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ON THE 2-TYPE OF AN ITERATED LOOP SPACE

HANS-JOACHIM BAUES AND DANIEL CONDUCHE

Let (2" X)g be the path component of the n-fold iterated loop space of a space
X and let L™ be the functor which carries X to the 2-type of (2" X)o. It is well
known that the space L"(X) for n > 2 splits as a product of Eilenberg-MacLane
spaces

(*) LMX) ~ K (41X, 1) X K(TniaX,2);

see for example Arlettaz [1]. We give an algebraic proof of this fact in (5.8). Is it
possible to choose the homotopy equivalence (*) natural in X? As a main result we
prove that this is not possible. We identify algebraically the associated obstruction,
which is non-trivial on the subcategory consisting of all spaces X which are one
point unions of (n 4 1)-dimensional spheres. The method of proof relies on the
description of algebraic functors A™ which are equivalent to the functors L" above.
For this we use the crossed module A(Y') of a space ¥ which is an algebraic model
of the 2-type of Y. This yields the functor A™ by the crossed module

AT(X) = A" X)o

of (2*X)e. We show that the functor A" is determined by the boundary d,,4+1 of
the Moore chain complex of a simplicial group G associated to X. Moreover for
n > 1 the functor A" is equivalent to a functor 6% where A (X) is a 'reduced
quadratic module‘ which is stable for n > 2. These results are used in (5] for the
construction of algebraic models of certain homotopies and homotopy types.

§1 THE OBSTRUCTION

Let C be a small category and let D : C°" x C — Ab be a bifunctor to the
category of abelian groups. A derivation A : c — D is function which carries
each morphism f : A = B in C to an element A(f) € D(A, B) such that for a
composition ¢f of morphisms in ( C one has

A(gf) = g:.0(f) + frA(g).

This is an inner derivation if there exists a function 7 which carries each object A
in C to an element 7(A) € D(A, A) such that

A(f)=fe v (4) = f* v (B).

Typeset by As4S-TEX



Let Der(C,D) and Ider(C, D) be the sets of derivations and inner derivations
respectively. By adding pointwise these sets are abelian groups and the quotient
group

H'(C,D) = Der(C,D)/Ider(C, D)

is the first cohomology of C with coefficients in D; compare IV. 7.6 in [2]. The
obstruction for the natural splittability of the functor L™ in the introduction is
canonically an element in such a cohomology group.

Let spaces be the category of connected CW-spaces with basepoint and basepoint

preserving maps. Moreover let ' be a subcategory of the homotopy category
spaces [ ~. We obtain a bifunctor

o

(12) H2(7r,,+1,7rn+2) : gop X g -

which carries (X,Y) to the second cohomology H?(mp41X,mn42Y) of the group
Tat1 X with coefficients in 7,42}, Recall that the functor L" : C' — spaces/ ~

carries a space X in C to the 2-type of (2" X)o.

(1.8) Lemma. Let n > 2. Then the functor L™ : ' — spaces/ ~ admits for
X € C a natural splitting

Ln(X) ~ I‘:(?T"+1.X, 1) X I{(ﬂ'n.{_2X, 2)
if and only if an obstruction element
O(L"|C) € HY(C, H (Tut1, Tnt2))

vanishes.

Proof. There is a fibration sequence
K(Mpg2X,2) 5 L"X 5 K(mng1 X, 1)
which is natural in X obtained by the Postnikov tower for L"X. Let
sy i K(mp41X,1) = L"X

be a map with gsxy ~ 1. Such a map exists for n > 2’, [1]. Then we get for
f:X =Y € the diagram in spaces / =~

L"X 2 K(mpp1X,1)

f‘l J‘(Wn-l-lf)u

LY 2 K(mp4a1Y,1)
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which needs not to commute. The difference element

Al(f) = fasx — sy (Tng1f)s

obained by loop addition in L"Y satisfies qA’(f) = 0. Thus there is a unique
element

A(f) € [I((?T,H.]X, l)a I{(”n+2Ya 2)] = Hz(ﬂ'n+1X, 7Tn+2}")
with iA(f) = A'(f). One readily checks that A is a derivation. Choosing different

splittings sx alters A only by an inner derivation. Hence we obtain a well defined
cohomology class O(L"|C) = {A} with the property in (1.3). q.e.d.

