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FILTER—REGULARITY AND COHEN-MACAULAY
MULTIGRADED REES ALGEBRAS

'~ Manfred Herrmann, Eero Hyry, Thomas Korb

0. Introduction

Among the many problems related to the Cohen-Macaulayness of graded alge-
bras, a question of C. Huneke and K. Smith — asking for the existence of arithmetic
Macaulayfications — recently attracted special attention. Here a Noetherian local
ring (A, m) of dimension d is said to have an arithmetic Macaulayfication if there
is an ideal I such that the Rees algebra Ra(I) = A[It] (where t is an indeter-
minate) is Cohen-Macaulay. The existence of arithmetic Macaulayfications can
e.g. be shown for generalized Cohen-Macaulay rings (i.e. in particular Buchsbaum
rings) using results of S. Goto (et al.) on the local cohomology of blow-up algebras
with respect to a standard system of parameters. But in general, an arithmetic
Macaulayfication does not have to exist for a given ring A — even if Spec A has
a desingularization by Proj R4(I) for some I C A. Actually, J. Lipman could
show recently that R4(I) cannot be Cohen-Macaulay in this situation unless A
is rational.

The existence resp. non-existence of an arithmetic Macaulayfication is a prop-
erty of the ring A. The more classical problem in this direction is to find and
describe sufficient conditions on ideals I —in a given class of rings A (as e.g. rings
which are already Cohen-Macaulay) — which guarantee that R4(I) is Cohen-
Macaulay. A weaker condition for a given ideal I is to ask for the Cohen-
Macaulayness of some multi-Rees algebra R4(I;) = Ra({,...,I). This implies
the Cohen-Macaulay property of the Rees algebra of some power of I, but not
necessarily the Cohen-Macaulayness of R4(I) itself.

The Cohen-Macaulayness of R4(I,) can be characterized by means of the
local cohomology of the form ring gra(I) = Ra(I)/IRA(I) (s. Theorem 1.1).
In particular, all the a-invariants of gra(l) have to be negative. In the case
the ideal I is m-primary this leads us to consider the filter-regularity of sequences
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(ai,...,a}) where af,...,a} are the initial forms of a minimal reduction ay,...,aq
of I in gra(l). .

This paper is organized as follows: In section 1 we recall some easy conse-
quences of the above mentioned Theorem 1.1. Moreover, we study the effect of the
Cohen-Macaulayness of R4(I,) on the relationship between the depths of R4(I)
and gra(I). :

Given an m-primary ideal I C A and a minimal reduction (a;,...,aq) of
I we describe in section 2 the relationship between the filter-regularity of the se-
quence (aj,...,a}) and the Cohen-Macaulay property of R4(I,). One interesting
consequence is Theorem 2.8 which says that in the case depth A > 2 the Cohen-
Macaulayness of R4(X,) implies that gra(I) satisfies the Serre condition (S2)
and R4(I) the Serre condition (S3). Another consequence is Theorem 2.13 where
the situation that R4(I,) is Cohen-Macaulay for some r > 0 is characterized by
conditions on I in the ground ring A.

In section 3 we then address the question how far we can improve for given
I the Cohen-Macaulay property of R4(I,). For m-primary ideals we give an
answer to this question in the following sense: Assuming that R4(I,) is Cohen-
Macaulay we characterize the Cohen-Macaulayness of R4(I,), where s < r, by
means of "intersection conditions” similar to those Valabrega and Valla gave for
the Cohen-Macaulayness of gra(I) in [VV]. Finally we give a series of examples
where Ra(I,) is Cohen-Macaulay for some r > 2, but the ordinary Rees algebra
R4(I) is not. ’

1. Preliminaries and auxiliary results

We begin by fixing some notation and by recalling certain basic facts about
multi-Rees rings. For details we refer to [HHR 1], [HHR 2] and [HHRT].

In the following we call Z"-graded rings and modules r-graded or simply
multigraded. Rings are always assumed to be Noetherian and N"-graded. The
norm of a multi-index n € Z" is In| =n; + ... +n,. f S = P, cn Sn is an
~ r-graded ring, we denote ST = @Dnxo Sn-

Let A be aring and let I1,...,I, C A beideals. Set I = (I,...,I;). The
multi- Rees ring R (1) is the r-graded ring

RaD)= @ I - 11

neENr
Furthermore, for every 1 = 1,...,r the 2:th multi-form ring is defined as

gra(L; I;i) =RA(I1)/ L; R 4(I)

= @ RO SRV L) IO ALY o
nENT
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We often identify R4(I) with the subring A[Lity,...,I:t;] of Afty,...,t;]. If
htI; >0 (j =1,...,7), we have dim R4(I) = dim A + r. Moreover, if 4 is local,
dimgra(I; ;) =dimA+r—-1(i=1,...,7r). -

Inthe case I} = ... = I, = I we use the notation I, for the r-tuple (I,...,I).
We also denote gr4(I,) = gra(I,;I). The Cohen-Macaulay property of multi-Rees
algebras Ra(I,) and multi-form rings gra(I,4+1) can be characterized in terms of
the local cohomology of the usual Rees ring R4(I) and form ring gr4(I) as follows
([HHR1, Theorem 2.2], [HHRT, Proposition 1.6]).

1.1. Theorem. Let {A,m) be a local ring of dimension d and let I C A be
an ideal of ht I > 0. Let M be the homogeneous maximal ideal of Ra(I). Then
the following conditions are equivalent for all r > 1:

(1) Ra(1,) is Cohen-Macaulay.

(2) gra(I+41) is Cohen-Macaulay.

(3) [Hip(Ra(D))n =0 wheni<d+land ng{-r+1,...,—~1}.

(4) [Hin(gra(I))n =0 when i <d and n & {-r,..., -1},
Ha(gra(D))n =0 when n > 0.

