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ON THE 2-TYPE OF AN ITERATED LOOP SPACE

HANS-JOACHIM BAUES AND DANIEL CONDUCHE

Let (.on X)o be the path component of the n-fold iterated loop space of aspace
){ and let Ln be the functor which carries X to the 2-type of (.on X)o. 1t is well
known that the space Ln(x) for n ;::: 2 splits as a product of Eilenberg-MacLane
spaces

(*)

see for example Arlettaz [1]. Vve give an algebraic proof of this fact in (5.8). Is it
possible to choose the hOlllOtOpy equivalence (*) natural in X? As a main result we
prove that this is not possible. We identify algebraically the associated obstruction,
which is non-trivial on the subcategory cousisting of all spaces X which are oue
point unions of (n + 1)-dimensional spheres. The method of proof relies on the
description of algebraic functors ,.\n which are equivalent to the functors Ln above.
For this we use the crossed module A(Y) of aspace Y which is an algebraic lllodel
of the 2- type of Y. This yields the functor ,.\ n by the crossed module

of (.on X)o. V'le show that the functor ,.\n is cletermined by the boundary dn+l of
the Nloore chain cOlllplex of a simplicial group G associated to X. Moreover for
n 2: 1 the functor /\ n is equivaleut to a functor o"Xn

where Xn
(X) is a 'reduced

quadratic module' which is stahle for n 2: 2. These results are used in [5] for the
construction of algebraic models of certain hOlllotopies and hOlllOtopy types.

§1 THE OBSTRUCTION

Let C be a sluall category and let D : cop x C -t Ab be a bifunctor to the
catcgory of abelian groups. A derivation ;s:: C -t D iSfunction which c::uTies
each lllorphism f : A --+ B in C to an element C1(f) E D(A, B) such that for a
composition gf of lllorphisms in C one has

t:l(gf) = g*t:l(f) + f* t:l(g).

This is an inner derivation if there exists a function \J which carries each object A
in C to an element \7(A) E D(A, A) such that

!:l(f) = f* \7 (A) - f* \7 (B).

Typeset by AMS-TEX
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Let Der( C, D) and I der( C, D) be the sets of derivations ancl inner derivations
respectively:-By adding pointwise these sets are abelian groups and the quotient
group

H1(C,D) = Der(C,D)jlder(C,D)

is the first coholnology of C with coefficients in D; compare IV. 7.6 in [2]. The
obstruction for the naturalsplittability of the functor Ln in the introduction is
eanonieally an elernent in such a cohorllology group.

Let spaces be the category of connected CW-spaces with basepoint aJlel basepoint

preserving rnaps. Moreover let C be a subcategory of the horTIotopy category
spaces j ~. We obtain a bifunctor

(1.2)

which carrics (X, Y) to the sccond cohorTIology H2(7rn+lX, 1Tn+2Y) of the group
1Tn+ l..r\ wi th coefficients in 7rn +2 y~ . Reeall that the functor L Tl : C -t spaces j ~
earries aspace X in C to the 2-type of (nnx)o.

(1.3) Lenulla. Let n 2:: 2. Then tbe funetor Ln : C -t spaces j ~ adlnits für

X E C a natural splitting

if and ünly if an übstruction element

vanisbes.

Proof. There is a fibration sequence

which is natural in ); obtained by the Postnikov tower for LnX. Let

be a map with qsx ~ 1. Such a map exists for n > 2, [1]. Then we get for
f : X -+ Y E C the diagrarn in spaccs j ~

Lny ( 3}'
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which needs not to COlllmute. The difference element

obained by loop addition in Ln}'~ satisfies q6.'(f) = O. Thus there is a unique
elelllent

with i6.(f) = 6.'(f). One readily checks that 6. is a derivation. Choosing different
splittings sx alters 6. only by an inner derivation. Hence we obtain a weH defined
cohomology class O(L n le) = {6.} with the property in (1.3). q.e.d.