For an abelian group A let A2(A) = A ® A/ ~ be the exterior square obtained by

a®a~ oand let ®2(A) = A® A/ = be obtained by a @b+ bQ a =~ 0. If A is free
abelian we have the short exact sequence

(1.4) 02 ARZ/2S AL A24 50
which is natural in A. Here ¢ is the quotient map and ¢ carries a ® 1 to {a ® a}.

Let ab be the category of finitely generated free abelian groups and for functors
F,G:ab— Ablet E:l:tg"_b(F, G) be the group of extensions in the category of functors

ab — Ab with natural transformations as morphisms. Then (1.4) represents the
element

(1.5) {6} € Batly(n* 02/2)

Here the right hand side is a cyclic group of order 2 as follows from

(1.6) Lemma. The element {@2} is the generator in Exty,(A*,QZ/2) = Z/2

Proof. We write F' = ®Z/2. Then (1.4) yields the long exact sequence
Hom (&, F) — Hom(F,F) = Ext'(A*, F) = Bat' (8", F)

Let SP?(A) be the symmetric square of A. Then we have for A € gb the natural
short exact sequence

0 SPXA) 5 @A ® A—0

which yields by (2.15) in [17] the isomorphism
Hom(SP?, F) = Ext®(SP?, F) = Ext’ (@2, F)
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We now use the theory of quadratic modules in (4] to show that Hom (@2,F) =0

and Hom(SP%, F) = 0. In fact, the quadratic modules associated to &, F, S P?
are :

& = (z)2 % z & z/2)
F = (22 — 0 — 72 )
sp? = (Z S 7 & Z )

Compare [4]. Since Hom(F, F) = Z/2 we obtain the proposition. The element
{@2} 1s non trivial since there exists no retraction of F — @2 by Hom (@)2, F) = 0.
q-e.d.

By 3.11 in [17] we obtain the natural isomorphism

(1.7) X : Batyy(A?,®Z/2) = H' (ab, Hom(A*,RZ/2)).

Now let ¢ = é"'*'] be the full homotopy category of one point unions of (n + 1)-
dimensional spheres. Then homology yields on isomorphism of categories (n > 1)

Sn+l —

=8

which we use as an identification. Moreover the homotopy groups
Tndgls Tnt2 : ab = ﬁn_H — Ab

carry A € a=b to Tnt1A = A and w494 = AR Z/2. Tt is classical that for A, B € g;b
we have the binatural isomorphism
(1.8) H*(A,B®Z/2)= Hom(A’4,BQZ/2)
Hence the obstruction in (1.3) for € = § "*1is an element
O(L"|S™1) € H' (ab, Hom(A?,®Z/2))

where the right hand side is a cyclic group of order 2 by (1.7) and (1.6).

(1.9)Theorem. The obstruction element O(L"|S™*') is nontrivial. In fact, we
have the equation

o(L"g™) = x {8’}

where x is the isomorphism in (1.7) and where &” is the extension element in (1.5).

We shall prove this result in §7 below.
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§2 THE CROSSED MODULE OF A SPACE

Let Gr be the category of groups and let ab be the full subcategory of abelian
groups. Let N and M be groups. An N-group (or an action of N on M) is a
homomorphism & from N to the group of automorphismsof M. Forz € M, a € N
we denote the action by 2 = h(e™!)(z). The action is trivial if z& = z for all z, c.
A crossed module @ : M — N is a homomorphism in Gr together with an action
of N on M such that for z,y € M, « € N we have T

(2.1) { O(z®) =a lza

9 =y lay

We say that the crossed module 0 is free in degree 1 if V is free group. A morphism
0 — ' between crossed modules is a commutative diagram in Gr.

M 25 M

e

N —— N
: f

where g is f-equivariant, that is g(z®) = (gz)/{®). This is a weak equivalence if
(f,g) induces isomorphisms m;(9) = 7;(9') for : = 1,2 where

{ m(8) = cokernel (9)
72(0) = kernel (0)

We point out that for §' there is always a weak equivalence (g, f) : 8 = &' where
0 is free in degree 1.

