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Simple or ADE-singularities have attracted much attention

during the last two decades, mostly because very.different

classification principles led finally to the same list of

singularities .. The list of normal ferms consists of well known

complex polynomials in n+1 variables, named Ak , Dk , E6 , ~7

and ES " with isolated singularity at the origin. If n ~ 2 ,

accordinq to Artin [Ar], these are just the rational double points

and if n = 1 , they can also be characterized by their resolution,

cf. [BPV]. All higher dimensions are abtained fram the curve case

by n"suspension ll
, namely by addinq a certain numher of squares in

additional variables. Besides the characterizatien through

resolution, there i5 another striking characterization due to

Arnold [Arn] usinq deformation theory: The· simple sinqularities

in all dimensions. are exactly the'hypersurface singularities of

finite deformation type, i.e. they are characterized by the fact

that each one can be deformed only i~to finitely many other non

isomorphie singularities .. More reeently, Knörrer [Kn J and

Buchweitz-Greuel-Schreyer [BGS] proved, that, the simple. singulari-
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ties and ne ether hypersurfaces have the property, that there

exist only finitely rnany isemorphism classes ef indecernpesable

maximal Cohen-Macaulay modules over their loeal ring, or, in

ether words, they are of finite Cohen-Macaulay type.

The above results hold actually also for power series over an

algebraically closed field of characteristic O. In this paper

we extend both characterizations to algebraically closed fields

cf positive characterlstic. Of course, the list of normal forms,

which we continue to call simple or ADE-singularities, is now in

general larger, depending on the characteristic of the field. It

turns out that our list coincides in dimension 1 with the simple

singularities in the sense of"Barth-peters-van de Ven [BPV],

normal forms cf which in characteristic > ° had been obtained

by Kiyek and Stein~ce [KS]. In dimension two we obtain just the

rational, double points cf Artin [Ar]. Higher dimensional normal

forms are obtained again by a certain suspension.

Although the main results are completely analogous to the

characteristic zero case, there are some striking diff~rences.

While in characteristic zero the classification of simple singu~

larities with respect to right equivalence and contact equi-

valence coincides, we have to use contact equivalence (e.g. Ea
is not of finite deformation type with respect to right equivalence

in characteristic 5). Moreo~er, although the deformation pattern

among the. simple singularities is in general the same as in the

classical case, we have some unexpected exceptional deformations.

For instance EO -> Aa (n = 1, char = 3) EO
-> A2 (n = 1,' ·char ::= 2)a 6 6
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and Eä"--> oä, i = 0,1,2 (n = 2, char = 2) . This phenornenon

was discovered independently by Knop [Kno] using a new description

of simple singularities by simple groups. In the last paragraph

we state the complete deformation relations (adjacency diagram)

between the simple curve singularities and some adjacencies in

the surface case.

The most difficult part of the proof is to show, that the simple

singularities of our list are the only ones which have finite

deformation type. In particular in dimension 2 and characteristic 2

this required an extensive partial classification of singularities.

These calculations are entirely due" to the second author and we

refer to [Kr] for details. Following tradition we do not include

them here, but following a suggestion of C.T.C. Wall we note down

a list of basic subcases which can be used to determine singulari­

ties which" are not in normal form.

Ouring this work the second author was supported by a scholarship

of the French-German exchange program PROCOPE. The final version

was written down during a' stay of the first author at the

Max-Planck-Institut für Mathematik in Bann. We like to express

our gratitude to both institutions for support and for providing

comfortable working conditions.
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1. RESULTS

1.' Let K be an algebraieally closed field of arbitrary

charaeteristie and K[[x]] = K[[XO' ... 'x]] the formal power
- n

series ring. Two power series f,g E K[,[~]] are called contaet

equivalent or isomorphie if the loeal K-algebras K[[x]]/(f) and

K[[~]]/(g) are isomorphie (notation f - 9 ). In the following

lists, "dimension tl refers to n = dirn K[ [xl l/ (f) .