1.2. Corollary. Let (A,m) be a local ring of dimension d and let I C A be
an ideal of ht I > 0.

1) If R4(I,) is Cohen-Macaulay, then R4(1,) is Cohen-Macaulay for all ¢ > r.
2) If R4(I;) is Cohen-Macaulay, then R4(I") is Cohen-Macaulay.

Proof. Both claims follow directly from Theorem 1.1. Observe that in (2)
(Ra(I))\") = RA(I") so that (Hi(Ra(I)N" = Hi(Ra(I")) where M and N
are the homogeneous maximal ideals of R4(I) and RA(I") respectively.

To formulate and to prove another consequence of Theorem 1.1 for m-primary
ideals we first recall some facts about a-invariants and reduction numbers.

If G is a graded ring of dimension d defined over a local ring, the a-invariants
of G are defined as

ai(G) =sup{n € Z| [Hin(@)a #0} (i=1,...,d),

where 9 is the homogeneous maximal ideal of G.

Let (A,m) be a local ring and I C A an ideal. Recall that an ideal J C I
is called a reduction of I if I"*! = JI™ for n > 0. The reduction number r(I)
is defined as the smallest integer n such that I"*! = JI™ for some minimal
reduction J C I. If the ideal I is m-primary, a well known result of Trung [T2,
Proposition 3.2] says that the reduction number r(I) satisfies the inequality

ada(gra(l)) +d < r(l) < Jpax (ai(gra(l)) +7).
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1.3. Corollary. Let (A, m) be a local ring of dimension d and let I C A be
an m-primary ideal. Then R4(1,) is Cohen-Macaulay if and only if the following
conditions are satisfied:

1) [Hiz(gra(D))n =0 wheni<d and n < —r
2) ai{gra(l)) <0 when i< d
3) r(I)<d-1.
Next we consider the effect of the Cohen-Macaulayness of R4(I;) on the rela-

tionship between depth R4(7I) and depth gr (7). Inspired by results of Huckaba-
Marley on "the expected depth inequality” for Rees and form rings:

depth R4(I) > depthgra(l) +1
(s. [HM]) we characterize the strict inequality in the case that R4(I,) is Cohen-

Macaulay for some r > 0 (note that r may be arbitrarily large).

1.4. Proposition. Let A be a local ring of dimension d. Let I C A be an
ideal of ht I > 0 such that R4(I,) is Cohen-Macaulay. Then
(i) depth Ra(I) > depthgra(I)+1.
(ii) depth R4(I) > depthgra(I)+1 if and only if
a) g =depthgra(l) <d and

H?n(A)'t n=-1

b) [Ho(gra(I))]a = { 0 n# —1.

In this case also depth A =g.

Proof. Put R = Ra(I) and G = gra(l).

(1) By Theorem 1.1 a;(G) < 0 for i =0,...,d so that the claim follows from
[HM, Theorem 3.13].

(ii) Consider the long exact sequences of cohomology corresponding to the
exact sequences

0—Rt—R—A—0
and
0 — R*(1) - R— G —0.

By the cohomology sequence corresponding to the first sequence we have for all :
the isomorphisms

[Hin(R))a 2 [Hip(R)ln (2 #0).
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The cohomology sequence corresponding to the second sequence gives the exact
sequence

(Hi(R)ln — [H(Oln — [HE (R a1 — [HEG (R)]n.
When depth R > g + 1, we have {H3(R)]n = [H& '(R)}» = 0 so that we obtain

an isomorphism
[Hon(Gln = [Hiy (R )]s
If n < —1, this gives [H§z(G)]n = 0. If n = —1, we can use the cohomology

sequence corresponding to the first sequence to see that LI_{_g;:' YR = HL(A).
We have thus shown that in the case depthR > g + 1

H?n(A)a n=-1

[Hm(G)}n = { o a1

Conversely, if [Hi(G)]n =0 for n < —1, we have the monomorphisms
0 — [HE (R)nsr — [HE (R)]a (n<-1)

so that necessarily %H(R) =0 and depth R > g + 1. The last remark follows
easily by similar considerations.

1.5. Remark. The statement (i) of Proposition 1.4 is also true under the
weaker assumption that R4(I") is Cohen-Macaulay (s. [KN, Lemma 2.9}).

The next proposition will show one more consequence of the situation (ii) in
Proposition 1.4:

1.6. Proposition. Let A be a local ring and let I C A be an ideal of ht I >
0. Let M be the homogeneous maximal ideal of Ra(I). Put g = depthgra(l)
and assume that [Hi(gra(I))]n = 0 for n # —1. Then also depthgra(I*) =g
for all s > 1. Moreover, we have H(gra(I")) = Hin(g9ra(I)), where N is the
homogeneous maximal ideal of Ra(I*).

Proof. We have the following so called approximation sequences (of Rs(I*)-
modules) introduced by Ribbe (see [R])

0 — I gra(1') — P7igra(I’) — (gra(D)(s =) =0 ((=1,...,5).

By means of these sequences it is easy to see that depthgra(/®) > g. Therefore
we only have to show that HI(gra(I*)) = Hlz(97a(J)). From the long exact
sequences of cohomology corresponding to the approximation sequences we get
the sequences

0 — [HH(I* " Hgra(I°))n — [HGI* graI))]a
— [He(gra(D)]nsts—i — [HET (I F gra(I")))s.
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Suppose first that n # —1. Then ns+s—1 # —1 so that by using the assumption
[H5 (g7 a(T))]lnats—i = 0 we get the isomorphisms

[HRI ™ graI)ln = [HGI T grall' s (E=1,...,3).
Now observe that I*gr4(1*) = 0. It follows that for n # —1
[Ha(gra(I’)n = ... = [Hy(I*gra(I’))]n = 0.

