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FILTER...REGULARITY AND COHEN-MACAULAY
MULTIGRADED REES ALGEBRAS

Manfred Herrmann, Eero Hyry, Thomas Korb

o. Introduction

Among the many problems related to the Cohen-Macaulayness of graded alge­
bras, a question of C. Huneke and I<. Smith - asking for the existence of arithmetic
Macaulayfieations - recently attracted speCial attention. Here a Noetherian loeal
ring (A, m) of dimension d is said to have an arithmetic Macaulayfication if there
is an ideal I such that "the Rees algebra RA(I) = A[It] (where t is an in~eter­

minate) is Cohen-Maeaulay. The existence of arithmetic Macaulayfications ean
e.g. be shown for generalized Cohen-Maeaulay rings (i.e. in particular Buchsbaum
rings) using results of S. Goto (et al.) on the loeal eohomology of blow-up algebras
with respect to a standard system of parameters. But in general, an arithmetic
Macaulayfication does not have to exist for a given ring A - even if Spec A has
a desingularization by Proj RA(I) for sorne I C A. Actually, J. Lipman could
show recently that RA(I) cannot be Cohen-Macaulay in this situation unless A
is rational.

The existenee resp. non-existence of an arithmetic Macaulayfication is a prop­
erty of the ring A. The more classical problem in this direction is to find and
describe suffieient conditions on ideals I - in a given class of rings A (as e.g. rings
which are already Cohen-Macaulay) - whieh guarantee that RA(I) is Cohen­
Macaulay. A weaker eondition for a given ideal I is to ask for the Cohen­
Maeaulayness of some multi-Rees algebra RA(Ir ) = RA(I, . .. ,I). This implies
the Cohen-Macaulay property of the Rees algebra of some power of I, hut not
necessarily the Cohen-Maeaulayness of RA(I) itself.

The Cohen-Maeaulayness of RA(Ir ) ean be charaeterized by means of the
IDeal cohomology of the form ring grA(I) = RA(I)/IRA(I) (s. Theorem 1.1).
In particular, all the a-invariants of grA(I) have to be negative. In the case
the ideal I is m-primary this leads us to eonsider the filter-regularity of sequences
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(ai, ... , ad) where ai, ... ,ad are the initial forms of a minimal reduction aI, ... ,ad

of I in grA (I) .
This paper is organized as follows: In section 1 we recall some easy conse­

quences of the above mentioned Theorem 1.1. Moreover, we study the effect of the
Cohen-Macaulayness of RA(lr ) on the relationship between the depths of RA(I)
and grA{I).

Given an m-primary ideal I C A and a minimal reduction (al, ... , ad) of
I we describe in section 2 the relationship between the filter-regularity of the se­
quence (ai, ... , a d) and the Cohen-Macaulay property of RA (I r ). One interesting
consequence is Theorem 2.8 which says that in the case depth A ~ 2 the Cohen­
Macaulayness of RA (Ir) implies that grA(I) satisfies the Serre condi tion (82 )

and RA(I) the Serre condition (83 ). Another consequence is Theorem 2.13 where
the situation that RA(lr ) is Cohen-Macaulay for some r > 0 is characterized by
condi tions on I in the ground ring A.

In section 3 we then address the question how far we can improve for given
I the Cohen-Macaulay property of RA(l r ). For m-primary ideals we give an
answer to this question in the following sense: Assuming that RA (Ir) is Cohen­
Macaulay we characterize the Cohen-Macaulayness of RA (1.,) , where s < r, by
means of "intersection conditions" similar to those Valabrega and Valla gave for
the Cohen-Macaulayness of grA(I) in [VV]. Finally we give aseries of examples
where RA(lr ) is Cohen-Macaulay for some r ~ 2, but the ordinary Rees algebra
RA(I) is not.

1. Preliminaries aod auxiliary results

We begin by fixing sorne notation and by recalling certain basic facts about
multi-Rees rings. For details we refer to [HHRl], [HHR2] and [HHRT].

In the following we call zr -graded rings and modules r-graded or simply
multigraded. Rings are always asstUlled to be Noetherian and Nr -graded. The
norm of a multi-index 0 E zr is Inl = nI + ... + n r. If S = EBnEN" Sn is an
r-graded ring, we denote S+ = EBn:#o Sn.

