
THE FORMAL DEGREE OF DISCRETE
SERIES REPRESENTATIONS OF CENTRAL
SIMPLE ALGEBRAS OVERp-ADIC FIELDS

Allan J. Silberger and Ernst-Wilhelm Zink*

Dept. Mathematics
Cleveland State University
Cleveland
OH44115

USA

*
Reine Mathematik
Humboldt-lJniversität
Unter den Linden 6
10099 Berlin

Germany

MPI96-154

Max-Planck-Institut
für Mathematik
Gottfried-Claren-Str. 26
53225 Bonn

Gennany





THE FORMAL DEGREE OF DISCRETE

SERIES REPRESENTATIONS OF CENTRAL

SIMPLE ALGEBRAS OVER p-ADIC FIELDS

ALLAN J. SILBERGER, ERNST-WILHELM ZINK

1. INTRODUCTION AND RESULTS

Let F be a p-adic field and AIF a central silnple algebra of reduced degree N.
This Illeans that

A = Mm(Dd ) , rnd = N

is a Inatrix algcbra of order m ovcr a contral division algebra DdlF of index d.
V'Je consider irreducible square integrable rcprescntations of the nlultiplicativc

group A>I<. Thc Abstract Matching Thcorelll of Deligne, Kazhelan anel Vigneras
[BDKV] gives character preserving (up to sign) corresponelences betwecn these sets
of representations for the various algebras AIF with N = rnd fixed. Moreover the
correspondel1ces - which are a special instance of Langlands' functoriality principle
- preserve the formal degree of the representatiol1s. On the othcr hand there are
thc explicit constructions of thc square integrable rcpresentations in the "extrcllle"
cases A = MN(F) ([BK], [CD and A = DN a division algebra ([CL [ZilD. Fronl
these constructions a ccrtain SystCIll Tii of paralneters has cluergecI which is CL

noncanonical substitute for the inclecolnposable degree N reprcsentations of the
cOIllplex Weil-Deligne group Wp. Thercfore it is reasonablc to consicler thc following
probleIlls:

1) Explicit construction of thc discrcte series representations of A>I< for all AIF
with N fixeel by using thc same systenl Tii of paranlCters.

2) Verification of how the explicit constructions fit with the Abstract Matching
Thcorern.

Conccrning Problcln 1) there are prccise predictions how to construct tbc rep­
rescntations but the verification of all details has not becll finishcd so far. This
paper can be considcred as a test of thc ruling principles. Using thc two ccntral
conjecturcs concerning thc structure of IIcckc algebras (scction 3) anel conccrning
thc geollletry of conjugacy classes (section 7) we exalnine the procedurc

t E Ti f-t nt,
anel we derive an cxplicit fornnlla for the fonnal degrcc deg(Ilf, d,"ij) of thc irrcdllciblc
square integrablc rcprcsentation Ilf of A>I< which does not depend on thc algebra A
but only on the paralneter L

Given an aclnüssible irreduciblc represcntation TI of the Inultiplicative group A >I<

let VI<C bc the rcpresentation space of [1, V its adlnissiblc dual anel let Wn : F>I< --t

<C>I< be the central charactcr of II.
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rr is called square intcgrable if Wn is unitary and if all Inatrix coefficients of TI
a.re square integrable Inodulo the center:

r I(Il(g) 0 v, v)l~ dg < 00 for all v E V, V E V.
JgEA./F.

This iInplics that rr is a preunitary representation. NaInely fix SOIlIC V i= 0 E V.
Then:

(VIIV2) = r (ll(g) 0 VI, v) . (TI(g) 0 V2, v) rlg < 00

JIiEA ·/F-
is an A *-invariant Herrnitian product on V. Bccause V is irreduciblc, the product
(vIlv2) is unique up to a positive rcal factor, and with respect to thc Haar Ineasurc
dg on A* / F* the [onnal dcgree deg(rI, dg) is defincd by:

(1) r I(V1IIl(g) 0 v2)1~ dg = l(~ d-) . (vllvl)(V2Iv2),
JA./F. ccg ,g

which is independent of thc choice of the product ( . I· ).
Remarks. 1. Let ~ be a fixed cornpact nlod center SUbb'TOUP of A *. Dividing (1) by
vol(~/F*, dg) one concludcs that thc product vol(~/F* 1 dg) . dcg(ll, dg) does not
depend on the Haar Ineasure dg.
2. We say that II E (A*)" is essentially square integrable 01' a discrctc series rcp­
resentation, if there exists a charactcr X : F* -----t C· , such that X0 TI is a square
integrable rcprescntation of A*. (X(g):= x(NrdA1P(g)) for 9 E A*). Then it is
casily secn that an unrauüficd character X can be found such that X® IT is square
integrable. This is due to the fact that a discrete scrics represcntation rr is square
illtegrable iff its central character wn is unitary. For a. discretc scries rcpresentation
IT of A· thc fonnal degree dcg(IT, dlj) is defined via a square integrablc representa­
tion which is obtained as a character twist of TI.

We consider A IF central siInple of redllccd degree N fixecl. Then we know a.
paraIneter systeul

(2) TN = {t = [<p, ß) j deg tIN}
for the discrete series representations of A *. It is obtained by fixing an approxhna­
tion procedure, hence a set of minus polynol1l,ials in F[T]irr the set of all irreducible
nlonic polynoInials provided with the distinguished exponcntial distance wp. (Sec
section 2 for ITIOrC details.) t = [<P, ß] denotes a Galois orbit of pairs (cP, ß) where
ß E P is the root of a nlinus polynolnial and cP is a tarne character of the rllulti­
plicative group of an unranlified extension field KIF(ß) which is regular over F(ß).
The degrec of t is defincd as deg t := [K : F). For all AIF of redllced dcgree N we
lllay definc lnaps

t = [cP, ß] E TN f-7 [<jJ, ß, A:] f-7 n~ E (A *)'"

by fixing a charactcr AJ : F(ß)* -----t C· für each ß (=root of a rninus polynonüal).
We write AJ becRuse so far it is not eIear that thc cOlllpatibility relations of the

systenl {A:} ß can be fonnulated without using A. to = [<Po, 0], whcre cPo is the
trivial character of F*, is lnappcd to the Steinberg representation St A of A"'. In
the case when A = D is a division algebra, StA is thc trivial represcntation.

Dur ainl is to give an A-inclepenclcnt fonnnla for thc fornlal degree deg(llf, cl,g) if
thc Haar Ineasure dg on A */ F* is nornlali~ed in such a way that deg(StA , d.g) = 1.
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1.1 Theorem. Let AIF be 01 reduced degree N, and let t
parameter. Then:

[</J, ß] E Tii be a

qN _ 1 1 2

d (II A d-) I . (12(N .d!(T)-N(l-l/e)]cg t, g = . N/q e - 1

where e, I are the ra7nification exponent and the inertial degree 01 the ]JfLram,eter t
and where d f(T) 2: 0 E lQ is a nonnegative rational number depending on the
7ninimal po lyn omi al 1(T) 01 ß over F. q = IkF 1 deno les the on[er 01 the rcsiduc
ficld 0/ F.

RC1narks. 1. To the pairs (</J, ß) E f, the towers of fields K ~ F(ß) => jI"" have been
assigned and by definition et = eKIF, It = IKIF are the ranlification exponent and
thc inertial degree of t.

2. If I(T) is the nüniInal polynoluial of ß over F then df(T) = 0 iff deg f(T) = 1,
i. e. ß E F. In such a case one has e = et = 1, hence cleg(IIf, da) = f. This
especially applies to level 0 reprcsentations where thc parameters are such that
ß= O.

We are gOillg to explain thc polynoluial invariant r1 f(T) 2: 0 E Q for irre­
ducible polynonüals I(T). It depends on thc distinguished exponential distance
WF (f(T), g(T)) E Q U {oo} on F[T]irr. Nanlely let be

dcgj (I (T)) := min{deg.cl (T) ; 1J)F (f (T), g(T)) 2: j}

thc IniniInal dcgree of all irreducible polynornials in a "j-neighbourhooel" of f(T).
Then we have degj (I (T)) = 1 for j << 0, and dego(I (T)) = dcg (I (T)) if 1(T)
is a nünus polynonüal. Especially this applics if f (T) is assigncd to a paralueter
t = [</J, ß] E Tii as the minirnal polynonlial of ß over F.

