On smooth rational curves on a polarized K3 surface

Keiji Oguiso

Department of Mathematical Sciences University of Tokyo
Hongo, Tokyo 113

Japan

Max-Planck-Institut für Mathematik
Gottfried-Claren-Strabe 26
D-530 K Bonn 3

Germany

ON SMOOTH RATIONAL CURVES ON A POLARIZED K3 SURFACE

Keisi Oguiso
Faculty of Mathematical Sciences University of Tokyo, Hongo Tokyo 113 Japan, Max-Planck-Institut für Mathematik, Gottfried-Claren-Str. 26 Bonn 3 Germany

Introduction.

In this paper, we shall prove the following existence theorem concerning with a pair of a K3 surface and a smooth rational curve with given degree on it. Besides its own interest, this theorem may have some application to the existence problem of smooth rational curves with given degree on a polarized Calabi-Yau 3-fold (cf. [Ka, Theorem 2.1], [C]).
Main Theorem. Let $N \geq 3$ and $d \geq 1$ be arbitrarily chosen integers. Then, there exists a pair consisting of a non-singular rational curve $C \subset \mathbb{P}^{N}$ of degree d and a non-singular primitively embedded $K 3$ surface $S \subset \mathbb{P}^{N}$ such that $C \subset S$.

Here, by the words primitively embedded, we mean that the embedding $S \subset \mathbb{P}^{N}$ is given by the complete linear system of a primitive (in the Picard group) very ample line bundle on S.

In the case when $N=3$, Mori proved the existence of a pair (S, C) as in the Main Theorem by making use of some special Kummer surface ([MO]). We shall construct such a pair by applying Torelli's theorem for an algebraic K3 surface (cf. [PS], [BPV], [MR]) and Saint-Donat's theory on projective models of K3 surfaces (cf. [SD], [MM], [MO]).

The author would like to express his thanks to Professor Dr. F. Hirzebruch for offering him an opportunity to visit Max-Planck-Institut für Mathematik. This work was done during his stay in the institute.

Proof of the Main Theorem.

First of all, we recall the following lemma.
Lemma 1 ([SD], [MM], and [MO, Theorem 5]). Let S be a projective K3 surface and H be a nef divisor on S with $H^{2} \geq 4$. Then, H is very ample if and only if the following 3 conditions are satisfied:
(1) there are no irreducible curves E such that $E^{2}=0$ and $E . H=1,2$,
(2) there are no irreducible curves E such that $E^{2}=2$ and $H \sim 2 E$,
(3) there are no irreducible curves E such that $E^{2}=-2$ and $E . H=0$.

Lemma 2. Let $n \geq 2, d$ be positive integers. Then, there exist a projective $K 3$ surface S, a primitive very ample line bundle H on S, and a smooth rational curve C on S such that $H^{2}=2 n$ and $H . C=d$.

Proof. Let us consider the 2-dimensional lattice $L=\mathbf{Z} h \oplus \mathbf{Z} c$ with intersection form

$$
\left(\begin{array}{cc}
(h . h) & (c . h) \\
(h . c) & (c . c)
\end{array}\right)=\left(\begin{array}{cc}
2 n & d \\
d & -2
\end{array}\right) .
$$

Since L is an even integral lattice of rank 2 and of signature $(1,1)$, by the primitive embedding theorem of even lattice ($[\mathrm{N}]$) and by Torelli's theorem for -an algebraic K3 surface ([PS], [BPV]), we know that there exists a projective K3 surface S with Pic $S \cong \mathbb{Z} h \oplus \mathbb{Z} c$ (See [MR, Corollary 2.9]). Moreover, since the nef big cone of S is a fundamental domain of the action of the reflection group generated by the integrally defined reflections $v \mapsto v+(v . b) b$ for $b \in \operatorname{Pic} S$ with $b^{2}=-2$ on the positive cone in Pic $S \otimes \mathbf{R}$ by [PS] or [BPV, VIII, Proposition 3.9], and since $h^{2}>0$, we may assume without loss of generality that h represents a nef big line bundle on S. In what follows, by abuse of notation, we consider h and c as elements of PicS.

