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On the Geometry of Affine Immersions

Katsumi Nomizu and Ul r1c h PinKa 11

Dur purpose ts to ofter a new approach to atfine differential geometry

based on the notion of affine immersion of an affinely connected manifold

(M" I V) into an ambiant manifol d (ffm I V). In the present paper we are most ly

concerned with the case where m =n + 1 and particularly ffn+l 15 the ordinary

affine ~pace Rn+ 1 end prove ~everel theorem~ on affine i mmer~ion~ which are

elosely re1ated to known results on Isometrie immersions in R1emannian or

pseudo-Riemanntan geometry.

In Sections 1 and 2 we define the notion of affine 1mmersion, deve1op severa 1

for mul as, reformul ate same of the basic nations in cl asslca 1 affine differentia I

geometry end discuss ~everaI examples. In Sectlon 3 we study affine

immer~ions of Rn into R""*"'1 and prove Theorem 1 whieh is an analogue of the

evJinder theorem for complete f1at hypersurfaces in euclidean and Lorentzian

spaces. In Section 4 we prove Theorem 2 concerning affine immersions of a

metric connection whfch gives apreeise statement of the result hinted 8t by

Ca rtan [1] and indieated by Norden in the Appendix of [6]. We abtain a few

corollarie8 concerning rigidity of affine immersions. In Sectton 5 we prove

Theorem 3 on the non-existence of affine immersion lnto 1"+1 of a compact

manifold with an eQuiaffine connection with strict Iy negative- definite Riee;

tensor.
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1. Affine immersions.

Th roughout this paper, we dea1 with affine connections without torsion so

th1s cond1t10n w111 not be ment10ned 8ach t1me.

Let M be an n- di mensiona J differenti ab1e mantfo1d with an affine connection

V, and 1et Pf be an (n+ 1) - di mensiona1 differentiab1e manifo Id with an affine

connection v. By an affine immersion f : (M, v) -+ (~, 'Q) we mean an

immersion M -+ pt for which there exfsts Jocally (that ls, around each pofnt of

M) a transversal vector fie1d ~ 810ng f which has the following property: if X

end Y are arbitrary vector fields on M, we have

where the 1eft-hand side denotes the covariant derivative with respect to Xof

the ve·ctor ~ield f*(Y) 810ng fand the first term of the right-hand side 15 the

tanQential component and the second term ts the transversal component. It js

easy to check that h i3 a symmetric bilinear form on ellch tllngent splIce

Tx( M). We may si mp1ffy the equat10n by droppfng f* and write

(1) VxY = VxY + heX, Y)~.

In particular. 1f h is 0 at x (that 1S, ?lxY is tangent to M). then we say that f

t5 totally geodestc at x. Obv1ously, thfs condttion is independent of the chotce

of ~. We have
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Propositioo 1. J.n f: (M I Q) ~ (pt I V) be ao affioe im mersioo aod ~ 1 AD.d.

~2 two associated transversal fields. Theo the directioos [~1] A.O.d. (~2] ~

differ ooly 00 the ioterior of the set where h vaoishes (i. e, 00 tota lly geodesie

oieces).

Peoof. Weite

where Z is a vector "field tangent to M and, is a function on M. We have then

vXY :::I V XY + h2(X, Y)~2 ~ QXY+ h2(X t Y)Z + , h2(X, Y)~l'

Comparing it wtth ( 1). we have

and

If t t5 not tota11y geodesfc at x, then th ere exfsts X, Y E Tx( M) such that h2(X, Y)

~ O. Then Z:::I 0 at x. Thus ~2 :::'~1 • c

It also follows that whether h is nondegenerate is independent of the choice

of ~. We say f 1S nondegeoerate 1f h is.

For ;'0 ~ffioe immer5ioo f: (M, v) ~ ('f:1, v) we also write

(3) Vx~=-S(X)+T(X)~ I

where -SeX) denotes the tangential component. It is easi1y verified that S ia a

tensor field of type (1 t 1) and T is al-form. We call 5 the shape operator and

T the transversal connection form tor f.
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Following the standard routine for geometry of hypersurfaces, we may now

compute

the tangentta1components tan ["R'( X, Y)2] and tan[ R'( X, Y) ~ ]

and

the transversal components trans [~(X,Y)Z] and trans [~(X,y)~]

In terms of the curvature tensor R of (M, Q), h, S, t' ete. We obtatn

pcopos1tton 2.

I tan [fr(X, Y)Z ]= R(X, Y)Z - [h(Y,Z)SX .. h(X,Z)SY]

II trans[f(X,Y)Z]= (QXh)(Y,Z) + T(X) h(Y,Z)- (V'yh)(X,Z) .. 't"(X)h(X,Z)

III tan [f(X, Y)~] = .. (9XS)(Y) + t'(X)SY + (V'yS)(X) - T(Y)SX

IV trans [~(X,Y)~]::s - h(X,SY)'" h(SX,Y) + 2 dT(X,Y).

We now eonslder earta1n Important special cases.

For an aff1ne Connect1on v on M, the R1cc1 tensor R1c 15 def1ned by

(4) Ric(Y ,Z) = trace' {X..... R(X, Y)Z } •

R1e may not be symmetrie. It is known that R1c 1s symmetrie 1f and only if

around e8ch point there is a parallel volume element, namely, a nonzero

n-form w such that Vw = O. If M 15 s1mply connected, 1t follows that Rlc 1s

symmetrie if and only if M adm1ts a volume element w parallel relative to V,

that 18, if and only 1f (M, V) 19 equiaffine. (M, Q ,w) i9 ca 11 ed an egy1affine

strycture.

Ir (R I ~ I w) Is an eQu1aff1ne st ructuce and r: (M, V) --+ (t1, '?J) an af11ne
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immersion and ~ an associated transversal field, then we define a volume

element CA,) on M by

where {XII ••• ,Xn } is any besis in Tx(M). Using (1), (3) and (5) we see thet

It foll ows that (M. V, w) ts an eqülafflne structure ffand only If 't' = o.

lf (M,V,w) and (r1,v,w) are equiaffine structures, f: (H,V) ~ (A,v)

an affine Immersion, then an associated transversal ffeld is called eguiaffine if

(5) holds for ,any basfs { Xl' ••• ,Xn } In Tx( M) • We have 't' = O. Assumlng

that f is totally geodesie nowhere, the associated transversal ffeld ~ js now

unfquely determtned because of (5).

Rema rk. The study of affine im mersion of an equiafflne connection ioto f1 at

affine space ia equiva Ient to what is ca 11 ed re Jative geomet ry, see [6], [7]. [8].

We have

pcopos1t1on 3. If (M. v. w) ~(fl.Q, w) ace aaulsf"ne stryctures and ff f

13 an affine immersion: (M, V) ...., (f1, V). then an associated transversal ve.ctor

lli.l.d. ~ can be chosen to be eguiaffine.

-Praof. 51 mply multlply ~ by ,:a w(X 1' ••• ,Xn)/ w(X 1' • • • ,Xn, ~). c

Reca 11 that t\110 affine connections V and i (both with zero torsion) on a

manitold Mare pro1ectiyeJy reJated If there is a J-form p on M such that



6

for a11 vector fields X and Y. See, tor example, [5].

A change from Q to V is called a projective change. An affine eonneetion

V ts said to be ocoteetlyely flat If it can be ehanged projecttvely to a flat affine

connection V(i. e. zero curvature tensor 'R).

Suppo8e an affine connectlon V on a diffecentiable manifold M has

symmetrie Riec1 tensor (In part1culac,suppose;t 1S equtatftne). For dirn M i3,

Q 15 pcoJectlvely flat If and only Ir the proJeetlve curvatuce tensor

(8) W(X,Y)Z::I R(X,Y)Z - [J(Y,Z)X - l(X,Z)Y], where J= Ric/(n-l)

is identltca lly o. For dl rn M ::I 2, Q is projectlve IV fl at if and on Iy It 't sat1sfies

Codazz1"s equatlon: (VxJ) (Y, Z) = (Qy1) (X, Z). Ir dirn M i 3 and Ir w=0,

then l' sattsfies Codazz1's equatlon. On the other hand, if dirn M=2, then W ;8

auto mattca Ily o.

Ir (M, v) ts projectiveIy fl at, then

(9) R(X, Y)Z Q l(Y,Z)X - l(X,Z)Y.

We now eonstder the focmulas I - IV in eertain special cases.

a. ease where (pt, '9) Is pcofectlyeJy fl at:

~(X,Y)Z = 'i (Y,Z)X - r(X,Z)Y is tangential. Thus

la. R(X,Y)2 a l(Y,Z)X - l(X,Z)Y + h(Y,Z)SX - h(X,Z)SY - Gauss-

Fcom thfs, we get

RI c(Y , Z) = (n - I )1(Y ,Z) + h(Y , Z) t r S - h(SY •Z) •
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In pa rticul ar, if Q i5 f1 at, we have

R(X, y )Z =h(Y , Z)SX - h( X, Z)SY

Rl e (Y, Z) ~ h(Y ,Z) t r S - h(SY , Z) •

Ha. (VXh)(Y,Z) + T(X)h(Y,Z) = (Vyh)(X,Z) + T(Y)h(X,Z) -Codazzi-

We set

(10) C(X,Y,Z) =(VXh)(Y,Z) + t>(X)h(Y,Z),

whieh ia symmetrie in Y and Z like h, as well es in X and Y by virtue of Ha, thus

symmetrie in X, Y, and Z. We call C the cybic form of the affine immersion ..

