension of the ring R and R is the ring associated

to Q.
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(7.5) Lemma. A square ring as defined in (7.4) is the same as a square ringoid
in (3.1) with only one object.

Morphisms @ — @' between square rings are given by homomorphisms Q. —
Q.. Qee — QV, which respect all the structure described above. We point out that
a square ring @ with Q.. = 0 is the same as a ring so that the category of rings is
a full subcategory in the category of square rings.

We now consider the square ring Zn;; in (7.1). In fact Z,; is the initial object
in the category of square rings since there is a unique morphism Z,;; = @ which
carries 1 € Z = (Znit)e to 1 € Qe and 1 € Z = (Zyit)ee to H(2) € Qee. By (7.4) (4)
we have in any square ring

(7.6) PH(2) =0

so that Z,;y — @ is well defined. For a square ring ¢ we obtain the quadratic
categories Add(Q) and add(Q) in the same way as in (4.6). If @ is the endomorphism
square ring-—af_an object X in a quadratic category @ then Add(Q) coincides with
the full subcategory of § consisting of finite sums X V...V X with all summands
given by X. This implies the next proposition on the category nil of free nil-groups
in (2.6). Let fg — nul be the full subcategory of finitely generated free nil-groups.

(7.7) Proposition. One has equivalences of categories

fg—nil = Add(Z )
nil = add (Znu)

Next we introduce for a square ring @ the notion of ¢-module which generalizes
the classical notion of a (right) R-module for a ring R.

(7.8) Definition. Given a square ring () we obtain the category Add(Q) in (4.7)
which is a theory in the sense of (1.5). A @-module M is a model of this theory,
that is

M: Add(Q) ~ Set

is a functor which carries a sum in Add(Q) to a product of sets. Let

Mod(Q) = Model( Add(Q))

be the category of @Q-modules; compare (1.7). We now describe a (-module more
explicitely in terms of operators on a group.

(7.9) Definition. A @-module M as defined in (7.8) is given by a group M (which
we write additively) and by Q-operations which are functions

{ MxQe— M, (ma)—m-a
MxMxQe — M, (mnz)— [mn]-z
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For a,b € Q., 2,y € Qee, m,n € M the following relations hold where [M] =
{Im,n]-2; mne M,z € Qe} C M.

m-l=m,(m-a)-b=m-(a-b),m-(a+b=m-a+m-b
(m+n)-a=m-a+n-a+[m,n] H(a)

m- Pz =[m,m]

[m,n} - Tz =[n,m]

(m-a,n-bl-z=[mn| (a®b) -z and ([m,n]-z) -a=[mn] (z-a)
[m,n]-z islinearin m,n and =

[m,n]-z =0 for m € [M]
These equations imply that the commutator in M satisfies

n+m—-n—m=-n—-m-—n+m=[m,n]- H(2)

Hence M is a group of nilpotency degree 2 and [M] is central in M. Morphisms
in the category Mod(@) of @-modules are homomorphisms M — M’ which are
compatible with the Q-operations.

(7.10) Ezample. Given an object X in a quadratic category @ we obtain the en-
domorphism square ring ¢ = End(X). Any object ¥ in Q_therefore yields the
representable functor -

My : Add(Q) € @ — Set

which carries the object X V...V X to the set Q(X V...V X,Y’) of morphisms in Q.

The functor My is obviously a model of the thzory Add(Q) and hence a Q-module.
We can define My as well by the Q-operations

-NIY = g(X,Y)

m-a=moa (compositionin )

[m,n] -z = P(m,n),z

given by the square ringoid structure of Q. This shows that the equations in (7.9)
are given by the corresponding equations in a square ringoid.

(7.11) Ezample. Recall that

Zoii=(Z 525 7)

is the endomorphism square ring of Z in nil with P = 0 and H(a) = a(a —1)/2
for a € Z. We now show that a Z,;; -module can be identified with a group of
nilpotency degree 2 so that we have an isomorphism of categories
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MOd(Z nil) = &

In fact, any object M in Nil has canonically the structure of a Z,;; -module by the
Z i1 -operations

m-a=m+...+m (a-fold sum in M)

[m,n]-z2=(n+m-n—-m)-z (z-fold sum in M)

formn € M and a € (Znit)e = Z, x € (Znit)ee = Z. One readily checks that the
equations (7.9) for the Z,;; -operations are satisfied.