For an abelian group A let A2 (A) = A (9 AI ,...., be the exterior square obtained by

a (9 a ,...., 0 and let 02
( A) = A (9 A / :::::: be abtained by a (9 b+ b (9 a :::::: O. If Ais free

abelian we have the short exact sequence

(1.4)

which is natural in A. Here q is the quotient map and i carries a (9 1 to {a (9 a}.
Let ab be the category of finitely generated free abelian groups and for functors
F, G : ab -+ Ab let Ext~b(F,G) be the group of extensions in the category offunctors

ab -+ Ab with natural transfonnations as n1orphisms. Then (1.4) represents the
element

(1.5)

Here the right hand side is a cyclic group of order 2 a.s follows from

(1.6) Lenulla. Tbe element {e/} is tbe generator in Ext~b(A2
, 0Z/2) = Z/2

Praot. "\Te write F = 0Z/2. Then (1.4) yields the long exact sequence

Horn (@2,F) -+ Horn(F,F) -+ Ext 1 (A Z ,F) -+ E:ct 1 (0Z
,F)

Let SpZ(A) be the sYlnmetric square of A. Then we have for A E ab the natural
short exact sequence

o-+ SP2(A) -+ (92A -+ e/ A -+ 0

which yields by (2.15) in [17] the isolllorphislll
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We now use the theory of quadratic modules in (4] t~ show that Hom (02
, F) = 0

and Hom(Sp2, F) = O. In fact, the quadratic modules associated to &/, F, Sp2
are

=

(
(

(

Z/2 ~ Z
Z/2 -+ 0

Z ---.:..r Z

1
---+
-+

1
-+

Z/2
Z/2

Z

COlnpare [4]. Since Hom(F, F) = Z/2 we obtain the proposition. Thc element

{02
} is non trivial since there exists no retraction of F -t 02

by Horn (02
, F) = O.

q.e.d.

By 3.11 in [17] we obtaill the natural isomorphism

(1. 7)

Now let C = sn+l be the fuU homotopy category of one point unions of'(n + 1)­
dilnensional spheres. Then hOlnology yields on isolnorphism of categories (n 2 1)

sn+l = ab

which we use as an identification. Moreover the homotopy groups

carry A E ab to 11"n+IA = A and 11"n+2A = A0Z/2. It is classical that for A, B E ab
we have the binatural isomorphism

(1.8)

Hence the obstruction in (1.3) for C = sn+l is an element

where the right hand side is a cyclic group of order 2 by (1.7) and (1.6).

(1.9)Theorenl. The obstrllction element O(L n ISn +1
) is nontriviaJ. In fact, we

have tlle eqllation

where X is tlle isomorphislTI in (1.7) and where $92 is tllC extension element in (1.5).

We shall prove this result in §7 below.
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·§2 THE CROSSED MODULE OF ASPACE

Let Gr be the category of groups and let ab be the fuH subcategory of abelian
groups. Let N anel M be groups. An N -group (01' an action of N on lvI) is a
homomorphism 17, frolu N to the group of autoluorphisms of lvI. For x E M, a E N
we denote the action by x n = 17,(0'-1 )(x). The action is trivial if x n = x for aH x, 0:'.

A crossed luodule a : M -+ N is a homomorphism in Gr' together with an action
of AT on M such that for x, y E lvI, 0' E N we have -

(2.1 )
= 0'-1 xa

= V-lXV

We say that the crossed 1uodule ais free in degree 1 if lV is free group. A morphislu
a-+ 8' between crossed modules is a cornUllttative diagraIn in Gr.

lvI g) lvI'

lV lV'
f

where 9 is f-equivariant, that is g(x a ) = (gx)f(n). This is a weak eauivalence if
(/,g) induces isomorphisIllS 7Ti(8) ~ 7Ti(8') for i = 1,2 where

= cokernel (B)
= kernel (8)

We point out that for B' there is always a weak equivalence (g, f) : a -+ B' where
B is free in degree 1.