1.2 Definition. If f(T) E F[T]irr is a nlinus polynonlial anel e is a natural
rnlluber which is divisible by the ramification exponent of f(T) (which refcrs to
the corresponding isoIllorphism dass of extension fields of F), then the invariant
df(T) 2: 0 E Q is given as:

(3)
1

df(T) := _. L [1 - 1/ eleg_ v (f(T))J
e

v~o

tJE~Z

Concerning the definition we Inake the following

Re1narks. (see section 3)
1. degv (/(T)) j deg f(T) for all v E Q.
2. v is a degrce-jurnp of I(T) if degtJ (f(T)) properly clivides clegv+e: (f(T)) for
all E > O.
3. denonünator(v)lranüfication exponent of f(T), if v is a degree jUIUp of j(T).
Especially we concluele denominator(v) le such that (3) is independent [1'0111 the
choice of e. The miniIual choice would bc e = ranüfication exponent of f(T), and
this implies N 2

. df(T) E Z because eiN and clegv(f(T)) I deg I(T) I N for all v.



4. Because of degv (f(T)) 2: 1 for all v we see df(T) == 0 iff dego(f(T)) == 1 which
ffieans deg (f (T)) = 1 since we only cOIL.'dder minus polynolnials.

1.3 Reformulation in the tarne case.
If 1J i N, the paralneter systenl Tri can be replaced by the Galois orbits of Howe's
adlnissiblc pairs (KIF, X) (sec 2.8 bclow) such that [K : F] IN. If t denotcs thc
Galois orbit of (KIF, X), then:

deg(IlA dg) == f. qN - 1 . qt[N 2 'd t -N(1-1/e)]
t , qN/e - 1

whcre e == eKIF, f == fKIFl

deg_v(t) == (K-v : F] where !(-v IF is the nüniInal extension such that xluev+1
K

Xv 0 N KIK_
tJ

factorizes via thc corrcsponding nonn rnap (scc also 2.8.3 bclow).
In tenns of "Galois" represcntations the pararneter (KIF, X) corresponds to a ==

IndKtF(X) which is an irreducible representation of the Weil group W == W F of
FIF, and for t = a we obtain:

e == diulension of the irreduciblc constituents of aI

f == number of irrcducible constituents of aI

deg_ v (t) == nün{diInr; r E W, HOIllW 1J+ (r, a) # O}

whcre I is the inertia group of W, Wi are the highernunification groups in up­
per notation, anel W v + is the closure of Ui>o Wi. Note that HOlllW 1J+ (r, a) #- 0
is equivalcnt to saying that thc exponential distance is W F ( r, a) 2: - v, where
wF(r,a):== -nlax{v; HOlllwv(r,a) == O} == -lnin{v; HOlllwv+(r,a) # O}.

We relnark that in thc split case A = MN(F) and in the division algebra case
A == D N this includes the rcsults of [CMS].

2. PARAMETERS FOR DISCRETE SERIES REPRESENTATIONS

Dur ahn is to express deg(Il, dg) oi' a discrcte scries represcntatioll rr of A· in
tenns of a certain set of paralueters for thosc reprcsentations. We briefly rccall
what the paranlctcrs look likc:

Considcr F[T]irr the set of irreducible polynoluials of degrce 2: 1 where the
highest coefficient is 1, and let F Y F(TLrr, (L H T - a bc the natural CInbcdding.
Thcn the cxponential distancc vF(a - b) E Z on F has a certain extension to an
exponential distance WF (f(T), g(T)) E Q onF[T]irr, i. e.

WF (f(T), g(T)) ~ 111in{WF (f(T), h(T)), WF (h(T), g(T))}

wF(T - a, T - b) == I/F(a - b) for a, b E F.

(sec [Zi3] 1.8). Moreover therc exist approxinlation procedurcs on F[T]irr with
rcspect to thc cxponential distance W F.
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2.1. An approximation procedure is a map

(1) F[T]irr X Q -T F[T]irr 1 (f(T), j) t-+ fi (T)

such that:

(i) ji(T) = T f01' aU j if j(T) = T
(ii) wp(f, fj) 2': j and fj (T) = f f+e:(T) if wF(f, jj) 2': j + c jor sonte c > 0

(iii) deg fj (T) Ideg f (T) and the sarne divisibility hoitis fOT the rnrnification ex­
ponertt and inertial degree of the polynornials.

(iv) w p (f, g) 2': j irnplies fi (T) = gj (T).

Thc existence of approxhnation procedures was proved by H. Koch [Ko l ].

2.2. Note that for f(T) E F[T]irr, vp(a) E Q i.5 the sarne for aU roots a 0/ f(T) in
a fixed algebraic closure PIF, and fj (T) = T for j ::; l/p(a) i. e. the approxirnation
of f (T) starts !Torn the polynomial T E F[Thrr (which is the "zero elernent") and
it ends 7L]J with foo (T) = f (T).

There is no p-adic expansion of irreducible polynonlials but it is suggestive to
think of fj (T) as of the partial sunl of a p-adic expansion. Just as for p-adic
nUlllbers there are l1lany approxiIllation procedures anel we have to fix one of thcln.

Vve define

2.3 A polynonlial f(T) E F[T]irr is called a 17l,inus polynornial with rcspect to
the fixed approxiulation procedurc if already fO(T) = f(T). The set af lllinus
polynonlials is denoted F[T]j;r' (Ta nlake this dear see the cxan1plc 2.8.)

2.4 Consicler pairs (cP, ß) where ß E P is thc root of a nlinus polynonüal and
1> : K* /1 + PK -+ C* is a taille character of a field K such that:

(i) KIF(ß) is an unranlified cxtension of fields,
(ii) 1> is regular over F(ß), i. e. all conjugatc characters are different.

The Galois group <8 p = Gal(FIF) acts as follows:
a 0 (cP, ß) := (cP 0 a-1, a(ß)) for a E <8 p, anel by t = [1>, ß] the Galois or­

bit of the pair (rP, ß) is dClloted. The degree of such a parameter is defined as
deg t = [K : F], and a twist with taillely raillified characters X : F* /1 + Pp -+ C·
is given as: X 0 t := [(X 0 NKIF)cP, ß].

2.5 1f AIF is a central sirnple algebra 01 reduced degree N then Tii = {t =
[cP, ß] j deg tiN} rnay serve as a system of pararnetcrs for the irreducible discrcte
series representation 01 A*.

(Thc nlinus sign in Tii renlinds to the fact that thc numbcrs ß are roots of minus
polynonlials over F.) Ir AIF is a division algebra, 2.5 has been proved in [Zi l ], anel
if A IF is split it has been proved in [Zi3 ], [Zi4 ] using the work of [BK] and the
Abstract Matching Theorelll[BDKV].

The paranletcr set Tii is not canonical because it is necessary to nlake choices
when constructing a discrete series representation IIt out of a paralncter t. In order
to obtain a weil defined llt one has to fix a character Aß : F(ß)* -+ C* for all ß
such that the following cOlupatibility relations are fulfilled.
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2.6. (i) Aß 00--
1 = Aa(ß) for' alt 0- E <!)F·

(ii) Aß - 1 the unit character of F* if ß = O.

(iii) (Aß[Ab 0N F(ß)IF ]-1) (1 + x) = 'lj; 0 TrF(ß)IF ((ß - b)x) for :/; E p~{~~+1 und

j = -VF(ß)(ß-b) ifb E F. (Note that VF(ß)(ß-b) = eF(ß)IF·'WF(fß(T), T­
b) is a negative integer because ß, bare roots 0/ minus polynornials and
bE F).

(iv) Aß(ß) = l.

Conditions (iii), (iv) are com]Jatible because VF(ß) (ß) < 0 irnplies that the cyclic
group (ß) (Lnd the pr?,ncipal units 0/ F (ß)" have trivial intersection.