Then suppose that n = —1. Since I°gr4(I°) = 0, we obtain by choosing z = 1 in
the above sequence the isomorphism

(HG (I gra(I*))]-1 = [Hip(gra(I))}-1.

On the other hand, since [Hap(gra())]-i = 0 for i = 2,...,s, we also get the
isomorphisms

[HR(I ™ gra(I)))-1 = [HGI " oraI" )] (=12,...,5).
Putting this together we see that

[H(gra(I*)) -1 = [H(gra(D)]-1.

The claim has thus been proved.

2. Filter-regularity

We begin by recalling some facts about filter-regularity and a-invariants. Let
G be a graded ring defined over a local ring Gy and let 29,...,2, € G be homo-
geneous elements. The sequence (zy,...,z2,) is called filter-regular if

[(z1,...,zic1) : ziln = (215, 2io1 )]n
for n >0 (i=1,...,r). If Go is Artinian, this means that the G-modules
(z1,..y2zi-1)  zif(z1,..0,2ic1) (i=1,...,7)
have finite length or equivalently
(21,-..,2i1): 2 C U(zl,.‘..',z,-_l):mt" (G=1,...,7),
n=0
where M is the homogeneous maximal ideal of G.
Following [AH] we say that the sequence (z1,...,2z.) is [t1,...,t,]-Tegular if
[(z1,...y2zic1) : ziln = (215 - Zize1)]n
for n > t; (-i =1,...,7). Also the value —oo0 is here allowed for t;. We denote
ei{z1,...,zp)=inf{n € Z | [(21,...,2i—1) : zi]n = [(zl,.‘..,z;_l)]n}

for i =1,...,r and call [p1,..., 0,] the filter-regularity of (z1,...,2,).
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2.1. Lemma. Let G be a graded ring of dimension d defined over an
Artinian local ring. Let z € G, be a filter-regular element. Then

ai+1(G) +1 < ai(G/(2)) < max(ai(G), ai41(G) + 1)
forall i =0,...,d=1. If zH;,(G) =0, then
 ai(G/(2)) = max(ai(G), aip1(G) + 7).

Proof. The lemma is essentially [T2, Lemma 2.3]. For the convenience of the
reader we give some arguments for the proof of the second part. Put G = G/(z2).
We have the exact sequences

0—0:2—G—G/{0:2)—0
and
0 —G/(0:2)(~-1r) 5 G — G —0.

Since 0 : z = 0 : M™ for n > 0, we have dimg(0 : z) = 0, and the long
exact sequence of cohomology corresponding to the first sequence implies that
Hiz(G/(0: 2)) = Hi,(G) for i > 0. Consider then the long exact sequence of
cohomology corresponding to the second sequence. Since zH,(G) = 0, we come
to the sequence

0 — (Hop(G)ln — [Hop(Gn — [Heg (Gln—r — [Hgt (G)]n,

which easily implies the claim.

Let G be a graded ring defined over an Artinian local ring. The ring G
is said to be generalized Cohen-Macaulay if the localization G is a generalized
Cohen-Macaulay ring. By definition this means that the local cohomology modules
Hin(G) (: =0,...,d—1) haveall finite length, which is equivalent to [Hi,(G)]n =
0for n€ 0 (:=0,...,d—1). It is also well known that this happens if and
only if G is equidimensional and the localizations G'p are Cohen-Macaulay at all
homogeneous prime ideals P # 9.

Let (z1,...,24) be a system of parameters of G. Recall the inequality

{G/(z1,...,24)) —e(z1,...,24;G) £ I(G),

where
d—1

(&)=Y (d; 1) LA(Hp(G))-

=0

If the equality holds, we say that (z1,...,24) is a standard system of parameters.
Equivalently,

(zl,...,zd)ﬂgn(G/(zl,...,zj)) =0
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for i +j < d. A homogeneous M-primary ideal I C G is called a standard ideal
if every system of parameters contained in I is standard. There exists r € N such
that every I C 9" is standard. For more details about filter-regular sequences,
generalized Cohen-Macaulay rings and standard systems of parameters we refer to

[STC], [HIO] and [T1].
The following proposition is a modification of [T2, Proposition 2.2].

2.2. Proposition. Let G be a graded ring defined over an Artinian local
ring and let (z1,...,24) be a filter-regular system of parameters consisting of
homogeneous elements of degree r. Then

max{g;(21,...,2za)} | j =1,...,i} = max{a;(G)+jr+1|j=0,...,¢ -1}

for all 1 = 1,...,d. If, moreover, G is a generalized Cohen-Macaulay ring and
(z1,...,24) is a standard system of parameters, we have

0i(z1,...,2a) = max{a;(G)+jr+1|j=0,...,:—1}.

In this case we especially get that p;—1(21,...,24) < 0i(z1,...,24) (1 =2,...,d).

Proof. By induction on 7. The case 1 = 1 follows from the fact that for n >> 0
0:2=0:M" = Eoun(G)- Suppose 1 > 1. If z € G, denote z = z + (21) €
G/(z1). Observe then that p;(z1,...,22) = 0j-1(Z2,...,%¢) ( = 2,...,d). The
claim now follows from the induction hypothesis by Lemma 2.1.

2.3. Corollary. Let G be a graded ring defined over an Artinian local
ring and let (z1,...,z4) be a filter-regular system of parameters consisting of
homogeneous elements of degree r. Then a;(G) < 0 for i =1,...,d -1 if and
only if (z1,...,24) is [0,7,...,(d — 1)r]-regular.

Proof. It follows by induction on ¢ from Proposition 2.2 that the conditions
0j(z1,..,2a) (3 —-1) (h =1,...,%) and @;(G) < 0 (j = 1,...,1 — 1) are
equivalent for all : = 1,...,d.

We now want to apply these results for characterizing the situation where
some multi-Rees algebra 1s Cohen-Macaulay.