Let cross be the category of crossed luodules and let H o(cross) be its localization
with respeet to weak equivalenees. It is weH known ([20], [18], [3]) that there is an
equivalence of eategories

(2.2) types(2) ~ H o(cr'oss)

where the category types (2) is thc homotopy category of eonnected CvV-spaccs

X with triX = 0 for i 2: 3. For any connected CvV-space X we obtain its 2-type
P2(X) by the second stage of the Postnikov tower of X, This yields the funetor

(2.3) p~ : spaces j ~ P2) types(2) ~ H o(cr'oss)

where spacesj ~ is the hOlllOtOpy eategory of connected CW-spaees with basepoint.

We now define the funetor

(2.4) A : spaces ------t cross

which induces a funetor H O(A) between honl0topy eategories such that H O(A) is
naturally isomorphie to the functor p~ in (2.3). For a pointed connectecl CvV-space
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X let SX be the singular simplicial set of a11 simplexes ~ n -+ X which carry the
O-skeleton of ~n to the basepoint of X. Let }nl = IS X In be the n-skeleton of thc
realization Y = 1S X I and let

be part of the crossed chain conlplex of Y~j see for example [3]. Then d2 induces
the crossed IUOelnIe

which is a functor in X.

(2.5) Definition. Let C be a category with weak equivalences, let !( be a category
and let .x, /\' : J( -+ C be fnnctors. "'vVe say that .x is equivalent to .x' if there
exists a natural transfonnation T : A --t A' such that TX : A(X) --t A'(X) is a weak
equivalence in C for all objects X E JC More generally we say that A is equivalent
to A' if there exists a finite chain of eqnivalences A f- Ao --t Al f- A2 ... f- A'.

We shall construct simpler functors which are equivalent to thc functor (n 2:: 0)

(2.6) .x n ; spaces --t cr'oss

where .x n carries aspace X to the crossed modnIe A(nn X)o.

§ 3 Crossed 1110dules associated to simplicial groups

For a sinlplicial group G we define the Moore chain complcx NG by

(3.1) Nn(G) = nkernel (dd
i<n

an : Nn(G) --t Nn- 1 (G), an = restriction ofdn

Here d i 1 0 :::; i ::; n 1 are the face lllaps in G. The degeneracy maps in Gare denoted
by Si. Thc subgroup image (an+d is normal in kernel (an) so that thc quotient
group

Jrn (G) = .kernel 8n

Image8n + 1

is defined. A Inap f : G --t C' between silnplicial groups is a weak equivalence if
f. : Jri(C) rv Jri(G') is an isomorphisln for a11 i. Moreover an induces the exact
sequence of groups

8»(G)o-t Jrn (G) --t cokernel (8n+1) ---:....; kernel (an -1) -t Jrn -1 (G) --t 0
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(3.2) Leillma. Thc honlolnorphism an (G) has thc natural structurc of a crossed
Inodule for n 2:: 1.

ProoF. We define the action of a E kernel (an-I) on {y} E cokerncl (an+I), y E
Nn(G), by

Since dn Sn -1 = identi ty we have an {y}er = a -1 ya. Moreover we 0 bserve that for
X, y E Nn(G) the element [9]

{X,Y}n+1 = Sn(x- 1y-l x )(sn_l X )-1(snY)(Sn_l X)

lies in N n+1 (G) with

ßn+1{X,y}n+l = x-Iy-1x(Sn_I8nx)-lY(Sn_18nx)

Hence we obtain for Q = 8x the equation {y}aX = {x- I Y x} and therefore an ­
an (G) is a crossed 1110dule. q.e.d.

Let s Gr be the category of simplicial groups and let (s Set)o be thc category of
simplici~ets]( with 1(0 = *. There are pairs of adjoint functors

(3.3)
11 G

spaces ~ (s Set)o ;:t s Gr
S - W -

together with adjunction 11laps which are weak equivalences. Here S is thc reduced
singular set in (2.4) and I I is the realization. Moreover G and l11 are the functors
of Kau; compare for example [10] and [22]. The functors in (3.3) induce cquivalenccs
of categories

spacesj ~'" H o(s Set)o '" H o(s Gr)

where Hodenotes the localization with respect to wcak equivalences. Using (3.2)
we obtain the functor

(3.4) an :S Gr --+ cross- --- --

which we compare with An
-

1 in (2.6) as follows.

