Complex Chern-Simons theory

Arbeitstagung, 27 May 2013

Interview with Sir Michael Atiyah on math, physics and fun

What makes a mathematics problem fun for you?

The main thing that interests me in mathematics always is the interconnection between different parts of mathematics, the fact
that one problem may have half a dozen different ways of being
looked at in different subjects, a bit of algebra, a bit of geometry, a bit of topology. It's this interaction and bridges that interest me.

In this talk, I will explain a connection (motivated from physics) between three seemingly unrelated subjects:

- Quantum and homological invariants of knots and links
- Classical geometry of Higgs bundle moduli spaces
- "Quantum symplectic geometry", Fukaya category, enumerative invariants, ...

Chern-Simons gauge theory

$$
S=\int_{M} \operatorname{Tr}\left(A_{\wedge} d A+\frac{2}{3} A_{\wedge} A_{\wedge} A\right)
$$

> non-abelian interacting gauge theory (TQFT)
> has a long history ...
> has many applications ...

$>$ to condensed matter physics
$>$ to string theory
$>$ to low dimensional topology
> to quantum information

Cutting and Gluing

$$
\begin{array}{clc}
\text { closed 3-manifold } M & \rightsquigarrow & \text { number } Z(M) \\
\text { closed 2-manifold } \Sigma & \rightsquigarrow & \text { vector space } Z(\Sigma) \\
\text { closed 1-manifold } S^{1} & \rightsquigarrow & \text { category } Z\left(S^{1}\right) \\
\text { point } p & \rightsquigarrow & \text { 2-category } Z(p) .
\end{array}
$$

see Kenji Ueno's talk

Cutting and Gluing

In three-dimensional TQFT:

Cutting and Gluing

In three-dimensional TQFT:

Chern-Simons gauge theory

$$
S=\int_{M} \operatorname{Tr}\left(A_{\wedge} d A+\frac{2}{3} A_{\wedge} A_{\wedge} A\right)
$$

$M=3$-manifold (possibly with boundary)

$$
Z(M)=\int e^{-\frac{S}{\hbar}} \nsubseteq A
$$

"quantum invariant" of M
$>$ depends on the choice of the gauge group
[E.Witten]
> depends on the "coupling constant" \hbar

$$
q=e^{\hbar}
$$

Gauge Group

$G=$ (simple) compact Lie group

SU(2)

$\Rightarrow H_{\Sigma}$ finite-dimensional
> unitary representations discrete
$G_{c}=$ complexification of G
$S L(2, C)$
$>\mathrm{Ht}_{\Sigma}$ infinite-dimensional
> unitary representations continuous

Gauge Group

$G=$ (simple) compact Lie group
$>\mathrm{Ht}_{\Sigma}$ finite-dimensional

$>$ unitary representations discrete \Rightarrow state sum model for $Z(M)$
$G_{c}=$ complexification of G
$>\mathrm{Ht}_{\Sigma}$ infinite-dimensional

> unitary representations continuous state integral model for $Z(M)$

The role of q

compact $G: \quad q=$ root of 1

complex $G_{\mathbb{C}}: \quad q \in \mathbb{C}$
modularity?

$$
\text { (cf. } \left.\quad q=\exp (2 \pi i \tau) \quad \tau \rightarrow-\frac{1}{\tau}\right)
$$

- Surprising hidden symmetry:

$$
G \rightarrow{ }^{L} G \quad \hbar \rightarrow{ }^{L} \hbar=-\frac{4 \pi^{2}}{\hbar}
$$

The role of q

- Surprising hidden symmetry:

$$
G \rightarrow{ }^{L} G \quad \hbar \rightarrow{ }^{L} \hbar=-\frac{4 \pi^{2}}{\hbar}
$$