Let cross be the category of crossed modules and let Ho(cross) be its localization
with respect to weak equivalences. It is well known ([20], [18], [3]) that there is an
equivalence of categories

(2.2) types(2) — Ho(cross)

where the category types (2) is the homotopy category of connected CW-spaces

X with m;X = 0 for ¢« > 3. For any connected CW-space X we obtain its 2-type
P,(X) by the second stage of the Postnikov tower of X. This yields the functor

(2.3) P, : spaces/ ~ L2 types(2) — Ho(cross)

where spaces/ ~ is the homotopy category of connected CW-spaces with basepoint.
We now define the functor

(2.4) A i spaces — Cross

which induces a functor Ho()\) between homotopy categories such that Ho(A) is
naturally isomorphic to the functor P; in (2.3). For a pointed connected C'W-space
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X let SX be the singular simplicial set of all simplexes A™ — X which carry the
0-skeleton of A" to the basepoint of X. Let Y = |SX|* be the n-skeleton of the
realization Y = |SX| and let

m3(Y3 YY) % my (Y2, YY) 2 o (vh)

be part of the crossed chain complex of Y'; see for example [3]. Then d> induces
the crossed module

MX) : cokernel dy — m(|SX|!)
which is a functor in X.

(2.5) Definition. Let C be a category with weak equivalences, let K be a category
and let A, N : K — C be functors. We say that A is equivalent to A if there
exists a natural transformation 7 : A = M such that 7x : A(X) = M(X) is a weak
equivalence in C for all objects X € I{. More generally we say that A is equivalent
to ) if there exists a finite chain of e_(Iuivalences Ae=do—= AL« Ao« N,

We shall construct simpler functors which are equivalent to the functor (n > 0)

(2.6) A" 1 spaces — cross

where A™ carries a space X to the crossed module A(Q" X )o.

§ 3 Crossed modules associated to simplicial groups

For a simplicial group G we define the Moore chain complex NG by

(3.1) No(G) = (] kernel (d;)
t<n
On : No(G) = N,,_1(G), 0, = restriction of d,,

Here d;, 0 €7 < n, are the face maps in G. The degeneracy maps in G are denoted
by s;. The subgroup image (On41) is normal in kernel (8,) so that the quotient
group

kernel 3,
image 8n+1

n(G) =

is defined. A map f : G — G’ between simplicial groups is a weak equivalence if
fv : mi(G) =& m(G') is an isomorphism for all i. Moreover J, induces the exact
sequence of groups

0 = 7 (G) — cokernel (9ns1) "D kernel (Buy) = Tn_1(G) = 0



(3.2) Lemma. The homomorphism 8,(G) has the natural structure of a crossed
module for n > 1.

Proof. We define the action of a € kernel(0,_,) on {y} € cokernel (On41), v €
N.(G), by

{y}* = {sn-1(a) Ty sn-1(a)}

Since d,, sp—1 = identity we have 9,{y}* = a~'ya. Moreover we observe that for
z,y € N,(G) the element [9]

{z,y}n41 = .sn(:n_ly_lm)(sn._l -'B)_l (8ny)($n—17)

lies in Np4.1(G) with

1

Ont1{z, Y}ns1 =2~ y_lit‘?(Sn—]anfﬂ)_ly(sn—lan-'ﬂ)

Hence we obtain for o = 9z the equation {y}?* = {z~'yz} and therefore 3, =
On(G) is a crossed module. g.e.d.

Let s Gr be the category of simplicial groups and let (s Set)o be the category of
simplicial sets ' with Ko = #. There are pairs of adjoint functors

1 G
(3.3) spaces S (s Set)o = sGr
S wo

together with adjunction maps which are weak equivalences. Here S is the reduced
singular set in (2.4) and | | is the realization. Moreover G and W are the functors
of Kan; compare for example [10] and [22]. The functors in (3.3) induce equivalences
of categories

spaces/ ~~ Ho(s Set)o ~ Ho(s Gr)

where Ho denotes the localization with respect to weak equivalences. Using (3.2)
we obtain the functor

(3.4) On 1 sGr — cross

which we compare with A"~! in (2.6) as follows.

(3.53) Theorem. Forn > 1 there are equivalences between functors:

A 0, GS : spaces — cross

Op ~ A" |W s Gr — cross
The result generalizes the classical natural isomorphism
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R

m (Qn_lX)() WnX = ?Tn_l(GS.X)
| |
mATTLX ™1 On(GSX)
Proof. We use functors Pp, @ : s Gr — s Gr together with natural transformations
Qn(G) =+ G X PG

Here the Moore chain complexes are given by the following diagram

NQ.(G)=(.. — NypG — kerdy —— 0 — ...)

. [

NG=(.. —— Nyp1G —— NaG —— NusyG —— ...)