(7.12) Remark. For each square ringoid @ with finitely many objects X1,... , X, we
obtain the square ring of the object X II.. . IT X, in Add(Q). One can check that Q

-modules and @-modules can be identified so that one has a canonical isomorphism
of categories

Mod(Q) = Mod(Q)

This shows that for many purposes square ringoids can be replaced by square rings.

§ 8 EXAMPLES OF SQUARE RINGS

We here describe some examples of square rings which arise naturally in algebra
and topology.

(8.1) Factor square rings of Z,i. Let r,s > 1 be integers with r | s if s is odd and
2r | s if s is even. Then

278 =(2)r 5 2)s 2 )

is the square ring with H(a) = a(a — 1)/2 and P = 0. These are all square rings
@@ for which there exists a surjection Z,;; —» Q. Let Nil"° be the category of

nil™® -groups which are the groups of nilpotency degree 2 satisfying the relations
(m,n € M)

O=m-r=m+...+m (r—fold sum of m)
O=(—-m—-n+m-+n)-s

This is a free nil™® -group if M is obtained by dividing out these relations in a free
nil -group; see (2.6). Let

fg— ™ Cpal™ C Nal™

be the full subcategory of free nil™*® -groups and finitely generated free n:l™® -groups
respectively. Then we obtain as in (7.7) and (7.11) equivalences of categories
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fg—pil™ = Add(Z,)
nil"’ = add(Z;

0" = Mod(Z"3)

nil

=

The Z;; -operations on a group M € Nil"* are defined by the same formulas as
the Z,i; -operations in (7.11). As an example we obtain the nil*? -groups which are
exactly the groups M for which the lower 2-central series I', M satisfies T3 M = 0;
they play a role for the unstable Adams spectral sequence [11]. Moreover we obtain

the following result which is an application of the theory of this paper.

(8.2) Theorem. Let gz(Z/Z) be the homotopy category of Moore spaces M(V,2)
in degree 2 of Z /2 -vector spaces V. Then there is an equivalence of categories

M*(Z/2) = nil*?

Proof. Let P, be the suspension of the real projective plane; then P, = M(Z/2,2)
is the Moore space of Z/2 in degree 2. Moreover for a Z/2 -vector space V with
basis B the one point union

\/ EP, = M(V,2)
B

18 a Moore space of V. This shows that

(8.3) M*(Z/2) = add(End(SP;))

by (2.4). Here the endomorphism square ring of L P, satisfies by a result of Barratt

[1]

(8.2) End(SP,) = Z*2

nil
Hence the result in (8.2) follows from (8.1).

q.e.d.

(8.4) Endomorphism square rings of suspended pseudo projective planes LP,,. Here
a pseudo projective plane

(1) P,=58"U, €
is obtained by attaching a 2-cell to a 1-sphere by a map of degree n. For n = 2
this is the real projective plane. Clearly £P, = M(Z/n,2) is a Moore space of the

cyclic group Z/n. Using results in [3] we obtain the endomorphism square ring

31



(2) End(SP,) = (Z/nx Z/n -5 Z/n 5 Z/nx Z/n)
where End(XP,). = Z/n X Z/n as a set with the monoid structure

(a,@) - (b,B) = (ab, a®> - B+b-a)

and the (abelian) group structure

(a,0) + (b, 8) = (a+b,a + 8+ abn(n — 1)/2).

Moreover End(ZP,)ee = Z/n as an abelian group and H(a,o) = o and P(z) =
(0,2z). The cokernel of P is the ring R = Z/n which acts on End(ZP,)ec = Z/n
in the canonical way. One now can show that for n = 2 this square ring coincides
with (8.2) and as in (8.3) we obtain the equivalences of categories

(3) M*(Z[n) = gdd(End(SP,))

Here M ?(Z/n) is the full homotopy category of Moore spaces M(V,2) for which V
is a free Z/n -module. By (2) we see that the right hand side of (3) is a purely
algebraic category.

(8.5) The R-localization of nil-groups. A ring R is termed 2-binomial if for all » €
R the element 7(r — 1) € R is uniquely 2-divisible so that r(r — 1)/2 € R. Clearly
if 2 is invertible then R is 2-binomial. Also any subring R C Q of the rationals is
2-binomial. Given a 2-binomial ring R we obtain the square ring

(1) Rnu:(Ri}Ri}R)

with H(r) = 7(r —1)/2 and P = 0. This generalizes the square ring Zp;;. Therefore
we may consider R,,;; -modules as generalizations of nilpotent groups of order 2. The
morphism Z ,;; = R, induces A=dd(Zm-z) — A:__dd(Rm-g) by the universal property
of Add in (4.3). Hence we obtain the induced functor

l\/fod(Rm'[) - Mod(Zn.-;) = M

which has a left adjoint

Nil = Mod(Eyir)

which carries G € Nil to Gg € Mod(Ryi). Here Gg is the R-localization of G
which for R C Q is the classical localization of G; see for example [14], [16].