(3.5) Theorenl. For n 2:: 1 tilere are equivalences behveen functors:

An-I", an GS : spaces -+ C1'OSS

an '" An -111l11 : s G1' --+ cross

The result generalizes the classical natural isonlorphisln
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1rn-l (GSX)

11

7r18n(GS.:Y)

Proof. We use functors Pn, Qn : s Gr -r s Gr together with natural transformations

Here the Moore cllain complexes are given by the following diagram

N Qn(G) = (... > N n+1G kerOn 0

1i. 111 1i 1
NG = (... > Nn+]G NnG ) Nu-]G

1
p
· 1 lp 11

N Pn(G) = (... 0 ) cok On+1 ) lVn -] G

----+) ... )

-----7) ... )

----+) ... )

The map i is the inclusion anel p is the quotient lllap. The simplicial group Qn(G)
is the siInplicial subgroup of G gellerated by the subset N Qn (G) c G. Moreover
thc functor p corresponds ta the projection on page 227 of [8). V..fe clearly have

an(G) = 8n ( Qn-] G) = 8n(Pn (G))

= än(Qn-1 Pn(G))

Therefore it suffices to construct an equivalence 8n (G) f'J t\n- 1 Il1f CI for simplicial
groups C with NiG = 0 for i #- n, n-l. Such simplicial groups are classified for n ;:::
3 hy 'stable crossed modules' 1\11 (see 3.4 [9]), and far 11, = 2 hy a 'crosseel llloelule
lVJ of length 2' which is reducecl, that is Mo = O. Hence by the construction G
of [9] we have G = G(Al,n) for n ;::: 2. Here 8n (G(AtJ, n)) = 8111 coincides with
the underlying differential in M. By 3.6 [9] we knaw that for 11, ;::: 3 the functors
M 1---7 G(M,n - 1) anel!vI f------7 GG(lvI,n) are equivalent. Similarly for n = 2 the
functors lvJI---7 GG(M,2) and lvI f------7 G(fJM,l) are equivalent. For 11, = 1 the
proposition of (3.5) is weH known; sec far exanlple 2.2.4 [8]. Moreover for n ;::: 2
proposi tion (3.5) is a consequence of the equivalences above sillce for U E (s Set)o
the functors U 1---7 IGUI and U f------7 r2IUI are equivalent. q.c.d.

§4 Reduced and stahle quadratic lTIodules

A reduced C]uadratic lnodule (w, 0) is a diagrmll

(4.1 )
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of homomorphism between groups such that the following properties hold. The
group M has nilpotency degrec 2 and the quotient map M -» Mab to the abelian­
ization lvfab of lvI is denoted by x I----t {x}. The composition OW = tu is the
COlllmlltator lllap, that is

for x,y E M. For.a E L, x E M we have

w({oa} 0 {x} + {x} 0 {oa}) = 0

COlllmlltators in L satisfy the formula (u, bEL)

w({0a} ® {ob}) = a-1 b-1 ab

Wc say that (w,o) is a stahle quadratic module if in addition

w({x} (9 {y} + {y} ® {x}) = 0

is satisfied for x, y E M. We say that (tu, d) is free in clegree 1 if A1 = G/r3 G
where G is a free group and raG is the sllbgroup of triple COllllllutators in G. A
IDap (l, m) : (w, 0 : L --+ M) --+ (w', 0' : L' --+ M') is a pair of homomorphisnl
l : L --+ L', 171 : A1 --+ At] I with 17~O = o'l and lw = w'(mab ® 1nab ). Let rquad (resp.

squad) be the corresponding catgeory of reduced (rcsp. stahle) quadratic modules.

We obtain a faithflll fllnctor

(4.2)

which carries (w, 0) to the associated crossed lllodllie 0 : L --+ M with the action of
x E M on a E L giyen by

aX = a· w({oa} ® {x}).

