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Abstract.

We establish the construction of special holomorphic maps into the group 1G of
based loops, called extended solutions, from a pluriharmonic map of a simply connected
complex manifold into 2 compact Lie group G . As its application many results on a
harmonic map of a Riemann surface into a Lie group can be extended to a pluriharmonic
map of a complex manifold. Moreover we show the unique factorization theorem for a
pluriharmonic map into the unitary group U(N) with the singularity set of codimension at

least 2 in the domain complex manifold, by introducing the notion of rational unitons.



Intr tion.

Let M be a complex manifold and N be a Riemannian manifold. A smooth map

¢: M — N is called pluriharmonic if the (0,1)—derivative V"8p of 8p vanishes iden-

tically. The notion of a pluriharmonic map is a natural extension of a harmonic map from a

Riemann surface. Though the pluriharmonicity is much stronger than the usual
harmonicity, the class of pluriharmonic maps contains so many interesting examples of
harmonic maps (cf. [13]). There are many beautiful results on harmonic maps from
Riemann surfaces (cf. [4], [5]). It is interesting and important to generalize them to
results for a pluriharmonic map from a complex manifold and to develop the theory of
pluriharmonic maps. The theory of pluriharmonic maps is closely related to differential,
algebraic and analytic geometry of the domain complex manifolds and theory of
holomorphic maps and meromorphic maps. In this paper we shall find direct links of
pluriharmonic maps with holomorphic maps or meromorphic maps.

In the paper [24], Uhlenbeck gave many remarkable results on the theory of har-
monic maps from Riemann surfaces into Lie groups, which are closely related to several
works in mathematical physics ([32], [33] ). There are many excellent works about this
subject (cf. [5]). In this paper we develop such theory for pluriharmonic maps from
complex manifolds.

The notion of extended solutions of a harmonic map from a Riemann surface into a

Lie group played a central role in the theory of [24]. We shall establish the construction of

*
extended solutions & It A € € , for a pluriharmonic map ¢ from a complex manifold M

into a compact Lie group G . An extended solution can be considered as a special

holomorphic map from M into the group G of based loops in G . In the same way as in

[24], we can introduce the notion of unitons and uniton equations for a pluriharmonic



map. We shall get the finiteness of the Laurent expansion in A of the based extended
solution ¢ h for a pluriharmonic map from a compact complex manifold, and we shall
prove the formula for the difference of energies in adding a uniton, generalizing a previous
one due to the second named author [26]. In our theory we need the notion of not only

smooth unitons but also rational unitons. By using the method of [24] and results from

the theory of rational maps and coherent sheaves, we shall show the unique factorization
theorem for pluriharmoric maps from a simply connected compact complex manifold into
the unitary group U(N) with the singularity set of complex codimension at least 2 in the
domain. Hence we see that any pluriharmonic map from a simply connected compact
complex manifold into U(N) can be obtained from a holomorphic map, generally a
rational map, into a complex Grassmann manifold. The interesting problems are the
removability or resolution of the singularity in the factorization for a pluﬂhq.rmonjc map
and the explicit construction of pluriharmonic maps from a specific compact complex
manifold into U(N) . Moreover by the methods of [32], [33], [24] and [18], [21], [9],
we also can make the action of the loop algebra and loop group on the space of
pluriharmonic maps into a compact Lie group.
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1. Pluriharmonic maps.

Let M be a connected complex manifold and N be a connected Riemannian mani-
fold with a Riemannian metric BN - Let ¢ : M — N be a smooth map from M to N.
The differential dy : TM — <p_1TN extends by complex linearity to
¢C__, cp_lTNC
C

de: TM . Relative to the complex structure J of M we have a decompo-

sition TM™ = TM(I’O) @ TM(O’I) . By restricting dy to each factor we define the bundle
maps 8 : TM(O) —, 5 1NC and Fp: MO 5 1TNT | Using the induced
connection V¥ and the J—operator of TM(I’O) , we define the (0,1)—exterior derivative of

dp by

1" _V @ — do(d"
(Vwﬁfp)(z) W(t‘»’ﬁo(Z)) (d WZ)

for each Z,W € C(TM{1:0)) . Then ¢ is called pluriharmonic if ¢ satisfies V"dp = 0 .
We see immediately the following.

Proposition 1.1. A smooth map ¢ from a complex manifold M to a Riemannian
manifold N is pluriharmonic if and only if for any holomorphic curve ¢ : C— M, the

composite @ o ¢ is always harmonic.

Note that a pluriharmonic map ¢ : M — N is harmonic with respect to any Kahler
metricon M (we can always give a Kihler metric in a small neighborhood of M ).

Assume that M is a Kahler manifold. Denote by gy, and V™ its Kahler metric
and Riemannian connection. The second fundamental form Vdy of the map ¢ is defined

by
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(Vdg)(X,Y) = (Vydp)(X) = TE(dp(X)) — d(VAX)

for each XY € Cm(’I‘MC) .Since VM is a Riemannian connection of a Kahler metric
By » the (0,1)—part of ™ s the ‘G—operator of ™(L0) Hence the (1,1)—part of the

second fundamental form Vdy coincides with V"dp .

Lemma 1.2. Let ¢: M —— N be a pluriharmonic map from a complex manifold M

to a Riemannian manifold N . Then we have

RN(dp(2),dp(V))dp(W) = 0

for each Z,V,W € TxM(l’O) and each x € M, where RN denotes the curvature tensor
fieldof N.

Proof. Choose a Kéhler metric gy, defined on some neighborhood U of x. We
denote by R¥ and RM the curvature forms of V¥ and VM respectively. For any
2,v,W € C(TM(10)) | by Ricd identity we have

0 = (V2dg)(W,V,Z)
= (Vidg)(W,2,V) + (R(2,V)de)(W)
= RY(Z,V)de(W) - dp(RM(z,v)W)
= RN (dp(Z),dp(V))dp(W) .
q.e.d.

Remark. (1) Let (M,g,J) be a general Hermitian manifold and « be its fundamen-
tal 2—form, «(X,Y) = g(JX,Y) . (M,g,J) is called cosymplectic if « is coclosed,
do™ 1 = 0. Then (M,g,J) is cosymplectic (resp. Kihler) if and only if any pluriharmonic
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map from (M,g,J) is harmonic (resp. (1,1)—geodesic).

(2) In the case when (M,g,J) is complex 2—dimensional, M is cosymplectic if and
only if M is Kahler. Let M = G/C(T;) = G*/P be a generalized flag manifold with a
fixed homogeneous complex manifold structure. If g is a G—invariant Riemannian metric

on M, then g is a cosymplectic Hermitian metricon M.

Lemma 1.3. If the curvature operator £ N of N is nonnegative or nonpositive,

C

then the curvature form R¥ of V¥ in (p_lTN is of type (1,1).

1,0

Proof. By Lemma 1.2, for any Z,V € TXM( we have

gn(R (d9(2),d0(V))de(V),dp(Z))

= g ( AN (dA(Z)AdAV)), TAZIRIAV)) = 0 .

Since S‘BN is positive semi—definite or negative semi—definite, we get
ANAAZ)Adp(V)) = 0 . Hence R¥P(2,V) = RN(dp(Z),dp(V)) = 0 . Similarly
RAZV)=0.

q.ed.