Computing $\mathrm{G}_{\mathbb{C}}$ partition functions

- Dehn surgeries • triangulations

quantum dilogarithm

$$
Z^{C S}(M ; \hbar)=\int_{C_{\rho}} \prod_{j=1}^{N} \Phi_{\hbar}\left(\Delta_{j}\right)^{ \pm 1} \prod_{i=1}^{N-b_{0}(\Sigma)} \frac{d p_{i}}{\sqrt{4 \pi \hbar}}
$$

choice of contour
For details see eeg. arXiv:0903.2472 with T.Dimofte, J.Lenells, D.Zagier

$$
\exp \left(\frac{1}{\hbar} S_{0}+S_{1}+\hbar S_{2}+\ldots\right)
$$

$$
\begin{aligned}
& \text { Ray -singer } \\
& \text { torsion of }
\end{aligned}
$$

"Looking back"

knot K
[R. Kashaev, 1996]

$$
\begin{aligned}
& \text { invariant }\langle K\rangle_{n} \in \mathbb{C} \\
& \text { labeled by a positive } \\
& \text { integer } n
\end{aligned}
$$

- defined via R-matrix
- very hard to compute

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \log \langle K\rangle_{n}=\operatorname{Vol}\left(S^{3} \backslash K\right)
$$

("volume conjecture")

A first step to understanding the Volume Conjecture

$\langle K\rangle_{n}=J_{n}(q)$ colored Jones polynomial with $q=\exp (2 \pi i / n)$

Hitoshi Murakami

Jun Murakami
(1999)

Colored Jones polynomial

$$
J_{2}(q)=J(q)=\text { Jones polynomial }
$$

- In Chern-Simons TQFT
[E.Witten, 1989]

Wilson loop operator

$\langle 8\rangle=$ polynomial in q

Colored Jones polynomial

$$
J_{2}(q)=J(q)=\text { Jones polynomial }
$$

- Skein relations:

$$
\begin{aligned}
& q^{2} J(天)-q^{-2} J\left(\lambda^{1}\right)=\left(q^{-1}-q\right) \cdot J(J r) \\
& J(\text { unknot })=q^{-1}+q
\end{aligned}
$$

Example:

$$
J(B)=q+q^{3}+q^{5}-q^{9}
$$

Colored Jones polynomial

knot K

n-colored Jones polynomial:

$$
J_{n}(K ; q) \in \mathbb{Z}\left[q, q^{-1}\right]
$$

$R=n$-dimn'l representation of $S U(2)$

- "Cabling formula":

$$
\begin{aligned}
J_{\oplus_{i} R_{i}}(K ; q) & =\sum_{i} J_{R_{i}}(K ; q) \\
J_{R}\left(K^{n} ; q\right) & =J_{R^{\otimes n}}(K ; q)
\end{aligned}
$$

Colored Jones polynomial

knot K

$$
J_{n}(K ; q) \in \mathbb{Z}\left[q, q^{-1}\right]
$$

$R=n$-dimn'l representation of $S U(2)$

$$
\begin{aligned}
J_{1}(K ; q) & =1 \\
J_{2}(K ; q) & =J(K ; q), \\
\mathbf{2}^{\otimes 2}=\mathbf{1} \oplus \mathbf{3} \Rightarrow J_{3}(K ; q) & =J\left(K^{2} ; q\right)-1 \\
\mathbf{2}^{\otimes 3}=\mathbf{2} \oplus \mathbf{2} \oplus \mathbf{4} \Rightarrow J_{4}(K ; q) & =J\left(K^{3} ; q\right)-2 J(K ; q)
\end{aligned}
$$

Volume Conjecture

Murakami \& Murakami:

$$
\begin{gathered}
\langle\mathbf{K}\rangle_{n}=J_{n}\left(K ; q=e^{2 \pi i / n}\right) \\
\lim _{n \rightarrow \infty} \frac{2 \pi \log \left|J_{n}\left(K ; q=e^{2 \pi i / n}\right)\right|}{n}=\operatorname{Vol}(M)
\end{gathered}
$$

quantum group invariants \longleftrightarrow classical hyperbolic (combinatorics, representation theory) geometry