1.2 DEFINITION: A formal power series f is called simple or an

ADE-singularity if it is eontaet equivalent to one of the following

normal forms:

(r) char(K) * 2

I.1 Dimension'

name normal form for f € K[[x,y]]

Ak
2 k+1

k ~
,x + y

Dk
2 k-1 k ~ 4x y + y

E6
EO 3 4

6
x + y

"E' 3 4 2 2 additionally in char 3x + y + x y =6

E 7
EO 3 3

7
x + xy

E' 3 3 2 2 additionally in char 3x + xy + x y =7

ES EO 3 5
S x + y

E' 3 5 2 3 Iadd.
x + y + x y in char 38 =

E
2 3 5 2 2
8 x + y + x Y

E' 3 5 4 additionally in char 5x + y + xy =8
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I.2 Dimension ~ 2

2= g(xO'x 1) + x 2 + ••• +
2

x
n

where g E K[[xO'X 1]] is one of the list I.1. The name of f

is that of g .

(II) char(K) = 2

II.1 Dimension 1

name normal form for fE K[[x,y]]

A
2 m ;;: 12m-1 x + xy m

A2m
AG 2 2m+1

~ 12m x + y m

Ar 2 2m+1 2m-r ;;: 1 , 1 :i r :i·m-12m x + y + xy m

D2m
2 m

~ 2x y + xy m

D2m+1 0
0 2 2m

~ 22m+1 x y + y m

r 2 2m 2m-r
ii: 2, 1 ~ r ~ m-1D2m+1 x y + y + xy m

E6 EO 3 4
6

x + y

E' 3 4 3
6

x + y + xy

E7
3 3x + xy

ES x 3 5
+ Y
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name normal form for f E K[ [x,y,zl l

~
k+1z + xy

°2m 0° 2 2 m
~ 22m z + x y + xy m

Dr 2 2 m m-r
~ 2, 1 ~ r ~ m-1z + x y + xy + xy z m

2m

°2m+1 0° 2 2 m
~ 22rn+1 z + x y + y Z In

r z2 2 In rn-r
2: 2, 1 ~ r ~ m-1D2m+ 1 + x y + y z + xy Z In

E
6

EO 2 3 2
6

z + x + y z

E1 z2 3 2
6

+ x + y z + xyz

E7
EO 2 3 3

7 z + x + xy

E1 2 J 3 2
7 z + x + xy + x yz

E2 2 3 3 3
7

z + x + xy + y z

E
3 2 3 3
7

z + x + xy + xyz

Ea
EO 2 3 5

8
z + x + y

E
1 2 3 5 3
8

z + x + y + xy z

E
2 z2 3 5 2 J

8
+ x . + y + xy z

E3 z2 3 5 3
8 + x + y + y z

E4 2 3 5
8

z + x + y + xyz

II.3 Dimension ~ 3

+ ••• + n = 2k+1
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where g E K[[X O'X 1]] resp. K[[XO'X 1 'x2]] is one of the list

II.1 resp. II.2. The name of f is that of g .

1.3. Remarks: (1) The normal forms in dimension 2 are exactly

the normal forms of rational double points which were classified by

Artin [Ar]. Moreover, Lipman showed in [Li] that a twodimensional

double point is rational if and only if it is absolutely isolated,

i.e. can be resolved by a finite sequence of blowing up points.

This criterion will be used for the proof that ADE-singularities

are of finite deformation type.

(2) The normal forms in dimension 1 are exactly t~~ normal forms

of functions f which (a) are reduced, (b), have multiplicity 2

or 3 and (c) the reduced total transform· of f after one blowing

up has also property (b). This was proved by Kiyek-Steinke in [KS] ..

Note that our notation differs slightly from that of Kiyek and

Steinke. Ours harmonizes with Artins and fits more natural into

the deformation pattern of these singularities. The upper index 0

denotes the classical normal form, which is the most special with

respect to deformations.

(3) Apower series f

-""--
of the form f(xO' ... 'x) =. n

is called a double suspension of .g . Since

char (K)' * 2 , we see that each normal form in

dimension ~ 3 is obtained from a simple curve er surface

sfrig"ularity by a certain numer cf double suspensions. Note that
... ~..... ..... .. ,

the simple singularitres-are all in m2 where m denotes the

maximal ideal of K[~~]] and that they have. isolated singularities.

The main result of this paper 1s the following
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be in 2m • The

following statements are eguivalent:

(i) f 15 simple,

(ii) f 15 of finite deformation type,

(il1) f is of finite Cohen-Macaulay type.

For apreeise definition of finite deformation type over an

arbitrary algebraieally closed field see 2.1.

