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THE FORMAL DEGREE OF DISCRETE
SERIES REPRESENTATIONS OF CENTRAL
SIMPLE ALGEBRAS OVER p-ADIC FIELDS

ALLAN J. SILBERGER, ERNST-WILHELM ZINK

1. INTRODUCTION AND RESULTS

Let F be a p-adic field and A|F' a central simple algebra of reduced degree N.
This means that :
A=Mp(Dg), md=N

is a matrix algebra of order m over a central division algebra Dy|F' of index d.

We consider irreducible square integrable representations of the multiplicative
group A*. The Abstract Matching Theorem of Deligne, Kazhdan and Vigneras
[BDKV] gives character preserving (up to sign) correspondences between these sets
of representations for the various algebras A|F with N = md fixed. Moreover the
correspondences — which are a special instance of Langlands’ functoriality principle
— preserve the formal degree of the representations. On the other hand there are
the explicit constructions of the square integrable representations in the “extreme”
cases A = My (F) ([BK], [C]) and A = Dy a division algebra ([C}, [Zi;]). From
these constructions a certain system 7y of parameters has emerged which is a
noncanonical substitute for the indecomposable degree N representations of the
complex Weil-Deligne group Wr.. Therefore it is reasonable to consider the following
problems:

1) Explicit construction of the discrete series representations of A* for all A|F
with N fixed by using the same system 7 of parameters.

2) Verification of how the explicit constructions fit with the Abstract Matching
Theorem.

Concerning Problem 1) there are precise predictions how to construct the rep-
resentations but the verification of all details has not been finished so far. This
paper can be considered as a test of the ruling principles. Using the two central
conjectures concerning the structure of Hecke algebras (section 3) and concerning
the geometry of conjugacy classes (section 7) we examine the procedure

te Ty = II7,

and we derive an explicit formula for the formal degree deg(T1{, dj) of the irreducible
square integrable representation I of A* which does not depend on the algebra A
but only on the parameter ¢.

Given an admissible irreducible representation IT of the multiplicative group A*
let V|C be the representation space of I, V its admissible dual and let wyy : F* —
C* be the central character of IT.



IT is called square integrable if wy is unitary and if all matrix coefficients of T1
are square integrable modulo the center:

/ (Tl(g) o v, %)|% dg < o0 forallveV,ieV.
geAr/F+

This implies that IT is a preunitary representation. Namely fix some v # 0 € V.
Then:

alor) = [ ) o, ) - TG o0, 3 g < o0
geA=/F*
is an A*-invariant Hermitian product on V. Because V is irreducible, the product

(v1|v2) is unique up to a positive real factor, and with respect to the Haar measure
dg on A*/F* the formal degree deg(T1,dg) is defined by:

1
oY 2 0 — —————
M) /,;.-/F- ((w2[Tg) o v2)lc dg deg(II, dg)

which is independent of the choice of the product (-]-).

- (v1vr)(velva),

Remarks. 1. Let 8 be a fixed compact mod center subgroup of A*. Dividing (1) by
vol(R/F*,dg) one concludes that the product vol{&/F*, dg) - deg(Tl,dg) does not
depend on the Haar measure dg.
2. We say that IT € (A*)" is essentially square integrable or a discrete series rep-
resentation, if there exists a character y : F* — C*, such that y ® I1 is a square
integrable representation of A*. (x(g) := x(Nrdar(g)) for gy € A*). Then it is
casily seen that an unramified character y can be found such that ¥ ® IT is square
integrable. This is due to the fact that a discrete series representation II is square
integrable iff its central character wyy is unitary. For a discrete series representation
IT of A* the formal degree deg(I1, dg) is defined via a square integrable representa-
tion which is obtained as a character twist of II.

We consider A|F central simple of reduced degrec N fixed. Then we know a
parameter system

(2) T = {t=1[¢.8]; degt|N}

for the discrete scrics representations of A*. It is obtained by fixing an approxima-
tion procedure, hence a set of minus polynomials in F[T);;, the set of all irreducible
monic polynomials provided with the distinguished exponential distance wg. (Sce
section 2 for more details.) ¢ = [¢, §] denotes a Galois orbit of pairs (¢, 3) where
f € F is the root of a minus polynomial and ¢ is a tame character of the multi-
plicative group of an unramified extension field K|F(3) which is regular over F(3).
The degree of t is defined as degt := [K : F]. For all A|F of reduced degree N we
may define maps

t=[¢, Bl €Ty — [ B8, 2] =TI € (A"
by fixing a character )\g : F(B8)* — C* for cach 8 (=root of a minus polynomial).
We write )\f;‘ because so far it is not clear that the compatibility relations of the
system {,\g}g can be formulated without using A. to = [¢g, 0], where ¢y is the

trivial character of F*, is mapped to the Steinberg representation St4 of A*. In
the case when A = D is a division algebra, St# is the trivial representation.

Our aim is to give an A-independent formula for the formal degree deg(I14, d7) if
the Haar measure dg on A*/F* is normalized in such a way that deg(St#,dg) = 1.
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1.1 Theorem. Let A|F be of reduced degree N, and let t = [¢,5] € Ty be a
parameter. Then:

gV -1

T N2-df(T}—N(l—l/&)]
qN/e -1

deg(T1{',dg) = f 7!
where e, [ are the ramification exponent and the inertial degree of the parametert
and where dgery > 0 € Q is a nonnegative rational number depending on the
minimal polynomial f(T) of B over F. q = |kp| denotes the order of the residue
field of F'.

Remarks. 1. To the pairs (¢, 8) € t the towers of ficlds K D F(8) D F have been
assigned and by definition e; = exr, fi = fx|F are the ramification exponent and
the inertial degree of ¢.
2. If f(T) is the minimal polynomial of 8 over F' then dgry = 0 iff deg f(T') = 1,
i. e. B € F. In such a case one has e = ¢; = 1, hence deg(Il{},dg) = f. This
especially applies to level 0 representations where the parameters are such that
g =0.

We are going to explain the polynomial invariant dgry > 0 € Q for irre-
ducible polynomials f(T). It depends on the distinguished exponential distance
wr (f(T),9(T)) € QU {co} on F[T)ixy. Namely let be

deg; (f(T) = min{deg ¢(T) ; wr (f(T),9(T)) 2 j)

the minimal degree of all irreducible polynomials in a “j-neighbourhood” of f(T°).
Then we have deg; (f(T)) = 1 for j << 0, and deg, (f(T)) = deg(f(I)) if fF(T)
is a minus polynomial. Especially this applies if f(T") is assigned to a parameter
t =[¢,0) € Ty as the minimal polynomial of 3 over F.

1.2 Definition. If f(T) € F[T}i is a minus polynomial and e is a natural
number which is divisible by the ramification cxponent of f(T") (which refers to
the corresponding isomorphism class of extension fields of F'), then the invariant
dyery > 0 € Q is given as:

(3) dyry = -i- - Z [1-1/deg_, (F(T))]
iz

Concerning the definition we make the following

Remarks. (sec section 3)

1. deg, (f(T)) | deg f(T) for all v € Q.

2. v is a degree-jump of f(T) if deg,(f(T)) properly divides deg, . (f(T)) for
all e > 0.