[ | Ik ”
NP,(G)=(.. — 0 —— cokOpgpy —— NpoiG —— ...)
The map 1 is the inclusion and p is the quotient map. The simplicial group @,(G)

is the simplicial subgroup of G generated by the subset N Q,(G) C G. Moreover
the functor p corresponds to the projection on page 227 of (8], We clearly have

8.(G)

511(Qn—] G) = gn(Pﬂ(G))
I (Qu-1Pn(G))

Therefore it suffices to construct an equivalence 8,(G) ~ A"~!|W@G| for simplicial
groups G with N;G = 0 for i # n, n—1. Such simplicial groups are classified for n >
3 by ‘stable crossed modules’ M (see 3.4 [9]), and for n = 2 by a ‘crossed module
M of length 2’ which is reduced, that is My = 0. Hence by the construction G
of [9] we have G = G(M,n) for n > 2. Here 8,(G(M,n)) = O coincides with
the underlying differential in M. By 3.6 [9] we know that for n > 3 the functors
M — G(M,n —1) and M — G G(M,n) are equivalent. Similarly for n = 2 the
functors M — G G(M,2) and M — G(Oum,1) are equivalent. For n = 1 the
proposition of (3.5) is well known; see for example 2.2.4 [8]. Moreover for n > 2
proposition (3.5) is a consequence of the equivalences above since for U € (s Set)o
the functors U +— |GU| and U +— Q|U| are equivalent. q.c.d.

§4 Reduced and stable quadratic modules

A reduced quadratic module (w, §) is a diagram

(4.1) M@M® 2 S M
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of homomorphism between groups such that the following properties hold. The
group M has nilpotency degree 2 and the quotient map M -» M®® to the abelian-
ization M®® of M is denoted by z — {z}. The composition dw = w is the
commutator map, that is

dw({z} @ {y}) =27y 2y
for z,y € M. For a € L, z € M we have

w({da} @ {z} + {z} ® {da}) =0

Commutators in L satisfy the formula (a,b € L)

w({8a} ® {6b}) = a~1b"ab

We say that (w, ) is a stable quadratic module if in addition

w{z} @ {y} +{y}®{z}) =0

1s satisfled for z,y € M. We say that (w,d) is free in degree 1 if M = G/I'3G
where G is a free group and ['3G is the subgroup of triple commutators in G. A
map (I,m) : (w,6 : L - M) = («',8 : L' - M') is a pair of homomorphism
I:L =L, m: M- M withmé = §1 and lw = W' (m*® ® m?®). Let rquad (resp.
squad) be the corresponding catgeory of reduced (resp. stable) quadratic modules.
We obtain a faithful functor

(4.2) § : rquad — cross

which carries (w,d) to the associated crossed module § : L — M with the action of
r € M on a € L given by

a® =a w({a} ® {z}).
One readily checks that § is a well defined functor. A map in rquad (resp. squad) is

a weak equivalence if the induced map is ¢ross is a weak equivalence. Each object
in rquad (resp. squad) is weakly equivalent to an object which is free in degree 1.

(4.3) Theorem. Forn =2, resp. n > 3, there is a functor

En 2 8 Gr = rquad, resp. squad,

such that éu,, Is equivalent to 0, in (2.4).

Proof. For G' € sGr we obtain the free simplicial group G” = GW(G"). Let M
be given by Qn_1P,G" = G(M,n) as in the proof of (3.5). There exists a weak
equivalence M — M /Py where M/ P is a reduced quadratic module obtained from
M by dividing out triple Peiffer commutators; see IV.B.11 in [3]. Then pu,, carries
G' to M/P; and the weak equivalences M — M/P; and GW(G') — G’ induce

natural weak equivalences



B.G' = B, (G") = Oy > S(M(P3)) = 6un(G)

In cross. q.e.d.

(4.4) Corollary. Forn =1, resp. n > 2, there is a functor

A" i spaces — rquad(resp. squad)

such that §A™ is equivalent to A" in (2.6).

Proof. Let A®(X) = pn41(GSX). Then the corollary follows from (3.5) and (4.3).
q.e.d.

