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Abstract.

We establish the construction of special holomorphic maps into the group OG of

based loops, called extended solutions, from a pluriharmonic map of a simply connected

complex manifold into a compact Lie group G. As its application many results on a

harmonie map of aRiemann surface inta a Lie group can be extended to a pluriharmonie

map of a complex manifold. Moreover we show the unique factorization theorem for a

pluriharmonie map into the unitary group U(N) with the singularlty set of codimension at

least 2 in the domain eomplex manifold, by introducing the nation of rational unitons.



Introduction.

Let M be a eomplex manifold and N be a Riemannian manifold. A smooth map

cp : M ----+ N ia called pluriharmonie if the (O,1)-derivative V"{}cp of 8cp vanishes iden­

tieally. The notion of a pluriharmonie map is a natural extension of a harmonie map from a

Riemann aurface. Though the pluriharrnonicity ia mueh stronger than the usual

harmonicity» the class of pluriharmonie maps contains so many interesting examples of

harmonie map8 (cf. [13]). There are many beautiful results on harmonie map8 !rom

Riemann surfaees (cf. [4] J [5]). It is interesting and important to generalize them to

results for a pluriharmonie map from a eomplex manifold and to develop the theory of

pluriharmonie maps. The theory of pluriharmonie maps ia closely related to differential,

algebraie and analytic geametry oI the domain complex manifolds and theory of

holomorphie maps and meromorphic maps. In tms paper we shall find direct links of

pluriharmonic maps with holomorphie maps or meromorphic maps.

In the paper [24]) Uhlenbeck gave many remarkable results on the theory of har­

monie maps !rom Riemann surfaces inta Lie graups) which are closely related to several

works in mathematica1 physics ( [32]) [33]). There are many excellent works about this

subjeet (cf. [5]). In this paper we develop such theory for pluriharmonie maps !rom

complex manifolds.

The notion of extended solutions of a harmonie map from aRiemann surface into a

Lie group played a central role in the theory of [24]. We shall establish the construction of

*extended solutions CI A) A E ( ) for a pluriharmonic map cp !rom a complex manifold M

into a compact Lie group G. An extended solution can be considered as a special

holomorphic map from M into the group OG of based loops in G. In the same way as in

[24]) we ean introduce the notion of unitons and uniton equations for a pluriharmonie
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map. We shall get the finiteness of the Laurent expansion in ~ of the based extended

solution CI~ for a pluriharmonic map horn a compact complex manifold, and we shall

prove the formula for the difference of energies in adding a uniton, generalizing a previous

one due to the second named author [26]. In our theory we need the nation of not only

smooth unitons but also rational unitons. Ey using the method of [24] and results from

the theory of rational maps and coherent sheaves, we shall show the unique factorization

theorem for pluriharmonic maps from a simply connected compact complex manifold inta

the unitary group U(N) with the singularity set of complex codimension at least 2 in the

domain. Hence we see that any pluriharmonic map !rom a simply connected compact

complex manifold into U(N) can be obtained from a holomorphic map, generally a

rational map, ioto a complex Grassmann manifcld. The interesting problems are the

removability or resolution of the singularity in the factorizatioo for a pluriharmonic map

and the explicit coostructioo of pluriharmonic maps from a specific compact complex

manifold ioto U(N). Moreover by the methods cf [32], [33], [24] and [18], [21], [9],

we also can make the action of the loop algebra and loop group on the space of

pluriharmonic maps ioto a compact Lie group.
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1. Pluriharmonic maps.

Let M be a connected eomplex manifold and N be a eonnected lliemannian mani­

fold with a lliemanman metrie gN' Let t.p: M --+ N be a smooth map from M to N .

The differential drp: TM --+ rp-lTN extends by complex linearity to

drp : TM( --+ <p-lTN( . Relative to the eomplex strueture J of M we have a deeompo­

sition TM( = TM(l,O) ED TM(O,l) . By restrieting drp to eaeh factor we define the bundle

maps 8cp: TM(l,O) --+ <p-lTN( and 7Jcp: TM(O,l) --+ cp-lTN( . Using the indueed

conneetion V<P and the "t9--<>perator of TM(l,O) J we define the (O,l)-exterior derivative of

8rp by

11

(V Dcp)(Z) = V<p ( 8<p( Z)) - 8cp(d11 Z)
W W W

for each Z,W E C(D(TM(l,O)) . Then rp is ealled pluriharmonie if <P satisfiea Vfl 8<p = 0 .

We see immediately the following.

Proposition 1.1. A smooth map <p !rom a eomplex manifold M to a Riemannian

manifold N is pluriharmonie if and only if for any holomorphic eurve 1,: C --+ M , the

composite <p 0 t. ia always harmonie.

Note that a pluriharmonie map tp: M--t N ia harmonie with respeet to any Kähler

metrie on M (we can always give a Kähler metrie in a small neighborhood of M ).

Assume that M ia a Kähler manifold. Denote by gM and VM its Kähler metrie

and Riemannian eonneetion. The seeond fundamental form Vd<p of the map <p ia defined

by
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(Vd<p)(X,Y) =(Vyd<p)(X) = V~(dcp(X)) - dcp(V~X)

for each X,Y E CaJ(TM() . Since VM is a Riemannian connection of a Kähler metric

gM ' the (O,l)-part of VM is the 7J--oPerator of TM(l,O) . Hence the (l,l)-part of the

second fundamental form Vd<p coincides with V" 8<p •

Lemma 1.2. Let <p: M --t N be a pluriharmonic map !rom a complex manifold M

to a Riemannian manifold N . Then we have

for each Z V W E T M(I,O) and each x E M 1 where RN denotes the curvature tensor
" x

field of N . -

Proof. Choose a Kähler metric gM defined on some neighborhood U of x. We

denote by R<P and RM the curvature forms of V<P and VM respectively. For any

Z,V,W E CU(TM(1,0)) , by Ricci identity we have

o= (V2d<p)(W,V,Z)

= (V2d<p)(W,Z,V) + (ft(Z,V)dcp)(W)

= R<J'(Z,V)dcp(w) - dcp(RM(Z,V)W)

= RN(dcp(Z),d<P(V))dcp(W) .

q.e.d.

Remark. (1) Let (M,g,J) be a general Hermitian manifold and tJ) be its fundamen­

tal 2-form, w(X,Y) = g(JX,Y) . (M,gJJ) is called cosymplectic if w ia coclosed,

dcJI1-1 = 0 . Then (M,gJJ) is cosymplectic (resp. Kähler) if and only if any pluriharmonic
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map !rom (M,g,J) is harmonie (resp. (1,1)-geodesic).

(2) In the case when (M,g,J) is complex 2-dimensional, M ia coaymplectic if and

only if M is Kähler. Let M = G/ C(T1) = G(/P be a generalized ßag manifold with a

fixed homogeneous complex manifold structure. If g ia a G-invariant Riemannian metric

on M, then g is a coaymplectic Hermitian metric on M.

Lemma 1.3. If the curvature operator ~ N of N is nonnegative or nonpositive,

then the curvature form Rft' of V«J in <p-lTN( is of type (1,1).

Proof. By Lemma 1.2, for any Z,V ET M(1,O) we have
x

gN(RN(dCP(Z),dcp(V))d<p(V),dcp(Z))

= gN( st N(d<p(Z)Adcp(V)), dCP(Z)Ad<p(V») = 0

Since ~N ia positive semi-definite or negative semi-definiteJ we get

9l N(dcp(Z)Adcp(V)) = 0 . Hence R<P(ZJV) = RN(d<P(Z),dCP(V)) = 0 . Similarly

R<P(Z,V} = 0 .

q.e.d.