Proposition 1.4. Let ¢ : M —— N be a pluriharmonic map from a complex manifold
to a Riemannian manifold whose curvature operator is nonnegative or nonpositive. Set
E = qp_lTNc and denote by h the Hermitian metric of E induced from gy through
¢ . Then there exists a unique holomorphic vector bundle structure in E such that the
connection V¥ coincides with the Hermitian connection of (E,h) with respect to this

holomorphic structure.



Proposition 1.4 follows from Lemma 1.3 and a well-known result of [11] (cf. [10]).

Remark. It is well-known that if N is an n—dimensional simply connected compact
irreducible Riemannian manifold with nonnegative curvature operator, then
(i) N is homeomorphic to a sphere (in case n £ 6, diffeomorphic to a
sphere),
(ii) N is diffeomorphic to a complex projective space, or

(iii) N is isometric to a symmetric space of compact type.

Let ¢ : M —— N be a smooth map from a complex m—dimensional complex
manifold (M,J) to a Riemannian manifold (N,gy) . Set AX,Y) = (cp*gN)(JX,Y) for
XY € T _M . Then the (1,1)—part ﬂ(l’l) of § is a nonnegative real (1,1)—formon M .
We define the energy form &(p) as &(p) = ﬂ(l’l) ;

E(p) = v-1 2‘? j_lgN(soi,soj)dziAdij .

where {z'} is a local complex coordinate system in M and {#,;} denote the compo-
nents of dp with respect to {z'} . The energy of ¢ relative to a Hermitian metric g on

M of fundamental 2—form w is given by

(L1) By(9) = (1/(m-1))) [ E(oAu™
M

if M is compact. Because e(p)*1 = (1/(m-1)!) & (cp)Awm'"l :

Lemma 1.5. (1) If ¢ is a pluriharmonic map, then the (1,1)—form &(y) is closed
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([12], [13]). Moreover if M is compact and M has a cosymplectic Hermitian metric of
fundamental 2—form w, then the energy Ew(‘p) depends only on the cohomology class
[® 1] € B2 2(MR).

(2) Let g be a cosymplectic Hermitian metric on M of fundamental 2—form . If

¢ : (M,g) — (N,gy) is harmonic, then we have

(1.2) VI’ A" #(p))Au

= (1/m(m-1)(|7"2p|2=

L=

en(R (40 7Ee))d™

where {goi} are the components of ¢ with respect to a local unitary frame field of
TM(l’O) relative to g .

Proof. (1) follows from the closedness of &(ip) and (1.1). By using the Ricci iden-

tity, simple computations show
(1.3) VI’ d" 8( ) A2

Hil
= (1/m(m-1))(| V" 8p| *~| t:V" p | -1, j_'lgN(RN(soiAsojm )

1=

where trg V'ép = Zm (V"3p); . Since w is coclosed, we have tr, Vrop = (1/2)% ,
1

where 7 " is a tension field of ¢ . Hence (1.3) reduces to (1.2).

g.ed.

Remark. (1.2)is a slight extension of Bochner type identity of [20]. From this we



s

see the following. Let ¢ : M —— N be a harmonic map from a compact Kihler manifold
M to a Riemannian manifold N with nonnegative curvature operator. Then the following
statements are equivalent each other:

(i) ¢ is a pluriharmonic map.

C

(i) The curvature form of the induced connection V¥ in cp—lTN is of type

(1,1).
(iii) There exists a holomorphic vector bundle structure in ¢

TFoperator (V¥)", where (V¥)" denotes the (0,1)—part of the connection V¥ .

1€

TN™ with the



2. Pluriharmonic maps into Lie groups.

Let M be a complex m—dimensional connected complex manifold and G be a Lie
group with the Lie algebra g. Denote by Bg the Maurer—Cartan form of G, whichis a
left invariant g—valued 1—form on G . Let ¢ : M — G be a smooth map. Set
a= tp*pG , which is a g—valued 1—form on M . Then we have the decomposition
a=a’ + a" of a into (1,0)—and (0,1)—parts relative to the complex structure of M . By

the Maurer—Cartan equation, the g—valued 1-form a satisfies
(2.1) de + (1/2)[aA a] =0.

This is equivalent to the flatness of the connection d+a , which means an integrability

condition for a smooth map into G . (2.1) is equivalent to the following system of

equations:

(2.2) d"a’ +d’a" + [a’ A "] =0,
(2.3) d’a’ + (1/2)[e’ Aa’] =0,
(2.4) d"a" + (1/2)[a" A a"] =0.

We recall that in the case when M is a Riemann surface, the harmonic map equation of ¢

is d"a’ —d’a" =0 (cf. [24], [5]).

Lemma 2.1. ¢: M — G is a pluriharmonic map if and only if the 1—form a

satisfies
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(2.5) d"a’ —d’a" =0.

Proof. By Proposition 1.1 the pluriharmonicity of ¢ is equivalent to that, for each
holomorphic curve i : C— M, poi: C— M is harmonic. Since the harmonic map
equation of poi is d"(i*a)’ - d"(i*a)" = i*(d"a’ —d’a") =0, this is equivalent to
that (d"a’ ~d’a")(2.Z) = 0 for each Z € TM{1:®) . Hence (2.5) is the pluriharmonic
map equation for ¢ .

q.ed.
Note that the pair of (2.2) and (2.5) is equivalent to the pair of
(2.6) d"a’” + (1/2)[e’ A a"] =0 and
(2.7 d’a" + (1/2)[a’ A "] =0 .
Lemma 2.2. Assume that G is a compact Lie group equipped with a biinvariant

Riemannian metric g induced by an AdG—invariant inner product (,) of g. Let

¢: M — G be a pluriharmonic map from a complex manifold M to G. Then (1) we

have
(2.8) [a" Aa’] =[a"Aa"] =0 and
(2.9) d’a’ =d"a" =0 .

Moreover (2), setting A = (1/2)a, the curvature form of the G—connection d, = d+A
in the trivial vector bundle ¥ = M x V is of type (1,1), where V is an arbitrary
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G—module.

Proof. (1) Since the curvature tensor RG of the Riemannian manifold (G,gG) at
the identity e is given by RO(X,Y), = =(1/4)2d[X,Y] for X,Y € g, the curvature
operator of (G,gG) is nonnegative, and hence by Lemma 1.3 we have
RC(dp(2),dp(W)) = RO(d(Z),dp(W)) = 0 for each Z,W € T{1O0M . Thus by the left
translation and the AdG—invariance of (,) we get
| [a(Z),a(W)] |2 = | [a(Z),a(W)] |2 =0 foreach Z,W € TxM(l’O) , which is equiva-
lent to (2.8). (2.9) follows from (2.3), (2.4) and (2.8). (2) By (2.1) the curvature form of
the connection d, is dA +(1/2)[A A A] =—(1/8)[a A a] . By (1) we see that the
curvature form is of type (1,1) .

q.ed.

Remark. (1) Incase m =1 the statements of Lemma 2.2 are trivial. In case m 2 2
the compactness of G is essential to the statements. (2) When V = g, the connection

d, coincides with the connection induced from the Riemannian connection of (G,gG) .