Unfortunately the compatibility relations of 2.6 are not cOlllplete because what
we need in (iii) is cOlllpatibility between Aß and >.., for arbitrary r whereas we havc
assuIlled , = b E F. So far the general cOlupatibility between Aß and A, can be
expressecl only in tenns of thc algebra A at hand such that fixing a conlpatible
systClll of characters {Aß}ß might depcnd on A.

2.7 Let AIF be central silnple of rcduccd clegrce N and let A d~screte be thc set
of equivalence classes of irreducible discrctc serics rcprescntations of A *. Fixing a
lnap Ti; -t A 'd1scretc' t = [1, ß] M nt llleans to fix a COlllpatible system {A~}ß of
characters A~ : F(ß)* -t C· , which gives a weIl clefincd nU:1p

(4) t = [eiJ, ßJ M [4>, ß, >..ß] t-+ rr~ .

We rClnark that the construction of fit uses all characters A~ whcre the lninirnal
polynolnial of / is an approxinlatioll polynonüal of the lnininlal polynonüal of ß.

2.8 In the tanlC case our fornulla for the fornlal clcgrcc can be cxpressecl in tenns
of Howc's aclnlissiblc characters. First our Inetric WF on F[T]irr cau be dcscribed
very easily:

2.8.1 Proposition [Zi2]. The metric is given as

WF (f(T), g(T)) = nlax{VF(O' - ß) ; f(o:) = g(ß) = O}

ij the irred1lcible polynornials f (T) J 9 (T) corres]Jond to tarne extensions of F. 0

Let FIF be the rnaxirnal tarne extension in Fand let r = Gal(FIF) be the
corresponding Galois group. Vvc get a natural bijection:

(5) f\F H F[Thrr, tame ,

and [roln the Proposition an approxiInation proceclure on F[T]irr, tame is obtained
as folIows:

In F* we fix a cornplenlentary group CF with rcspect to the principal units,
F* = CF X U}. Then therc is a uniqllely dctenllined conlpleIncntary group C such
that F* =_0 x U} anel C => CF, hellce 0 is a f-111oclule. Moreovcr every x E F has

a uniquc C-cxpansion

X= LXv
vEQ
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where Xv E CU {O} and VF(X v ) = v if Xv #- O. For a E r thc C-expansioll of a(x)
is a(x) = L:VEQ a(xv ), because f preserves 6. Heilce the approxirnation procedure

F x Q ---+ F, (x,j) r-+ x(j) = ~v<j Xv incluces

[x](j) := [x(j)] ,

where [x] denotes the f-orbit of x E P. Via (5) this is an approxirnation procedure

of F[T}irr, tame, and denoting P- := {x E F; x = x(O) = 2:v<o xv} we obtain the
natural bijeetion

Dur systern T- of paralneters 1l0W COllles down to ~-;'mc eonsisting of f -orbits
t = [rP, ß] such that ß E P-. Anel as a more precise variant of 2.6 we can prove:

2.8.2 Proposition. There exisl rnaps ß E F- r-+ {.Aß : F(ß)"" -+ C*} with the
following properties:

(i) .Aß 0 a- 1 = .Acr(ß) for all (J E f,
(ii).Aß 1 if ß = 0 E p- ,

(iii) [Aßl 0 N K]F(ßd . (Aß~ 0 N KIF(ß2»)-l] (1 + x) = 'IjJ 0 TrKIF ((ßl - ß2):C) f01'

x E pW2
]+1, where j = -eKIF' VF(ßl - ß2), K = F(ßll ß2) and'IjJ is a fixed

additive character· of F of conductor PF,

(iv) Aß(ß) = 1.

Sketch of proof. We choose a fllnelanlental dOlnain Li. - for f\P- illcluding one
representative of each r -orbit in such a way that ß E Li. - irnplies ß(j) E Li. - for all
approxiInatiolls. Li. - is constructed by induetion on the nUluber of nonvanishing
tcrms in thc C-expansion of ß, which is finite beeausc of ß(O) = ß. Then we lnake
choices

such that thc conclitior:s (ii)-(iv) are fulfillcd. Ollee again this is dOlle by inductioll
on the length of the C expansion of ß. The induction begins with (ii) which is
taken as a definition. In the last step we extenel the construetion frorn ~ - to F
putting

Acr(ß) := Aß 00--
1 for ß E Li. - l a E f.

Note that o-(ß) = (J'(ß') irnplies ß = (f-l a'(ß'), hence ß = ß' because these are
elCluents froln ß-. Thercfore clenoting K = F(a(ß)) we see that 0-,0-': F(ß) -+ K
are idcntical isornorphisrns, henee Acr(ß) is weIl elefincd. D

We fix Ollee anel for all a n1ap ß E ft- f----t {Aß : F(ß)* -t C*} with properties
(i)-(iv) of the Proposition. It ineluces a bijectioll

(6)

betwecll pairs (rP, ß) such that ß E P- anel cP is a regular tarne character of K*
for an unranüfied extension KIF(ß) on one hand anel aelrnissible characters (in thc
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(7)

sense of Howe) of tanle extension fields KIF on thc other hand. Thc injectivity of
(6) is obvious, and thc surjectivity foIlows from [HeiL Lernrna 2.3. Moreover (6) is
cOlllpatiblc with the action of the Galois group r on both sides, where (j 0 (rjJ, ß)
is given by 2.4 and a 0 (KIF, X) = (a(K)IF, xa- 1

). Hence the map (6) induces a
bijection between 'Tt,-;:me and the set of conjugacy classes of adrnissible pairs (KIF, X).
Fixing a bijection (6) implies to fix a Howe deconlposition for any adrnissible pair
(KIF, X). NaInely for a given X we have a weIl dcfincd pair (rjJ, ß) such that X =
1; . (Aß 0 N KIF(ß»), and the Howc decoInposition of Xis:

X = (Aß 0 N KIF(ß») .rjJ

= { TI [Aß(j+<) (Aß(~) 0 N F(ß(j+<)) IF(ß(j)))] 0 N KIF(ß(j+e)) } . rj;
j=VF(ß)

whcre the product is over aU j E _1_Z, VF(ß) < j < -6, 6 = _1_ I,
eKIF - - eKIF eF(I3)IF

and ß(j) = L:v<j ßv are thc partial SUIlIS of the C-expansion of ß E P-. Note
that ß(j) = 0 for j ::; VF(ß) anel ß(O) = ß. 2.8.2(iii) iInplies Aßl 0 N KIF(ßl) =
Aß2 0 NK1F(ß'J) on 1 + p{11, where j = -eKIF1JF(ß1 - ß2)' If LI!< is a taIne

. . (eL1Kj+1) ( C L1Kj+1) K j+l}}extensIon we obtaln N L1K 1 + PL = 1 + PL n = 1 +PL ,SUC 1 t }at
in 2.8.2(iii) we lllay replace K by any other tarne extension of F containing ßl and

ß2'
Applying this to (7) we conclude:

(8) xl -eKIFj+l = Aß(j) 0 N KIF(ß(j» I -<'IKtpj+l for all j ::; O.uK uK

FroIn the proof of [Rei], Lenuna 2.3 we see that Aß : F(ß)* --+ F* cloes not factori~e

via any intcnneeliatc norm map of F(ß)IF, for all ß E P-. Hence:

2.8.3 Proposition. 1/ under (6) the adrnissible pair (KIF, X) is given a,'J X =
1; . (Aß 0 N K IF(ß»), then for all j :::; 0 F (ß(j)) IF is the minirnal subextension in KIF
such that xl -eKIFj+l Jactorizes via the norm map N K1F(ß(j»'uK

3. HECKE ALGEBRAS AND FORMAL DEGREE

Thc ahn of this section is to relate the fonnal degree deg(l1f, cl.g) to the cli­
rncnsion diln(7ft), whcre 7ft is a distinguished reprcscntation of a cOInpact 11lOcl­
ulo center SUbgrOllP of A* which is containeel in rrf. Relying on a conjectural
Hecke algebra isolnorphisul (sec [BK] anel [SZ] for special instances), thc quotient
deg(IIf, dÜ) / dim7ft can be expressed in tenns of the fornul1 elegree of aSteinberg
representation which is explicitely known by a fonnula of Macdonald's. We begin
with sonle general rClllarks on Hecke algebras which are applied to express the for­
Ina} degree in tenns of an ielenlpotent of the Hecke algebra. (sec 3.5). Then we rnake
use of the conjectural Hecke a.lgebra isoIllorphisrn.

