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Abstract

We explicitly construct the canonical rational models of Shimura curves,
both analytically in terms of modular forms and algebraically in terms
of coefficients of genus 2 curves, in the cases of quaternion algebras of
discriminant 6 and 10. This emulates the classical construction in the
elliptic curve case. We also give families of genus 2 QM curves, whose
Jacobians are the corresponding abelian surfaces on the Shimura curve,
and with coefficients that are modular forms of weight 12. We apply these
results to show that our j-functions are supported exactly at those primes
where the genus 2 curve does not admit potentially good reduction, and
construct fields where this potentially good reduction is attained. Finally,
using j, we construct the fields of moduli and definition for some moduli
problems associated to the Atkin-Lehner group actions.
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1 Introduction

An abelian surface is said to have quaternionic multiplication, or QM for short,
if its endomorphism ring admits an embedding by an order O in an indefinite
non-split quaternion algebra over Q. A genus 2 curve is said to have QM if
its Jacobian does. Given O, let O1 denote the elements in O with norm 1.
This group acts, via an embedding of O into M2(R), naturally on the upper
half plane H, and the quotient V = H/O1, which is a compact Riemann surface
that we call a Shimura curve, is the moduli space of the natural moduli problem
of classifying abelian surfaces with QM by O. Shimura proved that this curve
admits a model over Q. Our main goal in this paper is to construct explicitly
this canonical model of the Shimura curves of discriminants 6 and 10.

The complex multiplication points on V will play a big role for us. A QM
abelian surface has complex multiplication if the center of the ring End(A) is
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a complex quadratic order O. Associated to every optimal embedding ι of a
quadratic order O into O, is a fixed point zι ∈ H such that the corresponding
abelian surface has CM by O. If disc(O) = D, then we say that the resulting
point on the Shimura curve has CM by D.

Also important is the so called the Atkin-Lehner group. The Shimura curve
V comes equipped with a canonical group of involutions. Certain subgroups G
of this group are distinguished by the fact that the quotient V/G is the moduli
space that classifies principally polarized abelian surfaces A with an embedding
of a certain subring of O into End(A) which extends to QM by O.

The problem that we consider has two sides to it: On one side there are
the abelian surfaces with QM considered as complex tori. There is a classical
construction associating to a point z on the upper half plane H the period
matrix of a QM abelian surface. On the other side, there are the genus 2 curves
whose Jacobians have QM. Families of such curves have been constructed by
Hashimoto and Murabayashi in the cases of discriminant 6 and 10. What is
missing is an explicit way to link a genus 2 curve in such a family to the point
z in the upper half plan giving its complex Jacobian. In addition, equations
for Shimura curves have been computed by Kurihara and others. For example,
it is known that in the case of O having discriminant 6, the Shimura curve
has equation x2 + y2 + 3 = 0 defined over Q. However, there is no explicit
correspondence between points on this quadric and points z ∈ H. In this paper,
we construct such correspondences in the discriminant 6 and 10 cases, and derive
complex uniformized family of genus 2 curves whose Jacobians are exactly those
given by the classical construction.

The strategy in the paper is the following: On the one hand, there is a
rational map of the Shimura curve into the moduli space M2 of genus 2 curves,
factoring through the action of the Atkin-Lehner group. We compute equations
for the image in M2 in terms of Igusa’s invariants J2, . . . , J10 using the work
of Hashimoto and Murabayashi on families of genus 2 curves with QM in [9].
Then we solve these equations, and get a parametrization of the image curve.
This is now given in terms of the coefficients of the sextics defining the genus
2 curves. On the other hand, we determine the ring of modular forms with
respect to O1, and use this to construct a generator of the rational function
field in terms of modular forms. Finally, we are able to find some CM points on
the Shimura curve where we know both sides, i.e. both the genus 2 curve and
the values of the modular forms. This information we then use to show that
our two functions are equal. We denote the function we have constructed by j.
This function is really defined on the quotient curve of the Shimura curve by
the Atkin-Lehner involutions, so finally we construct functions on V which give
the canonical structure by Shimura of V as a curve over Q.

By using a construction of Mestre, we recover the genus 2 curve from its
j-invariant. Using the analytic description of j, we are thus able to construct
a sextic whose coefficients are modular forms of weight 12, such that at any
point z in H the genus 2 curve Cz described by the sextic has Jacobian Az. An
important difference between our families and the ones given in [9], is that the
former are families over V , while the latter factor via a cover of V .
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The j-function that we define has many of the properties that its namesake in
the elliptic curve case has. First, it follows immediately from our construction,
that j(C) generates the field of moduli of the genus 2 curve C. Contrary to the
elliptic curve case, the genus 2 curve can in general not be defined over its field of
moduli. We express the so called Mestre obstruction for this curve in terms of j,
and hence we know in principle every possible field of definition. Furthermore,
we show that the primes occurring on j are exactly those where the genus 2 curve
do not have potentially good reduction. This shows that j is distinguished in
the function field. Finally, using j, we construct the fields of moduli for the
various moduli problems described by the Atkin-Lehner involutions.

One point in involving modular forms, is of course to be able to numerically
compute values of our j-function. To calculate values of modular forms on a
compact Shimura curve, one can embed the curve in a Hilbert modular surface.
By restricting Hilbert modular forms on H × H to the embedded curve and
putting in natural correction factors, one gets modular forms on the Shimura
curve. We describe this in appendix A. In our cases, the curves can be embedded
into the Hilbert modular surface corresponding to Q(

√
5), and one can use the

corresponding Eisenstein series on H × H to efficiently compute values of the
modular forms occurring in this paper to arbitrary precision.

The obvious directions that should emerge from this work are extensions
to higher discriminant and higher level. In the higher discriminant case, the
difficulty lies in the absence of the Hashimoto-Murabayashi family. On the
other hand, understanding the ring of modular forms may yield some success.
In the cases that are considered here, better understanding of the behaviour
of the j-invariant at algebraic points, and in particular singular moduli should
prove useful in arithmetic applications.

The computations required in this paper were done using the computer al-
gebra systems Macaulay 2 [6] and Pari/GP [18].

We thank the Max-Planck-Institut für Mathematik in Bonn, Germany, and
the Departments of Mathematics at McGill University and Concordia university
in Montreal, Canada, for their support.

2 Preliminaries

2.1 Shimura curves

Let B = B∆ denote the indefinite quaternion algebra of discriminant ∆ over
Q, where ∆ = p1 . . . p2n. Let x 7→ x∗ be the canonical involution on B, so
nr(x) = x∗x, and let O be a maximal order in BD . Following Rotger [21], we
fix an element µ ∈ O with µ2 = −∆ and we call the pair (O, µ) a principally
polarized maximal order in B. Define the positive anti-involution a 7→ a′ on B
by a′ = µ−1a∗µ (i.e., the quadratic form a 7→ tr(a′a) is positive definite). Let
R be a maximally embedded subring of O invariant under ′ (i.e, R = QR ∩ O
and R′ = R). We call such rings stable.

