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Abstract

We introduce Schur multiple zeta functions which interpolate both the multiple zeta and
multiple zeta-star functions of the Euler-Zagier type combinatorially. We first study their
basic properties including a region of absolute convergence and the case where all variables
are the same. Next, under an assumption on variables, some determinant formulas coming
from theory of Schur functions such as the Jacobi-Trudi, Giambelli and dual Cauchy formula
are established with the help of Macdonald’s ninth variation of Schur functions. Finally, we
investigate the quasi-symmetric functions corresponding to the Schur multiple zeta functions.
We obtain the similar results as above for them and, moreover, describe the images of them
by the antipode of the Hopf algebra of quasi-symmetric functions explicitly.
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1 Introduction

The multiple zeta function and the multiple zeta-star function (MZF and MZSF for short) of
the Euler-Zagier type are respectively defined by the series

= T e 00 T

my<-<mp L my<-<mp,

where s = (s1,...,8,) € C". These series converge absolutely for $(s1),...,R(sp—1) > 1 and
R(sn) > 1 (see, e.g., [Mat] for more precise description about the region of absolute convergence).
One easily sees that a MZSF can be expressed as a linear combination of MZF's, and vice versa.
For instance,

) = ((s1,52) + ((s1 + s2),
) = (" (s1,82) — (" (51 + 82),
(51,827 s3) = ((s1,52,83) + ((s1 + s2,53) + ((s1, 82 + 83) + ((s1 + 52 + 83),
) = (*(s1, 82,83) — C*(s1 + s2,83) — C* (81,82 + 83) + (81 + 52 + s3),

C(s1, 52,53

where ((s) = (*(s) is the Riemann zeta function. More generally, we have

(L.1) C(s) = C@), Cls) =) (=" W),

t<s t<s

where, for t = (t1,...,tym) € C™, £(t) = m and t < s means that ¢t is obtained from s by
combining some of its adjacent parts. The special value of ((si,...,s,) and (*(s1,...,s,) at
positive integers were first introduced by Euler [E] for n = 2, and by Hoffman [H1] and Zagier
[Za] for general n, independently. Many different types of relations among such values have been
studied in references such as [Z1, Mu, IKOO, OZ].

The purpose of the present paper is to introduce a generalization of both MZF and MZSF,
which we call a Schur multiple zeta function, from the viewpoint of n-ple zeta functions. Indeed,
it is defined similarly to the tableau expression of the Schur function as follows. For a partition
A of a positive integer n, let T'(\, X) be the set of all Young tableaux of shape A over a set X
and, in particular, SSYT(X) C T'(\,N) the set of all semi-standard Young tableaux of shape A
(see Section 2 for precise definitions). Recall that M = (m;;) € T'(A\,N) is called semi-standard
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if myg < myp < -+ for all i and my; < mo; < --- for all j. For s = (s;5) € T(\,C), the Schur
multiple zeta function (SMZF for short) associated with A is defined by the series

SUETED S

MeSSYT(N)

where M* = [[; hepoy mfj” for M = (m;;) € SSYT(A) with D(X) being the Young diagram of
A. It is shown in Lemma 2.1 that the above series converges absolutely whenever s € W) where

Wy = {S = (Sij) S T()\,C)

R(si5) > 1 for all (4,5) € D(A)\ C(X)
R(s45) > 1 for all (4,5) € C(N)

with C'(A) being the set of all corners of A. If (1") and (n) are denoted by the one column and
one row partitions of n, then it is clear that ((;»)(s) (s € T'((1"),C)) and ((,,)(s) (s € T((n),C))
are nothing but MZF and MZSF, respectively. This shows that SMZF's actually interpolate both
MZFs and MZSFs combinatorially. Remark that such interpolation multiple zeta functions were
first mentioned in [Y] from the study of the multiple Dirichlet L-values.

In this paper, we study fundamental properties of SMZF's and establish some relations among
them, which can be regard as analogues of those for Schur functions. Indeed, we obtain the
following Jacobi-Trudi formulas for SMZF's, which is one of our main result of the paper. To
describe the result, we need the set

W)(\iiag =Wy N Tdiag()\’ (C),

where, for a set X, T998(\ X) = {T = (t;;) € T(\, X) |t;j =ty if j —i = | — k}. For a tableau
s = (s45) € W)c\hag, we always write ay = s; 1 for k € Z (and for any i € N). For example, when
A=(4,3,3,2), s = (si5) € wdiae implies that s is of the form of

(4’373»2)
S11(S12|513|S14 ap | ai|az|as
521 (522(523 a—1| aop | a1

S = =
531(532(533 a—2|a—1| ag
541 (542 a—3|a—2

Theorem 1.1. Let A = (A1,...,A) be a partition and N = (A],..., X)) the conjugate of M.
Assume that s = (s;5) € Wf\hag.

(1) Assume further that R(s; »;) > 1 for all 1 <i <r. Then, we have
(1.2) Ci(s) = det [g*(a—j-i-l’ A—jb-2y v+ s a*jJr()\i*iJrj))] 1<ij<r
Here, we understand that (*(---)=1if\i—i+j=0and 0 if \;j —i+j <O0.

(2) Assume further that R(sy, ;) > 1 for all 1 <i < 's. Then, we have

(1.3) Cn(8) = det |((aj-1,aj-2,. .. 7aj—()\§—i+j)):|1gi’j§s-

Here, we understand that ((---) =14 N, —i+j=0and 0 if X, —i+j <O.



4 M. Nakasuji, O. Phuksuwan and Y. Yamasaki

As is the case of Schur functions, we call (1.2) and (1.3) of H-type and E-type, respectively.
From these formulas, as corollaries, one can obtain many algebraic relations given by determi-
nants among MZFs and MZSFs. For example, considering the case A = (1™) and A = (n), we
have the following identities.

Corollary 1.2. For s1,...,8, € C with R(s1),...,R(syn) > 1, we have

¢*(s1) C*(s2,51) e e C*(sn,- .-, 82,51)
1 (*(s2) e e C*(Sny-- -5 52)
C(S1y.veySp) = 1 : 3

. 1 C*(Sn—l) C*(Sna Sn—l)
O 1 *(sn)

C(s1) (¢(s2,51) C(spy...,52,51)
1 C(s2) R C(Sny-..y52)
C*(S1y.v-y8n) = 1 ' ‘

c 1 C(Sn—l) C(Snasn—l)
0 1 ()

Moreover, just combining (1.2) and (1.3), we obtain a family of relations among MZFs and
MZSFs. For example, considering the cases A = (2,2,1) and its conjugate A’ = (3,2), we have

al|b * * *
¢*(a,b) (¢*(c,a,b) ¢*(d,c,a,b)
Oflelal =] @ ¢ (c,a) ¢*(dca) ‘ (e c,d) C(b’Z’C’d) :
d 0 1 C*(d) C(a> C( ,CL)

alcld ‘ ) C*(av ¢, d) <*(b, a,c, d) C(av b) C(C> a, b) C(dv ¢, a, b)
C ! * * = C(a) C(ca (I) ((dv ¢, CL) )

where a,b, ¢,d € C with ®(a), R(b), R(d) > 1 and R(c) > 1. As you can see in the above examples
and Corollary 1.2, these kind of relations hold even if we replace ¢ with ¢* and vice versa.

It is also worth mentioning that both (1.2) and (1.3) give meromorphic continuations of )(s)
to T428(\ C) (= C**+"~! where s = A\; and r = \}) as a function of a for 1 —r <k <1+s
because both MZFs and MZSFs admit meromorphic continuations to the whole complex space
(see, e.g., [AET]).

The assumption on variables on the same diagonal lines is crucial. Actually, in Section 4, we
find out that our SMZF, which can be easily generalized to the skew type, with the assumption
is realized as (the limit of) a specialization of Macdonald’s ninth variation of Schur function
studied by Nakagawa, Noumi, Shirakawa and Yamada [NNSY]. Based on this fact, we present
some results such as the Jacobi-Trudi formula of skew type, the Giambelli formula and the dual
Cauchy formula for SMZFs. Notice that if we work for such formulas without the assumption,
then we encounter extra terms (see Remark 3.10), which will be clarified in our future study.

Furthermore, in Section 5, we study SMZFs in a more general framework, that is, in the
Hopf algebra QSym of quasi-symmetric functions studied by Gessel [G]. For a skew Young
diagram v, we define a special type of quasi-symmetric function S, (a), which we call a Schur
type quasi-symmetric function, similarly to SMZFs. (Note that there is a different type of
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quasi-symmetric functions, called quasi-symmetric Schur functions defined by Haglund, Mason,
Luoto and Willigenburg [HLMW], as a basis of QSym, which arise from the combinatorics of
Macdonald polynomials and refine Schur functions in a natural way.) Then, we also prove the
Jacobi-Trudi formulas of both H-type and E-type for such quasi-symmetric functions under the
same assumption as above. Notice that the former corresponds to (1.2) with entries in the es-
sential quasi-symmetric functions and the latter to (1.3) with in the monomial quasi-symmetric
functions. Remark that when v is the one column and one row partitions, the corresponding
formulas can be also respectively obtained by calculating the images of the essential and mono-
mial quasi-symmetric functions by the antipode S of QSym in two different ways, as shown
by Hoffman ([H2, Theorem 3.1]). More generally, for any skew Young diagram v, we calculate
the image of S, (a) by S and see that it is essentially equal to the Schur type quasi-symmetric
function again associated with v#, the anti-diagonal transpose of v.

2 Schur multiple zeta functions

2.1 Combinatorial settings

We first set up some notions of partitions. A partition A = (A1,...,\;) of a positive integer n
is a non-decreasing sequence of positive integers such that [A\| =7 | A\; = n. We call |\| and
2(\) = r the weight and length of A, respectively. If |\| = n, then we write A - n. We sometimes
express A F noas A = (1"1N2m2()...pma(N)) where m;()\) is the multiplicity of 4 in A. We
identify A - n with its Young diagram D(\) = {(i,j) € Z?|1 <i <7, 1 < j < \;}, depicted
as a collection of n square boxes with A; boxes in the ith row. We say that (i,7) € D()) is a
corner of X if (i 4+ 1,7) ¢ D(A) and (i,5 + 1) ¢ D(X) and denote by C(A) C D(\) the set of all
corners of A. For example, C'((4,3,3,2)) = {(1,4),(3,3),(4,2)}. A conjugate X' = (\|,..., \))
of A is defined by A, = #{j|\; > ¢}. Namely, X is the partition whose Young diagram is the
transpose of that of \. For example, (4,3,3,2) = (4,4,3,1).

