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It is apparent and natural to consider similar notions for groups of arith-
metical types, i.e., consider group schemes over arithmetical rings. Such a
treatment over rings is necessary for various arithmetic considerations. For
example, in [X], there has been proved the validity of Corestriction principle,
under some restrictions, for spinor norms over the ring of p-adic integers,
which has application in arithmetic theory of quadratic forms over global
fields.

We consider in this paper the concept of Corestriction principle (resp.
Weak Corestriction principle) in a setting, more general than that of Galois
cohomology. The definitions are similar so we only briefly recall it below and
refer the readers to [T1] - [T4] for more details. For the sake of arithmetical
applications, we restrict ourselves only in the case of Dedekind rings (or
their localizations or completions with respect to discrete valuations) and
their quotient fields. We call such rings in this paper by arithmetical rings.
Thus, for an arithmetical ring A and a flat A-group scheme (i.e. S-group
scheme with S = Spec(A)), we denote as usual Hi

r(A,G) := Hi
r(Spec(A), G),

where r stands either for Zariski, étale, or flat (i.e., fppf) topology, whenever
it makes sense. We assume once for all that, for r =ét and for all smooth
commutative A-group schemes involved, there is a notion of corestriction
homomorphism, that is, for any smooth commutative A-group scheme T and
each extension A′/A belonging to certain category CA of faithfully flat, étale
extensions of finite type over A there is a functorial homomorphism

CoresA′/A,T : Hi
et(A

′, TA′) → Hi
et(A, T ),

and the same holds for localizations of A at finite sets of primes. Here
we denote TA′ = T ×A A

′ the A′-group scheme obtained by base change
from A to A′. One should notice that in general one may not expect such
homomorphism to exist, and there is a general theory of trace handling this
question by P. Deligne in [SGA 4], Exp. 17 (cf. also Gille [Gi]). However,
thanks to [SGA 3], Exp. XXIV, Prop. 8.4, we may consider corestriction
maps for étale cohomology groups (or some other cohomology groups for
topology, other than étale, but still on the same small étale site), and the
category CA can be taken as that of all étale, finite extensions, which are
integral closures of A in finite separable extensions k′/k. Once this is granted,
one may then consider the concept of (Weak) Corestriction principle for
images or kernels of connecting maps in a long exact sequence of cohomology.
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Assume that we have a map which is functorial in A′, A′ ∈ CA :

αA′ : Hp
et(A

′, GA′) → Hq
et(A

′, TA′),

i. e., a map of functors α = (αA′) : (A′ 7→ Hp
et(A

′, GA′)) → (A′ 7→
Hq
et(A

′, TA′)) where A′ runs over all CA, T is a smooth commutative alge-
braic A-group scheme. It is natural to ask whether or not the following
inclusion holds

CoresA′/A,T (Im (αA′)) ⊂ Im (αA).

If it is true, then we say that the Corestriction Principle holds for the image
of the map αA : Hp

et(A,G) → Hq
et(A, T ) with respect to extension A′/A. If it

is the case for all A′ ∈ CA, then we say that the Corestriction Principle holds
for the image of the map αA : Hp

et(A,G) → Hq
et(A, T ) for CA. We say that

Weak Corestriction principle holds for the image of αA with respect to the
extension A′/A, if

CoresA′/A,T (Im (αA′)) ⊂ 〈Im (αA)〉,

where 〈Im(αA)〉 denotes the subgroup generated by Im (αA) in the corre-
sponding cohomology group. We may also consider similar notions for kernel
of αA, when G is commutative and T may be not.

In this paper we prove the following analogs of the results already proved
in the case of local and global fields.

Theorem I. (Local Corestriction Principle) Let A be a ring of integers of
a non-archimedean local field k, A′ the integral closure of A in a separa-
ble finite extension k′ of k, belonging to CA. Let G, T be reductive A-group
schemes with T an A-torus, and let αA : Hp

et(A,G) → Hq
et(A, T ), (resp.

αA : H1
et(A, T ) → H1

et(A,G)) be a connecting map induced from an exact
sequence of cohomologies of reductive A-group schemes involving G and T
(resp. induced from A-morphism T → G). Then Corestriction Principle
holds for the image (resp. kernel) of αA with respect to the extension A′/A.

Theorem II. (Global Corestriction Principle) Let A be a Dedelind ring with
quotient field a global field k, V the set of all primes of A, αA : Hp

et(A,G) →
Hq
et(A, T ) (resp. αA : H1

et(A, T ) → H1
et(A,G)) a connecting map induced from

an exact sequence of cohomologies of reductive A-group schemes involving G
and T (resp. induced from an A-morphism T → G), with T an A-torus.
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Then for any finite separable extension k′/k with the ring of integers A′ be-
long to CA, there is a finite set S ⊂ V such that the Corestriction Principle
holds for the image (resp. kernel) of αAS

: Hp
et(AS, GAS

) → Hq
et(AS, TAS

)
(resp. αAS

: H1
et(AS, TAS

) → H1
et(AS, GAS

)) with respect to the extension
A′
S/AS, where AS denotes the localization of A at S.

(By convention, in the case of global function field k, we call the ring of
k-regular functions of a smooth projective k-curve also by the ring of inte-
gers of k.) We may also state above theorem a bit differently as follows.

Theorem II’. Let A be the ring of integers of a global field k, αk : Hp(k,G) →
Hq(k, T ) (resp. αk : H1(k, T ) → H1(k,G)) a connecting map induced from
an exact sequence of cohomologies of an exact sequence of smooth connected
reductive k-groups (resp. induced from a k-morphism T → G), with T a
k-torus. Then for any finite separable extension k′/k with the ring of in-
tegers A′ belong to CA, there is a finite set S ⊂ V such that above exact
sequence is obtained from an exact sequence of reductive AS-group schemes
1 → G′ → G → T → 1 (resp. an AS-morphism) by taking the fibers at
generic point, and the Corestriction Principle holds for the image (resp. ker-
nel) of αAS

: Hp
et(AS, GAS

) → Hq
et(AS, TAS

) (resp. αAS
: H1

et(AS, TAS
) →

H1
et(AS, GAS

)) with respect to the extension A′
S/AS.

As application of the results presented above, we derive the following
norm principle for S-class groups of algebraic groups. We consider the class
set of a given flat affine group scheme G of finite type over Dedekind ring A
with smooth generic fiber Gk over the global quotient field k of A. Let X =
Spec(A), η ∈ X the generic point of X, S a finite subset of X0 := X \ {η}.
The ring A(S) of S-adèles is defined as

A(S) :=
∏

v∈X0\S

Av ×
∏

v∈S

kv,

where kv (resp. Av) is the completion of k (resp. A) in the v-adic topology.
We denote by A = ind.limS A(S) the adèle ring of k (with respect to A
!). Recall that (see e. g.[Bo], [Ha1], [Ni1], [PlR]) the S-class set, of G with
respect to a finite set S of primes of A (denoted by ClA(S,G)), and the class
set of G (denoted by ClA(G)), is the set of double classes

ClA(S,G) = G(A(S)) \G(A)/G(k),
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and
ClA(G) = G(A(∅)) \G(A)/G(k),

respectively. (Here G(k) is embedded diagonally into G(A). Another, more
familiar notation for ClA(G) using the set of infinite primes is given in Sec-
tion 4.) It may happen that Cl(S,G) (resp. ClA(G) has a natural group
structure (i.e. inherited from that of G(A)). In this case it is denoted by
GClA(S,G) (resp. GClA(G)).

Theorem III. (Norm principle for S-class groups of algebraic groups.)
1) With notation as in Theorem II, assume further that for a finite set S of
primes of k, containing the set ∞ of archimedean primes, and for the derived
subgroup G′ = [G,G] of G, the topological group

∏

v∈S G
′(kv) is non-compact.

Then for any A′ ∈ CA, the class set ClA′(S,G) has a natural structure of
finite abelian group, and we have a norm homomorphism, functorial in A′

NA′/A : GClA′(S,G) → GClA(S,G).

2) Let notation be as in Theorem II’. Then after localizing at a suitable finite
set S of primes, for any A′ ∈ CA, and for any finite set of primes T , con-
taining S, the class set ClA′

S
(T,G) has a natural structure of finite abelian

group, and we have a norm homomorphism, functorial in A′

NA′/A : GClA′

S
(T,G) → GClAS

(T,G).

A short presentation of the results obtained here was announced before (see [T8]).

1 Some preliminary results

1.1. Induced tori. We need the following analogs of some results proved
in [Bo1], [Bo2], [Ko], [T3], [T4]. First, we recall the important notion of
induced tori (see [Ha1], pp. 171 - 172). For a integrally closed noethe-
rian domain A with quotient field k, we recall that (cf. [SGA 3], Exp. X,
Théorème 5.16) for an A-torus T there is a finite étale extension A′/A, with
quotient field k′ such that TA′ is A′-isomorphic to Gr

m for some r. We may
assume that k′/k is a finite Galois extension, and that A′/A is also a Galois
extension with the same Galois group Γ := Gal(A′/A) = Gal(k′/k). Denote
by XA′(T ) := HomA′(TA′ ,Gm) the character group, which is a Γ-module and
it determines the A-group scheme T up to a unique A-isomorphism ([SGA
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3], Exp. X, Théorème 1.1). T is called A-induced if there are a subgroup
Γ0 ⊂ Γ and a Γ-submodule X0 ⊂ XA′(T ) such that Γ0 acts trivially on X0

and
XA′(T ) =

⊕

σ∈Γ/Γ0

σ(X0).

Then there is a uniquely defined subring A1 ⊂ A′ such that Γ1 = Gal(A′/A1),
A1/A is unramified, and one can checks that T = RA1/A(Gr

m), the restriction
of scalars from A1 to A (see [Ha], p. 172).