(8.6) Square rings with P = 0. Let R be a ring and M be an R® R® R°? -module
satisfying

(5@t z-r=(tQs)- -z r
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for s,t,7 € Rand ¢ € M. Moreover let H : R —+ M be a function for which

H(s+t)=Hs+ Hi+ (t®s)- H(2)
H(s-t)=(s®s)- H(t) + H(s) - t

holds. Then

(1) rRE = (R M R

is a square ring with P = 0 and conversely each square ring with P = 0 is obtained
this way. This generalizes the square ring Ry of a 2-binomial ring R.

As an example of a square ring with P = 0 we describe the automorphim square
ring End(ECP,) where CP; is the complex projective plane. Let Z x; Z be the
subring of Z x Z consisting of all pairs a = (ag,a;) with ag — a3 = 0mod2. Then
we have

(2) End(SCP) = (Z x2 2 5 2223 7 %, 7)
where H is defined by H(1,1) =0, H(0,2) =1 and

H(a+b)— H(a) — H(b) = ag - bo
The R @ R ® R°? -modules Z with R = Z X, Z is given by

(a@®b) - k-c=ag-by-k e
where a,b,¢ € R and k € Z. The isomorphism

[ECPg, ECPQ] =Z Xo Z

carries a map F to the degree (ap,a;) in homology where ap = degree (H3 F) and
a; = degree (HsF'). Clearly the algebraic description of End(ECP;) above yields
an algebraic characterization of the subcategory

Add(EndECP2) C Top*/ ~

which is the full homotopy category consisting of finite one point unions XCP V...V
SCP;. This category was computed in different terms by Unsold {17} who showed
that for @ = Add(EZCP,) the associated linear extension ¢ — Q“dd = Add(R) is

non-split.

(8.7) Square rings arising from operads. Let K be a commutative ring and let P
be an operad in the monoidal catgeory of K-modules with the monoidal structure
given by the tensor product. Recall that P consists of K-modules P(n), n > 0,
with an action of the symmetric group £, and of composition laws u{2q1,... ,1x; k):
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for k,71,... ,ix > 0 where P(0) = K. Moreover certain associativity and symmetry
properties hold [9]. It is well known that an operad P with P(n) = 0 for n > 2
is the same as a I{-algebra. An operad with P(n) = 0 for n > 3 actually yields
canonically a square ring

Q(P) = (P(2)s, ® P(1) -5 P(2) 5 P(2)s, & P(1))

where P(2)g, = P(2)/(z — @' ~ 0) is the module of coinvariants of the T, -
action with ¢t a generator of ;. The function H is given by H(Z,y) = « + '
where T € P(2)y, is the class of ¢ € Py, y € P(1). Moreover P is defined by
P(z) = (z,0). Hence the cokernel of P is the -module P(1) which is a ring R via
the multiplication p(1;1). Moreover P(2) is an R ® R ® R°? -module by p(1,1;2)
and p(2;1). The structure of P(2)g, & P(1) as a monoid is defined by

(Z1,91) - (F2,92) = (Z1 2 + (11 B Y1) T2, 11 - v2).-
One can check that the axioms of an operad show that Q(P) is in this way a well
defined square ring. Let niloperad(K) be the category of operads P with P(n) =0
for n > 3 and let squarering be the category of square rings. Then the construction
of Q(P) above yields for K C Q a full embedding

niloperad(K) C squarering.

This shows that a square ring is in a canontcal way a non-abelian version of a
nil-operad. Therefore there exists a more general theory of “non-abelian operads”
generalizing both the concept of square ring and the concept of operad.