Let X be a set. For a partition A, a Young tableau 7" = (t;;) of shape A over X is a filling of
D(\) obtained by putting t;; € X into (¢, j) box of D(A). Similarly to the above, the conjugate
tableau of T is defined by T” = (t¢;;) whose shape is \'. We denote by T'(\, X') the set of all

AL

Young tableaux of shape A over X, which is sometimes identified with X'*. Moreover, we put

TN X) = {(tij) € T X) | tyy = tw if j —i =1 -k},

which is identified with XM -1 By a semi-standard Young tableau, we mean a Young
tableau over the set of positive integers N such that the entries in each row are weakly increasing
from left to right and those in each column are strictly increasing from top to bottom. We denote
by SSYT(A) the set of all semi-standard Young tableaux of shape .

2.2 Definition of Schur multiple zeta functions
For s = (si;) € T'(A,C), define

(2.1) o= Y

MeSSYT(N)

where M* =[] yepoy my;’ for M = (m;;) € SSYT(X). We also define ¢y = 1 for the empty
partition A = (). We call {)(s) a Schur multiple zeta function (SMZF for short) associated with
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A and sometimes write it shortly as s if there is no confusion. Clearly, this is an extension of
both MZFs and MZSFs. Actually, one sees that

= o ([ o) = [ T

We first discuss a region where the series (2.1) is absolutely convergent.

Lemma 2.1. Let

Wy = {s = (Si]’) e T(\C)

R(sij) > 1 for all (i,j) € D(X)\ C(X)
R(sij) > 1 for all (i,7) € C(N) '

Then, the series (2.1) converges absolutely if s € W.
Proof. Write C(\) = {(i1,71),---, (ik,jr)}. Then, it can be written as A = (j;kj;k gt
where i) = 4 — ;1 with ig = 0. Since R(s;;) > 1 for (¢,j) € D(X) \ C(X), we have

> H > ﬁn

il =1 1m
MeSSYT(N) (mlj)GSSYT(]ZZ) i=1j=
741 ]l
<[> gmszl 5
1=1 N=1 NV

where C, (V) is a finite sum defined by

Cap(N) = H H

(m”)ESSYT(bC") 1= 1] 1

Ma,b=N (4,5)#(a,b)

mlj

It is well known that for any € > 0, there exists a constant C; > 0, which is not dependent on
N, such that YN _ L < C_N*. Hence

mlm
|< HH Z 7<Cab lNe(ab 1)

i=1j=1 m”—l

(i,5)#(a,b)

and therefore

Cz]z 1N (451—1)
H Z §R(szl ji)

=1 N,=

D

MeSSYT())

= H Cz;jl_lc (%(Sihﬁ) - E(igjl - 1)) .
=1

This ends the proof because R(s;, ;,) > 1 for 1 <1 < k and € can be taken sufficiently small. [J

Remark 2.2. The condition s € W) is a sufficient condition that the series (2.1) converges
absolutely. It seems to be interesting to determine the region of absolute convergence of (2.1)
with full description. See e.g., [Mat] for the cases of A = (1™) and (n), that is, the cases of MZF's
and MZSFs.
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It should be noted that a SMZF can be also written as a linear combination of MZFs or
MZSFs. In fact, for A - n, let () be the set of all bijections f : D(A) — {1,2,...,n} satisfying
the following two conditions:

(i) for all 4, f((i,7)) < f((i,4")) if and only if 5 < 7/,

(ii) for all j, f((,7)) < f((¢,4)) if and only if i < 4'.
Moreover, for T' = (t;;) € T'(\, X), put

V(T) = { (tf—l(l),tf—l(z), R ,tf—l(n)) e X" ‘ f S .F()\)} .

Furthermore, when X has an addition +, we write w < T for w = (wy,ws,...,wy) € X™
if there exists (vi,va,...,v,) € V(T) satisfying the following: for all 1 < k < m, there exist
1 < hp <m and [; > 0 such that

(i) wg = Uhy, + Uhg+1 + Vbt

(ii) there are no ¢ and 4’ such that i # i’ and t;;,t;; € {vn,, Vn,41,- - Vhyi,, } for some j,

(iii) uznzl{hk, hi+1,.. . he + 1} ={1,2,...,n}.
Then, by the definition, we have

(2.2) Q(s) =D <)

t<s

This clearly includes the first equation in (1.1) as the case A = (n). Moreover, by an inclusion-

exclusion argument, one can also obtain its "dual” expression

(2.3) ls) = S (~1 1O @),

t<s
which does the second one in (1.1) as the case A = (1™).
Example 2.3. (1) For s = (s45) € T((3,1),C), we have
V(s) = {(s11, 12, 813, 521), (511, S12, S21, 813), (811, S21, S12, 513) }-
One sees that t < s if and only if ¢ is one of the followings:
(511,512, 513, 521), (811 + 812, 813, 821), (511, 812 + 513, 521), (511, S12, 513 + 821),

(s11 + s12 + s13, 21), (S11 + S12, S13 + S21), (S11, S12 + S13 + S21), (S11, S12, S21, 5135

(811 + s12, 521, 513)7 (8117 S12 + S21, 813), (511, 521, 512, 513), (8117 S21, 812 + 813)-

This shows that when s € W(3 1)

S11 312|313‘

= ((s11, $12, 513, S21) + C(S11 + S12, S13, 521) + C(S11, S12 + S13, S21)

521
+((s11, 812, 513 + s21) 4+ ((s11 + 12 + 513, 521) + ((511 + 512, 513 + S21)
+ (511, 812 + 813 + 521) + (511, 512, 521, 513) + C (511 + 812, S21, 513)
+ (511, 812 + 821, 513) + ((511, 521, 512, 513) + (511, 521, 512 + 513)
= (*(s11, 821, 512, 513) — (" (511 + 521, 512, 513) — (" (811, 521 + 512, 513),
+ (¥ (511, 812, 821, 513) — C*(511, 812, S21 + 513) + (* (811, 512, 513, 521)-

Notice that the second equality follows from the discussion in (2).
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(2) For s = (s45) € T((2,1,1),C), we have
V(s) = {(s11, 812, 521, 831), (511, 821, $12, 531), (511, 521, 831, $12) }-
One sees that t < s if and only if £ is one of the followings:

(s11, 12, 821, 831), (s11 + 812, 521, 831), (511, S12 + S21, S31),

(811, 521, 812, 831), (811, S21, 812 + 831), (811, 521, 831, 812)-

This shows that when s € W31 1)

S11 512‘

S21 = ((s11, 12, 521, 831) + C(S11 + S12, S21, 831) + C(S11, S12 + S21, 531)5

522

+ (511, 821, 812, 831) + ( (811, 821, 812 + 831) + (511, 521, 831, 512)
= (*(s11, 521, 531, 512) — ¢* (511 + 821, 831, 512) — (¥ (811, 521 + 531, 512)
— (*(s11, 821, 831 + 512) + (511 + s21 + 831, 512) + (*(511 + 521, 831 + 512)
+ (* (511, 821 + 831 + s12) + (*(511, 821, 812, 831) — (*(511 + 821, 512, 531)
— (*(s11, 521 + 812, 831) + (¥ (511, 512, 521, 831) — (*(511, 512, 521 + 531).

Notice that the second equality follows from the discussion in (1).

Remark 2.4. By the definitions, it is clear that if t = (¢1,t2,...,ty) <8 € T(A,C), then t,, is
expressed as a sum of s;; where at least one of (4, j) is in C'(\). This together with the expression
(2.2) or (2.3) also leads Lemma 2.1.

2.3 A special case

We now consider a special case of variables; s = {s}* (s € C) where {s}* = (s;;) € T(\,C) is
the tableau given by s;; = s for all (4, j) € D(X). In this case, one sees that our SMZF is realized
as a specialization of the Schur function. Actually, for variables x = (x1,x2,...), let

Sh = S,\(.’E) = Z H Lmy;

(m;;)€SSYT(A) (4,5)€D(X)

be the Schur function associated with A. Then, for s € C with R(s) > 1, we have

O{s)) = esy = 55 (17%,27%,..),

where e(®) is the function sending z; to L. This means that {)({s}}) can be written as a
polynomial in ((s),((2s),. ...

Proposition 2.5. Let A+ n. Then, for s € C with R(s) > 1, we have

()
(2.4) G{sH) o H (is).
=1

pEn

Here, 2z, = [[;54 i m;(u)! and xMu) € Z is the value of the character x* attached to the
irreducible representation of the symmetric group S, of degree n corresponding to A\ on the

conjugacy class of Sy, of the cycle type p - n.
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Proof. For a partition p, let p, = p,(x) be the power-sum symmetric function defined by
Py = Hf(:”l) pu; Where p, = p,(x) = > 2, 7. We know that the Schur function can be written
as a linear combination of power-sum symmetric functions (see [Mac]) as

X

pukn
Hence, one obtains the desired expression by noticing e(®)p, = p, (175,275, ...) = {(rs). O

Remark 2.6. For variables x = (21, z2,...), let e, = e,(2) and h,, = h,(x) be the elementary
and complete symmetric functions of degree n, which are respectively defined by

Y miy o Tiyy ha= Y mi T,

11< <l 11 <+ <in
Then, noticing s(;n) = e, and s,y = hy, with X)) = || — () and x™ (1) = 1, we have

n—e(p) ‘)

C(s,...,8) :e(s)en =en(17%,27°,...) :Z - 1) HC 14iS)
pukn
f(u
¢, r8) = eDhy = hy (175,275, Z Hc is)
,ul—n =1

It is shown in e.g., [H1, Za, Mu] that ((2k,...,2k),(*(2k,...,2k) € Qn?™. These can be
generalized to the Schur multiple zeta “values” as follows.