Thts i8 a general1zatton of the classtcal cubic form In affine differential

geometry.

b. Casewhere (M,'V,w),(f1,9,w) are eguiaffine and"the transversal field

~ i8 egutstf!ne:

Since 't' =0, we get

IIb. - Codazzi for h -

In partlcular, If V i5 flat, ('VyS)(X) = ('V'XS)(Y) - Codazzi for S-

IVb. h(SX, Y) =h(X,SY) - Rieei-

2. EX8mplea.

We discuss some examples of affine immersions.

Example 1 - Isometrically 1mmersed hypersurface. Let (M,g) be a
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Riemannian manifol d of dimension n with Levi -Civita connection v. Let (pt, g) be

a Riemannian manifold of dimension 0+1 with Levi-Civita connection V . If f:

(M,g) ~ (f1, g) is an isometric immersion, then f:(M, '1) ~ ("Pt, v) 15 an affine

immersion with a transversal vecotr field ~ given local1y as ~ unit normal

vector Held.

Exa mDl e 2 _. Affine .cylinder. Rough ly speak. ing, an affine cylinder in~ 1 is

a hypersurfac e Qenerated by a pa ra 11 e1 f8 ml1y of affine (n-1 ) - spaces R" -1 (t) ,

each through a pOlnt of ., in R"+1. We define an affine cvllnder immersion

precisely as follows.

Let let) be a smooth curve in ~1 end ~(t) a vectar field alang let). Let

Rn-1 be an afffne (n-1 )-space In Jt1+1 and consfder all parallel (n-l )-spaces

and denate by R"-1 (p) the one through p. We assume that

(i) '(~tl, ~(t) and Rn- 1(l(t» are lineerly ;ndependenti

(ii) 1'- (t) := p( t) ~ (t), where p • p( t) is a certsin differentiab1e function.

Now we deffne a mappfng f : R" ~ Jt1+' as folIows. Wr1te R" = R x 1"-' so

every point oflfl 1s wr1tten es (t, y), t e R, y e 1"-1. Let

f(t, y) - let) + YI

For this immersion f, we taKe a transversal field

t(t,Y) = t(t) translated to f(t,y)

by vi rtue of condition (i). It 1S easy to verify that f i5 an affine 1mmersion of

Rn -+ 1i1+11 For the curve x(t) - (t,O) in Ifl , we have
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~

~t f( xt) = ö· (t) =~(t) ~ (t) so h(a/3t, a/3t) =~(t) •

In the special case where we can take ~ = "$- and furthermore l- and "$-' are

linearly independent, we callit a orooer affine eylinder. In thi5 ease, we see

see that h never van1shes.

Example 3 - Graph immersion. Let (Mn, v) be a manifold with a flat affine

connection and ,: (Mn, v) ~ R" an affine immersion. Thus, 15 an immersion

such that every point p of Mn has a neighborhood U on which , i5 an

afffne- connectfon preservfng diffeomorphism with an open neighborhood V of

'1(p) 1n Jil. Cons1der Rn as a hyperplane H in Rn+l and let ~ be a parallel

vector fjeld transveral to H. For any differentiable function F: M~ R, we

define f:Mn .-,Rn+l by f(x)=,(x)TF(x)~, for xeM n •

We have

so f i~ l!n immer~ion. For vector field3 X end Y on Mn, we hl!ve

Thus f i5 an affine 1mmersion with htX, Y) =XY F - (fJxY )F, which coincides

with the He8sian of F. Thus f 18 nondegenerate 1f the HeSS1an H 15
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nondegenerate. We have also S =o.

Conversely, we may prove

Proposltloo 4. Supoose ( Mn I V) 1s a (1 at connectlon and r : ( Mn, V) -. Rn+ 1

an affine immersion such that s::: o. Then it is affinely egyivalent to the graph

immersion for a ceftsin fynction F: MO -+ R.

Proof. By assuming a transveral field ~ to be equiaffine, S::: 0 implies that

QX~ := 0, that iSI ~ ia a constant (parellel) vector field. Let H := R" be a

hyperplane In Jt1+ 1 whieh 18 tran8versa I to ~. Let 11 :~ 1~ R" be the

projection al ong the di rection of ~ 50 that TC • f : Mn -+ R" i 5 an affine im merslon

with image W, an open subset of R". We can find a differentiable function F: Mn

~R such that f(x) ~ (1T • f)(x) + F(x)~. Thus f i8 a graph immersion. c

Exarnole 4 • (entro-afflne hypersurface. Suppose f: M~ ~1. {ol is an

im mersed hypersurface such that relative to 0 in ~ 1 the position vector

---+) )

o f(x) is always transversal to f(M) at f(x). Talee ~ = - of(x) as

a transversal veetor field for f. Then ~X~::: - X so that 'l" = 0 and S = I

indeed an affine Connection (with zero torsion) on M. Thus f : (M, Q) -)0 R"+ t ia

an affine immersion. This ia called a centro-affine hypersurface. From the

formul a (Ib) we get

(11) R(X,Y)Z=h(Y1Z)X - h(X,Z)Y, l'(Y,Z)~h(Y,Z).
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Proposition 5, For a centro- affine hypersurface f: (M, 'V) -+ ( R"+ 1.. {o}, v)

and for any function A.: M -+ Rt, tOs mapoing ~A.(x)f(x) defjnes a

centro" affine hyper5urface X.f: (M, 'V') ~ ( 1"+1 .. {ol, v) where 'V'~

orojectiye1ty re1Bted to v ..J2:L...

'V'x y = 'V x y + p(X)Y + p(Y)X, where p= d 100 "

Cooyerse1y. any orojective change ot (H, 'V) cao be loca11y obtained in this

manner.

The proot 15 straightforward aad omitted. c

Co roll ary, ..1ä.( M, v, w)· be a d1ffereotipbJ e manjfo1d with a orolective1y

f18t egyj8ff1ne connecton, Then (M, 'V) cao be 1oca Jly rea 11z ed as a

cantra-affine hypersurface in ~ ' .. {al.

Proof, If (M, 'V') 1s flat, then 1t cao be locally realized as a piece of a

hyperplane with induced v~1ume element Wo in Rn+1_{o}. Now we cao make a

projective change back. to V by modifying this hyperplane by a suitable function

A., Da me ly, A. =I.Jj/wo' o

Example 5- ConormaJ immersion.

Let f: (M, Q tW) ---+ Rn+1 is a nondegenerate affine immersion of an equiaffine

structure witO an equiaffine transversal fjeld~, We denote by ~+1 tOe vector

space dua1to tOe vector space 1"+1 uoderlylog the affine space .tt+1• We

defi oe v: M~ Rc+ 1- {o} a5 f 011 OWS •



12

For xE M, vx 1s an element of ~1"1 such that

( 12)

where Yand ~x are considered as elements of the vector space Jf1+1 naturally

identified with Tx( 1i'+1). Denotino by V the usual flat connection in Ry,-tl J

we hava

S1nce h is nondegenerate, we see that If (vyv) (f.X) = a tor a11 X, then Y = o.

S1nce VyV::l v.(Y), it follows that the mapp1ng v 1s nons1ngular. Henee we may

constder v: M~ Rn+ 1 - (al 88 a centro-afftne hypersurface, called the

tonorme) j mmersion for f.

TaklnQ -v a8 the transvera) vector f1eld as in Example 4 we write

( 14)

where v* 18 an affine connectlon on M and h* the second fundamental form.

These are re)ated to the affine· eonnection Q, the affine metrie hand the affine

shape operator 5 fot the original hypersurface f: M -t~ 1 in the following way:

(15) h*(X,Y) l::I h(SX,Y) (also equal to 1.J)t/y) as in Example 4)

(16) X h(Y,Z) = h(V*XY'Z) + h(VXZ,Y)

and
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where Q denotes the Levi-Civita connection for the affine metric h.

The formulas (15) and ( 16) are consequences of basic farmulas for fand

( 12) , ( 13) and ( 14 ). (17) fa 11 ows fr 0 m (16). They ca n be faund, in different

not8tions, in [6], p. 127-129. 1t 15 8 cl assica 1 fact th2lt the cubic form C for f

"ani5hes if and only if Q - V CI 9·.

Examole f5 - Blaschke immersjon. Suppose f: (M, V ,w) ~ (R, V, w) is an

affine immersion with equiaffine transversal field. If, furthermore , f ia

nondegenerate and if w coincides with tho volume element wh of the

nondegenerate metric h, then we say that f i5 a Blaschke immersion. For the

ease where (rf, v, w) is an ordinary affine space 1"+1 with the flat affine

connect1on and the standard volume element g1ven by the determ1nant, this i8

exactly the kind of affine immersion which has been the primary object of study

in affine differential geometry developed by Blaschk.e and his school in the

period ,Q'O-40. The first step in the subject isio prove, f~r the standard

equiaffine structure in R"+1, the foflow1ng basic result.
. .