3. denominator(v)|ramification exponent of f(T'), if v is a degree jump of (7).
Especially we conclude denominator(v)|e such that (3} is independent from the
choice of e. The minimal choice would be e = ramification exponent of f(7'), and
this implies N? - df(ry € Z because e|N and deg, (f(T)) | deg f(T') | N for all v,
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4. Because of deg, (f(T)) > 1 for all v we see dyry = 0 iff degy(f(T")) = 1 which
means deg( I (T)) = 1 since we only consider minus polynomials.

1.3 Reformulation in the tame case.
If p{ N, the parameter system 7, can be replaced by the Galois orbits of Howe’s
admissible pairs (K|F, x) (sce 2.8 bclow) such that [K : F]|N. If ¢ denotes the
Galois orbit of (K|F, x), then:

gV -1 24 N(1—1/e
deg (117, dg) =f--!N/T-— g3V d=N(1-1/e)]
qgve—1
where e = eg|r, f = fk|F,
1
dy== (1-1/deg_,(t))
e
v2>0
veLZ

deg_,(t) = [K-, : F] where K_,|F is the minimal extension such that x|U:(u+n =
Xv © Nk k_, factorizes via the corresponding norm map (see also 2.8.3 below).

In terms of “Galois” representations the parameter (K|F, x) corresponds to o =
Indg+7(x) which is an irreducible representation of the Weil group W = Wpg of
F|F, and for t = ¢ we obtain:

e = dimension of the irreducible constituents of oy

f = number of irreducible constituents of oy

deg_,(t) = min{dimr; 7 € W, Homy+ (7, o) # 0}

where I is the inertia group of W, WJ arc the higherramification groups in up-
per notation, and W¥* is the closure of | i>0 W3, Note that Homyywr (1,0) # 0
is equivalent to saying that the exponential distance is wp(r,0) > —v, where
wr(1,0) := —max{v; Homw.(r,0) = 0} = — min{v; Homy+(7,0) # 0}.

We remark that in the split case A = My (F) and in the division algebra case
A = Dy this includes the results of [CMS].

2. PARAMETERS FOR DISCRETE SERIES REPRESENTATIONS

Our aim is to express deg(Il, dg) of a discrete series representation TT of A* in
terms of a certain set of parameters for those representations. We briefly recall
what the parameters look like:

Consider F[T}irr the set of irreducible polynomials of degree > 1 where the
highest coefficient is 1, and let F' < F[T;;r, a = T — a be the natural embedding,.
Then the exponential distance vp(a — b) € Z on F has a certain extension to an
exponential distance wp (f(T), 9(T)) € Q onF [T}, i. e.

wr (f(T),9(T)) 2 min{wr (f(T), M(T)), wr (K(T), 9(T))}
wp(T —a,T —b) = vr(a—1D) for a,b € F.

(sec [Zig] 1.8). Moreover there exist approximation procedures on F[T;, with
respect to the exponential distance wg.



2.1. An approzimation procedure is a map
(1) FTlier X Q = F[Tier,  (f(T),5) = F(T)

such that:
() F(T) =T forallj if f(T)=T
(i) wr(f, f9) > 3 and f1(T) = fI+(T) if wr(f, f?) > j +¢€ for somee >0
(iii} deg f7(T)|deg f(T) and the same divisibility holds for the ramification eu-
ponent and inertial degree of the polynomials.
() wr(f,0) > § implies [3(T) = g3(T).

The existence of approximation procedures was proved by H. Koch [Ko,].

2.2. Note that for f(T) € F[T)irr, vr(a) € Q is the same for all roots « of f(T') in
a fized algebraic closure F|F, and f3(T) = T for j < vp(a) i. e. the approzimation
of f(T) starts from the polynomial T € F[Tli;; (which is the “zero element”) and
it ends up with f(T) = f(T).

There is no p-adic expansion of irreducible polynomials but it is suggestive to
think of f7(T) as of the partial sum of a p-adic expansion. Just as for p-adic
numbers there are many approximation procedures and we have to fix one of them.

We define

2.3 A polynomial f(T') € F[T)i. is called a minus polynomial with respect to
the fixed approximation procedure if already f°(T) = f(T). The set of minus
polynomials is denoted F[T]; . (To make this clear see the example 2.8.)

2.4 Consider pairs (¢,3) where 8 € F is the root of a minus polynomial and
¢: K*/1+pg — C* is a tame character of a field K such that:

(i) K|F(B) is an unramified extension of ficlds,
(ii) ¢ is regular over F(B), i. e. all conjugate characters are different.

The Galois group & = Gal(F|F) acts as follows:

oo (¢, B) = (pooto(B) for 0 € BF, and by t = [¢, ] the Galois or-
bit of the pair (¢, 8) is denoted. The degree of such a parameter is defined as
deg t = [K : F], and a twist with tamely ramified characters x : F*/1+pp — C*
is given as: x ®t := [(x o Ng|r)d, Al.

2.5 If A|F is a central simple algebra of reduced degree N then Ty = {t =
[, B]; deg t|{N'} may serve as a system of parameters for the irreducible discrete
series representation of A*.

(The minus sign in 7 reminds to the fact that the numbers 8 are roots of minus
polynomials over F.) If A|F is a division algebra, 2.5 has been proved in [Zi;], and
if A|F is split it has been proved in [Zig], [Zi4] using the work of [BK] and the
Abstract Matching Theorem[BDKV].

The parameter set T, is not canonical because it is necessary to make choices
when constructing a discrete series representation Il; out of a parameter ¢. In order
to obtain a well defined I, one has to fix a character Ag : F(8)* — C* for all 8
such that the following compatibility relations are fulfilled.
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2.6. (i) Agoo™l=X,5 foraloe®p.
(i) Ag =1 the unit character of F* if f = 0.
(ii)) (As[Xs o Nrgyp] ™) (1+2) = o Trpgayp((B—b)z)  forz € pPfi*" and

j = —Vp(}g)(ﬁ—b) 2fb cF. (Note that Up(ﬁ)(ﬁ—b) = eF(B)|F" wp(fﬁ( ),T—
b) is a negative integer because 3, b are roots of minus polynomials and

be F).
(iv) Ag(B) =1.
Conditions (iii), (iv) are compatible because vp(gy(8) < 0 implies that the cyclic
group () and the principal units of F(B)* have trivial intersection.

Unfortunately the compatibility relations of 2.6 are not complete because what -
we need in (iii) is compatibility between Ag and A, for arbitrary v whercas we have
assumed v = b € F. So far the gencral compatibility between Ag and A, can be
expressed only in terms of the algebra A at hand such that fixing a compatible
system of characters {Ag}g might depend on A.

2.7 Let A|F be central simple of reduced degree N and let A% .. be the set

of equivalence classes of irreducible discrete series representations of A*. Fixing a
map Ty — AN ., t=[¢,8] — I means to fix a compatible system {)\,‘é‘}ﬁ of

characters )\g : F(B)* — C*, which gives a well defined map

(4) t=[¢, B — [, 8,A5] — 11

We remark that the construction of I; uses all characters )\1’4 where the minimal
polynornial of « is an approximation polynomial of the minimal polynomial of 3.