One readily checks that 0 is a weIl defined functor. A map in rquad (resp. squad) is

a weak equivalence if the induced map is cross is a weak equivalence. Each object
in rquad (resp. squad) is weakly equivalent to an object which is free in degree 1.

(4.3) Theorelu. For n = 2, resp. n ;::: 3, there is a. functor

tLn : s Gr --+ rquad, resp. squad,
-- --

such that O/--ln is equivalent to an in (2.4).

Proot. For G' E s Gr we obtain the free simplicial group G" = GW( G'). Let M

be given by Qn-lPnG" = G(A1, n) as in the proof of (3.5). There exists a weak
equivalence At] --+ M / P3 where M / Pa is a reduced quaelratic module obtailled [rolD
A1 by dividing out tripie Peiffer cOlnnlutatorsj see IV.B.II in {3]. Then J.Ln carries
G' to M / P3 and the weak equivalences M --+ M / Pa anel GU1 ( G') --+ G' induce
natural weak equivalences
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In cross.

(4.4) Corollary. For 12 = 1, resp. n 2:: 2, thcre is a fUI1ctor

~n : spaces -+ 1'quad(resp. squad)
--

q.e.d.

such that O'~n is equivalent to An in (2.6).

Proof. Let ~n(x) = I1n+l(GSX). Then the corollary follows from (3.5) and (4.3).
q.e.d.

On the level of homotopy categories the functors 0' and Xn
are part of the com­

mutative diagralll in (4.7) below.
Let types(n + 2) be the horllotopy category of CvF- spaces X with 1r' j X = 0 for

i ~ 11. anel i > n + 2. Moreover let ~(n) be thc following algebraic category, n 2:: O.

\

cross 11. = 0

~(n) = r'quad n = 1

squad 11. ~ 2
--

It is proved in [3) that there is an equivalence of categories:

(4.5)

which for 11. = 0 is induccd by A in (2.4) anel which for n ~ 1 is induccd by );n
in (4.4). The functor Ln in the introduction with Ln(x) = P2(,On X)o. has a
factorization

(4.6)
pn on

Ln : spaces j ~---+ types( n + 2) ---+ type(2)

Here pn carries aspace){ to the (n+2)-type ofthe n-connected cover of Xj see [24).
Moreover the following diagram of functors COillffiUts up to natural isomorphism of
functors, n 2:: 0, with Ln = ,On pn.

spacesj ~
pn

> types(n + 2)
on

types(2)

(4.7) !I 1~ 1~

spacesj ~
An

Ho(~(n))
0

> Ho(cross)

Here the cquivalcuccs of categories show that .on restrictccl to types(n + 2) cau

be replaced by the algebraic functor 0 in thc bottoln row. The diagralll shows that
the 0 bstruction elelnent (1. 3) satisfies
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(4.8)

O(Lnlspaces/ ~) = (pnr O(nnltypes(n + 2))

= (X
n

)* 0(8)

where 0 (8) is defined by the functor 8 in (4.7) si lnilarly as 0 (L 71 IC) in (1. 3). The
advantage is that 0(8) can be cornputed algebraically. -

§5 k-INVARIANTS

Each space X in the category types(n + 2), n 2:: 0, cletern1ines a k-invariant kx
which is an element in the cohomology group of an Eilenberg-MacLane space:

{

H3(I((1Tl,1),1Tz), 11 = °
(5.1) H n+3(J((7l"n+l,n + 1),1Tn +2) = Hom(r1Tz,1T3), n = 1

Horn(7l"n+1071/2,7l"n+2), 11 2:: 2

Here 1Ti = 1Ti(X) is the hOlnotopy group of X which is a 1Tl~){ -module. the
cOlnputation of thc coholnology group for 11 ~ 1 was achieved by Eilenberg-Mac
Lane [13]. Here r is vVhitehead's quadratic functor. The k-invariant kx detennines
thc hOil10tOpy type of X by the following classical resul t:

(5.2) Lelnlna. Let n 2:: 0 and let ..Y, Y be spaces in types(n + 2) with 11omotopy

groups 7ri = 7ri(X), rr: = 7ri(Y)' Thcn there is a. honlotopy equivalence JY ~ Y iE
aJld only iE tllere exists isomorphisms <Pn+l : 7rn+l 8::' 7r:1+1 and <Pn+2 : 7rn+2 rv rr:1 +2

(where <Pn+2 is 'Pn+l-eqivariant for n = 0) sud1 tllat

lvloreovcr each elelllcnt k in thc COhOlllOlogy (5.1) above is tlle k-invariant k = kx
oE a space~)[ in types (11 + 2).