Recall first the following. Let (A, m) be a local ring of dimension d and let
I C A be an m-primary ideal. If a € I9\ I?"*!  put a* = a+ I7F! € [gra(d)),.
Then (by,...,bq) is a minimal reduction of I? if and only if (4},...,d}) is a system
of parameters of gra(I).

2.4. Proposition. Let (A,m) be a local ring of dimension d and let I C A
be an m-primary ideal. Then Ra(1,) is Cohen-Macaulay for some r > 0 if and
only if r(I}) < d —1 and one of the following equivalent conditions holds:
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(1) The sequence (af,...,a}) is [0,1,...,d — 1] -regular for some minimal reduc-
tion (ay,...,aq) of I and the ring gra(I) is generalized Cohen-Macaulay.

(2) The sequence (b},...,b%) is [0,q,...,(d — 1)q|-regular for all minimal reduc-
tions (b1,...,bs) of every I9, ¢ > 0, and the ring gra(I) is equidimensional.

Proof. Put G = gra(I). If Ra(l,) is Cohen-Macaulay, G is generalized
Cohen-Macaulay. By [STC, Satz 2.5] G is generalized Cohen-Macaulay if and only
if every system of parameters of G is filter-regular. By Corollary 2.3 a system of
parameters consisting of homogeneous elements of degree ¢ is [0,q,...,q(d — 1)]-
regular if and only if a;(G) < 0 for : = 1,...,d — 1. It is therefore enough to
show that if (2) holds, then grs(I) is generalized Cohen-Macaulay. Let P €
ProjG. Denote h = ht P. By prime avoidance it is possible to find a system of
parameters (21,...,24) of G consisting of homogeneous elements of certain degree
q such that zy,...,2zy € P ( s. [BH, Proposition 1.5.11]). There is then a minimal
reduction (bq,...,b4) of I? such that z; = b} (z+ = 1,...,d). By assumption
the sequence (z1,...,24) is filter-regular. Because G+ ¢ P, we get that the
sequence (zy,...,z4) is regular in Gp. Hence Gp is Cohen-Macaulay. Because
G is equidimensional, we get that it is generalized Cohen-Macaulay.

2.5. Corollary. Let (A,m) be a formally equidimensional local ring of
dimension d and let I C A be an m-primary ideal such that ProjR4(I) is
Cohen-Macaulay. Then R4(I,) is Cohen-Macaulay for some r > 0 if and only
if r(I) £ d — 1 and there exists a minimal reduction (a1,...,aq) of I such that
(a},...,a3) is [0,...,d — 1] -regular.

Proof. The Cohen-Macaulay property of Proj Ra(I) is equivalent to that of
Projgra(I). Since A is formally equidimensional, we know that this is in turn
equivalent to gr4(I) being generalized Cohen-Macaulay (see [HIO, Corollary 18.24
and Lemma 43.3]). We can thus apply Proposition 2.4 (1) to get the claim.

2.6. Remark: Without any assumption on A the Cohen-Macaulayness of
Proj R4(I) does not imply that gra(l) is generalized Cohen-Macaulay as the
following example ({HIO, Example 40.5]) shows: Let A = k[[z,y, 2]]/(z) N (y, 2),
where k is a field and I = m the maximal ideal of A. Then G = gra(m) =
k(z,y,z]/(z) N (y,z). Since G., G, and G, are Cohen-Macaulay, we see that
Projgra(I) is Cohen-Macaylay. But it is easy to check that H,(G) is not of
finite length so that G is not generalized Cohen-Macaulay. Hence there is no
Cohen-Macaulay multi-Rees ring R4(m,). This can also be seen in the following
way. Assume that R4(m,) would be Cohen-Macaulay for some r > 1. By
Proposition 2.4 there would then exists a [0, 1]-regular sequence (fy, f2) on G.
Since Go = k, we would necessarily have [(f1): (f2)]o = 0. This would mean that
G is Cohen-Macaulay, which is not the case.

Next we show that the filter-regularity of the sequence (af,...,a}) is usually
better than [0,...,d —1]:
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2.7. Proposition. Let (A,m) be a local ring of dimension d and let I C A
be an m-primary ideal such that R4(I,) is Cohen-Macaulay. Let (ay,...,aq)
be a minimal reduction of I. Put g = depthG. Then gi(a},...,a}) = —oco for
i =1,...,9. If, moreover, g < depth A, we get pg41(a},...,a}) < g—1 and
gg+2(a’1", e ,a;) 2 gg+1(a{', ‘e ,a}) + 2.

Proof. Since (a},...,a}) is filter-regular and a;(gra(l)) = —oo for i =
0,...,9—1, it follows immediately from Proposition 2.2 that g;(aj,...,a}) = —
for i =1,...,¢9. In the case g < depth A, we know by [H2, Theorem 5.2] (s. also
[K]) that az(gra(I)) < ag+1(gra(I)). By Theorem 1.1 ag41(g9ra(l)) < 0 so that
using Proposition 2.2 again we see that

og+1(ay,...,a]) = ag(gra())+g+1<g—1
and

og+2(a1, ... ag) = agy1{gra(l)) + ¢+ 2 > gg41(ay,...,a3) + 2.

2.8. Theorem. Let (A,m) be a local ring of dimension d and let I C A be
an m-primary ideal such that Ra(I,) is Cohen-Macaulay. Let (a1,...,aq4) be a
minimal reduction of I. If depth A > 2, we have

oial,....a}) = pa(al, ..., a}) = —co.
In particular, gr4(I) has (S2) and Ra(I) has (S;).

Proof. The first statement is obvious by Proposition 2.7. We then see that
depth gra(I) > 2. By Proposition 1.4 depth R4(I) > 3. Since R4(I,) is Cohen-
Macaulay, gra(I) is generalized Cohen-Macaulay. Because I is m-primary, it
follows easily that also Ra(I) is generalized Cohen-Macaulay. This implies the
second statement.