2.8 In the tame case our formula for the formal degree can be expressed in terms
of Howe’s admissible characters. First our metric wg on F[T];, can be described
very easily:

2.8.1 Proposition [Ziy]. The metric is given as

r(f(T),9(T)) = max{vp (e — B); fe) = g(B) = 0}
if the irreducible polynomials f(T'), g(T) correspond to tame extensions of . O
Let F|F be the maximal tame extension in F and let I = Gal(F|F) be the
corresponding Galois group. We get a natural bijection:

(5) F\F A4 F[T]irr, tame 3

and from the Proposition an approximation procedure on F [T]i”, tame 15 Obtained
as follows:

In F* we fix a complementary group Cp with respect to the principal units,
F*=Cpx UF Then therc is a uniquely determined complementary group C such

that F* = C x U1 and C D Cp, hence C is a I-module. Moreover every z € F has

.‘E=E$v

veEQ

a unique C-expansion
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where z, € C U {0} and vp(z,) = v if ©, # 0. For o € T the C-expansion of o(z)
iso(z) = ZI'GQO'(QI,,), because T preserves C. Hence the approximation procedure
FxQ—F, (z,j)— z() = > u<j Cv induces

T\FxQ—=D\F,  [#():= [z()],

where [z] denotes the [-orbit of z € F. Via (5) this is an approximation procedure
of F[T}ir, tame, and denoting F~ = {z € F'; z = z(0) = ) o %»} we obtain the
natural bijection

(5) P\F~ 6 Tl e
Our system 7~ of parameters now comes down to 7. . consisting of I'-orbits
t = [¢, B] such that S € F~. And as a more precise variant of 2.6 we can prove:

2.8.2 Proposition. There ezist maps 8 € F~ > {Ag : F(B)* — C*} with the
following properties:

(i) Agoo™t = Ayg forallo €T,
(i) \g=14B=0¢ F~,
(i) [Ag, © Nkir(gy) - (Mg, © Nkjreay) (1 +2) = ¢ o Trgp((B1 — B2)z) for
T E p%/zlﬂ, where j = —eg|p-vp(Br— ), K = F(f,B2) and 4 is a fized
additive character of F of conductor pp,

(iv) Ag(B) =1.

Sketch of proof. We choose a fundamental domain A~ for I‘\ﬁ“ including one
representative of each [-orbit in such a way that 8 € A~ implies 8(j) € A~ for all
approximations. A~ is constructed by induction on the number of nonvanishing
terms in the C-expansion of 3, which is finite because of 8(0) = 8. Then we make
choices

BeEA™ = {Ag: F(B) = C}

such that the conditions (ii)—(iv) are fulfilled. Once again this is done by induction
on the length of the C expansion of 8. The induction begins with (ii) which is
taken as a definition. In the last step we extend the construction from A~ to F
putting

’\a(ﬁ) = /\500'_1 fOI‘ﬁEA—,UEF.

Note that o(8) = o'(§') implies 8 = o~ 'o’(#’), hence B = ' because these are
elements from A~. Therefore denoting K = F(o(8)) we see that 0,0’ 1 F(8) - K
arc identical isomorphisins, hence A, gy is well defined. O

We fix once and for all a map 8 € F~ — {Ag : F(B)* — C*} with properties
(1)-(iv) of the Proposition. It induces a bijection

(6) (,8) = ¢ (Ag o Nkip(g))

between pairs (¢, 3) such that g € F~and ¢ is a regular tame character of K*
for an unramified extension K|F(f) on one hand and admissible characters (in the
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sense of Howe) of tame extension fields K|F on the other hand. The injectivity of
(6) is obvious, and the surjectivity follows from [Rei], Lemma 2.3. Moreover (6) is
compatible with the action of the Galois group I' on both sides, where o o (¢, 5)
is given by 2.4 and ¢ o (K|F,x) = (¢(K)|F, xc~'). Hence the map (6) induces a
bijection between 7, and the set of conjugacy classes of admissible pairs (K| F, x).
Fixing a bijection (6) implies to fix a Howe decomposition for any admissible pair
(K|F,x). Namely for a given x we have a well defined pair (¢, 8) such that xy =
¢ - (Mg o Ngr(g)), and the Howe decomposition of x is:

x = (Ag o Nk|r(s)) - ¢

(7) T -
=3 TI [Pse+aah ° Nrsarenreon) © Neir@gre) | - ¢
j=vr{fB)
where the product is over all § € GKIIFZ, vr{f) < j < —g, e = 3K1|F = em:a)w’

and B(5) = qu B, are the partial sums of the C-expansion of 8 € F~. Note
that B(j) = 0 for j < vp(f) and B(0) = B. 2.8.2(iii) implies Ag, 0 Ng|p(g,) =

Mgy © Nk r(pyy on 1+ pi;"l, where j = —expvr(f1 — B2). If LK is a tame
extension we obtain Ny k(1 +pi“'”+l) =(1+ pi"'”“)ﬂf( =1 -I—;J'i"'l, such that

in 2.8.2(iii) we may replace K by any other tame cxtension of F' containing 8; and

Ba.
Applying this to (7) we conclude:

(8) X|U—cK|Fj+1 = )‘B(j) o NK|F(,(3(j))|U;=K|I-‘J'+1 for all 7 < 0.
K

From the proof of [Rei], Lemma 2.3 we sec that Ag : F(3)* — F* does not factorize
via any intermediate norm map of F(B)|F, for all 8 € F~. Hence:

2.8.3 Proposition. If under (6) the admissible pair (K|F,x) is given as x =
¢-(Ago Ny p(@)), then for all j <0 F(B(5))|F ts the minimal subextension in K|F
such that x|U-¢K|Fj+1 factorizes via the norm map Niypg(j)) -

K

3. HECKE ALGEBRAS AND FORMAL DEGREE

The aim of this section is to relate the formal degree deg(I1#,dj) to the di-
mension dim(vrfk ), where wf is a distinguished representation of a compact mod-
ulo center subgroup of A* which is contained in TI{#f. Relying on a conjectural
Hecke algebra isomorphism (see [BK] and [SZ] for special instances), the quotient
deg(IT2, dg) /dimn? can be expressed in terms of the formal degree of a Steinberg
representation which is explicitely known by a formula of Macdonald’s. We begin
with some general remarks on Hecke algebras which are applied to express the for-
mal degree in terms of an idempotent of the Hecke algebra (sec 3.5). Then we make
use of the conjectural Hecke algebra isomorphism.

Let G denote a totally disconnected, separable unimodular group, Z the center
of G, and R D Z an open compact mod Z subgroup of G. Let dz denote a Haar
measure on G/Z. For any Z-invariant measurable subset X C G write

vol(X/2Z) = vol(X/Z, dz) = fwz dz.



Let x be a unitary character of Z and let (p, W) be an irreducible unitary
representation of £ with central character xy which acts in a complex vector space
W, dim(W) = dim(p). Let [p;;(k)] (k € &1 < 4,5 < dim(p)) denote the matrix of
p with respect to an orthonormal basis of W.

Let H, = CX(G, x) denote the convolution algebra on G/Z consisting of all
mod Z compactly supported functions 3 on G such that

¥(gz) = x(2)¥(g) .