1.5. Remarks: (1) The result is of course weIl known in charac-

teristic 0, cf. [Arn], [Au], [BGS], [Es], [GK], [Kn]. The equi-

valence of (i) and (iii) in dimension 1 and 2 (and in any dimension

if char(K) * 2 ) and the implication (i) ~ (iii) in any dimen-

sion and positive characteristic is also known, cf. [Au], [KS],

[ BGS], [ So] __

We prove the equivalence of (i) and (li) and the irnplication

(iii) - (i) in paragraph 3.
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2. DETERMINANCY

2.1. As before let K denote an algebraically closed field of

arbitrary characteristic, K[[~]] the formal power series ring

in n+1 indeterminates x O, ••• ,xn and m._ its maximal ideal.

f E K[ [~.] ] is ealled a hypersurfaee singularity if
2

f E m.. and·

f * 0 . Occasionally we call also the Ioeal ring K[[~]]/(f) or

its formal spectrum. (X,O) = Spf(K[[~]]/(f» a (hypersurface)

is called isolated if there exists'singularity. The singularity f

a k > 0 such that mk c j(f)

denotes the Jacobian ideal of

where

f . f

. af af
](f) = (f'-a-' ... '-a-)

X o x rn
is an isolated singularity

-',

if and only if its Tjurina nurnber T = di~K[[~]]/j(f) is finite.

Note that in characteristic p > 0 the Milnor nuIDber

dimxK[[~]]/(;xf , ... ,;xf ) is not an invariant of the contact
o n +1 1

class of f (e.g. xP + yP and (1+~) (xP+yP+ » .

2.2. If f E K[[~]] happens to be a polynomial, it defines the

affine K-variety X = V(f) = Spec(K[~]/(f» where K[~] denotes

the pelynomial ring. By a singularity er a "s~ngttrßt.r point- oi"'

X we mean a closed point x EX

Since any isolated singularity

and its complete loeal ring 0x •,x

f E K[[!]] is contaet equivalent

to a polynomial 9 E K[!] (cf. 2.6), it can be realized as the

singular point 0 of the affine variety X = V(g) .

2.3 Let f E K[[~]] be an isolated singularity. By (2.6) we

may assume that f 1s a polynomial. We can choose polynomials

91'· .. ,gT E K[~], 9 1 = 1, gi (0) = 0 for i > 1 , which represent

a K-basis of K[ [!]]!j (f) • Let F E K[x,t 2 , ... ,t J be defined by
- T
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for

Let Xt be the affine variety V(f t ) and note that Xo ~ V(f)

It i5 weil known that

A~+ 1 x a. l' -1 _> A x A1'-1
K K

(x , t ) ~> (F (x , t) , t)

i5 an algebraic representative of the miniversal (ar semiunive~sal)

deformation of f, i.e. of the singular point 0 E Xo •

2.4. An isolated singularity 'f E K[[~]] is said, to be of

finite deformation type, if for an algebraic representative'of

the miniversal deformation 'of f as above the followinq holds: there

exist 'Zariski-open neighbourhoods U c a.n + 1 of 0 and W c' A 1'-1

of 0 such that the set of isomorphism classes of singularities

of Xt n U, t running through· all closed points of W, is

finite.

If f' 1s a polynomial. with a non isolated sinqularity at 0 then

we da not have a finite dimensional mi~iversal de~o~tion. space

for f '. Nevertheless' we can say that f is of finit~ deformation

type if there exists a finite list of singularities such that, as

above, f deforms only to singularities of this list for every

algebraic deformation of f. Our classification in paragraph 3

however shows that no isolated hypersurface singularities a~e never

of f inite deformation type.,
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2.5. LEMMA: f € K[[XO' ... 'xn ]] is not of finite deformation

type if either n ~ 2 and rnult(f) ~ 3 or n ~ 1 and

rnult(f) ~ 4 .

Proof: This is just a dimension count •. Let ~ = mult(f) , i.e.

ft ft+1 I .f € m- but f f m • The contact group {(u,~) u a un~t of

K[x], ~ a formal coordinate transformation of (Kn + 1 ,O)} induces

. 't ft+1
an operat~on of K* x GL 1 (K) on m Im . It can be checkedn+

easily, that the dimension of the orbit of f (ft.) 'under this group

is smaller than the dimension of m~/mt+1 under the hypotheses

of the lemma. Therefore infinitely rnany orbits occur and f(~)

and hence f cannot be of finite deformation type. ~,(He-re and in

the following f(t) denotes the t-jet of f).