Let M be a hypersurface immersed in Ifl+l. For any choice of a transversal

'Ieetor field ~ , define an affine eonnection v and the bilinear form h by

equation ( 1). Whether h 1S nondegenerate or not is independent of the choice of
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~. and we say th at M 18 nondegenerate if h is. Denota by wh the vo1urne eIamant

for h.

Proposition 6 • .!1 M is a nondegenerate hyoersurfac e im mersed in R"+ 1 ,

there 18 a unlgue cholce 01 ~ such t08t

i) Wh Coincide8 with W defined by w( Xl' •••• Xn) :IlI w(X 1• • • • ,Xn, ~);

ii) (M,~,w) js eguiaffjne.

This uniQue ~ 18 called the affine normal and the correspondlng h the affine

metric.

The proof of Proposition 6 can be found in [41.
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3. Affine immersions R" -. R"+1

In this seetion we are interested in classifying all affine immersions: M =

Rn~ Jfl+1. We always choo5e an 8quiaffine transversal f1eld ~ as we may.

From Seetion 1 we hava the formulas

- Gauss aquation in ease R a 0 -

(V'xh)(Y,Z) = (Vyh)(X,Z) - Codazzi equat10n for h -

• Codazz1 equation· tor 5 -

h(SX, Y) = h(X,SY) - Rieei equation -.

It h 15 1dent1cally 0, then f 15 totally geodes1e and f(R") is an affine

hyperplane in Jfl+1. If S is identically 0, then by Proposition 4 f i5 8 gr8ph,

immersion.

In the general ease, let Q = {x e Mj SX;d 0, h? a}. We prove

Lemma 1. For asch x E 0, Kar h = Ker S' and its dimension i8 n-1.

Proat. For esch xE Q the equa l1ty Ker h ::I Kar S follows directly from

the definition and the Gauss equation. If for same x e n we had ranle S l. 2,

than there would be tangent vectors X and Y such that SX and SY are linearly

independent. The Gauss equation then woul,d i mply X, Y E Ker h = Ker S, a

cant radict1on. a

For xe Q, the subspace Nx ~ Kar hx = Kar Sx C Tx(M) is called the

relative nul1ity space at x.

Lemma 2. The d1str1but1on N: x ~ Nx Q!l Q 15 1nvolut1ve end tota l1y
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geodesie •

Proof. 1t 1s suffi cient to show that N1s tota 11 y geodesie , that 18, for

vector fields Y, Z belonging to N, 9XY E N. In the equation of Codazzi for h :

(V'xh)(Y,Z) 1D (Vyh)(X,Z) talee Y,Z E N. Then we get

x h(Y,Z) - h(V'XY' Z) - h(Y, VXZ) - Y h(X,Z) - h(V'yX,Z) - h(X,V'yZ)

and hence heX, 9 yZ) =- O. Th1s being valid for al1 X, we have V'yZ e N. c

Now 1f L 18 a Jeat ot the retat1ve null1ty (011at10n N, L 18 totallY geodes1c In

M = Iil. lndeed, f( L) 15 tota11y geodeslc in 1"+ 1. Dur goal i5 to show that

each 1eaf L is comp1ete. Let "t be a geodestc startinQ at Xo in the 1eat L.

Ta show that xt: extends for a11 values of t in L, first extend ;t as a·geodes1c

in M. It 1s sutticient to show that 'xt: lies in Q, becaus ethen it lies 1n L.. So

suppose there 15 b >0 such that xb ~ n and xt E n tor all t <b.

We nead

Lemma 3. Let X be a vettor fteld on same open subset W~ Cl containjna

the geodes1c xt, 0 .i t <b, such that 9XX. 0, X e N, end X.!! "t eguals the

---7
tangent vector xt for 0.1. t <b. Let U be a para Ilet vector neid on M =R"

whlch t8 transversal to the hyperplane H =a..R"-1...Q! M =R" that c'Onta1ns L.

(0~ VUX =,u. U + Z 8t each point pE Cl n H, where Zp E Np. Then

thefunction).l. satisfies XJ.I,.=_J.I,.2 along "1:' O.Lt<b.
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(iO Write SU =).. U+ W at each point p E V, where W E TpCH). Then the

function x. satisfies Xx. = - JL).. along "1:,0.1. t <b.

Proof.

S1nce R =0, we have along xt, 0 i t" ( b

Vx(V UX) ::r V[X,U]X = - VVu XX = - Vp. U + ZX

= - JL VUX - VZX -,.. Po 2 U mod N.

Hence (Xja.)U ii .. ja. Zu mod N and Xp. =- p.2.

(10 From the Codazz1 eQuat10n for 5

VX(SU) - S( vxU) = QU(SX) - S (VUX),

we get al ong xt' 0 i t <b

(X)..)U + )..( VXU) + VxW =- p. SU =- p. ()..Y + W)

and (X)..)U - - 'p. x.U mod N. Thus Xl = .. p.).. alang xt .

.( 11 1) Weh ave aI0 ng ~, 0 .1 t <b

Xp =Xb(U,U) = (VXh)(U,U) .. 2h(VXU,U) = (QUh)(X,U).

= U h(X,U) - h(VUX,U) .. heX, QUU) =.. Jl. h(U,U) = .. .u.p. c

Now we can conclude the proof that xb e Q as follows. The equations in

(i), (il) and (11i) are



djl./dt = - )J. 2 , dA/ dt =- A. jI. , dp/dt = - pp. for 0.1. t < b.
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Thus Po is identically 0 or JI. = 1/(t+a) for same 8. It follows that l. =

constant or A. = Ifc (t+a) and th e S8 me ro r p. In a11 casas, ne1th er A. nor p

approaches 0 as t ~ b. Now at the point p = xb, this means SU;I1 0 as we11 as

h(U,U)~O. Thus peQ.

W1th comp"leteness of L establtshed, we know xt E L for a11 t. Thus the

posstbil1ty of }I. E:I.lf(t+a) 18 excluded. Hence JI.. 0 and thus A. and f are

equa I to constants on the 1eat L.

We can now prove

Proposition s. Let f: Rn ~.rrt I be an affine immersion such that Sand- -
h vanish nowhere. Then f ja affjne-egujvalent to a proper affine cylinder

immersion.

Proof. In the foregotnQ dtscuss1ons, we now have Q = Jil . We have

al ready proved that each lsaf of the relative nullity foliation ia compl ete.

Thus each leaf 18 a hyperplane in Jtl , and all1eaves are parallel

hyperplanes because they are disjo1nt fram each ather.

We take a vector Utransversal to a11 these hyperplanes and consider a

line Xt, in the di rection of of U. Write Rn-1 (t) for the 1eat th rough the point

xt. Since ese h 1eaf i s mapped tota lly geodesica11y, f( Rn- 1(t» is an affine

(n-I )-space 1n Jfl+I. Also, if Yt is a parallel vector field a10ng xt such
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Vt t.CYt ) = f.C9 tYt) + hCU,Yt ) =O.

Thus t.(Yt ) i5 parallel in Ro+1• This shows that a11 subspaces f( R0-1 (t»

are paralle I t 0 each other.

Now it is easy to verity that f is affioely equiva1ent to a proper affine

cy110der immersion based on the parallel famtly f( Rn- 1(t») and the curve

let) =f(~) • The original transversal field ~t is in the direction of r-(t).

We cao now state

Theorem 1. Let f: Ifl -+ ~1 be an affine immersion. Then Q = {xe Rn ;

Sx~O, hx;dO}, 1fnotempty, 1stheun1onofparallel hyperplanes. Each

connected component Qa Q1.Q 15 a str1p cons1st1ng of paraJ1el hyperplanes

and f: Qa ....... Ifl+1 15 aff1ne ly egutva1ent to a proper aftlne cyl1nder

immersion.

Bemerk. On esch component of R" - U Da i9 0 mixture of graph

1m merslons and totally oeodeslc lmmers1ons. One can easl1y construct

examples piecing together different types of affine immersions, but proving a

general description ja not easy.

Co ron ary. An ana Iytic 1mmerslon f: Rn -+ Ifl+ 1 is althee tote lly

1 aoedes1c oe afflneJy egy1valent to a graph 1mmers1on or afflnely egu1valent to

an affine cylinder immersion.

PeoaL If h oe S 18 identlc aIly 0, we know that f lS tota l1y geodesie or a

graph immersion. Otherwise, the open subset 0 is dense. On each
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connected component 0a I fis a proper affine cylinder immersion. Sinc e Q

is densei a11 these immersions of the components extend to an aff1ne cylinder

immersion 1. c

Bemark. It 18 not dlff1cult to construct a CCD affine 1mmersion M2~ ~ of

the affine Möbius band MZ
::I rf. /, I where, is the affine wa p : (x I Y) ......

(x+ 1, -y). By the corol1 ary, however, there can be no ana lytic 1mmersion of

this Kind.

4. Affine Immersions of pseydo- rtemanoian mllnifolds

We prove the 10110wing theorem which is apreeise statement for the

result of Ca rtao and Norden mentioned 10 the introduction.

Theo rem 2. Let (Mn, g) be a ps eudo" rlemanntan mantro1d. 9 1ts

Leyi "Civita connection and f: ( MO, v) ~ ~ 1 an affine im mersien with a <

transversal field ~. lf.f j8 nondegenerat9, we heve aither

(i) rv i5 flat end f 15 a graph immersion;

or

(i0 V 1s not flat and Rn+ 1 admits a parallel pseudo-riemannian roetric

relative to which f i5 an tsometric immersion and ~ is perpendicutar to

f( Mn).