Proposition 1.4. Let tp: M ---+ N be a pluriharmonic map !rom a complex manifold

to a Riemannian manifold whose curvature operator is nonnegative or nonpositive. Set

E = <p-lTN( and denote by h the Hermitian metric of E induced !rom gN through

<p . Then there exists a unique holomorphic vector bundle structure in E such that the

connection Vtp coincidea with the Hermitian connection of (E,h) with reapect to this

holomorphic structure.
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Proposition 1.4 follows from Lemma 1.3 and a well-known result of [11] (cf. [10]).

Remark. It ia well-known that if N ia an n-dimensional simply connected compact

irreducible Riemannian manifold with nonnegative curvature operator, then

(i) N ia homeomorphic to a aphere (in case n ~ 6 , diffeomorphic to a

aphere),

(ü) N ia diffeomorphic to a complex projective space, or

(üi) N is isometrie to asymmetrie space of eompaet type.

Let <p: M --+ N be a smooth map !rom a complex m-dimensional complex

*manifold (M,J) to a Riemannian manifold (N,gN)' Set ß(X,Y) = (<p gN)(JX,Y) for

X,Y E TxM . Then the (l,I)-part rJ.l,l) of ß is a nonnegative real (1,I)-form on M.

We define the energy form ~(r,o) as ~(tp) = rJ.1,1) ;

"(cp) = v'=f~ gN( tp. J~)dziAdz.i ,l . . 1 1 Jl,J=

where {zi} is a loeal complex coordinate system in M and {<Pi ''Pr} denote th~ compo­

nents of d<p with respect to {zi}. The energy of <p relative to a Hermitian metric g on

M of fundamental 2-form w ia given by

(1.1) Ew(rp) = (l/(m-l)!) f ~(rp)Awm-l
M

if M ia eompact. Because e(<p)*l = (l/(m-l)!) 6(<p)AcJI1-1 .

Lemma 1.5. (1) If ep ia a pluriharmonic mapJ then the (1,1)-form 8(ep) is closed
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([12], [13]). Moreover if M is compact and M has a cosymplectic Hermitian metric of

fundamental 2-form w, then the energy Ew( rp) depends only on the cohomology dass

[wm-l] En2m- 2(M,IR) .

(2) Let g be a cosympleetic Hermitian metrie on M of fundamental 2-form w. If

rp : (M,g) --+ (N,gN) is harmonie, then we have

(1.2) ..pr(d I dU ~(rp))Awm-2

where {'Pi} are the components of O<p with respect to a Ioeal unitary frame field of

TM(I,O) relative to g.

~. (1) follows from the closedness of ~(rp) and (1.1). By using the Ricci iden­

tity, simple computations show

(1.3) ..pr(d I d" ~(rp))Awm-2

where tr V" Dcp =2. (V 11 Dcp). . Since IJ) is coclosed, we have trg V" {}tp = (I/2) Tin )
g i =1 r 1 r

where T cp is a tension field cf cp. Hence (1.3) reduces to (1.2).

q.e.d.

Remark. (1.2) ia a slight extension of Bochner type identity of [20]. From this we
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see the following. Let cp: M ---+ N be a harmonie map !rom a compact Kähler manifold

M to a Riemannian manifold N with nonnegative curvature operator. Then the following

statements are equivalent each other:

(i) cp is a pluriharmonic map.

(ü) The curvature form of the indueed connection VCP in cp-ITN( is of type

(1,1) .

(üi) There exists a holomorphie vector bundle strueture in cp-ITN( with the

7J-operator (V'P)" , where (V~" denotes the (O,1)-part of the connection Vcp.
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2. Pluriharmonic maps into Lie groups.

Let M be a complex m-dimensional connected complex manifold and G be a Lie

group with the Lie algebra g. Denote by J1.G the Maurer-eartan form of G ) which is a

left invariant g-valued I-form on G. Let cp: M -----+ G be a aIDooth map. Set

*
Q = CP IJG ' which ia a g-valued I-form on M. Then we have the decomposition

Q = a' + a" cf a into (l,O)-and (O,I)-parts relative to the complex structure of M . By

the Maurer-eartan equation, the g-valued I-form a satisfies

(2.1) da + (1/2) [0 A a] = 0 .

This is equivalent to the flatness of the connection d+a, which means an integrability

condition for a smooth map into G. (2.1) is equivalent to the following system of

equations:

(2.2)

(2.3)

(2.4)

dlla' + d' a" + [a' A a"] = 0 ,

d' a' + (1/2)[0' A a'] = 0,

dlto" + (1/2) [a" A a"] = 0 .

We recall that in the case when M is aRiemann surfaee, the harmonie map equation of cp

ia d"o' - d' an = 0 (cf. [24], [5]).

Lemma 2.1. '{J: M -----+ G is a pluriharmonic map if and only if the 1-form a

satisfies
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(2.5)

Proof. By Proposition 1.1 the pluriharmonicity of cp ia equivalent to that, for each

holomorphic eurve i : C --+ M , cp 0 i : C --+ M ia harmonie. Since the harmonie map

* * *equation of cp 0 i ia d"(i 0')' - d' (i 0')11 = i (d"a' - d' 0''') = °,thia ia equivalent to

that (d"O" - d' a")(Z,'Z) = 0 for each Z E TM(I,O) . Henee (2.5) ia the pluriharmonic

map equation for r.p.

q.e.d.

Note that the pair of (2.2) and (2.5) is equivalent to the pair of

(2.6)

(2.7)

dlla' + (1/2) [0" A 0'11] = 0 and

d' a" + (1/2) [0" A 0'11] = 0 .

Lemma 2.2. Assume that G is a compact Lie group equipped with a bünvariant

Riemannian metrie gG indueed by an AdG-invariant inner product (,) of g. Let

r.p : M --+ G be a pluriharmonic map flom a complex manifold M to G. Then (1) we

have

(2.8)

(2.9)

[a' A 0"] = [a" A 0'11] = 0 and

Moreover (2), setting A = {1/2)O' , the curvature form of the G-connection dA = d+A

in the trivial vector bandle Y = M x V is of type (1,1), where V is an arbitrary
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G-module.

Proof. (1) Since the curvature tensor RG of the Riemannian manifold (G,gG) at

the identity e is given by RG(X'Y)e = -(1/4)ad [X,Y] for X,Y E g , the curvature

operator of (G,gG) is nonnegative, and hence by Lemma 1.3 we have

RG(d<P(Z),dcp(W)) = RG(dcp('Z),dCP(W)) = 0 for each Z,W ET~l,O)M . Thus by the left

translation and the AdG-invariance of ( ,) we get

I [a(Z),o(W)] 1
2 = 1 [a(Z),o(W)] 1

2 =0 for each Z,W E TxM(l,O) , which is equiva­

lent to (2.8). (2.9) followa from (2.3), (2.4) and (2.8). (2) Ey (2.1) the curvature form of

the connection dA ia dA + (1/2) [A AA] = -(1/8) [0 A 0] . Ey (1) we see that the

curvature form ia of type (1,1) .

q.e.d.

Remark. (1) In case m = 1 the statements of Lemma 2.2 are trivial. In case m ~ 2

the compactness of G ia essential to the statements. (2) When V = g , the connection

dA coincides with the connection induced from the Riemannian connection of (G,ga) .