Let S(O,µ) be the set of triples [A, ρ, ι], where A is an abelian surface, ρ is
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a principal polarization on A, and ι : O → End(A) is an embedding such that
the Rosati involution defined by ρ on ι(O) is ′. We recall how such triples are
constructed. Fix an embedding θ : B → M2(R). For any point z ∈ H, consider

the lattice Λz = θ(O)vz in C2, where v =
(

z 1
)t

. Define Az = C2/Λz. On Λz,
define the Riemann form

Ez : Λz × Λz → Z

Ez(θ(λ1)vz , θ(λ2)vz) = tr(λ∗
1µλ2).

Ez defines a principal polarization ρz on Az such that the Rosati involution on
EndQ(Az) corresponds to the positive anti-involution a 7→ a′ on B. This defines
a triple [Az , ρz, ιz], where Az is an abelian surface, ρz a principal polarization
on Az and ιz : O → End(Az) an injection.

Let R be a stable subring of O. Define an equivalence relation ∼R on S(O,µ)

as follows: [A1, ρ1, ι1] ∼R [A2, ρ2, ι2] if and only if there exists an isomorphism
φ : A1 → A2 such that φ∗(ρ2) = ρ1, and for every r ∈ R, the following diagram
commutes.

A1
φ //

ι1(r)

��

A2

ι2(r)

��
A1

φ //A2

Let VR be the moduli space that classifies triples [A, ρ, ι]/ ∼R.

The normalizer group NB+(O) acts on H as fractional linear transformations
through θ. This generates a subgroup of Aut(H) which we denote by Γ̃. The
subgroup of Γ̃ generated by elements of O of norm 1 is denoted by Γ. Let
V = H/Γ, which is a compact Riemann surface. The group Γ̃/Γ ∼= (Z/2)2n,
the so called Atkin-Lehner group, acts on V . Any coset w ∈ Γ̃/Γ is of the form
w = γΓ, where γ ∈ O with nr(γ) = d > 0 and d | ∆. We write w = wd. For
any subgroup G of Γ̃/Γ, we denote VG = V/G. We also let Vd = V/〈wd〉 for any
positive divisor d of ∆.

In [21], an element χ ∈ O ∩ NB+(O) is called twisting if tr(χ) = 0 and
χµ + µχ = 0 (note that this implies that nr(χ) < 0). A quadratic stable ring R
is called twisting if it is contains a twisting element. Not all pairs (O, µ) have
twisting subrings, and if they exist there are exactly 2 of them. From now on,
we assume that this is the case (it holds for ∆ = 6, 10). The twisting rings
naturally correspond to two elements wm, wm′ of the Atkin-Lehner group with
mm′ = ∆. We denote the twisting rings by Rm and Rm′ respectively and let
R∆ = Z[µ]. The subgroup of the Atkin-Lehner group generated by wm and wm′

has 4 elements and is denoted by W .

The following result shows how we can identify the moduli spaces above with
quotients of V by appropriate subgroups of the Atkin-Lehner groups.

Theorem 1. There are natural identifications VO = V , VRd
= Vd for d ∈

{m, m′, ∆} and VZ = VW . For any other stable quadratic ring R, we have
VR = V .
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This theorem is a reformulation of more general results proved in [21]. In
fact, it holds that

[Az , ρz, ιz] ∼R [Az′ , ρz′ , ιz′ ]

if and only if the points z and z′ are related by z′ = γz, where γ = wε ∈ NB+(O),
w ∈ Z(R), ε ∈ O∗ and wµ = nr(ε)µw. Here Z(R) denotes the centraliser of R
in O. It is straightforward to verify that this claim is equivalent to theorem 1.

We recall some fundamental facts that will be used in this paper. First, the
curve V has a canonical model defined over Q (see [24]). The Atkin-Lehner
involutions are also defined over Q, so all quotient curves VG are defined over Q.
Second, for any imaginary quadratic order OD that embeds into O, the coordi-
nates of a point with complex multiplication by OD on any rational model of
V are in the ring class field H(OD) of OD (see [25]). The number of points on
V with given CM can be computed by Eichler’s theory of optimal embeddings,
see [26].

Define the field of moduli kZ of [A, ρ]/Q̄ as the smallest extension of Q
such that for any σ ∈ Gal(Q̄/kZ), there is an isomorphism φσ : A → Aσ such
that φ∗

σ(ρσ) = ρ. For any subring R of End(A), we define the field of moduli
of kR as the minimal number field containing kZ such that such that for any
σ ∈ Gal(Q̄/kR), there is an isomorphism φσ : A → Aσ , φ∗

σ(ρσ) = ρ such that
the following diagram commutes for each r ∈ R

A

r

��

// Aσ

rσ

��
A // Aσ

Let M2 denote the moduli space of genus 2 curves, and A2 denote the moduli
space of principally polarized abelian surfaces. The open Torelli map associates
to a point C ∈ M2 the pair (Pic0(C), Θ), where Θ is the theta divisor that
embeds C into Pic0(C). Thus, M2 maps onto a Zariski open subset of A2,
and so the general principally polarized abelian surface is a Jacobian. Let Ẽ
denote the image of the natural forgetful map V → A2, and let E denote the
intersection with M2. We have the following picture:

A2 M2
? _oo

V
4:1 // Ẽ

?�

OO

E
?�

OO

? _oo

2.2 Igusa invariants and Mestre’s construction

Let C be a non-singular genus 2 curve, with a hyperelliptic model

C : z2 = a6x
6 + a5x

5y + a4x
4y2 + a3x

3y3 + a2x
2y4 + a1xy5 + a0y

6,
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Igusa, in [12], defined invariants Ji = Ji(C), for i = 2, 4, 6, 10, which are ho-
mogenous polynomials of degree i in the coefficients ak having rational coef-
ficients. Two curves are isomorphic if and only if they define the same point
p = [J2(C), J4(C), J6(C), J10(C)] in the weighted projective space P(2, 4, 6, 10).
The minimal field k over which the point p is defined is called the field of moduli
of C.

In [16], Mestre shows how to solve the inverse problem of constructing the
genus 2 curve C from its Igusa invariants. He constructs a conic

L =
∑

1≤i,j≤3

Aijxixj , (1)

and a cubic

M =
∑

1≤i,j,k≤3

aijkxixjxk, (2)

where the coefficients Aij and aijk can be expressed in terms of the Ji’s. The
conic L is degenerate if and only if the curve C has more automorphisms than
just the hyperelliptic involution. In this case, we say that C has non-trivial
involutions. If so, then it follows from [2] that C is defined over k. If not, then
the curve C can in general not be defined over k. In this case, C can be defined
over a field extension K/k if and only if L is isotropic over K. It is therefore
natural to consider the even Clifford algebra over k associated to L, and we
denote it HC . The quaternion algebra HC is called the Mestre obstruction
of C, and it has the property that C can be defined over K if and only if K
splits HC . If k is a field and a, b ∈ k∗, then we use the notation (a, b)k for
the quaternion algebra over k generated by elements i and j satisfying i2 = a,
j2 = b and ij + ji = 0.

One recovers a hyperelliptic model z2 = f(x, y) from the Igusa invariants by
finding a parametrization xi = xi(x, y) of the solutions to the equation L = 0
and setting

f(x, y) =
∑

1≤i,j,k≤3

aijkxi(x, y)xj(x, y)xk(x, y).