1.2. z-extensions. Now, as in the case of fields, for a ring A as above,
and an exact sequence 1 → Z → H → G → 1 of reductive A-group
schemes, with Z an A-torus, we say that H is a z-extension of G if Z is
an induced A-torus and the derived subgroup of H is simply connected (cf.
[SGA 3], Exp. XXII, Sec. 4.3.3, for the corresponding notions). Now, if
x ∈ H1(A′, G), we say that a z-extension H → G (over A) is x-lifting if
x ∈ Im (H1(A′, HA′) → H1(A′, GA′)). By [Ha1], Lemma 1.4.1, and by the
same arguments used by Harder [Ha1] in the proof of Satz 1.2.1, Borovoi
[Bo1], [Bo2] and Kottwitz [Ko] (cf. also [T3], Lemma 2.1), we have the fol-
lowing assertion, and since its proof is basically similar so we omit it.

Lemma 1. a) ([Ha1], Lemma 1.4.1) With notation as above we have

H1
flat(A, T ) = H1

flat(A1,G
r
m).

b) With notations as above, for any given reductive A-group scheme G, there
exist z-extensions of G.
c) Given an exact sequence 1 → G0 → G1 → G2 → 1 of reductive A-group
schemes, there exists a z-extension of this sequence, i.e., an exact sequence
1 → H0 → H1 → H2 → 1 of reductive A-group schemes and a commutative
diagram

1 → H0 → H1 → H2 → 1

↓ ↓ ↓

1 → G0 → G1 → G2 → 1
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of reductive A-group schemes such that each A-group scheme Hi is a z-
extension of Gi, i = 0, 1, 2.
d) Let A′ belong to CA, G a reductive A-group scheme. Then for any element
x ∈ H1

et(A
′, G) there exists a x-lifting z-extension H of G.

e) Let A′ be as above and let π : G1 → G2 be a morphism of reductive
A-group schemes. Then for any given x ∈ H1

et(A
′, G1A′) there exists a z-

extension π′ : H1 → H2 of π : G1 → G2, such that H1 is x-lifting z-extension
of G1.

Notice that b) above is an extension of Ono’s ”cross diagram” lemma [O]
(cf. also [Ha1]).

1.3. Deligne hypercohomology and abelianized cohomology. In
[De], Sec. 2.4, Deligne has associated to each pair f : G1 → G2 of algebraic
groups defined over a field k, where f is a k-morphism, a category [G1 → G2]
of G2-trivialized G1-torsors, and certain hypercohomology sets denoted by
Hi(G1 → G2), which fits into an exact sequence involving G1(k), G2(k) and
their first Galois cohomologies. In many important cases, the above category
appears to be a strictly commutative Picard category (loc.cit). In [De], p.
276, there was also an indication that the construction given there can be
done for sheafs of groups over any topos. Thus in [De], there was defined
the hypercohomology sets Hi

r(G1 → G2) for i = −1, 0, where r stands for
étale or flat topology. (To be consistent, we use the notations of [Bo3] and
[Br], while in [De], the degree of the hypercohomology sets corresponding to
G1 → G2 is shifted.) In particular, the existence of a norm map (i.e., the
validity of Corestriction principle) for hypercohomology in degree 0 in the
case of local and global fields was first proved by Deligne [De], Prop. 2.4.8.

Later on, Borovoi in [Bo3] and Breen in [Br] gave a detailed exposition
and extension of such hypercohomology, and in [Bo3] (resp. [Br]), there was
defined also the set H1(G1 → G2) (resp. H1

r(G1 → G2), where the setting in
[Br] works over any topos Tr). In the particular case when the base scheme is
the spectrum of a field of characteristic 0, the theory coincides with the one
given by Borovoi [Bo3]). As in [Bo3], by using [Br], we may also define the
abelianization map abG : Hi

r(A,G) → Hi(G̃ → G), for a reductive A-group
scheme G, where G̃ is the simply connected semisimple A-group scheme,
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which is the universal covering of G′ = [G,G], the semisimple part of G, and
i = 0, 1. In fact, it has been proved that if Z̃ (resp. Z) is the center of G̃
(resp. of G), then there are an equivalence of categories [Z̃ → Z] ' [G̃→ G],
and quasi-isomorphisms of complexes

(Z̃ → Z) ' (T̃ → T ) ' (G̃→ G),

where T̃ (resp. T ) is a maximal A-torus of G̃ (resp. G), with f−1(T ) = T̃ .
One defines Hi

ab,r(A,G) :=Hi
r(G̃→ G) and call it the abelianized cohomology

of degree i of G (in the corresponding topos; here r stands for ”ét” or ”flat”,
if one of group schemes involved is not smooth).

1.4. Equivalent conditions for Corestriction principle. Let G be
a reductive A-group scheme. Denote by G′ the derived subgroup scheme
of G, G̃ the simply connected covering of G′, Ad(G) the adjoint group
scheme of G (see [SGA 3], Exp. XXII, 4.3.3), F̃ := Ker (G̃ → Ad(G)),
F := Ker (G̃ → G′) and let Z̃, Z be as above. Since Z̃ and Z are commu-
tative, the resulting cohomology sets Hi

r(Z̃ → Z) have natural structure of
abelian groups. In the case of spectrum of a field of characteristic 0, it is
known that there exists functorial corestriction homomorphisms for Hi

ab,et(G)
(which follows from [Pe], cf. [T2]). It can be also extended to the case of pos-
itive characteristic, if we assume that the center Z̃ of G̃ is smooth. However,
in the general case (étale or flat case) it is not clear whether such functorial
homomorphisms always exist. Thus we make the following assumption.

(HypA) For A′ ∈ CA, for any G as above such that Z̃ is smooth, there
exist functorial corestriction homomorphisms CoresA′/A : Hi

ab,et(GA′) →
Hi
ab,et(G), i = 0, 1.

Let α : Hp
et(A,G) → Hq

et(A, T ) be a connecting map of cohomologies and
assume that an extension A′/A, A′ ∈ CA, is fixed. Under the assumption of
(HypA), we consider the following statements.

a) The (Weak) Corestriction principle holds, with respect to the extension
A′/A, for the image of any connecting map α : Hp

et(A,G) → Hq
et(A, T ) for

reductive A-group schemes G, T, with T an A-torus, 0 ≤ p ≤ 1, p ≤ q ≤ p+1.

b) For any reductive A-group scheme G, such that Z̃ is smooth, the (Weak)
Corestriction principle holds, with respect to the extension A′/A, for the im-
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ages of functorial map abG : Hp
et(A,G) → Hp

ab,et(A,G), 0 ≤ p ≤ 1.

c) The (Weak) Corestriction principle holds for the image of any connect-
ing (coboundary) map Hp

et(A,G) → Hp+1
et (A, T ), 0 ≤ p ≤ 1, with respect to

the extension A′/A, where

1 → T → G1 → G→ 1

is any exact sequence of reductive A-group schemes, and T is a smooth cen-
tral A-subgroup scheme.

d) The same statement as in c), but G1, G are semisimple.

e) The (Weak) Corestriction principle holds for the image of any con-
necting (coboundary) map Hp

et(A,Ad(G)) → Hp+1
et (A, F ), with respect to the

extension A′/A, where

1 → F → G→ Ad(G) → 1

is any exact sequence of semisimple A-group schemes, and F is a smooth
(central) subgroup.

f) The (Weak) Corestriction principle holds for the image of any con-
necting (coboundary) map Hp

et(A,Ad(G)) → Hp+1

et (A, F ), with respect to the
extension A′/A, where

1 → F → G→ Ad(G) → 1

is any exact sequence of semisimple A-group schemes, and F is a smooth
(central) subgroup and G is simply connected.

Notice that we always have obvious implications c) ⇒ d) ⇒ e) ⇒ f). For the
statements above, denote by x(p) (resp. x(p, q)) the corresponding statement
evaluated at p (resp. at p, q). For example a(0, 1) means the statement a)
with p = 0, q = 1. One of main results of [T3] is Theorem 2.10, which says
that in the case of A = Spec(k), the spectrum of a field, the above statements
are all equivalent. All proofs given there are functorial and can be formally
extended to our case provided that the Hilbert-90 Theorem holds, namely
H1
et(A, T ) = 0 for any induced torus T over A. This holds, for example, if
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A is a local ring by [Gr1], p. 190-15. Thus we have the following theorem,
and since its proof is almost identical with that of Theorem 2.10 in [T3], so
is omitted (however, see [T7]). (Here a statement x) holds if it holds for any
possible values of p, q.)

Theorem 2. a) Assuming (HypA), there are the following equivalence rela-
tions

a) ⇔ b), c) ⇔ d), e) ⇔ f).

b) The following relations between above statements for certain values of p,q
hold. For low dimension we have

a(0, 1) ⇐ a(0, 0) ⇔ b(0) ⇔ c(0) ⇔ d(0) ⇔ e(0) ⇔ f(0).

For higher dimension we have

a(1, 2) ⇐ a(1, 1) ⇔ b(1)

c(1) ⇔ d(1)
w

w

�

e(1) ⇔ f(1)

and if A is a ring such that H1
et(A

′, T ) = 0 for any induced A′-torus T,
A′ ∈ CA, then the following implications

a(1, 2) ⇐ a(1, 1) ⇔ b(1)
w

w

�

c(1) ⇔ d(1)
w

w

�

e(1) ⇔ f(1)

hold true.
c) In general, without assuming (HypA), by ignoring b(i), all above implica-
tions without b(i) involving, hold true.

1.5. Remark. Notice that in the case of spectrum of a field, all condition
related with smoothness can be omitted, and we can consider flat cohomology
instead ([T4]).
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2 Local case

2.1. Serre - Grothendieck conjecture. Let S be an integral, regular,
Noetherian scheme with function field K, G a reductive group scheme over
S, and let E be a G-torsor over S, i.e., a principal homogeneous space of G
over S locally trivial for the étale topology of S. We say that E is rationally
trivial if it has a section over K.

First we recall the following conjecture due to Serre and Grothendieck, in
the most general form given by Grothendieck. J.-P. Serre and A. Grothendieck
in C. Chevalley’s Seminar in 1958 ([SCh], Exp. I and Exp. V) and A.
Grothendieck in a Bourbaki Seminar [Gr2] in 1966 formulated the following
conjecture.

Conjecture. ([Gr2], Remarque 1.11.) Let S be a locally noetherian regu-
lar scheme, G a semisimple group scheme over S. Then any G-torsor over S
which is trivial at maximal points is also locally trivial.