Let A be a ring and let 11 , ..• , Ir c A be ideals. Set I = (lI,' .. ,Ir)' The
multi-Ree3 ring RA(I) is the r-graded ring

RA(I) = EB I~t ... I;r .
nEN"

Furthennore, for every i = 1, ... ,r the i :th multi-form ring is defined as

grA(I; Ii) =RA(I)I IiRA(I)

= ffi IInt ... [;ti ... In,. IInt ... I~i+I ... InT
Wir 1 Ir'

nENT
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We often identify RA (I) with the subring A[I1 t 1 , ••• ,Irtr] of A[t1 , ••• , t r]. Ir
htlj > 0 (j = 1, ... ,r), we have dimRA(I) = dimA+r. Moreover, if A is Ioeal,
dirn grA (I; I i ) = dirn A + r - 1 (i = 1, ... , r ). .

In the ease I1 = ... = Ir = I we use the notation Ir for the r-tupie (I, . .. ,I).
We also denote grA (I r) = 9r A (Ir; I). The Cohen-Macaulay property of multi-Rees
algebras RA(l r ) and multi-form rings grA(lr+1 ) ean be eharaeterized in terms of
the Ioeal eohomology of the usual Rees ring RA (I) and form ring grA(I) as follows
([HHRl, Theorem 2.2], [HHRT, Proposition 1.6]).

1.1. Theorem. Let (A, m) be a ioeal ring of dimension d and let I C A be
an ideal oE ht I > O. Let !Dt be the homogeneous maximal ideal of RA(I). Then
the following eonditions are equivalent for all r ~ 1:

(1) RA(l r ) is Cohen-Macaulay.

(2) grA(lr+1 ) is Cohen-Macaulay.

(3) Lli.k(RA(I)]n = 0 wben i < d+l and n ~ {-r + 1, ... ,-I}.

(4) Lli.k(grA(I)]n = 0 when i < d and n rt {-r, ... ,-I},

lH.~(grA(I)]n = 0 when n ~ 0'.

1.2. Corollary. Let (A, m) be a ioeal ring oE dimension d and let I C A be
an ideal oE ht I > O.

1) H RA(l r ) is Cohen-Maeaulay, then RA(lq ) is Cohen-Maeauiay for a11 q ~ r.

2) H RA(Ir ) is Cohen-Maeaulay, then RA(Ir ) is Cohen-Macaulay.

Proof Both claims foHow direetly from Theorem 1.1. Observe that in (2)
(RA(I»(r) = RA(Ir) so that (H~l(RA(J»)(r) = H!n(RA(Ir» where VJl and 91
are the homogeneous maximal ideals of RA(J) and RA(Jr) respectiveIy.

To formulate and to prove another consequenee of Theorem 1.1 for m -primary
ideals we first recall some facts about a-invariants and reduction numbers.

If G is a graded ring of dimension d defined over a local ring, the a-invariants
of G are defined as

ai(G) = sup{n E Z 1lH.~(G)]n =I O} (i = 1, ... , d),

where 9J1 is the homogeneous maximal ideal of G.
Let (A, m) be a local ring and I C A an ideal. Recall that an ideal J c I

is called a reduction of I if In +1 = J In for n > O. The red'Uction number r( I)
is defined as the smallest integ~r n such that J"+1 = J In for some minimal
recluetion J Cl. Ir the ideal I is m-primary, a weH known result of Trung [T2,
Proposition 3.2] says that the recluction number r(I) satisfies the inequality
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1.3. Corollary. Let (A, m) be a Ioeal ring of dimension d and let I c A be
an m -primary ideal. Then RA(Ir ) is Cohen-Maeaulay if and only if the following
eonditions are satisfied:

1) [Ifk(grA(I)]n = 0 wben i < d and n < -r

2) ai(grA(I» < 0 when i < d

3) r( I) ::; d - 1 .

Next we consider the effect of the Cohen-Macaulayness of RA(Ir ) on the rela­
tionship between depth RA(I) and depth grA(I). Inspired by results of Huckaba­
Marley on "the expected depth inequality" for Rees and form rings:

depth RA(I) ~ depth grA(I) + 1

(s. [HM)) we characterize the strict inequality in the case that RA(Ir ) is Cohen­
Macaulay for some r > 0 (note that r may be arbitrarily large).