Set dA = d' +A' and dÄ = dll+AIl ,where A' = {1/2)o' and A" = {1/2)0" .

It follows from (2.2), (2.5), (2.6) and (2.8) that a smooth map cp: M~ G is

*pluriharmonic i! and only if A = (1/2)cp Pa satisfies

(2.10) dÄ 0 dÄ= 0 and dÄA' = °.

The condition dÄ 0 dÄ= °is the integrability condition for the l-operator dÄ j by

[11] it produces a holomorphic vector bundle structure in V . The condition dÄA' =0

means that A' ia a dÄ-holomorphic section of T*M{l,O) 0 End(Y) . So A' can be

considered as a Riggs field. In [19], Simpson called a pair (E,w) of a holomorphic vector
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bundle E and a holomorphic 1-form 'l' with coefficients in End(E) a Higgs bundle, and

investigated such pairs satiafying [w A w] = 0 . These objects had previously been

investigated by Hitchin [8] in the case of Riemann surfaces. We conclude with the

following.

Corollary 2.3. If tp: M ----+ G is a pluriharmonic map into a compact Lie group

G , then for any G-module V the pair (E,1i) of E =Y with the dÄ-holomorphie

structure and t = A' ia a Higgs bundle aver M satisfying [t A t] = 0 .

The complex strueture J of M induces endomorphisms of T*M( and

T*MG: ~ gG: . We define a g(-valued I-form Jo on M as (Jo)(X) = a(J(X)) . Then the

pluriharmonic map equation (2.5) is written as {d(Jo)}(l,l) = 0 .

For any smooth map cp: M ----+ G , ,the energy form ia given by

(2.11) 6 (tp) = R(0' A Oll)

which ia real (I,I)-form on M. Here ( ,) ia the AdG-invariant inner product of 9

which induces the biinvariant Riemannian metric gG on G, and

(a' A a")(X,Y) = (a' (X),ol1(Y)) - (0' (Y),all(X)) . Let g be a cosymplectic Hermitian

metrie on M of fundamental 2-form w. Then tp: (M,g) ----+ G ia harmonie if and only

if

(2.12) () rn-Id Jo A w = 0 .

The energy of tp relative to a Hermitian metric g of fundamental 2-form w ia given by
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Ew(cp) = (rn/rn!) f ~ (cp) A wm- 1

M

if M is compact. Moreover the following lemma follows from Lemma 1.5 direct1y.

Lemma 2.4. Let cp: M ---i G be a smooth from a complex manifold M.

(1) H cp ia pluriharmonic, then ~(cp) is a closed real (1,1)-form. Moreover if M is

compact and M has a cosymplectic Hermitian metric of fundamental 2-form lIJ, then the

energy ElIJ(cp) depends only on the cohomology dass [~(cp)] EH2(M,IR) and

[lIJm-l] E H2m- 2(M,IR) .

(2) For any fundamental 2-form W of a cosymplectic Hermitian metric g in M) if

cp : (M,g) ---i G is harmonic) then we have

Remark. (1) In general, for any (1,l)-form W on M, we also define ElIJ(cp) as

(2.13). (2) The fonnula (2.14) is useful. (2.8) follows also !rom the formula (2.14).
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3. Extended solutions of a pluriharmonic map.

Let M be an m-dimensional connected complex inanifold. First we prepare the follo­

wing lemma.

Lemma 3.1. Let 9 be a Lie algebra over IR and g( be the complexification of g.

Let er be a g-valued I-form on M and a = (J' + a" be the decomposition of a into

* 4 ,(I,O)-and (O,I)-parts. For A E a: = G:\{O} ,set aA = (1/2)(I-A )a + (1/2)(I-A)a" ,

which is a g(-valued I-form on M. Then

(3.1)

*holels for each A E a: if and only if the I-form a satisfies (2.2), (2.5), (2.8) and (2.9).

Proof. We compute

daA+ (1/2)[a A A a;\]

= (1/2)(1-A-1)d' 0' + (1/2)(1-;\-I)d"a ' + (1/2)(I-A)d ' a" + (1/2)(I-A)d"o"

+ (1/8)(1-A-1)2 [0' Aa' ] + (1/4)(1-;\-1)(1-;\) [a' A all] + (1/8)(I-A)2 [all A all ]

= (1/2)(I-A-1){dll a' + (1/2) [0" A a ll
]} + (1/2)(1-A){d ' a" + (1/2) [a' A o"]}

+ (1/2)(1-A-1){d' a' + (1/4)(1-A-1) [0" A a']}

+ (1/2)(I-A){dIt Q It + (1/4)(1-;\) [a" A a"]} .

Lemma 3.1 follows !rom this equation.

Let G be a compact Lie group with a biinvariant Riemannian metric and

q.e.d.
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*cp: M -----+ G be a smooth map. Set a = cp /Ja = 0' + alt , where a' and a" denotes

•the {l,O)-part and {O,l)-part of a respectively. Set for each A E( ,

(3.2) aA = (1/2)(I-A-1)o' + (1/2)(l-A)a" .

Let G( be the complexification of G . We consider linear differential equations

(3.3)

of smooth maps t A: M~ G( for each A E (* . If we fix a realization of G( in a

general linear group GL{N,() such that G = aa: n U(N) , then (3.3) can be written as

(3.4)
[

d'tA = (1/2)(I-A-1)tAa'

d" ~..\ = (1/2)(I-A)t Aa"

*for each A E( . Since the integrability condition of the linear equations (3.3) or (3.4) is

*(3.1) for each A E( , hence it follows from Lemmas 2.1, 2.2 and 3.1 that "the plurihar-

monicity of a smooth map cp from a complex manifold M to a compact Lie group G is

equivalent to the integrability condition of the linear equations (3.3) or (3.4) for all
*A E ( ". Thus we get the following.

Theorem 3.2. (I) Let M be a connected complex manifold with the fixed base point

XoE M and G be a compact Lie group. Assume that M is simply connected, more

generally, Hom(r1{M),G) = {I} . H <p: M~ G is a pluriharmonic map, then for any

map h: (*~ G( there exists a unique map ~: (* )( M~ Ga: such that

* *t A(xO) = t{A,xa) = h(A) and t All a: = aA for each A E «: .
G
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(2) Conversely, if a map CI: (* x M ----t G( satisfies

* 1 *CI)./J (= (1/2)(1->"- la' + (1/2)(1->")0" for each ). E ( , where a' and a" are
G

( * (g -valued (1,0)- and (O,I)-forIDS on M independent of >.. E ( , then I_I : M ----t G

satisfies (2.5), (2.8) and (2.9).

The map t: (* x M ----t G( is called an extended solution of a pluriharmonic map

t.p = 1_1 (or extended pluriharmonic map).

Remark. (1) 1 1 is always a constant map. (2) 4»_1 = a<p for some a E Ga: . (3) If

h: (* ----t G( is holomorphic, then l) ).(x) is holomorphic in >.. e (* for each fixed

x e M . (4) If h()') E G for each ). E S1 , then t). : M ----t G for each ,\ eSI .

From now on we cansider only extended solutions satisfying 1 1 = e . An extended

solution CI ia called real if t). : M ----t G for each ). E SI . An extended solution t ia

*called~ if t). (xO) =e for each >.. e l[ . Note that a based extended solution ia al-

ways real.