Using the equivalence of categories in (4.5) an object X in types(n + 2) is COlll­

pletly determined by the object A = Xn(..y) in the algebraic category ~(n). Hence
the k-invariant kx = kA has to be cOlnputable in tenns of A; this can be done as
folIows.

(5.3) The k-invariant of a crossed lnodule
(Colnpare [20] , [14] 01' [15]) Let 8 : L ---+ lvI be a crossed module which is free in

degree 1. Let u : 7r1 (8) ---+ M be a normalized set theoretic section of thc quotient
homomorphislll M --+ 7r1(8). Then, for q1,q2 E 1T1(8), U(QlQ2)-Lu(qt}1l(Q2) E 8L
and this elelnent is a non abelian 2-cocycle. Using a hOlllorphic section 8L ---+ L of
8 we get v(Q1, Q2) E L such that 8v( Ql , Q2) = 1l(Ql q2) -1 u(ql )u(q2). Let w be defined
by

11



Then tu(ql , qz, C}3) E 1T"z (8), is a 3-cocycle and the ilnage k(8) of tu in H3(1T"1 (8), 1T"z (8))
is independant of the choices of u and v. Thc element k(8) E H3 (iTl (8), ?Tz (8)) is
called the k-invariant of the crossed module a. eleady k(8) depends only on the
isomorphisln type of 8 in H o(cross). Moreover for aspace X in types(2) we have

kx = k(.\(X))

where .-\(X) is the crossecl module in (2.4).
(5.4) The k- invariant of a rednced (s table) quadratic modnIe (Colnpare {3]):

Let (tu, J) bc a reduced a reduced (resp. stable) quadratic lllodule, which is free in
degree 1. Then tu determines a unique homolnorphisln <p = k( w, J) by the following
cOlnlnutative diagraIn

J,,1 ab 0 lvlab ( r(A1Ub
)

H

I 1q.

I r1T"j

w1 1~
L 1T"z = k.cr(J)

01
/11 ) ?Tl = coker(J)

Here H is the cross effect map of rand q. is inducccl by the projection q : AtJab -t

iTl given by the cokernel of J. Moreover 'P factars uniquely

if (w, d) is stahle. Here (J is the suspension lnap. The k-invariant k(tu, J) satisfies
for X E types(n + 2), n ~ 1, the equation

where ;;n is the equivalcnce in (4.5). eleady k( tu, J) depends only on thc isomor­
phism type of (w, J) in H o(rquad), resp. H o(squad).

We now are ready to prove the following algcbraic resu1t:

(5.5) Theorenl. Let (w, J) be a sta.ble quadratic l11odule. Then the k-invariant
k(J) oE the associated crossed Inodule J in (4.2) is trivial.

The theoreln is a consequence of thc following two lemlnas.
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(5.6 )Le111111a. Let (10, 0) be a s tablc quadratic moelule. Tl] cn there exis ts a stable
quadratic module (10', 0) such that tbe associated crossed modules 0 of (10, 0) anel
(10',0) coincide and such tllat k(10',0) = O.

Proof of (5.6). We mayassure that (w, 0) is free in degree 1. Let

i.p = k(1O,o) : 7fl (81 Z/2 -t 7fz

be the k-invariant. We choose a bases B of the Z/2-vector space 7fl 0 Z/2 and we
define a sYlllllletric bilinear lllap

ß : 7fl 0 Z /2 X 7fl 0 Z /2 -t 7fz

by ß(e, e) = i.p(e) for e E Band ß(e, f) = 0 for e =1= f and e, f E B. Then we obtain
by the quotient map q : lvJub -t 7fJ the map (x, y E Mub)

by w'(x ® y) = 1o( X ® y) . ß(q(x), q(y)). Since ß maps to the kernel of 0, we clearIy
have Sw' = Sw. 1tloreover we have (a E L)

10'( iSa} 0 x) = w( {Ja} 0 x)

since q{oa} = O. This shows that (10',8) is weH defined and that the associated
crossed module 0 coincides with thc associated crossed module of (w, S). ClearIy
k(10',0) = O. q.e.d.

