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INTRODUCTION

Simple or ADE-singularities have attracted much attention

during the last two decades, mosﬁly because very. different
classification principles led finally to the same list of
singularities. The list of normal forms consists of well known
complex polynomials in n+1 variables, named Ay: Dy, Eg, Eq

and Eg , with isolated singularity at the origin. If n = 2 ,
according to Artin [Ar], these afe just the rational double points
and if n = 1 , they can also be characterized by their resoluticn,
cf. [BPV]. All higher dimensions are obtained from the curve case
by "suspension”, namely by adding a certain number of squares in
additional variables. Besides the characterization through
resolution, there is another striking characterization due to
Arnold [Arn] using deformation theory: The simple singularities

in all dimensions are exactly the hypersurface singularities of

finite deformation type, i.e. they are characterized by the fact

that each one can be deformed only into finitely many other non
isomorphic singularities. More recenﬁly, Knérrer (Kn] and

Buchweitz~Greuel~-Schreyer [BGS] proved, that the simple singulari-



ties and no other hypersurfaces have the property, that there
exist only finitely many isomorphism classes of indecomposable
maximal Cohen-Macaulay modules over their local ring, or, in

other words, they are of finite Cohen-Macaulay type.

The above results hold actually also for power series over an
algebraically closed field of characteristic 0. In this paper

we extend both characterizations to algebraically closed fields
of positive characteristic. Of course, the list of normal forms,
which we continue to call simple or ADE-singqularities, is now in
general larger, depending on the characteristic of the field. It
turns out that our list coincides 1in dimension 1 with the simple
singularities in the sense of Barth-Peters-van de Ven IBPV],
normal forms of which in characteristic > 0 had been obtained
by Kiyek and Steinke [KS]. In dimension two we obtain just the
rational‘dﬁuble points of Artin [Ar]. Higher dimensional normal

forms are obtained again by a certain suspension.

Although the main results are completely analogous to the
characteristic zero case, there are some striking differences.
While in characteristic zero the classification of simple singu-
larities with respect to right equivalence and contact equi-
valence coincides, we Have to use contact equivalence (e.g. Eg
is not of finite deformation type with respect to right equivalence
in characteristic 5). Moreover, although the deformation pattern
among the simple singularities is in general the same as in the
classical case, Qe have some unexpected exceptional deformations.

0 2

For instance Eg —_ AS (n = 1, char = 3) E6 — A6 (n = 1, char = 2)



and Eg'——> Dj, i=20,1,2 (n = 2, char = 2) . This phenomenbn

was discovered independently by Knop {Knol] using a new description
of simple singularities by simple groups. In the last paragraph

we state the complete deformation relations (adjacency diagram)
between the simple curve singularities and some adjacencies in

the surface case.

The most difficult part of the proof is to show, that the simple
singularities of our list are the only ones which have finite
deformation type. In particular in dimension 2 and characteristic 2
this required an extensive partial classificaticn of singularities.
These calculations are entirely due to the second author and we
refer to [Kr] for details. Following tradition we do not include
them here, but following a suggestion of C.T.C. Wall we note down

a list of basic subcases which can be used to determine singulari-

ties which are not in normal form.

During this work the second author was supported by a scholarship
of the French-German exchange Program PROCOPE. The final version
was written down during a stay of the first author at the
Max-Planck-Institut fir Mathematik in Bonn. We like to express
our gratitude to both institutions for support and for providing

comfortable working conditions.



1. RESULTS

1.1 Let K be an algebraically closed field of arbitrary
characteristic and K([[x]] = K[[xo,...,xn]] the formal power
series ring. Two power series £,g € K[{x]] are called contact

equivalent or isomorphic if the local K-algebras K[[x]]/(f) and

K[([x]11/(g) are isomorphic (notation £ ~ g ). In the following

lists, "dimension" refers to n = dim K[[x]]/(f) .