Interpretation in ChernSimons theory

- analytic continuation of $\operatorname{SU}(2)$ is $\mathrm{SL}(2, \mathbb{C})$

$$
\lim _{n \rightarrow \infty} \frac{2 \pi \log \left|J_{n}\left(K ; q=e^{2 \pi i / n}\right)\right|}{n}=\operatorname{Vol}(M)
$$

- constant negative \longrightarrow flat SL($2, \mathbb{C}$) connection curvature metric on M on $M=S^{3} \backslash K$

$$
R_{i j}=-2 g_{i j}
$$

$$
d \mathcal{A}+\mathcal{A} \wedge \mathcal{A}=0
$$

Large Color Limit

Moral:
\lim
$n \rightarrow \infty$
$\binom{S U(2)$ Chern- }{ Simons }$\simeq \begin{array}{r}S L(2, C) \text { Chern- } \\ \text { Simons }\end{array}$
Classical limit $q=\exp (2 \pi i / n) \rightarrow 1$

- leads to many generalizations...

$$
q=e^{\hbar} \rightarrow 1, \quad n \rightarrow \infty, \quad q^{n}=(x)(\text { fixed })
$$

Knots and Algebraic Curves

Generalized Volume Conjecture:

$$
J_{n}\left(K ; q=e^{\hbar}\right) \stackrel{\substack{n \rightarrow \infty \\ \hbar \rightarrow 0}}{\sim} \exp \left(\frac{1}{\hbar} \int \log y \frac{d x}{x}+\ldots\right)
$$

where

$$
x=q^{n}=\text { fixed }
$$

Classical A-polynomial

[D.Cooper, M.Culler, H.Gillet, D.Long, P.B.Shalen]

$M=3$-manifold with a toral boundary, planar algebraic curve: e.g. a knot complement

A-polynomial of a knot K $\left\{(x, y) \in \mathbb{C}^{*} \times \mathbb{C}^{*} \mid \underline{A(x, y)=0}\right\}$
representation variety:

$$
\rho: \pi_{1}(M) \rightarrow S L(2, \mathbb{C})
$$

Consider, for a example, a knot complement:

Properties of the A-polynomial

$H_{1}(M) \cong \mathbb{Z}$ for any knot complement

representations
non-Abelian
representations

- If K is a hyperbolic knot, then $A(x, y) \neq y$ - 1 .
- If K is a knot in a homology sphere, then the A-polynomial involves only even powers of x.

Properties of the A-polynomial

- A-polynomial can distinguish mirror knots:

$$
A(X, y)=0 \stackrel{\text { parity }}{\leftarrow} A\left(X_{,}^{-1},\right)=0
$$

- If K is a hyperbolic knot, then $A(x, y) \neq y$ - 1 .
- If K is a knot in a homology sphere, then the A-polynomial involves only even powers of x.

Properties of the A-polynomial

- A-polynomial can distinguish mirror knots:

$$
A(x, y)=0 \quad \stackrel{\text { parity }}{\longleftrightarrow} A\left(x^{-1}, y\right)=0
$$

- The A-polynomial is reciprocal:

$$
A(x, y) \sim A\left(x^{-1}, y^{-1}\right)
$$

- The A-polynomial has integer coefficients

Properties of the A-polynomial

- The A-polynomial is tempered, i.e. the faces of the Newton polygon of $A(x, y)$ define cyclotomic polynomials in one variable:

- The slopes of the sides of the Newton polygon of $A(x, y)$ are boundary slopes of incompressible surfaces in M.