Let H, = H(G, p) denote the convolution algebra on G/Z of all mod Z compactly
supported End(W) valued functions b on G which satisfy

(1) h(kigkz) = p(k1)h(g)p(k2)

for k1,k2 € R and g € G. With respect to an orthonormal basis for W the space
H, may be identified with the space of matrix-valued functions [h,;(g)] such that
hi; € Hy which satisfy the matrix product relation

[hij(k1gk2)] = [piz (k)][Rii (9)][pij (k)]s

explicitly

(2) hij(kigks) = o piar(khei(g)pe(ka) -

1<, 5 <dim(p)

Under the identification of endomorphisms with matrices the convolution product
of elements of H, becomes identified with integration of the matrix product; thus
we have

(WD« A2 (g) = / h(l) h(z)( Yg)da (1 <14,j <dim(p))
1<A<d|m (p) R/Z

for (1 (2 ¢ H,.
Let 8, denote the character of p,

dim(p)

deg(p) = deg(p, dz) := Vol(R/Z)

and define
deg(p)0p(9), if g € &;
0, otherwise.

el9) = e,l0) = {

Then e,(g) is a locally constant function which is compactly supported mod Z.
Schur’s orthogonality relations ([W], p.73) imply that e,(g) is an idempotent func-
tion on G/Z.

More generally, for any fixed i, 1 <14 < dim(p), let

deg(p)pii(g), if g€ &
ei{g) = .
0, otherwise.



Then e;(g) is also an idempotent function on G/Z. For i # j the functions e;(g)
and e;(g) are orthogonal with respect to convolution on G/Z. Moreover,

dim{p)

eolg) = Y eilg).

i=1
Define H, = H.(G) to be the subalgebra of H, consisting of all 4 such that
epx W =1 e, =1,
Clearly, ¢, is the identity element of H.. For any h = [h;;] € H, we have h;; € H,
for 1 < 1t,5 < dim(p). More precisely, let
Hij; =ei ¥ He x e (1 <4,5 <dim(p)).
Then, as a vector space
He = Di<ij<dim(p) Hij »

the decomposition being an orthogonal direct sum. For each 7 the subspace H;; is
a subalgebra of H, with e; as identity element.

Let .4, denote the tensor product algebra H, ®c End(W), the multiplication in
A, being

eV em) - (WY 1) =1V« P enT;.

3.1 Theorem (Bushnell/Kutzko). Let (p, W) be, as above, an irreductble uni-
tary representation of R in the complex vector space W of dimension dim(p). For

h®T € A, define
w(h ® T)(z) = deg(p)trace(h(z)T*).

Then p is an algebra isomorphism of A, to H,.

Proof. Fix an orthonormal basis for W and identify H, with an algebra of matrix-
valued functions as above. The elements of End(W) may also be identified with
matrices. Let E;; denote the matrix with 1 in the 4, 7—th place and elsewhere all
entries 0, 1 < 4,7 < dim(p). For any h € H, and %, j set

pij(h) = p(h ® Eij) .
Then
nij(h) = deg(p)hi; .

Thus ;5 is a linear mapping of H, to the subspace H;; C H,. Since, by Schur
orthogonality and (2),

dim(p)

deg(p)pirs * hij * deg(p)psy = (deg(p)pwi x ¥ pir)(I)ha; * deg(p)pjj
A=1
= hiljl 3

it is easily seen that p;; is bijective. This implies that p is bijective too. A similar
calculation, again applying Schur orthogonality, also shows that.

deg(p)hﬁ) * clcg(p)h&%} = deg(p)(hM) « B )8

which implies that g is an algebra isomorphism. O
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3.2 Corollary. Let E # 0 be an idempotent in End(W). Then the mapping
h— uh® E)

defines an tmbedding (i. e., an algebra monomorphism) of H, into H..

Choosing E = Ey; (1 <14 < dim(p)), we see that Corollary 3.2 implies that #,
is isomorphic to H;:

3.3 Corollary. The mapping
s + b deg(p)ha

defines an isomorphism of H, to the algebra of scalar-valued functions ;.

Mautner used the imbedding of Corollary 3.3 in his pioneering study of “spherical
function algebras” on the group PGLy(F) ([Mt], Lemma 2.1). We shall use this
imbedding to deduce Proposition 3.5.

Now let G' be the group of F points of a connected reductive F—group. Then G
is a separable totally disconnected unimodular group. Let £ be, as before, an open
subgroup containing the center Z of G such that K/Z is compact. We consider the
Schwartz space C, (G) of Harish-Chandra ({Si], 4.4, p. 174); in particular we recall
that C,(G) is a convolution algebra on G/Z.

Let II(g) = (IT;;(g)] (¢ € G;1 < 4,j < o0) be a unitary discrete series matrix
representation of G and let dz be a Haar measure on G/Z. Then the matrix
coefficients I1;;(g) of IT are elements of C.(G) ([Si], Corollary 4.4.5) and the formal
degree deg(Il, dz) is defined such that the Schur orthogonality relations hold for
the matrix coefficients of II:

f H,;j (.’L‘)ﬁirjf(ﬂf)dﬂ,' = 6,-1':5jjr deg(H, d&'})_l
G/Z
or
(TLij * ek ) (g) = 655 T (g) deg(IT, dr) " .
In particular, the constant deg(Il, dz) is uniquely specified by the condition that,
for any diagonal matrix coefficient,
(3) deg(IL, dz)I1;; * deg(T1, d)I1;; = deg(I1, dz)TL;; .

We also have

deg(IT, dz) f I () Pde = 1
G/zZ

and
(4) deg(I1, dz)vol(R/Z, dz) = constant,

a constant which is independent of the choice of dz.

Let S, D M, [respectively, S. O H.] denote the closure of H, [respectively, H.,]
with respect to the topology of C,(G). Then both S, and S, are convolution algebras
on G. It is easy to see that the isomorphism H, — H; given by Corollary 3.3
extends to an isomorphism S, — S;; and is bicontinuous in the Schwartz topology.

11



3.4 Lemma. Assume that p occurs simply in the restriction llg of the discrete
series representation II. Then W, may be identified with a unique subspace of the
representation space H. Let ¢ = {¢i;] denote the dim(p) x dim(p) submatriz of the
infinite unitary matriz [Ili;] consisting of the matriz coefficients of I with respect
to an orthonormal basis of the subspace W, C Hn. Then ¢ € S, and the linear
mapping h— hx¢ of S, = S, stabilizes the one-dimensional subspace of S, which
s spanned by ¢. Define
A:S,»C

by setting "
hx¢d=Ah)p.

Then A is an algebra homomorphismn.

Proof. That ¢ € S, follows from the fact that matrix coefficients of discrete series
representations belong to C,(G); it is obvious that ¢ satisfies (1). It is well known
({Si], Lemma 1.10.9) that for any irreducible admissible representation of G the
space spanned by the matrix coefficients is a module for H,.. Since p occurs in Ilg
with multiplicity one, for any 7 there is a one-dimensional subspace of the space
of matrix coefficients of II which belongs to S;;. Since S;; is an algebra, this one-
dimensional space must be stabilized under convolution, from both sides, by the
algebra &;;. Thus, for ¢ € S,

) * dig = ANW)bis

where A1) is a scalar. That ¢ — A(%) is an algebra homomorphism follows from
the associativity of the convolution product in &§;;. Using p&l of Corollary 3.3 to
pull back A to S,, we obtain the conclusions. [

The consequence of Corollary 3.3 which we shall use is the following:

3.5 Proposition. Letf
_ deg(Il, dz)

P =
deg(p)

Then the function @ is an idempotent in S,. Moreover,

.

trace(® (1)) = deg(I1, dz) .