In the case of arbitrary reductive group schemes, the following is a more
general formulation of this conjecture (cf. [Ni1], [CTO]):

(*) If S is as above and G is a reductive S-group scheme, then every ra-
tionally trivial G-torsor is locally trivial for the Zariski topology of S.

In other form the conjecture says (cf. [Ni1], [CTO])

(**) The following sequence of (pointed) cohomology sets

1 → H1
Zar(S,G) → H1

et(S,G) → H1(K,GK)

is exact.

Equivalently, it says that

(***) If S, G are as above, η is the generic point of S and A = Ox is any
local ring at x ∈ S \ {η}, then the natural map of cohomology

H1
et(A,G) → H1(K,GK)

has trivial kernel.
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Partial results obtained are due to Harder [Ha1], Tits (unpublished, but
see [Ni1], Theorem 4.1,) Nisnevich [Ni1], [Ni2], Theorem 4.2, Colliot-Thélène
and Sansuc [CTS] and Colliot-Thélène and Ojanguren [CTO]. Some very
general formalism has been treated recently in [Mo], Chapter I. We mainly
need only the following

Theorem 3. a) (Tits, cf. [Ni1], Theorems 4.1.) If A is a complete dis-
crete valuation ring with quotient field K, and G is a semisimple A-group
scheme, then the above Conjecture (***) holds.
b) ([Ni1], Théorème 4.2) If S is a regular one-dimensional noetherian scheme
and G is a semisimple S-group scheme, then the above conjectures hold.
c) ([Ni1], Théorème 4.5) If S = Spec R, R is a regular local henselian ring
and G is S-semisimple group scheme, then above conjectures hold.

2.2. We have the following

Proposition 4. a) Let A be the ring of integers of a non-archimedean local
field k, 1 → G′ → G → T → 1 an exact sequence of reductive A-group
schemes, with T an A-torus. Then for any finite separable extension k ′/k
with the ring of integers A′ belong to CA, the Corestriction Principle holds
for the image of Hi

et(A,G) → Hi
et(A, T ), with respect to the extension A′/A,

where i = 0,1.
b) Let A, k be as above and let 1 → T → G1 → G→ 1 be an exact sequence of
reductive A-group schemes, with T an A-torus. Then for any finite separable
extension k′/k with the ring of integers A′ belong to CA, the Corestriction
Principle holds for the image of Hi

et(A,G) → Hi+1
et (A, T ), with respect to the

extension A′/A, where i = 0,1.

First we need the following

Lemma 5. Let A be the ring of integers of a local non-archimedean field
k, G a semisimple quasi-split A-group. Then G has a maximal A-torus T,
the generic fiber of which is an anisotropic k-torus Tk.

Proof. It is clear that we may assume G to be simply connected. By the
structure theorem on decomposition of G into factors, which correspond to
irreducible factors of its Dynkin scheme (see [SGA 3], Exp. XXIV, Sec. 5.3,
Prop. 5.5, Prop. 5.9), we may assume, without any loss of generality, that
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the Dynkin diagram of G is irreducible, i.e., Gk is (absolutely) almost sim-
ple. First we consider the case G is A-split. By the inspection of the proof of
Lemma 6.15 of [PlR], one sees that there exists a maximal k-torus T of Gk

which is k-anisotropic and also split over a finite unramified extension of k.
Such a torus, as is well-known, can be lifted to a A-torus, which is a maximal
A-torus of G.

Next assume that Gk is quasi-split, but not split. We fix a Borel A-
subgroup B containing a maximal A-torus T of G, which always exists ac-
cording to [Ha1], Satz 3.1. Thus the generic fiber Gk is a quasi-split k-group,
which is not split, and Tk is a maximal k-torus containing a maximal k-
split subtorus Sk of Gk. Hence Gk is either of type 2A, 2D, 2E6, or quasi-
split trialitarian types 3D4,

6D4. By choosing a suitable matrix realization,
one can verify the assertion directly for types 2A and 2D. It remains to
check quasi-split type 2E6 and trialitarian types 3D4,

6D4. Notice that for
any s ∈ S = SpecA with residue field k(s), the fiber over s is either a
split or quasi-split k(s)-group. Let denote by T its(G)s the Tits index of
Gs = G ⊗ k(s) (i.e., Dynkin diagram with the action of the Galois group
Gal(k(s)s/k(s)) on the vertices of the Dynkin diagram (see [Ti])), R(G)s the
root system of Gs with respect to Ts := T × k(s), with a basis ∆s, which
corresponds to the set of vertices of T its(G)s. Denote by α̃s the highest root
in R(G)s (cf. [Bou], Table II). First assume that Gk is of type 2E6. Then
one checks as in [T], [T3], that the root subgroup Hs corresponding to α̃s is
defined over k(s) and also k(s)-split, and is of type A1. These groups give
rise to a split semisimple A-group scheme H of G, each fiber of which is of
split type A1. By a direct inspection, one sees that there is a torus, denoted
by TH , which is a maximal A-torus of H and satisfies the requirement of the
lemma (i.e., the generic fiber is an anisotropic maximal k-torus of Gk). The
centralizer of the A-subgroup scheme H gives rise to a reductive A-subgroup
scheme, each fiber of which has type 2A5. Now we can finish the proof by
reducing to the type 2A already considered.

The proof in the trialitarian case is similar.

2.2.1. Remark. One should notice that, as another argument of the proof,
we may also use a result of [SGA 3], Exp. XXIV, Corol. 1.12, which allows
us to lift isomorphisms of group schemes on residues fields to local henselian
rings.

2.3. Proof of Proposition 4. Some of ideas of the proof goes back to [De],
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[MS], [T1] - [T4]. It is clear that we may assume G′ to be the derived sub-
group of G (see [SGA 3], Exp. XXII, Théorème 6.2.1).
a) Case i = 0. First we assume that the derived subgroup G′ = [G,G] is sim-
ply connected. We consider the following commutative diagram with exact
rows

G(A′)
π′

→ T (A′) → H1
et(A

′, G′
A′)

↓

G(A)
π
→ T (A) → H1

et(A,G
′)

By a theorem of Bruhat - Tits - Kneser ([BrT], [Kn1], [Kn2]), H1(k,G′
k)

(resp. H1(k′, G′
k′)) is trivial, since G′ is simply connected. By a result of Tits

above (a special case of Serre - Grothendieck conjecture), the natural map
H1
et(A,G

′) → H1(k,G′
k) (resp. H1

et(A
′, G′) → H1(k′, G′

k′)) has trivial kernel.
Therefore π, π′ are surjective maps, and the assertion is trivial.

Next we consider the general case. We take any z-extension

1 → Z → H → G→ 1

of G. By Grothendieck’s Hilbert-90 Theorem ([Gr1]) and Lemma 1, we have

H1
et(A,Z) = 0,H1

et(A
′, ZA′) = 0,

so the homomorphisms π′ : H(A′) → G(A′) and π : H(A) → G(A) are
surjective. Consider the exact sequence

1 → G̃→ H → S → 1,

where G̃ = [H,H], S := H/G̃. From above we have the following commuta-
tive diagram with exact rows

1 → G̃ → H → S → 1

↓ ↓ ↓

1 → G′ → G → T → 1

14



From this we derive the following commutative diagrams

H(A′)
α′

→ S(A′)

↓ π′ ↓ β ′

G(A′)
γ′

→ T (A′)

H(A)
α
→ S(A)

↓ π ↓ β

G(A)
γ
→ T (A)

and also

S(A′)
β′

→ T (A′)

p ↓ ↓ q

S(A)
β
→ T (A)

where p, q are corestriction homomorphisms. Let g ′ ∈ G(A′), t′ = γ′(g′) ∈
T (A′), t = Cores(t) ∈ T (A). From above, there exists h′ ∈ H(A′) such that
π′(h′) = g′. Let s′ = α′(h′) ∈ S(A′), s = Cores(s′) ∈ S(A). By previous part,
there is h ∈ H(A) such that α(h) = s. Therefore for g = π(h), we have
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γ(g) = γ(π(h))

= β(γ(h))

= β(s)

= β(Cores(s′))

= Cores(β ′(s′))

= Cores(β ′(α′(h′)))

= Cores(γ′(π′(h′)))

= Cores(γ′(g′))

= Cores(t′) = t,

i.e., t ∈ Im(γ) as required.

Case i = 1. Let F ′ be the center of G′, Ad(G) := G′/F ′ the adjoint group
of G, and one can define as in the classical case the A-group scheme Gq

which is the quasi-split inner form of G, i.e., the cohomology class from
H1
et(A,Aut(G

q)) corresponding to G belongs to the image of the canonical
map H1

et(A,G
q) → H1

et(A,Aut(G
q)). Then one sees that we have G/F ′ =

Ad(G) × S (direct product), where S is a A-subtorus of G/F ′. Then the
same argument as in [T3] (see Theorem 2 above) shows that it suffices to
show the Corestriction principle to hold for the image of the map

∆ : H1
flat(A,Ad(G)) → H2

flat(A, F̃ ),

where F̃ is the center of the simply connected covering G̃ of Ad(G), which is
a flat finite A-group scheme of multiplicative type. If char.k = 0, we can use
étale cohomology, so there is a corestriction homomorphism H2

et(A
′, F̃ ) →

H2
et(A, F̃ ). In fact, by a result of Colliot-Thélène and Sansuc [CTS], for any

torus T over A we have an injective homomorphism H2
et(A, T ) → H2(k, Tk).

If T1 is a maximal A-torus of the quasi-split inner form G′q of G′ as in Lemma
5, and Ad(T1) is the corresponding maximal A-torus of Ad(G), then T1,k is
k-anisotropic, so H2(k, T1,k) = 0, so one checks that the coboundary map
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∆ : H1
flat(A,Ad(T1)) → H2

flat(A, F̃ ) is surjective. Therefore the same is true
for

∆q : H1
flat(A,Ad(G

q)) → H2
flat(A, F̃ ).