Corollary 2.7. It holds that (\({2k}*) € Qu?*Al for k € N.

Proof. This is a direct consequence of the expression (2.4) together with the fact ((2k) € Qm?*
obtained by Euler (and hence the rational part can be explicitly written in terms of the Bernoulli
numbers). O

Example 2.8. When n = 3, we have

= L0 4 2c9C) + 2639 = o, 5,9)

6
s| 2 0 —1
T = B etk + e
" 1 1
5] = S0+ SHC28)C(5) + 3C(35) = Cls,5,9)

Special values of (\({2k}*) for A - 3 with small k are given as follows:

O2EWM) | k=1] k=2 k=3 k=4
3176 4009712 223199718 2278383389724
15120 | 3405402000 | 194896477400625 1938427890852062610000
2k 2kl Ead 493712 86718 116120483724
ok 840 5108103000 4331032831125 24230348635650732625000
find w2 218 38081724
5040 681080400 64965492466875 | 48460697271301565250000
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Example 2.9. When n = 4, we have

= 160+ JC@C + 56250 + SEB5)C(s) + 1C(ds) = CH(s,5.5,5),
2 S|Sk:;;@f+iq%x@y+‘;<@@2+§«%x@>+iq%»
e :%qgqu%x@F+%m$M¥§d%x@+g&m,
S S ‘
s | :7%q$4+§§Q%x@V+J§{@@2+gd%xw)+i«%%

— 10+ U + G2 + CB5ICs) + 1 C(ds) = 5,555,

Special values of ¢)({2k}*) for A F 4 with small k are given as follows:
G2E) [ k=1] k=2 k=3 k=4

12778 13739716 1202645051724 3467913415992313732
604800 | 1136785104000 | 1009597859818782609375 | 27995618815818008860855350000000

2k[2k]2k] 67 58489716 3670606169724 49743652304257752

ok 362880 | 8931882960000 | B6057587158912695656250 | 799874823309085967453010000000
PYABYE 1178 113716 14074724 30650383732
o 302400 | 1838917080000 43805559122555765625 15570422033269192914825000000
2k|2k 1178 29716 98642724 332561213732
2%k 362880 | 1786376592000 | 3028793579456347828125 | 3999374116545420837265050000000
2%k

w8 w6 4r24 13067732
362880 12504636144000 432684797065192546875 9331872938606002953618450000000

3 Jacobi-Trudi formulas

The aim of this section is to give a proof of Theorem 1.1. To do that, we need some basic concepts
in combinatorial method. Namely, we try to understand SMZF as a sum of weights of patterns
on the Z2 lattice, similarly to Schur functions (more precisely, see, e.g., [LP, HG, Ste, Zi]).
Now, we work on not SMZF itself but a truncated sum of SMZF, which may correspond to
the Schur polynomial in theory of Schur functions. For N € N, let SSYT () be the set of all
(mij) € SSYT(A) such that m;; < N for all ¢, j. Define

Fo= Y

MeSSYTn ()
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In particular, put

CN(Sla ceey Sn) = C(J}fn)

M) = ([ o] )

Notice that A}im ¢ () = ¢A(8) when s € W)y Similarly to (1.1), we have the expressions
—00

(3.1) Me) =M@, Nis) =Y (1)),

t<s t<s

3.1 A proof of the Jacobi-Trudi formula of H-type
3.1.1 Rim decomposition of partition

A skew Young diagram 6 is a diagram obtained as a set difference of two Young diagrams of
partitions A and p satisfying u C A, that is u; < A; for all 4. In this case, we write § = \/p. It is
called a ribbon if it is connected and contains no 2 x 2 block of boxes. Let A\ be a partition. The
maximal outer ribbon of A is called the rim of A. We can peel the diagram X off into successive
rims 04, 0,1, ..., 01 beginning from the outside of \. We call © = (6y,...,0;) a rim decomposition
of X. In other words, we consider a sequence of Young diagrams @ = A(@ X1 A®) = )\ such

that A=Y < A® and A® /X\6=D is the ribbon 6; for all 1 < i < t.
Example 3.1. The following © = (61, 02, 03,04) is a rim decomposition of A = (4, 3, 3,2);

1]1]3]3]
21313

0= ,
21314
313

|
which means that@lzm,02:H,03: and 64 =[ ].

l

Write A = (A1,...,Ar). We call a rim decomposition © = (61,...,60,) of A\ an H-rim
decomposition if each 6; starts from (i,1) for all 1 <4 < r. Here, we permit §; = ). We denote
Rim?7; by the set of all H-rim decompositions of \.

Example 3.2. The following © = (601,62, 03,0,) is an H-rim decomposition of A\ = (4,3, 3,2);

1 3 |

e N O R

3
3
4

l
which means that 61 = [ [ ], 6o = 0, 03 = and 0, = | |, Note that the rim

decomposition appeared in Example 3.1 is not an H-rim decomposition.

Remark 3.3. The H-rim decompositions are also appeared in [ELW], where they are called
the flat special rim-hooks. They are used to compute the coefficients of the linear expansion of

a given symmetric function via Schur functions.
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3.1.2 Patterns on the Z? lattice

Fix N € N. For a partition A\ = (A,...,\.), let a; and b; be lattice points in Z? respectively
given by a; = (r+1—4,1)and b = (r+1—i+ X\, N) for 1 <i <r. Put A = (ay,...,a,)
and B = (b1,...,b;). An H-pattern corresponding to A is a tuple L = (I1,...,l,) of directed
paths on Z?, whose directions are allowed only to go one to the right or one up, such that I;
starts from a; and ends to bo(i) for some o € S,.. We call such o € S, the type of L and denote
it by o = type(L). Note that the type of an H-pattern does not depend on N. The number of
horizontal edges appearing in the path I; is called the horizontal distance of [; and is denoted
by hd(l;). When type(L) = o, we simply write L : A — B? where B = (by(1),- -, bs(y)) and
li - a; = by(yy. It is easy to see that hd(l;) = Ay(;y — o(i) + i and Y7;_; hd(l;) = |A].

Let HY be the set of all H-patterns corresponding to A and S3; = {type(L) € S, | L € H\'}.
The following is a key lemma of our study, which is easily verified.

Lemma 3.4. For © = (#y,...,0,) € Rimy,, there exists L = (I1,...,1,) € HY such that
hd(l;) = |0:| for all 1 <i < r. Moreover, the map 7 : Rim}; — S% given by 71(0) = type(L)

s a bijection.

Example 3.5. Let A = (4,3,3,2). Then, we have 74(0) = (1243) € S4 where © is the H-rim
decomposition of A\ appeared in Example 3.2.

3.1.3 Weight of patterns

Fix s = (sij) € T(A\,C). We next assign a weight to L = (I1,...,l,) € HY via the H-rim
decomposition of \ as follows. Take © = (fy,...,60,) € Rim} such that 77(©) = type(L).
Then, when the kth horizontal edge of [; is on the jth row, we weight it with ]s% where
(p,q) € D()) is the kth component of 6;. Now, the weight w2 (I;) of the path ; is defined to be
the product of weights of all horizontal edges along ;. Here, we understand that w2 (I;) = 1 if

0; = (. Moreover, we define the weight w) (L) of L € HY by
wy' (L) = [T wd' (1)-
i=1

Example 3.6. Let A\ = (4,3, 3,2). Consider the following L = (I1,l2,13,14) € H?4737372);

bs bs by by

(3,4) (5,4) (6,4) (8,4)

4 e ° ° ° ° o - -

3 e 0——0——0——.‘—— ——; o

2 y———o:————o—fffefff; ° °

1 ; ® ® —o ° ° °
(1,1) 2,1) 3,1) (41)
aq as as a1

Figure 1: L = (I1,12,13,14) € H?4,3,3,2)
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Since type(L) = (1243), the corresponding H-rim decomposition of A is nothing but the one
appeared in Example 3.2.

albl|lc|d
el flyg : :
Let s = N € T((4,3,3,2),C). Then, the weight of [; are given by
v
l
1 1 1
407y _ 407y _ a7y _ 407y
wa(h) = qagpe walle) =1 wislls) = gracapagenyay welld) = gy
apg|ay|asz|as
a_1| ag | a .
In particular, when s = € T9198((4,3,3,2),C), these are equal to
a_9g|a_1| ag
a_3|a—o
1 1 1
407N _ 407N _ 407N _ 4071y —
ws (ll) - 1(1020,17 ws (12) - 17 ws (l3) - 3a_23a_13a03a13a24a3’ 'U)s (14) - 2(1_32(1_22(1_12(10 :

Notice that, in this case, from the definition of the weight, the tuple of indexes of the exponent
of the denominator of wi(l;) along I; should be equal to (a1_;, a1_i11,a1_it2,...) for all i.

3.1.4 Proof

A proof of (1.2) is given by calculating the sum

X)]\V(s) = Z Etype(L)wé\/(L) = Z €o Z wéV(L)’

LE’H]AV O'GSI>_‘I L:A—B°
where ¢, is the signature of o € S,.. First, the inner sum can be calculated as follows.

Lemma 3.7. For o € Sy, let 0% = (07,...,07) € Rim?}; be the H-rim decomposition such that
T (07) = 0. Then, we have

r

Y wl (L) =] 7 (s).

L:A—B° =1

Here, for © = (01, ...,0,) € Rim}y, 6;(s) € Cl%l is the tuple obtained by reading contents of the
shape restriction of 8 to 0; from the bottom left to the top right.