On the level of homotopy categories the functors § and ' are part of the com-
mutative diagram in (4.7) below.
Let types(n + 2) be the homotopy category of CW- spaces X with m;X = 0 for

: <nand i >n+ 2. Moreover let k(n) be the following algebraic category, n > 0.

cross m=
k(n) = rquad n =
squad n > 2

It is proved in [3] that there is an equivalence of categories:

(4.5) An : types(n +2) = Hok(n)

which for n = 0 is induced by A in (2.4) and which for n > 1 is induced by X"
in (4.4). The functor L™ in the introduction with L*(X) = P,(2"X)p. has a
factorization

(4.6) L™ : spaces/ ~ types(n + 2) LN type(2)

Here P" carries a space X to the (n--2)-type of the n-connected cover of X; see [24].
Moreover the following diagram of functors commuts up to natural isomorphism of
functors, n > 0, with L™ = Q" P",

spaces/ ~ LN types(n + 2) LN types(2)

(4.7) n |~ |~

spaces/ ~ LN Ho(k(n)) —% 5 Ho(cross)

Here the equivalences of categories show that Q" restricted to types(n + 2) can

be replaced by the algebraic functor § in the bottom row. The diagram shows that
the obstruction element (1.3) satisfies
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O(L"|spaces/ ~) = (P")* O(Q" |types(n + 2))
(4.8) = (3")* 0(9)

where O(¢) is defined by the functor ¢ in (4.7) similarly as O(L"|C) in (1.3). The
advantage is that O(é) can be computed algebraically.

§5 k-INVARIANTS

Each space X in the category types(n + 2), n > 0, determines a k-invariant kx
which is an element in the cohomology group of an Eilenberg-MacLane space:

H3(K(m,1),7,), n=20
(5.1) H" 3K (mpp1,n+ 1), Tng2) = ¢ Hom(I'mg, m3), n=1
Hom(mny) @ Z[2,7019), n>2

Here m; = m;j(X) is the homotopy group of X which is a my X -module. the
computation of the cohomology group for n > 1 was achieved by Eilenberg-Mac
Lane {13]. Here I' is Whitehead’s quadratic functor. The k-invariant kx determines
the homotopy type of X by the following classical result:

(5.2) Lemma. Let n > 0 and let X,Y be spaces in types(n + 2) with homotopy

groups m; = m;(X), 7 = mi(Y). Then there is a homotopy equivalence X ~ Y if
and only if there exists isomorphisms Yn4.1 1 Tp41 E W4y and @pqo @ Tpgo E T4
(where @n49 18 @niy-eqivariant for n = 0) such that

(90n+2)*k,\’ = ((Pn-l-l)*kY-

Moreover each element k in the cohomology (5.1) above is the k-invariant k = kyx
of a space X in types(n + 2).

Using the equivalence of categories in (4.5) an object X in types(n + 2) is com-

pletly determined by the object A = XH(X ) in the algebraic category k(n). Hence
the k-invariant kx = k4 has to be computable in terms of A; this can be done as
follows.

(5.3) The k-invariant of a crossed module

(Compare [20] , [14] or [15]) Let 8 : L — M be a crossed module which is free in
degree 1. Let u : m(8) — M be a normalized set theoretic section of the quotient
homomorphism M — m,(8). Then, for q;,q; € m(9), u(q1g2) " u(q1)u(g2) € 8L
and this element is a non abelian 2-cocycle. Using a homorphic section § L — L of
d we get v(q1,q2) € L such that dv(q1, q2) = v(q1g2) " u{q1)u(q2). Let w be defined
by

w(qr, g2, q3) = v(qz, 3) " o(q1, @2qs) T o(@1ge, a8 )v(ar, g2) 4.
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Then w(q1,q2,¢3) € 72(9), is a 3-cocycle and the image k() of w in H3 (7 (8), m(8))
is independant of the choices of u and v. The element k(9) € H*(m (), 72(8)) is
called the k-invariant of the crossed module d. Clearly k(0) depends only on the
isomorphism type of 9 in Ho(cross). Moreover for a space X in types(2) we have

kx = k(MX))

where A(X) is the crossed module in (2.4).