2.9. Remark. It is said in [HHR2, Appendix, Proposition 4.7] that the
assumptions d > 2, gradel > 2, Ra(I,) is Gorenstein and Ha,(Ra(I)) = 0,
where 9 is the homogeneous maximal ideal of R4(I), imply that gra(I) has the
property (Sz). The above theorem shows that this is true under much weaker
assumptions, if I is assumed to be m-primary.

In the following Theorem 2.13 we want to characterize the situation that
R4(I,) is Cohen-Macaulay for some r > 0 in terms of conditions in A. For that
we first prove some lemmas which show how the filter-regularity in gra(I) can be
expressed my means of ”intersection conditions” on the minimal reductions of I.

2.10. Lemma. Let G be a graded ring of dimension d defined over a local
ring and let (zy,...,24) be a filter- regular system of parameters consisting of
homogeneous elements of degree r. Let k € {1,...,d}. Then

(z1y..y2zic1) s zi)n = {(21,- . -, 2ic1)]n (i=1,...,k)
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if and only if
[H](zl,...,z;)]n+,,=0 (2=1,,k)
Proof. We use induction on k. The case k = 1 is clear, because [H1 (21 )]ntr =

[0:21]n. Let k> 1. The claim then follows by the induction hypothesis from the
exact sequence

(215 y2k=1) : Zk]n
[(zl,...,zk)]n

[Hl(zl,---,zk—l)]n+r_'[Hl(zl,-'-;zk)]n-f-r_’ — 0

coming from the sequence

[Hi(z1, -y 26=1)]n £

[H](Z] Yooy Zk_])]n+,. 4 [Hl(zl, RN Zk)]n+,~ — [Ho(zl,. e ,Zk—])]n

-:h_z: [Ho(zl, e ,Zk-])].

2.11. Lemma. Let (A, m) be a local ring of dimension d and let I C A be

an m-primary ideal. Let (b;,...,bs) be a minimal reduction of I9. Let n € N
and k€ {1,...,d}. If

(81, 65_) 2 bF]n = [(B],- - Bi_1)]n
for : =1,...,k, then the following conditions are satisfied for each i = 1,...,k
1) (by,..., b)) IP N I™Te+t = (b . b)) IMH]
2) {(bry.. ., bic)I™ 1 6))NI™ C (by,y ... bimy ) I + L,
Conversely, if these conditions hold for some 1 € {1,...,k}, we get that

(815, Bi1) s Bl = [(B1,- . Bicy )]

Proof. Suppose first that

(BT, s b0y b7 = (B, ., Bis 1)

fori=1,...,k. Let : € {1,...,k}. Denote R = Ra(I) = A[It] and G = gra(I).
Consider the elements b,19,...,5;t? € R,. From the long exact sequence of Koszul
homology corresponding to the exact sequence

0— R*(1) = R— G —0
we get the exact sequence

Hi(b1t9, ..., 519 G) — Ho(bit9,...,b;t% RT(1)) — Ho(b129,...,b;t%; R).



12 HERRMANN et al.

By Lemma 2.10 we now have
[Hl(b;tq, ey b,’tq; G)]n+q = 0.

In degree n + ¢ the above sequence then yields a monomorphism

[ttt mte
(b],. ‘e ,b,‘)I"+1 - (bI)“ .,b'-)I".

00—
It then follows that we must have
(by,...,0)I" nIrtett — (bl,...,b,-)I"“.

Let us then show that if 1) holds for some 7 € {1,...,k}, then 2) is equivalent

(6155 bi1) 2 0]n = (815, B e

One immediately sees that the last condition is equivalent to

to

(((bry. . i)+ TP b)Y N T = (by,y .. b I+ T (3)
Let us now prove that this is equivalent to 2). Take
€ € (((byy...,bi— )"+ I"1Y  p ) N 1™,
Then b;z =y + z, where y € (by,...,b;i—1)I" and z € I"T9*!. By 1)
2 € (by,..., b)) " NI = (b, b))

It follows that
z € ((bry... b=y )I" 1 b)) N I™ 4 I,

Hence
(((Byy- oy i M + I )N T = ((by,. .. i )™ i b)) NI 4+ TP
Then (*) becomes
((bry vy bim )™ 2 bYNT™ C (byy. .. by )P0 I
as desired.

2.12. Lemma. Let (A,m) be a local ring of dimension d and let I C A be an
m-primary ideal. Let (by,...,bs) be a minimal reductionof I?. Let t; < ... <t4.
Then (b7,...,b}) is [t1,...,tq]-regular if and only if the following conditions are
satisfied for 1 = 1,...,d and n > t;:

1) (by,...,b)I" O I7+aTT = (b, ... b))+

2) ((byy...,bic)) I b )N I™ = (b],...,b,‘_])I"-q.
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Proof. 1t follows from Lemma 2.11 that (4},...,b%) being [ti,...,tq}-regular
is equivalent to the conditions

1) (br,y...,b5)I" N Intetl = (bl,...,bi)I"+l
2) ((bry.. s bic)I™ b)) NI C (by, ... by )P0 [PH]

for : = 1,...,d and n > t;. One easily sees by induction on n that these are
further equivalent to the conditions

17) (by,..., 0I5 nIntatl = (4, .. b))

2) ((bry. ..y bim)IH=2 2 B)NI™ C (by,...,bi—y )~ 9 + I™H!

for : = 1,...,d and n > ¢;. It is thus enough to show that 2”) implies 2) for
i=1,...,d and n > t;. By 2”)

((Bry ooy bim M= 0)NTY C (byy ey b 79+ ((bry ooy by )E-1 2 b)) N I

for every n > t; so that

(b1, ..., i) by I C () ((bl,. b )M 4 I"+'=)
E>1

= (by,..., bi_y )"0

2.13. Theorem. Let (A,m) be a formally equidimensional local ring of
dimension d and let I C A be an m-primary ideal. Then Ra(I,) is Cohen-
Macaulay for some r > 0 if and only if r(I) < d — 1 and all minimal reductions
(by,...,bq) of every I9, q¢ > 0, satisfy the following conditions for 1 = 1,...,d
and n 2 q(i —1):

a) {(by,...,b))I* NI*Ha+Y = (b .. )"
b) ((bl,. v ,b,'._l).[n . b,) NIt = (bl,. . .,b,’-])In_q.
Proof. Because A is formally equidimensional, we get that gra(I) is equidi-
mensional. The claim then follows from Proposition 2.4 (2) and Lemma 2.12.