1.2 DEFINITION: A formal power series £ 1is called simple or an

ADE-singularity if it is contact equivalent to one of the following

normal forms:

{I) char(K) # 2

I.1 Dimension 1

name normal form for £ € K[[x,y]]
A, x? & g1 k 2 1
Dy xzy + yk-1 k 2 4
0
ES EG X" +y
'E; x3 + y4 + x2y2 additionally in char = 3
0 3 3
E7 E7 X~ + Xy
E; x3 + xy3 + x2y2 additionally in char = 3
0 3 5
E8 E8 ‘ X~ + vy
1 3 2.3
EB Xty *+Xxvy add. in char = 3
E; x3 + y5 + x2y2
1 3 5 4 _
EB X" + y + xy additionally in char = 5




I.2 Dimension 2 2

f e K[[xo,...,xn]]

' 2
f(xo,...,xn) = g(xo,x1) * Xy b ..+ X

where g € K[[xo,x1]] is one of the list I.1.

is that of g .

(II) char(K) = 2

IT.1 Dimension 1

The name of £

name normal form for £ € K[[x,yl]
2 m
>
Aom-1 X+t xy m oz
0 2 2m+1
A, A2m xT + y m 2 1
: x% & g2, gyfRT mz1, 1szrsm-
m
2 m
D2m X'y + xy mz 2
0 2 2m
D2m+1 D2m+1 XYy *y m 22
r 2 2m 2m=-r
D2m+1 X'y +y + Xy mz22, 1srs$m-1
0
EG EG X" + vy
E; x3 + y4 + Xy
3
E7 X + Xy
3 5




II.2 Dimension 2

name normal form for f € K[[x,y,z]]
k+1
Ak z + Xy
0 2 2 m
Dom D2m 2" + Xy + Xy m 2 2
ng 22 + x2y + xym + xym_rz mz22, 1 sr s m]
0 2 2 m ‘
Pom+1 Pomer 2 T XY *+yz mz 2
r 2 2 m m-r
D2m+1 2+ Xy +yz + Xy z m 22, 1 sr £ m-1
0 2 3 2
E6 E6 2+ X +Yy 2
E; 22 + x3 + yzz + Xxyz
0 2 3 3
E7 E7 z2°7 + X 'f Xy
E.;v 22 + x3 + Xy~ + xzyz
E§ z2 + x3 + Xy + yBZ
E% 22 + x3 + xy3 + xXy2
0 2 3 5
Eg E8 27+ X +y
E; Zz+x3+y5+xyz
Eg z2 . x3 + y5 + xy°z .
Eg 22 + x3 + y5 + y32
Eg 22 + x3 + yS + Xyz
ITI.3 Dimension =2 3
£ € Kllxg,...,x 1]
f{xo,...,xn) = g(xo,x1) FRHRg b el X Xy g n = 2k+1
f(xo,...,xn) = g(xo,xl,xz) XX, f ool X Xy o D= 2k




where g € K[[xo,x1]] resp. K[[xo,x1,x2]] is one of the list

IT.1 resp. IT.2. The name of f 1is that of g

1.3. Remarks: (1) The normal forms in dimension 2 are exactly

the normal forms of rational double points which were classified by
Artin [Ar]. Moreover, Lipman showed in [Li] that a twodimensional
double point is rational if and only if it is absolutely isolated,
i.e. can be resolved by a finite sequence of blowing up points.
This criterion will be used for the proof that ADE-singularities

are of finite deformation type.

(2) The normal forms in dimension 1 are exactly the normal forms

of functions f which (a) are reduced, (b) have multiplicity 2

or 3 and (c) the reduced total transform of £ after one blowing
up has also property (b). This was proved by Kiyek-Steinke in [KS].
Note that our notation differs slightly from that of Kiyek and
Steinke. Ours harmonizes with Artins and fits more natural into

the deformation pattern of these singularities. The upper index 0

denotes the classical normal form, which is the most special with

respect to deformations. . o

(3) A power series £ of the form f(xo,...,xn) =
XgXq * g(xi,...,xn) is calléd a double suspension of ‘g . Since :

xox1 ~ xg + X if char(K) # 2 , we see that each normal form in

W' - N

dimension 2 is obtained from a simple curve or surface
singularity by a certain numer of double suspensions. Note that
the simple singularitfes- are all in m2 where m denotes the

maximal ideal of K[{x]] and that they have isclated singularities,

The main result of this paper is the following



1.4, Theorem. Let £ € K[[xo,...,xn]] be in m2 . The

following statements are equivalent:

(i) f is simple,

{ii) £ 1is of finite deformation type,

(i1i) £ 1is of finite Cohen-Macaulay type.