The method of proof of Lemma 2.5 of [T4] also shows that then the same is
true for G, i.e. the map

∆ : H1
flat(A,Ad(G)) → H2

flat(A, F̃ )

is surjective. The case of positive characteristic is trivial, due to the fact that
Hr
flat(A, F ) = 0, for r > 2 (see [Mi1], Chap. III, Sec.7).

b) Follows from part a) and Theorem 2. The proposition is therefore com-
pletely proved.

2.4. As the proofs above suggest, we have the following analogs of some
results of Kneser (cf. [Kn1], [Kn2], [PlR]). For the sake of convenience, we
state also the global analogs here, which will be used in next section.

Proposition 6. a) Let A be the ring of integers of a local non-archimedean
field k, G a semisimple A-group, G̃ the simply connected A-group scheme
which is covering G, F the kernel of canonical morphism G̃ → G. Then the
coboundary map ∆ : H1

flat(A,G) → H2
flat(A, F ) is bijective.

b) ([Do1], [Do2, Ch. VIII, Corol. 2.5]) Assume that A is a Dedekind ring
with quotient field a global field k, G a semisimple A-group, G̃ the simply
connected A-group scheme which is covering G, F the kernel of canonical
morphism G̃→ G. Then the coboundary map ∆ : H1

flat(A,G) → H2
flat(A, F )

is surjective.
c) With notation as in b), assume further that A is the ring of integers of a
global function field k. Then ∆ is bijective.

Proof. a) The surjectivity follows from above. To prove the bijectivity, notice
that by Theorem 3 (Tits theorem), we have Ker (H1

et(A, G̃) → H1(k, G̃)) = 0,
while H1(k, G̃) = 0 by Kneser - Bruhat - Tits theorem ([Kn1], [Kn2, [BrT]).
Now the bijectivity follows by using twisting with the cocycles (see [Gir],
Chap. 4, Prposition 4.3.4).
c) By b), ∆ is surjective. To prove the injectivity of ∆ we make use of Theo-
rem 3, b). By using twisting, we need only show that Ker (∆) = 0. By Prasad
- Margulis theorem (cf. e.g. [Ma], [Pr]), we know that over global function
field k any simply connected semisimple group G̃ has strong approximation
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over k. Then by Theorem 3 we have the following exact sequence

1 → H1
Zar(A, G̃) → H1

et(A, G̃) → H1(k, G̃k)

and a result of Harder [Ha1], Korollar 2.3.1, shows that H1
Zar(A, G̃) = 0.

Thus the commutative diagram together with the triviality of H1(k, G̃k) (by
a theorem of Harder [Ha2])

H1
Zar(A, G̃) = 0

↓

H1
flat(A, G̃)

p
→ H1

flat(A,G)
∆
→ H2

flat(A, F )

q ↓ ↓ r ↓ s

H1(k, G̃k)
pk→ H1(k,Gk)

∆k→ H2(k, Fk)

tells us that H1
et(A, G̃) = 0, and the assertion follows.

2.5. Remarks. 1) Kneser [Kn2] first proved above results in the case
of local and global field of characteristic 0. In [Do1], [Do2], a) has been
proved for the case of spectrum of a local field and this result and b) have
been proved by using the method of bands (gerbes) (see [Gir]).
2) It may happen that ∆ as in b) is not bijective (in the number field case).

2.6. The proof of Theorem I is completed after we prove the following

Proposition 7. Let A be the ring of integers of a non-archimedean local
field k, T → G a morphism of reductive A-group schemes, with T a A-torus.
Then for any finite separable unramified extension k′/k with the ring of in-
tegers A′ belong to CA, the Corestriction principle holds for the kernel of
H1
et(A, T ) → H1

et(A,G), with respect to the extension A′/A.

Proof. It is clear that we may assume that T is a maximal A-torus of G. Let
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G′ be the derived subgroup scheme of G and S := G/G′, an A-torus. We
have the following commutative diagram

H1
et(A, T )

γ
→ H1

et(A, S)

↓ α ↓=

H1
et(A,G

′)
δ
→ H1

et(A,G)
β
→ H1

et(A, S)

First we assume that G′ is simply connected. Then by Tits theorem quoted
above, H1

et(A,G
′) is injected into H1(k,G′

k), where the latter is trivial (Bruhat
-Tits - Kneser Theorem, [BrT], [Kn1, Kn2]). Thus we have Ker (α) =
Ker (β ◦ α) = Ker (γ), for which the Corestriction principle trivially holds.

In the general case, let x′ ∈ Ker (H1
et(A

′, T ) → H1
et(A

′, G)). By Lemma
1 there exists a z-extension T̃ → H of the pair T → G, which is x′-lifting.
Again by considering the commutative diagrams

H1
et(A

′, T̃A′))
α′

→ H1
et(A

′, HA′)

↓ π′ ↓ β ′

H1
et(A

′, TA′)
γ′

→ H1
et(A

′, GA′)

H1
et(A, T̃ )

α
→ H1

et(A,H)

↓ π ↓ β

H1
et(A, T )

γ
→ H1

et(A,G)
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and also

H1
et(A

′, T̃A′)
β′

→ H1
et(A

′, TA′)

p ↓ ↓ q

H1
et(A, T̃ )

β
→ H1

et(A, T )

we can finish by using similar arguments in the case treated above.

Theorem I now follows from Proposition 4 and Proposition 7.

2.7. Example. Let Ov be the ring of integers of a local non-archimedean
field k, G, T reductive Ov-group schemes, where T is a torus, and let
π : G → T be a Ov-morphism of group schemes. For any finite separa-
ble unramified extension k′/k with the ring of integers Ow there is a natural
norm homomorphism

N := NOw/Ov
: T (Ow) → T (Ov),

and in the following diagram

G(Ow)
β′

→ T (Ow)

↓ N

G(Ov)
β
→ T (Ov)

we have
N(β ′(G(Ow))) ⊂ β(G(Ov)).
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3 Global case

3.1. Some notations. Now let A be the ring of integers of a global field k
(see the convention in Introduction) or more generally, a Dedekind ring with
quotient field a global field k, and let A′ be the integral closure of A in a finite
separable extension k′ of k. Let Vk be the set of all non-equivalent rank 1
valuations of k, S a finite non-empty subset of Vk containing all archimedean
valuations. For v ∈ Vk, denote by kv (resp. Ov) the completion of k at v
(resp. the ring of integers of kv). Denote by AS the ring of S-integers of k,
containing A, i.e.,

AS = ∩v 6∈SOv.

If k′/k is a finite extension of k, S as above, then we denote by S ′ the exten-
sions to k′ of valuations belonging to S, thus S ′ ⊂ Vk′, and by A′ the integral
closure of A in k′ (hence A′

S is also the integral closure of AS in k′) and we
assume A ∈ CA, thus A′

S ∈ CAS
.

3.2. We have the following

Proposition 8. a) Let A be a Dedekind ring with quotient field a global field
k, 1 → G′ → G → T → 1 an exact sequence of reductive A-group schemes,
with T an A-torus. Then for any finite separable extension k′/k with the
ring of integers A′ belong to CA, there is a finite set S ⊂ V such that the
Corestriction principle holds for the image of Hi

et(AS, GAS
) → Hi

et(AS, TAS
),

with respect to the extension A′
S/AS where i = 0,1.

b) Let A be as above, and let 1 → G′
k → Gk → Tk → 1 an exact sequence

of connected reductive k-groups, with T a k-torus. Then for any finite sep-
arable extension k′/k with the ring of integers A′ belong to CA, there is a
finite set S ⊂ V such that above exact sequence is obtained from an exact
sequence of reductive AS-group schemes 1 → G′ → G→ T → 1 by taking the
fibers at generic point, and the Corestriction principle holds for the image of
Hi
et(AS, GAS

) → Hi
et(AS, TAS

) with respect to the extension A′
S/AS where i =

0,1.

Proof. It is clear that b) ⇔ a) for S sufficiently large, so it suffices to prove
a). It is clear also, that we may assume G′ to be the derived subgroup of G
(see [SGA 3], Exp. XXI).
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Case i=0. First we assume that G has simply connected semisimple part
(i.e., the derived subgroup scheme). We have the following commutative
diagram

H0
et(A

′, GA′)
π′

→ H0
et(A

′, TA′)
γ
→ H1

et(A
′, G′

A′)

↓

H0
et(A,G)

π
→ H0

et(A, T )
α
→ H1

et(A,G
′)

and also the following

H1
et(A,G

′)
ψ
→ H1(k,G′

k)

H1
et(A

′, G′
A′)

φ
→ H1(k′, G′

k′) ↑ α ↑ β

↑ γ ↑ δ H0
et(A, T )

ψ′

→ H0(k, Tk)

�
�

�
�

�
��:

�
�

�
�

�
��:

H0
et(A

′, TA′)
φ′

→ H0(k′, Tk′)

where the south-east arrows are corestriction homomorphisms. We have also
similar diagrams where A is replaced by AS, the localization of A at a finite
set of valuations S
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H1
et(AS, G

′
AS

)
ψ
→ H1(k,G′

k)

H1
et(A

′
S, G

′
A′

S

)
φ
→ H1(k′, G′

k′) ↑ α ↑ β

↑ γ ↑ δ H0
et(AS, TAS

)
ψ′

→ H0(k, Tk)

�
�

�
�

�
��:

�
�

�
�

�
��:

H0
et(A

′
S, TA′

S
)
φ′

→ H0(k′, Tk′)

We may also assume that, by passing from A to AS for suitable S, G′

has strong approximation theorem with respect to S, i.e., G′(AS) is dense in
the product G′

S :=
∏

v∈S G
′(kv) with respect to the diagonal embedding, or

equivalently, G′
SG

′(k) is dense in G′(A). This is possible due to fundamental
results of Kneser, Platonov, Margulis and Prasad (see [PlR], [Ma], [Pr] and
related references there). In fact, G′ has strong approximation with respect
to S if and only if the topological group

∏

v∈S G
′(kv) is non-compact. Also,

it is well-known that the set S0 of all valuations v of k, where G′(kv) is
compact, is finite, so we just take S such that S \ S0 6= ∅. Then the same
proof of [Ha1], Korollar 2.3.2, shows that H1

Zar(A
′
S, G

′
A′

S

) = 0. Therefore

by Nisnevich results (Theorem 3), the maps φ, ψ have trivial kernels. Let
x′ ∈ Im (π′) Then x′ ∈ Ker (γ) = Ker (φ ◦ γ) = Ker (δ ◦ φ′). By [T1], [T2],
the Corestriction principle holds for Ker (δ), therefore for x = Cores(x′) we
have ψ′(x) ∈ Ker (β). Hence

ψ(α((Cores(x′)))) = β(ψ′(Cores(x′)))

= β(Cores(φ′(x′)))

= 0,

i.e., x ∈ Ker (α), since ψ has trivial kernel.
In the general case, by Lemma 1, we may take any z-extension (H,S) of

the pair (G, T ), i.e., we have the following commutative diagram with exact
rows
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1 → Z → S → T → 1

↓= ↓ ↓

1 → Z → H → G → 1

and further the proof is similar to that of Proposition 4, Case a).