2.6. f € ~[[~]] is called k-determined (with respect to contact

equivalence) if it is contact equivalent to f(k) , the k-jet of

f , i.e. the power series expansion of f up to and including

order k. The minimum k is the index of determinancy.

LEMMA: If for f € K[[x]], mk c j(f) , then f 1s 2k-determined.

In particular, an isolated singularity is 2T-determined.

Proof: Let g E: K [ [~] ] such that 2k+1g-f € m . We have to

show that there exist a unit u € K[[x]] and a coordinate trans­

formation ~: K
n

--> Kn such that g-u·f(~) = 0 . For this

purpose we construct inductively units up(x) € K[[x]] and

(n+1) tupels of power series of sufficiently high order

1 pa (x) , • • • , a (x ) such that
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P 1 P 2k+p+1g (x) -u (x) f (x+a (x) + ... + a (x)) E M •

Then uP tends to u and x+a 1 (x) + ... + aP(x) to ~ if P

goes to infinity.

The details, which are similar to those of the proof given in

[BL] for right equivalence, are left to the reader.

2.7. The above bound for determinancy is in general much to

high. In characteristic 0 better bounds are known, but they fail

-us~ally - in pos~tive characteristic.

The simple singularities in characteristic * 2 have index of

determinancy d where d i5 the maximum degree of monomials

occuring in the classical normal form. This i5 no longer true if

char(K) = 2 .'Then we have the following indices of determinancy

for surface singularities:

k+1 max (2r ,m+ 1 )

D~m+1' r ~ 0 E~

max (2r + 1 ,~+ 1 ) 3 5 4 5

2.8. Since the Tjurina number T is upper semicontinuous with

respect to deformations, lemma 2.6 implies the following: Given

an arbitrary set of singularities which i5 closed under deformations

and which, for each T, has only finitely many m~mbers of Tjurina

number ~ T , then each mernber is of finite deformation type. This

remark will be used to show that the simple singularities are of

finite deformation type.
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3. PROOFS

3.1. Curve singularities (Proof of theorem 1.4, Ci) -- (ii»

We use the characterization of simple singularities in remark

1.3(2).

" c> ., : Let f (x,y) be a simple curve singularity and consider

an algebraic representative of the miniversal deformation ft(x,y)

as in 2.3. We blow up the origin in the (x,y)-plane and check

that for each t the redueed total transform of f t has only

singular points of multiplieity 2 or 3. Henee the singularities

of f t roust be simple- again. By 2.S f is of finite deformation

type.

" .. n : By' Lemma. 2.5 we have to show that non simple curve

singularities of ~ultiplicity 2 or 3 are- of infinite deformation

type. Let f(x,y) be arbitrary with mul t (f) = 2,3.

mult(f) 2. Q f .-
~ for k ~ 1 f - x

2 (type A ) .= some or
co

mult(f) = 3 and f has ~ 2 different tangents .. f - Dk for

k f .- 2
(D )same or x, y .'co

mult'(f) =r, 3 and f ha-g one triple tangent: f can be written as

f(x,y) 322 - 3 - 4= x + a(y)x. y + b(y)xy + c(y)y

and we have according to [KS]:

mult (e) = 0 .... f - E6

mUlt(b) = o, mult(c) ~ 1 .... f E7

mult (h) ~ 1 , mult(c) = 1 ..... f ES
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In the remaining ease we ean write

f(x,y) 32246= x + a(y)x y + b(y)xy + e(y)y .

We replace a(y), b(y), e(y) respeetively by

a(y,t) = a(y) - a(O) + a
1

(t-a)

b(y,t) = b(y) - b(O) + a
2

(t-a)

e(y,t) = b(y) - e(O) + a 3 (t-a)

where the a. denote the elementary symmetrie funetions in
~

three variables. Moreover (t-a) = (t1-a r, tz-a Z' t 3-a3 ) where

a. are the zeros of x 3 + a(O)x 2
+ b(O)x + e(O) . In this way

~

we obtain adeformation f t of f. On the second reduced total

transform of f t we have four points on an exeeptional p1 , the

eross ratio of whieh varies with t. The result folIows.

3.2. Singularities of dimension· > 1, char(K) * 2

The equivalence (i) -- (ii) of theorem 1.4 follows immediately

from lemma 2.5, the curve case and, since the higher dimensional

singularities are simple suspensions of curves, fram the following

two facts:

If f € K[[Xo' ... 'xn ]] 1s a simple suspension of .~ E K[[X 1 , •.. ,xn ]]

2(i.e. f = Xo + g ).then each deformation of f is a simple suspen-

sion of adeformation of g.