For a precise definition of finite deformation type over an

arbitrary algebraically closed field see 2.1.

1.5. Remarks: (1) The result is of course well known in charac-

teristic 0, cf. {Arn], [Au), [BGS], [Es], [GK], [Kn]. The equi-
valence of (i) and (iii) in dimension 1 and 2 (and in any dimension
if char(K) # 2 ) and the implication (i) = (iii) in any dimen-
sion and positive characteristic is also known, cf. [Au]l, [Ks],

[BGS], [30o].

We prove the equivalence of (i) and (ii) and the implication

(iii) = (i) in paragraph 3.



2. DETERMINANCY

2.1. As before let K denote an algebraically closed field of
arbitrary characteristic, K[[x]] the formal power series ring
in n+1 indeterminates XgreserX and m. its maximal ideal.

n
f € K[[%X]] 1is called a hypersurface singularity if £ € mg and.

f # 0 . Occasionally we call also the local ring K[[x]]/(f) or
its formal spectrum. (X,0) = Spf(K[[X]]/(f)) a (hypefsurface)

‘singularity. The singularity f is called isoclated if there exists
a k > 0 such that mk < j(f) , where j(£f) = (f,jﬁi,...,jﬁi)

. axo axm
denotes the Jacobian ideal of £ . £ 1is an isolated singularity

if and only if its Tjurina number T = dimKK[[E]]/j(f) is finite.

Note that in characteristic p > 0 the Milnor number

dimKK[[§]]/(§¥i,...,§¥i) is not an invariant of the contact

n
class of £ (e.g. xP + yP™! and  (14x) (xP+yP"T))

2.2. If f € K[[x]] happens to be a polynomial, it defines the
affine K-variety X = V(f) = Spec(X[x]/(f)) where K[x] denotes

the polynomial ring. By a singularity or a Singular point of

X i ! 0

we mean a closed point x €X and its complete local ring Ox,x
Since any isolated singularity £ € K[[x]] is contact equivalent
to a polynomial g € K(x] (cf. 2.6), it can be realized as the

singular point 0 of the affine variety X = V(g) .

2.3 Let f € K[[x]] be an isolated singularity. By (2.6) we
may assume that f 1is a polynomial. We can choose polynomials
9qre+es9, € Kix], 9; = 1, gi(O) =0 for i > 1, which represent

a K-basis of K([[x]]/j(f) . Let F € K[E,tz,...,tT] be defined by



1

= =
ft{X) - F(X,t) for t (tzfq-o't_r) € K

Let X, be the affine variety V(ft) and note that Xg = V(£)

t
. It is well known that

n+1 T~=1 T-1
A g A —> A X A

{x,£) —> (F(x,t),t)

is an algebraic representative of the miniversal (or semiuniversal)

deformation of £ , i.e. of the singular pcint 0 € X9

2.4. An isolated singularity ‘£ € K[[x]] is said to be of

finite deformation type, if for an algebraic representative  of

the miniversal deformation of £ as above the following holds: there
exist ‘Zariski-open neighbourhoods U clan+1 of 0O and W thr-1
of 0 such that the set of isomorphism classes of singularities
of X, MU, t running through all closed points of W , is
finite.

If £ is a polynomial with a non isolated singularity at 0 then
we do not have a finite dimensional miniversal deformation. space
for f . ﬁévertheleSS‘we can say that £ is of finite deformation
type if there exists a finite list of singularities such that, as
'above, £ deforms only to singularitieé of this list for every
algebraic deformation of f . Our classification in paragraph 3

hoviever shows that no isolated hypersurface singularities are never

of finite deformation type.
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2.5. LEMMA: f € K{[xo,...,xn]] is not of finite deformation

type if either n 2 2 and mult(f) 2 3 or n 2 1 and

mult{f) 2 4

Proof: This is just a dimension count. Let £ = mult(f) , i.e.