(5.7)Leln111a. Let (w', 0) bc a stable crossed module with trivial k-invariallt k(10',0) =
O. Tben the k-invariant k( S) of tbe associated crossed module 0 is trivial.

Praa f af (5. 7). We lllay assume that (10', S) is ffee in degree 1. Then we obtain the
foHowing COl1ullutative diagram in which rows and columns are exact

---4) 0

11

---4) 11'"1

---4) 7f1

----+) 0

0

1
> rMub ) A1ub (81 Mub ) A2 A1ab

01 1w' 1
L 8

M7fz

11 1 1
L' a

lvlab
11'"2

1 1
0 0
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Here L' is the cokernel of w'. This shows that 8 is a crossed lTIodule with thc
trivial action of !v/ab on L' such that a is weakly equivalent to 8. Since image (a)
is free abelian we see that k(8) = 0 and hence

k(o') = k(8) = 0

This proves Lemma (5.7).

q.e.d.
Equivalently to (5.7) we obtain the following result, compare [1].

(5.8) Theorelll. The first k-invariant of a connected double loop space is trivial.

Proot. V\fe use (5.5) and diagram (4.7).

q.e.d.

§ 6 REDUCED AND STAHLE 2-MODULES

A quite different algebraic proof of theorem (5.8) is related to a result ef Delignej
see 1.4 of [11]. For this we enlbed the category of reduced quadratic modules inte
the larger category of recluced 2-modulcs:

(6.1) Definition. A reduced 2-ITIodule (7jJ, 8) is a group hOlTIOITIOrphism a:L -+ M
together with a map W : lvI X lvI -+ L such that the follewing properties hold for
x, y, z E lvI and a, bEL

8w(x, y) = X-I y-I xy

'l!(8a,8b) = a-1b-1ab

w(aa, x) . W(x, 8a) = 1

'l!(x, yz) = 'l!(x , z)\l1(x ,y)\l1(y-l x-1yx , z)

w(xy, z) = 'l!(y-I xv, y-I Zy)7jJ(Yl z)

This is a stahle 2-Inodule if for x, y E M

'l!(x,y)'l!(y,x) = 1

holds. NIoreover W1 8 is strict if 'l! (x lX) = 1 for x E !vI. The associated crossed nlodule
of (w, 8) is the crossed nl0dule 8 : L -+ NI with thc action of Al on L given by

aX = a· q,(8a,x)

for a E L,x E M. A ITIap between such 2-modules is a ITIap ef the associated
crossed modules which is compatible with W. This is a weak eqivalence if it is a
weak equivalence for the associated crossed modules.

One readily checks that (tu, 0) in (4.1) satisfies the properties in (6.1). This yields
the inclusion of the category of reduced (resp. stahle) quadratic n10dules into the
category of reduced (resp. stahle) 2-modules. Vle point out that the 2-modules
above are special "crossed modules of length 2" in the sense of [9].

(6.2) Remark. One readily checks that a reduced (resp. stahle) quadratic ITIodule
(tu 1 cl) is strict in the sense of (6.1) if and only if the k-invariant k(10,0) is trivial.

The next lemma is proved in [3].
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(6.3) Lenuna. Each reduced (resp. stable) 2- 1110dule is weakly equivalent to a
reduced (resp. stable) quadratic module.

Hence the inclusion functors above induce equivalences of localized categories

{

Ho (7'quad)

Ho (squad)

~ Ho (7'educed2 - 7nodules)

~ Ho (stable 2 - 7TIodules)

Lemma (3.2) implies the following corollary of theorem (5.5).