Let G denote a totally disconnected, separable unhnoelular group, Z thc center
of C, anel .R =:) Z an open cOInpact rnoel Z subgroup of C. Let dx dcnote a Haar
I1leasllre on G/Z. For any Z-invariant lneasurable subset X c C write

vol(X/Z) = vol(X/Z, dx) = r dx.
}x/z

8



Let X be a unitary charactcr of Z and let (p, W) be an irrecIucible unitary
representation of R with central character X which acts in a cOlnplex vector spacc
W, dim(W) = dinl(p). Let [Pij(k)] (k E R; 1 ::; i,j ::; diIn(p)) denote the lnatrix of
p with respect to an orthonornlal basis of W.

Let 1ix = C~ (G, X) denote the convolution algebra on GIZ consisting of all
fiod Z cOlllpactly supported functions 'lj; on G such that

'lj;(gz) = X(z)'lj;(g) .

Let Hp = H(G, p) denote the convolution algebra on GIZ of all nIoel Z cornpactly
supported End(W) valucd functions h on Gwhich satisfy

(1)

for k1l k2 E Rand 9 E G. With respect to an orthonormal basis for W the space
Hp lnay be identified with thc space of lnatrix-valued functions [hij(g)] such that
hij E H x which satisfy thc lnatrix product relation

explicitly

(2)

Under the identification of endOl110rphis111S with Inatrices the convolution prodllct
of elelnents of Hp becornes identified with integration of the lnatrix procIllct; thus
we have

(1 ::; i, j :::; diIn(p ))

for //1), h(2) E Hp.
Let Bp denote the character of p,

diIn(p)
deg(p) = deg(p, dx) := vol(RIZ) ,

and define

( ) () {
dcg(p)Bp(g), if gER;

e 9 = cp 9 =
0, otherwisc.

Then ep(g) is a locally con.stant function which is conlpactly supported rnod Z.
Schur's orthogonality relations ([W]' p.73) iInply that cp (g) is an idelnpotent func­
tion on GIZ.

More generally, for any fixed i, 1 ::; i ::; diIn(p), let

if gER;

otherwise.
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Then ei (g) is also an idclnpotcnt fllnction on G / Z. For i =j:. j thc functions Ci (g)
and ej(g) arc orthogonal with rcspect to convolution on G/Z. Moreover,

dim(p}

ep(g) = 2: ei(g).
i=l

Define He = He(G) to be the sllbalgebra of H x consisting of all 'ljJ such that

ep * 'Ij; = 'ljJ * ep = 'Ij; .

Clearly, cp is the identity clelnent of He. Für any h = [h ij ] E Hp we have hij E He
for 1 ::; i, j :::; dill1(p). More precisely, let

H ij = Ci *He * ej

Then, as a vectür space

(1 :::; i, j :::; dinl(p)) .

He = EIh~i,i:SdiIIl(p} Hij ,

the decolnposition being an orthogonal direct sumo For each i thc subspace H ii is
a subalgebra of He with ei as identity elell1Cnt.

Let A p denote the tensor product algebra Hp 0c End(W), thc 111ultiplication in
Ap being

(h(l) ® Tt} . (hJ2) ® T2 ) = ",(1) * h(2) ® T 1T2 .

3.1 Theorem (Bushnell/Kutzko). Let (PI W) be, as above, an irreducible uni­
tary representation 01 ~ in the camp/ex vector space W of di7ncnsion di·rn(p). FOT

h ® T E A p define
It(h 0 T)(x) = deg(p)trace(h(x)T t

) .

Then ft is an algebra isornorphis'fn 0/ Ap to He.

Proof. Fix an orthononnal basis for W anel ielentify Hp with an algebra of rnatrix­
valued functions as above. Thc elenIents of End(W) Illay also be idcntified with
matrices. Let E ij denote the Inatrix with 1 in the i, j-th place and elsewhere all
entries 0, 1 :::; i , j ::; dinl(p). For any h E Hp and i, j set

Ilij (h) = J-l (h 0 Eij ) .

Then
ftij (h) = cleg(p)hij .

Thus Ilij is a linear 11lapping of Hp to the subspace Hij C 'He. Since, by Schur
orthogonality and (2),

dim{p}

deg(p)pi1i * hij * deg(p)pjjl = (deg(p)pi1i * L Pi>..)(I)h>"j * deg(p)pjjl

it is easily seen that Itij is bijective. This inlplies that J-l is bijective too. A sinlilar
calculation, again applying Schur orthogonality, also shows that

deg(p)h~~) * deg(p)h~~j = deg(p)(hJ1) * h(2})ijO>.>..1 ,

which irnplies that J-l is an algebra isolllorphisin. 0

10



3.2 Corollary. Let E 1= 0 be an ideT1~]Jotent in End(W). Then thc mapping

hHJ-L(h0E)

defines an irnbedding (i. e., an algebra rnonomorphisrn) 0/ Hp into He.

Choosing E = E ii (1 ::; i ::; diIn(p)), we sec that Corollary 3.2 iInplies that 'Hp
is isolnorphic to Hii :

3.3 Corollary. The mapping

JLii : h H deg(p)hii

defines an isomoryJhism 0/ 'Hp to the algebra of scalar-valued functions 'H ii .

Mautner usccl thc irnbedding of Corollary 3.3 in his pioncc1'ing study of "sphcrical
function algebras" on the group PGL 2 (F) ([Mt], Lenllna 2.1). Wc shall use this
irnbeclding to dcducc Proposition 3.5.

Now let G be the group of F points of a connected reductive F -group. Then G
is a separable totally disconnccted unilllodular group. Let ~ be, as bcfore, an open
subgroup containing the center Z of G such that fi../Z is compact. We consider the
Schwartz space C... (G) of Harish-Chandra ([Si], 4.4, p. 174); in particular we recall
that C.(G) is a convolution algebra on G/Z.

Let 11 (g) = [Ilij (g)] (g E Gj 1 ::; i, j < (0) be a unitary discrete se1'ies Illatrix
reprcscntation of G and let dx be a Haar rneasu1'e on G/ Z. Thcn the Inatl'ix
coefficicnts TIij (g) of TI are elelnents of C... (G) ([Si], COl'ollary 4.4.5) and the fonnal
degree deg(Il, dx) is defincd such that thc Schur orthogonality relations hold for
thc Inatrix coefficicnts of 11:

01'
(Ilij * Ilj' k) (9) = c5j j' Il ik (g) deg(Il, dx) -1 .

In particular, the constant deg(Il, dx) is uniquely specified by the condition that,
for any diagonal Inatrix coefficicnt,

(3)

Wc also have

and

(4)

deg(l1, dX)TIii * dcg(Il, dx)Il ii = deg(Il, dx)llii'

deg(Il, dx)vol(fi../Z, dx) = constant,

a constant which is independent of thc choice of dx.
Let Sp ~ Hp [respectively, Se :J He] denote the closure of Hp [rcspectively, He]

with rcspect to thc topology of C... (G). Thcn both Sp anel Se are cOllvolution algcbras
011 G. It is easy to sec that thc isoillorphism Hp -+ Hii given by Corollary 3.3
extcnds to an isolllorphisIll Sp -t Sii and is bicontinuous in the Schwartz topology.
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3.4 Lemma. Assu1ne that p occurs simply in the restrietion TIn of the discrete
senes representation Il. Then Wp may be irlentified with a unique subspace of the
repTesentation space nn. Let cP = [cPij] denote the dim,(p) x dim,(p) submatri:c 01 the
infinite unitallJ matrix [Ilij] eonsisting of the 1natrix eoefficients 0111 with respeet
to an orthonorrnal basis of the subspace Wp C .f)n _ Then </> E Sp and the linear
rnapping h H h * cP of Sp --+ Sp stabilizes the one-dirnensional subspaee of Sp which
i.5 spanned hy cP. Define

by setting

h * cP = A(h)cP .