1.4. Proposition. Let A be a Ioeal ring of dimension d. Let I c A be an
ideal of ht I > 0 such tbat RA(Ir ) is Cohen-Macaulay. Tben

(i) depthRA(I) ~ depthgrA(I) +1.

(ii) depthRA(I) > depthgrA(I) + 1 if and only if

a) 9 = depth grA(I) < d and

b) [HG( /lu ~ { : : #=~.

In this case also depth A = g.

ProoE. Put R = RA(I) and G = grA(I).

(i) By Theorem 1.1 ai (G) < 0 for i = 0, ... ,d so that the claim follows from
[HM, Theorem 3.13].

(ii) Consider the lang exact sequences of cohomology corresponding to the
exact sequences

o--? R+ ~ R ----i' A ----i' 0
and

By the cohomology sequence corresponcling to the first sequence we have for all i
the isomorphisms
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The cohomology sequence corresponding to the second sequence gives the exact
sequence

[Hfut(R)]n -+ [Hfut(G)]n -+ [Hfuil(R+)]n+l ~ [Hßril(R)]n.

When dept~R > 9 + 1, we have {Hfut(R)]n = {Hfuil (R)]n = 0 so that we obtain
an isomorphism

[Hfut(G)]n ~ [Hfuil(R+)]n+l'

If n < -1, this gives [Hfut(G)]n = O. If n = -1, we can use the cohomology

sequence corresponding to the first sequence to see that fHfutl(R+)]n = Hrn(A).
We have thus shown that in the case depth R > 9 + 1

fH&t(G)]n ~ {H~(A), n = -1
o ,nf=-l.

Conversely, if [H~(G)]n = 0 for n < -1, we have the monomorphisms

o-+ [Hfutl(R)]n+l ~ [Hfutl(R)]n (n< -1)

so that necessarily Hfutl (R) = 0 and depth R > 9 + 1. The last remark follows
easily by similar considerations.

1.5. Remark. The statement (i) of Proposition 1.4 is also true under the
weaker assumption that RA(Ir ) is Cohen-Macaulay (s. [KN, Lemma 2.9]).

The next proposi tion will show one more consequence of the si tuation (ii) in
Proposition 1.4:

1.6. Proposition. Let A be a Jocal ring and let I c A be an ideal of ht I >
O. Let 9J1 be the homogeneous maximal ideal of RA(I). Put g = depthgrA(I)
and assume that [Hfut(grA(I»]n = 0 for n f= -1. Then also depth grA(!") = g
for alJ s 2:: 1. Moreover, we have Hß.t(gr A(P'» = Hfut(grA(I», where 'J1 is tbe
bomogeneous maximal ideal of RA(I~).

Proof. We have the following so called approximation sequences (of RA(I~)­

modules) introduced by Ribbe (see [R])

o~ I~-i+lgrA(I~) -+ I~-igrA(I~) -+ (grA(I)(s - i»(~) ~ 0 Ci" = 1, ... ,s).

By means of these sequences it is easy to see that deptp grA(I~) ~ g. Therefore
we only have to show that H fn (g r A (P' » = H rm (g r A (I) ) . From the long exact
sequences of cohomology corresponding to the approximation sequences we get
the sequences

o-+ Lli.ß.t(I~-i+lgrA(I~»]n -+ Lli.fn(I~-igrA(I~»]n

-+ [Hfut(grA(I»]n~+~-i -+ lli.ß.t+l(I~-i+lgrA(I~»]n.
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Suppose first that n i= -1. Then ns +s - i i= -1 so that by using the assumption
lIi.~(grA(I))]n",+",-i = 0 we get the isomorphisms

lIi.~(I",-i+lgrA(I"'))]n~ llifu(I",-igrA(I"'))]n (i = 1, ... ,s).

Now observe that I"'grA(I"') = O. It follows that for n i= -1

lliik(grA(I"'))]n ~ ... ~ [f[~(I"'grA(I"'))]n = O.

Then suppose that n = -1. Since I"'grA(I"') = 0, we obtain by choosing i = 1 in
the above sequence the isomorp~ism .

Lli.~(I"-1 grA(I"'))]-l ~ {Hfut(grA(I))]-I.