The next proposition provides us some insight in the "intersection conditions”
of Theorem 2.13 a) (cf. [T2, Lemma 5.1]):

2.14. Proposition. Let (A, m) be a local ring of dimension d and let I C A
be an m-primary ideal. Let (by,...,bs) be a minimal reduction of I9. Suppose
that gra(I) and hence also A are generalized Cohen-Macaulay. If (by,...,by) is
a standard system of parameters of A, then

D Wby b NIIE by b)) YY) < I(gra(D)) — I(A)

n=0

and the equality holds if and only if (b7, ...,b}) is a standard system of parameters
of gra(l).
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Proof. Denote b = (by,...,b4) and b* = (b],...,b}). Write

g—1 N+g-1
(A/IVF) = S 1 /1) + Z I/ I+
n=0

= ZI(I"/I“'“) + Z i(Imre /et

and
N-1

I(A/bIN) =1(A/b)+ Y UbI"/bI"*).

n=0

For N > 0 we have IN+9 = bI¥ 5o that

N-1 N-1
Zz (/I + Y (I ety = 1(A/b) + Y I(bIT/bIMHY),
n=0 n=0 n=0

It follows that

I(A/b) = qi W/t + i(l(["*" JIPTOEY) — (bI™ /bI™HY),

Because
g—1 oo
{gra(D)/b") = Z (e /) + Z (I /bI"™% + I
= z (I /rm+ + Z(I(I" JIMHY) = (I 4 I™H /1)
e
= > I/t + }:(I(I" [T = 1(bI™ ™7 /I N ™)
g—1 00
= > UIM /I 4 ) (Y — i(bIM /I 0 I,
we get

(gra(I)/b*) — I(A/b) = Z(z (bI" /bI™*Yy — I(bI" /bI™ N [7Het1Y)

n=>0

oo
=) ibI" N I*HeH I,

n=0
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Now observe that e(b*;gr(A)) = e(b; A). Then

I(gr(A)) 2 U{gra(I)/b") — e(b™; gr(4))
= l(gra(I)/b*) —I(A/b) +I(A/b) — e(b; A)

[ o]
=Y UbI"nI™eH b 4+ [(A)

n=0

and the equality holds if and only if (b7,...,4}) is standard system of parameters
of gra(I).

3. Testing the Cohen-Macaulay property by length functions

Let (A,m) be a local ring and I C A an m-primary ideal. In this section
we compare the Cohen-Macaulay property of Ra(I,) and Ra(I,), where s < r.
Theorem 3.6 gives a necessary and sufficient condition for the Cohen-Macaulayness

of Ra(1,) if Ra(I,) is Cohen-Macaulay.

Let G be a graded ring of dimension d defined over an Artinian local ring B.
Suppose that G is generalized Cohen-Macaulay and (z;,..., z4) is a homogeneous
system of parameters of G. Denote

L(zyza) = B((21, - 2im1) D 2ila /(21,00 2im1)]e) (E=1,.0,4d)

and
hy(G) = 1B([HR(G)y) (i=0,...,d),
where 91 is the homogeneous maximal ideal of G.

3.1. Lemma. Let G be a graded ring of dimension d defined over an
Artinian local ring A. Suppose G is generalized Cohen-Macaulay and (zy,...,z4)
is a standard system of parameters of G consisting of homogeneous elements of

degree v. Then
i-1 /.
i 1—1 ]
In(zla“'azd):Z ( j )hi—rj(G)
=0 .

forall :=1,...,d and n € N.

Proof. The lemma is well known, but in a lack of a suitable reference we
sketch a proof. Observe first that

(715 -y zim1) s zif(21,. .y 2ic1) = EU(G/(zl,...,z;_l))
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so that I}(z1,...,24) = R%(G/(z1,...,2i—1)). Let us prove by induction on i that
the following more general formula holds for all : = 1,...,d and k=0,...,d —:

+k-1 . .
RE(G/(21ye . zic)) = Y C } 2) SRR (e))

=k

The case i = 1 being trivial assume ¢ > 1. Denote G/ = G/(z1,...,2;-1) and
Ki = (z1,...,zj-1) : zj[{z1,-..,2j=1) (j = 1,...,d). We then have the exact
sequences

0 — Ki—l — Gi—-l — Gi—l/}'{i—l — 0

and . . .y . .
0 — G /K (-r) el 6 —0
Since dim K*~! = 0, the long exact sequence of cohomology corresponding to

the first sequence implies that H (G K=Y = g1.(G1) for 7 > 0. Be-
cause zi—1 Hiz(G*~!) = 0, the cohomology sequence corresponding to the second
sequence gives the exact sequence

0 — [H5 (G ]w — [HE(G)]n — [HET (G ™ )nr — 0.

Thus _ _ ‘
RA(GY) = RE(G') + HEEL(G™)

and we can use the induction hypothesis to get the claim.

The‘ lemma shows th_a.t in the case (z1,...,2q4) is standard we may in fact
denote I} (z,...,2q4) by L (G).