Proof. By Corollary 3.3 the mapping p;; is an isomorphism of the algebra &, to
S,','. Thus,
113:( @) = deg(p) @y = deg(I1, dz) ;i ,

which, by (3), implies that u;(®) is an idempotent in S;;. Therefore, since juy; is
an isomorphism, ® is an idempotent in S,. Clearly,

trace(®(1)) = deg(p)®ii (1) = deg(Il, dx) ¢ (1) = deg(ll, dz) ,

since ¢;;, being a diagonal matrix coefficient of a representation, has the value 1 at
I. O
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Now we recall some details of the construction
t=[p,0 €Ty = [6,06,75] = I € (A",
where A = M,,,(Dy) is a central simple algebra over the p-adic field F. Namely let
K>DE=F@B)>F

be the tower of fields associated to (¢, 3) € t. Let Ag be the centralizer of E in
A. Then Ag 2 M, (Dq,) is a central simple algebra over F of index N/[E : F},
with do = d/(d,[E : F]) and mg = (m, N/[E : F]) (see [Zis}, 1.). Let L' C Ag be a
maximal subfield such that

foie =K : E]/(K : E),dy).

Let A = Ay be the principal order in A which is normalized by (L’)*. (See the
Theorem of Benz and Fréhlich [F], [Zis).)

Assuming that the character ¢ is unitary, we obtain from ¢ a unitary representa-
tion wf of E*A* to which are associated N/[K : F] discrete series representations
I1# in a single unramified twist class with the following additional properties: (1)
T1A| g2 contains 7 (2) 77 occurs with multiplicity one in IT2| g-o-; and (3) these
N/[K : F] discrete series representations are the only discrete series representations
of A* which contain 7r;#' in their restrictions to £*2*.

We depend upon the following isomorphism of Hecke algebras:

Conjecture.
H(AY, K*Uy i, 1) = H(A E*UA*, x])

where L|K 1s mazimal and fully ramified; thus the principal order unit group QIEI K
s minimal parahoric in Al.

Special instances of such an isomorphism can be found in [BK](5.6.6.) and in
[SZ]. Since the Hecke algebras H(A%, K* AU}, 1) and H(A*, E*A*, 7¥) are iso-
morphic, the Schwartz algebras S(Af, K™} i, 1) and S(A*, E**, 7f) are iso-
morphic too.

Each discrete series representation IT#1 which restricted to E** contains m*
is represented by an idempotent ® € S(A*,E“Ql*,vrf'). Similarly, each discrete
series representation of Af which contains a K*27 (. -fixed vector is represented by
an idempotent 4% € S(A%,, K*27 x,1). Note that in both cases all the possible
discrete series representations only differ by an unramified twist, hence they have
the same formal degree. In the second case this is the formal degree of the Steinberg
representation St4% because from [Bo] we conclude that only unramified twists of
St4x can occur. "

3.6 Proposition. The formal degrees of the discrete series representations asso-
ciated to the algebras S(A%, K*U} -, 1) and S(A*, E*U*, 7) are related by the
formaula

deg(St4¥, dga,) — ol " dgA).degUTf,dgA)

vol K™ A7 /K", dga,.) - -
( ixe/ ) dim(1) dz’m(wf)
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Remark. Of course dim(1) = 1. This quantity is included in the denominator on
the left to emphasize the symmetry of the formula.

Proof. Assuine first that

(5) Vol(K UL, /K™, dgay ) = vol(E*A* [ F*, dga) = 1.

In this case, for each of the algebras S(A%, K*U} 1) and S(A*, E*u*, 7)), the
identity element is the function h; which has support in the identity double coset
and the respective values 1 and [ # at the respective identity elements I of A% and

A*. Therefore, because the algebras are isomorphic, the coefficients of h; in the
expressions for the idempotents @S,, and ®# are equal. Thus, with (5) holding,
Proposition 3.5 implies that

deg(StA% dga) _ deg(IIf dg)
dim(1) dim(x¥)

This appears to be a special case of the Proposition. But the general case follows

from (4). O
Now we use:

3.7 Macdonald’s formula [Mc|. Let A = M,,,(Dg) be a central simple algebra
over F, and % = U, a principal order of period r in A. r is a divisor of m and we
denote s = s(U) := m/r. Then for any Haar measure dg on A*/F*:

vol(F*U* /F*, dg) - deg(St", dg) = H(qd’ ~1)7/(gN = 1)
i=1
where q = |kp| 1s the order of the residue field of F.

Remark. We consider the special case where A = D is a division algebra hence
r=s=m=1,d= N, and A = Op is the unique principal order. Moreover St
is the trivial representation of D*. Then we obtain

vol(F*O% /F*,dg) - deg(St?, dj) = —

reflecting the fact that deg(St?,dg) = 1 iff vol(D*/F*,dj) = 1.
Now we consider our case % = A, p and we put 7' = 7(2), s’ = s(A) in this
case. Normalizing dg in such a way that deg(St#,dg) = 1 we conclude:

(6) vol(E"* [ F*dg) = epyp - vol(F*%* /F*, dg)

'

= BT -1/ - ).

=1

We want to apply Macdonald’s formula in order to compute the left hand side
of 3.6. We have to replace
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N by Nx¢ = N/[K : F),
A by AK = MmK(DdK),

q by ¢/ = |kk/|, where f = fxr = fi.
Because L|K is fully ramificd we have »(r k) = mg, s(Ug k) = 1 such that:

1
() vol(K*yx /K", dg) - deg(St4¥, dg) = N—K(q”" — 1) f(gP Ve 1),

Using 3.6, (6), (7) we have reduced the computation of deg(II#, dg) to that of
dim(n?), namely:

(¢f4x — 1)mx . N(gN - 1)
Ni(gfVx —1) - egp [T, (g% — 1)

deg(TIA, dj) = dimn} -

4. COMPUTING THE DIMENSION OF m}

Consider t = [¢, 8] € Ty . The embedding of K D E = F(8) D F in A takes g
into a pure element of type (eL:|r, fLr, UL/ F) because B € L' and (L')* normalizes
A p =: 2. Since 8 is the root of a minus polynomial it generates a simple stratum
B+ 2. Let P = Jac be the Jacobson radical and U(2) = 1 4 B be the principal
units in A*. We recall:

4.1 Proposition. (i) There is a construction
B+Amr my e U

of an irreducible representation w’é of UY(A) which makes use of the characters /\;f1
for all approzimations y of B (i. e. the minimal polynomial of v is an approzimation
polynomial of the minimal polynomial of § with respect to the fized approzimation
procedure for polynomials). The selfintertwining of ﬂ'é 18:

(1) Ia-(mg) = U'(Y) - A - UN (%)

(ii) dimn’é = q%[Nz'df(T)_N(s"fé/eEIF)] where dyry > 0 € Q s the numerical
nvaeriant 2.2 of the minimal polynomial f(T) of B over F and where s’ = s(2),
fo=s(¥pg). O

(NOtO that % = QIUlF and mL‘lE =N AE)

Remark. The construction of 4.1(i) is essentially the same as in [BK] and (Ziy]
respectively and the dimension formula is an immediate consequence of the con-
struction procedure (see section 7 below).