3 Discriminant 6 case

Let B = Q(i, j), where i2 = 2, j2 = −3 and ij +ji = 0, so ∆ = disc(B) = 6. We
choose a maximal order O = Z[i, (j+1)/2] in B, and an element µ = 2j+ij ∈ O
with µ2 = −6. We let R6 = Z[µ] ∼= Z[

√
−6]. There are two twisting rings in

this case, namely R2 = Z[i] ∼= Z[
√

2] and R3 = Z[j + ij] ∼= Z[
√

3].
From [23] it follows that the curve V has genus 0 and that there are 2 classes

of elliptic fixed points of order 2 and 3 respectively for the action of Γ on H.
The involutions wd on V , for d = 2, 3, 6, each have 2 fixed points. In the cases
of d = 2 and d = 3, these are exactly the elliptic points of order d. Let zd, z′d
denote the fixed points of wd on V . Let xd and x′

d be a choice of points on the
upper half plane that descend to the points zd, z′d, for d = 2, 3, 6. By abuse
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of notation, we denote also by zd, z′d the images of these points on quotient
surfaces VG, for any subgroup G of the Atkin-Lehner group.

Lemma 2. The curve VW is isomorphic to P1
Q and z2, z3, z6 ∈ VW (Q).

Proof. The points z2, z
′
2 are points with complex multiplication by Q(i), so

z2, z
′
2 ∈ V (H(Q(i))) = V (Q(i)). These two points are transposed by w3 and

also by complex conjugation. We conclude that z2, z
′
2 ∈ V3(Q). In particular

z2 ∈ E(Q) and we get that VW
∼= P1

Q.

The same argument, using z3, z
′
3 ∈ V (H(Q(

√
−3))) = V (Q(

√
−3)), gives

that z3 ∈ VW (Q).

The fixed points of w2 on V3 are the two points z2 and z6. Since V3
∼= P1

Q,
we conclude that z2 and z6 are defined over a common minimal field F at most
quadratic over Q. If F 6= Q, then we would have that z2 and z6 are conjugates
under the nontrivial element σ ∈ Gal(F/Q). Hence the images are on VW

are also conjugates, but since z3 ∈ VW (Q) we would get z3 = z6 on VW , a
contradiction.

3.1 The ring of modular forms

For any group G acting on H, we denote by vi(G) the number of elliptic fixed
points of order i for G, and by sk(G) the dimension of the space of holomorphic
weight k modular forms for G. Let Γd = Γ∪wdΓ. Using the formulae in [23], it
follows that the degree of the divisor of a modular form of weight k is k/6 and
that sk = 1 − k + 2bk/4c + 2bk/3c for k even and k > 2, and 0 otherwise. We
compute the following table:

G v2 v3 v4 v6 s4 s6 s12

Γ 2 2 0 0 1 1 3
Γ2 0 1 2 0 0 1 1
Γ3 1 0 0 2 0 0 2
Γ6 3 1 0 0 1 0 2

Γ̃ 1 0 1 1 0 0 1

We conclude that S4(Γ) is generated by a form h4(z) which vanishes necessarily
at x3 and x′

3. Similarly, S6(Γ) is generated by a form h6(z) which vanishes
necessarily at x2 and x′

2. We assume h6 is normalised so that h3
4/h2

6(x6) =
√

3i.
Fix a basis of S12(Γ) by the forms h3

4, h
2
6, h12, where h12 is chosen so that it

vanishes at x6 and y6. We normalize h12 so that h2
12 + 3h4

6 + h6
4 = 0. Finally,

the action of the Atkin-Lehner group on the modular forms is given by

w6(h4) = h4 = −w2(h4) = −w3(h4),

w2(h6) = h6 = −w3(h6) = −w6(h6),

w3(h12) = h12 = −w2(h12) = −w6(h12).
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Proposition 3. The modular forms h4 and h6 are algebraically independent,
and

∞
⊕

k=0

S2k(Γ) = C[h4(z), h6(z), h12(z)] ∼= C[h4, h6, h12]/(h2
12 + 3h4

6 + h6
4)

as graded rings.

Proof. To see that h4(z) and h6(z) are algebraically independent, first note that
any linear combination of modular forms that is identically 0 must have terms
of the same weight, and so any polynomial in h4(z) and h6(z) that vanishes
identically must be a linear combination of monomials of the same weight. Also,
any polynomial in h4(z) and h6(z) that is identically zero is divisible by h6, for
if not, we could write it as ch4(z)m + h6(z)P (h4(z), h6(z)) for some polynomial
P and constant c, and this would vanish at x2 but not at x3. Thus, dividing
by h6(z) would give an algebraic relation of lower degree, and so algebraic
independence follows by induction on the degree of the polynomial.

To see that the whole ring of modular forms is generated by h4, h6 and h12,
we observe that for weights k ≤ 12 it follows from the dimension formula that
all forms are combinations of h4, h6 and h12. It also follows that dim Sk+12 =
dim Sk+2 for all k. The same recursion formula holds for the graded polynomial
ring C[h4, h6, h12]/(h2

12 + 3h4
6 + h6

4), and we are done.

Now, we define the weight 0 modular form jm, invariant under the action of
w6, as

jm =
4h2

6

3h3
4

.

Since the degree of the divisor of a modular form of weight 12 is 2, jm defines
a double cover V → P1, and we get

Proposition 4. The map jm : V6 → P1 is an isomorphism. Furthermore
jm(w2(z)) = jm(w3(z)) = −jm(z).

3.2 Equations for E and the arithmetic j-function

Our goal is to give equations for E and construct an embedding of E into P1 in
terms of the Igusa invariants Jn. Our starting point is the following important
result from [9].

Theorem 5. The following equations give a family of QM-curves with respect
to O:

y2 = x(x4 − Px3 + Qx2 − Rx + 1)

with
4s2t2 − s2 + t2 + 2 = 0,

P = −2(s + t), R = −2(s − t), Q =
(1 + 2t2)(11 − 28t2 + 8t4)

3(1 − t2)(1 − 4t2)
.
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We rewrite these equations in the coordinates on M2 given by the Igusa
invariants as follows:

Proposition 6. The equations for E are

J6
2 −68J4

2J4 +1296J2
2J2

4 +216J3
2J6−4608J3

4 −6912J2J4J6 +15552J2
6 = 0, (3a)

J5
2 − 60J3

2J4 + 864J2J
2
4 + 216J2

2J6 − 5184J4J6 + 248832J10 = 0. (3b)

The map given by

ϕ(p) = [J2(24J4 − J2
2 ), 432J6 − 96J4J2 + 3J3

2 ] ∈ P1,

for p ∈ E, gives an embedding ϕ : E → P1.

Proof. A calculation gives that (3a) and (3b) are satisfied by the family of genus
2 curves given in theorem 5. Let

A = J2, C = 432J6 − 96J4J2 + 3J3
2 ,

B = J2
2 − 24J4, D = 125J10.