Branes in Hitchin moduli space

$M=$ 3-manifold with boundary C (= genus-9 Riemann surface)

Example: $g=1$

knot complement

Example: $\mathrm{g}=2$

Branes in Hitchin moduli space

$M=3$-manifold with boundary C (= genus-g Riemann surface)

Lagrangian submanifold

$\mathcal{M}_{\text {flat }}\left(G_{\mathbb{C}}, M\right) \subset \mathcal{M}_{\text {flat }}\left(G_{\mathbb{C}}, C\right) \cong \mathcal{M}_{H}(G, C)$
with respect to $\Omega_{J}=\omega_{K}+i \omega_{I}=\frac{1}{4 \pi^{2} \hbar} \int_{C} \operatorname{Tr} \delta \mathcal{A} \wedge \delta \mathcal{A}$

Branes in Hitchin moduli space

$M=3$-manifold with boundary C (= genus-g Riemann surface)

Lagrangian submanifold

$\mathcal{M}_{\text {flat }}\left(G_{\mathbb{C}}, M\right) \subset \mathcal{M}_{\text {flat }}\left(G_{\mathbb{C}}, C\right) \cong \mathcal{M}_{H}(G, C)$
with respect to $\Omega_{J}=\omega_{K}+i \omega_{I} \Longrightarrow(A, B, A)$ brane!

Lessons

- A-polynomial as a limit shape (in large color limit)
- the A-polynomial curve should be viewed as a holomorphic Lagrangian submanifold (as opposed to a complex equation) in moduli space of Higgs bundles
- its quantization with symplectic form $\frac{d y}{y} \wedge \frac{d x}{x}$
leads to an interesting wave function
- has all the attributes to be an analog of the Seiberg-Witten curve for knots and 3-manifolds
- Generalizations!
see Zoltan Szabo's talk

From old to new ...

"Looking Forward"

- Two commutative deformations:

"Looking Forward"

- Two commutative deformations:

$$
A(x, y) \longrightarrow A^{\text {super }}(x, y ; a, t)
$$

Example: $\quad A(x, y)=(y-1)\left(y+x^{3}\right)$

$$
\begin{aligned}
& \text { (a,t)-deformation } \\
& y^{2}-\frac{a\left(1-t^{2} x+2 t^{2}(1+a t) x^{2}+a t^{5} x^{3}+a^{2} t^{6} x^{4}\right)}{1+a t^{3} x} y+\frac{a^{2} t^{4}(x-1) x^{3}}{1+a t^{3} x}
\end{aligned}
$$

"Looking Forward"

- Two commutative deformations:

$$
A(x, y) \longrightarrow A^{\text {super }}(x, y ; a, t)
$$

- One non-commutative deformation:

$$
\begin{array}{cl}
x, y & \longrightarrow \\
\Omega_{J}=\frac{d y}{y} \wedge \frac{d x}{x} & \widehat{x}, \widehat{y} \\
A^{\text {super }}(x, y ; a, t) \longrightarrow \widehat{y}=(\tilde{q}) \widehat{c} \hat{y} \\
& \hat{A}^{\text {super }}(\hat{x}, \hat{y} ; \mathrm{a}, q, t)
\end{array}
$$

Deformation and Quantization

using $\quad x=q^{n} \quad$ and $\quad \widehat{y} P_{n}=P_{n+1}$
we obtain the following recursion relation:

$$
\hat{A}^{\text {super }} P_{n}(a, q, t)=0
$$

- One non-commutative deformation:

$$
\begin{array}{ccc}
x, y & \longrightarrow \widehat{x}, \widehat{y} \\
\Omega_{J}=\frac{d y}{y} \wedge \frac{d x}{x} & & \widehat{y x}=(q) \widehat{x} \widehat{y} \\
A^{\text {super }}(x, y ; a, t)=0 & \longrightarrow & \hat{A}^{\text {super }}(\hat{x}, \hat{y} ; a, q, t) P=0
\end{array}
$$

Deformation and Quantization

using $\quad x=q^{n} \quad$ and $\quad \widehat{y} P_{n}=P_{n+1}$
we obtain the following recursion relation:

$$
\hat{A}^{\text {super }} P_{n}(a, q, t)=0
$$

Example: $\widehat{A}^{\text {super }}(\widehat{x}, \widehat{y} ; a, q, t)=\alpha+\beta \widehat{y}+\gamma \widehat{y}^{2}$
$\Rightarrow \alpha P_{n}+\beta P_{n+1}+\gamma P_{n+2}=0$ $\uparrow \uparrow \uparrow$ rational functions of $a, q, x=q^{n}$, and t