Let nG be the group of all based smooth loops in G, that is, nG = {i : SI ----t G

smooth, nl) = e} . Let ~: nG ----t G denote the natural projection defined by

'" i) = n-l ) for i EnG . Any real extended solution t: (* x M ----t G( can be re­

garded as a sIDooth map t: M ----+ flG by (t(x))(>..) = t ).(x) for x E M and >.. E SI .

We can give same observations on extended solutions as maps into OG similar to [2] and

[5] . It ia well-known that OG has the standard infinite dimensional complex manifold

structure J1 which makes, together with Li/2-metriC, oa into a Kähler manifold of

Kähler form -S (cf. [16]). Moreover flG has an interesting nonintegrable almost

camplex structure J2 ( [2], [5]) . Then we see that any real extended solution

CI : M ----t OG of a pluriharmonic map <p: M ----t G is a J1- and J2-holomorphic map.
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Hence we obtain the following.

Theorem 3.3. Assume that a complex manifold M satisfies Hom( 'K1(M),G) = {1} .

If cp: M --t G is a pluriharmonic map, then there exists a J I-holomorphic map

~ : M --t OG such that the diagram

M-------tcp

OG

l~

commutes.

Remark. Ey results of Atiyah-Donaldson [1], there exists a bijective correspon­

dence between the space of based J I-holomorphic maps of a Riemann aphere S2 into G

and the space of framed G-instantons over [R4.

We recall the following fact on OG (cf. [6]):

Fact. (1) The left invariant symplectic form on oa is given by

S
1 .

S(X,Y) = (X(t),Y(t))dt

o

for each X,Y EOg . Here ;\ = e21fA t .

(2) If H3(G,ll) ~ H2(OG,ll) ~ II , then the positive generator [10G] E H2(OG,ll) is

represented by 10G = -{ I 61 2/811"2)S ,where 6 denotes the highest root of G .

Theorem 3.4. Let M be an m-dimensional connected complex manifold. Assume



-19-

that a pluriharmonic map f{J: M ----i G has areal extended solution ~ : M ----i OG with

t -1 = f{J • Then the following statements hold:

(1) The cohomology class [( I01 2/161f) ~(<p)] ia integral.

(2) The energy of f{J relative to a (1)1)-form w on M ia given by

(3.5)

if M ia compact.

(3) Moreover if w is a Hodge metric on M so that M is a projective algebraic

manifold, or more generally w ia a fundamental 2-form of a cosymplectic Hermitian

metric on M such that the cohomology dass [wm- 1] is integral, then we have

(3.6) 2Ew( ep) = (16m1r/m! I61 )degw(ep) )

where degCo/{<p) = L4i* [rem] A[Co/rn-I] is a nonnegative integer.

Proof. Eya simple computation we have

(3.7) *~ S = -(11"/2) ~(<p) .

Hence by Fact (2) and (3.7) we get

(3.8) 2 *(I61 /1611") ~ (ep) = ~ i OG .

Thus we get (1). Integrating (3.8) over M relative to wm- 1 , we obtain (2). (3) follows

from (2). q.e.d.
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This theorem pravides a prlon ouantization cf the energy form of pluriharmonic maps

tp : M ----t G I ar in the language of physicists, a topological charge.

Assume that tp: M ----t G is a nonconstant pluriharmonic map from a compact

complex manifold and tp has areal extended solution t: M ----t OG with 1_1 = tp . Let

g be any Hermitian metric on M of fundamental2-form w. For A = eAt E S1 , the

energy of t,\ : M ----t G reduces to

= (1/2)(1--eos t)Ew(cp) .

Therefore we have (d
2
/dt

2
)E (-I \) I = -(1/2)E (tp) < 0 .

W J'\ t=1I'" W

Theorem 3.5. Let M be a simply connected compact cosymplectic Hermitian mani­

fold and G be a compaet Lie group with a biinvariant Riemannian metric. Then any non­

constant pluriharmonie map cp: M --J G is unstable as a harmonie map for any cosym­

plectic Hermitian metric on M.

Corollary 3.6. Let (pm be a complex projective space with the Fubini-Study

metric. Then any nonconstant harmonie map r.p: [pm ----t G is unstable.

Proof. It follows !rom Theorem 3.5 and a result of [12] .

q.e.d.

Remark. Every argument and result in [27], [28] and this paper remains valid in
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the case oI pluriharrnonic ganges in the spirit of [28] ) i.e. solutions (A)t) oI

F (A) + (1/2) [t)t] = -21r1='f p,(V) J

-aAt =0 ) [~ )~ ] =0z z z

7JAo(}A=O

on a Hermitian vector bundle V ----i M ; in the notation of the paper.
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4. Uniton and minimal uniton number for a pluriharmonie map.

Assume that G ia the unitary group U(N). Set Gr((N) = {a EU(N); a2 = I} .

Each eonnected eomponent of Gr((N) is a eomplex Grassmann manifold Gt ((N) for

o~ t ~ N . Each Gt ((N) has the Hermitian symmetrie spaee strueture indueed from

biinvariant Riemannian metrie of U(N) .

Let M be an m-dimensional complex manifold. We call that a pluriharmonie map

cp : M ----+ U(N) has at most uniton number n if there exists areal extended solution cl

such that

(i) cl has the Laurent expansion in " E (* of the form • \ = ~ T."i ,
1\ l. 0 1

1=

Tn~ 0,

(ii) CI1 = I , and

(iii) 1_1 = atp for some a E U(N) . Here Ti : M ----+ gr(N,G:) .

A pluriharmonie map cp is called an n-uniton if cp has minimal uniton number n. A

o-uniton is a constant map to the"identity.

We can show the following fundamental results about unitons in the same way as in

[24] .

Theorem 4.1. A pluriharmonie map cp: M ----+ U(N) ia a l-uniton if and only if

cp = a h for same a E U(N) and a holomorphic map h: M ----+ Gt ((N) CU(N) .

*Proof. Consider maps cI..\ = P + ..\Q : M ----+ GL(N,G:) for ..\ E 4: • By simple

computations we observe that 11 satisfies (3.4), the reality condition and cl1 = I if and

only if p 2 = P* = P, p.Ld"P = 0 and Q = I-P = p.L . Note that the condition
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.1-
P dllP =0 is equivalent to the holomorphicity of the vector subbundle f. of the trivial

holomorphic vector bandle iN =M )( [N corresponding to the Hermitian projections P .

Theorem 4.1 follows !rom this observations.

Theorem 4.2. Assume that M is a compact complex manifold. H t is a based

extended solution of a pluriharmonic map c)-1 = CI' : M ----t U(N) with cp(xO) = I , then

* q.
I has finite Laurent expansion in " E( ,that is, cl" = 1:. Ti"l for some p,q ~ 0 .

l=-P

In particular any pluriharmonic map CI': M ----t U(N) !rom a simply connected compact

complex manifold M always has finite uniton number.

Proof. Ey (3.4), (2.5), (2.6) and (2.7) a simple computation shows

(4.1) d'(dll(} -t a") dll(d'c) -t a')
" ,,- A"

=-(1/2)1,,{'\(d'Q'1l + (1/2)[0" A o"]) + (d'afl-<{I'a')

- ,,-l(d ll a' + (1/2) [0" A a"])} = 0 .