Case i = 1. The proof in this case is similar to the local case, by using
Theorem 2 and Propositions 6, 7.

3.3. Next we consider the case of exact sequence 1 → T1 → G1 → G→ 1.

Proposition 9. a) Let A a Dedekind ring with quotient field a global field k,
1 → T → G1 → G→ 1 an exact sequence of reductive A-group schemes, with
T a central A-torus. Then for any finite separable extension k ′/k with the ring
of integers A′ belong to CA, there is a finite set S ⊂ V such that the Core-
striction principle holds for the image of Hi

et(AS, GAS
) → Hi+1

et (AS, TAS
),

with respect to the extension A′
S/AS, where i = 0,1.

b) Let A be the ring of integers of a global field k, 1 → Tk → G1,k → Gk → 1
an exact sequence of connected reductive k-groups, with Tk a k-torus. Then
for any finite separable extension k′/k with the ring of integers A′ belong to
CA, there is a finite set S ⊂ V such that above exact sequence is obtained from
an exact sequence of reductive AS-group schemes 1 → T → G1 → G → 1 by
taking the fibers at generic point, and the Corestriction principle holds for
the image of Hi

et(AS, GAS
) → Hi+1

et (AS, TAS
), with respect to the extension

A′
S/AS where i = 0,1.

Proof. It is clear that b) ⇔ a), and to prove b) it is clear that we may
and shall assume that conditions of a) hold. This time we need to take S
sufficiently large such that G̃ has strong approximation over AS and such
that A′

S is a factorial ring, thus H1
et(A

′
S, ZA′

S
) = 0 for any induced A′

S-torus
Z (cf. [Be]). Then the proposition follows by using Theorem 2 and Proposi-
tion 8.

3.4. Finally, we treat the case of kernel of a connecting map induced
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from a morphism T → G, where T is an A-torus and G a reductive A-group
scheme.

Proposition 10. a) Let A a Dedekind ring with quotient field a global field
k, α : T → G a morphism of reductive A-group schemes, with T an A-torus.
Then for any finite separable extension k′/k with the ring of integers A′ be-
long to CA, there is a finite set S ⊂ V such that the Corestriction principle
holds for the kernel of αAS

: H1
et(AS, TAS

) → H1
et(AS, GAS

) with respect to
the extension A′

S/AS.
b) Let A a Dedekind ring with quotient field a global field k, α : Tk →
Gk a morphism of connected reductive k-groups, with Tk a k-torus. Then
for any finite separable extension k′/k with the ring of integers A′ belong
to CA, there is a finite set S ⊂ V such that α is induced from a mor-
phism (denoted also by the same symbol) of reductive AS-group schemes
α : T → G, and the Corestriction principle holds for the kernel of αAS

:
H1
et(AS, TAS

) → H1
et(AS, GAS

), with respect to the extension A′
S/AS, where

A′
S := AS ⊗AS

A′, A′ ∈ CA.

Proof. By enlarging A it is clear that b) ⇒ a), thus it suffices to prove b).
We apply the method of proof of Proposition 7. First we may take S such
that A′

S is a principal ideal domain, thus H1
et(A

′
S, ZA′

S
) = 0 for any induced

A′
S-torus Z (cf. [Be]). Next we may assume that T is a maximal A-torus ofG.

Step 1. First we reduce to the case of semisimple groups. Denote by P
the radical of G, i.e., the maximal central A-torus of G, and by G′ the de-
rived subgroup of G. We have P ⊂ T and also finite surjective A-morphism
t : G′ × P → G, with kernel F a finite A-group scheme of multiplicative
type (see [SGA 3], Exp. XXII, Sec. 6.2.3). Thus we have the following
commutative diagram with exact rows

1 → F → T ′ × P → T → 1

↓= ↓ s ↓ t

1 → F → G′ × P → G → 1
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Here T ′ is a maximal A-torus of G′, embedded into T . We take the cohomol-
ogy and consider the commutative diagram

H1
flat(A

′
S, FA′

S
)

p′

→ H1
flat(A

′
S, T

′
A′

S

× PA′

S
)

q′

→ H1
flat(A

′
S, TA′

S
)

∆′

→ H2
flat(A

′
S, FA′

S
)

↓= ↓ s ↓ t ↓=

H1
et(A

′
S, FA′

S
)

p
→ H1

flat(A
′
S, G

′
A′

S

× PA′

S
)

q
→ H1

flat(A
′
S, GA′

S
)

∆
→ H2

flat(A
′
S, FA′

S
)

Let x ∈ Ker (t : H1
flat(A

′
S, TA′

S
) → H1

flat(A
′
S, GA′

S
)). Then we have 0 =

∆(t(x)) = ∆′(x), therefore there exists y ∈ H1
flat(A

′
S, T

′
A′

S

× PA′

S
) such that

x = q′(y), thus q(s(y)) = 0, i.e., s(y) = p(f) = s(p′(f)), f ∈ H1
flat(A

′
S, FA′

S
).

In order to prove the Corestriction principle in this case, by twisting with
the cocycle representing f (see [Gir], Chap. IV, Proposition 4.3.4), we may
assume that f = 0. Therefore we are reduced to proving the assertion for
the map

H1
flat(A

′
S, T

′
A′

S

× PA′

S
) → H1

flat(A
′
S, G

′
A′

S

× PA′

S
).

It is now clear that we may reduce further to consider the case of the map
H1
flat(A

′
S, T

′
A′

S

) → H1
flat(A

′
S, G

′
A′

S

), i.e., to the semisimple case.

Step 2. Next we reduce to the case of simply connected semisimple groups.
Namely we want to lift the problem to the simply connected covering G̃ of
G′. We fix an element x′ ∈ Ker (H1

et(A
′
S, T

′
A′

S

) → H1
et(A

′
S, G

′
A′

S

)). Consider

the following commutative diagram

1 → F0 → T̃ → T → 1

↓= ↓ u ↓ v

1 → F0 → G̃ → G → 1
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Here T̃ is a maximal A-torus of G̃, covering T , and F0 = ker(G̃ → G′). By
taking the cohomology and consider the commutative diagram

H1
flat(A

′
S, F0,A′

S
)

p′

→ H1
flat(A

′
S, T̃A′

S
)

q′

→ H1
flat(A

′
S, T

′
A′

S

)
∆′

→ H2
flat(A

′
S, F0,A′

S
)

↓= ↓ u ↓ v ↓=

H1
flat(A

′
S, F0,A′

S
)

p
→ H1

flat(A
′
S, G̃A′

S
)

q
→ H1

flat(A
′
S, G

′
A′

S

)
∆
→ H2

flat(A
′
S, F0,A′

S
)

The same arguments as above show that we are reduced to the pair (T̃ , G̃).
To finish the proof, we consider the following commutative diagram

1 → H1
Zar(A

′
S, T̃A′

S
)

p′

→ H1
et(A

′
S, T̃A′

S
)

q′

→ H1(k′, T̃A′

S
)

↓ α ↓ β ↓ γ

1 → H1
Zar(A

′
S, G̃A′

S
)

p
→ H1

et(A
′
S, G̃A′

S
)

q
→ H1(k′, G̃k′)

where all its rows are exact according to Nisnevich Theorem (see Theorem 3).
As in the proof of Proposition 8, we may also take S sufficiently large, so that
G̃k has strong approximation theorem with respect to S, i.e., G̃(AS) is dense
in the product

∏

v∈S G̃(kv) with respect to the diagonal embedding. Then,
as above we have H1

Zar(A
′
S, G̃A′

S
) = 0. Therefore from above commutative

diagram it follows that

Ker (β) = Ker (β ◦ q) = Ker (γ ◦ q′).

By [T1], the Corestriction principle holds for Ker (γ), it follows that the same
holds true for Ker (γ ◦ q′), and we are done.
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Theorem II now follows from above propositions.

4 Applications

We consider in this section some applications of results and methods de-
scribed in previous sections.

4.1. We consider the class set of a given flat affine group scheme G of
finite type over Dedekind ring A with smooth generic fiber Gk over the quo-
tient field k of A. Let X = Spec(A), η ∈ X the generic point of X, S a finite
subset of X0 := X \ {η}. The ring A(S) of S-adèles is defined as

A(S) :=
∏

v∈X0\S

Av ×
∏

v∈S

kv,

where kv (resp. Av) is the completion of k (resp. A) in the v-adic topology.
We denote by A = ind.limS A(S) the adèle ring of k (with respect to A !).
We recall (see [Ha1], [Ni1], [Ni3], [Ni4]) that the local class set for a prime
v ∈ X0 (denoted by Clv(G)), the S-class set, of G with respect to a finite set
S of primes of A (denoted by Cl(S,G)), and the class set of G (denoted by
ClA(G)), is the set of double classes

Clv(G) := G(Av) \G(kv)/G(k),

ClA(S,G) = G(A(S)) \G(A)/G(k),

and
ClA(G) = G(A(∅)) \G(A)/G(k),

respectively. Here G(k) is embedded diagonally into G(A). The double
class G(A(∅)).1.G(k) is called the principal class. In the classical case (and
notation) of the algebraic groups G defined over a Dedekind ring A with
quotient field a global field k, the class set is nothing else than the usual
class set of the group G, i.e., if ∞ is the set of all infinite primes of A, A(∞)
the set of integral adèles of A:

A(∞) :=
∏

v 6∈∞

Av ×
∏

v∈∞

kv,
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then
ClA(G) = G(A(∞)) \G(A)/G(k),

(cf. [Bo], [PlR], [Ro]).
Especially in the case G = Gm, the class set is exactly the ideal class

group of the global field k. Many other information related with the class
number can be found in [PlR] and reference therein. In general, class sets
contain lot of arithmetic information of the groups under consideration, and
it is an important arithmetic invariant for group schemes over A. This was
one of the main motivations for Nisnevich to introduce a new Grothendieck
topology, which was originally called completely decomposed topology and
now is called Nisnevich topology. A site with Nisnevich topology is called a
Nisnevich site and the corresponding cohomology is called Nisnevich coho-
mology, denoted by Hi

Nis(X,G), where G is a sheaf of groups over a scheme
X (see [Ni1] - [Ni4]). The following theorem records most basic properties of
Nisnevich cohomology that we need in this paper.