We are going to explain how the dimensions of Wé and of wf& are related. Let
£ = Rpr be the normalizer of 2 and let Rz := AN Ag. Because of U}2) C R
from (1) we deduce T4-(15)NR = &p-UH(A), and since U'(2) is a normal subgroup
in R we can say:
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4.2. Rg-U' () is the normalizer of mjy in K.

Now we use ’ﬂ';# = Ind(ry ® g) where the induction is from E*QlE,lEJé onto
E*U*. Let us do the induction in two steps namely E*Ql*,lEJé 0 E*%*,|EU1(QL)
and E*2A7, U () + E*A*. Because 74 is a supercuspidal representation of
E*le,lE/Ul(QquE), the first induction yields

(2) IIldl(T¢®ﬁ'g) :T¢®Ind1(ﬁﬁ),

and Ind;(#g) is an extension of my. From 4.2 we see that E*%A* N Ry - UN(A) =
E*Ql"L,|EU1(QL) is the normalizer of 7} in E**. Therefore

(3) mf = Indy o Ind,y (74 ® 7g)
is an irreducible representation of E*A*. From (2}, (3) we conclude:
(4) dimn}* = (a* - E,|EU1(91)) - dim7g - dilmrf;

because Ind, (7g) and ﬂ‘é are equidimensional. So we are left with the computation
of the first two factors on the right hand side of (4).

4.3 Proposition. dimry = H{i}l(qdofﬁl"" —1)%

where ey = r(™Apg), fo = s(™Ap ) hence ef - f§ = my.

Proof. We have Ag = M,,,(Dag, ), hence s(A.g) = (mo, frig). Dividing mody =
Ng = [L : K]-[K : E] by the product ([K : E],dg) - ([L : K],mq) we see that
W]Q.n_mf = '(U_[{_Er%j which is fz: g by definition. Therefore fr/ g divides mp and

(5) s(/pe) = fuie, r(Ape) = mo/s(Upg) = (L : K], mp)

Let kj be the residue field of the central division algebra Dy, |FE. Then we get

(6) (Apm/PBrp)” = [GLy (k)]

The tame character ¢ € X (K*) has reduction ¢ € X (k}) which is regular over kg.
Let [ be the composite field of kg and kj. Because of [k} : kg| = do we conclude:

[L: ko) = [k s kgNkk] = [K : E)/((K : E],do) = foE .

But we have already seen that fr .,z = f3. Obviously qSoN”kK € X(I*) is a character
which is regular over kj, hence it gives rise to a supercuspidal representation o
of GLfé(k’o)
To compute dimo we note that ky O kg D kr is of degree dofgr, hence |kj| =
q®fm1F and
fo—1
dime = H (qoleirt _ 1)

i=1
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Using (6) the tensor power 0®% inflates to a representation of A7, and extends
to 74 of E*A}, g- Therefore dimry = (dimo)® which proves 4.3. O

The first factor on the right hand side of (4) is

(o UM ()
(Ql}/u«: tUNApg))

(7) (2 247 gU () =

With the notation of section 3 we get:
A /UNA) = [GLy(kp)]

where kp is the residue field of the central division algebra Dy|F. Hence

'
]

i r’ 1 S' 8’— 1”
(7)n11m = H((jd — 1) . (Izd ( 1)

i=1

is the numerator of (7). On the other hand from (6) and from the formula for |
we see that

fa
(7)den = H((]dof’gmi - 1)‘3(') . q‘%dofmf-‘fc')(fé—l)e’o
=1

is the denominator of (7).
Now we take the results together in order to compute dimz¥. First we determine
the g-power which is in dimz¥. From (4), 4.1(ii), (7)num, (7)den We conclude:

1
g-power = 7 [N? dyry = N(s" ~ fi/epirp) +ds'(s' — 1)r' — do [ r fo(f§ - Leg] -

We use ds'r’ = dm = N and do fyey = dorng = Ng. Then:

(8)
1
g-power = §[N2 ~dpry + Nfo/egip — N = Ng - fgip(fy — 1))
1 1 1
=§[N2'df(T)_N+NEfE|F] =§[N2'df(T)_N(1_ )]
CE|F

Let (7)o (7) qens (dim7g)’ be the prime-to-p-part of these expressions. Then the
prime-to-p-part of dimwfE is:

(7)’num ) ((lilllT¢)’ __ Hle((jdi - 1)1"

9 '-part = =
( ) p-par (7)’([011 ((ldofli‘lf:‘f{; _ 1)36
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5. THE FORMAL DEGREE
Let the Haar mecasure dj of A*/F* be normalized in such a way that
deg(St4,d7) = 1. Then in section 3 we have obtained:
(qfd;( _ l)"“" -N(qN _ 1)

deg(ITA, dg = dim#} - 7 ,
S = e i D) o Tl @ — 17

We note that N/Ngegp = [K : Fl/egr = fx)r = f is the inertial degree of our
parameter t, hence fNg = N/egp, and egp = e is the ramification exponent of
t. Therefore from 4.(8), (9) we obtain:

N fdx _ 11974
A g . @ =) 4N oNa-1e)] (g 1)
deg(Il,dg) = f - —-——-—-(qN/e ey q [ 5Ty ] T 1)

and we are left to show that the last factor is 1. For this we consider Ag =
My (Da,) in Ag = My, (Dgy,). Because Ak is the centralizer of K in Ag, the
invariants of these algebras are related by

inv[Ax] = inv(resg[Ag]) = [K : E]inv[Ag]

This yields dx = do/([K : E],do), hence dofpirfs =a.s5) dofeir - [Kf-(E:?]Edo -

feiF[K : E]-dg = fdg. Morcover mg = (mo, Ng/[K : E]) = (mo, [L : K]) =45
eg-

6. ADDITIONAL REMARKS IN THE SUPERCUSPIDAL CASE

We continue to consider the map
t=1[¢,8 = [¢,8, 2] = I} € (A")",

where A = M,,(Dg), md = N. As a conveniant notation we introduce ng := [K :
F] = degt, hence ng - Ny = N. Because under the Hecke algebra isomorphism
(Conjecture of section 3) supercuspidal representations correspond, we see that Wt#
is contained in a supercuspidal representation iff A% is a division algebra. Only
in that case supercuspidal representations and representations with Iwahori fixed
vector may agree. Moreover this is the case where H(A*, E*A*, 7¥) is of finite
dimension Ny = Ng, and the N, different supercuspidal representations of A*

which contain ﬂt# are obtained by extending 'IT?E and inducing. Therefore we get:

6.1 Proposition. The representation 11 is supercuspidal iff the following equi-
valent conditions are fulfilled:

(i) The centralizer A of K embedded into A is a division algebra.
(ii) lem(ng,d) =N
(i) ng = (ng,d)-m
(iv) mg = (m,Ng) =1
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. We only prove that (i)-(iv) are equivalent. Because Ax = M,,, (Dg,) where

my = (m, Nk) we see the equivalence of (i) and (iv). Moreover dividing md =
N d

N =ng - Nk by (d,ng) we obtain m - s = 7~ - Ni, hence (m,Nkg) =1

iff m = tanﬁc—) which proves the equivalence of (iil) and (iv). Finally from (Tnf,?i =

lom(ny ,d) ;‘“'d we get the equivalence of (ii) and (iii). O

In the following we use the notation of 3.(1).