Then A is an algebra homomorphisrn.

Proof. That cP E Sp follows frolll thc fact that lllatrix cocfficients of discrcte series
rcpresentations belong to C. (G); it is obvious that cP satisfies (1). It is weH known
([SiL LeIllIlla 1.10.9) that for any irredllciblc adnüssible reprcscntation of G the
space spanned by thc Inatrix coeffieicnts is a 1l1odllie for 1-lx ' Sinee p oeeurs in 11.1{
with lTIultiplicity one, for any i there is a olle-dimensional subspace of the spaee
of 1l1atrix eoefficients of Il which belongs to Sii. Sinee Sii is an algebra, this one­
dilnensional space lllUSt be stabilized under convoilltion, fronl both sieles, by the
algebra Sii - ThllS, for 7j; E Sii,

where A(7j;) is a scalar. That 7j; H A(7j;) is an algebra hOI1l01110rphislll follows fronl
thc associativity of thc convolution prodllct in Sii- Using J-Li/ of Corollary 3.3 to
pull back A to SPl we obtain thc eonclusions. D

The conscquenee of Corollary 3.3 which we shall usc is the following:

3.5 Proposition. Let
<I> = deg(Il, dx) cP

deg(p) .

Then the Innetion <I> is an idernpotent in Sp. M oreover,

trace(w(I)) = c1cg(IT, dx) .

Proof. By Corollary 3.3 the lllapping P'ii is an isornorphism of tbc algebra Sp to
Sii. Thus,

ILii(<I» = dcg(p)<I>ü = deg(TI, dX)cPii ,

which, by (3), iInplies that J-Lii (<I» is an idclnpotent in Sii. Thcrefore, sincc Ilii is
an isomorphisIll, <I> is an idenlpotent in Sp' Clearly,

trace(<I>(I)) = deg(p)<I>ii(I) = deg(Il, dx)cPii(I) = deg(fl, fix) 1

since cPiil bcing a diagonal rnatrix coefficient of a reprcsentation, has the valuc 1 at
I. D
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Now we recall some details of the construction

where A = Mm(Dd ) is a ccntral siInple algebra ovcr thc p-adic field F. Narncly let

K JE = F(ß) J F

bc thc tower of ficlds associated to (cjJ, ß) E t. Let A E be the ccntralizcr of E in
A. Then AE ~ Mmo(Dci.o) is a central siInple algebra over E of index N/(E : F],
with do = d/(d, [E : F]) and 111,0 = (m, N/[E : FD (see [Zi5 ), 1.). Let L' C AE be a
maxinlal subficld such that

fVIE = [K : E]/([K : E), do) .

Let Q{ = Q{UIF be the principal order in A which is nOrlnalized by (L' )*. (Sec the
Theorclll of Benz and Fröhlich [F], [Zi5].)

Assllllling that the character 1J is ullitary, we obtain frorn t a unitary representa­
tion 7ft of E*QJ.* to which are associated N/[K : F] discrete series representations
rrf in a single unranlified twist dass with the following additional properties: (1)
rrfIE-Il1- contains 7ftj (2) 7ft occurs with nnIltiplicity olle in rrfIE-Il1-j and (3) these
N /[K : FJ discrctc series represcntations are thc 0111y discrctc series represcntations
of A* which contain 7fr in their restrictions to E*Q!*.

We dcpend upon thc following isornorphis111 of Hecke algcbras:

Conjecture.
1l(AK,K*Qt~IK'1) f"V H(A*,E*Q!*,7ft) ,

where LIK is 1naximal and fully ra1nified; th71s the principal order unit gr071IJ 2!ilK
is minirnal parahoric in AK.

Special instances of such an iS01YlOrphisnl can be found in [BK](5.6.6.) and in

(SZJ. Since thc Hecke algebras H(Ai<, K*2!~IKl1) and 1l(A*, E*Ql* 17ft) are IS0-

lnorphic , the Schwartz algebras S(Ai<, K*2li IK' 1) and S(A* I E*Q{*, 1rt) are iso­
lIlorphic too.

Each discrete series representation rrr which restricted to E*2!* contains 7ft
is represented by an idclllpotent <I>f E S(A* 1E*Q{*, 7fr). Sinlilarly, each discretc
scries representation of AK which contaills a K*2!~IK-fixed vector is reprcscnted by

an idernpotent <pAK E S(AKl K*2t~IK' 1). Note that in both cases all the possible
discretc scries representations only differ by an unramified twist, hence they have
the sallle fornlal degree. In the second case this is the forrrlal degl'cc of the Steinberg
representation StAK because froln [Bo] we conclude that only unrarnified twists of
StAK can occur. .

3.6 Proposition. The fonnal degree.5 01 the discrete series repTesentations asso­

ciated to the algebras S(Ai<, K*2!iIK' 1) and S(A*IE*2t* 17ft) are related by the
fOTmula

I(K*OI* /K*·1 ) . deg(St
AK

, dgAK ) = I(E*Of*/F* d ). deg( I1r, (19A)
vo :<4LIK ,(J,9AK d' ( ) vO:.«, 9A #

1.1U 1 di7n( 7rt )
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Remark. Of course dirn(l) = 1. This qualltity is included in thc clenorninator on
thc left to ernphasize the synllnetry of the fonnula.

Proo/. Assurne first that

(5)

In this case, for each of thc algebra." S(A K1 I{*21~IK' 1) and S(A* 1 E*21*, 1rt), thc
identity eleIncnt is thc function h] which has support in the identity double coset
and the respcctive values 1 and I # at the respeetivc identity elements I of AK and

?T t

A*. Thereforc, because the algebras are isoInorphic, thc eoeffieients of h[ in thc
expressions for the idernpotcnts iP~:: and <pf are equal. Thus, with (5) holding,
Proposition 3.5 inlplies that

deg(StAK , dg AK )

diIn(l )

deg(Ilf, dgA )
-

diIn(1rt)

This appears to be a special case of the Proposition. But the genera.l ea.se follows
fro 111 (4). 0

Now we usc:

3.7 Macdonald's formula [Me]. Let A = Mm(Dd ) be a central simple algebra
over F, and 21 = 21r a princ1:pal order 01 period r in A. r i,r; a divisor 01 tn und we
denote s = 8(21) := Tn/r. Then for any Haar rneasure dg on A* / F*:

1 s

vol(F*21* / F*, dg) . deg(St! 1 dg) = N . I1 (qdi - ly)(qN - 1)
i=l

where q = IkF I is the order 0/ the residue field 01 F.

Remark. We consider the special case whcre A = D is a division algebra hence
r = 8 = m = 1, d = N, and Qt = D D is the unique principal order. MOf(~ovcr StD

is the trivial rcpresentation of D*. Then wc obtain

1
vol(F*Dh/F*, dg) . dcg(StD , dg) = ­

N

reflecting thc fact that dcg(StD , dg) = 1 iff vol(D* / F* , dg) = 1.
Now we consider our case 2l = 2lU IF and we put r' = r'(2l) 1 8' = s(2l) in this

case. Nornlalizing dg in such a way that dcg(St A
1 dg) = 1 wc conclude:

(6) vol(E*Ql* / F* "dg) = cEIF . vol(F*21* / F*: dg)
s'

= eivF
. I1 (qdi - Ir' /(qN - 1) .
i=l

Wc want to apply Macdonald's fonnula in order to COIllpute the left hand siele
of 3.6. vVe have to replace
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N by NK = N/[K : F],
A by A K = MmK(DdK),
q by q! = IkKI, whcre f = fKIF = ft·

Because LIK is fully rarnificd we have l' (Q!LIK) = n~K 1 s(Q!LIK) = 1 such that:

Using 3.6, (6), (7) wc havc reduced the conlputation of dcg(I1f, dg) to that of

dirn(1ff) 1 nalnely:

4. COMPUTING THE DIMENSION OF 1ff

Consider t = [r,b, ß] E Tii. Thc Clnbcdding of K ~ E = F(ß) ~ F in A takes ß
into a pure element oftype (eUIFl fUIF,2{uIF) because ß E L' and (L')* nornlalizes
2lu IF =: Q!. Since ß is the root of a minus polynonlial it generates a simple stratum
ß + 2l. Let ~ = JacQ! be the Jacobson radical and UI(Q!) = 1 + ~ bc thc principal
units in Q(*. We rccall:

4.1 Proposition. (i) There is a constrnction

of an irreducible l'epresentation 1f~ of U I (Q!) which rnakes use 0/ the Cha1YLcter.o; A~
for all approximations, ofß (i. e. the 1ninimal polynomial of, is an approximation
polynornial 0/ the rninirnal polynornial of ß with respect to the fixed approxirnal,ton
]Jrocedure for polynomials ). The selfintertwining 0/ 1r~ is:

(1)

(ii) dirn1f~ = q~[N2'df(T)-N(s'-!~/eEIF)] where df(T) 2: 0 E Q is the numc1'1:cal

invariant 2.2 0/ the rninimal polynomial f(T) 0/ ß over' Fand where s' = s(Q!),

fh = s(Q!L'IE)' D

(Note that Ql = Qlu IF anel Qlu IE = Q1 n AE .)