Claim (2.1). h is very ample on S.
Proof of Claim (2.1). Since h is nef and $h^{2} \geq 4$, it is enough to check the condition (1), (2), (3) of Lemma 1. The condition (2) is obvious because h is a part of \mathbb{Z}-basis of PicS. We shall check the condition (1). Assume the contrary that there exists an element E of Pic S such that $E^{2}=0$ and $E . h=1,2$. Then, we have:

$$
\left(\begin{array}{cc}
(h . h) & (h . E) \\
(h . E) & (E . E)
\end{array}\right)=\left(\begin{array}{cc}
2 n & 1 \\
1 & 0
\end{array}\right),\left(\begin{array}{cc}
2 n & 2 \\
2 & 0
\end{array}\right)
$$

and cosequently, $|\operatorname{det}(h, E)|=1$ or 4 . On the other hand, since $\{h, c\}$ is a \mathbf{Z} basis of $\operatorname{Pic} S,|\operatorname{det}(h, c)|$ must divide the integer $|\operatorname{det}(h, E)|$. But this is impossible because $|\operatorname{det}(h, c)|=4 n+d^{2}>4$. Next, we check the condition (3). Assume the contrary that there exists an element D of $\operatorname{Pic} S$ such that $h . D=0$ and $D^{2}=-2$. Then, $|\operatorname{det}(h, D)|=4 n$. But this is absurd by the same reason as before because $|\operatorname{det}(h, c)|=4 n+d^{2}>4 n=|\operatorname{det}(h, D)|>0$.

Now, in order to finish the proof of Lemma 2, it is enough to show the next claim.

Claim (2.2). The complete linear system $|c|$ contains a smooth rational curve as its element.

Proof of Claim (2.2). Since $c^{2}=-2$, by Riemann-Roch theorem, we see that either $|c|$ or $|-c|$ contains an effective member. But, since $-c . h=-d<0$ and since h is very ample, we see that $|-c|$ can not contain an effective member. Thus $|c|$ contains an effective member. If this member is irreducible and reduced, then we get the desired result by the genus formula. We shall assume the contrary that $|c|$ contains no irreducible and reduced members and shall derive a contradiction.

Since $c^{2}=-2<0$, we can write $c=a R+D$ in Pic S, where R is an irreducible and reduced curve with $R^{2}=-2, a$ is a positive integer, and D is an effective divisor such that $R \not \subset S u p p D$. If $D=0$, we have $a \geq 2$ by our assumption. But, in this case, we have $-2=c^{2}=a^{2} R^{2} \leq-8$, which is absurd. Next, we treat the case when $D \neq 0$. Then, we have $d=c . h=a R . h+D . h$. Since h is very ample and D is not zero, we have $0<r:=R . h<d$. Then, we have $0<|\operatorname{det}(h, R)|=4 n+r^{2}<4 n+d^{2}=|\operatorname{det}(h, c)|$. But this is impossible because $|\operatorname{det}(h, c)|$ must divide $|\operatorname{det}(h, R)|$.

Now, we can finish the proof of our main theorem. Let us put $n:=N-1 \geq 2$. Then, for arbitrarily chosen integers $N \geq 3$ and $d \geq 1$, we can find a projective K3 surface S, a primitive very ample line bundle H on S, and a smooth rational curve C on S with $H^{2}=2 n$ and $H . C=d$ by Lemma 2. Since we know that $h^{0}\left(\mathcal{O}_{S}(H)\right)=n+2$ for an ample line bundle H on a K3 surface S with $H^{2}=2 n$, we get the desired result. Q.E.D.

References

[BPV] W. Barth, C. Peters, and A. Ven de Van, Compact complex surfaces, Springer, 1984.
[C] H. Clemens, Homological equivalence, modulo algebraic equivalence, is not finitely generated, IHES 58 (1983), 19-38.
[K] S. Katz, On the finiteness of rational curves on quintic threefolds, Compositio Math. 60 (1986), 151-162.
[MM] S. Mori and S. Mukai, The uniruledness of the moduli space of curves of genus 11, Springer Lecture Note 1016 (1982), 334-353.
[MO] S. Mori, On degrees and genera of curves on smooth quartic surfaces in P3, Nagoya Math. J. 96 (1984), 127-132.
[MR] D. Morrison, On K3 surfaces with large Picard number, Invent. math. 75 (1984), 105-121.
[N] V. Nikulin, Integral symmetric bilinear forms and some of their applications, Math. USSR Izvestija 14 (1980), 103-167.
[PS] I. Piateckii-Shapiro and I.R. Shafarevich, A Torelli theorem for algebraic surfaces of type Kя, Math. USSR Izvestija 5 (1971), 547-587.
[SD] B. Saint-Donat, Projective models of K3 surfaces, Amer. J. Math. 96 (1974), 602-639.