On the other hand, since [Hfut(grA(I))]-i = 0 for i = 2, ... , s, we also get the
isomorphism~

Putting this together we see that

The claim has thus been proved.

2. Filter.. regularity

We begin by recalling some facts about filter-regularity and a-invariants. Let
G be a graded ring defined over a local ring Go and let ZI" .. , Zr E G be homo­
geneous elements. The sequence (Z1, ... ,Zr) is called filter-regular if

[(ZI, . .. , Zi-l) : Zi)n = [(ZI, .. . , Zi-1 )Jn

for n ~ 0 (i = 1, ... , r). If Go is Artinian, this means that the G-modules

(z), .. , ,~i-1) : Zi/(Zl, ... ,Zi-t} (i = 1, ... , r)

have finite length or equivalently

00

(z}, . , . , Z i -1) : Z i C U(Z1, .... " Zi-I) : VJ1n (i = 1, ... , r),
n=O

where 9J1 is the homogeneous maximal ideal of G.
Following [AH] we say that the sequence (Z1, ... , zr) is [tl,"" t r ]-'regular if

[(Zl, ... ,Zi-1): Zi]n = [(Z1,.""Zi-l)]n

for n ~ ti (i = 1, ... , r). Also the value -00 is here allowed for ti' We denote

ei(Zt, ... , zr) = inf{n E Z I [(ZI, ... , Zi-l) : zdn· [(ZI"'" Zi-1 )]n}

for i = 1, ... ,r and call [eI" .. , er] the jilter-regularity of (ZI,' .. , Zr )'.
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2.1. Lemma. Let G be a graded ring of dimension d defined over an
Artinian loeal ring. Let Z E G r be a filter-regular element. Then

for a1l i = 0, ... , d - 1. H zHk(G) = 0, then

ProoE. The lemma is essentially [T2, Lemma 2.3]. For the convenience of the
reader we give some arguments for the proof of the second part. Put G = G/(z).
We have the exact sequenees

0--+0 : z --+ G --+ G/(O : z) --+ 0

and

o--+ G/(O : z)(-r) ~ G --+ G --+ O.

Since 0 : z = 0 : 9J1n for n ~ 0, we have dima(O : z) = 0, and the long
:.

exact sequence of eohomology eorresponding to the first sequence implies that
Hk(G/(O : z)) = Hk(G) for i > O. Consider then the long exaet sequenee of
eohomology corresponding to the second sequenee. Sinee zH:m(G) = 0, we come
to the sequence

which easily implies the claim.

Let G be a graded ring defined over an Artinian local ring. The ring G
is said to be generalized Cohen~Macaulay if the localization Gf)Jl is a generalized
Cohen-Maeaulay ring. By definition this means that the loeal eohomology modules
Hk(G) (i = 0, ... , d-1) have aU finite length, whieh is equivalent to Lff.~(G)]n =
o for n ~ 0 (i = 0, ... ,d - 1). It is also weH known that this happens if and
only if G is equidimensional and the localizations G p are Cohen-Maeaulay at all
homogeneous prime ideals P =/;9J1.

Let (Zl,"" Zd) be a system of paralneters of G. RecaU the inequality

l(G/(ZI, ... , Zd) - e(zl, ... , Zd; G) ~ I(G),

where
d-l (d - 1) .

I(C) = ~ i lA(H~(C)).

If the equality holds, we say that (Zl,"" Zd) is a standard sY3tem 0/ parameters.
Equivalently,
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for i + j < d. A homogeneous OO1-primary ideal I c G is called a "tandard ideal
if every system of parameters contained in I is standard. There exists rEN such
that every I C OO1 r is standard. For more details about filter-regular sequences,
generalized Cohen-Macaulay rings and standard systems of parameters we refer to
[STC], [HIO] and [Tl].

The following proposition is a modification of [T2, Proposition 2.2].

2.2. Proposition. Let G be a graded ring defined over an Artinian loeal
ring and let (ZI, ... , Zd) be a filter-regular system of parameters eonsisting of
homogeneous elements of degree r. Then

max{ej(Zt, .. . ,Zd) I j = 1, ... ,i} = max{aj(G) + jr + 11 j = O, ... ,i -I}

for a11 i = 1, ... , d. Jf, moreover, G is a generalized Cohen-Maeaulay ring and
(ZI, ... , Zd) is a standard system of parameters, we have

In this ease we espeeially get tbat ei-t (ZI" .. , Zd) ~ ei(Zl, . .. , Zd) (i = 2, ... , d).