In these variables, equations (3) become

(AB + C)(AB − C) = 4B3, (4a)

2D = B(AB − C). (4b)

These equations define an irreducible reduced rational curve E0 in P(2, 4, 6, 10)
with a single simple node at [A, B, C, D] = [1, 0, 0, 0]. Hence (3) generate all
relations. It is easy to see that the map given by p 7→ [AB, C] induces an
isomorphism from the non-singular resolution of this curve to P1.

With notations as in the proof of proposition 6, we define the following
function on E

j = j6 =
AB − C

AB + C
=

D2

B5
. (5)

where the second equality follows from (4). Since the image of E in P(2, 4, 6, 10)
is the non-singular locus of the curve given by (4), we get:

Proposition 7. j defines an isomorphism E → P1 \ {0,∞}.
The inverse map is given by

[A, B, C, D] = [j + 1, j, j(1− j), j3],

or, equivalently, the Igusa invariants are given in terms of j by

[J2, J4, J6, J10] = [12(j + 1), 6(j2 + j + 1), 4(j3 − 2j2 + 1), j3].

Since Ẽ is the resolution of the nodal curve E0, there are two points on Ẽ
which are not Jacobians of genus 2 curves. By [10], we know that these points
correspond to the points on Ẽ with CM by Q(

√
−1) and Q(

√
−3). What is

happening in these cases, is that the abelian surfaces are products of elliptic
curves with the product principal polarization.

9



S. Baba, H. Granath

Remark. The map from the family in theorem 5 to the curve E is of degree 24
and is given by

j =
16(2t2 + 1)4(t2 − 1)2

27(4t2 − 1)3
.

3.3 Some explicit points on E

To compare the algebraically and analytically defined functions, we will need
to compute a few explicit points on E. In this section, we compute the curves
with discriminant 6 QM and D CM for D = −24 and D = −19.

We consider first the case D = −24. Let K = Q(
√
−6). We have that the

class number is h(K) = 2, and a non-trivial ideal class in O = Z[
√
−6] is given

by the ideal a = (2,
√
−6). Hence, there are two isomorphism classes of elliptic

curves with Z[
√
−6] CM, namely the curves E1 = C/O and E2 = C/a with

j-invariants

j(E1) = j(
√
−6) = 1728(1399 + 988

√
2)

and

j(E2) = j(
√
−6/2) = 1728(1399− 988

√
2)

respectively. Consider the cubic

f(t) = (1 +
√

2)t3 − 3(7 − 3
√

2)t2 − 3(7 + 3
√

2)t + (1 −
√

2),

and define a genus 2 curve C(−24) by

z2 = f(x2).

By a direct computation of Igusa invariants, one gets that C(−24) corresponds
to a point on E, and has invariant j = −16/27.

Proposition 8. The Jacobian J of C(−24) is isomorphic to E1 × E2 and has

endomorphism ring

(

O a

a−1 O

)

. Furthermore, this curve defines a point on E

with j(C(−24)) = −16/27.

Proof. Consider the non-hyperelliptic involutions u and v on C(−24) given by
u(x, z) = (−x, z) and v(x, z) = (−x,−z). The quotient C(−24)/u has equation
s2 = f(t) (let s = z and t = x2), which is an elliptic curve with j-invariant
1728(1399− 988

√
2). Hence

C(−24)/u ∼= E2.

Similarly the quotient C(−24)/v has equation s2 = tf(t) (where s = xz, t = x2),

which has j-invariant 1728(1399 + 988
√

2), so

C(−24)/v ∼= E1.
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Let fi : C(−24) → Ei, i = 1, 2, be the corresponding quotient maps. They induce
a natural surjective homomorphism of abelian varieties

ϕ : J → E1 × E2,

given by

ϕ(O(a − b)) = (f1(a) − f1(b), f2(a) − f2(b)),

where a, b ∈ C(−24) (the minus signs on the left hand side is given by the group
laws of the elliptic curves). By a direct computation, one gets that fi(a) = fi(b)
for i = 1, 2 if and only if a = b. Hence ϕ is an isomorphism. The claim about
the endomorphism ring follows immediately.

The final claim follows from by a direct computation.

Remark. By proposition 8, the endomorphism ring is a maximal order in M2(K)
which is not isomorphic to M2(O) (since the class of a is not a square in the class
group of K). Hence one get in particular that the Jacobian of C(−24) cannot be
isomorphic to the square E × E of an elliptic curve E.

We now consider the case D = −19. Let K = Q(
√
−19) and O = Z[ 1+

√
−19

2 ].
The class number if K is one, so there is only one elliptic curve E3 = C/O with
CM by O. It has j-invariant j(E3) = −963. Consider the cubic

f(t) = 2t3 − 3(1 + 9
√
−19)t2 − 3(1− 9

√
−19)t + 2,

and define a genus 2 curve C(−19) by

z2 = f(x2).

This curve corresponds to a point on E with j = 81/64, and by an argument
similar to the proof of proposition 8 one gets

Proposition 9. The Jacobian J of C(−19) is isomorphic to E3 × E3 and has
endomorphism ring M2(O). Furthermore, this curve defines a point on E with
j(C(−19)) = 81/64.

3.4 The arithmetic function and the analytic function

The main results of this paper relates the arithmetically and the analytically
defined functions and gives an explicit map from V to its rational model in
terms of modular forms. The first step in this direction is:

Proposition 10. We have

j = j2
m, (6)

considered as functions on Ẽ.

Proof. It is clear, from propositions 4 and 7, that j and j2
m are related by a

linear fractional transformation. We noted in section 3.2 that the points on VW

11
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corresponding to J10 = 0 on E are the points z2 and z3. These points are there-
fore the zeroes and poles of j. Furthermore, j(z6) = −16/27 by proposition 8.
Now, we have j2

m(z2) = 0, j2
m(z3) = ∞ and j2

m(z6) = −16/27 by our choices of

normalization. Hence we conclude that j = j2
m or j = 162

272j2
m

.

To determine which possibility is the correct one, we use the −19 CM point.
By proposition 9, we get that j = 81/64 in this point. Now we can numerically
compute j2

m in the point z(−19), which is the fixed point attached to the order
Z[i + (1 + 3j)/2]. This calculation can be done with full control of the size of
the error terms, and doing this shows that the first possibility is the correct
one.

By proposition 10 and the identity −27j − 16 = (4h12/h3
4)

2, we have that√
j and

√−27j − 16 lift to meromorphic functions on V .

Theorem 11. The map f : V → X = {x2 + 3y2 + z2 = 0} given by

f(z) = [h3
4(z), h2

6(z), h12(z)] = [4, 3
√

j,
√

−27j − 16]

is an isomorphism defined over Q.

Proof. Let K1 = Q(
√
−1,

√
−3). By [23], we have that the two elliptic points

z2, z
′
2 of order 2 on V belongs to V (H(Q(

√
−1))) ⊂ V (K1). Similarly, the

two elliptic points z3, z
′
3 of order 3 belongs to V (K1). Furthermore j(z) = 0,

so f(z) = [1, 0,±
√
−1] for z = z2, z

′
2, and similarly f(z) = [0, 1,±

√
−3] for

z = z3, z′3. Hence, f maps 4 points on V (K1) to 4 points on X(K1). We
conclude that f is defined over K1.