(5.4) The k-invariant of a reduced (stable) quadratic module (Compare {3]):

Let (w,d) be a reduced a reduced (resp. stable) quadratic module, which is free in
degree 1. Then w determines a unique homomorphism ¢ = k(w, §) by the following
commutative diagram

Meb @ Mo — T(Meb)

| |+

P?TJ

le

l
|
L +—— mp = ker(§)
|

M — m; = coker(d)

Here H is the cross effect map of T and g, is induced by the projection g : M® —
71 given by the cokernel of 6. Moreover ¢ factors uniquely

k

@ : I(m) —U”’JT] ®QZ/2 (ﬂf) T

if (w,d) is stable. Here ¢ is the suspension map. The k-invariant k(w, §) satisfies
for X € types(n + 2), n > 1, the equation

kx = k(X X)

where X is the equivalence in (4.5). Clearly k(w,4) depends only on the isomor-
phism type of (w,d) in Ho(rquad), resp. Ho(squad).

We now are ready to prove the following algebraic result:

(5.5) Theorem. Let (w,d) be a stable quadratic module. Then the k-invariant
k(8) of the associated crossed module § in (4.2) is trivial.

The theorem is a consequence of the following two lemmas.
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(5.6)Lemma. Let (w,d) be a stable quadratic module. Then there exists a stable
quadratic module (w',§) such that the associated crossed modules § of (w,$) and
(w',6) coincide and such that k(w',8) = 0.

Proof of (5.6). We may assure that (w,d) is free in degree 1. Let
o =Fkw,0):m QZ/2 > m

be the k-invariant. We choose a bases B of the Z/2-vector space 71 ® Z/2 and we
define a symmetric bilinear map

g:m ®Z/2><‘JT1®Z/2—}7T2

by B(e,e) = p(e) for e € B and B(e, f}) = 0 for e # f and ¢, f € B. Then we obtain
by the quotient map ¢ : M — 7, the map (z,y € M??)

w' Mot @ Mt 5 L

by w'(z Q@y) = w(z ®y) - Bl¢(z),q(y)). Since 8 maps to the kernel of §, we clearly
have dw' = dw. Moreover we have (a € L)

w'({fa} ® z) = w({da} ® z)

since g{da} = 0. This shows that (w’,d) is well defined and that the associated
crossed module § coincides with the associated crossed module of (w,d). Clearly
E(w',8) = 0. q.e.d.

(5.7)Lemma. Let (w’,8) be a stable crossed module with trivial k-invariant k(w',8) =
0. Then the k-invariant k(8) of the associated crossed module ¢ is trivial.

Proof of (5.7). We may assume that (w',§) is free in degree 1. Then we obtain the
following commutative diagram in which rows and columns are exact

0

0 — TM* — M@ M*®® —— A?’M*® —— 0

0 lw'
0 — % 7y — L Sy M —
0 —— 7 — L _9 4 pgab s y 0
0 0
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Here L' is the cokernel of w'. This shows that § is a crossed module with the
trivial action of M on L' such that 0 is weakly equivalent to 0. Since image (8)
is free abelian we see that k(J) = 0 and hence

k(§"Y=k(d)=0
This proves Lemma (5.7).

q.e.d.
Equivalently to (5.7) we obtain the following result, compare [1].

(5.8) Theorem. The first k-invariant of a connected double loop space is trivial.

Proof. We use (5.5) and diagram (4.7).
q.e.d.

§6 REDUCED AND STABLE 2-MODULES

A quite different algebraic proof of theorem (5.8) is related to a result of Deligne;
see 1.4 of [11]. For this we embed the category of reduced quadratic modules into
the larger category of reduced 2-modules:

(6.1) Definttion. A reduced 2-module (v, 9) is a group homomorphism §: L = M
together with a map ¥ : M x M — L such that the following properties hold for
z,y,2 € M and a,b € L

O¥(z,y) = tay
¥(0a,db) = a 1b ab
¥(0a,z) - ¥(z,0a) =
U(z,yz) = ( 2)¥(z,y) ¥y~ 27 yz, 2)
U(ey,2) = Uy oy, ¥~ 2y)o(y, 2)
This is a stable 2-module if for z,y € M
U(z,y)¥(y,z) =1

holds. Moreover ¥, @ is strict if U(z,z) = 1 for z € M. The associated crossed module
of (¥, d) is the crossed module 8 : L — M with the action of M on L given by

a’ =a-¥(0a,zr)

for a € L,z € M. A map between such 2-modules 1s a map of the associated
crossed modules which is compatible with ¥. This is a weak eq1va1ence if it is a
weak equivalence for the associated crossed modules.

One readily checks that (w, §) in (4.1) satisfies the properties in (6.1). This yields
the inclusion of the category of reduced (resp. stable) quadratic modules into the
category of reduced (resp. stable) 2-modules. We point out that the 2-modules
above are special “crossed modules of length 2” in the sense of [9].