Proof. We flrst establtsh

Lemma. Let (M. h) be a pseudo- riemannian manifoJ d end Jet 9 IDd... v* M--
two affine connections with zero torsion on M which are conjugate relative to

h, that 1S,
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*X h(Y,Z) = h(VXY'Z) + h(Y,V XZ)

for a11 veetor fields X, Yand Z. Let B be a nonsingular (1,1) tensor field

whieh is symmetrie relative to h and define pseudo- riemannian matries 9 and

9(X,Y) = h(BX ,Y) and * -Ig (X,Y) = h(B X,Y).

Then (VX~)(y,Z) + (V*xd'>(Y,Z)=0 forall vectorf1eldsX,YandZ. In

pa rti cul ar, V i8 the Levi -Civita conneetion fo r 9 if and on Iy if v* i8 the

Levi-Civita conneetion for g*.

Proof. We have

-1 - 1 - I== h(Z, 'VxB Y) + h(Y,VX B Z) - X h(Y, B Z).

Replacing Y,Z by BY, BZ we get

[]

Ta prave the theorem, we may assume that ~ i8 equiaffine and we consider

the eonormal 1mmerston v: (Mn, fl *) ~ Rn+ I • We reca 11 that the afftne

conneetion Q* 1S conjugate to 'J relative to the form h for f; cf. equation
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( 16).

SinG e h is nondegenerate, we may write g(X, Y) = h(BX, Y), where B is a

certa1n nonsinQular ( 1. 1) tensor symmetrie re1 ative to h. We define a

pseudo-riemannian metric g* by g*(X,V) = h(B-lX,V). Bythe lemma, we

see that 9' ia the Levi-Ctvita connection for g* •

Now the conorma) immersion being a centro- affine immersion, we know

that 9* Is projective1y flat. Since 9* 18 the Lev1-etv1ta connect1on ror 0*.

it follows by a theorem of Dini-Beltrami that g* has const8nt 3ectionn1

curvature, say, c. The form h* for the conorma I j mmersion is, by equation

(11), equal to the normaJized Rieei tensor '5'*, whieh ia in this case equal to

c g*· Thus h*= c 9*, in part1euIar , 9*h* :::::Il O.

ease (j): c= o. Then 9* is fl at. Sinee h* = 0, by ( 15) the shape

operator S· for fis 0 end by the Gauss equation 9 is fIst. By Proposition 4 we

conclude that fis a graph immersion.

ease (11): c ;c o. We sha 11 show that rR ,,~. adm1ts a pa ra 11 el

pseudo- riemannian metric < , >* such that

*<v,v> = - I/c.

For thts purpose, we define < , >* in each Tv(x)(R n+ l ) using exactly the

above three equations and show that this metrie tensor field 810ng v ia

parallel in Rn+I. Thus we wish to verify
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() * '::t * ':t{ ** X <U , v) = < vxU ,v) + <U , vxV )

for a11 vector fields U and V alono v and a vector field X on M.

If U and V are of the form v*(Y) and v.(Z), where Y and Z are vector

ffelds on M, the equation (*) reduces to (v*xg1(Y,Z) = o.

IfU=v.(Y) and V=v, then x<v.(Y),V)*=o and

';:( * ';:( () * ( ) * *( ) *< vxU , V > :I < V X v* Y , v > =<v* r:J XY , v> + (h X, Y v, v>

- h*(X, Y) (V,v>* - - h*(X, Y)/c

as well as <U, 9XV>:I (v.(X), v*(Y» =g*(X, Y) • Thus (*) lS satlsf1ed.

Fina Ily, if U:I V=v, (*) is obvious.

Now 1t rema1ns to show that rtt+ 1 adm1ts a parallel Dseudo-riemann1an

metric < , ) such that

for a11 vector fields X end Y on M. Indeed, using the nondegenerate form

( , )* in ~+1' we identify ~ 1 with If+l (both as vector spaces) by

u e RnT1 ,...., 9(u) e Jt'+1 with w(9(u»:21 <u ,w>* tor a11 W E Rn+1.We then

define < , > in Jt1+1 as the dual inner product, namely,

In order to show that thls inner product < , > is the destred on6, we first

remarkthefollowinQtact. Let u=v*(X) for XeTx(M).ThenforanyYE
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hand, v(9(u» = O. lt follows that 9(u) = - f.(B- 1X), where B i5 a certain

nonsingul ar ( 1, 1) tensor. We have

whare we use tha re1ation ( 13). Now for X, Y wa hava

end

Replacing X, Y by BX, BY in this equatian we abtain

(f.( X), f.(Y» = g*(BX,BY) = h( B- 1BX,BY) = h(X,BY).

But as in the lemma, h(X, BY) = g(X, Y). Henee

g(X,y):II (f*( X), f*( V»~.

The ather tdenttt1es are abvtous from 9(v) = ~. The proof of the theorem i5

now complete. c

We stete a few coroJ1 artes.

Corol1ary 1. Let (Mn,g) be a pseudo-riemannian manifold, 9 .iU

Levi-Civita connection,!!!Q. f: ( Mn I Q) -t ~1 an affine immersion. If the

Riee! tensor of 9 15 nondegenerate, then ~1 admits a parallel

pseudo-riemannian metric such that f i5 an isometric immersion end the

transversal ffeld js perpendfcular to f(Mn).

Peoofa Feom Rlc(Y,Z) :: h(Y,Z) teS - h(SY,Z), it follows that h 15

nondegenerate 1f the Rfee1 tensor 1a nondeQenerate.

CorolJary 2. Let g be a riemannian metric on S2 with Gaussian curvature



25

K) 0 and Levi-Civita connection Q. Then there exists an affine immersion f:

(S2, 'il) -+ lt3 wh1ch is unique up to an affine transformation of lt3 .

Proof. By the solution to Weyl"s probl em (see, for example, [9], p. 226)

(52, g) h~s ~n lsometr1e imbedd1ng f into euclldelln splice Jt3 with stllndllrd

metric and it 1s rioid. So f : (52, V) -t .t3 ia an affine imbedding. Suppose f 1

: (52, v) -+ lt3 is another affine immersion. Theorem 2 1mplle5 that 1t 15

isometric relative to a eeetaln parallel pseudo-riemannian metric ( , >in

R3. This metric must be Euc lldean to aceommodate a eompact surface with

positive definite metric induc ed on lt. Since one can find an affine

transformation A of R3 whieh transforms the metrie ( I ) into the standard

metrie, 1t follows that A· f 1 is an isometrie Immersion into R3 wfth

standard eue lidesn metr1c, end as such, congruent to f. Thfs means that r1

differs trom f by an affine transformation. 0

Corollary 3. Let g be the standard riemann1an meteic on Sn with constant

sect10nal curvature 1. Foe every affine 1mmersion f: (Sn, 'V) .....,. ~ 1, the

image f( Sn) 1s an ellipsoid (relative to a Euclidean metric).

Corollary 4. Let (H" ,g) bs tMe hyperbol1c spaee wtth standard rlemann;an

metric ot constant sectional curvature -I. Then every affine transformation

f: (Hn, 'V) ~ R"+ 1 is an' isometrie immersion of (Hn, g) into IflT 1 wlth fl at

Lorentz metric. 1f.. nl 3, f(M n) is affinely congruent to ons component of

. the two-sheeted hyperboloid -Xo2 i" x 1
2 ......... xn

2 = -1, Xo) o.

Remarlc 2. In the praof of Theorem 2, the sign of c generally depends on
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the affine immersion f.

5. Egyiaffine immersjons of comoaet rnanjfolds

It 1s a standard theorem in euelidean differential geometry that a compaet

riernannian manifol d (Mn' g) with negative· definite Rieei tensor cannat be

isometrically immersed in a euclidean space R"l+ 1: aoy eompaet immersed

hypersurface has to be 10cally strietly coovex somewhere and the Rieei

tensor ia positive-definite st convex points. For af11ne 1m mers10ns this

argument does not apply, bee3use eonvexity does not imply positivity of the

Rieei tensor. For exampl e, the hyperbolic space HO can be affinely imbedded

as one component of a two-sheeted hyperboloid•.

We can still prove

Theorem 3. Let (Mn, V',w) be a compact eguiaffine manifold with

negative·def1nite Riee; tensor (or more generally, with nondegenerate, but

not positive" definite, Rtc ci tensor).' Then (Mn, Q) does not admit an affine

immersion inta Rn+ 1•

Proof. Let f : (Mn, v) ~ .rt+ I be an affine immersion. We choose a

transversal neid to be equiafftne. As in Corollary I in Section 4, h 15

nondegenerate with tne Rieci tensor. Thus viewing Mn as a hypersurfaee in

eucl1dean sps"ce Jf+l, the usual second fundamental form 13 proportional to h

and thu5 nondegenerate. lt fOllows that Mn 13 diffeomorphic to Sn, h is

definite, and f( Mn) 1S a strictly convex hypersurface (fo example, see {4],

p. 41 ). By diagona lizing S re1ative to h, we see that Ric for Q i3 positive"
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definite at a point where the bilinear form B(Y ,2) = h(SY ,2) ia poaitve

definite. We shall show that there is such a point, eontradieting the

assumption on Rie and thus eoneluding the proof of Theorem 3.