(6.5) Theorenl. Let (\l1) 0) be a stable 2-module. Then the k-illvariant k(8) of
tbe associated crossed module a is trivial.

This result cau also be obtained by the following two len11uas which correspond
to (5.6) and (5.7) respectively.

(6.6)Lenll11a. Let (w, 8) he astahle 2-modulc. Then tllere cxists a stable 2­
module (w', 8) such that the associated crossed Inodules 8 of (\IJ, 8) and (w', 8)
coincide alld sucb that (w', 8) is strict.

(6.7) Lenll11a. Let (w', 8) be astriet stable 2-1l10dule. Tben tbc k-invariant k(8)
of tbc associated erossed Inodule 8 is trivial.

V\Te now COIupare lenuua (6.7) with a result of Deligne [11]. Using results of Isbell
[16] and R.Brown-Spencer [7] astriet reduced 2-1uodule can be identified with a
strict Pieard category. A Picard category is a sYlumetric 1110noidal category [19]
enriched with COIUu1utativity data corresponding to the map W. Now Deligne in
1.4 observed that strict Picard categories are homotopieally trivial. This was used
by Sinh [23] in the honlotopy classification of Picard categories, Moreover Sinh [23]
used a siluilar construction as in the proof of (5.6) for the construetion of certaill
Picard categories. For a good survey on the relation bctween Picard catcgories and
reduced 2-n10dules COlupare the review of J. Duskin on the paper "Cohomology
with coeffieients in sYlnmetrie cat-groups" by Bullejos-Carrasco- Cegarraj see Math.
reviews 1994 k: 18014.

§7 PROOF OF THEOREM (1.9)

Let Z be anel index set and let

(7.1) x = Vsn+l
Z

be the one point union of spheres S~l+1 = sn+l with e E Z. Then 7r'71+1 (X) = A
is the free abelian group generated by the set Z anel 7r'n+2 (X) = A<9 Z/2 for n 2: 2.
Let GAbe the free group generateel by Z and let

(7.2)

be the quotient where r3 (G A ) is the subgroup of triple commutators. VVe have the
classieal central extension of groups

15



(7.3)

where q is the abelianization and where X carrics q(x)!\q(y) E A2(A) with x, y E E A
to the commutator x··-1y-1xy. Cornbining (7.3) with the short exact sequence (1.4)
we obtain the stable quadratic module (WA, OA) given by

(7.4)

where OA is the composition OA = Xq : ®2(A) --+ A2(A) --+ EA. We have

7fl = cokernel(oA) = A

7f2 = kernel(oA) = A &; 7l/2

Moreover the equivalence ofcategories in (4.5) carries thc (n+2)-type of ..Y in (7.1)
to the stable quadratic nl0dule (WA,OA) in (7.4). This is proved in [3]. Vle now
rest ri ct t he functor 0 in (4.7) to the subcategory of obj cets of the form (wA, 0A )

with A E ab. Then 0 carries (w A 1 0A) to the crossed rl10dnIe 0A giyen by the

homomorphisnl OA above with the trivial action of EA on ®2 A. Since A is free
abelian we know that A2 A is free abelian and therefore we can choose a retraction
r : e.>2 A --+ A 0 Z/2 of the inclusion i in (1.4). Using this retraction we obtain the
weak cquivalencc of crossed modules

,,2 r
0A ) A®71/2

(7.5)

q > A

Here the right hand siele is the trivial crossed rnoelule corresponding to a product
of Eilenberg-MacLane spaces ]((A, l) x ]((A ® 7l/2,2) in the category types(2);

compare (2.4). Hence the rllorphislll (7.5) is via (2.4) thc san1e as the choice of a
homotopy equivalence (*) in the introduction. The obstructioll for the naturality of
(*) is therefore the same as the obstruction for the naturality of (7.5) in H o(cross).
But clearly this is the sarne as the obstruetion for the llaturality of the ratraction

l' and this obstrnction is the elernent {0
2

} in Ext~b(A2,®71/2). This proves (1.9).

q.e.d.
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