Theorem 11. Let X be a noetherian scheme of finite Krull dimension d.
1) (Kato - Saito, [KS]) For any sheaf F of abelian groups over XNis, we have
Hn
Nis(X,F ) = 0, for all n > d.

2) [Ni3], [Ni4] We have the following exact sequence of cohomology sets for
any sheaf of groups G over X

1 → H1
Nis(X,G) → H1

et(X,G) → H0
Nis(X,R

1f∗G)) → 1,

where f : Xet → XNis is canonical projection.
3) ([Ni1], [Ni3], [Ni4]) Let G be a flat affine group scheme over X with smooth
generic fiber. If X is, moreover, a Dedekind scheme Spec(A) in above nota-
tion, then we have the following bijections

Clv(G) ' H1
Nis(Av, G),

H1
Zar(A,G) ' ClA(G) ' H1

Nis(A,G),

Cl(S,G) ' H1
Nis(AS, G),

for all v and finite set of primes S.

4.1.1. Remark. Regarding Theorem 11, 3), it was shown in [Ha1], prior
to [Ni1], [Ni3], [Ni4], that there always exists an injection H1

Zar(A,G) ↪→
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ClA(G).

4.2. Formally, all results above and their methods of proof for (Weak)
Corestriction principle for the case of Nisnevich cohomology also hold true.
The main points to check are the following. First notice that Proposition 8.4
of [SGA 3], Exp. XXIV still holds if we replace the étale topology by the
Nisnevich one. In fact, the covering in the Nisnevich topology is also one in
the étale topology, and the Nisnevich cohomology can be computed by using
Čech cocycles (see [Ni3], of [MV]). Since the argument is short, so we repeat
it here.

Proposition 11′. Let S ′ → S be finite étale morphism of Noetherian schemes.
Let G′ be a sheaf of groups over S ′, G =

∏

S′/S G
′, the restriction of scalars

of G′ from S ′ to S. Then in the Nisnevich topology, the functors

P 7→ P ×S S
′, P ′ 7→

∏

S′/S

P ′

induces a bijection H1
Nis(S,G) → H1

Nis(S
′, G′).

We need the following

Lemma 1. ([SGA3, Exp. XXIV, Prop. 8.2.]) Let C be a category with
fiber products, equipped with a topology, which is weaker than the canonical
one, S ′ → S a morphism in C, G’ a sheaf of groups over S’, G =

∏

S′/S G
′

the sheaf of groups over S. Let H1
S(S

′, G′) ⊂ H1(S ′, G′) be the set of classes
of principal homogeneous G′-spaces trivialized by some sieve of S’, which is
obtained by base change from a suitable covering sieve of S. The canonical
map H1(S,G) → H1(S ′, G′), P 7→ P ×S S

′ defines a bijection H1(S,G) '
H1
S(S

′, G′).

Lemma 2. ([SGA 3, Exp. XXIV, Lemme 8.3]) With notation as in Lemma
1, the assertion H1

S(S
′, G′) = H1(S ′, G′) is local over S, i.e., if there is a cov-

ering {Si → S}i such that for all i we have H1
Si

(S ′×SSi, G
′) = H1(S ′×SSi, G

′)
then we have H1

S(S
′, G′) = H1(S ′, G′).

Proof of Proposition 11′. With above notation, by Lemma 1, we need
only show that H1

Nis,S(S
′, G′) = H1

Nis(S
′, G′). By Lemma 2, it suffices to

verify this for a specific Nisnevich covering. We just take the finite cov-
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ering {Si → S}, i = 1, ..., n, consisting of n copies of S, and let S ′ be
their direct sum. Thus the sheaf G′ is given by a collection of n sheaves
Gi over S, and H1

Nis(S
′, G′) '

∏

1≤i≤n H1
Nis(S,Gi). On the other hand,

G =
∏

S′/S G
′ =

∏

iGi, so H1
Nis(S,G) =

∏

i H
1
Nis(S,Gi), hence we have

H1
Nis,S(S

′, G′) = H1
Nis(S

′, G′) as required.

Hence Theorem 2 still holds in the new setting. Second, we have a natu-
ral map with trivial kernel H1

Nis(X,G) → H1
et(X,G). Using these facts, one

can show that all main results in previous sections remain valid in the setting
of Nisnevich topology.

4.3. Now let notation be as in Proposition 8, and let π : G → T be a
morphism of A-group schemes, where G is A-reductive group scheme and T
is an A-torus. It is obvious that π induces a map of class sets πv : Clv(G) →
Clv(T ), πA : ClA(G) → ClA(T ), where Clv(T ), ClA(T ) have natural group
structure. If A′ ∈ CA then one has a norm maps NA′/A : T (A′) → T (A),
NA′

v/Av
: T (A′

v) → T (Av), Nk′/k : T (k′) → T (k), Nk′

v/kv
: T (k′v) → T (kv).

Then for an extension w|v in k′, we have

Proposition 12. In the two diagrams

Clw(G)
πw→ Clw(T )

↓ Nk′

v/kv

Clv(G)
πv→ Clv(T )

and

ClA′(G)
π

A′

→ ClA′(T )

↓ NA′/A

ClA(G)
πA→ ClA(T )
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the following inclusions hold

Nk′

v/kv
(π′

v(Clw(G))) ⊂ πv(Clv(G)),

NA′/A(π′
A(Cl′A(G))) ⊂ πA(ClA(G)).

Proof. The proof follows from Proposition 8. Another proof follows from
Remarks 4.2 combined with Theorem 11.

4.4. Let k be a global field, A a Dedekind ring with quotient field k, ∞
the set of infinite primes of A, A(∞) the set of integral adèles of A. The
problem of computing class sets for a given linear algebraic group G defined
over k is a non-trivial one, and depends on the matrix realization (i.e., em-
bedding) of G ↪→ GLn. In this case, we write G(B) = G(k̄) ∩ GLn(B) for
any overring B/A. One of the most interesting cases is when the class set has
a natural group structure, which then becomes the class group of G (denoted
by GCl(G) as in [PlR]). Recall that for a finite set S of primes of A, G has
weak approximation with respect to S if G(k) is dense in the product of v-
adic topologies on

∏

v∈S G(kv), and G has strong approximation with respect
to S with S ⊃ ∞, if, for a given matrix realization G ↪→ GLn, G(AS) is dense
in

∏

v∈S G(kv). Equivalently, the subset G(k) is dense in G(AS), or the same,
G(k)GS is dense in G(A), where GS :=

∏

v∈S G(kv). In the case S = ∞, G
is said to have absolute strong approximation over k. Then it follows that
ClA(G) = 1. Also, it has been shown ([PlR], Prop. 8.8. p. 451) that if G
is a semisimple algebraic group defined over a number field k, such that the
simply connected covering G̃ of G has the absolute strong approximation,
then ClA(G) has a natural structure of finite abelian group, and its order is
the class number of G. In the case of connected reductive k-groups G, we
have the following similar property characterizing ClA(G) as a finite abelian
group, slightly extending Proposition 8.8 of [PlR]. The method of proof is
a slight modification of (loc. cit.) and [Kn3]. The following statements
(Proposition 13, Theorem 14) will finish the proof of Theorem III mentioned
in Introduction.

Proposition 13. Let k be a global field, A a Dedekind ring with quotient
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field k. Let G be a connected reductive k-group such that the simply connected
covering G̃ of the derived subgroup [G,G] of G has absolute strong approxi-
mation. Then in any matrix realization
a) the principal double class G(A(∞))G(k) contains the derived subgroup
[G(A), G(A)];
b) the principal double class G(A(∞))G(k) is a normal subgroup of G(A);
c) the class set ClA(G) has a natural structure of a finite abelian group, and
we have

ClA(G) = GCl(G) ' G(A)/G(A(∞))G(k).

Proof. 1) Let G = G′T , where the product is almost direct, G′ is semisimple,
T is a central k-subtorus of G and there is a k-isogeny

1 → F → G̃× S
π
→ G = G′T → 1,

where G̃ is the simply connected covering of G′.

2) It is an important observation by Deligne [De], Sec. 2.0.2, that in the
above exact sequence, π(G̃) is a normal subgroup of G(k) with abelian quo-
tient group. In particular,

[G(k), G(k)] ⊂ π(G̃(k)).

Moreover, this is true for G considered as a sheaf of groups over some site.
Since A is a k-algebra, the above exact sequence can be considered as an exact
sequence of A-group schemes, therefore, by considering the flat cohomology
we have an exact sequence

1 → F (A) → G̃(A) × S(A)
πA→ G(A)

δA→ H1
flat(A, F ).

Since the above sequence is exact, and the cohomology group H1
flat(A, F ) is

commutative, it follows that Im (πA) is a normal subgroup of G(A), contain-
ing [G(A), G(A)]. Also, from what has been said, we have

[G(A), G(A)] ⊂ πA(G̃(A)) ⊂ Im (πA).

(This has been proved by Kneser in the case of number fields. One may also
use the arguments given in [Oe], Chap. II, related with the cohomology of
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adelic groups.)