6.2 Proposition. Assume that II# is a supercuspidal representation. Then up to
conjugation holds:

Aprp =Anir
e = Ui = A1 (AEg) .

Proof. For the first equation we have to show:

s(@App) =s@pr),  Le (m, frp)=(m, fLr).

By a result of Frohlich (see [Zis], 3.(i1)) we know

S(Qlup) = (S(QlL|E)fEiF: m)

for all maximal field extensions L|F|F. And the numerical invariant () deter-
mines the principal order 2 up to conjugacy. Therefore we arc left to show

s(Upie) = sApg), ie.  (mo, frie) = (Mo, frg)-

In 4.3 we have introduced the notation fj := $(g) and we have seen that
frglmo, hence fo = frng. Now from 6.1(iv) and the last equation of section 5 we
sec

l=mg =ey:=r(Ayg) hence  fi=myg

because ey fg = mp. On the other hand fi\g|frig = [K : E] such that altogether
we obtain s(zg) = s(™pg) = mo, and s(Arr) = s(App) = mo(fEF, m/me).0

Remark. If Hf is supercuspidal then of course we expect it to be induced from a (up
to conjugation) unique maximal compact modulo center subgroup. The observation
QJ.L“:' = Q[L’|F i. e. .ﬁmp = ﬁL’iF supports this.

We have based our computations on Proposition 3.6 which we have obtained as a
consequence of the conjectural isomorphism of Hecke algebras. Finally we are going
to explain that 3.6 simplifies considerably if TI{ is a supercuspidal representation.
Namely we can use 6.1(1) and the remark following Mac Donald’s formula 3.7. Then
the left hand side of 3.6 is simply 1/Ng, and we obtain:

(7) vol(E*U* /F*, dg) - deg(II{, dj) = Ni - dim(7#)
K
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if Hf is a supercuspidal representation. Moreover due to 6.2 we need not to distin-
guish between 2y, and Az F in the supercuspidal case, hence A = Ay p = App.
With s’ = s:= (m, f) and v’ = r := m/(m, f) we obtain

vol(R/F*,dg)  (R:F*¥*) _ ¢d _ N
VOl(E*A*/F* dj) ~ (E*A*: F*A*)  egr S-epp’

where £ is the normalizer of A. Hence multiplying (7) by N/s - egp yields
(8) vol(R/F*, dg) - deg(IIA, dg) = I dim(7 )
s

We have g = A (Ag) (sec 6.2) and we let K'|E be of degree ([K : Ej,dp)
embedded into the central division algebra Dy, |E, and we may assume that Dy,
normalizes A} (Ag). Now we use the following well known facts:
a) 74 € (E*AT(AR))" extends to C*A}(Ag), where C = Cent(K', Dy, ), and then
irreducibly induces to a supercuspidal representation of A%.
b) 7 = TInd(r4 ® 7g) € (E*A*)" extends to C*A* and then irreducibly induces to
a supercuspidal representation of A*.
c) II# corresponds to an appropriate extension of 7rt# :

We compute the index (& : C*2*), where £ is the normalizer of A. Namely:

(R:C*U*) = (R: F*A")/(C™A* . F*A™).
The numerator is #d and the denominator is:

dg

(C*A*  K'U*) (K™ F*o*) = (IK : E),do)

'CE'|F'~

Hence:

K : FE|,dy)rd : :
(R:CH ") = {l ], do)r _ (K : Elrd _ [K : Flrd _f
docE!F ﬂIUdQBE]F N6E|F 8

K:E
[K:E],do
Now remarks b), c¢) imply that I1#! is induced from a representation g of £, such
that

because from (1), (2) wesce mg = f§ = , and moreover modo = N/[E : F).

dimg = (& : C*%*) dimn] = (f/s) dimr? .
Putting this into (8) as a consequence of 3.(3) we obtain:

6.3. Ift = [¢, B) has the property lem(degt,d) = N, then the supercuspidal repre-
sentation I is induced by an irreducible representation p of R r (where LIK is
as in 3.(1)) and

vol( R p/F*,dg) - deg(Hf‘, dg) = dimg.

We remark that the last equation can be proved independently from the Hecke
algebra isomorphism 3.(1).
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7. PROOF OF 4.1(1)

Fix e, f such that ef = N and a principal order 2 in A. Let £ be the normalizer
of A in A* and let Ae, f,2) be the set of (e, f,U)-pure elements in 4, i.e. = €
Ale, f, ) iff there exists a ficld extension L|F in A such that « € L, egjrp = ¢,
frip = f, L normalizes %.

One has A(e, f,A) # 0 iff r(™A) =r(e, f) := m/(m, f) = e/(e, d), where the last
equation is derived from md = N = ef. Moreover in this case one has a natural
bijection (see [Zis], 6.)

(1) R\Ale, f, %) & F[T)e

between R-conjugacy classes of (e, f, A)-pure elements and irreducible monic poly-
nomials over F' of ramification exponent dividing e and inertial degrec dividing f.
Under (1) the minimal polynomial of « over F' is assigned to an (e, f,)-pure cle-
ment z, and we have the

Isometry conjecture*. % vz, y) = wr (f(T), g(T)) if the R-conjugacy classes
z, y correspond to the polynomials f(T'), g(T') respectively.

Here we have used the notation r = r(?), P = Jac(A) the Jacobson radical
of A, vy(z,y) = max{vyp(z' —y'); 2" € z,y" € y} and wp is the distinguished
exponential distance on the set of irreducible monic polynomials over F. From the

isometry conjecture one deduces the existence of fundamental domains D™ ¢ D C
Afe, f, ) such that

(2) D < f\A(e, f,A) & F[T. ¢

(3) D™ & R\A(e, [, 2)/A & F[T]; ;,

i. e. each irreducible monic polynomial from F[T]. s has preciscly onc root in D
and each R-conjugacy class of (e, f, A)-pure simple strata has precisely one rep-
resentative in D~. This representative is the root of the corresponding “minus
polynomial” in D. To f € D~ a fK-conjugacy class {71'[13} of irreducible representa-
tions of U(A) = 1+ P can be assigned which is not completely unique but depends
on choices. Nevertheless the dimension dirn(vr};) is well defined, and we are going
to prove:

7.1 Proposition. dimﬂé = q%[Nz'df(T)-N(S—SO/eF(ﬁ)IP)] where dyry 2 0 € Q is

the numerical invariant 2.2 of the minimal polynomial f(T') of B over F and where
s =s(U), so = s(AN Ag).

Proof. The argument is based on the cquations (4), (5) and Lemma 7.2 below,
which we take from [Zi5]. To begin with we note:

(4) dirmré =,/P: ‘.]3;%', where ‘,BbL ={z € P:ya ((.ry —yz)B) =1Vy € P},

where ¢ : F* — C* is our fixed additive character of conductor pr and ¢4 =
'z,[) o} TI‘(]A‘F.