Rcrnark. Thc construction of 4.1(i) is essentially the salne as in (BK] and [Zi l ]

rcspectively and thc e1itncnsion fornlula is an itnIllcdiate consequence of the con­
struction procedure (see section 7 bclow).

We are going to explain how thc diInensiolls of 1r~ alld of 7ft are related. Let

..R = ..Ru IF be the nonnalizer of 21 and let ~ß := ..R n AE . Becausc of U I (21) C ..R
froln (1) we c1eelucc IA. (1r~) n..R = .l{ß· U 1(Q!), anel since u l (2t) is a nonllal subgroup
in ~ wc can say:
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4.2. Rß' VI (m) is the norrnalizer of 7fb in R.

Now we use 7ff = Ind(TcP 0 iiß) whcre thc induction is frorn E*Q{~/IEJJ onto

E*m*. Let us do the induction in two steps narllcly E*m~IIE.JJ t E*Qt:L'IEV1 (m)
anel E*Q{~/IEUI(Q{) t E*Qt*. Bccause TcP is a supercuspiclal represcntation of

E*2t~IIE/Ul(2tLIIE): thc first induction yields

(2)

and IndI(-rrß) is an extension of 7fffi. Froln 4.2 we see that E*QJ.: n Rß . U1 (Qt) ­
E*Qt~/IEVl (Qt) is the normalizer of 7f~ in E*'1J.*. Thcrefore

(3)

is an irreduciblc reprcscntation of E*Qt*. Froln (2), (3) wc conelnde:

(4)

because ludI (7Tß) and 7fh are equidirnensional. So we are left with thc eornputation
of the first two factors on thc right hand siele of (4).

4.3 Proposition. di7nTcP = n{i~l(qdofElFi - l)e~
where e~ = 1'(21uIEL f~ = S(QtUIE) hence e~ . f~ = 1no·

Proof. We have A E = Mmo (Ddo ), henee s(2lUIE ) = (rno1 fLIIE)' Dividing mario =
NE = [L : KJ . [K : EJ by the procluct ([K : E]' do) . ([L : K], 1no) we see that

([L:;f,mo) = ([l~~f~) which is fUIE by definition. Thercfore f UIE divides mo and

(5)

Let kb be the residue ficlel of the eentral division algebra Ddn IE. Then wc get

(6)

The talne eharaeter cf; E X(K*) has reduetion ~ E ..tY(ki<) whieh is regular aver kE .

Let l be thc C0I11positc field of kK and k~. Because of [kb : kE ] = do we conelnde:

But we have already seen that fUIE = f~. Obviously ~ONllkK E X(l*) is a eharaeter
whieh is regular over k~, henee it gives rise to a supereuspidal representation a
of GL10(kb).

To eOlnpute clilna we note that kb ~ kE ~ kF is of clegTee dofEIFl henee Ikbl =
qdolEIF anel

f~-I

dhna = II (qcL:JfE1Fi - 1)
i=1
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Using (6) thc tensor power (T0e~ inftates to a representation of 2{~'IE anel extencIs

to T4> of E*Q{~/IE' Thercfare dinlTcfJ = (diIna)e~ which pravcs 4.3. 0

The first faetal' on thc right hand side of (4) is

(7)

With the notation of section 3 we gct:

I

2{* /U1 (2{) ~ [GL 81(kn)]r ,

where kn is the residue field of thc central division algebra D d lF. Hcncc

8
1

(7)num = II(qdi - l)r' . q!ds' (:/-1)7"

i=l

is the nurnerator of (7). On the other hand frolll (6) anel [roln the fonnllla for Ik~l

we see that

f~

(7)den = II(r/lofEIFi - l)e~ . qtdofEIFf~(f~-l)e~
i=l

is the dcnoillinator of (7).
Now we take thc results together in order to COlllpute din17rf. First we detcnninc

the q-power which is in dinl1rf. Fronl (4), 4.1(ii), (7)1lI1m, (7)den we ~oncludc:

q-power = ~ [N 2
. cl f{T) - N(,,' - f~/eEIF) + cls' (09' - l)r' - rlofElF f~(J~ - l)e~] .

We use ris'r ' = drn = N auel dof~e~ = dorno = NE. Then:

(8)

l[ 2 '/ I ]q-power = 2 N . df(T) + N 10 eEIF - N - NE . fEIP(!O - 1)

l[ 2 ] l[ 2 1 ]=- N ·df(T)-N+NEIEIF =- N .df(T)-N(l---)
2 2 eEIF

Let (7)' Illllll 1 (7)'den' (dinlT4»' bc thc priIllC-to-p-part of these cxpressions. Thcll thc
prirne-to-p-part of dinl1rf is:

(9)
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5. THE FORMAL DEGREE

Let thc Haar Ineasure dTj of A*/ F* be nOflnalized In such a way that
dcg(StA , d.q) = 1. Then in section 3 we have obtaineel:

We note that N/NKeEIF = [K : F]/eEIF = fKIF = f is thc inertial dcgrce of our
pararneter t, hence f N K = N/CEIFl anel cEIF = e is the ranlification exponcnt of
t. Thercfore fron1 4.(8), (9) wc obtain:

(qfdK _ l)f1l K

(qdofEIFf~ _ l)eb '

anel we are left to show that the last factor is 1. For this we consider A K ­

M mK (DdK ) in A E = M mo (D(kJ). Because A K is the centralhcr of K in A E1 the
iuvariants of these algebras are related by

inv[A K ] = inv(resK[AED = [K : E] inv[A E ]

This yields dK = da/([l< : E],da), hence dafE1Ff6 =4.(5) dafEIF'~
UK:ELdo)

fEIP[K: E]· dK = fdK. Moreover mK = (rno,NE/[K: E]) = (mo, [L: K]) =4.(5),
Co'

6. ADDITIONAL REMARKS IN THE SUPERCUSPIDAL CASE

We continue to consider the Inap

t = [1>, ß] H [1> 1 ß, AJ] H rr~ E (A *)1\ ,

where A = Mm(Dd ), 71u1 = N. As a conveniant notation we iutroducc nK := [I{ ;
F] = degt, heuce nK . NK = N. Because under thc Hecke algebra isolllorphislll
(Conjecture of section 3) supercuspidal rcpresentations corrcspond, we see that 1rf
is contained in a supercuspidal representation Hf Ak is a division algebra. Only
in that case supercuspidal representations anel rcpresentations with Iwahori fixed
vector nHty agree. Moreover this is the case where 1l(A*, E*2{*, 1rf) is of finite
clilncllsion Nt = N K, anel the Nt different supercuspidal representations of A *
which contain 1rf are obtaincd by extending 1rf and inducing. Therefore wc get:

6.1 Proposition. The reprcscntation n~ is s7Lpercuspidal 'iff the following equi­
valent conditions are fulfilled:

(i) The centralizer A K of K ernbedded into A is a division algebra.
(ii) IC1n(nK, d) = N

(iii) nK = (nK, d) . ,,11,

(iv) 71l,K = (m,NK) = 1
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· We only prove that (i)-(iv) are equivalcnt. Bccause A K = M mK (DdK ) where
rn K = ern, N K) we see t he equivalence 0f (i) anel (iv). Moreover diviel ing rnd =
N = nK' NK by (cl,TLK) we obtain rn· ~d = ~dn . NKl hence (rn,NK ) = 1

\U,tlK J (d,nK)

Hf rn = ~(dn) which proves the cquivalence of (iii) anel (iv). Finally frorn ~(dn =
,nK (d,nK)

km (n k d) I' I f (") 1 ("') 0d ' we get t 1C cqt11Va ence 0 11 ane 111.