If f E K[[XO' ... 'xn ]] is of multiplicity 2 then f is a simple

suspension of same g € K[[X 1 , ... ,xn ]] (splitting lemma in

characteristic * 2 ).
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3.3. Classification of double points f € K[[x,y,z]], char(K) = 2

We only give a rough pattern for what is needed in the next

section. For complete details see [Kr]. The forms

are defined in the next section 3.4.

A und
co

D ('n)
co

According to the classification of quadratic forms we have three

main cases (recall that f(k) denotes the k-jet) :

(1) f(2)

(2) f(2)

(3) f(2)

2
xy + z

xy

2z

Case (2): Using transformation of the form x --> x+a(x,y,z) and

Y -> y+ß (x,y,z)

k ~ 3 •

one obtains k
f ~ xy + akz + O(k+1) for same

(2.1) a k . * 0 for at least one k" Q f - Ak - 1 (for k minimal)

(2.2 ) for all k c> f ~ A
co

Case (3): Write f in the form

f(x,y,z) 2= z + 1JJ (x,y) + <.p(x,y) z ,

0(1JJ) ~ 3, 0(1JJ) ~ 2 •

(3 . 1 ) 1JJ (3) a. 0 : all not 5 irnple (case B) 2.. 1, 2.2, 2.3 next

section)

(3 .2) 1JJ ( 3 ) 2 2
0::00 f ~ D4x y + xy

( 3 .3) 1JJ (3 ) 2x y ..
f ~ z 2 2 2 + 0(4)+ x y + a xyz + by z
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-
a = 0, b " °
a,b * 0

a * 0, b = 0 ~ (for same k ~ 4 )

f z2 + x 2y + xyz + cyk-1 z + dxyk-1 + eyk + 0(k+1)

(3.3.3.1) e = ° - f of type Dk for same k < ~ or

(3.3.1)

(3.3.2)

( 3 . 3.. 3 )

f D (n), n ~ 1
00

r
(3.3.3.2) e * 0, k add ~ f ~ Dk +2 , r = (k-1)/2

(3.3.3.3) e * 0, k even .' f ~ D~~~ or possibly

d * 0

~ D (1)
co

if

(3.3.4) a = b = 0 : - (for some k ~ 4 )

2 2 k-2 k-1 k-1f z + x y + axy z + ßy z + yxy + Q(k+l)

(3.3.4.1) y " 0 : f ~ D~k-2 (a * 0), f N D~k-2 (CL = 0)

1 0
(3.3.4.2) y = 0, ß * 0 f D2k- 1 (0. * 0), f ~ D2k- 1 (a = 0)

(3.3.4.3) Y = ß '= 0, Cl * 0 different D 'sk or D (n), n ~ 1
co

(3.3.4.4) CL = ß = y = 0 : Case (3.3.4) for bigger k . If

a * 0, b = 0 ~

233f ~ z + x + xyz + cxy + 0(5)

for all k - f ~ D (0)
co

a = 0, b * 0

a,b " 0 ~ f

('(k = Bk = Yk = 0

4J(3) = x 3 _

2 3 2f ~ z + x + axyz + by z + 0(4)

(3.4)

(3.4.1)

(3.4.2)

(3.4.3)

I

I'

E
3
7

z2 + x 3
+ xyz + dy5 + 0(6) i then either

f

(3.4.4)

(3.4.3.1) c * 0 ~ f -

(3.4.3.2) c = 0 - f

E~ for d * 0 or of type B)3.5 if d = 0

a :::: b = 0 -

f z2 + x 3 + axy2z + ßy3z + yxy3 + 0(5)

(3.4 .4 .1) Y * 0 cz>' f ~ E~ or E~ (ß = 0) or ~~' (ß * 0").'
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(3.4.4.2) o, ß 0 => f E
3 (if 5 eccurs) cf typey = * 1"'-.1 Y er
8

.B) 3.•.-4c
~~ ;..~"=~ .... f I"-

(3.4.4.3) ß 0, 0 - f E
2 (if 5 eccurs) cfy = = a * 1"'-.1 Y er
8

type )?} 3.3

(3.4.4.4) ß 0 .. f 0 E 1 cf type B) 3 • 1 , 3 .2.a = = y = 1"'-.1 E8 ' er
8

3.4. Surface singularities in characteristic 2 (Proof of 1.4

(t) -=> (li))

n .. 11 : Like in the curve case we blow up the miniversal defor-

mation of each simple surface singularity. By explicit calculation

one shows that they are absolutely isolated. Remark 1.3 (1)

together with 2.8 shows that they are of finite deformation

type.