From EXlImple 5 reellll thllt (n-')B ill equlll to the Rieei tenllor of the

eonarmal eonneetion v" on M, whieh is equiaff1ne and projeetively flat. Thus

our assertion will follow from the next lemma.

Lemma.~~ be a orojeetively flat eguiaffine eonneetion on Sn with

volume element w. Then there are points on Sn where the Rieei tensor of ~

is positive-definite.

Proof • Reeall that (Sn, ~) ls projeetlvely equivalent to ( Sn, V0)' where

'1 0 is the standard affine eonneetlon (Levi-Civita eonneetion) on Sn (see, for

example [3]). Consider Sn as a unit sphere in ~ I • We may obtain a

eentro-affine immersion ,: Sn ~ ~1 so that the indueed volume element

eoineidell with w. The induced connection v* is projectively flat and

eoineides with ~ I sinee they have the same volume element. See, for

example, [5], Proposition 2.

Thus we may consider ,: Sn ~ ~1 , where the image ,( Sn ) is star

shaped with respect to the origin. Let p be a point where a nondegenerate

height function has a maximum. Then ,( Sn ) is strietly eonvex towards the

origin at p, and thus by (11) Rie is positive-definite at p. []
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On the Geometry of Affine Immersions

Katsumi Nomizu and Ulrich Pinl<all

Dur purpose 15 to otter a new approach to affine differential geometry

based on the notion of affine immersion of an affinely connected manifold

(M",9) ioto an ambiant manifold (Firn, v). In the presentpaper we are mostly'

eon~ernedwith the ease where m=n + 1 and particularly pt0+ 1 ia the ordinary

affine space Rn+1 end prove several theorems on affine immersionswhich are

elosely related to known results on isometrie immersions in Riemann1an or

pseudo-Riemannian geometry.

In Sections 1 and 2 we define the notion of affine immersion, develop several

formul as, reformul ate some of the basic notions in cl asslea1 affine differentia1

geometry and diseus5 several,examples. In Seetion 3 we study affine

immersions 'of Rn into Rn+1 and prove Theorem 1 which is' an analogue of the

cylinder theorem for complete flat hypersurfaces in euclidean and Lorentzian

spaces. In Section 4 we prove Theorem 2 concerning affine immersions of a .

metrie connection which gives apreelse statement of the result hinted at by

eartan [1] and indicated by Norden in the Appendix of [6].'We obtai~ a few

corollaries concerning rigidity of affine immersions. In Saction 5 we prova

Theorem 3 on the non-existence of affine immersion into gtl+ 1 of a compact

manifold with an equiaffine connection with strictly negative-definite Ricci"

tensor.
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1. Affine immersions.

Throughout this paper, we deal with affine connections without torsion so 

th1s cond1t1on wHl not be ment10ned e8ch t1me.

Let M be an n-dimensional differentiable manifold with an affine connection

V, and let' P1 be an (n+1)-dimensional differentiable manifold with'an afffne

connection Q. By an affine immersion f: (M, Q) -7 (A, v)-we mea'n an

immersion M --t f1 for which there exists locally (that is, around e8ch point of

M) a transversal vector field ~ along f which has the followin'g property: if X

and Yare arbitrary vector fields on M, we have

Vx f.(Y) = f.( VxY)"" ,h(X,y)t ,

where the 1aft- hand stde denotes the covariant derivative with respect to X of

the vector ~ieldf*{Y) slong f snd the first term of the right-hand side i8 the

tangential component and the second term 18 the t,ransversal component. It i5

easy to check that h is a symmetric bilinear form on e8ch tangent space

. TxeM). Wemay simplify the equation by dropping f* and write

(1) 'VXY = VXY + heX, y}~.

In part1cular, 1f h 1s 0 at x (that is, ~xy i8 tangent to M). then we say that f

18 tots lly geodesic at x. Obvious ly, this condition is independent of the chaice

.' of ~. We have
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proposition t . .b§1 f : (M, V) -t (f1, v) be an affine immersion and ~1 AM.

~2 two associated transversal fields. Then the di rections [~1] Mll1 [~2] iln

differ only on the interior of the set where h vanishes (1. e. on tota lly geodesic

pieces ).

Proof. Write

where .Z i5 a vector field tangent to M and, i5 a function on M. We have then

. VXy = V XY+ h2(X, Y)~2 = VXY + hZ(X, Y)Z + 'hZ(X, Y)~l.

Comparing tt with (1), we have

h2(X,Y)Z=O . and

If f 15 not totally g~ode5lC at X, then there ex15ts X, Y E Tx(M) such that hZ(X, Y)

;I! o.. Then Z = O. at x. Thus ~2 =,~ 1 • D

It also·follows that whether h is nondegenerate is independent of the choiee

.of ~. We say f is nondegenerate if h is.

For an affine,immersion f: (M,V) -'. (fl~v) we also write

(3) Vx ~ = - SeX) + T(X)~ ,

where -SeX) denotes the tangential component. It is easily verified thatS i8 a

tensor field of type (1 ,1) and T: is al-form. We call 5 the shape operator and

T' the transversal connection fo'rm tor 1.
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immersion and ~ an associated transversal field, then we define a volume

element w on M by

where {Xl' ••• ,Xn } is any basis in-Tx(M). Using (1), (3) and (5) we see that

It follows that (1:1, V,oo) 1s an equ1aff1ne structure If .end only 1f 'l' = o.

lf (M,V,w) and (R, V,w) are equiaffine structures, f: (M,V) ~ (R, v)
an affine immersion, then an associated transversal field is called eguiaffine if

( 5) hol ds f 0r any bas1s { XI ' ••• ,Xn } in Tx(M). Wehsve 'l' =o. Assuming

that f is totally geodesie nowhere, the associated transversal field ~ i8 now

uniquel.y determined because of (5).

Remarlc. The study of affine immersion of an 'equiaffine connection into flst

affine space is equivalent to what is called relative geometry, see [6], [7], [8].

We have

proPQs1t1on 3, If (M, V.(0) ..aruL( f1. V, 00) are egu1aff1ne structyres and 1f f

is an affine immersion: (M, V-) ...., (f1, v). then an associated transversal vector

field ~can be chosen to be eguiaffine.

-Reca 11 that two affine connections V and V (both with zero torsion) on a

manifo1d Mare Drojectjyely related if there j5 al-form Von M such that
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. for 811 vector fields X and Y. See, for example, [5].

A change from V to V i8 called a projective change. An affine connection

V 1s said to be pro1eetjyely flat if it can be changed projeettvely to a flat affine

. conneetion V (1. e. zero curvature tensor 'R">.

Suppose an affine connection v. on a differentiable manifold M has

symmetric Riect tensor (1n parttcular, suppose it i8 equiaffine). For dirn M 1.3, .

V ls proJectlvely flat If and only If the projectlve curvature tensor

(8) W(X, Y)Z = R(X, Y)Z - [l(Y,Z)X - l(X;Z)Y), where ., ~ Rie/(n-l)

1s ident1tcaJ1y O. For dirn M=2, V 1s projectively flat if and onlyif , satisfies

Codazzl's equatlon: . (VX")(Y,Z) = (Vy·')(X,Z). lf dirn M 1. 3 and ifW =0,

then l sat1sf1es Codazzl's equat1on. On the other hand, if d1rn M= 2, then W i8

automatlca lIy o.

If (M,V) 15 projectivelyflat, then

(9) R(X,Y)Z = l(Y,Z)X - l(X,Z)Y.

We now conslder the formul as I - IV in eertain specia1 cases.

8. ease where (A, v) 'IS projectJvely flat:

ff(x, Y)Z = i (Y,Z)X - i(x,Z)Y 1s tangential·. Thus

1a. R(X,Y)Z::: i(y,Z)X - l(X,Z)Y + h(Y,Z)SX - h(X',Z)SY - Gauss-

From this, we get

Rlc (Y ,Z) = (n -1 )Je Y, Z) + he y ,Z) t r S· - h(SY ,Z) •
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In particular~ if V is flat, we have

R(X, Y)Z = h(Y , Z) SX -. h(X , Z)SY

R1 c (Y, Z) = h(Y I Z) t r S - h(SY , Z) •

Ha. (VXh)(Y,Z) '+ T(X)h(Y,Z) = (Vyh)(X,Z) +.T(Y)h(X,Z) -Codazzi-

We set

. (10) C(X, Y,Z) = (VXh) (Y ,Z) + ''r (X) h(Y ,Z),

whieh is symmetrie in Y and Z like h, as well as in X a'nd Y by virtue of 1Ia', thus

symmetrie in X, Y, and Z. We eall C the eubie form of the affine immersion.

. .

Thfs Is a generalization of the classical cuble fo.rmln afffne differential

geometry.

b. ease where (M, Q ,tu), (f't~ '9, w) are eguiaffine and the transversal field

~ Is eguiaffine:

Slnce'r = 0, we get

. IIb. - Codaz z1 for h -

In part1cular, 1f Q 18 flat, (VyS)(X) = (VXS)(Y) - Codazzi for 5-

IVb. h( SX, Y) =h(X , SY ) - Riccj-,

2. EX8mplea.

We discuss. some examples of affine immersions.