*This has been proved recently by P. Broussous.
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Because each polynomial f(T) € F[T]. s has precisely one root § € D and
-r%um(ﬁ—'y) =wp (f(T), g(T)) if v € D is the root of g{T'), the fixed approximation
procedure (f(T),5) = f¥(T) on F[T)ir; induces an approximation procedure on
D where the approximation §; of # is the root of fA(T) in D. By definition
vp(B— ;) = rd-wp(f(T), f7(T)) 2 rdj and for f(T) € F[T). ; all approximations
fI(T) are covered for j € 1Z hence rdj € Z because r = e/(e, d) (see above), such
that ejrd. For 8 € D~ we have 8y = B. Therefore it is enough to consider the

approximations 8_, € D™ forv > 0, v € Z To compute (4} we make use of the
formula

(5) Pr= > (PTnA),

v>0,u€ ;13Z

where A_, is the centralizer of 5_,, in A.
Using the sequence P = P + ‘.Bf; D> PE+ ‘,Bfg' O P+ ‘,Bé' D ... we deduce:

(dimm})® = (P Bz) = [ [P +B5 : B+ +B5)
i>1
_ “Bi . q3i+1)
E (PENPg - PHNPE)

Moreover from (5) we obtain
P NPy =P NA_a+ P NPy,

hence (' N ‘,Bé' SPL N ‘Df;) = (P NA_;q: PN A_,,,) which implies:

urd 'urd+1)
6 dimml)? = (e ¥ :
( ) ( ﬁ) v>0,1:£—13z (‘3""’ NA_y: ‘ﬁ""d“ N A-v)

Now we make usc of the following

7.2 Lemma.

(i) If L|F is a mazimal field extension in A there is a uniquely determined
principal order Ay p in A which is normalized by L*.
(ii) If A = App and K is an intermediate field L D K D F then AN Ax =
QiL|K~
(ii) Let B, Prix denote the Jacobson radical of A and Ap x respectively. Then
PN Ak is always a power of Py g, namely:

Brx =B DTN Ag fori=1,...¢
vy, x (T) = e - vp(z) form € Ak

where e = e(A|™Ap k) = (fK|F', fL|F/*"'(Q[))-
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(i) is due to A. Frohlich (1987) and (ii), (iii) are proved in [Zis], 2. Note the
special cases e = 1 if A = My (F) because s(p) = frp, and e = fipif A= Dy
because s(/yr) = 1. (Every principal order 2 in A = M,,,(Dg) has the invariants
r =71(), s = s(A) such that rs = m.)

We come back to our computation of (P : ‘}3;;) for B € D™ C Ale, f,U). Let
f—v, e—y be the inertial degree and the ramification exponent of F(5_,)|F. From
7.2(iit) we conclude e(A|AN A_,) = (f-v, f/3) where s = s() = (m, [). Morcover

A/P =2 [My(kp)]” implies
(7) (A:P) = g®' = N where g = |kp|.

We want to apply (7) to compute (ANA_, : PN A_,). The algebra A_, is central
over F(B_,). Hence we have to replace ¢ by ¢/~ = |kps_,)|- Further N has to
be replaced by N_, = N/[F(f-y) : F] and s by s_, :=s{ANA_,) = (m, f/f_v).
Therefore

A,
(8) (AN A_y: PAA_) = gf-N-vo-v = g5

Because (P : Pil) = (A :P) for alli € Z and

(P NA, THNA) = { (ANA_, PNA_,) ife(AAN A_,) divides ¢

otherwise

we conclude:

(cpvrd . ;:nvrd-{»l Ns(l s_v/€_y8) if C(Ql|91 @ A_U)I'U'I‘d
(mvrd NA_, (pvrd+1 NA_

(dlnmﬂ) =¢", where

otherwise

(9) p= Y Ns(1-Gys_y/e_ys)

v>0,0€5Z

o=} T

0 otherwise.

7.3 Lemma. Assume f(T) € F([T)e,s C F[T|ix where ef = N = md and let
v = j/rd (where r = r(e, f) = e/(e,d)) be a jump for the approzimation of f(T).
Then f|sj hence (f/s)|j.

(Note that s = m/r = (m, f) is a divisor of f).

Proof. We know that the jumps of the approximation of f(7T") are in %Z, hence
in ﬁzZ. Therefore if v = j/rd is a jump then j = jg - %‘1, where jp € Z. Hence
s) = jg% = jof is divisible by f because srd=N. O

Instead of p (see(9)) we begin to compute

(10) p = Z Ns(1—0ys_y/e_y$)

'uz(),ve;}—ayl
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where we have added a term for v = 0. Then

oo
©w= Z S; where

1=0

(({f/8)+(f/s)—1]/rd
(11) S; = > Ns(1—8y5_y/e_ys).

v=i(f/s)/rd

We have 8 = By because § € D7, i. e. the minimal polynomial f(T) of 8 over F is
a minus polynomial, f(¢) = f(T). Therefore 7.3 implics that approximating f(7'),

all jumps have the form —v = —j/rd where j > 0 is a multiple of f/s. Consider the
index set I; for the sum S;. We conclude that for v € I; always e_, = e_j(5/5)/rd>
S—y = S_i(f/s)/rd DECAUSE C_y F €_yie, foy # foyye only if v = i(f/s)/rd. I
consists of f/s numbers and we have &, = 1 for (f/s)/(f-v, f/s) of these numbers
namely if (f_y, f/s)|vrd whereas for the other (f/s) — (f/s)/(f-v, f/s) numbers
we have 8, = 0. Hence:

/s
(f=v, f/5)

where v = i(f/s)/rd = i/e. We obtain:
— Ng _ (f/s)'3~v _ _ (f/S)'S_v
S R e R Ll w7

Now we remark s_, = (m, f/f_.) = ((m, f), f/f-v) = (s, f/ f-»), hence f_,s_, =
(F—vs, f) = (f-v, f/s) - s. Therefore:
(f/s) 5 S8l uf

Fur f/9)en  (F—u, F/S)[F(B—s) - F] f/[f’(ﬁ—n) . F]

which finally implies:

WPRA A

. =Ns-
8 =N . 7/5)

Si=Nf(1-1/[F(B-.): F)) for v =1i/e.

=Y S=Nf Y (- 1IF(p)  F)

v2>20,v€ -CLZ

Because of ef = N we obtain

u’=N"‘-§- Y (-YIF(B-): F)

‘UZD,‘UE%Z
2
= N"-dyry

where f(T) is the minimal polynomial of 8 over F' and d f(r) 18 as in 2.2. Namnely
[F(By) : F] = deg [~*(T) = deg_,(f(T)) because deg [~V(I) = ged{deg ¢(T);
wr (f(T),9(T)) > —v}. (This is a property of an approximation procedure for
irreducible polynomials.) To compute g we recall:

H = ].L’ — NS(l — 50/808) = def(T) - N(S - So/eg) where £0 = Cp(B)|Fs S0 =
(m, £/ fo) = (m, f/ fr(g)ir) because B = fy. O
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