Set dj =d’+A’ and dj =d"+A", where A’ =(1/2)a’ and A" =(1/2)a".
It follows from (2.2), (2.5), (2.6) and (2.8) that a smoothmap ¢p: M — G s

*
pluriharmonic if and only if A = (1/2)p e satisfies
(2.10) dy ody =0 and dRA’ =

The condition d}} AC dx = 0 is the integrability condition for the d—operator d| A by
[11] it produces a holomorphic vector bundle structure in V . The condition dxA’ =0

means that A’ is a d } —holomorphic section of M0 @ End(Y).So A’ can be

considered as a Higgs field. In [19], Simpson called a pair (E,¥) of a holomorphic vector
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bundle E and a holomorphic 1-form ¥ with coefficients in Erd(E) a Higgs bundle, and
investigated such pairs satisfying [¥ A ¥] = 0. These objects had previously been
investigated by Hitchin [8] in the case of Riemann surfaces. We conclude with the

following.

Corollary 2.3. If ¢: M —— G is a pluriharmonic map into a compact Lie group
G, then for any G-module V the pair (E,¥) of E =Y with the dﬁ—holomorphic
structure and ¥ = A’ is a Higgs bundle over M satisfying [T A ¥] =0.

q:a.nd

*
The complex structure J of M induces endomorphisms of T M
*
T ™Mo gc . We define a gc—va.lued l1-form Ja on M as (Ja)(X) = a(J(X)) . Then the
pluriharmonic map equation (2.5) is written as {d(Ja)}(l'l) =0.

For any smooth map ¢ : M — G, the energy form is given by

(2.11) £ (¢) = (o’ A o)

which is real (1,1)~form on M . Here (, ) is the AdG—invariant inner product of g
which induces the biinvariant Riemannian metric gg on G,and

(a’ A a")(X,Y) = (a’(X),a"(Y)) = (a’(Y),2"(X)) . Let g be a cosymplectic Hermitian
metricon M of fundamental 2—form . Then ¢: (M,g) — G is harmonic if and only

if
(2.12) d(Ja) A ™1 = 0.

The gnergy of ¢ relative to a Hermitian metric g of fundamental 2—form « is given by
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(213) E,(¢) = (m/m)) [ & (p)4 o™
: M

if M is compact. Moreover the following lemma follows from Lemma 1.5 directly.

Lemmga 2.4. Let ¢: M —— G be a smooth from a complex manifold M .

(1) If ¢ is pluriharmonic, then &(¢) is a closed real (1,1)—form. Moreover if M is
compact and M has a cosymplectic Hermitian metric of fundamental 2—form « , then the
energy E (p) depends only on the cohomology class [ &(¢)] € H2(M,IR) and
[ 1] € B2 2(MR) .

(2) For any fundamental 2—form w of a cosymplectic Hermitian metric g in M , if

¢ :(M,g) — G is harmonic, then we have
(214) V(& A" S(E)AS T = (4/m(m-1))(|a4A” |2~| [A"AA] | D)™ .

Remark. (1) In general, for any (1,1)—form » on M, we also define E (¢) as
(2.13). (2) The formula (2.14) is useful. (2.8) follows also from the formula (2.14).



—15 —

3. Extended solutions of a pluriharmonic map.

Let M be an m—dimensional connected complex manifold. First we prepare the follo-

wing lemma.

Lemma 3.1. Let g be a Lie algebra over R and gd: be the complexification of g.

Let a beag—valued 1-formon M and a= a’ + a" be the decomposition of a into
(1,0)-and (0,1)-parts. For A € € = C\{0} , set a; = (1/2)(1=A"1)a’ + (1/2)(1-N)a"
which is a gd:—va.lued 1-form on M . Then

(3.1) day + (1/2)[ay A ay] =0
holds for each A € € if and only if the 1-form e satisfies (2.2), (2.5), (2.8) and (2.9).

Proof. We compute

da, + (1/2)[a, A a,]
= (1/2) 1= "1)d’ o’ + (1/2)a=-2"H)d"a’ + (1/2)(1-2)d’ a" + (1/2)(1=A)d"a"
+(1/8)(1-A"12[a’ A o’] + (1/0)a-2"H(1-N)[2’ A "] + (1/8)(1-A)*[a" A a"]
= (1/2)(1=A"1){d"e’ + (1/2)[e’ A "]} + (1/2)1-2){d’ a" + (1/2)[a’ A a"]}
+(1/2)a-A1{d" o’ + (1/9)0-A"N)[e’ A 2’1}
+ (1/2)(1-2){d"a" + (1/4)(1-N)[a" A a"]} .

Lemma 3.1 follows from this equation. g.e.d.

Let G be a compact Lie group with a biinvariant Riemannian metric and
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*
¢:M— G beasmooth map. Set @=¢ p5=a’ + a", where a’ and a" denotes

*
the (1,0)—part and (0,1)—part of e respectively. Set foreach A €C ,
(3.2) ay = (1/2)1-3"1)a’ + (1/2)(1-A)a" .
Let Gc be the complexification of G . We consider linear differential equations
(3.3) 3, '
. b c=a
AgC ™ 7A

of smooth maps 6,‘ M — Gd: foreach A € C* . If we fix a realization of Gc in a
general linear group GL(N,C) such that G = cln U(N) , then (3.3) can be written as

54 4’8, = (1/2)(1-2"1) &, 0’
3.4
d"®, = (1/2)(1-1)&,a"
foreach A € Q'.* . Since the integrability condition of the linear equations (3.3) or (3.4) is
*
(3.1) for each A € € , hence it follows from Lemmas 2.1, 2.2 and 3.1 that "the plurihar-
monicity of a smooth map ¢ from a complex manifold M to a compact Lie group G is
equivalent to the integrability condition of the linear equations (3.3) or (3.4) for all
*
A € C " Thus we get the following.

Theorem 3.2. (1) Let M be a connected complex manifold with the fixed base point
X, €M and G be a compact Lie group. Assume that M is simply connected, more
generally, Hom(rl(M),G) = {1} . ¢: M -— G is a pluriharmonic map, then for any
map h: dl* — GC there exists a unique map &: di* xM— Gm such that

* *
®,(x) = #(A,x5) = b(A) and QA”GC =a, foreach A€C .
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¥
(2) Conversely,ifamap ¢:C xM — GC satisfies

6:;ch = (1/2)(1—A_1)a’ + (1/2)(1-))a" foreach A€ C*,where a’ and a" are
gc—va.lued (1,0)— and (0,1)~forms on M independent of A € C* ,then ¢ . M — ek

satisfies (2.5), (2.8) and (2.9).

1

*
Themap $:C xM — GC is called an extended solution of a pluriharmonic map
¢ =&_, (or extended pluriharmonic map).

Remark. (1) ¢, is always a constant map. (2) &_; = a ¢ for some a € ct. (3)H
*
h: € — G is holomorphic, then & ,(x) is holomorphicin A € € for each fixed
xEM.(4)If k(1) €EG foreach A€ st ,then &, : M — G foreach A est.

From now on we consider only extended solutions satisfying (I’l = e. An extended
solution @ is called real if & 3 M— G foreach A€ S1 . An extended solution & is
called based if &,(x,) =e foreach A€ ¢ . Note that a based extended solution is al-
ways real.