In the following we use the notation of 3.(1).

6.2 Proposition. Assurne that rrf is a superc7Lspidal representation. Then 7LIJ to
conjugation holds:

2lu IF = 2lL1F

2lU1E = 2l LlE = 21 1 (A E ) .

Proof. For the first equation we have to show:

By a result ofFröhlich (see [Zi5], 3.(ii)) we know

for all Iuaxirnal fidel extensions L IEIF. Anel the nurnerical invariant s(2l) eleter­
Il1ines the principal order 2l up to conjugaey. Therefore we are left to show

In 4.3 we have introduecel the notation f~ := s(2t.u1E) allel we have seen that
fUIElrno, hence f~ = fL'IE. Now froll16.1(iv) anel the last equation ofsection 5 we
see

1 = rnK = e~ := r(2lu1E ) henee f~ = rno

because e~f~ = rno· On the other hand fUIElfLIE = [K : E] such that altogether
we obtain S(21 L1E ) = S(2lU IE) = nl,o, anel s(2lLIF) = s(2iu IF) = mO(fEIF, rn/rno).D

RernaTk. If Ilf is supercuspielal then of course we expect it to be inelucecl froln a (up
to conjllgation) unique lllaximal compact ll10cllll0 center subgrollp. The observation
2lL1F = 2lU IF i. e. RLIF = JlUIF supports this.

We have based our COll1putations on Proposition 3.6 which we have obtained as a
consequcnce of the conjectural isolnorphislll of Hecke algcbras. Finally we are going
to cxplain that 3.6 sirnplifies considerably if rrf is a sllpercuspiclal representation.
Nalnely we can use 6.1(i) and thc rernark following Mac Donald's fonnula 3.7. Then
the left hand side of 3.6 is siInply 1/N K, anel we obtain:

(7)
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if Ilf is a supercuspidal representation. Moreover due to 6.2 we nced not to distin­
guish bctwecn 2lV1F and 2lL1F in thc supercuspidal case, hence 2t = 2lviF = 2lL \F'

With 8' = 8 := (rn, I) anel r' = r := rn/(71"I" I) we obtain

VOl(R/F*, dg) (R : F*2t*)
-

vol(E*Qt... / F*, dg) (E*Qt ... : F*2{*)
N

----
8' eEjF

where R is thc norrnalizer of 2L Hence multiplying (7) by N/8 . eEIF yields

(8) VOI(R/F* , eig) . deg(Ilt 1 dn) = !... . diIn(1rf)
8

Wc havc 2lL 'IE - 2t1 (A E ) (sec 6.2) and wc let K'IE be of degree ([K : E], da)
elnbedelecl into the central division algebra Ddo IE, anel wc Inay aSSUlne that D~
norulalizes 2li (AE )· Now we use the following weH known facts:
a) T4> E (E*2li (A E ))" extcnds to C*2ti (A E ), where C = Cent(K', Ddo ), anel then
irreducibly inc!tlces to a supercuspidal representation of AB'
b) 1rf = Ind(T4> ® 7Tß) E (E·2l·)" extends to C·2l* allel then irreducibly induces to
a supercuspielal representatioll of A·.
c) Ilf corresponels to an appropriate extension of 1rf.

We conlpute the index (R : C*21*), where R is the norulalizer of 2l. Nanlely:

(Jt: C·Ql*) = (Jt: F*Qt*)/(C*21* : F*2l*).

The nUlnerator is r'd anel the clcnorninator is:

(C·Ql· ; K'2l·) (K'2l* : F*2t*) = da . eEIF.
([K : E], da)

Hence:

(R: C*Ql*) = ([K: E], do)rd = [K: E]rd = [K : F]rd = L
dOeEIF rHodoeEIF NeEIF 8

bccause from (1), (2) we see mo = I~ = ~,anel nloreover rnodo = N/[E: FJ.
([K:EJ,do )

Now remarks b), c) irnply that TIf is incluced fronl a reprcsentation f2 of .R, such
that

dinlg = (R: C*Qt·) dilu1rt = (//8) dinl1rt .

Putting this into (8) as a conscquence of 3. (3) we obtain:

6.3. If f, = [4>, ßJ ha8 the ]Jroperty lcrn(deg t, d) = N, then the sU]JcT'cus]Jidal Tcpre­
sentation Ilf is induced by an irreducible representation e 0/ .f{LIF (where LIK is
as in 3.(1)) and

VOl(RLIF/F*, dlj) . deg(TIt l eig) = dimg.

We rClnark that the last equation cau be proved independently froHI the Hecke
algebra isolllorphislll 3.(1).
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7. PROOF OF 4.1(U)

Fix C, f such that cf = N anel a principal order 21 in A. Let R be thc normaliz:cr
of 21 in A* and let A(e,f,21) be the set of (e,f,21)-pure elenlents in A, i. e. :.T: E
A(c, /, 2t) Hf there exists a ficlel extension LIF in A such that x E L, cLIF = C,

f LIF = f 1 L * nonnalizes 2L
Olle has A(c, f, 2t) 'f:. 0 iff T(2t) = r(e, f) := rn/(rn, f) = e/(e, rl), whcre the last

equatian is derived frarn md = N = ef. Moreaver in this case oue has a natural
bijection (see [Zis], 6.)

(1) R\A(e, f, 2t) +-+ F[T]e,f

between -.R-conjugacy classes of (e, f, 2t)-pure clernents and irreclucible rnonic poly­
nonlials over F of ranlification exponent dividing e and inertial degrec clividing f.
Under (1) thc nüniInal polynonüal of :c over F is assigncd to an (e, f, 2!)-pure ele­
rnent x, anel we have thc

Isometry conjecture*. r~ 'l)~C:f,1/) = WF (f(T), g(T)) if the -.R-cony"ugacy classes
;f, '1L correspond to the polynomials f(T), g(T) respectively.

Here we have used the notation T = T(Ql), ~ = Jac(2!) the Jacobson radical
of 21: V~(;f, 1/) = rnax{ v~(x' - y') ; x' E ;f, y' E '!L} and WF is the distinguished
exponcntial distance on the set of irrcducible rnonic polynonlials over F. Froln thc
isornetry conjccture onc deduccs the existence of funclulnental dOlnains D- c D c
A(e, f, 21) such that

(2)

(3)

D +-+ -.R\A(e, /,21) +-+ F[T]e,f

D- H -.R\A(e , f, 2t)/21 H F[T]~f '

i. e. cach irrcducible lnonic polynornial from F[T]e,f ha..'l precisely one root in D
and each ~-conjugacy class of (c, /, Q{)-pure sirnple strata has precisely one rcp­
resentative in D-. This representativc is thc root of the corresponcling "rninus
polynonlial" in D. Ta ß E D- a R-conjugacy class {7r~} of irrcducible rcprescnta­
tions of U 1 (21) = 1+ lf3 can be assigned which is not cOlllpletely unique but depencls
on choices. Neverthelcss the dirnensioll clim(7r~) is weil clefined, anel we are going
to provc:

7.1 Proposition. di7n7r~ = qt [N
2
.df(T) -N(s-so/eF(ß)jF)] where d f(T) 2:: 0 E Ql is

the nU'fnerical invariant 2.2 of the mini1nal polynomial f(T) of ß over Fand where
S = s(21): So = s(21nAß).

Proof. The argulnent is bascd on the cqllations (4), (5) anel LCIluna 7.2 below,
which wc take from [Zis]. To bcgin with we note:

(4) diln7r~ = V1f3 : 1f3* ' where 1f3* ;= {x E lf3 : 'l/JA ((xy - Y:I:)ß) == 1Vy E ~} ,

wherc VJ : F+ ---+ C* is our fixed additive character of conductor PF and VJA =
VJ 0 TrdAIF.