3) By assumption, G̃ has absolute strong approximation, hence we have
G̃(A(∞))G̃(k) = G̃(A). We show that

πA(G̃(A)) ⊂ G(A(∞))G(k)

by showing that
πA(G̃(A)) ⊂ G′(A(∞))G′(k).

Indeed, let W be the finite set of all finite primes v of k such that π is not
defined over Av. It is well-known that W is finite. If W is empty, we are
done. Assume W is non-empty. It is clear that we have

πA(
∏

v 6∈W

G̃(Av) ×
∏

v∈W∪∞

{1}) ⊂ G′(A(∞)),

πA(
∏

v∈∞

G̃(Av) ×
∏

v 6∈∞

{1}) ⊂ G′(A(∞)).

Therefore it remains to show that

πA(
∏

v∈W

G̃(Av) ×
∏

v 6∈W

{1}) ⊂ G′(A(∞)).

Denote by Cl(.) the operation of taking closure. Since G̃ has absolute strong
approximation over k, G̃(k) is dense in the adèle topology in the restricted
product

∏′
v 6∈∞(G̃(kv), G̃(Av)), hence

∏

v∈W

G̃(Av) ×
∏

v 6∈W

{1} ⊂ Cl(G̃(k)),

where the closure is taken in G̃(A). Therefore

πA(
∏

v∈W

G̃(Av) ×
∏

v 6∈W

{1}) ⊂ πA(Cl(G̃(k))).

Since πA is continuous in the adèle topology, which has a countable basis, it
follows easily that

πA(Cl(G̃(k))) ⊂ Cl(πA(G̃(k)))

⊂ Cl(G′(k))
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⊂ Cl(G(k))

⊂ G(A(∞))G(k),

since the latter is an open subset of G(A) containing G(k). Therefore we
have

πA(G̃(A)) ⊂ G′(A(∞))G′(k)

as required. It follows from above that

[G(A), G(A)] ⊂ πA(G̃(A)) = πA(G̃(A(∞))G̃(k))

⊂ G(A(∞)))G(k).

4) We show that G(A(∞))G(k) is a normal subgroup of G(A). Let g, g1 ∈
G(A(∞)), h, h1 ∈ G(k). Then

(gh)(g1h1) = g.g1(g
−1
1 .h.g1.h

−1)h.h1

= (g.g1)[g
−1
1 , h]h.h1

∈ G(A(∞))(G(A(∞))G(k))G(k) (by 3))

= G(A(∞))G(k); (*)

(g.h)−1 = g−1.h−1(h.g.h−1.g−1)

= (g−1.h−1)(g2.h2) (by 3))

∈ G(A(∞))G(k) (by (*)).

HenceG(A(∞))G(k) is a subgroup ofG(A), and since it contains [G(A), G(A)],
it is a normal subgroup of G(A).
5) In [Kn3], it has been proved that over a number field k, for any g ∈ G(A),
we have

G(A(∞)).g.G(k) = g.G(A(∞))G(k).

One checks without difficulty that the same argument works in the case
char.k > 0 (by using 2)). From above we see that G(A(∞))G(k) is a normal
subgroup of G(A), and the double class set

ClA(G) = G(A(∞)) \G(A)/G(k) = G(A)/G(A(∞))G(k) = GClA(G)
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is naturally the class group of G.

4.4.1. Remarks. If we replace the condition that G̃ has absolute strong
approximation over k by the (obviously weaker) condition

[G(A), G(A)] ⊂ G(A(∞))G(k),

then all the statements of Proposition 13 still holds and the proof remains
the same.

4.5. Assume that the natural group structure exists on the class set of a
connected reductive group G defined over a global field k, and the same also
holds for Gk′ for all finite extension k′/k. In this case, one may ask if GCl(G)
possesses certain norm map. More precisely, if k′/k is a finite separable ex-
tension of fields, we ask whether there is a norm homomorphism

Nk′/k : GCl(Gk′) → GCl(G),

which is functorial in k′/k. With notation as above, in [De], Deligne has
introduced the group

Π(G) := G(A)/π(G̃(A))G(k)

for a connected reductive group G defined over a global field k. It is an
abelian quotient group of G(A), and it was shown to have a norm homo-
morphism Nk′/k : Π(Gk′) → Π(G) ([De], Sec. 2.4), which plays a role in the

study of reciprocity law for canonical models of Shimura varieties. If G̃ has
absolute strong appoximation, then the class group GCl(G) is a factor group
of Π(G) and it is quite possible that in this case, we also have a norm homo-
morphism GCl(Gk′) → GCl(G). In the case of reductive A-group schemes we
have a property, similar to Proposition 13, for reductive A-group schemes,
and, under the same assumption, also a norm homomorphism as follows.

Theorem 14. Let k be a global field, A a Dedekind ring with quotient field
k, G a reductive A-group scheme such that the simply connected covering G̃k

of the derived subgroup G′ := [G,G] of G has absolute strong approximation
over k. Then for any A′ ∈ CA, we have a norm homomorphism

NA′/A : GClA′(GA′) → GClA(G),
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such that if A′′ ∈ CA′ , then

NA′′/A = NA′/A ◦NA′′/A′ .

Before proving Theorem 14, we need the following result. Let k be a global
field, G a smooth connected reductive k-group, H a z-extension of G, T =
H/[H,H]. Denote by

A(P ) =
∏

v

P (kv)/Cl(P (k))

the obstruction to weak approximation over k for a k-group P , where P (k)
is embedded diagonally into the direct product

∏

v P (kv). Then

Proposition 15. We have canonical isomorphisms of finite abelian groups

A(G) ' A(H) ' A(T ).

Proof. In the case k is a number field, these isomorphisms were established in
[T5], [T6] (see also [BKG] for some further extensions). In the case of global
function field, we use similar arguments (see the proof of Lemma 3.8, [T6]) in
combination with the existence of z-extensions proved in Section 1 (see also
[T4]) for the case of characteristic p > 0, the triviality of Galois cohomology
of simply connected semisimple k-groups (Harder’s Theorem, [Ha2], Satz A),
and their analog over local function fields (Bruhat - Tits Theorem, [BrT]).

Proof. (of Theorem 14). We present two proofs of this theorem.

First proof. Claim 1. Assume that [G,G] is simply connected. Consider
the following exact sequence of reductive A-group schemes

1 → G̃→ G
π
→ T → 1,

where T = G/G̃ is a A-torus. Then we have canonical isomorphism of finite
abelian groups

GClA(G) ' GClA(T ).

We know that π induces a continuous homomorphism πA : G(A) → T (A).
We notice that since π is defined over A, and the class set of G is a class
group GClA(G), π induces a homomorphism between class groups

π′ : GClA(G) → GClA(T ).
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Let t = (tv) ∈ T (A). Let S be a finite set of finite primes of A, such that for
v 6∈ S we have tv ∈ T (Ov). We may take S sufficiently large such that for
S ′ := ∞∪ S, we have

A(G) ' A(S ′, G) :=
∏

v∈S′

G(kv)/Cl(G(k)) '

' A(T ) ' A(S ′, T ) :=
∏

v∈S′

T (kv)/Cl(T (k))

(see the proof of [T6], Lemma 3.8). Then π induces an isomorphism

πS′ : A(S ′, G) ' A(S ′, T ),

such that π−1
S′ (Cl(T (k))) = Cl(G(k))). We can write

t = t∞.tS.t
′
S,

where

t∞ ∈ T (k∞) ×
∏

v 6∈∞

{1}, tS ∈
∏

v∈S

T (kv) ×
∏

v 6∈S

{1}, t′S ∈
∏

v 6∈S

T (Ov) ×
∏

v∈S

{1}.

By Tits result (Theorem 3 a)), and Kneser - Bruhat - Tits about the triviality
of the H1 of simply connected groups above, it is clear that t′S ∈ Im (πA).
From the isomorphism above, we can choose gS ∈

∏

v∈S G(kv) such that
πS(gS) = tS (mod. Cl(T (k))). All these facts show that π induces a surjective
homomorphism

π′ : GClA(G) → GClA(T ).

Next we show that π′ is a monomorphism. Let g = (gv) ∈ G(A) such that
πA(g) = t∞tf tk ∈ T (A(∞))T (k), the principal double class of T (A), where

tk ∈ T (k), t∞ ∈ T (k∞) ×
∏

v 6∈∞

{1}, tf ∈
∏

v 6∈∞

T (Ov) ×
∏

v∈∞

{1}.

As we notice above, tf ∈ Im πA, say tf = πA(hf ), where

hf ∈
∏

v 6∈∞

G(Ov) ×
∏

v∈∞

{1}.

By replacing g = (gv) by h−1
f g, we may assume that tf = 1. Thus we have

πA(g) = t∞tk.
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Let W be a finite set of finite primes of A such that for v 6∈ W then gv ∈
G(Ov). We may enlarge W so that W = S satisfies the same condition
regarding weak approximation presented above. Since, as it is well-known,
the weak approximation holds with respect to archimedean primes, it follows
that t∞tk ∈ Cl(T (k)), where the closure is being taken in

∏

v∈S∪∞ T (kv). We
can write g = g∞gSg

′
S, where

g∞ ∈ G(k∞)×
∏

v 6∈∞

{1}, gS ∈
∏

v∈S

G(kv)×
∏

v 6∈S

{1}, g′S ∈
∏

v 6∈S∪∞

G(Ov)×
∏

v∈S∪∞

{1}.

On one hand, the image of g in the class group is the same as that of g∞gS.
On the other hand, the image of g∞gS in

∏

v∈S∪∞ T (kv) is equal to t∞tS ∈
Cl(T (k)). It follows from above that g∞gS ∈ Cl(G(k)), the closure being
taken in

∏

v∈S∪∞G(kv). Hence g∞gS ∈ Cl(G(k)), where the closure is taken
in G(A). Since G(A(∞)) is an open subgroup of G(A), it follows that

Cl(G(k)) ⊂ G(A(∞))G(k),

hence

g = g∞gSg
′
S

∈ Cl(G(k))
∏

v 6∈S∪∞G(Ov) ×
∏

v∈S∪∞{1}

⊂ G(A(∞))G(k)
∏

v 6∈S∪∞G(Ov) ×
∏

v∈S∪∞{1}

⊂ G(A(∞))G(k),

where the last inclusion follows from the proof of Proposition 13. Thus g has
trivial image in the class group as required. (To prove the last inclusion, one
may also use the strong approximation assumption and also a result due to
Deligne [De], Corollary 2.0.9.)