(6.2) Remark. One readily checks that a reduced (resp. stable} quadratic module
(w,d) is strict in the sense of (6.1) if and only if the k-invariant k(w,d) is trivial.
The next lemma is proved in (3.
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(6.3) Lemma. Fach reduced (resp. stable) 2- module is weakly equivalent to a
reduced (resp. stable) quadratic module.

Hence the inclusion functors above induce equivalences of localized categories

{ Ho(rquad) —» Ho(reduced2 — modules)

Ho(squad) -3 Ho(stable2 — modules)

Lemma (3.2) implies the following corollary of theorem (5.5).

(6.5) Theorem. Let (¥,8) be a stable 2-module. Then the k-invariant k() of
the associated crossed module O is trivial.

This result can also be obtained by the following two lemmas which correspond
to (5.6) and (5.7) respectively.

(6.6)Lemma. Let (¥,0) be a stable 2-module. Then there exists a stable 2-
module (V',0) such that the associated crossed modules 0 of (¥,8) and (¥',0)

coincide and such that (U’,9) is strict.

(6.7) Lemma. Let (¥',0) be a strict stable 2-module. Then the k-invariant k(9)
of the associated crossed module @ is trivial.

We now compare lemma (6.7) with a result of Deligne [11]. Using results of Isbell
[16] and R.Brown-Spencer (7] a strict reduced 2-module can be identified with a
strict Picard category. A Picard category is a symmetric monoidal category [19]
enriched with commutativity data corresponding to the map ¥. Now Deligne in
1.4 observed that strict Picard categories are homotopically trivial. This was used
by Sinh [23] in the homotopy classification of Picard categories. Moreover Sinh [23]
used a similar construction as in the proof of (5.6) for the construction of certain
Picard categories. For a good survey on the relation between Picard categories and
reduced 2-modules compare the review of J. Duskin on the paper " Cohomology

with coefficients in symmetric cat-groups® by Bullejos-Carrasco-Cegarra; see Math.
reviews 1994 k:18014.

§ 7 PROOF OF THEQREM (1.9)

Let Z be and index set and let

(7.1) X =\/s""
Z

be the one point union of spheres SPt! = §°t! with e € Z. Then w1 (X) = A4
is the free abelian group generated by the set Z and mp42(X) = AQZ/2for n > 2.
Let G4 be the free group generated by Z and let

(7.2) Ea=Ga/T3(Ga)

be the quotient where T's(G 4) is the subgroup of triple commutators. We have the
classical central extension of groups
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(7.3) 0 A%A4) S5 ELSH A0

where g is the abelianization and where y carries ¢(z)Aq(y) € A2(A) with z,y € E4
to the commutator z-~'y~!zy. Combining (7.3) with the short exact sequence (1.4)
we obtain the stable quadratic module (wa,d4) given by

(7.4) ARAM AU E,

where § 4 is the composition §4 = xq: ®2(A) — A?(A) = E4. We have

7 = cokernel(64) = A
7y = kernel(64) = AQZ/2

Moreover the equivalence of categories in (4.5) carries the (n+ 2)-type of X in (7.1)
to the stable quadratic module (w4,84) in (7.4). This is proved in [3]. We now
restrict the functor & in (4.7) to the subcategory of objects of the form (wa,d4)
with A € gb. Then § carries (wa,64) to the crossed module §4 given by the

homomorphism §4 above with the trivial action of E4 on ®2A. Since A is free
abelian we know that A%A is free abelian and therefore we can choose a retraction

r® A AQ® Z /2 of the inclusion 7 in (1.4). Using this retraction we obtain the
weak equivalence of crossed modules

&4 — AQZ/2

(7.5) 5,.1 lo

Es —— A

Here the right hand side is the trivial crossed module corresponding to a product
of Eilenberg-MacLane spaces I{(A,1) x K(A ® Z/2,2) in the category types(2);
compare (2.4). Hence the morphism (7.5) is via (2.4) the same as the choice of a
homotopy equivalence (*) in the introduction. The obstruction for the naturality of
(x) is therefore the same as the obstruction for the naturality of (7.5) in Ho(cross).
But clearly this is the same as the obstruction for the naturality of the ratraction
» and this obstruction is the element {®°} in Ext!,(A%,®Z/2). This proves (1.9).

q.e.d.
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