Let 1G be the group of all based smooth loops in G , that is, IG = {7: sl ¢
smooth, 7(1) = e} . Let x: G — G denote the natural projection defined by
7(7) = 7(-1) for 7 € f1G . Any real extended solution & : ¢ xM—G¥ can be re-
garded as a smooth map & : M — QG by (&(x))(A) = @,(x) for x€M and A € st
We can give some observations on extended solutions as maps into G similar to [2] and
[5]. It is well-known that QG has the standard infinite dimensional complex manifold
structure J, which makes, together with L% /2—-metric, 1G into a Kéhler manifold of
Kihler form —S (cf. [16]). Moreover G has an interesting nonintegrable almost
complex structure J, ([21, [5]) . Then we see that any real extended solution

®: M — G of a pluriharmonic map ¢ : M— G isa Jl— and J2—holomorphic map.
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Hence we obtain the following.
Theorem 3.3. Assume that a complex manifold M satisfies Hom(r,(M),G) = {1} .

If ¢: M — G is a pluriharmonic map, then there exists a J l—holomorphic map

¢ : M — QIG such that the diagram

commutes.

Remark. By results of Atiyah—Donaldson [i] , there exists a bijective correspon-
dence between the space of based J l—holomorphic maps of a Riemann sphere 52 into G

and the space of framed G—instantons over [R4 .

We recall the following fact on G (cf. [6]):
Fact. (1) The left invariant symplectic form on QG is given by

1.
SCGY) = [ (XYt
0

foreach XY € }g. Here A = ezﬂ'/:“ .
(2) f H3(G,H) n Hz(ﬂG,Il) ~ I, then the positive generator [7q5] € H2(QG,ZI) is
represented by 7q = —| 4] 2/ 81r2)S , where & denotes the highest root of G .

Theorem 3.4. Let M be an m—dimensional connected complex manifold. Assume
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that a pluriharmonic map ¢ : M —— G has a real extended solution & : M — ()G with
®_, = ¢ . Then the following statements hold:

(1) The cohomology class [(] 6] 2/lf)'arr) &(¢)] is integral.

(2) The energy of ¢ relative toa (1,1)—form « on M is given by

(3.5) E (¢) = (16mn/m!| §}2) J{ 8" 7 A

if M is compact.
(3) Moreover if w is a Hodge metricon M so that M is a projective algebraic
manifold, or more generally « is a fundamental 2—form of a cosymplectic Hermitian

metricon M such that the cohomology class [wm_l] is integral, then we have

(3.6) E,(¢) = (16mr/m!| 6] *)deg (¢) |

* -
where deg (y) = J; ¢ [7ﬂG] N 1] is a nonnegative integer.

Proof. By a simple computation we have
*
(3.7) d S=—(7/2)&(y) .
Hence by Fact (2) and (3.7) we get
2 *
(3.8) (16]°/167) &(p) =9 TG -

Thus we get (1). Integrating (3.8) over M relative to SOl , we obtain (2). (3) follows
from (2). q.ed.
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This theorem provides a priori quantization of the energy form of pluriharmonic maps
¢: M — G, or in the language of physicists, a topological charge.

Assume that ¢ : M — G is a nonconstant pluriharmonic map from a compact

complex manifold and ¢ has a real extended solution & : M — G with é_, = ¢ . Let

g be any Hermitian metric on M of fundamental 2—form «.For A = e‘EIt es! , the

energy of & z: M — G reduces to
2
E(8,) = (1/2) i lay f1%1 = J{ (a},a}) * 1

= (1/2)(1—os t)E (¢) -

Therefore we have (d2/dt2)Ew(@A) =~(1/2)E (¢) < 0.
T

Theorem 3.5. Let M be a simply cornected compact cosymplectic Hermitian mani-
fold and G be a compact Lie group with a biinvariant Riemannian metric. Then any non-
constant pluriharmonic map ¢ : M —— G is unstable as a harmonic map for any cosym-

plectic Hermitian metricon M.

Corollary 3.6. Let CP™ be a complex projective space with the Fubini—Study

metric. Then any nonconstant harmonic map ¢: CP™ — G is unstable.

Proof. It follows from Theorem 3.5 and a result of [12].
q.e.d.

Remark. Every argument and result in [27], [28] and this paper remains valid in
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the case of pluriharmonic gauges in the spirit of [28], i.e. solutions (A,®) of

F(A) +(1/2)[92] = 2n/Tu(V) ,
g,¢, =0, [¢,2] =0 ,
Fpody=0

on a Hermitian vector bundle V—— M ; in the notation of the paper.
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4. Uniton and minimal uniton number for a pluriharmonic map.

Assume that G is the unitary group U(N) . Set Gr(CN) = {a € U(N); a= 1} .
Each connected component of Gr(dZN) is a complex Grassmann manifold G l,'(dZN) for
0<2L<N.Each G Q(EN) has the Hermitian symmetric space structure induced from
biinvariant Riemannian metric of U(N) .

Let M be an m—dimensional complex manifold. We call that a pluriharmonic map

¢ : M —— U(N) has at most uniton number n if there exists a real extended solution &
such that

(i) @ has the Laurent expansionin A € ¢ of the form &, = Xn TiAi ,
i=0
T #0,
(if) ¢, =1,and
(iii) &_; = ayp for some a € U(N). Here T, : M — gl(N,C).
A pluriharmonic map ¢ is called an n—uniton if ¢ has minimal uniton number n. A

0—uniton is a constant map to theidentity.

We can show the following fundamental results about unitons in the same way as in

[24].

Theorem 4.1. A pluriharmonic map ¢ : M — U(N) is a 1—uniton if and only if
w=ah for some a € U(N) and a holomorphic map h: M — G L(CN) CU(N).

*
Proof. Consider maps Q,\ =P+ 3Q: M— GL(N,C) for A €C . By simple
computations we observe that & satisfies (3.4), the reality condition and ¢ =TI ifand

* L
onlyif PP=P =P, P d"P =0 and Q = I-P = P*. Note that the condition
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L
P d"P =0 is equivalent to the holomorphicity of the vector subbundle P of the trivial

holomorphic vector bundle QN =M x EN corresponding to the Hermitian projections P .

Theorem 4.1 follows from this observations. qe.d.
Theorem 4.2. Assume that M is a compact complex manifold. If € is a based

extended solution of a pluriharmonic map &_; = ¢ : M — U(N) with ¢(xy) =1, then

* qd :
® has finite Laurent expansionin A € € , that is, QA = 2 Ti,\1 for some p,q2 0.

i=-p
In particular any pluriharmonic map ¢ : M — U(N) from a simply connected compact
complex manifold M always has finite uniton number.
Proof. By (3.4), (2.5), (2.6) and (2.7) a simple computation shows
(4.1) d’(d"8,~8,0") —d"(d'%,~8,a’)
= —(1/2)@A{,\(d’a" + (1/2)[a’ A a"]) + (d’ a"—d"a”)

-2 ld"e’ +(/2)[¢’ Aa"])} =0 .
Choose a Hermitian metric g on M. By (2.5), (4.1) becomes

2d’d"(I>A - d’ib,‘Aa" + d“QAAa’ =0 .
In particular each coefficient T, of &, in X is a solution of a linear elliptic equation

(4.2) L(f) = 2 trd’d" — 11 d'fAa" + trd"ha’ =0 ,

for a g{(N,C)—valued smooth function f on M . By the compactness of M , the solution
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space of L(f) = 0 is finite dimensional. Now we can apply the argument in proof of [24,
Theorem 11.5] to our situation by using (3.4). Hence we get the first statement of

Theorem 4.2. The second statement follows from it and Theorem 3.2 (1).

g.e.d.