Let K2 = Q(
√
−19) and consider the 4 points z ∈ V (K2), with −19 CM.

We have, by proposition 9 that j(z) = 81/64, so f(z) = [32,±27,±13
√
−19] ∈

X(K2) for these points z. Hence f is defined over K2.
We conclude that f is defined over K1 ∩ K2 = Q.

Remark. The equation for V given in theorem 11 is of course known, see [14].
What is new with this result is the explicitly given isomorphism.

Corollary 12. The Atkin-Lehner action on the curve X is given by w2(p) =
[x,−y, z], w3(p) = [−x, y, z], where p = [x, y, z] ∈ X. In particular, we get
Vd

∼= P1
Q for d = 2, 3, 6, and the projection maps πd : V → Vd, πW : V → VW

are given by π2(p) = [x, z], π3(p) = [y, z], π6(p) = [x, y], πW (p) = [x2, y2].

Proof. This follows immediately from theorem 11, since we know the action of
W on the modular forms.

3.5 Mestre’s obstruction and a family over E

Let L(j) be the matrix of the quadratic form (1) where we have made the
substitutions J2 = 12(j + 1), J4 = 6(j2 + j + 1), J6 = 4(j3 − 2j2 + 1) and
J10 = j3.

12
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Proposition 13. The only curves on E which have non-trivial automorphisms
are the two curves with −24 and −19 CM respectively. In both these cases, the
automorphism group is isomorphic to C2 × C2.

Proof. The curve C with j(C) = j has non-trivial automorphisms if and only if
the matrix L(j) has vanishing determinant. Now we get

det(L(j)) = −2333−185−20j7(64j − 81)2(27j + 16),

so the first claim follows immediately from our computations in section 3.3.
It is well known, see [1], that any genus 2 curve with automorphism group

other than C2 or C2 × C2 has a model of the form y2 = x5 + tx3 + x or
y2 = x6 + tx3 + 1 for some t ∈ C, or is the exceptional curve y2 = x5 − x. By
comparing Igusa invariants, one checks that neither of the curves C(−24) and
C(−19) can be written in this form.

Consider now the matrix N(j) =

3
2

0

B

@

−32(96j3 − 76j2 + 75j − 108) 48(296j3 − 13j2 − 564j) 16(2856j3 − 2389j2 + 684j + 864)

1800(8j2 − 6j − 9) 38700(2j2 − 3j) 900(242j2 − 65j − 72)
16875(8j − 9) 50625j 16875(j − 36)

1

C

A
.

We have det(N(j)) = 27311510j3(64j − 81)2, and get

N(j)tL(j)N(j) = −2153j4(64j − 81)2





1 0 0
0 6j 0
0 0 2(27j + 16)



 . (7)

Hence we have:

Proposition 14. If C is on E and has trivial automorphisms, then the Mestre
obstruction HC is the quaternion algebra

(−6j,−2(27j + 16))kZ
.

Now we can get explicit equations for the sextic in the case of trivial auto-
morphism groups:

Theorem 15. The curve C is defined over (for example) the field K = Q(
√−6j).

An explicit equation is

f(x) =(−4 + 3s)x6 + 6tx5 + 3t(28 + 9s)x4 − 4t2x3

+ 3t2(28 − 9s)x2 + 6t3x − t3(4 + 3s),

where t = −2(27j + 16), s =
√−6j, i.e. the corresponding genus 2 curve C :

y2 = f(x) lies on E and j(C) = j.

Proof. We see immediately from (7) that the Mestre conic (1) is parametrised
by





x1

x2

x3



 = N(j)





x2 + ty2

x2 − ty2

−2sxy



 .

Plugging this into the Mestre cubic (2), we get the result after dehomogenisation
and a slight simplification.

13
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Corollary 16. For any point z ∈ H, the curve Cz : y2 = gz(x), where

gz(x) = h3
4(z)(x6 − 21x4 − 21x2 + 1)+

+
√
−6h2

6(z)(x6 + 9x4 − 9x2 − 1)+

+ 2
√

2h12(z)x(3x4 − 2x2 + 3)

is a point on E with j(Cz) = j(z) and Jacobian isomorphic to (Az, ρz).

Proof. Using theorem 11, we get that

s =
4
√
−6h6

2(z)

3h3
4

and t =
32h2

12(z)

h6
4(z)

,

which gives the result in the case of trivial automorphism group. One can
also verify that the model works also for the two points with -19 and -24 CM
respectively.

3.6 Arithmetic properties

Proposition 17. The field of moduli of the curve C is kZ = Q[j(C)].

Proof. If σ is an automorphism of C, then Cσ ∼= C if and only if j(Cσ) = j(C)
if and only if j(C)σ = j(C). The claim follows.

Theorem 18. The diagram

kO
��

� ??
?

kR2

??
?

kR6 kR3

kZ

���

is given by

Q(
√

j,
√

−(27j + 16))

llllll
SSSSSSS

Q(
√

−(27j + 16))

SSSSSSS
Q(

√
j) Q(

√

−(27j + 16)/j)

Q(j)

jjjjjjjj

Proof. That kO = Q(
√

j,
√

−(27j + 16)) follows from theorem 11. That kZ is
Q[j(C)] is proposition 17. By the moduli property of Vd and by the explicit
descriptions of the maps given in theorem 11, we see that the two diagrams are
the same.

Proposition 19. If K is a field of definition of C, then L = K · kO is a field
of definition of the endomorphisms, i.e. EndL(A) ∼= O.

14
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Proof. By theorem 1.1 in [13], it is enough to show that the field L splits B.
Now we get

B ⊗Q kO ∼= HC ⊗kZ
kO,

since HC ⊗kZ
kO ∼= (−6j,−2(27j + 16))kO

∼= (−6, 2)kO

∼= B ⊗Q kO. But

HC ⊗kZ
K ∼= M2(K)

since K is a field of definition for C, so we get

B ⊗kZ
L ∼= M2(L).

Remark. It follows that the curve C is always defined over the field kO[
√
−6].

The following results show that our choice of j function is reasonable from
an arithmetic point of view.

Proposition 20. Let C on E be such that kZ is a number field. Then C has
potentially good reduction at a prime p not dividing 6 if and only if

vp(j) = 0. (8)

In fact, the curve attains good reduction over the field

K = kZ[
√

−6j,
√

−2(27j + 16)] ⊆ kO[
√

2,
√
−3].

Proof. First we prove that (8) is necessary. Recall that, with notations as in
the proof of proposition 6, we have j = D2/B5. Also, equations 4 show that
p | D if and only if p | B. If the curve has potentially good reduction at p, then
there exists an integral model over some extension field such that D is a unit
at p. Hence B is also a unit at p, so (8) follows.

To prove that (8) is sufficient, we use our model in theorem 15. If we let
u =

√
t, the model simplifies to

y2 = (−4 + 3s)x6 + 6ux5 + 3(28+ 9s)x4 − 4ux3 + 3(28− 9s)x2 + 6ux− (4 + 3s).

In this model, we have j = −s2/6 and J10 = 227312s6. Hence, if j is a unit in
Op, then so is the discriminant 212J10.