% 2+1

fem” but £ € m . The contact group {(u,9) |u a unit of

K[x], © a formal coordinate transformation of (Kn+1

(K) on ?11_£'/171S.”+1 . It can be checked

(2)

,0)} induces

] *
an operation of K* x GLn+1

easily, that the dimension of the orbit of £
L+1

'under this group

is smaller than the dimension of mz/m under the hypotheses

of the lemma. Therefore infinitely many orbits occur and f(z)

and hence £ cannot be of finite deformation type. ".(Here and in

£ (2)

the following denotes the f-jet of f ).

2.6. £ € RK[([x]] 1is called k-determined (with respect to contact
£ (k)

equivalence) if it is contact equivalent to , the k-jet of
f , i.e. the power series expansion of £ wup to and including

order %k . The minimum k is the index of determinancy.

LEMMA: If for £ € K[[x]], m“ c j(£) , then £ is 2k-determined.

In particular, an isolated singularity is 2t-determined.

Proof: Let g € K[[x]] such that g-f € n?**1 | We have to

show that there exist a unit u € K[[x]] and a coordinate trans-

n n

formation ¢ : K —> K such that g-u-f(y) 0 . For this

purpose we construct inductively units uP(x) € K[[x]] and
(n+1) tupels of power series of sufficiently high order

a1(x),...,ap(x) such that



g(x)-uP (x) £ (x+a' (x) + ... + aP(x)) € M2KP+T

Then uf tends to u and x+a1(x) + ... +aPx) to ¢ if P
goes to infinity.
The details, which are similar to those of the proof given in

[BL] for right equivalence, are left to the reader.

2.7. The above bound for determinancy is in general much to
high. In characteristic 0 better bounds are known, but they fail
-usually - in positive characteristic.

The simple singularities in characterisﬁic # 2 have index of
determinancy d where d is the maximum degree of monomials
occuring in the c¢lassical normal form. This is no longer true if
char(K) = 2 . Then we have the following indices of determinancy

for surface singularities:

:f.f__ r r 0,1 2,3 r
Ak' .>D2m, rz 0 D2m+1, rz 0 E6 E7 E7 E8
k+1 max{2r,m+1) ‘ max(2r+1,mj1)| 3 ’ 5 ! 4 l 5

2.8. Since the Tjﬁrina number T 1is upper semicontinuous with
respect to deformations, lemma 2.6 implies the following: Given

an arbitrary set of singularities which is closed under deformations
and which, for each 1t , has only finitely many members of Tjurina
number S T , then each member is of finite deformation type. This
remark will be used to show that the simple singularities are of

finite deformation type.
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3. PROOFS

3.1. Curve singularities (Proof of theorem 1.4, (i) e (ii))

We use the characterization of simple singularities in remark
1.3(2). |

"= " : Let £f(x,y) be a simple curve singularity and consider
an algebraic representative of the miniversal deformation £ (x,y)
as in 2.3. We blow up the origin in the (x,y)-plane and check
that for each t the reduced total transform of ft has only
singular points of multiplicity 2 or 3. Hence the singularities

of ft must be simple again. By 2.8 £ is of finite deformation

type.

- : By Lemma 2.5 we have to show that non simple curve

singularities of multiplicity 2 or 3 are of infinite deformation

type. Let €£(x,y) be arbitrary with mult(f) = 2,3.
mult(f) = 2. = £ ~ A for some k 21 or £ ~ x2 (type A ).
malt(f) = 3 and £ has 2 2 different tangents = £ ~ D for

k
some k or £ ~ x;y (D) -

mult(f) = 3 and f has one triple tangent: £ can be written as

£(x,y) = x3 + a(y)x.zy2 + S(y)xy3 + Sy

and we have according to [(KS]:

mult (c)

0 - £ ~ EG
mult (B)

0, mult(C) 2 1 em £ ~ E

mult(B) 2 1, mult(S) = 1 «= £ ~ By .
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In the remaining case we can write
2
fix,y) = x3 + a(y)xzy + b(y)xy4 + c(y)y6

We replace aly), bly), cly) respectively by

aly,t) = aly) - a(0) + o, (t-a)
b(y,t) = b(y) - b(0) + 0, (t=-a)
cly,t) = b(y) - c(0) + 04 (t-a)

where the oy denote the elementary symmetric functions in

three variables. Moreover (t-a) = (t1-aT, tz-uz, t3-a3) where

a; are the zeros of x3 + a(O)x2 + b(0)x + ¢(0) . In this way

we obtain a deformation ft cof £ . On the second reduced total
transform of ft we have four points on an exceptional ZP1 . the

cross ratio of which varies with t . The result follows.