3.2. Remark. Note especially the following consequence of Lemma 3.1.

Since L
0=t =3 (*7)H_0)

=0
for n < 0, we obtain that [H1,(G)], =0 for p < ~7j.

For the following let (A4,m) be a local ring of dimension d and let I C A be
an m-primary ideal such that r(I) < d — 1. Suppose that gra(I) is generalized
Cohen-Macaulay and that the sequence (af,...,a}) is [0,...,d —.1]-regular for
some minimal reduction (a;,...,aq4) C I. Suppose, moreover, that for a certain
r the sequence (ai”,...,a]") is a standard system of parameters of gra(l). It
follows from Corollary 1.3 by the preceeding remark and Corollary 2.3 that Ra(I,)
is always Cohen-Macaulay for s > r(d — 1). For example, in the case gra([) is
Buchsbaum, we can take r = 1 and get that R4(I,) is Cohen-Macaulay for all
s > d — 1. The following proposition answers the question, when R4(I,) itself is
Cohen-Macaulay. We first we need a lemma.
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3.3. Lemma. Let (4,m) be a local ring and I C A an m-primary ideal.
Put G = gra(I). If Ra(I,) is Cohen-Macaulay, the ring G is a generalized
Cohen-Macaulay ring and the ideal (G¥)" C G a standard ideal.

Proof. If Ra(I,) is Cohen-Macaulay, we know by Theorem 1.1 that also
g74(Ir41) is Cohen-Macaulay. Put @ = G*. We now have

Re(Q)= @@ @ut-tv= @ ( EB Gk)

ny,..,n. 20 n1,.,0.20 k2n14+...4n,

= @ (B Gurtnn)

S ne20 n,4120

Gﬂ1+..-+nr+1

D

Ty, rgt 20
= gra(Lr41).
By Corollary 1.2 this implies that also Rg(Q") is Cohen-Macaulay. But we then
know by [HIO, Theorem 45.7] that QT is a standard ideal.

3.4. Proposition. Let (A,m) be a local ring of dimension d and let I C A
be an m-primary ideal. Let (ai,...,aq) be a minimal reduction of I. Then
R4(I,;) is Cohen-Macaulay if and only if the following conditions hold:

1) r(I)<d-1
2) The sequence (aj,...,a}) is [0,...,d — 1]-regular.

3) gra(I) is a generalized Cohen-Macaulay ring-and (a}",...,a}") a standard
system of parameters.

d-1 .
9 1 tora) = (7)) =1 d= 1, 0= 1)
Proof. Put G = gra(I). If 3) holds, 2} is by Proposition 2.3 equivalent to
ai(G) <0 for : =0,...,d—1. By Corollary 1.3 it is then enough to assume that

1), 2) and 3) hold and show that 4) is equivalent to hy(G) =0 for p < —r and
1=1,...,d—1. Let 0 < ¢ <r. By Lemma 3.1

(G = (J) (@) =B (G)

forall : =0,...,d —1. Moreover,

(@)= (“7 ) Hcaret®

j=0



18 | HERRMANN et al.

- (dzl)h‘_ (G) + df (d.; l)h{,-_,-),._q(G)

i"i+l

( )l:ﬂ“(GH Z ( ) (i=j)r—q(G)-

J=i+1

It follows that 4) is equivalent to h(' —r— q(G) =0for j=0,...,d—1,1<j and

0 < ¢ < r. Since always h}(G) = 0 for p < —jr, this is the same as hi(G) = 0
for p < —r. The claim has thus been proved.

3.5. Lemma. Let (A,m) be a local ring of dimension d and let I C A be
 an m-primary ideal such that R(1,) is Cohen-Macaulay. Let (a;,...,aq) be a
minimal reduction of I. Let 9N be the homogeneous maximal ideal of R4(I;).
Suppose : < d and p € {1,...,r}. Then

[Han(9ra(1)]-p =0

if and only if the following conditions are satisfied:

1) (af,. I NIGHEPH = (af, . ) [P

2) ((af, a3 )I77P £ @) A TP C (af, ..., a_, )JT6=Dr=7 4 [rr1
If this is the case, we also have

1) (a{, a,k)I"'—P N I('+1)T*P+1 (al, )Iir—p+l

2) ((af,...,aqg_)I"Praf)N TP C (ala coyaf_ G- Dr=p 4 pir—ptl
for k <d

Proof. By using Lemma 3.1 as in the proof of Proposition 3.4 we see that

' 0 : if k<141
[k n)y=4{ (k-1\; : :
ir—p(gr (1)) ( i )h'_p.(gm(f)) if k>4 +1.

Hence h' ,(gra(I)) = 0 if and only if l"_p(grA( )) = 0. Moreover, if this is the

case we have If__(gra(I)) = 0 for k = .,d. The claim then follows from
Lemma 2.11.

If Ra(I;) is Cohen-Macaulay, we know by Theorem 2.13 that the following
conditions are satisfied for : = 1,...,d and n > (d — 1)r:

a) (al,...,ap)I"N A InHr+L = (af,...,ap)I"*!

b) ((af,...,aj_ )" :ap)NI" = (a],...,a)_)I*"".
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It turns out in the following Theorem 3.6 that in order to R4(I,) be Cohen-
Macaulay for some s < r similar conditions must also hold for certain n < (d—1)r.