Choose a Hermitian metric g on M. By (2.5), (4.1) becomes

In particular each coefficient Ti of CI,\ in ,\ is a solution of a linear elliptic equation

(4.2) L(f) = 2 tr d' d"f - tr d' !Aa" + tr dllfAa' =0g g g J

for a g~NJ()-valued smooth function f on M. By the compactness of M J the solution
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space of L(f) = 0 is finite dimensional. Now we eau apply the argument in proof of [24,

Theorem 11.5] to our situation by using (3.4). Hence we get the first statement of

Theorem 4.2. The second statement follows from it and Theorem 3.2 (1).

q.e.d.

By applying the argument of [24, Section 13] to extended solutions of a plurihar­

monie map, we get the following.

Theorem 4.3. Let cp: M --t U(N) be a pluriharmonic map from a complex mani­

fold M with finite uniton number. Then there exists a unique real extended solution CI

such that iJ1 =I, t_1 =a I{J for sorne a E U(N) ,t,\ =~=oTl (,\ E (*), Tn '1 0,

N Nand V0(t) = ( ,where V0(t ) denotes the vector subspace of ( spanned by

{(TO)xv ; x E M , v E (N} . Moreover n is equal to the minimal uniton number of cp.
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5. Uniton equations and rational umtons.

Let cp: M ---+ U(N) be a pluriharmonic map from a complex manifold M. We

recall the bijective correspondence between complex subbundles 1] = P of the vector

bundle IN = M x (N with rank t and smooth maps

TI7] - ~ = p - pi: M--l Gt ((N) C U(N) I where TI! (resp. ~) denotes Hermitian

projections onto 1/ (resp. its orthogonal complement 1] in,{N) and P denotes the

image subbundle of the Hermitian projections P (Le. p2 = P* = P) in ~N . We assume

•that CI: ( x M ---+ GL(N,() is areal extended solution of the pluriharmonic map
1. N

1_1 = cp. For a smooth map P - P : M -. Gt(d: ), set

~A = t A(P + AP~ : M ---+ GL(N)d:) for each AE (* . Note that ~A : M ---+ U(N) for

each A E SI . Set ~ = ~-1 : M ---+ U(N) .

Theorem 5.1. I is also an extended solution, Le. a solution to (3.4), if and only if the

Hermitian projections P satisfy

(5.1)

(5.2)

l.
P a'p = 0 and

l.
P (dllP + (1/2)a"P) = 0 .

(5.1) and (5.2) are equivalent to

(5.3)
.L

Pallp = 0 and

(5.4) P(d/pl. + (1/2)a'P~ = 0 .
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N N N-ldN NI Nil
Moreover in this case cp: M --t U(N) is pluriharmonic and 0' = cp cp = a + 0' is

given by

(5.6)

(5.7)

(5.8)

(5.9)

a' = a l
- 2d 1 P ,

an = a ll + 2d llP .

Proof. Ey direct computations we have

t~d/t~

= (1/2)(1_~-1){~-lp.La l p + (0 1 -2d I P) _ p.La l p _ P(2d 1 p.L + 0" P-l
.L .L+ AP(2d / P + a'p )}, and

~ d"~A A
= (1/2)(1_,\){,\-lp.L(2dIl P + a"P) + (all + 2d"P) _ panp.L

.L .L
- P (2d"P + aUP) + APallp } .

Theorem 5.1 follows from (5.8), (5.9) and Theorem 3.2 (2). q.e.d.

The equations (5.1) and (5.2) are called uniton eguations for a pluriharmonic map

cp • A solution of the uniton equations is called a (smooth) umton for cp.

Following Lemma 2.2 (2) and (2.10), we endow the trivial bundle !N over M with

the holomorphic vector bundle structure of the o-operator dÄ= d11+A", and A' is a

dÄ-holomorphic I-form with values in End(~N)~N). We can restate Theorem 5.1 as

folIows.

Theorem 5.2. ~ ia an extended solution if and only if the subbundle P oI ,g:N is (i)
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A' -stable, i.e. (A I (Z))C(l)(P) (C(I)(P) for any Z E C(I)(TM(I,O)) , and (ü) a dÄ-hol0­

morphic 8ubbundle, Le. (dÄ) C(I)(P) c CCD(p} for any Z E C(I)(TM(I,O)) .
z

This procedure of making a new pluriharmonic map ~ from a given pluriharmonic

map cp ia called addition of a union. We show a formula for the difference of energies in

adding a uniton. In case m = I , the formula was shown by the second named author

( [26] ).

We define a eomplex bilinear form (,) and a Hermitian inner product (, > of

g{(N,() aB

(A,B) = - tr(AB) I

* *(A,B) = - (A,B ) = tr(AB ) .

Theorem 5.3. Let M be an m-dimensional compact complex manifold and

cp : M --+ U(n) be a pluriharmonic map. If ~ = rp(P-P~ : M --+ U(N) is a plurihar­

monie map obtained !rom cp by addition of a umton P , then for any real (I,I}-form w

on M with dwm- I = 0 we have

(5.10)

where deg)?) =Lcl(?}Awm- l is the G-ciegree of the complex vector b ? , and

degw(P) ia an integer if the cohomology dass [wm- I] is integral.

We prove the formula (5.10) by showing the following lemmas.

Those are loeal results. We do not need the compactness of M . First it is standard to



-28 -

observe the following.

Lemma 5.4. Let VA be the connection of a complex subbundle P induced from a

connection dA in iN j for each section s of P I

Then the curvature from F(VA) cf the connection VA is given by the End(P,P)-valued

2-fonn

where F(A) denotes the curvature form of the connection dA .

Set

which ia a closed real2-form on M. By the ehern-Weil theory, cl(PJVA) represents the

first ehern class cl(P) cf the complex vector bundle P.

Lemma 5.5. If P is a uniton for a pluriharmonic map cp: M --+ U(N) and we set

~ = cp(p_p.l) : M --+ U(N) I then we have

(5.13)
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In particular we have

(5.14) [(1/8'11") ~(~)] -[(1/8~) ~(<p)] = -cl(P)

as integral cohomology classes.

Prcof. By (5.6), (5.7) and the uniton equations we have

(5.15)

(5.16)

Hence using uniton equations we compute

6(~) = y=T(a l Aa")

=y=T{(aIPAa") + (p.Lal Aall
) -4(P.LdAPAdÄP)} .

Thus we get

~(~)- 6(<p) = y=T{( a I PAall)-(Pa l Aa ll )--4(dAPAdÄP)} .

Since P(dAPAdAP)P = --dAPAdÄP by dÄ-holomorphicity of P and

F(A) = F(A)(1,1) = -{1/4) [al Aall ] , we have

(5.17) ~(~)-6(<p) = y=T{-( [al Aa"] ,P)-4(dAPAdÄP)}

=--4y=T tr(F(A) + dAPAdAP)P .
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q.e.d.

Proof of Theorem 5.3. Since M is compact, by contracting (5.13) with wm- 1 and

integrating it over M J we obtain (5.10). q.e.d.

In OUf theory it is important to introduce the notion of unitons with the singularity

since we work aver higher dimensional complex manifolds.

Let tp: M ----+ U(N) be a pluriharmonic map !rom an m-dimensional cannected

complex manifold M.

Definition. A complex subbundle 1] of ~N IW with rank t defined on a dense

open set W of M is called a rational uniton in M for VJ if the following conditions are

satisfied:

(i) " is a smooth uniton for !(J defined on W .