3.2. Singularities of dimension- > 1, char(K) % 2

The equivalence (i) e= (ii) of theorem 1.4 follows immediately

from lemma 2.5, the curve case and, since the higher dimensional
singularities are simple suspensions of curves, from the following
two facts:

If f € K[[xo,...,xn]] is a simple suspension of .g € Kt[x1,...,xn]]
(i.e. £ = xg + g ) then each deformation of £ is a simple suspen-
sion of a deformation of g .

If £ ¢ K[[xo,...,xn]] is of multiplicity 2 then f is a simple
suspension of some g € K[[x1,...,xn]] (splitting lemma in

characteristic % 2 ).



- 15 =

3.3. Classification of double points f € K[[x,vy,z]], char(k) = 2

We only give a rough pattern for what is needed in the next
section. For complete details see [Kr]. The forms A_ und D_(h)
are defined in the next section 3.4.

According to the classification of quadratic forms we have three

main cases (recall that f(k) denotes the k-jet) :

(1) £02) o Xy + 2% (> £ ~ A,)

(2) £3) Ly

(3) f(z) ~ 22

Case (2): Using transformation of the form x — x+ai(x,y,z) and
y —> y+8(x,y,2) one obtains f ~ xy + akzk + O(k+1) for some
k23

(2.1) a, # 0 for at least one k' = £ ~ A _, (for k minimal)

(2.2) a, = 0 for all k = f ~ A, .
Case (3): Write £ in the form
2
f(x,y,2) = z" + p(x,y) + olx,y)z ,

O(y) 2 3, O(y) 2 2 .
(3.1) w(3) a 0 : all not simple (case B) 2.1, 2.2, 2.3 next

section)
w(3)

(3.3) v < x%y -

(3.2) ~x%y + xy® = £ ~ D,

£ ~ 22 + x2y + a xyz + byzz + 0(4)



(3.3.1)
(3.3.2)
(3.3.3)

(3.3.3.1)

(3.3.3.2)

(3.3.3.3)
(3.3.4)
(3.3.4.1)
(3.3.4.2)
(3.3.4.3)
(3.3.4.4)
(3.4)
(3.4.1)
(3.4.2)

(3.4.3)

(3.4.3.1)

(3.4.3.2)

(3.4.4)

(3.4.4.1)
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£ 0 - £ ~ D

o ul =

0, b0 == £ ~0D

0, b=0 = (for some k 2 4 )

2% + x2y + Ryz + cyk-1z + dxyk"1 + eyk + O(k+1)

0 » £ of type Dy for some k < » or

Dm(n), nz 1

r

0, k odd » £ ~ Dk+2' r =

(k=1)/2

0, k even = £ ~ Di/2 or possibly ~ D (1) if
0

b =0 : = (for some k 2 4 )

2% + x2y + axyk-?z'+ gy" "1z + nyk—1 + 0(k+1)
0: £~D) , (a%0), £<~D)  (a=0)

0, 8% 0: £~Dy . (a+0), £f~D) o (a=0)

B'=0, a« + 0 : different Dk's or Dm(n), n =2

B =y =0 : Case (3.3.4) for bigger k . If

Bk = Yy T 0 for all k - £ ~ Dm(O)
_ .3
= ¥ -
22 + x3 + axyz + byzz + 0(4)
+ 0= f ~ E;
0, b +0=f~E
0, b =0 =
22 + x3 + XyzZ + cxy3 + 0O(5)
0= £ ~E;
2

0 = £ ~ 27 + x3 + Xyz + dy5 + O(6) ; then either

Eg for d + 0 or of type B)3.5 if d = 0
b =20 -

22 + x> & axyzz + By32 + ny3 + 0(5)

0 o f ~ Eg or E; (8 = 0) or 53 (8 + 0).

1
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.B) 3.4

(3.4.4.3) y =R =0, a $ 0 = £ ~ Eg (1f y5 occurs) or of

type B) 3.3

(3.4.4.4) o = 8 =y =0 = f ~ Eg, E; or of type B) 3.1, 3.2.