Proof. Let L = (ly,...,l,) € Hﬁ\v be an H-pattern of type ¢. Then [; is a path from a; to
by with hd(l;) = Mg — o(i) +i = [67]. For simplicity, write k; = A\, — o(i) + 4 and
07(s) = (si,1,---,Sik ). Suppose that I; has n; steps on the jth row for 1 < j < N. Then, from
the definition of the weight, we have

N 1 1 1 1 1 1

s (1) - 18i,1 18im1 92Sing+1 28i,n1+ng NSinit+Any_1+1 NSimi+-+ny
TV
n1 terms n2 terms ny terms
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with ny +--- 4+ ny = k;. This shows that

oowy@m=]] >, wi)

L:A—B° =1 li:ai—>ba(i)
T
1
i=11<m; <-<my, <N "1 My,

.
= H CN*(Si,h - >5i,kzi>-
=1

From Lemma 3.7, we have
(3:2) XY(s)= > e |V (07(s))
oesSy =1

Let ’Hﬁgo be the set of all L = (I,...,1,) € Hf\v such that any distinct pair of /; and I; has no
intersection. Define

X/]\\,/O(s) = Z 6type(L)wéV(L)’ X/]\\fl(s) = Z etype(L)wéV(L)'
LGH]A\{O LGH]AV\HAN,O

Clearly we have X{'(s) = X;\YO(S) + Xﬁ\\fl(s). Moreover, since type(L) = id for all L € ’Hi\fo
where id is the identity element of S, and id corresponds to the trivial H-rim decomposition
(01,...,0,) = ((A1),...,(A\)), employing the well-known identification between non-intersecting
lattice paths and semi-standard Young tableaux, we have

Xo(s)= > wi(L)=(s).

LeM),

Therefore, from (3.2), we reach the expression

(3-3) ) =) e [TV 67(s) — X{i(s)-

cesr =1

Now, one can obtain (1.2) by taking the limit N — oo of (3.3) under suitable assumptions
on s described in Theorem 1.1 together with the following proposition.

Proposition 3.8. Assume that s = (s;;) € T48(\,C). Write a, = 8,4 for k € Z.
(1) We have
(34) Xﬁ\V(s) = det [CN*(a*jJrla Q—j42y -, a—j—‘,—(}\i—i—l-j))] 1<ij<r "’
(2) It holds that

(3.5) Xyi(s) =0.
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Proof. We first notice that, if s = (s;;) € T9%8(\, C), then we have

07 (8) = (a1—i, @1—i1, - - -5 Qi (A, iy 0 (i) +i) 1)

for all 1 < ¢ < r. Therefore, understanding that C(]Z) =0 for k < 0, from (3.2), we have

r
N N
XN(s) = > e [J ¢V (67 (5))
oesA =1
T
= Z €o H CN*(akiv A1—i415- -+ al—i-i—(/\a(i)—a(i)-i-i)—l)
oES) i=1
— Nx ) .
= det |:< (alf’ta a1—i+1;--- 7a1—i+(>\j—j+i)—1):| 1<ij<r
= det [CN*(af’H*lv Q—j+4+2,--- 7a—j+(/\i—’i+j))] 1<i,j<r

Hence, we obtain (3.4).

We next show the second assertion. To do that, we employ the well-known involution L — L
on H{\ ’Hﬁ\\fo defined as follows. For L = (l1,...,1,) € HY \Hf\\fo of type o, consider the first
(rightmost) intersection point appearing in L, at which two paths say [; and [ cross. Let L be an
H-pattern that contains every paths in L except for /; and /; and two more paths 1; and E Here,
I; (resp. [;) follows I; (resp. l;) until it meets the first intersection point and after that follows /;
(resp. ;) to the end. Notice that, if s = (s;;) € T988()\, C), then we have w’ (L) = wl (L) since
there is no change of horizontal edges between L and L. Moreover, we have type(L) = —type(L)
because the end points of L and L are just switched. These imply that

X)]\\,fl (3) = Z 2gtype(i)wé\f(z)

LeHI\HY

= - Z 5type(L)in (L)

LeHI\HY

= _Xi\,fl (s)
and therefore lead (3.5). O

Remark 3.9. When s € T928()\ C), (3.3) can be also written in terms of the H-rim decompo-

sition as follows;

(3.6) (A (s)= > en(0)C™* (1)) ¢V (B2(s)) -V (6:(s))

©=(01,03,....0,)ERimY
where e (0) = €, (9)- Note that £(0) = (=1)n=#10:#0} when A = (17).

Remark 3.10. In some cases, X iv (s) actually has a determinant expression without the as-

sumption on variables;

N a|b _ CN*(CL,b) CN*(C’d’b)
X(zg)( g > *(a)

c T Ma) N ad) |
alb N (a,b) V(e d,b) (N (e, e, d,b)
Xhan | leld]| [ =] M@ Me,d)  Need)

e 0 1 N (e)
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However, in general, X (s) can not be written as a determinant. For example, we have

alb
XBao | [c]d] | =M @b (e, d)¢ (e, £) = ¢V (a, b)Y ()M (e, £, d)
elf

- CN*(Ca CL)CN*(G, fa da b) - CN*(CL)CN*(Cv d’ b)CN*(ea f)
+ ¢ (e, a,0)¢M (e, £, d) + ¢V ()M ()M (e, £,d,b)
and see that the righthand side does not seem to be expressed as a determinant (but is close to

the determinant).
Similarly, X1’ (s) does not vanish in general. For example,

52 al|b B 1 1 1 1
(2,2),1 cld ~ \ 1a1b1cd + 1a1b1c9od + 1a9b1c1d + 1a9b1c9d

1 1 1 1
1a2b2¢2d * 2a2b1c]d * 2a2b1c2d * 2“2b202d>

1 1 1 1
B (1“1b161d + 1a2b1¢1d + 1020124 + 1a2b62¢2d

1 1 1 1

toatv1e1d T qagbierd T gagbiend T 2a2b262d>
1 1

= Japbiead  2apbieid’

which actually vanishes when a = d.

3.2 A proof of the Jacobi-Trudi formula of F-type

To prove (1.3), we need to consider another type of patterns on the Z? lattice. Because the
discussion are essentially the same as the previous subsection, we omit all proofs of the results
in this subsection.

Let A = (A1,...,A;) be a partition and X = (N\|,...,\,) the conjugate of A\. A rim de-
composition © = (0,...,60;) of A is called an E-rim decomposition if each 0; starts from (1,1)
for all 1 < 7 < s. Here, we again permit §; = (). We denote by Rimg the set of all E-rim

decompositions of .

Example 3.11. The following © = (61, 62,603, 0,) is an E-rim decomposition of A\ = (4, 3, 3, 2);

4]

2
2
3
3

W[l —=] K

which means that f; = @ 0, = B 05 = and 04 = [].
l

Fix N € N. Let ¢; and d; be lattice points in Z? respectively given by ¢; = (s + 1 — i, 1)
and dj = (s+1—i+AN,N+1)forl<i<s PutC = (c,...,c;s) and D = (dy,...,ds).
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An E-pattern corresponding to A is a tuple L = (l,...,l) of directed paths on Z?, whose
directions are allowed only to go one to the northeast or one up, such that I; starts from ¢;
and ends to d,(; for some o € S;. We also call such o € S5 the type of L and denote it by
o = type(L). The number of northeast edges appearing in the path [; is called the northeast
distance of [; and is denoted by ned(l;). When type(L) = o, we simply write L : C'— D where
D7 = (dg(1); - -+ do(s)) and l; = ¢; — dy(;). It is easy to see that ned(l;) = )\;(i) —o(i) + i and
S med(ly) = AL
Let £Y be the set of all E-patterns corresponding to A and Sp = {type(L) € Ss| L € EN}.

Lemma 3.12. For © = (61,...,0,) € Rimy}, there exists L = (Iy,...,l;) € Siv such that
ned(l;) = || for all 1 <i < s. Moreover, the map T : Rimp, — S7 given by T(0) = type(L)

s a bijection.

Fix 8 = (sij) € T(\,C). A weight on L = (l,...,l;) € £ is similarly defined via the E-rim
decomposition of X as follows. Take © = (61, ...,6,) € Rim? such that 75(©) = type(L). Then,
when the kth northeast edge of I; lies from the jth row to (j + 1)th row, we weight it with
f% where (p,q) € D()) is the kth component of ;. Now, the weight w2 (I;) of the path [; is
defined to be the product of weights of all northeast edges along [;. Here, we understand that
wl¥ (I;) = 1 if 6; = 0. Moreover, we define the weight w)Y (L) of L € & by

wy (L) = [Jws' ().
=1

Example 3.13. Let A = (4,3,3,2). Consider the E-rim decomposition © € Rim?, of A appeared
in Example 3.11. It is easy to see that 7£(0) = (123) € Sy via the following L = (I1,12,13,14) €

6 .
€la32)
dy
(2,7)
7T e [ )
6 o ) °
5 e + °
4 e /; °
3 ’ ° o"b.

,/
2 ¢ . K
.

1

(1,1) (2,1) (3,1) (4,1)
Cq C3 C2 C1

Figure 2: L = (I1,12,13,14) € 8(64,3,3,2)
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alb|cl|d
el fly : :
Let s = T € T((4,3,3,2),C). Then, the weight of [; are given by
v
l
1 1 1 1
407N _ 407N _ 407y _ 407y —
wslh) = qageqn we(l) = gigp wels) = yopagigzer e (W) = 50
apg|ay |az|as ‘
a_1| ap | a1 .
In particular, when s = € T428((4,3,3,2),C), these are equal to
a_sg|a_1| ap
a_3|a—o
1 1 1 1
a7y _ 407N _ 407y _ 407y —
ws (1) = laofa-16a-2’ ws(l2) = 3a15a0’ wy(ls) = 1929a13a040-15a-26a—3° wg (l4) = 3as”

Notice that, in this case, from the definition of the weight, the tuple of indexes of the exponent
of the denominator of w}(l;) along I; should be equal to (a_144,a_14i-1,a_14i_2,...) for all 4.

We similarly give a proof of (1.3) by calculating the sum

Y)\N(s) = Z gtype(L)wéV(L) = Z €o Z wéV(L)a

Leel oeSy  L:iC=D7

Lemma 3.14. Foro € Sg, let ©7 = (67,...,07) € Rim% be the E-rim decomposition such that
Tp(0©7) = 0. Then, we have

> wl (L) =[N 67s)).
L:C—D° i=1

Here, for © = (0y,...,0s) € Rim}, 0;(s) € Cl%| is the tuple obtained by reading contents of the
shape restriction of 8 to 0; from the top right to the bottom left.