Deformation and Quantization

Let's try to solve this recursion relation with

$$
P_{n}(a, q, t)=0 \text { for } n<1 \quad \text { and } \quad P_{1}(a, q, t)=1
$$

Example: $\widehat{A}^{\text {super }}(\widehat{x}, \widehat{y} ; a, q, t)=\alpha+\beta \widehat{y}+\gamma \widehat{y}^{2}$
\Rightarrow
$\alpha P_{n}+\beta P_{n+1}+\gamma P_{n+2}=0$ $\uparrow \quad \uparrow \quad \uparrow$
rational functions of $a, q, x=q^{n}$, and t

What is $P(a, q, t)$?

Let's try to solve this recursion relation with $P_{n}(a, q, t)=0$ for $n<1$ and $P_{1}(a, q, t)=1$

n	$P_{n}(a, q, t)$
1	1
2	$a q^{-1}+a q t^{2}+a^{2} t^{3}$
3	$a^{2} q^{-2}+a^{2} q(1+q) t^{2}+a^{3}(1+q) t^{3}+a^{2} q^{4} t^{4}+a^{3} q^{3}(1+q) t^{5}+a^{4} q^{3} t^{6}$
4	$a^{3} q^{-3}+a^{3} q\left(1+q+q^{2}\right) t^{2}+a^{4}\left(1+q+q^{2}\right) t^{3}+a^{3} q^{5}\left(1+q+q^{2}\right) t^{4}+$
	$+a^{4} q^{4}(1+q)\left(1+q+q^{2}\right) t^{5}+a^{3} q^{4}\left(a^{2}+a^{2} q+a^{2} q^{2}+q^{5}\right) t^{6}+$
	$+a^{4} q^{8}\left(1+q+q^{2}\right) t^{7}+a^{5} q^{8}\left(1+q+q^{2}\right) t^{8}+a^{6} q^{9} t^{9}$

What is $P(a, q, t)$?

Note, all $P_{n}(a, q, t)$ involve only positive integer coefficients

n	$P_{n}(a, q, t)$
1	1
2	$a q^{-1}+a q t^{2}+a^{2} t^{3}$
3	$a^{2} q^{-2}+a^{2} q(1+q) t^{2}+a^{3}(1+q) t^{3}+a^{2} q^{4} t^{4}+a^{3} q^{3}(1+q) t^{5}+a^{4} q^{3} t^{6}$
4	$a^{3} q^{-3}+a^{3} q\left(1+q+q^{2}\right) t^{2}+a^{4}\left(1+q+q^{2}\right) t^{3}+a^{3} q^{5}\left(1+q+q^{2}\right) t^{4}+$ $+a^{4} q^{4}(1+q)\left(1+q+q^{2}\right) t^{5}+a^{3} q^{4}\left(a^{2}+a^{2} q+a^{2} q^{2}+q^{5}\right) t^{6}+$ $a^{4} q^{8}\left(1+q+q^{2}\right) t^{7}+a^{5} q^{8}\left(1+q+q^{2}\right) t^{8}+a^{6} q^{9} t^{9}$

Colored HOMFLY homology

n	$P_{n}(a, q, t)$
1	1
2	$a q^{-1}+a q t^{2}+a^{2} t^{3}$
3	$a^{2} q^{-2}+a^{2} q(1+q) t^{2}+a^{3}(1+q) t^{3}+a^{2} q^{4} t^{4}+a^{3} q^{3}(1+q) t^{5}+a^{4} q^{3} t^{6}$

Colored Recursions

- colored Jones polynomial $J_{n}(q)$
- mathematically well defined for all n
- colored sI(2) homology
- mathematical definitions (!) for all n
- colored HOMFLY-PT polynomial $P_{n}(a, q)$
- mathematical definition for all n
- colored HOMFLY homology

$$
P_{n}(a, q, t)=P(\mathcal{H}_{\underbrace{m}_{n}})
$$

- defined for $n=1$ / conjectured for all n