3.4. Surface singularities in characteristic 2 (Proof of 1.4

(1) o= (ii))

" » " : Like in the curve case we blow up the miniversal defor-
mation of each simple surface singularity. By explicit calculation
one shows that they are absolutely isolated. Remark 1.3 (1)
together with 2.8 shows that they are of finite deformation

type.

"« " : By lemma 2.5 we have to consider only double points. The

classification of 3.3 shows that we have two cases

A) £ 1is equivalent to one of the normal forms of 1.2 II.Z2.
B) £ 4is not of this form and then £ belongs to one of the

following classes:

1. 1.1 f ~ xy (Aw)
1.2 F ~ 2% + x%y (D_(0))
1.3 f ~ 22 + x2y + xynz. (D (), n 2 1)
2. f(3) ~ 22 + zw(z)(x,y) for some ¢ € @2 . Depending on w(Z)
we have |
2.1 £~ 2% + 0(4)

2.2 £~ 2% + x%2 + 0(4)

2.3 £ 2% 4 xyz + 0(4)
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3. 3.1 £ ~2z% + x>+ 0(6)
3.2 f ~ 22 + x3 + xy3z + dyqz + 0(6) (@ € K)
3.3 f ~ 22 + x3 + xyzz + dxy4 + 0(6)
3.4 fo~z% + x4+ yiz +dxy’ +0(6)
3.5 f ~ 22 + x3 + xyz + 0(6)

Functions of c¢lass 1. deform obviously into infinitely many Ak
or Dy singularities. For the remaining one can find easily

deformations into class 3.5. Each f of class 3.5, not belonging

to A), can be transformed into 22 + x3 + Xyz + ayk + O(k+1) for
some k 2 6 . Let f, = 2% + x3 + Xyz + ty6 + 0(7) . Explicit
calculation shows that ft ~_fS if and'only if t = s ., Hence

the elements of class 3.5 and by transitivity all the others are

not of finite deformation type.

3.5, Singularities of dimension > 2, char(X) = 2

Before proving the equivalence (i) e= (ii) of 1.4 in this case,
we need a kind of splitting lemma in characteristic 2. First of
all let us recall the classification of quadratic forms over an

algebraically closed field of characteristic 2.

LEMMA 1: Let £ € K[xo,...,xn] be a quadratic form. After‘a

suitable change of coordinates f is one of the folloﬁing,normél

forms:
2
(1) X4
(2) x2 + X. X, + + X X w2k & n
0 172 v 2k=-172k 7 :
(3) xox1 + x2x3 + ... + xzkx2k+1'y 2k+1 s n .



The proof is elementary.

k
LEMMA 2: axgy + bx1x2 + h(xo,x1,x2,...,xn) € K[[xo,...,xn]] with

3
a,b € K, b 0, h € m 1is contact equivalent to axg + x1x2 +
3

+ H(xo,x3,...,xn) with h € m

2
Proof: 1let h = X999 * X9, ¢ 937 9919, € m°  and g3 not

depending on XyrXy o The change of coordinates X, —> %(x1+g2) '
Xo —> (x2+%g1) suffices to increase the multiplicity of 3419, -

We thus. finish by induction.

COROLLARY 3 (Splitting lemma in characteristic 2): Let
f € K[[xo,...,xn]], mult(f) = 2 , then either

2
(a) £ ~ Xg * XXy + o+ Xpp gXo, * h(xo,x2£+1,...,xn)

with 0 s 28 sn, h € m , or

{(b) £ ~ XgXq *oo.. # X 0%0 041

with 1 § 22+1 s n, h 6'@3 .

+ h(x22+2,...,xn)

Note that £ |is ac%ﬁally right equivalent to (a) or (b).

2 .
LEMMA 4: Xq + h(xo,...,xn) € K[[xo,...,xn]], h € m3, nz 3 is

not of finite deformation type.

4

Proof: xg + ﬁj/m has dimension (n;S) but it is easy to

check that the image of xg + h under the contact group in
xg + @P/@f has only dimension (n+1)2 + 1 . Therefore,'if‘

n 2 3 , there must be infinitely many orbits.
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For the proof of 1.4(i) e= (ii) we may assume that £ 1is of
type (a) or (b) of Corollary 3. In case (a), £ 1is of finite

deformation type iff xg + h(xo,x (X ) 1is., By lemma 4

22+17°° "' n
this can only happen if n s 22+2 . But then we are in the surface
case which was already treated. Similarly, using lemma 2.5, case

(b) reduces to the curve case.