Proot By induction on i. The case i = 1 follows from the fact that for n » 0
o : ZI = 0 : 001" = H~(G) . Suppose i > 1. If Z E G, denote Z = Z + (ZI) E
G f(ZI)' Observe then that ej(Zt, ... , Zd) = ej-l (Z2," . ,Zd) (j = 2, ... , d). The
claim now follows from the induction hypothesis by Lemma 2.1.

2.3. Corollary. Let G be a graded ring defined over an Artinian loeal
ring an'd let (ZI, ... , Zd) be a filter-regular system of parameters eonsisting of
homogeneous elements of degree r. Then ai(G) < 0 for i = 1, ... , d - 1 if and
only if (Zt, ... , Zd) is [0, r , ... , (d - 1)r] -regular.

Proot It follows by induction on i from Proposition 2.2 that the conditions
ej(Zl, ... ,Zd) ~ r(j - 1) (j = 1, ... ,i) and aj(G) < 0 (j = 1, ... ,i -1) are
equivalent for all i = 1, ... ,d.

We now want to apply these results for characterizing the situation where
some multi-Rees algebra is Cohen-Macaulay.

Recall first the following. Let (A, m) be a local ring of dimension d and let
I C A be an m-primary ideal. If a E Iq \ 19+1 , put a* = a + 19+1 E [grA(I)]q.
Then (b}, . .. , bd ) is a minimal reduction of Iq if and only if (bt 1 ••• , bd) is a system
of parameters of grA(I).

2.4. Proposition. Let (A, m) be a loeal ring of dimension d and let I C A
be an m -primary ideal. Then RA(Ir ) is Cohen-Maeaulay for some r > 0 if and
only if r(I) :$ d - 1 and one of tbe following equivalent con,ditions holds:
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(1) The seqllence (ai, . .. , ad) is [0, 1, ... , d - 1] -regular for some minimal redllc­
tion (al, ... , ad) of I and the ring grA(I) is generalized Cohen-Macaulay.

(2) The seqllence (br, .. . ,bd) is [0, q, . .. ,(d - l)q] -regular for all minimal redllc­
tions (bI, ... , bd ) of every Iq, q > 0, and the ring grA (I) is equidimensional.

Proot Put G = grA(I). If RA(I r ) is Cohen-Macaulay, G is generalized
Cohen-Macaulay. By [STC, Satz 2.5] G is generalized Cohen-Macaulay if and only
if every system of parameters of G is filter-regular. By Corollary 2.3 a system of
parameters consisting of homogeneous elements of degree q is [0, q, . .. , q(d - 1)]­
regular if and only if aä(G) < 0 for i = 1, ... , d - 1. It is therefore enough to
show that if (2) holds, then grA(I) is generalized Cohen-Macaulay. Let P E
Proj G., Denote h = ht P. By prime avoidance it is possible to find a system of
parameters (Zl" .. ,Zd) of G consisting of homogeneous elements of certain degree
q such that Zl, ... , Zh E P ( s. [BH, Proposition 1.5.11]). There is then a minimal
reduction (bI,"" bd ) of Iq such that Zä = bt (i = 1, ... , d). By assumption
the sequence (Zl, ... , Zd) is filter-regular. Because G+ <t. P, we get that the
sequence (Zl"'" Zd) is regular in Gp. Hence Gp is Cohen-Macaulay. Because
G is equidimensional, we get that it is generalized Cohen-Macaulay.

2.5. Corollary. Let (A, m) be a forma1ly equidimensional local ring of
dimension d and let I c A be an m-primary ideal such that Proj RA(I) is
Cohen-Macaulay. Then RA(I r ) is Cohen-Macaulay for same r > 0 if and only
if r( I) ::; d - 1 and there exists a minimal reduction (al,"" ad) of I such that
(ai, ... ,ad) is [0, ... ,d - 1] -regular.