11 ~ 11 : By lemma 2.5 we have to consider only double points. The

classification of 3.3 shows that we have two cases

A) f is equivalent to one of the normal forms of 1 .2 II.2.

B) f is not of this form and then f belongs to one of the

following classes:

1 • 1 • 1 f xy (A )
co

1 .2 f
2 2 (D (O))1"'-.1 z + X Y co

1 .3 f
2 2 n

(D (n) I n '= 1 )1"'-.1 Z + X Y + xy z
co

2. f (3) 2 + zq>(2) (x,y) for some tO €
·2 Depending on (2 )

1"'-.1 Z rll. . tO

we have

2.1 f 2
+ O(4)1"'-.1 z

2.2 f 2 2
+ O(4)1"'-.1 z + X z.

2.3 f
2

+ O(4)1"'-.1 z + xyz
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3 . 3. 1 f
2 3 + 0(6)z + x

3.2 f
2 3 3 4 + 0(6) (d € K)z + x + xy z + dy z

3.3 f
2 3 2 dxy4 + 0(6)~ z + x + xy z +

3.4 f
2 3 3 + d xy

4
+ 0(6)z + x + y z

3.5 f
2 3 + 0(6)~ z + x + xyz

Functions of class 1. deform obviously into infinitely many Ak

or Dk singularities. For the remaining one can find easily

deformations into class 3.5. Each f of cra's~ -:3" ...5:, .J;1ot belongi:I}9

to A)., can be transformed into z 2 + x 3 + xyz + ayk + 0 (k+ 1 ) for

k > 6 L t f 2 3 ty6 0(7)some _ • e t = Z + x + xyz + +

calculation shows that f t ~ f s if and'only if t =

Explicit

s . Hence

the elements of class 3.5 and by transitivity all the others are

not of finite deformation type.

3.5. Singularities of dimension > 2, char(K) = 2

Before proving the equivalence (i) -=:.' (ii) of 1.4 in this case,

we need a kind of splitting lemma in characteristic 2. First of

all let us recall the classification of quadratic forms over an

algebraically closed field of characteristic 2.

LEMMA 1: Let f € K[XO, ... ,xnJ be a guadratic form. After a

suitable change of coordinates f i9 one of the following, normal

forms:

( 1 ) 2
Xo

( 2) 2 + ...
Xo + x 1x 2 ... + x2k-1x2k "

(3 ) x Ox 1 + x 2x 3 + ... + x2kx2k+1

2k :;i n

2k+ 1 :s n .
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The proof is elementary.

k
LEMMA 2: ax O + bx,x2 + h(xO'x1 ,x2 , ... ,xn ) E: K[[XO' ••• 'xn ]] with

3 k
a,b E: K, b • 0, h € .~~ 1s contact equivalent to axO + x,x2 +

+ h(X O'X 3 , ... ,xn ) with h E: m3 .

Proof: let not

1depending on x 1 ,x 2 · The change of coordinates x
1
~> 5(x,+Q2) ,,

x 2 ~> (x 2+5g ,) suffices to increase the"multiplicity of g"g2 ·

We thus" finish by induction.

COROLLARY 3 (Splitting lemma in characteristic 2): Let

f E: K[[xO' ... 'xn ]], mult(f) = 2 , then either"

(a)

"(b)

2
f ~ Xo + x,x2 + ••• + x 2i-,x2i + h(xO,x2~+1, ... ,xn)

with 0 S 2i S n, h € m3 , or

Note that f 1s actually right equivalent to (a) or (b).

LEMMA 4: 2 3
x 0 + h (x 0 ' • • • , x n ) E K [ [x0 ' • . • , x n ] ], h E: m" , n ~ 3 is

not of finite deformation type.