4 Discriminant 10 case

Now we want to do exactly the same thing in the discriminant 10 case as we
have done for discriminant 6. The presentation will however be briefer this time,
and we omit proofs in those cases where they are completely analogous to what
we have already done.

Let B = Q(i, j), where i2 = 2, j2 = 5 and ij + ji = 0, so ∆ = disc(B) = 10.
We choose the maximal order O = Z[i, (1+j)/2] in B, and the element µ = ij ∈
O with µ2 = −10. We let R10 = Z[µ] ∼= Z[

√
−10]. There are two twisting rings

in this case, namely R2 = Z[i] ∼= Z[
√

2] and R5 = Z[(1 + j)/2] ∼= Z[(1 +
√

5)/2].

15
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The ring of modular forms with respect to Γ is generated by one element
g(z) of weight 4 and three forms a2(z), a5(z) and a10(z) of weight 6. The ring
of modular forms with respect to Γd is generated by g(z) and ad(z), for d = 2,
5 and 10. The ring with respect to Γ̃ is generated by g(z). We can normalise
the forms such that

a2
2 + 2a2

5 + a2
10 = 0,

4g3 + 27a2
5 + a2

10 = 0.

Furthermore, we get a holomorphic isomorphism jm : VW (C) → P1(C) by

jm(z) =
g3(z)

a2
2(z)

.

It is clear from our choice of normalization, that

jm(z(−3)) = 0, jm(z(−8)) = ∞,

jm(z(−20)) = 1/4, jm(z(−40)) = 27/8.
(9)

where z(D) denotes a point on VW (C) whose abelian surface have D CM (which
is unique for the above values of D).

Theorem 21 ([9]). The following equations give a family of QM-curves with
respect to O10:

y2 = x(P 2x4 + P 2(1 + R)x3 + PQx2 + P (1 − R)x + 1)

with

P =
4(2t + 1)(t2 − t − 1)

(t − 1)2
, R =

(t − 1)s

t(t + 1)(2t + 1)
,

Q =
(t2 + 1)(t4 + 8t3 − 10t2 − 8t + 1)

t(t − 1)2(t + 1)2
,

where
s2 − t(t − 2)(2t + 1) = 0.

The equations for E in terms of J2, . . . , J10 are significantly more complicated
in this case, so we do not write them here. Let E0 be the closure of the image
of E in P(2, 4, 6, 10). It turns out that E0 has one singular point [12, 6, 4, 0],
where it has two cusps meeting with different tangent directions. This point is
the only intersection point with E0 and the curve J10 = 0. It also turns out,
that E0 is not a complete intersection, which of makes it more difficult to find
nice equations as we had in the discriminant 6 case. We can however find a
parametrisation of E:

Proposition 22. We have an isomorphism j : E → P1 \ {0,∞} which is given
by

j =
23751C2 − 501060ABC + 2641541A2B2 − 37046420B3

2169C2 − 34404ABC − 16709A2B2 + 37046420B3

16
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where

A = 5J2, B = J2
2 − 24J4, C = 5(33J3

2 − 992J2J4 + 3600J6).

The inverse is map is given by [J2, J4, J6, J10] = [J2(j), J4(j), J6(j), J10(j)],
where

J2(j) = 12j2 − 16j + 12,

J4(j) = 6j4 − 16j3 + 6j2 − 16j + 6,

J6(j) = 4j6 − 16j5 + 32j3 − 8j2 − 16j + 4,

J10(j) = j4.

For future reference, we also note the formula

j2 =
(J2

2 − 24J4)
5

2010J2
10

. (10)

Remark. The map from the family in theorem 21 to the curve E is of degree 12
and is given by

j =
(t2 − 1)3

4t(t2 − 2t − 1)2
.

Proposition 23. The following curves C(D) have D CM:

C(−20) : y2 = x5 −
√

5x3 + x,

C(−40) : y2 = (2 −
√

5)x6 + (30 + 51
√

5)x4 + (30 − 51
√

5)x4 + (2 +
√

5),

C(−27) : y2 = x6 − (189 + 64
√
−3)x4 − (189− 64

√
−3)x2 + 1,

C(−35) : y2 = (2 −
√

5)x6 + (30 + 19
√

5)x4 + (30 − 19
√

5)x4 + (2 +
√

5).

Proof. The proof of the last three cases is analogous to the proof of proposition 8.
In the first case one gets in a similar way that the Jacobian is isomorphic to
E × E, where E = C/Z[

√
−5]. A splitting map

C(−20) → {Y 2 = (X + 2)(X2 − 2−
√

5)} ∼= E

is given by

X =
x2 + 1

x
, Y =

y(x3 + 1)

x2(x2 − x + 1)
.

It is easy to verify that the curves C(D) from proposition 23 lies on E, and
we have

j(C(−20)) = 1/4, j(C(−40)) = 27/8,

j(C(−27)) = −24/25, j(C(−35)) = 8/7.
(11)

Now we consider then matrix L(j) corresponding to (1). We get

det(L(j)) = −2333−185−20j10(4j − 1)2(25j + 24)2(7j − 8)2(8j − 27).

17
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In this case, one can find a matrix N(j) with coefficients in Z[j] such that

N(j)tL(j)N(j) =

− 2155j6(7j − 8)2(25j + 24)2





1 0 0
0 10(1 − 4j) 0
0 0 −2(8j − 27)(1− 4j)



 .
(12)

Hence we get

Proposition 24. If C is on E and has trivial automorphisms, then the Mestre
obstruction HC is the quaternion algebra

(−10(1− 4j), 5(8j − 27))kZ
.

Lemma 25. The −3 and −8 CM surfaces on Ẽ10 have the product polarizations,
hence neither of them is a Jacobian of a genus 2 curve.

Proof. In the −3 CM case, there are only the product polarization (see [10]), so
there is nothing to prove.

In the −8 CM case, one can use the formulas for period the matrices given
in [9], p. 290 and find a period matrix Z = Ω(z) of the abelian surface. It is
then straightforward to find a matrix

(

A B
C D

)

∈ Sp4(Z) such that

Z ′ = (AZ + B)(CZ + D)−1 =

(√
−2 0
0

√
−2

)

.

Now, Z ′ is clearly the period matrix of a split abelian surface with product
principal polarization.

Proposition 26. We have j = jm on Ẽ.

Proof. It is clear that j and jm are related by a linear fractional transformation.
We know the values of jm in 4 points given in (9). Now it follows from lemma 25
that the set {j(z(−3)), j(z(−8))} equals {0,∞}, and we have j(z(−20)) = 1/4 and
j(z(−40)) = 27/8 by proposition 23. The claim follows.

Theorem 27. The expressions
√

1 − 4j and
√

8j − 27 lift to meromorphic func-
tions on V . Furthermore, the map f : V → X = {x2 + 2y2 + z2 = 0} given
by

f(z) = [a2(z), a5(z), a10(z)] = [5,
√

1 − 4j,
√

8j − 27]

is an isomorphism defined over Q.

Proof. The first claim follows from the identities 1−4j = (5a5/a2)
2 and 8j−27 =

(5a10/a2)
2.