(8.8) Square rings arising from nilpotent algebras. Let R be a commutative ring.
Then one has the following square rings where R and R @ R are groups given by
the additive structure of R and where R @ R is a monoid by

(z,y) - (u,v) = (:cu,:z:2y + yv)
We now define:

Ar=(R-5 R R)

H=P=0 Iis trivial.
@r=R®R-S5RoR-5 RoR)
H(z,y) = (y,y) and P(z,y)=(0,z+y)

H(z,y) =2y and P(z)=(0,z)

—(ReoR-S5R-E5 ROR)

{ sp=(ROR-L R ROR)
¥
H(z,y) =y and P(z)=(0,2z)
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The corresponding modules are R-algebras of nilpotency degree 2 as in the following
table:

Q Q-modules

Agr Lie algebras
SR assoclative algebras, Leibniz-algebras
Sk commutative algebras

I'r divided power algebras

(8.9) Restriction of square rings. Let @ be a square ring with associated ring R
and let R’ be a subring of R. Then we obtain a square ring ¢} | R’ which we call the
restriction of @ to R'. Let p: Q. - R be the projection and let Q. | R’ = p~' (R’)
be the inverse image of R’ C R. Then

QIR=(Q. | R Q.5 q.|R)

is given by the structure maps H and P in . This is a subobject of the square
ring .

(8.10) Monoid square rings. The free abelian group Z[M] generated by a monoid
M has the structure of a ring with multiplication induced by the multiplication
of M. This is the classical monoid ring of M which is the group ring if M is a
group. This construction has the following analogue for square rings. Let (M),
be the free nil-group generated by the set M, that is (M)ny = (M)/T3(M). We
now consider the M-objects in the category Nil which form the category M — Nil
with the subcategory M — nil of free objects. In fact (M), is the free object in
M — Nil with one generator. Again M — nil is a quadratic category so that the
endomorphism square ring o

Zni M] = End((M)ni)

is defined. This is the monoid square ring given by the monoid M. More explicitly

Znit M} = ((M)it =2 ZIM) @ Z[M] 25 (M)nir)

is the unique square ring for which the following holds.

H(m)=0
(¢,b)n = {a} @ {b}
P({a}@{b})=a+b—a—-b
Here {a} € Z[M] is the abelianization of a € (M)ni. The underlying group

of Z,y[M]. is the group (M),;, the underlying monoid structure of Z, [M]. is
uniquely gievn by
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frorgveron—4

m-n=mne€M for mneM

and (4), (5) in (7.4). The Z[M]® Z[M]® Z[M]°? -module structure of Z,;[M].. =
Z[M)® Z[M)] is given by

(@a@b)- (u®v) - m = (aum) ® (bvm)

for a,b,n,v € Z[M]. One readily checks that one has equivalences of categories

Mod(Z n[M]) = M — Nil

add(Z pi[M]) = M — nal

which coincide with the corresponding equivalences in (7.11) if M is a point.

(8.11) Square rings arising_from restricted Lie algebras. Let K be a commutative
Z /2 -algebra and let

ager = (R RPS R)

be the following square ring with P = 0 as in (8.6). Here R is the abelian group
given by the free I{-module

R= EB K¢
i>0

generated by the monomials 1,¢,t%,.... This is a ring by the multiplication rules

th = k%, "™ =T

for k € K, n,m >0, with t* = 1 € K. Moreover R as an R ® R ® R°? -module is
obtained by the action (a,b,c,z € R)

(a®b) z-c=ag-bop-z-c

where ap is the constant term of the polynomial a. Now H is the unique function
with properties as in (8.6) satisfying H(¢) = 1. One readily verifies that the cate-
gory of AT¢*'" -modules coincides with the category of 2-restricted Lie Ji-algebras
satisfying [[z,y], 2] = 0. Here the action of ¢ corresponds to the operation z — z[?]
of a restricted Lie algebra. The modules over the factor square ring

AR/, 8) = (R/(£*) = R/(t) = R/ ("))

are the 2-restricted Lie K -algebras satsifying the relations [[z,y],z] = 0, (22?1 =0
and [z,y]® = 0.
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§9 EQUIVALENCES OF SQUARE RINGS

It is clear that two square rings @) and @’ are isomorphic, Q@ = @', if and only if
there 1s an 1somorphism

(9-1) Y Add(Q) = Add(Q)')

of quadratic categories which is the identity on objects. Here the isomorphism v is
an isomorphism of categories which is linear in the sense of (4.1). We say that @
and Q' are equivalent if there is an isomorphism ¥ as in (9.1) of categories which
not necessarily needs to be linear. Such an equivalence induces an isomorphism of
module categories

(9.2) Mod(Q) = Mod(Q')

since an equivalence 9 is an isomorphism of theories; compare (1.5) and (7.8). We
now study explicit conditions which show that square rings @ and Q' are equivalent.
For this we need the following construction.