Example 1 - Isometrtcally tmmersed hypersyrface. Le~ (Mag) be a
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Riemannian ms"nifold of dimension n with Levi-Civita connection v. Let (F1, g) be

a Riemannian manifold of dimension n+l with Levi-Civita connection V". If f:

(M,g) ~ (~,g) i5 an isometrie 'immersion, then f:(M,V) ~ (fi, v) is an affine

immersion with a transversal vecotr field ~ given local~y as a unit normal

vector field.

Examole 2 - Affine cylinder. Roughly spealdng, an affine cylinder in 1Rn+1 is

a hypersurface generated bya parallel family of affine '(n-l)-spaces Rn-let),

each through a point of 1- in Ifl+l. We define an affine cylinder immersion

preci~ely as follows.

Let let) be a smooth curve in Rn+l and ~(t) a vector field along l(t)~ Let

IR n- 1 be an affine (n-l)-space ln~l and conslder aJ1paraJ1el (n-l)-spaces

and denote by Rn- 1(p) the one through p. We assume that

(i) "(t). ~(t) end IRn- 1(let» are linearlyindependenti

(i1) lD(t) 7 p(t)~(t) I where p = pet) is 8 eertain differentiabl~ funetion.

Now we def1ne a mapp1ng f: IRn --+ Rr:tt 1 as fol1ows. W~1te R" = R x· Rn- 1 so

every point of IR" Is wrltten as (t,y), t ER, y E !Rn-I. Let

f( t, y) -l(t) + y.

For this immersion f, we take a transversal field

~(t,y) = tet) translated to t(t,Y)

by virtue of condition (i). It is easy to verify that f is an affine immersion of

IR n --+ Rn+1• For the curve x(t) = (t,O) in IR" , we have
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In the special case where we ca~take ~ ~ 'GOI and furthermore "6''' ,an'd "6''''' ar,e

linearly independent, we call it a proper affine cylinder. In this ease, we see

see that h never vanlshes.

Example 3 - Graph immersion. Let (Mn, v)' be a manifold with 8 flat affine

'connection and ,: (Mn, v) ~ IRn an affine immersion. Thus,. is an imme~sion

such that e~ery point p of Mn has a neighborhood U o~ WhiCh', is an

affine- connection preserving diffeomorphism with, an 'open nelghborhood Vof

,(p) 1n ·lRn• Consider IRn as a hyperplane H in Rn+1 and let ~ be a parallel

vector field transveral to H. For any differentiable function F: ~~ R, we'

definef: Mn ~Rn+l by fex) =,(x) + F(x>"~, for xE Mn.

We have

50 f 1S an immersion. For ve.ctor fields Xand Y on Mn, we have

. ...;~

Thus f is an affine im merslon with i1lX t Y) = XY F .- (VxY )F, which coincides

with the Hessian of F. Thus f 1S nondegenerate if the Hessian H is
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nondegenerate. We have also 5 =O.

Conversely, we may prove

Propos1tion 4. Suppose (Mn, V) 1s a flat connect1on and f : ( Mn, 'V) ~ Rn+1

an affine immersion such that S = o. Then it js affinely eguivalent to the graph

immersion for a eartain function F: Mn~ IR.

Proof. By assuming a transveral fjeld ~ to be equiaffine, S = 0 implies that

vX~ =0, that is, ~ is a eonstant (parallel) vector field •. Let H = Rn be a

hyperpla~~ in R"+ 1 wh1ch 1s transv~rsal to t. Let TI : 1Rn+ 1 ~ Ifl be the .

projection along the direction '~f t so that 'Jt 0 f : Mn ....; IRn is an affine i~mersl0n

with image W, an open subset of IRn • We can find a differentiable fun'etion F: Mn

~R such that fex) =. ( TT 0 f)(x) + F(x)~. Thus· fis a graph immersion•. 0

Example 4 - Centro-af"oe hYDersurface. Suppose f: M ~. Rn+ 1- {o} js an

jmmers~d hypersurface such that.relative to 0 in 1Rn+1 the positi~n vector

-~) . )
o fex) is always transversal to f(M) at f(x). Take ~ =- of(x) as

a transversal vector field for f. Then ~x~ = - X so that 'r = 0 and S = I

indeed an affine connection twith zero torsion) on M.Thus f :(M,9) ~lRn+1 is

an affine immersion. This is called a centra-affine hypersurface. From the

farmu1s (Ib) we get

(11) R(X,Y)Z =h(Y,Z)X '" h(X,Z)Y, -r(Y,Z) =h(Y,Z).'
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Proposition 5. For a centro-affine' hypersurf~ce f:' (M, v) ~ ( R"+l_{o), v)
end for any function >...: M~Rt, the maoping Xt-t>..(x)f(x) defines a '...

centro-affine hYDersurface >...f: (M, V·) ~ ( Rn+1,- {ol, V)' where V·~

Drojectivelty related to V JrL.:. .

. V·x y = Vx y + V(X)y + p(Y)X, where p:: d log t.

Conversely, any projective change of (M, v) ca" be locally obtained in this

manner.

The praof i8 stra1ghtfo.rward and om1tted. c

Corollary. Let (M, 'Cl ,w)'be a differentiable manifold with a proiectively

flat eguiaff1ne connecton. Then (M, \7) can be locally realized as a

centra-affine hypersurf~ce in Rn+1-{o}.

Praof. If (M, V·) 15 flat, then it can be locally realized as a piece of a '

hyperplane with induced v'olume element Wo in gflTl :"{o}. Now we ca". make a

projective change' back to V by modifying this hyperplane by a suitable function

~, .namely, ~=w/wO' c

Example 5- tonormal immersion.

Let f: (M, v ,w) ~ Rn+1 1s a nondegenerate affine immersion of an equiaffine

structure with an equiaffine transversal field~. We denote by Rn+1 the vector

,space dual fo the vector space 1R"-:1 underlying the affine space gfI+l. We

define. Y: M~Rn+l- {a} as follows.
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For xe M, Vx 1s an element of Rn+1 such that

( 12)

where Y and ~x are consi~ered as elements of thevector space gfl+,l naturally·

1dentified with Tx( Rn+1). Denoting by 'V the usual flat connect10n in 'Rn+1'

we have

(13) (Vyv )(~) = O. and (vyv )(t*X) = - h(Y,X) tor 811 X,y € Tx(M).

Since h ts nondegenerate, we see that it <vyv )(f*X) = 0 tor a11 X, then Y= o.

Since Vyv =v.(Y), it fol1ows that the mapp1ng v 15 nonsingular. Hence we may

cons1der v: M~ Rn+1 - {o} as a cent'ro-afflne hypersurfac.e, c811ed the

conarmsl immersion for f.

Taking -v as the transveral vector field as In Example 4 we wrlte

(14) . VX(v*(Y» =V*(Q*xY) - h*(X,V)v,

where v* 1s an affine connection on M and h* the second fundaments'l form.

These are related to the affine connection V; the affine metric hand the affine

shape operator S fot the original hypersurface f: M~ R"+ 1 in the following way:

( 15) h* (X,y) =h(SX, Y) ( als0 equalt0 l'~jr) as in Exa mp1e 4)

(16) X h(Y,Z) = h(V*XY'Z) + h(VXZ,Y)

and
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( 17)

where V denotes the Levi -Civita connection for the affine metric h.

The formulas (15) and (16) are consequences of basic formulas for fand'
, .

(12), (13) and (14). (17) follows from (16). They can be found,"1n different

notations, in [6], p~ 127-129. It is a classical fact that the cubic form C tor f

vanishes if and only 1f 'Q ~ Q == v* ...

ExamDle' 6 - Blaschke immersion. Suppose f: (M, V,w) ~ ( A, V, w) 18 an

affine immersion with equiaffine transversal field. If, furthermore, f i5

nondegenerate and if w coincides wi~h the volume element Wh of the

nondegenerate metric h, then we say that f is a Blaschke immersion. For the

c'ase where (A, v, w) i_s an .ordinary affine space R"+ 1 with the flat affine

connection and the standard volume element given by the determinant, this 1s

. .
exactly the kind ot affine immersion which has been the primary object of study

in affine differential geometry developed by Blaschke and his school in the

period 1910-40. The first step in the subject is to prove, for the standard

equlaffine structure in R"+1, the following baslc result.

Let M be a hypersürface immersed in ·1f-f:'1. For any choice of a transversal

vector field ~ , defin"e an affine connection V and the bilinear form h by

equation (1 ) ~. Whether h is nondegenerate or not is independent of the choice of
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~ ,and we say that M 15 nondegenerate 1f h 15. Denoteby Wh the volume element

. tor h.

Proposition 6. .lf. M is s nondegenerate hypersurfs"ce immersed in R"+1 ,

there 15 a un1gue cho1ce 01 ~ such that

i) wh' coincides with w defined by w(X 1' • • '. ,Xn} = w(X 1' •• • ,Xn, ~};

i1) (M, V, CA» i5 eguiaffine.

This unique ~ is cslled the affine normal and the corresponding h the affine

"metric.