Let K1 = Q(
√
−2,

√
−3). The elliptic points z3, z

′
3 and the fixed points

z(−8), z
′
(−8) of w2 belongs to V (K1), and maps to [5, 1,±

√
−3] and [0, 1,±

√
−2]

respectively. Hence the map is defined over K1.
Let K2 = H(Q(

√
−35)) = Q(

√
−7,

√
5). The 4 points with −35 CM are

defined over K2, and by proposition 23, we have that j = 8/7 for these point,
so they map to [±

√
−7, 1,±

√
5]. Hence the map is also defined over K2 and we

are done.

18



Genus 2 Curves with Quaternionic Multiplication

Theorem 28. The curve C is defined over the field K = Q(
√

−10(1− 4j)).
An explicit equation is

f(x) =t3(s2 + 2s − 10)x6 − 4t3(3s + 4)x5 + 15t2(3s2 + 2s + 2)x4 − 40t2sx3

+ 15t(−3s2 + 2s − 2)x2 − 4t(3s − 4)x − (s2 − 2s− 10),

where s =
√

−10(1− 4j)/5, t = (8j − 27)/5.

Corollary 29. For any point z ∈ H, the curve Cz : y2 = gz(x), where

gz(x) =5a2
2(z)(x6 − 3x4 + 3x2 − 1)+

a2
5(z)(x6 + 45x4 − 45x2 − 1)−

√
−2a2(z)a5(z)(x6 + 15x4 + 15x2 + 1)+

8
√

5a2(z)a10(z)(x5 − x)+

2
√
−10a5(z)a10(z)(3x5 + 10x3 + 3x)

is a point on E with j(Cz) = j(z) and Jacobian isomorphic to (Az , ρz).

Theorem 30. The diagram

kO
��

� ??
?

kR2

??
?

kR10 kR5

kZ

���

is given by

Q(
√

1 − 4j,
√

8j − 27)

hhhhhhhh
SSSSSS

Q(
√

(1 − 4j)/(8j − 27))

VVVVVVVVVV
Q(

√
1 − 4j) Q(

√
8j − 27)

Q(j)

kkkkkkkk

Proposition 19 holds also in this case, with an analogous proof. We conclude
that the genus 2 curve is defined over kO[

√
−10], exactly corresponding to the

result for the D = 6 case.

Proposition 31. The only curves on E which have non-trivial automorphisms
groups are the −20 CM curve which has group D4, and the curves with −40,
−27 and −35 CM where the group is C2 × C2.

Proposition 32. Let C on E be such that kZ is a number field. Then C has
potentially good reduction at a prime p not dividing 10 if and only if

vp(j) = 0. (13)

In fact, the curve attains good reduction over the field

K = kZ[
√

−10(1− 4j),
√

5(8j − 27)] ⊆ kO[
√
−2,

√
5].
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Proof. First we prove that (13) is necessary. Assume that C has good reduc-
tion over a field K at a prime p, so there is an integral model over K whose
discriminant 212J10 is not divisible by p. We introduce the variables

A = 5J2, C = 5(33J3
2 − 992J2J4 + 3600J6),

B = J2
2 − 24J4, D = 205J10.

One can verify that A, B, C and D are integral at any prime not dividing 10,
and D is a unit at p. Now we have, by (10), that j = D2/B5, so it is sufficient
to show that also B is a unit. Now, there is a relation

31D2 = B(DC − 49B4),

so we are done in case p - 31. However, modulo 31 there is a relation

D2 = B(11ABD − 7A2B3 + 13CD − 8AB2C + 11BC2),

so B is must be a unit in this case too.
To prove that (13) is sufficient, we use the model in theorem 28 and argue

exactly as in the proof of proposition 20.

Proposition 33. The intersection of E6 and E10 in M2 is the single point
corresponding to the curve with −43 CM.

Proof. Plugging the parametrisation of E10 from proposition 22 into equa-
tions (3), we get the only solution j = 216/1225. Now, in table 2 we see
that this j-value corresponds to the −43 CM curve.

5 Examples and tables

In [5] Elkies found that there are 27 rational CM points on E6 and 21 on E10. We
list them in tables 1 and 2 respectively, together with the additional information
that we now can give about these points. The points are ordered after increasing
height of j. The relations between our uniformization j and Elkies’ t is j =
16/27(t− 1) in the discriminant 6 case, and j = t/8 in the discriminant 10 case.
Unfortunately, the caveat in [5] that not all of these curves, for example the −163
curve on E6, are proved to have the correct CM still applies. It should probably
be easier to prove these cases now that we can give the explicit sextics, but it
seems to the authors that these are still computationally difficult problems.

Example 1. Consider the curve

y2 = (x2 + 5)((−1/6 +
√

2)x4 + 20x3 − 490/6x2 + 100x + 25(−1/6−
√

2))

studied in [4]. This has discriminant 6 QM with j = −9/128. We get kR6 =
Q(

√
−2), kR2 = Q(

√
−10), kR3 = Q(

√
5) and kO = Q(

√
5,
√
−2), which is

consistent with and somewhat more precise than the results in [4].
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D j kR2 kR6 kR3 disc(HC)

−3 ∞ Q Q Q(
√
−3) no curve

−4 0 Q(
√
−1) Q Q no curve

−24 −24/33 Q Q(
√
−3) Q –

−19 34/26 Q(
√
−19) Q Q(

√
−19) –

−40 2434/53 Q(
√
−10) Q(

√
5) Q(

√
−2) 2 · ∞

−51 −74/(2633) Q(
√

17) Q(
√
−3) Q(

√
−51) 1

−84 −2672/36 Q(
√

3) Q(
√
−1) Q(

√
−3) 2 · 3

−52 −2634/56 Q(
√
−13) Q(

√
−1) Q(

√
13) 2 · 13

−120 2474/(3653) Q(
√
−15) Q(

√
5) Q(

√
−3) 3 · ∞

−75 114/(263651) Q(
√
−15) Q(

√
5) Q(

√
−3) 3 · ∞

−132 −28112/(3356) Q(
√
−1) Q(

√
−3) Q(

√
3) 1

−43 3474/(2656) Q(
√
−43) Q Q(

√
−43) 43 · ∞

−168 −2472114/(3356) Q(
√

6) Q(
√
−3) Q(

√
−2) 2 · 3

−88 −243474/(56113) Q(
√
−22) Q(

√
−11) Q(

√
2) 2 · 11

−100 28345174/116 Q(
√
−1) Q(

√
5) Q(

√
−5) 5 · ∞

−123 −74194/(263356) Q(
√

41) Q(
√
−3) Q(

√
−123) 1

−228 21074192/(3956) Q(
√
−1) Q(

√
3) Q(

√
−3) 2 · ∞

−67 3474114/(21256) Q(
√
−67) Q Q(

√
−67) 67 · ∞

−147 −114234/(26365671) Q(
√

21) Q(
√
−7) Q(

√
−3) 3 · 7

−148 −263474114/(56176) Q(
√
−37) Q(

√
−1) Q(

√
37) 2 · 37

−312 −2474234/(3356116) Q(
√
−39) Q(

√
−3) Q(

√
13) 3 · 13

−372 −2674194312/(3656116) Q(
√

3) Q(
√
−1) Q(

√
−3) 2 · 3

−408 −2474114314/(3956173) Q(
√

17) Q(
√
−51) Q(

√
−3) 1

−267 −74314434/(2123356116) Q(
√

89) Q(
√
−3) Q(

√
−267) 1

−232 243474114194/(56236293) Q(
√
−58) Q(

√
29) Q(

√
−2) 2 · ∞

−163 3874194234/(2656116176) Q(
√
−163) Q Q(

√
−163) 163 · ∞

−708 −21274114474592/(3356176296) Q(
√
−1) Q(

√
−3) Q(

√
3) 1

Table 1: Rational CM points on E6
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D j kR2 kR10 kR5 disc(HC)