By applying the argument of [24, Section 13] to extended solutions of a plurihar-

monic map, we get the following.

Theorem 4.3. Let ¢ : M —— U(N) be a pluriharmonic map from a complex mani-

fold M with finite uniton number. Then there exists a unique real extended solution @
; *
such that @, =1,% , =a ¢ for some aEU(N),@Azzn TiAl (A€eC ),Tn¢0,
i=0

and V,(®) = N , where V() denotes the vector subspace of cN spanned by

{(Tg),v;x€EM,vE CN} . Moreover n is equal to the minimal uniton number of ¢ .
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5. Uniton equations and rational unitons.

Let ¢: M — U(N) be a pluriharmonic map from a complex manifold M . We
recall the bijective correspondence between complex subbundles =P of the vector
bundle !;N =M x CN with rank £ and smooth maps
I, - r[; =P P : M— Gy(€N) CUN), where T (resp. 11; ) denotes Hermitian
projections onto # (resp. its orthogonal complement 5 in QN )and P denotes the
image subbundle of the Hermitian projections P (i.e. p2=P = P) in QN . We assume
that &: €* x M —— GL(N,C) is a real extended solution of the pluriharmonic map
¢ , =¢ . Forasmoothmap P— PUiM— GR(OZN) , set
3" =&,(P + AP'L) : M — GL(N,C) foreach A€ ¢ . Note that 3,\ M — U(Nj for
cach A€S'.Set p=8_ :M— U(N).

Theorem 5.1. & is also an extended solution, i.e. a solution to (3.4), if and only if the

Hermitian projections P satisfy

(5.1) P a’P=0 and
(5.2) P(d"P + (1/2)0"P) = 0 .
(5.1) and (5.2) are equivalent to

(5.3) Pa"P =0 and

(5.4) P(d’P" + (1/2)a’P) =0 .
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Moreover in this case @: M — U(N) is pluriharmonic and & = { ~dp = &’ + 3" is

given by
(5.6) 2’ =a —24'P ,
(5.7) 2" =" +2d"P .

Proof. By direct computations we have

(5.8) $,d’%,
= (1/2)(1-2 "2 P a’P + (a’2d’P) =P a’P —P(2d/P" + a’P")
+AP(2d’P" + o’P)}, and

(5.9) $,d"¢,
= (1/2)(1=N){A 1P (2"P + a"P) + (" + 2d"P) — Pa"P"
—P(2d"P + a"P) + APa"P"} .

Theorem 5.1 follows from (5.8), (5.9) and Theorem 3.2 (2). q.e.d.

The equations (5.1) and (5.2) are called uniton equations for a pluriharmonic map

¢ . A solution of the uniton equations is called a {smooth) uniton for ¢.
Following Lemma 2.2 (2) and (2.10), we endow the trivial bundle QN over M with
the holomorphic vector bundle structure of the G-operator d} = d"+A", and Al isa
R—holomorpl:u‘c 1—form with values in End(gN,gN) . We can restate Theorem 5.1 as

follows.

Theorem 5.2. ¢ is an extended solution if and only if the subbundle P of I._N is (i)
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A’ —stable, i.e. (A’ (Z))C®(R) C C°(B) for any 2 € C™(TM(1)) , and (ii) a d}}—holo-
morphic subbundle, i.e. (dx)zcm(g) C C®(P) forany Z € Cm(TM(l’O)) _

This procedure of making a new pluriharmonic map 5 from a given pluriharmonic

map ¢ is called addition of a union. We show a formula for the difference of energies in

adding a uniton. In case m = 1, the formula was shown by the second named author
([261).
We define a complex bilinear form (, ) and a Hermitian inner product €, of

g(N,C) as

(A,B) = — t(AB)
¢ABY = - (AB') = tr(AB") .

Theorem 5.3. Let M be an m—dimensional compact complex manifold and
¢: M —U(n) be a pluriharmonic map. If @ = (,o(P-PJ) : M — U(N) is a plurihar-

monic map obtained from ¢ by addition of a uniton P

then for any real (1,1} Hform w

m—1

on M with dw =0 we have

~

(5.10) E (%) - E,(¢) = ~(8mn/m!)deg (P)

where deg (P) = & cl(B)Awm_l is the w—degree of the complex vector bundle P , and

M=17 5 integral.

deg (P) is an integer if the cohomology class [w

We prove the formula (5.10) by showing the following lemmas.

Those are local results. We do not need the compactness of M . First it is standard to
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observe the following.

Lemma 5.4. Let V A be the connection of a complex subbundle P induced from a

connection d, in ﬂN ; for each section s of P,

Then the curvature from F(V ) of the connection V A is given by the End(P,P)~valued

2—form
F(V,) =P(F(A)+d,PAd,P)P ,
where F(A) denotes the curvature form of the connection d A
Set
(512)  oy(BY,) = (T/2m) B(Y )
= (v=I/2m)tr(F(A) + d, PAd, P)P ,

which is a closed real 2—form on M . By the Chern—Weil theory, cl(E,V A) represents the
first Chern class ¢,(P) of the complex vector bundle P .

Lemma 5.5. If P is a uniton for a pluriharmonic map ¢ : M — U(N) and we set
» = ¢(P-P1) : M — U(N) , then we have

(5.13) 5(0) - 8(p) =87, (B,V,) .
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In particular we have
(5.14) [(1/87) &(¥)1-[(1/87) 8(¢)] = —,(P)
as integral cohomology classes.

Proof. By (5.6), (5.7) and the uniton equations we have
(5.15) @’ =Pa’P +Pa’Pt—2PM4;P
(5.16) " =Pa"P + PTa"P" + 2Pd}P .
Hence using uniton equations we compute

5(9) = yI(a’A2")
= =I{(e’PAa") + (P a’ Aa") — 4(P*d, PAd}P)} .

Thus we get
8(9)-2(p) = v1{(a’PAa")«(Pa’ Aa")-4(d, PAd 4 P)} .

Since P(d,PAd,P)P = —dAPAdKP by d }—holomorphicity of P and
F(A) = F(A)BY) = _(1/4)[a’Aa"] , we have

(617 EF)-5(p) = T{~([a’ Aa"] P)4(d;PALLP)}
= —4¢~T tr(F(A) + d, PAd , P)P .
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By (5.12) and (5.17) we get (5.13). q.e.d.

Proof of Theorem 5.3. Since M is compact, by contracting (5.13) with ™} and

integrating it over M , we obtain (5.10). q.ed.

In our theory it is important to introduce the notion of unitons with the singularity
since we work over higher dimensional complex manifolds.
Let ¢: M —— U(N) be a pluriharmonic map from an m—dimensional connected

complex manifold M .

Definition. A complex subbundle # of £N|W with rank £ defined on a dense
open set W of M is called a rational unitonin M for ¢ if the following conditions are
satisfied:

(i) n is a smooth uniton for ¢ defined on W .

(ii)  For any local trivialization {(U;,¢;)} of the holomorphic vector bundle
(QN,dK) with holomorphic transition functions o o a}l U N U.i — GL(N,C), each
holomorphic map Hi—ITJi' U, NW—G Q(QZN) is rational in U, , where
¢; = 0(1| U;nW) is the image bundle of 7|U,\W under o : €| v, — ¢ and

IIi =11 ¢. is the Hermitian projections onto Ci in (Ui nw)x CN .
i

The following lemma is fundamental for rational unitons.