The proot of Proposition 6 can be tound in [4].
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3. Affine immersions IRn~ ßil+l,

In this section we are interested in elassifying a11 affine immersions: M ~

R~ ~ IRn+1• We always choose an eQuiaffine transversal f~eld ~ ,as ~e may. I

. .
From Section 1 we have the formulas

h(Y , Z) SX =h(X , Z) SY - Gauss equation in ease R =0 - -

(VXh)(Y,Z) = (Vyh)(X,Z) - Codazzi equat16n tor h -

h( SX ,y) = h(X, Sy )

- Codazzi equation tor S -

- Rieei equation -.

If h 1s ldent1eally 0, then fis totallY geodeslc and feRn) 18 an affine

'hyperplane in IRn+1• If 5 is identically 0, then by Proposition 4 fis a graph

immersion.

In the general ease, let Q = {x E M,; Sx~ 0, h,r o}. We prove,

Lemma 1. For aach xE n, Ker h = Ker S and its dimension is ,n-1.

Proof. For each xe Q the eQual1ty Ker h = K.er S follows directly from

the definition and the Gauss equatiori. If for some x E n we had rank 5 l. 2,

then there would be tangent vectors X and Y such that SX and SY are linearly

- independent. The Gauss equation then would imply X, Y e Ker h = Ker S, a

contradiction. o

For x E n, the subspace Nx = K,er hx = Ker Sx C Tx(M) 18 ealled the

relative nullity spaee at x.

Lemma 2. The distribution N: x...., Nx on g 1s lnvoluttve and totally
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geodesie •

Proof. It 18 suffic1ent to show that.N i8 totally geodesic, that is, tor

vector fields Y, Z belonging to N, VXY E N. In the equation o.t Codazzi tor h :

(9 Xh)(Y,Z)::: (9yh)(X,Z) take Y,Z e N. Then we get

X h(Y , Z) - h( VXY, Z) - h( Y, vXZ) ::: Y h(X, Z) ,- h( VyX , Z) - h(X, 9 YZ)

end hence heX, VyZ) =0.' This being valid for all X,' we have VyZ.E N. c

Now 1f L 1s a leaf of the relat1ve nuJHty foUatlon N, L ls totally geodeslc In

M = Rn. Indeed, 't( L) is totally geodesie in R"+ 1. Dur goal is to show that

each leaf L 18 complete. Let xf be a geodesic starting at Xo in the leat L.

To show that xt extends for all values of t in L, first extend it as 8'geodesic

in M. It is suttlcient to show that ~ lies' in Q, because then 1t lies in L. So,

8uppose there i8 b >0 such that xb Ii! Q and xt E Q tor a11 t <b.

We need

I

Lemma 3. Let X be a vector field on same open subset WJll {} containing

the geodes1c xt, 0 .i t <b, such thet VxX:= 0, X E N, end. X.!.! xt eguals the

~ .
tangent vector xt tor 0.1. t ( b~ Let U be a paraHel vector tiel~ on M = IR"

wh1ch 1s transversal to the hyperplane H = IRn- 1..Qf. M = Rn that contalns L.

(i) Write 'lUX =.u. U + Z at asch point p E {} n H, where Zp E Np. Then'

the function)4, satisfies X)4, = _)4,2 810ng xt' 0" t <b.
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(ii)~ SU = A. U + W at each point p E V, where. W E' Tp(·H). Then the

function A. Sati sfies XA. = - JA. A. al ong "t' 0 .t t <b.

(ii1) Let p =h(U,U).QD ':/. Then Xp= - J.L p along Xt' 0 .1 t <b.

Proof.

Since R =0, we have along xt, 0 ~ t <b

= - J.L VuX - vZX ;; - J.I. ~ U mod N•

Hence (Xp..)U EI - JI.Zu mod N and Xp.. == - J1. 2•

(11) From the Codazz1 equat10n for S

we 9et al 0 ng xt' 0 ~ t <b

and (X>..)U - - -p. >..U mod N. Thus X>.. = - J.L>", along Xt.

( 11 1) Weh ave al 0 ng xt, 0 .t t <b

X~ = Xh(U,U) = (VXh)(U,U) - Zh(VXU,U) = (VUh)(X,U)

, ,

Now we can conclude the proof th~t xb E n as follows. The equations in '

(j),(jj) and (lii) are



dp,!dt = - Jl2 , d>...!dt = - A. P, , ' dp!dt =- pp, for O~ t <b.

18 .

Thus p. isidenticallyOor p.= 1/(t+a) for somea. Itfollowsthat >..=

constant or A. = l/c(t+a) and the same for p. In all eases, ne1ther>... nor·p

approaches 0 as t,~ b. Now at the point p = xb this means SU ~ 0 as well as., .

h(U,U) ~ O. Thus pE Q. ,

W1th completenass of L establ1shed, we know Xt'E L for a11 t. Thus the

possibility of p. = 1/(t+a) is, excluded. Hence Jl;;; 0 and thus,>... end rare

equal to constants on the leaf L.

We can now prove

Proposition 5. Let 'f: IRn ~ Rn+1 be an affine immersion such that S and

h vanish nowhere. Then f is affine-eguivalent to a proper affine cylinder

immersion.

Proof. In the forego1ng d1seuss1ons, we now have {2 =IRn • We have

al ready proved that each leaf of the relative nullity foHation 1S complete.

Thus aach leat 18 a hyperplane in Rn , and all1eaves are parallel

hyperplanes beeause they are disjoint from each other.

We taKe a vector Utransversal to a11 these hyp'erplanes and co'nsider a

'. ..

1ine "t in the direction of of U. Write IR n-1 (t) for the 1eaf through the point

"t. Since each 1eaf i5 mapped tota lly geodesical1y,. f( Rn-1 (t» is an affine

. (n-1 )-space in IRn+1•· Also, if Yt is a parallel vector field along xt such
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Tlius f*(:t) 1s parallel, in IRn+1• This shows-th'at: all subspaces f(R. n- 1(t»

are pa ra 11 e1to each other.

Now it is easy to verify-that f 1S affinely equivalent to a proper affine

cyl1nder immersion based on th~ parallel fam'ny f( Rn-1 (t) and the c'~rve

let) = f(xt) • The original transversal field ~t is in the direction of ,&-(t).
, , .

We can now stete

Theoreml. Let f: IRn --+ IRn+1 be an affine immersion. Then Q = {xe Rn i

Sx ~ 0, hx;.e ol, 1f not e~pty, 18 the un10n of paral.1el hvperplanes. E~ch

connected' component Qcx of Q 1s a strip cons1st1ng of parallel hyperplanes

and f: Qa -+ IRn+1 15 aff1nely eguivalent to a proper affine cyl1nder '

immersion.

Remark'. On each component of IRn - U Qa is a mixture of g'r8ph

immersions and totallygeodeslc immersIons. One can easl1y construct

examples piec1ng together different types of affine immersion,s, but proving a

general description is not easy.

Corol1ary. An analvtic immersion f: IRn --+ Rn+1 is either totally

Qoedesic or aff1nely egu1valent to a graph 1mmers1onor aff1nely egulvalent to

an affine cvlinder immersion.

Proof. If h or S is 1dentic.ally 0, we know that fis totally geodesie or a

graph immersion. Otherwise, the open subset n i8 dense. On each



20

connected component Qcx t f is a proper 'affine. cylinder immersion. Since Q .

is dense, a11 these immersions of the components extend to an affine cylinder

immersion f. D

, Bemark. It 1s not dlff1cult to construct a CCO aff1ne 1mmersion M2 ~ ~ of

the affine Möblus band M2 = rrfl', where, 15 the affine map : (x, yi ..:..

(x+1,-y). Bythe corollary, however,there can be no analytic immersion of

this kind.

4. Affine' immersions cf pseudo- riemannian manifolds

We prove the following theorem which is apreeise statement for the .

result of eartan and Norden mentioned in the introduction.

Theorem 2. Let (Mn, g) be a pseudo- rlemann1an man1fold, Vlli

Levi-Civita connection and f: ( Mn, v) --. IRn+1 an affine immersion with'a

transversal field ~. 1[f isnondegenerate, we have either

(i) V js f1 atand f js a graph immersion;

or

(11) V 15 not f18t end Rn+1 admits a parallel pseUdo-rieman~i8nmetric '

relative to which f 18 an isometrie immersion and ~ js perpendicular to

f( Mn).

Proof. We first establlsh

Lemma. Let (M,h) be a· p5eudo-riemannian manifold and let V aml v*~..,----

two affine connections with zero torsion on M which are coniugate relative to

h, that is,
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*.x h(Y,Z) = h(VXY'Z)+ h(Y,V, XZ)

. '

for all vecter fields X, Y and Z.· Let B be a nonsingular (1, 1) tensor field

whieh i5 symmetrie relative to h and deHne pseudo- riemannian metries g and

g(X, Y) =h(BX, Y) and * -1g (X, Y) =heB X, ~).

particular, V 15 the Levi-Civita connection for 9 i1 and only if v· ia the

Levi-Civita connection for g*. ", ,

Proof. We have

-1 *' -1 -1 *)=Xh(B Y,Z):- h(V XV, B Z)- h( B. Y, V xZ

" . -1 -1 -1
= h(Z, Vx B ,Y) + h(Y,VXB ~) - X h(Y, B Z).