(ii) For any Ioeal trivialization {(UiIO"i)} of the holomorphic vector bundle

(!N,dA
II

) with holomorphic transition functions 0". 0 q:1 : U. n U. ----+ GL(N,G:) J each
1 J 1 J

holomorphic map n.--rf: u. n W ---+ Gn([N) is rational in U. , where
1 1 l.(". 1

C· = q.(" 1u.nW) ia the image bundle of 171 u.nw nnder q. : (N 1U ----+ u. x (N and
1 1 1 I 1- i 1

TI. = TI r ia the Hermitian projections onto (. in (U. n W) x (N .
I \. 1 1

1

The following lemma is fundamental for rational unitons.

Lemma 5.6. Let 11 be a rational uniton in M for tp defined on a dense open set W

of M . Set
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the graph of the map 11
17
~ : W ----; Gt ([N) . Let p and q denote the Hermitian

projection of the product manifold M x G.e.([N) onto M and G.e..((N), respectively.

Then the following statements hold:

(1) The closure 'G'[ijJ of G(1]) in M x G.e..((N) has a structure of a complex ana­

lytic space (in general it ia not an analytic subset of M x Gt((N)) such that

p : 'G'[ijJ --+ M ia a proper surjective holomorphic map and p: G( 1]) --+ W ia a biholo­

morphic diffeomorphism.

(2) There exists an analytic subset S(Tl) of M with dim(S( 1]) ~ m-2 and

W ( M-S( 1]) such that p: G( Tl) - P-1S(1]) ----+ M-S(1]) ia a biholomorphic diffeo­

morphism. Hence q 0 (p IG(17) - p-1S(1]))-1 : M-S(17) ----+ Gt((N) induces a smooth

uniton on M-S( '7) , which extends 1], and it is also a rational uniton in M for rp .
...

(3) There exists an m-dimensional connnected complex manifold M and a proper
...

surjective holomorphic map 1/: M ----+ M with a biholomorphic diffeomorphism

1/ : M-v-1S(1]) ----+ M-5( Tl) such that the smooth umton 1/-11] on 1/-lW ia extended
... ... ...

to a smooth uniton 1] for a pluriharmonic map cp = cp 0 1/ : M --+ U(N) defined globally

on M.

Proo!. Applying fundamental facts on meromorphic maps ([17] and c.f. [7]) to

each JIi~: Ui n W --+ G.e.((N) I we obtain (1) and (2). We show (3). By Hironaka's
...

resolution of singularity, there exists an m-dimensional connected complex manifold M
... ...

and a proper surjective holomorphic map 1I: M ----+ 'G'[ijJ such that

~ :M-~-1(G(1iJ_p-1S(1]» --+ 'G'[ijJ-p-1S(17) is a biholomorphic diffeomorphism. Set
... ... J'" ... N'" ...

1I = P 0 v : M ----+ M J rr ... -11... = q 0 1I : M --+ G.e. (0: ) and cp = cp 0 v : M --+ U(N) .
1] 1]
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,. ,. N
Here " denotes the complex subbundle of M )( 0: corresponding to the map q 0 v.

,. ,.

Since v is a holomorphic map, cp ia also a pluriharmonic map. Then " ia a sIDooth
,. ,.

uniton for I{J defined globally on M. q.e.d.

Let I{J: M -----+ U(N) be a pluriharmonic map and 1] be a rational uniton in M for

I{J defined on a dense open set W of M . Then we have a pluriharmonic map

~ = cp(II'7-r9 :W --+ U(N) . Following Lemm: 5.6, we take a resolution (M,l/,q) of

the singularity for the rational uniton 1]. Since " is a smooth uniten for

~ = I{J 0 v : M-----+ U(N) , we get a pluriharmonic map t/J = ~(II ... --n7) :M-----+ U(N)
1/ 11

such that ~ 0 v = t/J Iv-l(W) .

Assume that M ia compact. Since II ia proper, M ia also compact. Let IJ) be a

fundamental 2-fonn of a Hermitian metric on M. Obviously we have E w( I{J) < Q) • Then
...

by the compactness of M we have

(5.19) lD> I. ~(p)A(/w)m-1= I. -1 ~(p)A(I/*w)m-1
M M-v S(1])

J N rn-I N= ~ (cp)Aw = (m-l)!Ew(cp) .
M-S( TJ)

Therefore ~: W -----+ U(N) also has finite energy. Moreover if w ia areal (l,l)-form on

M with dJll-I = 0 , then by Theorem 5.3 we get

(5.20) Ew(~)-Ew(l{J) = -(8m1l"/m!) f . c1(q)A(/w)m-1
M

Let 0 = 0 M be the structure sheaf of M , Le. the sheaf of germs cf holomorphic

functions on M, and let 0 (~N ,dÄ) be the sheaf of germs cf dÄ-holomorphic sections of
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iN . tJ M and () (iN,dÄ) are locally fr~ coherent analytic sheaves. Then any rational

uniton 11 in M lor cp induces a coherent subsheaf &'( 11) of tJ(,{N,dÄ) satislying

(5.21) A'(Z)r{U,etI) c r(U,&')

for each open set U ol M and each Z Er(U ,TM(l,O)) , such that

() ( 1] IM - S(11)) = #(1]) IM - S(1]) .

Indeed, let Xi be the closure of the graph ef each rational map

II.-ß7: U.~ G.,((N), and let p. and q. denote the projections of U. )( G.,((N)
1 1 1 (.. 1 1 1 (..

onto Ui and Gt(N), respectively. Let Ti be the tautological bundle over Gt((N).

Then by Grauert direct image theorem (Pi)* O{qi1Ti) is a coherent sheaf on Ui ' and

{{UjJ{Pi)* O{qi1Ti))} define a coherent subsheaf &'( 17) cf O{iN,dÄ) . Obviously it

satisfies the condition (5.21).

Conversely, let (// be a coherent subsheaf of O(!N,dÄ) satisfying the condition

(5.21). Set S{ 0') = {x EM ; the stalk ct/ x at x is not uee} . Then S( #) is an ana­

lytic subset of M and dI ia locally free on M - S{ cU') . Let t = rank cI/ = rank tiIx fer

x E M - S{ #) . Since tiI is a subsheaf of a torsion-uee sheaf, dI ia also torsion-uee, and

t **hence we have dim(S( #) ~ m-2 (cf. [10]). Let det etI = (A #) be the determinant

line bundle of rtI. The indusion map j: dI -------i 0(~N ,dÄ) induces a sheaf homo-

morphism

Then 1 ia injective. Let j be the holomorphic section of the bundle

Atc~N,dÄ) ~ (det dI)* which corresponds to J ,and let B be the zero set of j ,which

ia an analytic subset of M . Let Dj , i = l,.",k , be the irreducible components of B of

codimension 1. Let Y denote the union of all irreducible components ol B ol codimension
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at least 2 so that

k
B = U D. UY .

. 1 11=

For each Di , define its multiplicity ni > 0 as follows. If X E Di - U
jfi

Dj UY and if Di

ia defined by w = 0 in a neighborhood of x, then ni ia the largest integer n such that

A ... n.
j/wn ia holomorphic. Then j/w 1 is a Ioeal holomorphie seetion of the bundle

At(.{N,dÄ) ~ (det d/)* not vanishing at x. We set

k
D = \ n.D.

l. 1 I I
1=

and [D] denotes the holomorphic line bundle defined by the divisor D. Let 0 be the

natural holomorphic section of [D] . Let

... *
be the bundle homomorphism defined by j I = j ~ (1/0) . Set M = M-Y . Then j I ia

injective over M* . Hence there exists a holomorphie subbundle 1]( <tf) of (,tN,dÄ) IM*

such that

*det 1]( #) == j I (det # 0 [D] IM)

In particular we have <tf I(M-X) == O( 1]( c!/) I(M-X)) J where X = S( #) UB . Note that

by the argument of [10, (V.8.5)] we have
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I Cl (77( #),VA)AO = I Cl (det # @ [D] )Arl
*M M

for any closed real (m-l,m-l)-form n on M with compact support, and if n is non­

negative, then we have

(5.23)

Here the first ehern class cl(&') of a coherent sheaf r// is defined by

cl( 1#) = Cl(det 1#) . Then 1]( #) is a smooth uniton for <p defined on

applying Levi extension theorem (cf. [7]) to each holomorphic map

1. * N
IIi-ll i : Ui n M ---t G.e.(( ) J we get the following.