From Lemma 3.14, we have
(3.7) YiV(s)= > e [[ ¢V (67(s)).
O’ESE 1=1

Define £ /]\YO similarly to ’Hf\v o and also Y/\% (s) and Y/\]Yl (s). It holds that

Yioe) = D wl(L) =¢{(s).
Legl,
Hence, from (3.7), we reach the expression
(3.8) W)= e [[¢Y (67(s)) - Vi (o).
oSy i-l

Now, (1.3) is obtained by taking the limit N — oo of (3.8) under suitable assumptions on s
described in Theorem 1.1 together with the following proposition.
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Proposition 3.15. Assume that s = (s;;) € T428(\,C). Write ay = s,k for k € Z.

(1) We have

N N
Y)\ (S) = det C ((Ij_l, Aj—2,. .. ’aj—o\;—i-f—j)) I<ij<s .

(2) It holds that
Yi(s) =o0.

Remark 3.16. When s € T928()\ C), (3.8) can be also written in terms of the E-rim decom-
position as follows;

(3.9) A (s) = > ex(©)CN (01(s)) ¢V (02(s)) -+ ¢V (Bs(s))

92(91 ,02 ,‘..,QS)GRimg

where eg(0) = &,,.(o). Note that e(0) = (—1)" #1070} when X = (n).
2(©)

4 Schur multiple zeta functions as variations of Schur functions

4.1 Schur multiple zeta functions of skew type

Our SMZFs are naturally extended to those of skew type as follows. Let A and p be partitions
satisfying u C A. We use the same notations D(\/p), T(N/ i, X), TV (\/u, X) for a set X,
SSYT(A/p) and SSYT n(A/p) for a positive integer N € N as the previous sections.

Let s = (s45) € T(A\/p, C). We define a skew SMZF associated with \/u by

1
(4.1) CA/M(S) = Z Ms
MeSSYT(A/ 1)
and its truncated sum 1
N
Cn(s) = > ek
MeSSYT N (A1)

where M® = []; sepoyp my for M = (my;) € SSYT(A/p). As we have seen in Lemma 2.1,
the series (4.1) converges absolutely if s € W, /u where Wy, is also similarly defined as Wy
(note that C(\/u) C C(X)). We have again

(4.2) C)\/,u(s) = Z ¢(t), C)\/u(s) = Z (_1)|/\/M|7z(t)c*(t)v
t<s t<s’

where < is naturally generalized to the skew types.

Example 4.1. (1) For s = (si;) € W(22.2)/(1,1), We have

512

S92| = ((s31, S12, S22, $32) + (831 + S12, S22, S32) + (812, S31 + S22, S32),

‘831 532

+ (512, 831, 822, 832) + ( (512, 522, 631 + 532) + (512, 522, 531, 532)

= (" (831, 512, 522, 532) — (" (831 + 512, 522, 532) — (¥ (831, 512 + 522, 532)
— (" (831, 812, 522 + 532) + (*(831 + s12 + 522, 532) + (" (831 + 512, 522 + 532)
+ (¥ (831, 812 + 822 + 832) + (*(512, 531, 522, 532) — (¥ (512, 531, S22 + $32)

+ (* (512, S22, 831, $32) — C* (812 + S22, $31, 832) — (" (812, S22 + S31, $32)-
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(2) For s = (Sij) S W(373)/(2), we have

513

= ((s13, 21, 522, 523) + C(S13 + S21, S22, 523) + (513, S21 + S22, 523)

‘521|522 523

+ ((s13, 521, 522 + 523) + ((S13 + 521 + S22, 523) + ((S13 + 521, S22 + S23)
+ (513, 821 + 822 + 523) + (521, 513, 522, 523) + (521, 513 + S22, 523)
+ (521, 513, S22 + 523) + ((521, 522, 513, 523) + (521 + S22, 513, S23)

= (" (513, 521, 522, 523) — (" (513 + 521, 522, 523) — (" (821, 513 + 522, 523),

+ (*(s21, S13, 522, 523) — (¥ (821, S22, S23 + s13) + (*(s21, S22, 13, S23)-

As the same discussion performed in Section 2.3, one sees that CA/M({S}A/”) = e(s)sA/M =
syp(17%,27%,...) for s € C with (s) > 1 where s, /, is the skew Schur function associate with
A/ (see [Mac]). In particular, since sy, is a symmetric function and hence can be expressed as a
linear combination of the power-sum symmetric functions, we have C,\/M({Qk}”“) e QuZk(AI=lul)
for k € N. Notice that it is shown in [Sta] that C)\/H({2/<:})‘/“) for a special choice of A/u with
k=1,2,3 is involved with fA/ #: the number of standard Young tableaux of shape \/pu.

4.2 Macdonald’s ninth variation of Schur functions

Let Wf\i}zg =W/, NTH&(\/p, C). We now show that, when s € W:\i/izg, the skew SMZF () /,,(s)
is realized as (the limit of) a specialization of the ninth variation of skew Schur functions studied
by Nakagawa, Noumi, Shirakawa and Yamada [NNSY]. As in the previous discussion, we write
ap = Si itk for k € Z (and for any i € N) for s = (s;5) € Wf\i}ig.

Let r and s be positive integers. Put n =r+s. Let A = (A1,...,\;) and g = (p1, ..., pr) be
partitions satisfying u C A C (s") (we here allow A\; =0 or y; = 0) and J = {j1, j2, ..., jr} with
Ja = Mrti—a +a and I = {iy,ia,... i} with iy = py1;_p + b the corresponding Maya diagrams,
respectively. Notice that I and J are subsets of {1,2,...,n} satisfying j; < jo < -+ < Jp,
and i1 < ip < --- < 4p. Then, Macdonald’s ninth variation of skew Schur function S&;L(X )
associated with a general matrix X = [2;;]1<i j<y of size 1 is defined by

Sun(X) =€) (X4).

Here, we have used the Gauss decomposition X = X_XgX; of X where X_, Xy and X, are
lower unitriangular, diagonal and upper unitriangular matrices, respectively, which are deter-
mined uniquely as matrices with entries in the field of rational functions in the variables x;; for
1 <4,j <n. Moreover, £4(X}) is the minor determinant of X corresponding to I and .J. Put
1,..,
e (X) = Sy (X) = &7y (X1,

MD(X) = S (X) =T — | (Xy),

which are variations of the elementary and complete symmetric polynomials, respectively. Here
r Zn+ 1 means that we ignore r — n + 1. For convenience, we put eér) (X) = hg)(X ) =1 and
e (X)) = h(X) =0 for n < 0.

For N € N, let U = U™ be an upper unitriangular matrix of size n defined by U =
U1U2 s UN where

U = (I + g Brz) (I + u? Bag ) -+ (L 4wV By )
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Here, u,(f) are variables for 1 <k < N and 1 <7 <7 —1 and I;, and E;; are the identity and
unit matrix of size 1, respectively. The following is crucial in this section.

Lemma 4.2. Let s = (s45) € TY88(\/u, C). Write aj, = Siitk for ke Z. If ug) = k™% then
we have

(4.3) N (s)=5Y)

A/u(U)‘

Proof. Tt is shown in [NNSY] that SE\;)M

(4.4) S\(U) = 3 [T .

(miz)€SSYT N (A1) (4,5)€D(N/ 1)

(U) has a tableau representation

Hence the claim immediately follows because u(mri_jiﬂ ) — m;jaj = m;jsij if ug) = k%, O

As corollaries of the results in [NNSY], we obtain the following formulas for skew SMZFs.

4.3 Jacobi-Trudi formulas

It is shown in [NNSY] that S ()

N /”(X ) satisfies the Jacobi-Trudi formulas

(r) _ (njt+r—j+1)

(4.5) Si/u(X) = det [hNiuriﬂ' (X Lgi,jér’
(r) _ (r—1—p+j)

(4.6) Sy/u(X) = det [eké%gﬂ (X)} .

where X' = (A],...,AL) and ¢/ = (i), ..., n}) are the conjugates of A\ and p, respectively (we
again allow X, = 0 or pu, = 0).
Theorem 4.3. Retain the above notations. Assume that s = (s;5) € W;i/izg.

(1) Assume further that R(s; »,) > 1 for all 1 <i < r. Then, we have

(4.7) Oypu(s) = det [C*(%j—jﬂ,aurjm, . ,%j_j+(xi—uj—i+j))}ngr :

Here, we understand that *(---)=1if \i—pj—i+j=0and 0 if \; —pj —i+j <O.

(2) Assume further that R(sy, ;) > 1 for all 1 <i < 's. Then, we have

(4.8)  CQypuls) =det [C(G—H;H_ha—u;ﬂ_z, s O (i) ||

Here, we understand that ((---)=14f N — . —i+j=0and 0 if \. —p’, —i+j <O.
7 i ? J

Proof. From (4.4), we have

m1<mo<--<mp <N
thr)(U) = Z u%)lu%jl) ... u%:nfl)'

my<ma<--<mp <N
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Now, write 7’ = p; +7—j+1 and k' = \; — uj — i+ j for simplicity. Then, we have u%;H_l) =

(1) _

—Qui—j+i . .
J if Uy = k~%-r and hence

)

(mj+r—3+1) ;pry _ Z (), (r'+1) (' +K —1)
h)\z‘—ﬂj—i‘i‘j (U) - Uy, Uppy T umk/
m1<ma<--<my <N
TOpj—jl T Op—j42 Ttk
= E my my T My

m1<ma<--<my <N
— N~ . . ) oy
= (@1 =12, - - - aug‘—fr()\i—uj—lﬂ))'

This shows that (4.7) follows from (4.5) by letting N — oco. Similarly, (4.6) is obtained from
(4.8) via the expression