Lemma 5.6. Let 7 be a rational unitonin M for ¢ defined on a dense open set W
of M. Set
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G(n) = {(e(M,~)(x)) € W x Go(€V); x € M}

the graph of the map II ﬂ—l'l'; :W—G Q(GN) .Let p and q denote the Hermitian
projection of the product manifold M x G Q(Q‘.N) onto M and G Q(CN) , respectively.
Then the following statements hold:

(1) The closure G(n) of G(n) in M x G R‘(CN) has a structure of a complex ana-
lytic space (in general it is not an analytic subset of M x G l,'(GZN)) such that
p: G(n) — M is a proper surjective holomorphic map and p : G() —— W is a biholo-
morphic diffeomorphism.

(2) There exists an analytic subset S(7) of M with dimg¢S5(z) { m—2 and
W C M-S(n) such that p: G(n)— p-IS(ﬂ) —+ M—S(7) is a biholomorphic diffeo-
morphism. Hence q o (p|G(7) — p_IS(n))_1 : M—S(n) — GQ(GN) induces a smooth
uniton on M—S§(7) , which extends 7, and it is also a rational unitonin M for ¢.

(3) There exists an m—dimensional connnected complex manifold I;/.[ and a proper
surjective holomorphic map v : l\A/I —— M with a biholomorphic diffeomorphism

v: M—V_IS(ﬂ) —— M—S5(#n) such that the smooth uniton v

-

7 on v IW is extended
to a smooth uniton ;) for a pluriharmonic map (p =povw: M —s U(N) defined globally
on M.

Proof. Applying fundamental facts on meromorphic maps ([17] and c.f. [7]) to
each Hi—l'IJi' U, NW— GP_(QZN) , we obtain (1) and (2). We show (3). By Hironaka’s
resolution of singularity, there exists an m—dimensional connected complex manifold M
and a proper surjective holomorphic map VM —— G(7) such that
v M-~ (G'(_)—p S(n)) — GI_)—p S(n) isa biholomorphic diffeomorphism. Set

v_pou M—M ]I—ITJ' qou M—-——»GQ(E ) and tp pov: M—-aU(N).
/)
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~

Here n denotes the complex subbundle of M x QZN corresponding to the map qo v .
Since v 18 a holomorphic map, go is also a pluriharmonic map. Then ;7 is a smooth

uniton for (p defined globally on M. q.e.d.

Let ¢: M —— U(N) be a pluriharmonic map and # be a rational uniton in M for
¢ defined on a dense open set W of M . Then we have a pluriharmonic map
@ = (Il ﬂ—l’lj;) : W — U(N) . Following Lemma 5.6, we take a resolution (1\;1,1/,;;) of
the singularity for the rational uniton # . Since # is a smooth uniton for

;a =pov: M—s U(N), we get a pluriharmonic map ¢ = g.o(H.—ﬂJ.j : M— U(N)
n "
such that P o v = ¢| V—I(W) :

Assume that M is compact. Since v is proper, M is also compact. Let w bea
fundamental 2—form of a Hermitian metric on M . Obviously we have E () < @ . Then

by the compactness of M we have

(5.19) o> J S (A W)™ = J £ (HA( )P
M M-v"S(7)

=] s = @E®)
M—5(7)

Therefore @ : W — U(N) also has finite energy. Moreover if w is a real (1,1)—form on

M with do™ 1 =0, then by Theorem 5.3 we get

(5.20) E,(B)E,0) = ~Brr/m) [ o /(M o)™,
M

Let ¢ = 0 p; be the structure sheaf of M, i.e. the sheaf of germs of holomorphic
functions on M , and let & (€V,d}) be the sheaf of germs of d§—holomorphic sections of
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gN .0y and 0 (QN,dK) are locally free coherent analytic sheaves. Then any rational
uniton 5 in M for ¢ induces a coherent subsheaf &(7n) of 0(9;N,dl',_'\) satisfying

(5.21) A'(Z)I(U, o) CT(U, &)

for each openset U of M and each Z € I‘(U,TM(l’O)) , such that
o(n|M —5(n)) = (n)|M —S(n).

Indeed, let Xi be the closure of the graph of each rational map
IIi—II‘;' U — GQ(EN) ,and let p; and q; denote the projections of U, x Gt(CN)
onto U, and G Q(EN) , respectively. Let T. be the tautological bundle over G 1,'(GZN) .
Then by Grauert direct image theorem (p;)+ d(qi'lTi) is a coherent sheaf on U, , and
{(U,(p)+ (" T,))} define a coherent subsheaf o(7) of o(C",d}) . Obviously it
satisfies the condition (5.21).

Conversely, let ¢’ be a coherent subsheaf of _d_:_N,dK) satisfying the condition
(5.21). Set S(o’) = {x € M; thestalk o _ at x is not free} . Then S(of) is an ana-
lytic subset of M and & islocally freeon M —S( ). Let £ = rank & =rank o for
x €M —S(¢’) . Since ¢ is a subsheaf of a torsion—free sheaf, ¢ is also torsion—free, and
hence we have dimeS(&) < m—2 (cf. [10]). Let det of = (AR' @')** be the determinant
line bundle of ¢ . The inclusion map j: o/ —— O(QN,dx) induces a sheaf homo-

morphism
Tidet o — atoeNay) .

Then 7 is injective. Let j be the holomorphic section of the bundle

¥ -
AQ(LN,dK) ® (det *) which corresponds to  , and let B be the zero set of j , which
is an analytic subset of M . Let D, , i =1,..k, be the irreducible components of B of

codimension 1. Let Y denote the union of all irreducible components of B of codimension
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at least 2 so that

For each D, , define its multiplicity n, > 0 as follows. If x € D, - Uj#i Dj UY andif D,

is defined by w =0 in a neighborhood of x, then n, is the largest integer n such that

- ~ n
j/w" is holomorphic. Then j/w ' is a local holomorphic section of the bundle

AY(EN,d8) @ (det #)" mot vanishing at x . We set

k
D= 21:1 n.D,

and [D] denotes the holomorphic line bundle defined by the divisor D . Let § be the

natural holomorphic section of [D] . Let
.7, P. N "
j’ :det &#® [D] —— A™(C )
~ *
be the bundle homomorphism defined by j* = j ® (1/6) . Set M = M=Y . Then j’ is

* *
injective over M . Hence there exists a holomorphic subbundle #7(e”) of (_d;N,dK) IM
such that

det () = j’(det # @ [D] M) .

In particular we have ¢ |(M—X) = J(n(¢’)|(M—-X)), where X = §(¢’) U B . Note that
by the argument of [10, (V.8.5)] we have
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(5.22) J ¢, (n( ),V )40 = J c,(det & ® [D])AN
M* M

for any closed real (m—1,m—1)-form 2 on M with compact support, and if 1 is non-

negative, then we have

(5.23) J‘cl(det #® [D])AR> ﬁ[{ ¢, (#)AN .

Here the first Chern class ¢;(¢”) of a coherent sheaf o is defined by

¢,(&) = c,(det o#). Then 5(&f) is a smooth uniton for ¢ defined on M. Hence, by
applying Levi extension theorem (cf. [7]) to each holomorphic map

IIi—IIf :U; N M — GQ(CN) , we get the following.