3.6. Finite Cohen-Macaulay type in characteristic 2

It remains to show that a singularity of dimension > 2 which is
of. fiﬁiteHCoheh-Macaulay type (CM-type for short) has to be simple
(char(K) = 2) . The main theorem of Solberg [Sol , which is an
extension of an earlier result of Kndrrer to characteristic 2,
says that g(xz,...,xn) is of finite CM-type if its double
suspension f = XX, + g 1is. Moreover, by [BGS], Prop. 3.1,

£ € K[txo,...,xn]], n 2 3, has infinite CM-type if mult(f) 2 3 .
By coreollary 3 we are therefore reduced to the case

£ o~ xg + h(xo,x1,...,xn), mult(h) 2 3, n 2 3 . In order to show
that £ 1is of finite CM-type, it suffices to construct infinitely

2

many ideals I < K[[xo,...,xn]] such that f € I~ (c¢f. Cor. 1.7

of [BGS]). Let

C := {A

il
(o]
L1
o

) e n oy =0

NED

where is the homogeneous part of degree 3 of h . Since

nz2 3, dimC 2 1 and since K 1is algebraically closed, C

contains infinitely many points A . Let I(X) = K{[é]l be the
ideal generated by Aixj - iji’ i,j =0,...,n and

2
I, := I(X) + m , I(A) 1is the ideal of the point A € C and

A



therefore I, = Iu for X *# 4 . We have to show f € I2 . Since

A X
g + 03 vanishes in A, £ € T(A) + M* and since xg € I(\)

it suffices .to show h(3) € I(A)M2 . But this holds because

X

h3 oy =0 .
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4. ADJACENCIES

4.1. The methods to prove theorem 1.4 allow a nearly complete
description of all deformations between simple singularities in
all characteristics. Except for surface singularities in charac-
teristic 2 we calculated all possible relations.

The adjacencies in characteristic 0 are called the classical ones

and are the following

e R O L g O I O L s I W

No other deformations up to transitivity occur {(those ones which
are obtained by transitivity will not be mentioned explicitly).
Adjacencies between singqularities in even resp. odd dimension

are the same as in dimension 2 resp. 1..This‘is clear since a
double suspension does not élter adjacencies even in charac-
teristic 2.

Our notaticn coincides with [Ar] for surfaces but differs slightly

from [KS] for curves.

4.2. Dimensicn 1, char(X) 2z 3

If char(K) # 2,3 we have only the classical adjacencies
char(K) = 5 this means that both Es-singularities deform into
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char(K).= 3

Unexpected is only E; —> Ag which can be realized by

ft(x,y) = x3 + ys + t x2 - 2t4xy2 - txy3 + t3y4

oo

A1 <—A2 <—A <—A <—~A <-—--A <—A <—-—A <—A -

N \\\\\ \\\\ \

g < B7 <— Eg
) ) )
Eg <— Eg < — E; < Eg

4.3. Dimension 1, char{(kK) = 2

(dotted lines are only for lucidity)
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Unexpected 1is Eg —_> Ag (ft{x,y) = x3 + y4 + t4x2) and

E, —> Ag (Eg plays the role of E7)

4.4. Dimension 2

Since all surfaces in char(K}) # 2 are simple suspensions of
simple curve singularities, they have the corresponding deformation
relations (describedMn 4.2):.

In characteristic 2 one can verify the following:

A —> By_yi Dy —> Dy, Dy —> Dl

Eg —> Dg (r = 0,1) ,

B, —> Eg-z, Ef; — ng (r = 1,2,3) ,

Eg —> E§_1, Eg —_ D§—2 (r = 3,4) and the exception

Eg —> Dg (r = 0,1,2) given by £, (x,y,2) = £(x,y,2) + eix?y

where f denotes the normal form of Eg .

Deformations D —> A and E —> A have not be considered and
we do not claim completeness in the other cases. Actually, Knop

[Kn] has shown Eg s A7 for which we did not find a realization.
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