(r—=1—pi+j) N
xip—ivg (U) = gt Oy oy O e (N i)
O
Example 4.4. When \/u = (4,3,2)/(2,1), we have
92 | %3 (*(az,a3) (*(ao,a1,a2,a3) (*(a-2,a-1,a9,a1,az,as)
aop | a1 = 1 C_,_*((I(],(Il) C*(a*%a*lvaﬂval) )
a_ola_1 0 1 C*(a—Qy 0—1)
as | a3 C(a—2) ((ao,a-1,a-2) ((az,a1,a0,a-1,a-2) ((as,az,ar,ap,a—1,a_2)
wla _ 1 ¢(ag,a—1) ((az,a1,a0,a-1) ((as,az,ai,ap,a_1)
i 0 1 ((az,a1) ((a3,az,a1)
a_2la_1 0 0 1 C(as)
4.4 Giambelli formula
For a partition A, we define two sequences of indices pi1,...,p: and q1,...,q by p; =X —i1+ 1

and ¢; = /\g — 4 for 1 < ¢ <t where t is the number of diagonal entries of A\. Notice that
pr>p2>--->p>0andgr >q>-->¢>0and A= (p1 —1,...,p: —1|qi,...,q) is the
Frobenius notation of A. It is shown in [NNSY] that SE\T) (X) satisfies the Giambelli formula

(4.9) SU(X) = det [s“") (X)}

(pi,19) 1<ij<t

Theorem 4.5. Retain the above notations. Assume that s = (s;5) € W;\iiag. Moreover, assume
further that R(s; »,) = R(ap,—1) > 1 and R(sy, ;) = R(a—q,) > 1 for 1 <i < t. Then, we have

(a(s) = det {g(pi,lqj)(siyj)}

1<ij<t’

ap | a1 | az | -+ |ap,—1

where 8j; = — € Wi, 19)-

a_qj




Schur multiple zeta functions 23

Proof. Putting ug) = k=% from (4.3) and (4.9), we have

N(s) = SU) = det [SW (U)]

(pi1%) = det [Cgi,lqj)(si,j)}

1<i,j<t 1<ij<t

This leads the desired equation by letting N — oc. O

Example 4.6. When A = (4,3,3,2) = (3,1,0]3,2,0), we have

Gp (ai|az| a3
ap (ai|az|as
a_1
— a_q ap|al | ag | as
a—2
a-3
ap [ay|az|ag ap | a1
ap | a1
a—_1|ap | a1 a_—1
= | a_1 ap | al
a_ola_—1| ag a_o
a_3|a—9 a_—3
ag
ao
a_1
a_q ag
a—2
a_o
a—3

4.5 Dual Cauchy formula

It is shown in [N1] (see also [N2]) that the dual Cauchy formula

(4.10) S PSS (y) = w(x,y)
AC(s™)

holds for X = [zi;]1<ij<n and Y = [ys;j]1<i j<y. Here, for a partition A = (Aq,...,\,) C (s7),
M= (s—MN,...,s— X)) and (") (X V) is the dual Cauchy kernel defined by

T11 T12 e '1‘117
1,....,r+s
\I/(T78) ()(7 Y) = — 5:7--~’T+31(ZZ 7 7 — Trl Xp2 Ty
& (X065(Y) v Y2 o Y
L Ys1 Ys2 -~ Ysp |

Remark that when both X and Y are unitriangular, we have W) (X,Y) = det(Z).

We now show an analogue of (4.10) for SMZFs. To do that, we first simplify the formula
(4.10) in the case where X = U and Y = V. Here, for M € N, V = VM) is an upper
unitriangular matrix of size n similarly defined as U, that is, V = V1V, --- Vy where

Vi — (I,, + v}j)Eu> (I,, + U,EQ)EQP,) . (In n vfj‘”E,,_Ln)
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with vl(j) being variables for 1 <k < M and 1 <i<n—1.
Write U = [uij]lgiﬂ'gn and V = [UUhSLJSn‘ We first show that

(4.11) v — {hﬁ”i(U) i< {hy)i(V) i <j,
: =

0 1> 7.
Since these are clearly equivalent, let us show only the former. Because U is an upper unitian-
gular matrix, we have u;; = 0 unless ¢ < j. When 7 < j, we have

n
wy= Y. (Ui (U2 gy (UN)iy_ -

lyeln_1=1

Here, for a matrix A, we denote by (A);; the (i,7) entry of A. Since

b—a—1
h
H u(a+ ) a<b
(Uk)ap = F ’
a h=0
0 a>b,
we have
li—i—1 lo—l1—1 j—ly_1—1
i+h1 l1+h2) (IN—1+hnN)
we (T (I ) (T
1<U<-<Iy_1<j \ h1=0 h2=0 hn=0
Furthermore, writing j = i + p, we have
l1—i—1 lo—11—1 Z‘+p—lN,1—1
i+hy l1+ho IN—1+hy
Wit = ) [T ™™ ) | I w™ )| TI v ™
1<l <--<Iy-_1<it+p \ h1=0 h2=0 hn=0
_ i) . (i+1 i+p—1
_ Z u7(7l)1u£77,2)”‘u$np )
1<my < <mp<N
1
= h)(U),

whence we obtain the claim.
When X =U and Y =V, from (4.11), (4.10) can be written as follows.

Corollary 4.7. It holds that

(4.12) ] _
1Oy oy - nw) h;_nw)

2 2 2
0 1 WU o hDyU) - WP, ()
N o) (1) g8 0 01 W) hy,(U)

> ORS8N (V) = det © © © (D
AC(s7) L hi (V) hy'(V hs (V) h?_l(V)
o 1 wPw r2 (V) 2, (V)
| 0 0o 1 AW W) |
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Theorem 4.8. Assume that s = (s;5) € ng%g and t = (t;j) € ngfg with ap, = ;41 and
b = tiivk for k € Z. Moreover, assume that R(sy;) > 1 for all 1 < j < s and R(ts;) > 1 for all
1 <5 <r. Then, we have

(4.13)
> (=D (s]x) Gae (E]a)
AC(s™)
[ 1 *(a1—r) F(a1—r,a2—y) -+ ((@1-r,...,a0) -+ ((@1—p,...,ap-1—p) ]
0 1 C*(CLQ—T‘) T C*(QQ—M s 7a0) e C*(CLQ—T‘7 s 7an—1—r)
I 0 1 Cla0) e Clagsagay)
1 "(bi—s) (*(bi—s,bo—s) -+ ((bi—s,...500) -+ (*(bi—sy. . ay_1-5)
0 1 C*(bQ—s) C*(b2—s;---7a0) C*(bQ—s;---aan—l—s)
0 . 0 LG Cloabya)

Here, sy € W/{ﬁag and t|y« € W:\iiag are the shape restriction of 8 andt to \ and A*, respectively.

Proof. Putting u,(j) = k™% and v,(j) = kb we have

(%) _ i), (i+1 i+k—1
ROW) = S ull i) gD
my < <mp <N
_ —Qj—r —Qi41—r —Qitk—1—1r
T I Tiac N,

m1<-<mp<N

N
=( *(aifra Qip1—ry-- -, ai-l—k—l—r)

and similarly

hg)(V) = CM*(bz-_S, bit1—sy-- s Divk—1-5)-

Therefore, (4.12) immediately yields (4.13) by letting N, M — oc. O

Example 4.9. When r = 2 and s = 3, we have

ap | a1 | az ap |a | az ap | a1 | az bo
(LHS of (4.13)) = — . o |+ :
a_i| ap | a1 a_1| agp a_q b_1
bo
agp | al agp | a1 b() bl
—lag|ai|as b_1|+ - by | by |— .
a—_1| ap a_—1 bfl
b_o
bo | by bo | b1 bo | b1
aq bo b1
+ |ag|al b_1 + : — |ap b_1|bo |+ 1 - |b_1]| bo
a_1 bfl b()
b_o b_o b_olb_1
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On the other hand, we have

[ 1 (*(a-1) (*(a-1,a0) (*(a-1,a0,a1) (*(a-1,a0,a1,a2) ]
0 1 (*(ao) ¢*(ao, a1) ¢*(ao,ar,az)
(RHS of (4.13)) =det | 1 (*(b—2) (*(b_2,b_1) (*(b—2,b_1,b0) (*(b—2,b_1,bo,b1)
0 1 ¢*(b-1) ¢*(b-1,b0) ¢*(b—1,bo, b1)
L 0 0 1 ¢*(bo) ¢*(bo, b1)

5 Schur type quasi-symmetric functions

We finally investigate SMZFs from the view point of the quasi-symmetric functions introduced
by Gessel [G].

5.1 Quasi-symmetric functions

Let t = (t1,t2,...) be variables and B a subalgebra of Z[t1, ta, .. .] consisting of all formal power
series with integer coefficients of bounded degree. We call p = p(t) € B a quasi-symmetric
function if the coefficient of ¢! - - - 17" of p is the same as that of ;> - ;" of p whenever
ki <ky < - <ky,and h1 < h2 < +++ < hy. The algebra of all quasi-symmetric functions is
denoted by stm. For a composition @ = (aq, @, ..., a,) of a positive integer, define the mono-
mial quasi-symmetric function M, and the essential quasi-symmetric function Eq4 respectively
by
M= > 0.t Eo= Y tolt02..g0n
m1<mz<--<mn m1<ma<--<mnp

We know that these respectively form integral basis of Qsym. Notice that

(5.1) E, = Z Mg, My = Z AR

B=a B2a

5.2 Relation between quasi-symmetric functions and multiple zeta values

A relation between the multiple zeta values and the quasi-symmetric functions is studied by
Hoffman [H2] (remark that the notations of MZF and MZSF in [H2] are different from ours; they
are ((Sn, Sp—1,--.,51) and C*(sp, Sp—1,...,51), respectively, in our notations). Let $ = Z(z,y)
be the noncommutative polynomial algebra over Z. We can define a commutative and associative
multiplication *, called a #-product, on $). We call (£, x) the (integral) harmonic algebra. Let
H =71+ y$, which is a subalgebra of §. Notice that every w € 1 can be written as an
integral linear combination of za, Zay - * * 20, Where z, = yz® ! for « € N. For each N € N,
define the homomorphism ¢y : H' — Z[t1,t2,...,tn] by ¢n(1) = 1 and
> t01 402 g0 < N,
ON(2a1 Zay *** Zan) = § ma<ma<e-<mp <N
0 otherwise,

and extend it additively to $'. There is a unique homomorphism ¢ : $' — P such that 7y¢ =
¢n where 7y is the natural projection from P to Z[t1,to, ..., tx]. We have ¢(2a,2as ** * 2a,,) =

Mq,, an)- Moreover, as is described in [H2], ¢ is an isomorphism between $! and Qsym.