*This has been proved rccently by P. Broussous.
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Because cach polynolnial j(T) E F[T]eJ has prccisely one root ß E D anel
r1dIJ'i}(ß-,) = wF(j(T),g(T)) if, E Dis the root ofg(T), the fixeel approxirnation
proeedurc (f (T), j) H fj (T) on F[T]irr incluces an approxirnation proeedure on
D whcre the approxiInation ßj of ß is thc root of fj (T) in D. By definition
lJ'i} (ß - ßj) = rd·1VF (f (T), jj (T)) 2:: rrij anel for f (T) E F[T]e,/ all approximations
fj (T) are eovered for j E ~Z henec Tdj E Z beeause T = e/(e, d) (sec above), such
that elrd. For ß E n- wc have ßo = ß. Thcrefore it is enollgh to eonsicler the
approxiInations ß-v E n- for v > 0, v E r~Z. To eonlpute (4) we rnakc llSC of thc
fonnula

(5) '+lt = L ('+lvrd nA_v) 1

11>0, vE-hZ

where A-v is thc ccntralizer of ß-l! in A.
Using thc sequcnce ~ = ~ + ~t =:> ~2 +~t =:> ~3 + ~t =:> ... we clcduce:

(din17rb)2 = (~ : ~t) = II(~i + ~* :~i+l + '+lfr)
i;::: 1

('+li : ~i+l)
= II (lJi n ~1- . lJi+l n $1-) .

i;:::l ß . ß

Moreovcr [roru (5) we obtain

(6)

Now wc 111ake usc of the following

7.2 Lemma.

(i) 1f LIF is a maxirnal field extension in A there is a uniquely rieteITnined
pr'incipal order ~LIF in A which is norrnalizerl by L * .

(ii) 1/ Q{ = 2{LIF and K is an intermediate field L =:> K =:> F then 2t n A K =
2{LIK.

(iii) Let~, ~LIK denote the Jacobson nulical of2{ and Q{LIK respectively. Then
~v n AK i" always apower of ~LIK, namely:

m v - me·(v-r)+i n A
1-'LIK - 1-' K

v'iJ L IK ( x) = e . lJ'iJ (x)

for i = 1, ... , e

forx E A K
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(i) is duc to A. Fröhlich (1987) anel (ii), (iii) arc proved in (Zis], 2. Note thc
special ca..c;cs e = 1 if A = MN(F) becausc .s(Q:lLIP) = ILIP, allel e = IKIF if A = DN
because 8(2tL IF) = 1. (Every principal order Q( in A = Mm(Dd) has thc invariants
l' = r(2t), s = s(2t) such that 1'8 = m.)

We conle back to our COlllputation of (~: qJfr) for ß E D- c A(e,/,2t). Let
I -v, e_v bc the inertial degree and thc nunification exponent of F(ß-v) IF. Frorll
7.2(iii) we conclude e(QlIQl nA_v) = (I-v, 1/s) where s = s(Q!) = (n~, I). Morcovcr
2t/qJ rv [Ms(kD)]r ilnplies

(7) whcre q = IkFI.

Wc want to apply (7) to COlnputc (21 n A-v : qJ nA -v), The algebra A-v is eentral
over F(ß-v)' Hence we havc to replaee q by qf-" = IkF (ß_l l ) I. Further N has to
bc replaced by N-v = N/{F(ß-u): F] aud 8 by S-v:= s('.2tnA_u ) = (111,I/I-u)'
Thcrefore

(8)

Bccause (qJi : ~i+l) = (2l : qJ) for all i E Z anel

(
i . i+l ) {(2t n A_ 1! : ~ nA_v) if e(211Q! nA_v) dividcs i

'l3 n A-v . 'l3 n A-v =
1 othcrwise

wc concludc:

('l3vrd : ~vrd+l) = { qNs(l-s-v/e-vB)

(~urd n A-v : ~urd+l nA_v) qNs

(dinl1rh)2 = qlJ-, wherc

if e(2lI21 n A- v ) Iv1'd

otherwisc

(9) Jl = 2:= N 8(1 - ovs-v/e-v s )
v>OlvE~Z

Ov = {I if (I-v, I/s)lvrd
o otherwisc.

7.3 Lemma. Assu1ne f(T) E F[T]eJ C F[T]irr where cf = N = 1nd and let
v = j /rd (where l' = 1'(e, f) = e/ (e , d)) be a jUTnp for the a]Jproximation 01 f (T).
Then flsj hence (f /:;)Ij·

(Note thai s = 171,/1' = (m, f) is a divisor 0/ j).

Proof. We kllOW that thc jUlllPS of the approxirnation of f(T) are in ~Z: hellee
in 7~Z. Thcrefore if '/J = j /1'd is a jUlnp thcn j = jo . r~l, where jo E Z. Hence

8) = jo ~ = jol is divisible by 1 becausc srd = N. 0

Instead of /i (sec(9)) we begin to COlllpute

(10) I
Jl 2:= N s(l - ovs-v / e_vs)

v~OlvE~Z
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whcre we have aclcled a tenn for v = O. Then
00

wherc

(11)

tL' = l: Si
i=O
(i(f J8 }+(fJs)-l]/rd

Si = l: N s(1 - ovs-v/e-vs ) .
v=i(f / s}/rd

We have ß = ßo becauso ß E n-, i. e. the lninimal polynoInial f(T) of ß over F is
a nünus polynonlial, f(t) = fO(T). Therefore 7.3 hnplies that approxhnating f(T),
all j lunps have thc fOrIn -v = - j / rd whcre j > 0 is a rHnltiple of f /8. Consider thc
index set I i for the SUIn Si. We conelnde that for v E I i always C-v = e_i(fJS}J7'd,
8-v = 8-i(f !s}!"d because C- v =I- C- v+e , f -v =I 1-v+e only if v = i(l/8) /rd. I i

consists of f / 8 nUIllbers ancl wo have Ov = 1 for (I / s) / (1-v, I / s) of these nuInbers
nalnely if (I-v, f /s)lvrd whereas for the other (f /8) - (f /s)/(1-v, 1/8) nUInbers
we have Ov = O. Hence:

fis [1/8
]

Si = Ns· (I-v, 1/8) . [1 - s-v/e-v8J + Ns (//8) - (I-v, 1/8)

where v = i(1 / 8)/1'd = i/e. We obtain:

Si=NS[(1/8)- (1/8)'8- v ] =N[/- (//8)'S-v ]
(/-v, I/s)e-vs (I-v, 1/s)c-v

Now we remark 8-v = (m, I/I-v) = ((111., f), 1/f -11) = (s, I/I-v), hence 1-vs-v =
(1-v 8 , f) = (f-11, / / s) . 8. Therefore:

(/ /8) . 8-v f· 8-
1
8_v l_ v = 1/[F(ß-v) : F]

(/-v,f/8)e- v (1-v,f/s)[F(ß-v) :F] .

which finally hnplies:

Si = N 1(1 - 1/[F(ß-v) : F]) for v = i/e,
00

IL' = l: Si = N f . l: (1 - 1/[F(ß-v) : F])
i=O v;:::O,vE~Z

Because of ef = N wo obtain

JL' = N 2
. ~ . l: (1 - l/[F(ß-v) : F])

e
v;:::O,vE~Z

= N 2
. df(T)

whcre I(T) is the nüninlal polynonlial of ß over F anel df(T} is as in 2.2. Narnely
[F(ß-v) : F] = clog I-V (T) = cleg_v (f (T)) because clog I-v (T) = gccl{deg g(T) ;
WF (/(T), g(T)) 2:: -v}. (This is a propcrty of an approximation procedurc for
irredllcible polynon'lials.) To GOlnpute fL wc recall:

IL = Il ' - N s(l - so/eos) = N 2
df(T} - N(s - so/co) where Co = CF(ß}IF, So =

(n~, / /10) = (111., f /IF(ß}IF) becallse ß = ßo· 0
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