'R~placing Y, Z,by BY, BZ we get

(V*Xcf)(BYiBZl = h(Bz',VxY) + h(BY,'VXZ) - Xh(BY,Z)

= g(Z,'VXY) + g(y,VxZ~ - Xg(Y,Z) = - (Vxg)(y,Z)~' c

To p,rove the theorem, we mey assume that ~ is equiaffine and we con'sider

the conormal 1mmers1on v: (Mn, V *)...., Rn+1 • We recall that the aff1ne

connection v* 1S conjug~te to v relative, tri the form h for f; cf. equation
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( 16).

S1nce h is nondegenerate, we may wrUe g(X, Y) = h(BX, Y), where B 1s a

eertafn nonsfngular (1. 1) tensor symmetrie relative to h. We deffne ~ , .

pseudo-riemannian metrie g* by g*(X, Y) = heB-lx, y). By the lemma, we

see that v* ,is the Levi-Civita connection for g*.

Now the conormsl immersion being s centro-affine immersion, we Icnow

that v* 18 proJect1vely flat. S1nce v* 18 the LeV1~etv1ta connect1on' for g*,

it follows by a theorem of Dini~Be1trarni that g* has constant seetional

curvature, say, c. The form h* for the conorma1 immersion is, byequation

(11 ), equal to the normatized Rieei tensor ,*, which is in this c'ase equa1 to

, e g*. Thus h* = c g*, 1n part1cul~r, . v*h* = o.

ease (i): e= 0'. Then v* is flat. Sinee h* = 0, by (15) the shape

operator S for f 18 0 and by the Gauss equation V i8 flat. By Proposition 4 we

conclude that fis' a graph immersion.

Case (11): c ~ O. We shall show that ..,~'1Br..+~:' 'j adm1ts a parallel

pseudo- riemannian metrie ( , >* sueh that

* .<v, v> = - 1/c. '

For thls purpose, we define .< , >* in e,ach Tv( x) (IR n+ 1) using exaetly the

above three equations and show that this metrie tensor field 810ng v 18

par'allel in Rn+1. Thus we wish to verify
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(*) x< U ,v>* = < ~xu ,v. )*. + <U 'VxV )*

for all vector fjelds U and V along v and a vector fjeld X on M.

If U and V are of the form v*(Y) and v*(z:), where Y and Z are vector

fjelds on M, t~e equation(*) reduces to (V*xg~(y,Z) = o.

If U= v*(Y) and V= v, then X<v*(Y), v>* = 0 and

. IV . * ";lt '() • C' ) • *( y) •< VXU. V > = < Vx v. Y ,v > = <v. VXY •v> + <h X, v. V)

. - h*(X, y) {. v,v>* .... ~ h*(X, Y)/ c

as well as <U, VxV) = <v*(X), v.(Y» = g*(X, Y) • Thus (*) Is sat1sf1ed.

Finally,. it U= V= v, (*) is obvious.

Now 1t rema1ns to show that IRn+,ladm1ts a parallel pseudo- r1emann1an

metric ( , ) such that

tor a11 vector fields X and Y o'n M., Indeed, using the nondegenerate form

< , >* in IRn+1, we identifylRn+1 "with R"+l (both as vector spaces) by

u e Rn+1 ~ 9(u) E R"+l With ·w(9(u» = <u ,w>* for a11 we Rn~l.We then

deHne < , ) in Rn+1 as the dual inner product, namely,

<X,y>=.<e- 1(x), e- 1(y»* tor X,YE 1Rn+1.

In order to show that ,this inner pro~uct < , .) 1S the desired one, we first

remark the fo 11 owlng fact. Let u = v*(X) for X E Tx( M). Then tor any'f e
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hand, v(G(~» = o. It follows that 9(u) = -. f*(B- 1X), where B 18 a certain

nonsingular ( 1, 1) tensor. We have

where we use the relation (13). Now for ,X, Y we have

and

Replacing X, Y by BX, BY in this equation. we obtain

But as in the lemma, h(X,BY) ~ g(X,Y). H.ence

The other ldent1ties are obvlous trom G( v) = ~. The proot ofthe theorem is

now complete.

We state a few corollaries.

c

Coroll ary 1. Let (Mn, g) be a pseudo- riemannian manifold, V its

Levi-Civita connection, and f: ( Mn, v) -., IRn+1 an affine immersion. If the

Ricc1 tensor of 9 1s nondegenerate, then If+l admlts a pa'rallel

pseudo- rlemannian metric such that f i5 an isometrie immersion and the

transversal field i8 perpendicuJar to f(Mn).

Proof. From Ric(Y,Z) =h(Y,Z) trS - h(SY,Z), it follows that his

nondegenerate 1f the R1cc1 tensor Is nondegenerate.

COroJJary 2. 'Let g be a riemannian metric on 52 with Gaussian curvatÜre
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K>0 and Levi-Civita eonneetion V. Then there exists an affine immersion f:

(S2, v) ~ R3 which 1s unique 'uP to an affine ~ransformat1on of ~,.
, I

Proof. By the solution to Weyl"s problem (see, for example, [9], p.226) .

(52,g) has an isometrie irnbedding f into euclidean space ~ with standard
, .

metric and it i8 rigid. So f : (S2, V)-t ~ i8 an affine ir~bedding. Suppose f1

: (S2, v Y--t Bt3 is another affine immersion. Theorem 2 implies that it is

isometrie relative to a eertsin parallel pseudo-riemannian metric < , >in

1R 3 • This metric must be Euelidean to accommodate a compact surface'with

positive definite metric induced on it. Since one can find an affine

transformation A of ~ ~hich transforms the metric < , >into the standard

metr1c, 1t follows that Ao f 1 18 an isometrie immersion 1nto ~ with, '

standard euelidean metr1c, and as such, congruent to f. Thls means that f 1

differs from f by an affine transformation. o

Corollary 3. Let gbe the standard r1emann1an metr1c on Sn w1th constant

seetional curvature 1. For every affine immersion f: (Sn, v) --i' afl+l, the

image f( Sn> i8 an ellipsoid (relative to a Euclidean metric).

CorQllary 4. Let (Hn, g) be the hyperbolic space with standard riemannian

metr1c of constant sectional curvature -1. Then every affine transformatlon .

f: (Hn, v)"" Rn+1 is 'an isometrie immersion of (H",g) inta Rn+1 with flat

Lorentz metric. lf.. ni. 3, f(Mn) i5 affinely congruent to one component of

Remark 2. In the p'roOf of Theorem 2, theslgn of c gene rally depends on
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the affine immersion f.

s. Eguiaffine immersions of eomoaet manifolds

It i5 a standard theorem in euc1idean differential geometry that a compact

riemannian manifo1d (M",g) with negative-d~finiteRieei tensor eannat be

isometrically immerse'd in a 'euc1idean space 1fl1"1: any campact immersed

hypersurface has to be locally strict1y eonvex somewhere and the Rieei .

tensor i8 positive-definite at convex points. For affine immersions this, .

argument does not app1y, because convexity does not imp1y positivity of the

Rieei tensor. For examp1e, the hyperbalic space Hn can be affinely imbedded

as one component of a two-sheeted hyperboloid.

We can still prove

Theorem 3. Let (Mn, V,w) be a compact eguiaffine manifold with

negative- definite Ricci tensor (or more generally, with nondegenerate, but

not positive-definite I Riee] tensor). ,Then {Mn, vJ does not admif an affine

1mmers10n into 1Rn+ 1•

Proof. Let f : (Mn, v) -+ Rn+ 1 be an affine immersion. We choose a

transversal f1eld to be equ1affine. As'in Corollary 1 in Sectlon 4, h 18

nondegenerate with the Rieei tensor. Thus viewing Mn as, a hypersurfaeein

eue11dean space IRn+1• the usua,l second fundamental form 15 proport1onal to h

~nd thus nondegenerate. 1t follows that Mn 1S d1ffeomorphic to Sn, h 15

definite, end f{ Mn) ia a 'strict1y convex hypersurface {fa example, see {4],

p. 41 ). By diagona1izing S relativ.e ,tc h, we see that Ric for V i8 positive-
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definite st a point where the bilinear form B(Y ,Z) = h(SY~Z) is positve

definite. We shall show that there is such a point, contradicting the

assumption .on Ric and thus concluding the proof of Theorem 3.

From Example 5 recall that (n-1)6 is equal to the Rieei tensor of the

conorma,l connection v· on M, which 18 equiaffine and projectively flat •. Thus

our assertion will follow from the next lemma.

Lemma • .l.n. V be a Drojectively flat eguiaffine connection on Sn with

. volume element w. Then there are points on Sn where the Rieei tensor of V

i8 p08itive- definite.

Proof • Recall that (Sn, v) is projectively equivalent to( Sn, V 0)' where

V 0 i5 the standard affine connection (Levi-Civita connection) on Sn (see, for

example [3]) .. Consider Sn as a unit sphere in Rn+1 • We may obtsin a

centro-afflne Immersion ,: Sn ~ IRn+1 so that the lnduced volume element

coincides with w. The induced connection v* is projectively flat and

coincides with V, sincethey have the same volume element. See, for

example, [5], Proposition 2.

Thu8 we may consider ,: Sn ~ IRn+1
I where the image ,( Sn ) i8 star

shaped with respect to the origin~ Let p be a point where. ä nondegenerate

height function has a maximum. Then ,( Sn )is strictly convex towards the

origin at p, andthus by (11) Ric is positive-definite at p. c

T .'
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