A2,...,Q
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Let e be the function sending t; to % Moreover, define py : H' = R by pN = epyn. For a
composition a, we have

pne~ (Ma) = (M@), pno T (Ea) = (M (e).

Here, the second formula follows from the first equations of (3.1) and (5.1). Define the map
p:H = RY by p(w) = (pn(w))nen for w € H'. Notice that if w € H° = Z1 + y$Hz, which is a
subalgebra of $!, then we may understand that p(w) = limy . pn(w) € R. In particular, for

a composition @ = (a1, aq,...,ay) with a, > 2, we have
(5'2) p¢_1(Ma) = C(a), p¢_1(Ea) = C*(a)'

5.3 Schur type quasi-symmetric functions

Now, one easily reaches the definition of the following Schur type quasi-symmetric functions (of
skew type). For partitions A, p satisfying 4 C A C (s") and a = (ay;) € T'(A/ i, N), define

SA/u(a) = Z H t?ﬁi@’

(mi;)€SSYT(N) (i,5)€D(N p)

which is actually in Qsym. Clearly we have

Hence S/, () interpolates both the monomial and essential quasi-symmetric functions. More-
over, one sees that this is the quasi-symmetric function corresponding to the Schur multiple zeta
value in the sense of (5.2).

Lemma 5.1. Let
Iy, = {a = (ai;) € T(M/ 1, N) [ iy > 2 for all (3,7) € C(A\/p) }.

Then, for a € I, we have
p(ﬁil(‘s)\/p(a)) = C)\/u(a)‘

Proof. This follows from one of the following expressions

(53) S}\/#(a) = Z Mu’ S)\/M(a) — Z (_1)|>\/F“_E(U)E’u’
uza u=<a’
similarly obtained as (4.2), together with (4.2) and (5.2). O

Remark 5.2. There is another important class of quasi-symmetric functions called the funda-
mental or ribbon quasi-symmetric function defined by Fy = Zﬁ>a Mg for a composition a. We
remark that they are not in the class of Schur type quasi-symmetric functions.
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We again concentrate on the case @ = (ay;) € TH8(\/u,N). Write ay = a;;1p for k € Z
(and for any i € N). Then, from the tableau expression (4.4) of the ninth variation of the Schur

function S/(\%(U ), if we put u](;) = ¢,'~", then we have u%;iﬂ ) — t?{j] and hence

5(7’)

V) = Z H u%;‘iﬂ)

(mij)ESSYT N (M k) (i) €D(M 1)
= > I
(mij)ESSYT N (M p) (i-§)€D(M w)

= ond ! (Sy/ul@)).

This shows that, when a0 € T928(\/u,N), the Schur type quasi-symmetric function Sy /ula)
is also realized as (the limit of) a specialization of the ninth variation of the Schur functions,
whence we can similarly obtain the Jacobi-Trudi, Giambelli and dual Cauchy formulas for such
quasi-symmetric functions. Notice that the following formulas actually hold in the algebra of
formal power series, which means that we do not need any further assumptions on variables such
as appeared in the corresponding results in the previous section for SMZFs.

Theorem 5.3. Assume that a = (a;;) € TY8(\/u, N) and write a, = o vk for k € Z.

(1) We have

(5.4) S,\/#(a) = det E(

O =315y =32t (i =g =i49) | 1 < sy
Here, we understand that E(...) =14fNi—pj—i+j=0and0 if \j —p; —i+j <O0.

(2) We have

5.5 S a) = det | M, .
9 () (Ot st |

Here, we understand that M.y =1 if N — p; —i+j =0 and 0 if \; — pj —i+j < 0.

Theorem 5.4. Let A = (p1 — 1,...,pt — 1| qu,...,q) be a partition written in the Frobenius
notation. Assume that o = (i) € TY8(\ N) and write aj, = a; it for k € Z. Then, we have

S)\(a) = det S(pi’lqj‘)(aid‘) 1< j<t’

ag | ar | az [ - [A@p,—1

a—1
where a;j = — € T((pi,1%),N).

A—g;

Theorem 5.5. Assume that @ = (a;;) € TY8((s"),N) and B = (8;;) € T48((r*),N) with
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ay = vk and by = B; ivx for k € Z. Write n =r + s. Then, we have

(5.6) Y (—=DPSy(aly) Sx- (Bla+)

AC(s™)
[ 1 B, Elaira,) Elay_,...a0) Elay_pyan-1-r) ]
0 1 E(a2fr) E(G%m---vao) E(a2fh---van71*r)
et |9 0 1 Eay) Blag,an1.2)
1 E(blfs) E(b1757b27s) T E(blfs:---ybo) T E(blfsy---vbnflfs)
o 1 By sy o Blogsbe) 0 Eloaaribyois)
0 0 1 E(bo) E(bo,...,bn_l_s) |

Here, a|y € TY8(\ N) and B|y- € TY28(\*,N) are the shape restriction of a and B to \ and
A*, respectively.

Remark 5.6. In [MR], a more general type of quasi-symmetric function is defined by a set
of equality and inequality conditions. One can see that this includes both the Schur type
quasi-symmetric functions and the fundamental quasi-symmetric functions as special cases and
actually leads a generalized multiple zeta function via p¢~!. However, because it is too com-
plicated in general, it seems to be difficult to expect that such generalized quasi-symmetric and
multiple zeta functions satisfy the similar kind of determinant formulas as above.

We know that Qsym has a commutative Hopf algebra structure (see [H2, K, MM, Sw]). The
antipode S, which is an automorphism of Qsym satisfying S? = id, is explicitly given as follows.

Theorem 5.7 ([H2, Theorem 3.1]). For a composition & = (a1, aa, ..., qy), we have

(1) S(My) = > (—1)™ Mg, My, - - - Ma,, .

a] Uaz U UHam=«a
(2) S(Ma) = (~1)"Eg.

Here, oy Uag U - - - L @y, 18 just the juztaposition of non-empty compositions a1, o, . .., 0, and
a=(an,ap_1,...,01).

Combining these formulas, we reach the expressions

(5.7) My, = > (=1)" ™Eq, Fay - Fa,,
al oz U--Uam=a
(5.8) Eq = > (—1)""" Mgy Mgy - - - Ma,,.

al a2 U--Uam=a
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One sees by induction on n that (5.7) and (5.8) are respectively equivalent to the formulas

E(al) E(Olz,Oq) e e E(an,...,ag,al)
1 E(OIQ) EEEE) e E(an7...’a2)
M(al,...,an) = 1 )
' L Ea,) Eanan)
0 | B,
M(al) M(a27041) (O{n, .,042,041)
1 M, Mq,,....a2)
E(al,...,an) = 1 ;
- 1 M(anfl) M(an,an,l)
0 | M)

which are obtained from the Jacobi-Trudi formulas (5.4) and (5.5), respectively.

Example 5.8. When n = 3, we have

Ma,,a,03) = Elag,as,a1) — Elag,as) Blar) = Elas) Elaz,ar) T Elas) Eaz) Ela)

E(al) E(Oé27061) E(as,ozz,oq)
= 1 Elas)  Elagas) |»
0 1 Eloy)
Elar,a2,03) = Mag,a,01) = Mas,a0)M(ar) = Maz)Maz,ar) + Miaz) M(az)M(ay)
M(Oél) M(Ot2,a1) M(as,ag,al)
= 1 M(OQ) M(Ozs,cm)
0 1 May)

For a skew Young diagram v, we denote by v# the transpose of v with respect to the
anti-diagonal. Similarly, the anti-diagonal transpose of a skew Young tableaux T' € T'(v, X) is
denoted by T% € T(v#, X). In the following discussion, we also encounter (T#)" € T((v#)', X),
the conjugate of T#. For example,

# 13 #\ '/ —
11 0412|0413‘ — 11 0412|0413‘ o1
12, =
o1 o1 ‘0113|0412 11
— ‘0421 11 —

Namely, (T#)" is just the rotation of T by 7 around the center of v. Now, the image of the
Schur type quasi-symmetric functions by the antipode S is explicitly calculated as follows.

Theorem 5.9. For a skew Young diagram v, we have
(5.9) S(Sy(@) = (=115, 4 (a*).

Moreover, when a € TV (v, N), we have

(5.10) S(Su(@) = (~1)" > en(0)Ey, (a#) Eoy(at) - Eo, (o)
©=(01,0,...,0,)ERimY]”
(5.11) S(Sy(@)) = (—1) > eB(©) My, (a#) Mo, o#) - My, (a#)-

©=(61,02,....05)ERimY
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Proof. From (5.3) and Theorem 5.7 (2), we have

S(Su(@) = 3 S(My)

u=a
- Z(_l)f(u)Eu
ua
= (=)W Z (—)-t g,

u= (o)

= (~1)"18,4 (@),

Notice that, in the third equality, we have used the fact that @ < a if and only if u < (a™)/,
which can be verified directly. This shows (5.9). Now, the rest of assertions are immediately

obtained from

Sy(a) = > e (0)Ep, (a)Eosa) Lo, (o)
O=(61,02,...0,)€RimY,
Sy(a) = > e5(0) My, ()Mo, () - - My, (o)

92(91,92,...,05)€Rim1’E

which are similarly obtained as (3.6) and (3.9) (hence we need the assumption @ € T4 (1, N))
and lead the Jacobi-Trudi formulas (5.4) and (5.5) for the Schur type quasi-symmetric functions.
This completes the proof. ]

Remark 5.10. The formula (5.11) with v = (1™) is nothing but the one in Theorem 5.7 (1).