Proposition 5.7. The complex subbundle 7(¢”) of QN is a rational uniton in M
for ¢ . In general, a smooth uniton 7 defined on the complement of an analytic subset of

codimension at least 2in M is always a rational unitonin M.

Remark. By using a result of [25] on the regularity of weakly holomorphic sub-
bundles we see that a section P € Lf(End(gN)) satisfies

p2

*
=P =P,(I-P)d}P =0 and (I-P)A’P =0
if and only if P defines a rational unitonin M for ¢.

Here we show the formula for the difference of energies in adding a rational uniton.
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Theorem 5.8. Let M be an m—dimensional compact complex manifold and
@ : M — U(N) be a pluriharmonic map. Assume that @ = o(II ﬂ—H;) : M—S§ — U(N)
is a pluriharmonic map obtained from ¢ by addition of a rational uniton # . Here S
denotes the singularity set of the rational! uniton %, which is an analytic subset of
dimgS <m—2.Let  beany real (1,1)~formon M with do™ ' = 0.1 welet o()
the coherent subsheaf O(QN,dR) induced by #, then we have

(5.24) E (%) — E,(v) = ~(8mr/m!)deg ( #(n)) ,

where deg (&(7)) = J; cy( aﬁ’(n))Awm_l .If 7= n(¢’) isinduced from a coherent

subsheaf o of O(QN,dK) in the above manner, then we have

(5.25) E(%) - E,(¢) = (8mn/m!) rL ¢,(det @ [D])AST .

Proof. The inclusion j: o#(7) — (€",d}}) induces a bundle homomorphism

det(j) : det &#(n) — AFCN |

where £ = ranky = rank &#(n) . Since det(j) is injective on M-S with dimg5S <m-2,
by (5.22) for D =0 we have

(5.26) J{ e (LA™ = J{ ¢ (nV A"
s

Hence we have
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(5.27) §Lcl( s = j - ¢, (nV A P
M—v S

= J ) cl(;))A(u*wm—l) .
M

Thus (5.24) follows from (5.20) and (5.27). Similarly, we get (5.25) by (5.22).

g.ed.

We define the degree deg 7 of a rational uniton 7 relative to a real (1,1)form v

on M with do™ 1 =0 as

(5.28) deg, 7 = A cl(n,VA)Awm-l :
-5
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6. Factorization theorem for a pluriharmonic map from a simply connected complex

manifold.
Let M be an m—dimensional connected complex manifold. Assume that
¢ : M —— U(N) is a nonconstant pluriharmonic map with minimal uniton number n .

*
Then by Theorem 4.3, ¢ has a unique real extended solution : ¢ x M — GL(N,()
such that &, =1,8_;, =a ¢ for some a € U(N), VO(Q) =N and

n i *
(6.1) ",\=2i=0Ti" for XEC .

The linear equations (3.4) become

/ _ _ /
62) a'T; = (T-T; A"
d"T, = (T "'Ti—l)A"
The reality condition of ¢ h becomes
n *
(6.3) 2i=0 T,T; 5= 6ol -

Here TiEO for i<0 ori>n.

Lemma 6.1. Given any Hermitian projection P : N N , then PT0 is a
holomorphic section of Hom((QN,dR),(EN,d")) .

Proof. By (6.2) we have d"(PTO)—(PTO)A" = 0 . This means just the statement of



-390 —

Lemma 6.1. q.e.d.

Let U(QN,dK) be an analytic sheaf of germs of d y —holomorphic sections of g;N :
Now we give a Hermitian projection P : NN et & p be the kernel subsheaf of
PT0 , that is, the sheaf of germs of dx-holomorphjc sections of QN such that
(PTO)B =0.Then & is a reflexive coherent subsheaf of O(QN,dK) , and hence the
singularity set S(%p) of the coherent sheaf % satisfies dimgS(Hp) < m—3 (cf.
[10]). As the argument in Section 5, the coherent subsheaf Jp induces a
d j —holomorphic vector subbundle 7p = n( Fp) of QN on M =M-§ , where S is an
analytic subset of M of dimgS < m-2. Let Ml (resp. Iy = I—Tp): M — gi(N,C)

L
be Hermitian projections onto #7p (resp. 7p ).
*
Lemma 6.2. The subbundle np is arational uniton in M for ¢ definedon M .

*
Proof. Since (PTO)A’ =0 by (6.2), we see that 7p is a smooth unitonon M .
Hence it follows from Proposition 5.7 that np isa rational unitonin M.

g.e.d.

We consider the case P =1. Then we get the following in the same way as [24,

Section 14]. We give the proof for the sake of completeness.

_ * *
Lemma 6.3. (1) ¥, = A714, (I + AI) : M — GL(N,€) (A€C) is a real
* =1
extended solution definedon M and @ has the Laurent expansion 3 3= zn Ti,\l ,
1=0
. N
where Ti =T+ Tiﬂ';' for i=0,..,n~1 and V0($) =C".

*
(2) rank TO > rank T, at each point of a dense open subset of M .
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Proof. (1) From Theorem 5.2 and Lemma 6.2 we already know that @ is & real

*
extended solution defined over M . We compute

¢ = Tl'II/\1 En_1T+11+T]'[J' +T1TL,\n Set M/ = {x € M; ra.nk(TO)xis
maximal} , which is a connected open dense subset of M . Note that = Ker rI‘0 on
M’ . Therefore we have T ;=0 on M’ and henceon M . Since TnT; =0 by (6.3)
and nJI' =1Im T; on M’ , we get TnIIJI' =0 on M’ and henceon M . Since

iy
on M* . Hence Im T, CIm TO at each point of M* . Thus we get

Vo(®) = V(@ ") = V(@) = ™. (2) Set M" = {x € M’; rank(T,)_ and rank(?

are maximal}, which is a connected dense open subset of M . Assume that

* L 4
0= TOITJI' + TIHI = T0 + T,Il; on M , we have TO”I = Tl”l and TO"I = TO"I

O)X

rank T, =rank T, on M".Since Im Ty =1Im T, on M", we have Im(T,Il}) CIm T,
and hence Im(T;a”) CIm T, on M" . Therefore, by it and (6.2) for i =0, Im T, [M"
is d’— and d"—stable, and hence Im T, |M" = M" x V is a trivial subbundle of

N

Since €N = V(@) =V, wehave Im Tj|M" = M" x N ,ie rank Ty=N on M".By

M" = M" x CN for some vector subspace V of QN . Thus we see Im ’1‘0 CMxV,

(6.3)for j=n,weget T =0, acontradiction. Therefore we conclude

rank T0 < rank TO on M". q.e.d.

Theorem 6.4. If ¢ : M — U(N) is a pluriharmonic map with minimal number

n<wo,then n{N.

This theorem follows from Lemma 6.3. In case m = 1, this is a result in [24].
~ ¥
We obtained a new pluriharmonic map @ =3_, : M = M-S — U(N) with
minimal uniton number n-1 from a given pluriharmonic map ¢ : M —— U(N) with

~ *
minimal uniton number n. Again we can apply the same process to ¢: M — U(N).



Repeating this process, we obtain a sequence of pluriharmonic maps ¢(n) =g,
go(n_l) =9, <p(n“2),...,zp(1), ¢(0) = a € U(N) . Naturally a singularity set arises at each
step. By modify the domain complex manifold M , we can take a resolution of the singu-
larity set for a pluriharmonic map $ as in Lemma 5.6.