Proof: x; + in 3 /m 4 has dimension (n~3) but it is easy to

check that the image of under the contact group in

234 2
Xo + ~ /~ has only dimension (n+') + 1 • Therefore, if'

n ~ 3 , there must be infinitely many orbits.
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For the proof of 1.4(i) ~ (ii) we may assume that f is of

type· (a) or (b) of Corollary 3. In case (a), f is of finite

2
deformation type iff xo + h(xO,x2l+1, ... ,xn) i5. By lemma 4

this can only happen if n ~ 2i+2 . But then we are in the surface

case which was already treated. Similarly, using lemma 2.5, case

(b) reduces to the curve ca5e.

3.6. Finite Cohen-Macaulay type in characteristic 2

It remains to show that a singularity of dimension > 2 which is

of. firii.te .. Cohen-Macaulay type (CM-t;yp~ for short) has .:t::o be simple
. ~ :. -~ ... - ~ --

(char(K) = 2) . The main theorem of Solberg [Sol , which is an

extension of an earlier result of Knörrer to characteristic 2,

says that g(x2 , •.• ,xn ) is of finite CM-type if its double

suspension f = xox 1 + g is., Moreover, by [BGS], Prop. 3. 1 ,

f E K[[XO' ... 'xn ]], n ~ 3 , has infinite CM-type if mult(f) ~ 3 •

By corollary 3 we are therefore reduced to the case
. 2

f ~ Xo + h(xO'x1 , •.. ,xn ), mult(h) ~ 3, n ~ 3 . In order to show

that f 1s of finite CM-type, it suffices to construct infinitely

many ideals such that 2
f E I (cf. Cor. 1.7

of [BGS]). Let

C : = {A = (0 A1 An) E ]pn (K) Ih ( 3) (A) = O}.

where h (3) is the homogeneous part of .degree 3 of h . Since -

n ~ 3, dirn C ~ 1 and since K is algebraically closed, C

contains infinitely many points A . Let I(A) c K[ [~] l be the

ideal generated by AiX. - AjX i , i,j = O, ... ,n and
2 J

I A := I(A) +'m • I(A) is the ideal of the point A € C and
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therefore I A * I~ for A * ~ . We have to show f E I~ . Since

2 h(3) 4
Xo + vanishes in A, f E I(A) + M and since Xo E I(A)

it suffices .to show h(3) E I(A)M 2 . But this holds because

h(3)(A) = o.
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4. ADJACENCIES

4.1. The methods to prove theorem 1.4 allow a nearly complete

description of all deformations between simple singularities in

all characteristics. Except for surface singularities in charac­

teristic 2 we calculated all possi~ble relations.

The adjacencies in characteristic 0 are called the classical anes

and are the follawing

No ether defarma·tiens up to transitivity occur (those anes which

are obtained by transitivity will not be mentianed explicitly) .

Adjacencies between s1ngularities in even resp. odd dimension

are the same aso in dimension 2 resp. 1. This. is clear since a

double suspension does not alter adjacencies even in charac-·

teristic 2.

Our notation coincides with [Ar] far surfaces but differs slightly

fram (KS] for curves.

4.2. OiIitension l, char(K) a 3

If char(K) * 2,3 we have only the classical adjacencies

char(K) = 5 this means that both Ea-singularities deform inta

A7 , 07 and E7 ·



char(K) = 3

Unexpected 1s only

3 5
ft(x,y) = x + y

oEa --> Aa which can be realized by

+ t 5x 2 _ 2t4xy 2 txy3 + t 3
y 4

4.3. Dimension 1, char(K) = 2

(dotted lines are only for lucidity)

<- ...

<- ...



Unexpected is

4.4. Dimension 2
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and

Since allsurfaces in char(K) * 2 are simple suspensions of .

simple curve singularities, they have the corresponding deformation

relations (-described -~rn 4.2) ~ .

In characteristic 2 one can verify the following:

Ak -> .Ak - 1 ;
r r Dr r-1

D2n+ 1 -> D2n , -> D2n 2n-1

Er -> Dr (r = o, 1) ,6 5

Er r-2 Er r-1 (r 1,2,3)-> E6 ' -> D6 = ,7 .7

Er r-1 Er r-2 (r 3,4) and the exception-> E7 ' -> D7 =8 8

Er Dr (r = 0,1,2) given by ft(x,y,z) f(x,y,z) t4 2-> = + x y8 8

where f denotes the normal form of

Deformations D --> A and E --> A have not be considered and

we da not claim completeness in the other cases. Actually, Knop

[Kn] has shown E~ -> A7 for which we'did not find a realization.
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