*M . Hence, by

Proposition 5.7. The complex subbundle 1]( &') of IN is a rational uniton in M

for <p. In general, a smooth uniton 1] defined on the complement of an analytic subset of

codimension at least 2 in M is always a rational uni ton in M.

Remark. Ey using a result of [25] on the regularity of weakly holomorphic sub­

bundles we see that a section P E Li(End(.{N)) satisfies

p 2 = p* = p , (I-P)dÄP = 0 and (I-P)A'P = 0

if and only if P defines a rational umton in M for <p.

Here we show the fonnula for the difference of energies in adding a rational umton.
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Theorem 5.8. Let M be an m-dimensional cooopact complex manifold and

cp : M --+ U(N) be a pluriharmonic map. Assume that ~ = cp(TI1J-II~) : M-S ---+ U(N)

is a pluriharmonic map obtained from cp by addition of a rational uniton 11. Here S

denotes the singularity set of the rational uniton 1], which is an analytic subset of

dim(S ~ 00-2 . Let w be any real (l,l)-form on M with dwm- 1 = 0 . If we let #(1J)

the coherent subsheaf O(!N,dÄ) induced by 7]) then we have

(5.24)

where degw< #(1/)) =Lcl(#(1/»Awm- 1
. If 1/ = 1/( #) is induced from a coherent

subsheaf eil of t'({N,dÄ) in the above manner) then we have

Proof. The inclusion j: cI/( 7]) ---+ t'(~N,dÄ) induces a bundle homoooorphisoo

where t = rank1] = rank &'(n) . Since det(j) is injective on M-5 with dim(S ~ 00-2 )

by (5.22) for D = 0 we have

(5.26)

Bence we have
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(5.27)

Thus (5.24) follows !rom (5.20) and (5.27). Similarly, we get (5.25) by (5.22).

q.e.d.

We define the degree degwl1 of a rational uniton 1] relative to areal (l,l)-form w

on M with dwm- 1 = 0 as

(5.28)
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6. Factorization theorem for a pluriharmonic map from a simply connected complex

manifold.

Let M be an m-dimensional connected complex manifald. Assume that

tp: M~ U(N) ia a nonconstant pluriharmonic map with minimal uniton number n.

*Then by Theorem 4.3) cp has a unique real extended solution t: 4: )( M~ GL(N,G:)

such that 1 1 = I, 1_1 = a cp far some a E U(N), VO(t) = (N and

(6.1)
n· *

t,\ = 1: T. ,\1 for ,\ E 0: •
i =0 1

The linear equations (3.4) become

(6.2)

The reality condition of t,\ becomes

(6.3)
n *

\ T.T '+' = 0'01 .Li =0 1 J) J

Here T. == 0 far i < 0 or i > n .
1

Lemma 6.1. Given any Hermitian projection P : (N -----i (N then PTO ia a

halomorphic section of Hom{(~N ,dÄ) I(~N ,d 11 )) •

Proof. By (6.2) we have d"(PTO)-(PTO)A" = 0 . This means just the statement of
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q.e.d.

Let o(.(N,dÄ) be an analytic sheaf of germs of dÄ-holomorphic sections of IN .

Now we give a Hermitian projection P : (.N ---+ (.N . Let % p be the kernelsubsheaf of

PTO' that is, the sheaf cf germs of dÄ-holomorphic sectians of ~N such that

(PTO)s = 0 . Then X p ia a reflexive coherent subsheaf of O{~N,dÄ)' and hence the

singularity set S( X p) of the coherent sheaf % p satisfies dim(S( % p) ~ m-3 (cf.

[10]). As the argument in Section 5, the coherent subsheaf % P induces a

dÄ-holomorphic vecter subbundle 1]p = 1]( X p) cf ,{N on M* = M-S , where S is an
.L *analytic subset of M of dim(S 5 rn-2 . Let IIp (resp. ßp = 1- JIp ) : M ---+ gr{N,()

.L
be Hermitian projections onto '7p (resp. 17p ).

*Lemma 6.2. The subbundle 1]p is a rational uniton in M for cp defined on M .

*Proof. Since (PTO)A I = 0 by (6.2)) we see that 17p is a smooth uniton on M .

Hence it follows !rom Proposition 5.7 that 1]p is a rational uniton in M.

q.e.d.

We consider the case P = I . Then we get the following in the same way as [24,

Section 14] . We give the praof for the sake of completeness.

Lemma 6.3. (1) ~~ = A-1c)A(III + A~ : 11* ----i GL(N,() (A E (*) ia a real

extended solution defined on M* and ~ has the Laurent expansion *, = ~-1 ~.Ai ,
" l. 0 11=

where rj = Ti+1IlJ + Tirrt for i = 0, ... ,n-1 and VO(~) = (N .

*(2) rank rO> rank TO at each point cf a dense open subset of M .
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Proof. (1) From Theorem 5.2 and Lemma 6.2 we already know that ~ is areal

*extended solution defined over M . We compute

~ = TOIII..c
1 + ~=~ (Ti+1I1I + Tirrtpi + Tnrrt"n . Set M' = {x E Mi rank (Tolx is

*maximal} ) which is a connected open dense subset of M . Note that 71r =Ker TO on

* *M' . Therefore we have TOrrJ = 0 on M' and hence on M . Since TnTO= 0 by (6.3)

1. * 1. *and fJ1 =Im TO on M' ,we get Tnnr = 0 on M' and hence on M . Since

~O = Torrt + TInr = Ta + TIrrIon M* , we have '1'01]1 = 'r'1171 and ~OfJ~ = Ta17~
* *on M . Hence Im TO( Im 'TO at each point of M . Thus we get

VO(~) = VO(t IM*) = VO(t) = (N . (2) Set Mn = {x EM' i rank(TO)x and rank('rO)x

are maximal}, which is a connected dense open subset of M . Assume that

rank TO= rank ~O on Mit . Since Im TO= Im 'ra on MI! , we have Im(Tl rrI) CIm Ta

and hence Im(T1a' ) C Im Ta on Mit . Therefore, by it and (6.2) for i = 0 , Im Ta IMI!

is d/- and d"-stable, and hence Im Ta IMI! = 11 11
X V is a trivial subbundle of

IN IMI! = M" x (N for same vector subspace V of !N . Thus we see Im TO( M )( V .

Since (N = VO(~) = V J we have Im Ta IMI! = MI1 x (:N , Le. rank TO= N on MI! . By

(6.3) for j = n , we get Tn :: 0 , a contradiction. Therefore we conelude

rank TO< rank ~O on M" . q.e.d.

Theorem 6.4. If cp: M-4 U(N) is a pluriharmonic map with minimal number

n < m,then n ~ N .

This theorem follows !rom Lemma 6.3. In case m = 1 , this is a result in [24].