Claim 2. With above notation and assumptions, we have the following exact
sequence of finite abelian groups

1 → GClA(Z) → GClA(H) → GClA(G) → 1.

Indeed, from the exact sequence

1 → Z → H → G→ 1
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we derive without difficulty the exact sequence on adelic points

1 → Z(A) → H(A) → G(A) → 1,

1 → Z(A(∞)) → H(A(∞)) → G(A(∞)) → 1,

1 → Z(k) → H(k) → G(k) → 1.

and from this the corresponding class groups. (One may also invoke results
on Nisnevich cohomology to deduce this (simple) fact. See [Ni4].)

Due to the functoriality of étale cohomology of tori (or just use the results
proved in Sections 2- 3), the corestriction (i.e., the norm) homomorphism
exist for the class group GClA(Z) of Z (denoted by N1), and for the class
group GClA(T ) of T , hence also for GClA(H) (denoted by N2). The following
commutative diagram

1 → GClA′(ZA′) → GClA′(HA′) → GClA′(GA′) → 1

↓ N1 ↓ N2 ↓ N3

1 → GClA(Z) → GClA(H) → GClA(G) → 1

resulting from this functoriality, with exact rows, shows the existence of the
corestriction (norm) map N3 for GClA(G) as required.

Second proof. For simplicity, we denote

B = G(A), C = G(A(∞)), D = G(k), E = G̃(A), F = π(G̃(A)), J = G̃(A(∞)),

where π : G̃ → G′ = [G,G] denotes the canonical projection from simply
connected covering G̃ of the semisimple part G′ of G. We prove the following

Claim 3. There exists a norm homomorphism

N : GClA′(GA′) → GClA(G)
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which is compatible with the Deligne’s norm homomorphism in the sense that
the following diagram is commutative

1 → Ker (q′) → B′/F ′ q′

→ GClA′(GA′) → 1

↓ q1 ↓ q2 ↓ NA′/A

1 → Ker (f) → B/F
q
→ GClA(G) → 1

where (.)′ means an object is obtained if we pass from k to a finite extension
k′/k, i.e., considered over a finite separable extension k′/k.

With our assumption on the strong approximation, we know from the proof
of Proposition 13, that CD is a normal subgroup of finite index of B, and
GClA(G) = B/CD. From [T2], we know that there is a norm homomor-
phism for the quotient group B/F . (In fact, from results of Sections 2, 3,
under our assumption on absolute strong approximation, it follows also that
in the case of local or global fields, the Corestriction principle holds for the
canonical map ab0G : H0

et(A,G) → H0
ab,et(A,G). From this fact, one deduces

without difficulty the above mentioned norm homomorphism.) This norm
homomorphism is compatible with the Deligne’s norm homomorphism for
the group Π(G), i.e., the following diagram is commutative

1 → Ker (f ′) → B′/F ′ f ′

→ Π(GA′) → 1

↓ f1 ↓ f2 ↓ f3

1 → Ker (f) → B/F
f
→ Π(G) → 1

Indeed, we just need to show that f1 is induced from corestriction (norm) ho-
momorphisms previously obtained for algebraic groups over local and global
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fields as in [T2]. Take a z-extension 1 → Z → H → G → 1. By using
the surjectivity of the homomorphisms H(A) → G(A) and H(k) → G(k),
we are reduced to proving the same assertion for H, i.e., we may assume
H = G. But one checks that in this case Ker (f) = G(k) ∩ G̃(A) = G̃(k),
and the norm homomorphism for Ker (f) is nothing else than the Deligne’s
norm homomorphism constructed in [De], Sec. 2.4.
We have the following exact sequence of groups

1 → Ker (g) → B/FD → GClA(G) → 1.

Since there exists a norm homomorphism of Π(G) = B/FD compatible
with Deligne’ norm homomorphism, the proof of the existence of a norm
homomorphism of GClA(G) compatible with Deligne’ norm homomorphism
is reduced to that of Ker (g). Again, as in the previous part, we may assume
that H = G. In this case one checks that Ker (g) = CD/ED. Since G̃ has
absolute strong approximation over k, we have

CD/ED = CD/JD

= C.JD/JD

= C/C ∩ JD

= C/J(C ∩D)

= C/JG(A).

Therefore we are reduced to proving the exsitence of a norm homomorphism
for C/JG(A) which is compatible with Deligne’ norm homomorphism. We
notice that J is a normal subgroup of C, and that there exists a norm ho-
momorphism of C/J compatible with Deligne’ norm homomorphism (which,
for finite primes, follows from Sections 2 - 3, and for infinite primes follows
from [De] and/or [T2]). By considering the exact sequence

1 → Ker (h) → C/J
h
→ C/JG(A) → 1
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we are reduced to proving the same assertion for

Ker (h) = JG(A)/J = G(A)/J ∩G(A) = G(A)/G̃(A),

which has been already proved in Section 3.

The proof of Theorem III in the Introduction now follows from above re-
sults.

As a consequence of the proof of Theorem 14, we derive the following
result, which can be considered as a complement to a description of the class
groups given by Nisnevich in the case of semisimple group schemes, or the
case of group schemes with semisimple groups as generic fibers) (see [Ni4],
Theorem 4.3).

Corollary 16. With notation and assumption as in Theorem 14, there ex-
ist well-defined A-tori Z, T, where Z is an induced A-torus, satisfying the
following exact sequence of finite abelian groups

1 → GClA(Z) → GClA(T ) → GClA(G) → 1.

Proof. Take any z-extension

1 → Z → H → G→ 1

for the reductive A-group G. Denote by G̃ the derived subgroup of H, which
is a semisimple simply connected A-group scheme, and let T = H/G̃, the
A-torus quotient. Since Z is an induced A-torus, as in Claim 2 of the second
proof, we have the corresponding exact sequence for class groups

1 → GClA(Z) → GClA(H) → GClA(G) → 1.

Also, by Claim 1, we have canonical isomorphism of finite abelian groups

GClA(H) ' GClA(T ).

Thus we obtain the exact sequence desired.

4.6. Remarks. 1) It is worth of noticing that the restriction map for
the class sets of linear algebraic groups over number fields has been studied
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before by Rohlfs [Ro], Satz 3.1, in a very general setting. In particular, he
studied the map

Res : G(A(∞)) \G(A)/G(k) → G(Al(∞)) \G(Al)/G(l),

where l is a finite Galois extension of k, Al denotes the adèle ring of l, and
obtained a beautiful expression of the kernel (in the category of pointed sets)
of the restriction map Res via Galois cohomology of G. Theorem 14 can be
considered as a complement to this result. It would be nice to extend the
results obtained above to the case considered by Rohlfs [Ro], Satz 3.1 and
Korollar 3.2.

2) In most of results above, which are proved under the assumption of ab-
solute strong approximation, we may relax this condition by assuming only
that the class number of G̃ is equal to 1. (It would be nice to verify the
”Kottwitz principle” ([Ko]) in this case.) Also, one may also reformulate the
results for the case of S-class groups in an appropriate way, for a finite set S
of primes containing ∞.

3) It would be nice to have norm homomorphism for the class group (still
under the condition on abosolute strong approximation assumption) for any
connected reductive k-group (i. e. without assuming that G is a reductive
A-group scheme).
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phismes fidelement plats. Sémin. Bourbaki, Exp. 190, 1959/60.

[Gr2] A. Grothendieck, Le Groupe de Brauer. II. Théorie coho-
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[Ha2] G. Harder, Über die Galoiskohomologie der halbeinfacher Ma-
trizengruppen, III. J. reine und angew. Math., Bd. 274/275
(1975), 125 - 138.

[KS] K. Kato and S. Saito, Global class field theory of arithmetic
schemes; in Applications of algebraic K-theory to algebraic ge-
ometry and number theory, Part II (Boulder, Colo., 1983), 255–
331, Contemp. Math., 55, Amer. Math. Soc., Providence, RI,
1986.

[Kn1] M. Kneser, Galois-Kohomologie halbeinfacher algebraischer
Gruppen über p-adischen Körpern, II. Math. Z., Bd. 89 (1965),
250 - 272.

[Kn2] M. Kneser, Lectures on Galois Cohomology of Classical Groups,
Tata Inst. Fund. Res., 1969.

[Kn3] M. Kneser, Strong approximation, in : Algebraic groups and
Discontinuous subgroups, Proc. Sym . Pure Math. v. 9, A.M.S.,
1966, 187 - 196.

46



[Ko] R. Kottwitz, Stable trace formula : elliptic singular terms. Math.
Annalen, Bd. 275 (1986), 365 - 399.

[Ma] G. A. Margulis, Cobounded subgroups in algebraic groups over
local fields. (Russian). Funkcional. Anal. i Priložen. 11 (1977),
no. 2, 45–57.

[Mi] J. S. Milne, Étale cohomology, Princeton University Press,
Princeton, 1980.

[Mi1] J. S. Milne, Arithmetic duality theorems, Perspectives in Mathe-
matics, No. 1, Academic Press, 1986; (see new corrected version
at : http://www.jmilne.org/math/).

[MS] J. Milne and K.-Y. Shih, Conjugates of Shimura varieties, in:
Hodge Cycles, Motives and Shimura Varieties, Lec. Notes in
Math. 900, 1982, pp. 280 - 356.

[Mo] F. Morel, On the structure of A1-homotopy sheaves, I. K-theory
Preprint series, No. 794, July 26, 2006.

[MV] F.Morel and V. Voevodsky, A1-homotopy theory of schemes.
Inst. Hautes tudes Sci. Publ. Math. No. 90 (1999), 45–143.

[Mor] M. Morishita, On S-class number relations of algebraic tori in
Galois extensions of global fields. Nagoya Math. J. 124 (1991),
133–144.

[Ni1] Y. Nisnevich, Espaces homogènes principaux rationellement
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