−3 0 Q(
√
−3) Q Q(

√
−3) no curve

−8 ∞ Q(
√
−2) Q Q no curve

−20 1/22 Q Q Q(
√
−1) –

−35 23/7 Q(
√

5) Q(
√
−7) Q(

√
−35) –

−27 −233/52 Q(
√
−3) Q Q(

√
−3) –

−40 33/23 Q Q
√
−2 Q –

−52 −33/(2252) Q(
√
−13) Q(

√
13) Q(

√
−1) 13 · ∞

−120 −33/(2372) Q(
√
−15) Q(

√
10) Q(

√
−6) 3 · ∞

−72 53/(233172) Q(
√
−2) Q(

√
6) Q(

√
−3) 3 · ∞

−43 2333/(5272) Q(
√
−43) Q Q(

√
−43) 43 · ∞

−180 −113/(22132) Q(
√
−15) Q(

√
15) Q(

√
−1) 2 · ∞

−88 3353/(2472) Q(
√
−22) Q(

√
−11) Q(

√
2) 2 · 11

−115 2633/(13223) Q(
√

5) Q(
√
−23) Q(

√
−115) 5 · 23

−67 −233353/(72132) Q(
√
−67) Q Q(

√
−67) 67 · ∞

−280 33113/(2471232) Q(
√

10) Q(
√
−35) Q(

√
−14) 2 · 7

−340 33233/(2272292) Q(
√

17) Q(
√
−17) Q(

√
−1) 2 · 17

−148 33113/(225272132) Q(
√
−37) Q(

√
37) Q(

√
−1) 37 · ∞

−520 33293/(2672131472) Q(
√
−2) Q(

√
13) Q(

√
−26) 2 · ∞

−232 33113173/(255272232) Q(
√
−58) Q(

√
−2) Q(

√
29) 1

−163 −263353113/(72132292312) Q(
√
−163) Q Q(

√
−163) 163 · ∞

−760 33173473/(2372312712) Q(
√
−95) Q(

√
−38) Q(

√
10) 5 · 19

Table 2: Rational CM points on E10
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Example 2. The curve

y2 = 1/48x(9075x4 + 3025(3 + 2
√
−3)x3 − 6875x2 + 220(−3 + 2

√
−3x + 48)),

which is studied in [3] and [22], has discriminant 10 QM. We have j = −32/147,
and hence we get kR10 = Q(

√
33), kR2 = Q(

√
−11), kR5 = Q(

√
−3) and kO =

Q(
√
−3,

√
−11).

Example 3. From table 1, we see for example that the curve with -132 CM on
E6 is defined over Q. An explicit equation is given by

y2 = 73x6 − 750x5 + 966x4 + 2000x3 − 876x2 − 3000x− 1288.

To find this explicit model from the invariants J2, . . . , J10, we used the PARI/GP
package of Paul B. van Wamelen for computations of genus 2 curves.

Example 4. We consider an example of CM points with non-rational j-value.
There are two points with −91 CM points on E6, which we denote z(−91) and

z′(−91). The j-values of these points belong to H(Q(
√
−91)) = Q(

√
−7,

√
13).

Numerically (up to several hundred decimals) we get

j(z(−91)) = j(z′(−91)) =
34p4

7p
4
11

p6
2p

12
2 p6

11

,

where p2 = (1 +
√
−7)/2, p7 =

√
−7 and p11 = 2 +

√
−7.

A Restriction of Hilbert modular forms

In this appendix, we describe how to construct modular forms with respect to
a cocompact quaternionic groups over Q in a way that is suitable for numerical
computations. We start by embedding the curve into a suitable Hilbert modu-
lar surface. Note that our description of this embedding is just a reformulation
of the classical construction of Hirzebruch-Zagier cycles [11]. The key to con-
structing modular forms with respect to the quaternionic group is to introduce
a certain factor such that restriction of modular forms on H × H times this
factor gives modular forms with respect to the quaternionic group. A special
case of this occurs in [8].

Let k = Q(
√

d), where d > 1 is a square free integer. Let D be the discrimi-
nant of the field k, O the ring of integers in k and the nontrivial automorphisms
of k is denoted by x 7→ x. Consider the algebra A = M2(k). The canonical
involution on A is given by

(

a b
c d

)∗
=

(

d −b
−c a

)

. Let Λ = M2(O). The Hilbert
modular group Γ = SL2(O) acts on H×H by γ(z1, z2) = (γz1, γz2). Let β ∈ Λ

with β
∗

= β, β ∈ Z +
√

DΛ and det(β) > 0. We assume furthermore that β
is primitive, i.e. if β = nβ0 where β0 has the same properties and n ∈ Z, then
n = ±1. Consider

Λβ = {λ ∈ Λ | βλ = λβ},
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which is an order in an indefinite quaternion algebra over Q. The discriminant
of the order Λβ is det(β) (cf. [7]). Let

Cβ = {(z, βz) | z ∈ H} ⊂ H×H.

The group Γβ = {γ ∈ Λ1 | βγ = ±γβ} ⊇ Λ1
β acts on Cβ

∼= H.
Our aim is to construct modular forms with respect to the group Γβ . Let F

be a Hilbert modular form with respect to Γ of weight (k1, k2), i.e. F : H×H →
C is holomorphic and satisfies

F (γz1, γz2) = j(γ, z1)
k1j(γ, z2)

k2F (z1, z2),

for all γ ∈ Γ. Here j(α, z) = cz + d for any real matrix α =
(

a b
c d

)

. We define a
function

f(z) = j(β, z)−k2F (z, βz), z ∈ H.

Now, for γ ∈ Γβ, we get j(β, γz)j(γ, z) = j(βγ, z) = ±j(γβ, z) = ±j(γ, βz)j(β, z),
so

j(γ, βz)

j(β, γz)
= ± j(γ, z)

j(β, z)
, (14)

where the sign is the same as the sign in the equation βγ = ±γβ.

Proposition 34. The function f is a modular form with respect to Λ1
β of weight

k1 + k2. If k2 is even, then it is also a modular form with respect to Γβ.

Proof. The function f is obviously holomorphic. By (14), we get

f(γz) =j(β, γz)−k2F (γz, βγz)

=j(β, γz)−k2F (γz, γβz)

=j(β, γz)−k2j(γ, z)k1j(γ, βz)k2F (z, βz)

=j(β, z)−k2j(γ, z)k1j(γ, z)k2F (z, βz)

=j(γ, z)k1+k2f(z),

for any z ∈ H and γ ∈ Λ1
β. The last statement is now clear.
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