3.6. Theorem. Let (A,m) be a local ring of dimension d and let I C A
be an m-primary ideal. Let (ay,...,aq4) be a minimal reduction of I. If R(1,)
is Cohen-Macaulay and s < r, then R4(1,) is Cohen-Macaulay if and only if the
following conditions hold for 1 =1,...,d—1 and p=s+1,...,r

1) (af,...,a}) N IGFVT=p+1l — (gr  gry[ir=p+!
2) ((a},...,ay_OI""P:al)NI™P C (af,...,a)_ ) IUG=Dr=P 4 [ir—p+1
Proof. As R4(I;) is Cohen-Macaulay Theorem 1.1 implies that R4(I,) is
Cohen-Macaulay if and only if AL (gra(f)) =0 for ¢ = 1,...,d 1 and p =
s+ 1,...,r. By Lemma 3.5 this is equivalent to the conditions
) (af,...,apI=P n [UFDr=p+l = (g7 gf)Iir—Pt!
2 ((af,...,a;_ )P a})) NP C (af,...,a)_)IU-1r=p 4 pir—pt+l
We only need to prove that 1’) implies 1). We use descending induction on p.
Suppose p = r. Since R4(I,) is Cohen-Macaulay, also R4(I") is Cohen-
Macaulay. Let 91 be the homogeneous maximal ideal of gr4(I"). By [TI] we

have

0 if n# -1

[Hiy(graI™))]n = {Hi (A4) ifn=-1

for ¢ < d. This implies that

d—1

Horatr) =3 (7 1) allttorarl-)
= i (d: 1) lA(H 1 (4)) = I(A).

It then follows from Proposition 2.14 that
(af,...,a)I* NI = (o7 o HIFEFDT
for £ > 0. From this it is easy to see that also
(al,...,a)) NI*FDT — (gr o qn)r(k+Dr
for k > 0. By 1’) we then obtain

(a],...,aDIC=DH = (qr  qIGDT A It Z (g7 ah) N it
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so that 1) holds if p=r.
Then suppose p < r. By the induction hypothesis we have

(af, ., @) NI4T = (af, .. )P
Hence

(a;', e a;)Iir—P+1 = (a;" . ,ag)Iir—P ) Iir—P+r+1 —_ (a;" o ,a;) N Iir—p+r+1.

3.7. Remark. If A is Cohen-Macaulay in Theorem 3.6, then 1) implies 2).

In order to see this let us first show that if 1) holds, then
(a{, ey as_l) AP = (a;', e a;—l)I(i—l)r—P

for i=1,...,d—1and p=s+1,...,r. Use induction on i. The case 1 = 1
being clear assume ¢ > 1. Take

r € (a;! e )a;—l) N Iir_p - (a;, v ’aE) N Iir—p = (a{, cen ,a;)I(iﬂl)r_P,
Then
d=1
T = Z Ajaj + Aaag,

J=1

where Aq,..., g € TGP Since (af,...,a]}) is a regular sequence, we get by
the inductive assumption that

A € (af,...,a4_{)N JG=Dr=p _ (al,... ,ag_l)j(i*z)r-p‘
This implies the above claim. Let us now show that 2) is satisfied. We obtain

(@] s s )T 5 a3) N TP C (@ ) - a5) 0 7P
C (af,...,aj_;)N Jir-e

C (af,... ,a;__,l)]'("—l)r—],.

As an application of Theorem 3.6 we give the following corollary.
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3.8. Corollary. Let (A,m) be a local ring of dimension two and let I C A
be an m-primary ideal such that Rs(I,) is Cohen-Macaulay. Let (a;,a2) be a
minimal reduction of I. Then Ra(I,—) is Cohen-Macaulay if and only if the
following implication holds:

/\1(1;‘+/\20£ € I+ = A, A €L

Proof. According to Theorem 3.6 R4(I,—1) Cohen-Macaulay means that
(al,ay) NIt = (af,a})] and (a]):aj C I, (a}): al C I. These conditions are
clearly equivalent to the implication mentioned in the claim.

3.9. Remark. If A is a local Cohen-Macaulay ring of dimension two, R 4(I,)
Cohen-Macaulay implies always that R4(I) is Cohen-Macaulay. If A has dimen-
sion three, the same holds for I = m. Since r(I) < 1 and r(m) < 2 in these
cases, this follows from [VV] and [S].

3.10. Remark. If A is not Cohen-Macaulay, I = m and dimA4 = 2, it
may happen that R4(m,) is not Cohen-Macaulay for any r > 1. As an example
consider A = k[[s?,s3,st,1]], where s and ¢ are indeterminates. Now (s2,t) is a
minimal reduction of m. Since s* € (s?m : t)N'm, but s* & (s?), we see from
Theorem 2.13 b) that R4(m,) cannot be Cohen-Macaulay for any r > 1.

Next we want to mention a class of examples where R4(I,) is Cohen-Macaulay
for some r > 1, but R4(I) is not Cohen-Macaulay.

3.11. Example. Let (A,m) be a local generalized Cohen-Macaulay ring of
dimension d. Let I C A be a standard parameter-ideal. By [HIO, Theorem 40.10]

H (4), ifn=—i

0 , otherwise

[Ham(graI)]n = { (i < d),

[Hop(graD)ln =0, if n > —d,

where 9 is the homogeneous maximal ideal of R4(I). Let 1 <r < d. By [G1] it
is always possible to find a local Buchsbaum ring (4, m) with d > 3, depth 4 > 0
and H7,(A) #0, H,,(A) =0 for r <1 < d. Then Rx(I,) is Cohen-Macaulay,
but R4(I,-1) is not Cohen-Macaulay.

3.12. Example. Let (A,m) be a d-dimensional local Buchsbaum ring of
maximal embedding dimension. By [T1, Proposition 5.11]

{ Hi(A), ifn=—(i-1)

0 , otherwise

[Him(gra(D))n = (z < d),

mﬁ_im(grr,q(f))]n =0, ifn>1-d,
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where I is the homogeneous maximal ideal of R4(I). Let 1 <r < d—1. By [G2]
it is always possible to find a local Buchsbaum ring (4, m) of maximal embedding
dimension such that d > 4, depthA > 0 and H'(A4) # 0, H!,(4) = 0 for
r+1< i< d. Then Ra(m,) is Cohen-Macaulay, but R4(m,_;) is not Cohen-
Macaulay.
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