Repeating these processes, we get the following sequences of pluriharmonic maps and

complex manifolds.

-~ V=V

v 14
1 =M—-n——an=M

M0 _ M1 —_— M n_-l_’

n—2 n—1
¥¢0 {‘Pl ‘!‘PH_Z {9011_1:?5 ;‘Pn=‘fo
U(N) U(N) U(N) U(N) U(N)

Here ¢ : M — U(N) (k =0,...,n) is a pluriharmonic map with minimal uniton
number k and each v Mk —_ Mk +1 is a proper surjective holomorphic map such
that vy Mk—uils — Mk +1—S is a biholomorphic diffeomorphism for some analytic
subset S of Mk +1 of codimension at least 2.

Now, combining Theorems 3.2, 4.2, 4.3 and results of this section, we obtain the

following factorization theorem for a pluriharmonic map into U(N).

Theorem 6.5. Let M be an m—dimensional simply connected compact complex

manifold and ¢ : M —— U(N) be a pluriharmonic map. Then ¢ has a factorization

over M- into a € U(N) and T —L : M —S — Gr(€Y) (k = 1,..,0) , where
(1) S is an analytic subset of M with djmcs <m-2,
k . .
(2) each <p( ) = a(Hl—ﬂJl') (Hk—H'll(') :M-S— U(N) (k=1,..,n) is a pluri-

harmonic map,
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(3) I, is a rational uniton in M for (p(k) defined on M-S foreach k=1,...,n,
(4) IIl—l'IJI' ‘M-S — Gr(CN) is a holomorphic map, and moreover it induces a
meromorphic map M — Gr(EN) ,
(5) n(< N) is equal to the minimal uniton number of ¢ .
Furthermore, for any Hermitian metric on M of fundamental 2—form w, each energy

E (X)) is finite.

Remark. (1) The uniqueness of the factorization also holds under the same conditions
asin [24].

(2) In case m =1, the singularity set S is empty. This is a result in [24].

(3) The unique factorization theorem for a pluriharmonic map into a complex Grass-
mann manifold GP’(CN) C U(N) also holds in the same way as in [24]. By using the
method of [3], [29] and [30], the first named author and Udagawa investigated the

construction of pluriharmonic maps into complex Grassmann manifolds ( [14] ).

Furthermore, in the case when M has a cosymplectic Hermitian metric, we show the

factorization (p(n) =, w(n_l),...,rp(l) in Theorem 6.5 is energy—decreasing.

Lemma 6.6. Let ¢ : M —— U(N) be a nonconstant pluriharmonic map with a real

n

extended solution &, =) Ti,\i and ¥ e the kernel subsheaf of PT . Assume

i=0

that M is compact and w is a nonnegative real (1,1)—form on M with do®™

=0 such

that w is positive at some point of M . Then we have

(6.4) deg (7p) 2 deg (Fp) 20 .

N
If P=1and V(&) =C", then
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(6.5) deg (my) 2 deg (F) >0 .
Proof. By Lemma 6.1, PT0 induces a sheaf homomorphism
PT,: o(CNdy) — (N a) .

Then we have an exact sequence of the kernel subsheaf % P of PT, and the image

subsheaf JP of PTO:

N 1l
(6.6) 0— Fp—0(C,d}) — Jp—0 .

Since (QN,d") is the trivial holomorphic vector bundle, by (5.22) and (5.23) we see

and deg (Jp) =0 if and onlyif Jp induces a trivial subbundle M x €® of €V for

some complex subspace €P of ¢ . On the other hand, from (6.6) we have
N
deg (Hp) + deg (Jp) =deg (€7) =0 .

Hence we get (6.4). Assume that P =1.1If V(3) = N , then we see deg (Jp) <0,
and hence deg (%p) > 0. Since by (5.22) and (5.28)

deg (np) = deg (Fp) + deg ([DP])
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for some effective divisor D on M, hence we get deg (np) 2 degw( Hp) -
q.e.d.

Theorem 6.7. In the factorization of Theorem 6.5, if we suppose that M has a co-
symplectic Hermitian metric of fundamental 2—form w, then we have

k1),

Ew(fp(k))—Ew(fp( >0 foreach k=1,..n .

Proof. It follows from Theorem 5.8 and Lemma 6.6, by using the sequence

{:pn,...,goo} of pluriharmonic maps. q.e.d.
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7. Pluriconformal maps.

Definition. A smooth map ¢: M — N {from a complex manifold M to a

. : : . . oo ¥ (2,0 _ ¥ 4(0,2) _
Riemannian manifold (N,gy) is called pluriconformal if (¢ gy) = (p gy) =0,

or equivariantly, if for any holomorphic curve i: C— M, @ oi is conformal.

Assume that ¢ : M — N is a pluriharmonic map. Then (tp*gN)(2’0) is a holo-
morphic section of ®2T*M(1’0) and hence if M is a compact complex manifold with
¢;(M) >0, then ¢ is pluriconformal ([12], [13]). We can show a slight extension of
this fact in the case of N = U(N)" as follows.

Propogition 7.1. Let M bea simply connected compact complex manifold and

¢ : M —— U(N) be a pluriharmonic map. Then ¢ is pluriconformal.
Proof. This proposition is a simple consequence of Theorem 6.5, the fact that ¢ is

pluriconformal iff tr(A’®A’) = tr(A’ )2 =0, where @ denotes the tensor product, and

the following lemma for k =2. q.e.d.

Lemma 7.2. Let ¢: M — U(N) be a pluriharmonic map and @ = ga(P——P*) be a

pluriharmonic map obtained by addition of a uniton P . Then we have, for each k > 0,
(7.1) tr(A7)¥ = t(X /)"

e secti kp*pp(1,0)
and they are both holomorphic sections of @ T M .
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Proof. Since X’ =PA’P + PLA/PL —PLd’P by (5.14), we have
(X7 )€ = t(PA’P)¥ + tr(P*A’PH)X . From PYA’P = 0, we easily get
t2(PA’P)X = tr(P(A")¥) and tr(P*A’P)¥ = tr(P*(A”)¥) . Hence we obtain (7.1).

g.e.d.
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8. Action of infinite dimensional Lie algebra and Lie group on the space of

pluriharmonic maps.

In Section 3 we established the construction of extended solutions from a plurihar-
monic map into a compact Lie group. As one of its applications we can construct actions of
certain infinite dimensional Lie algebra and Lie group of loop algebra and loop group type
on the moduli space of pluriharmonic maps into a compact Lie group. There seem to be
two methods for the construction of the Lie algebra and Lie group actions. One is the
method of Riemann—Hilbert transform due to Zakharov—Mikhailov—Shabat [32], [33]
and Uhlenbeck [24]. Another is the infinite dimensional Grassmann method due to Sato
[18] and Takasaki [21] (cf. [9] for chiral model). The actions of the infinite dimensional
Lie algebra and Lie group preserve the minimal uniton number and the actions on the
moduli space of pluriharmonic maps with the fixed minimal uniton number reduce to the
actions of suitable finite dimensional quotient Lie algebra and Lie group. In particular the
actions on l—unitons are essentially equal to the actions of holomorphic transformations of
complex Grassmann manifolds on the space of holomorphic maps. We shall discuss them in

detail elsewhere.
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