(9.8) Definition. Given a square ring

Q: (Qe _H") Qee _P)Qe)

and an element £ € Q.. we define a new square ring

Qf = (@8 5 Q.. 2 Q)

as follows. Here Q¢ as a monoid in the same as Q.. Yet the group structure of Q%,
denoted by a @ b, is defined by

(1) a®b=a+b+P((@a®b)- &)

for a,b € Q.. Moreover H¢ is given by the formula

(2) Hé(a) = H(a) + - a— (a®a) - ¢

The function P for Q% coincides with P in Q. This shows that the associated ring
R of Q¢ coincides with the associated ring of Q. Moreover M., in Qf is the same
R® R ® R°? -module as in . We point out that the element 2 = 1+ 1 in @,
does not coincide with the element 26 = 1@ 1 in Qf, in fact, 2¢ = 2+ P¢. A
straightforward but somewhat tedious proof shows:

(9.4) Lemma. Q¢ is a well defined square ring for any § € Q..
We point out that for @ = Z*3 and € = 1 € Q.. we have Q¢ = Q. Using Q¢

above we can characterize equivalence of square rings as follows.
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(9.5) Proposition. Two square rings Q and Q' are equivalent if and only if there
is £ € Q.. such that Q¢ is isomorphic to Q'.

This in particular implies by (9.2) that one has an isomorphism of categories

(9.6) Mod(Q) = Mod(QF)

There i1s a nice classical example of this isomorphism obtained by the Malcev
correspondence between rational nilpotent Lie algebras and uniquely divisible nilpo-
tent groups. For nilpotency degree 2 this correspondence in the sense of Lazard
gives us an isomorphism

(9.7) Mod(Ryi1) = Mod(AR)

for 1/2 € R C Q. Here by (8.5) the left hand side is the category of R-local groups
G in Nil and the right hand side is by (8.8) the category of R-Lie algebras L of
nilpotency degree 2. The Malcev correspondence (9.7) carries L to the group G
given by the set L with the group law

zry=z+y+(1/2)z,y]

This is the nil-case of the classical Baker-Campbell-Hausdorff formula, see [15]. We
now obtain a new interpretation of this correspondence by use of the notion of
equivalence of square rings, namely:

(9.8) Lemma. For £ = —1/2 € R there is a canonical isomorphism (Ag)¢ = R

For this compare the definitions of Ag and R,,;; above. Now one can check that
the isomorphism (AR)¢ = R, yields via (9.6) exactly the Malcev correspondence
(9.7). In this sense we can consider the isomorphism of categories in (9.6) as a
generalization of the Malcev correspondence.

(9.9) Proof of (9.5). The objects of Add(Q) and Add(Q') are given by numbers
0,1,2,... where n € N corresponds to the n-fold sum 1IT11II...II 1. Let

b Add(Q') = Add(Q) = Q

be an isomorphism of categories which is the identity on objects. The cogroup
structure ¢’ : 1 = 1111 in Add(Q') is carried via ¢ to a cogroup structure ¥(u') :
1 =101 in Add(Q) where—i,l)(,u’) needs not to coincide with u = 7y +7;. Hence
there is £ € Qee = @(1,1 | 1) with

2(€) = —p +p(u)
We claim that there is now an isomorphism Q¢ 2 Q' of square rings.
q.e.d.

(9.10) Definition. We say that a square ring @ is abelian if each @-module M €
Mod(Q) is an abelian group or equivalently Add(Q) has abelian Hom-sets. This
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is the case if and only if H(2) = 0. We say that @ is of abelian type if there is
an equivalence ) ~ Q' where @' is abelian. This is the case if and only if there is
£ € H(2) such that the equation

H(2) =2 - HP(§) = - T(¢)

holds. Hence if Q.. is 2-divisible and P = 0 then @ is of abelian type. For example
for 1/2 € R C @ the square ring Ap is of abelian type. One can check that
Q@ = End(ZP,) in (8.4) for 2 | n is not of abelian type though @, is an abelian
group in this case. Moreover End(XP,) is abelian if n is odd. We point out that
for n even and a = [in,y] € ®2,,—1S™ the square ring End(ZC,) is not abelian but
of abelian type since Lo = 0.

(9.11) Ezample. Let K = Z[1/2] C Q and let
niloperad(I{) C squarering

be the inclusion in (8.7) which carries the nil-operad P to Q(P). Given any square
ring @ such that the associated ring R contains 1/2 there is a niloperad P with -
Q(P) equivalent to Q. Compare the Malcev correspondence in (9.7).
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