Example 5.11. When v = (3,1), we have from (5.9)

(5] a12|a13‘ %
S (5(3,1) ( o )) = 5(2,2,2)/(1,1) Q12

(21|11

—

= E(a2170¢137a127a11) - E(6¥21+a13,a12,a11) - E(a217a13+012,a11)
- E(a217a13,a12+a11) + E(a21+0413+0412,0411) + E(0121+0413,Oé12+0411)
+ E(a21,a13+0¢12+a11) + E(Oc13,a21,a12,a11) - E(Oé137042170412+0411)
+ E(a13,a12,a21,a11) - E(a13+a12,0¢21,a11) - E(Ot13,0412+a21,a11)

= M(Oé21,0413,0412,0411) + M(0121+Oé13,0412,0¢11) + M(a13,a21+0412,0411)

+ M(a13704217041270411) + M(Oé137061270621+a11) + M(Oé1370621+a12,0111)'

Here, the second and third equations are similarly obtained as in Example 4.1. On the other
hand, we have from (5.10)

(11| 12(013
S (S(B,l) ( o1 | ‘ )) = E(a13)E(a12)E(a21,a11) - E(a12,a13)E(a21,a11)

- E(QIS)E(Q217Q11»Q12) + E(a217a117a127a13)
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1] [2] [1] [3]
where each term corresponds to the H-rim decomposition [2], [2], [3]and [3] of (3,1)% =
33 BB B3 33

(2,2,2)/(1,1), respectively, and from (5.11)

11|(12|(x13
S (S(ZS,I) ( | ‘ >> = M(Oé21)M(a13,a12,a11) - M(Oéls,oélz,au,oém)’

Q21
2] 2]
where each term to the E-rim decomposition [2] and [2], respectively.
[1]2 [2]2

Remark 5.12. The equation (5.9) is essentially obtained by Malvenuto and Reutenauer [MR,
Theorem 3.1] for their quasi-symmetric functions. Notice that v# is called the conjugate of v
in their notion. If Jacobi-Trudi formulas are obtained for such quasi-symmetric functions, then
one may also establish the similar kind of expressions like (5.10) and (5.11) for them.

Using Theorem 5.9, one automatically gets another relation from a given relation among
quasi-symmetric functions by mapping it by the antipode S. For instance, from (5.6), we obtain
the following equation.

Corollary 5.13. Assume that a = (ay;) € T48((s"),N) and B = (Bi;) € T48((r*),N) with
ay = vk and by = B; ivk for k € Z. Write n =r + s. Then, we have

Z (=) Sy a ((ah*)#) S(sr)/ax ((ﬂ\x)#)

AC(rs)
(1 Mg, ) Mg, ,a,) (—1)’"]1‘4(ao,...,am) : (—1)’7_;M(a,7714,...,a14) ]
0 1 —M(ag_) T (_1)1“7 (ag,....,a—r) " (_1)777 M(ayl_l_r,...,QQ_r)
— det 0 . 0 1 —M(ao) e (_1)17717“M(an_1_””7a0)
1 _M(bl—s) M(bQ—Sybl—S) U (_1)SM(bO,-~~7b1—s) U (_l)ni M(b'r]—l—57~-~7bl—s)
0 1 T (ba—s) e (_1)5_1M(b0,...,b2_3) T (_1)n_2M(bn_1_s,...,b2_s)
| 0 ... 0 1 _M(bo) <. <—1)n_sM(bn,1,s,..,,b0) J

Here, a|y € T8 (\* N) and B|y € T48(\,N) are the shape restriction of a and B to \* and
A, respectively.

Remark that mapping this equation by p¢~! under suitable convergence assumptions, one
obtains the corresponding relation among the Schur multiple zeta values.

Acknowledgement

We would like to express our appreciation to all those who gave us valuable advice for this article:
Prof. Masatoshi Noumi who provided expertise that greatly helped us to prove the results on
Schur multiple zeta functions in Section 4, Prof. Masanobu Kaneko who gave guidance in quasi-
symmetric functions and inspired us to establish the generalized result for such functions and
Prof. Takeshi Ikeda who gave meaningful suggestion for our work. We would also like to thank
Prof. Hiroshi Naruse, Prof. Takashi Nakamura, Prof. Soichi Okada and Prof. Yasuo Ohno for
their useful comments in many aspects. Finally, the third author is very grateful to the Max
Planck Institut fir Mathematik in Bonn for the hospitality and support during his research stay
at the Institute.



Schur multiple zeta functions 33

References

[AET]

[ELW]

[HLMW]

[HG]

[H1]

[H2]

[IKOO]

[LP]

[Mac]

[Mat]

S. Akiyama, S. Egami and Y. Tanigawa, Analytic continuation of multiple zeta func-
tions and their values at non-positive integers, Acta Arith., 98 (2001), no. 2, 107-116.

E. Eggea, N. Loehrb and G. Warringtonc, From quasisymmetric expansions to Schur
expansions via a modified inverse Kostka matrix, Furopean J. Combin., 31 (2010),
no. 8, 2014-2027.

L. Euler, Meditationes circa singulare serierum genus, Nowvi Comm. Acad. Sci.
Petropol., 20 (1775) 140-186; Reprinted in: Opera Omnia, Ser. I, vol. 15, B.G. Teub-
ner, Berlin, 1927, pp. 217-267.

I. M. Gessel, Multipartite P-functions and inner products of skew Schur functions,
combinatorics and algebra, Contemp. Math., 34 (1984), 289-301.

J. Haglund, K. Luoto, S. Mason and S. van Willigenburg, Quasi symmetric Schur
functions, J. Combin. Theory Ser. A 118 (2011), no. 2, 463-490.

A .M. Hamel and I.P. Goulden, Planar decompositions of tableaux and Schur function
determinants, European, J. Combin., 16 (1995), no. 5, 461-477.

M. E. Hoffman, Multiple harmonic series, Pacific J. Math., 152 (1992), no. 2, 275-290.

M. E. Hoffman, Quasi-symmetric functions and mod p multiple harmonic sums,
Kyushu J. Math., 69 (2015), no. 2, 345-366.

K. Thara, J. Kajikawa, Y. Ohno and J. Okuda, Multiple zeta values vs. multiple
zeta-star values, J. Algebra, 332 (2011), 187-208.

C. Kassel, Quantum groups, Graduate Texts in Mathematics, 155. Springer-Verlag,
New York, 1995.

A. Lascoux and P. Pagacz, Ribbon Schur functions, Furopean, J. Combin., 9 (1988),
no. 6, 561-574.

I. G. Macdonald, Schur functions: theme and variations, Srhinaire Lotharingien de
Combinatoire (Saint-Nabor, 1992), pp. 5-39, Publ. Inst. Rech. Math. Av., 498, Univ.
Louis Pasteur, Strasbourg, 1992.

C. Malvenuto and C. Reutenauer, Plethysm and conjugation of quasi-symmetric func-
tions, Selected papers in honor of Adriano Garsia (Taormina, 1994), Discrete Mathe.,
193 (1998), no. 1-3, 225-233.

K. Matsumoto, On the analytic continuation of various multiple-zeta functions, Num-
ber Theory for the Millennium (Urbana, 2000), Vol. II, M.A. Bennett et. al. (eds.),
A. K. Peters, Natick, MA, 2002, pp. 417-440.

J. W. Milnor and J. C. Moore, On the structure of Hopf algebras, Ann. of Math., 81
(1965), no.2, 211-264.



[N1]

[N2]

[0Z]

[Sta]

[Ste]

[Swl

M. Nakasuji, O. Phuksuwan and Y. Yamasaki

S. Muneta, On some explicit evaluations of multiple zeta-star values, J. Number The-
ory, 128 (2008), no. 9, 2538-2548.

J. Nakagawa, M. Noumi, M. Shirakawa and Y. Yamada, Tableau representation for
Macdonald’s ninth variation of Schur functions, (English summary) Physics and com-
binatorics (Nagoya, 2000), pp. 180-195, World Sci. Publ., River Edge, NJ, 2001.

M. Noumi, Remarks on elliptic Schur functions, talk at the international work-
shop on “Analysis, Geometry and Group Representations for Homogeneous
Spaces”, November 22-26, 2010, Lorentz Center, Leiden, The Netherlands.
(http://www.lorentzcenter.nl/lc/web/2010/423 /presentations/Noumi.pdf)

M. Noumi, Painlevé Equations through Symmetry, Translations of Mathematical
Monographs, 223 (2004).

Y. Ohno and W.Zudilin, Zeta stars, Commun. Number Theory Phys., 2 (2008), no.2,
325-347.

R. Stanley, Two remarks on skew tableaux, FElectron. J. Combin., 18 (2011), no. 2,
Paper 16, 8 pp.

J. Stembridge, Nonintersecting paths, Pfaffians, and plane partitions, Adv. Math., 83
(1990), no. 1, 96-131.

M. E. Sweedler, Hopf algebras, Mathematics Lecture Note Series, W. A. Benjamin,
Inc., New York 1969.

Y. Yamasaki, Evaluations of multiple Dirichlet L-values via symmetric functions, J.
Number Theory, 129 (2009), no. 10, 2369-2386.

D. Zagier, Values of zeta functions and their applications. First European Congress
of Mathematics, Vol. IT (Paris, 1992), 497-512, Progr. Math., 120, Birkhauser, Basel,
1994.

P. Zinn-Justin, Six-vertex, Loop and Tiling model : Integrability and Combinatorics,
arXiv:0901.0665.

S. A. Zlobin, Relations for multiple zeta values, Mat. Zametki, 84 (2008), no.6, 825—
837; translation in Math. Notes, 84 (2008), no.5-6, 771-782.

MAKI NAKASUJI
Department of Information and Communication Science, Faculty of Science,

Sophia University, Tokyo, Japan

nakasuji@sophia.ac. jp

OUAMPORN PHUKSUWAN
Department of Mathematics and Computer Science, Faculty of Science,

Chulalongkorn University, Bangkok, Thailand

ouamporn.p@chula.ac.th



Schur multiple zeta functions

Y OSHINORI YAMASAKI

Graduate School of Science and Engineering,
Ehime University, Ehime, Japan
yamasaki@math.sci.ehime-u.ac. jp

35



	25_Nakasuji_cover
	25_Nakasuji