*We obtained a new pluriharmonic map ~ = ~-l : M = M-S -----t U(N) with

minimal uniton number n-l !rom a given pluriharmonic map tp: M ---+ U(N) with

N *minimal uniton number n. Again we can apply the same process to tp: M ---+ U(N) .
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Repeating this proeess, we obtain a sequence of pluriharmonie maps cp(n) = cp ,

cp(n-1) = ~, cp(n-2), ... ,rp(1), cp(O) = a E U(N) . Naturally a singularity set arises at eaeh

step. By modify the domain complex manifold M, we can take aresolution of the siogu­

larity set {or a pluriharmonic map ~ as in Lemma 5.6.

Repeating these processes l we get the following sequences of pluriharmonie maps and

complex manifolds.

Here ct1c: Mk ----+ U(N) (k = 0,,,.,0) is a pluriharmonic map with minimal uniton

number k and each vk : Mk ----+ Mk+1 is a proper surjective holamorphie map such

that vk : Mk-vk:1S ----+ Mk+1-S is a biholomorphic diffeomorphism for some analytic

subset S of Mk+1 of codimension at least 2.

Now, combining Theorems 3.2, 4.2, 4.3 and results of this section, we obtain the

following faetorization theorem for a pluriharmonic map ioto U(N).

Theorem 6.5. Let M be an m-dimensional simply connected compact complex

manifold and cp: M ----+ U(N) be a pluriharmonic map. Then cp has a factorization

over M-S ioto a EU(N) and IIk-~ : M - S ----+ Gr((N) (k = 1,... ,n) , where

(1) S is an analytie Bubset of M with dim(S ~ m-2 J

(2) each cp(k) = a(II1--rrJ ..... (TIk-~) : M - S ----+ U(N) (k = 1,... ,0) ia a pluri­

harmonie mapJ
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(3) IIk ia a rational uniton in M for cp(k) defined on M-S for each k = l,oo.,n ,

(4) nl~ : M - S ---t Gr«(N) is a holomorphic map, and moreover it induces a

meromorphic map M ---t Gr«(N) ,

(5) n(~ N) is equal to the minimal umton number of cp.

Furthermore, for any Hermitian metric on M of fundamental 2-form w, each energy

Ew(cp(k)) ia finite.

Remark. (1) The nniqneness of the factorization also holds nnder the same conditions

as in [24].

(2) In case m = 1 , the singularity set S is empty. This is a result in [24].

(3) The uniqne factorization theorem for a pluriharmonic map ioto a complex Grass­

mann manifold G.e.«(N) C U(N) also holds in the same way as in [24]. Hy using the

method of [3], [29] and [30], the first named author and Udagawa investigated the

construction of pluriharmonic maps into complex Grassmann manifolds ([14]).

Furthermore, in the case when M has a cosymplectic Hermitian metric, we show the

factorization cp(n) = cp, cp(n-l) ,... ,cp(l) in Theorem 6.5 is energy-decreasing.

Lemma 6.6. Let cp: M ---t U(N) be a nonconstant pluriharmonic map with areal

n .
extended solution lJ \ =\ T...\l and X be the kernel subsheaf of PTO. Assume

A Li =0 1 P

that M is compact and w is a nonnegative real (1,1)-form on M with dwm- 1 = 0 such

that w ia positive at same point cf M . Then we have

(6.4)

NIf P = I and VO(t) = ( ,then
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(6.5)

Proof. By Lemma 6.1, PTO induces a sheaf homomorphism

Then we have an exact sequence of the kernel subsheaf % P of PTO and the image

subsheaf ..7p of PT0 :

(6.6)

Since (~N)dll) is the trivial holomorphic vector bundle, by (5.22) and (5.23) we see

and degw( J p ) = 0 if and onIy if ..7p induces a trivial subbundle M )( (p of iN for

some complex subspace (p of (N . On the other hand, from (6.6) we have

Hence we get (6.4). Assume that P = I . Ir vO(~) = (N I then we see deg w( J p ) < 0 I

and hence degw( J{p) > 0 . Since by (5.22) and (5.28)
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for Borne effective divisor D on M) hence we get degw(1]p) ~ degw( % p) .

q.e.d.

Theorem 6.7. In the factorization of Theorem 6.5, if we suppose that M has a co­

symplectic Hermitian metric of fundamental 2-form w) then we have

E (cp(k))_E (cp(k-l)) > 0 for each k = l, ... ,n .w w

Proof. It follows !rom Theorem 5.8 and Lemma 6.6, by using the sequence

{cpn" .. ,<PO} of pluriharmonic maps. q.e.d.
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7. Pluriconformal maps.

Definition. A smooth map r.p: M -----t N from a complex manifold M to a

Riemannian manifold (N,gN) is called pluriconformal if (r.p*gN)(2,O) = (~)(O,2) =°I

or equivariantly J if for any holomorphic curve i : C -----t M, r.p 0 i ia conformal.

Assume that r.p: M -----t N is a pluriharmonic map. Then (r.p*gN)(2,0) ia a holo­

morphic section of ~T*M(l,O) and hence if M is a compact complex manifold with

cl(M) > °J then cp is pluricomormal ([12], [13]). We can show a slight extension of

this fact in the case of N =U(N)' as follows.

Proposition 7.1. Let M be a simply connected compact complex manifold and

r.p : M ---t U(N) be a pluriharmonic map. Then rp is pluriconformal.

Proo!. This proposition is a simple consequence of Theorem 6.5, the fact that cp is

pIuriconformal iff tr(A'0A') =tr( A / )2 =°,where 0 denotes the tensor product J and

the following lemma for k = 2 . q.e.d.

Lemma 7.2. Let cp: M -----t U(N) be a pluriharmonic map and ~ = rp(p_pJ.) be a

pluriharmonic map obtained by addition of a uniton P. Then we have, for each k > °J

(7.1)

and they are both holomorphic sections of 0 kT*M(l,O) .
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frQQf. Since A' = PA I P + polA' p.L - p.Ld I P by (5.14), we have

tr{A ,)k = tr{PA I p)k + tr{P.lA' p.L)k . From p.LA'p = 0 J we easily get

tr{PA I p)k = tr{P{A I )k) and tr{P.LA' p.L)k = tr{p.L{A I )k) . Hence we obtain (7.1).

q.e.d.
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8. Action of infinite dimensional Lie algebra and Lie group on the space of

pluriharmonic maps.

In Seetion 3 we established the construction of extended solutions !rom a plurihar­

monic map into a compact Lie group. As one of its applications we can construct actions of

certain infinite dimensional Lie algebra and Lie group of loop algebra and loop group type

on the moduli space of pluriharmonic maps iota a compact Lie group. There seem to be

two methods for the construction of the Lie algebra and Lie group actions. One ia the

method of Riemann-Hilbert transform due to Zakharov-Mikhailov-Shabat [32], [33]

and Uhlenbeck [24]. Another is the infinite dimensional Grassmann method due to Sato

[18] and Takasaki [21] (cf. [9] far chiral model). The actions of the infinite dimensional

Lie algebra and Lie group preserve the minimal uniton number and the actions on the

moduli spate of pluriharmonic maps with the fixed minimal uniton number reduce to the

actions of auitable finite dimensional quotient Lie algebra and Lie group. In particular the

actions on I-unitons are essentially equal to the actions of holomorphic transformations of

complex Grassmann manifolds on the space of holomorphic maps. We shall discuss them in

detail elsewhere.
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