ProoE. The Cohen-Macaulay property of Proj RA(I) is equivalent to that of
Proj grA(!)' Since A is formally equidimensional, we know that this is in turn
equivalent to grA(I) being generalized Cohen-Macaulay (see [HIO, Corollary 18.24
and Lemma 43.3]). We can thus apply Proposition 2.4 (1) to get the claim.

2.6. Remark: Without any assumption on A the Cohen-Macaulayness of
Proj RA(I) does not imply that grA(I) is generalized Cohen-Macaulay as the
following example ([HIO, Example 40.5]) shows: Let A = k[[x, y, z]]/(x) n (y, z),
where k is a field and I = m the maximal ideal of A. Then G = grA (m) =
k[x,y,z]/(x) n (y,z). Since Gr;, Gy and Gz are Cohen-Macaulay, we see that
Proj grA(!) is Cohen-Macaylay. But it is easy to check that Htm( G) is not of
finite length so that G is not generalized Cohen-Macaulay. Hence there is no
Cohen-Macaulay multi-Rees ring RA(m r ). This ean also be seen in the following
way. Assume that RA(mr ) would be Cohen-Macaulay for some r ~ 1. By
Proposition 2.4 there would then exists a [0, 1] -regular sequence (fl' f2) on G.
Since Go = k, we would necessarily have [(fl) : (/2 )]0 = O. This would mean that
G is Cohen-Macaulay, which is not the case.

Next we show that the filter-regularity of the sequence (ai, ... ,ad) is usually
better than [0, ... , d - 1]:
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2.7. Proposition. Let (A, m) be a Jocal ring of dimension d and let I C A
be an m-primary ideal such that RA(Ir ) is Cohen-Macaulay. Let (u}, ... , Ud)
be a minimal reduction oE I. Put 9 = depth G. Then &'i(ai, ... , ad) = -00 for
i = 1, ,g. H, moreover, 9 < depthA, we get eg+l(ai, ... ,a;l) ~ 9 -1 and
&,g+2(ai, ,ud) ;::: &,g+1 (ai, ... ,ud) + 2.

ProoE. Sinee (ui, ... ,ad) is filter-regular and ai (grA (I)) = - 00 for i =
0, ... , 9 -1, it follows immediately from Proposition 2.2 that eieai, ... ,ad) = -00

for i = 1, ... , g. In the ease 9 < depth A, we know by [H2, Theorem 5.2] (s. also
[K]) that ag(grA(I)) < ag+l (gr A(I)). By Theorem 1.1 ag+l (gr A(I)) < 0 so that
using Proposition 2.2 again we see that

and

2.8. Theorem. Let (A, m) be a loeal ring oE dimension d and let I C A be
an m -primary ideal such that RA (Ir) is Cohen-Maeaulay. Let (al, ... ,ad) be a
minimal reduction of I. If depth A ;::: 2, we have

In partieular, grA (I) has (52) al]d RA (I) has (53)'

Proof. Tbe first statement is obvious by Proposition 2.7. We then see that
depth grA(I) ~ 2. By Proposition 1.4 depth RA(I) ;::: 3. Sinee RA(Ir ) is Cohen­
Macaulay, grA(I) is generalized Cohen-Maeaulay. Beeause I is m-primary, it
follows easily that also RA(I) is generalized Cohen-Macaulay. This implies the
seeond statement.

2.9. Remark. It is said in [HHR2, Appendix, Proposition 4.7] that the
assumptions d ;::: 2, gradeI;::: 2, RA(I r ) is Gorenstein and H!k(RA(I)) = 0,
where m is the homogeneous maximal ideal of RA(I), imply that grA (I) has the
property (52)' The above the~rem shows that this is true. under much weaker
assumptions, if I is assumed to be m-pri~ary.

In the following Theorem 2.13 we want to eharaeterize the situation that
RA(I r ) is Cohen-Maeaulay for some r > 0 in terms of eonditions in A. For that
we first prove same lemmas which show how the filter-regularity in grA(I) ean be
expressed my means of "intersection conditions" on the minimal reductions of I.

2.10. Lemma. Let G be a graded ring of dimension d denned over a loeal
ring and let (Zl,"" Zd) be a filter- regular system oE parameters consisting of
homogeneous elements of degree r. Let k E {I, ... , d}. Then

(i=l, ... ,k)
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if and only if
(i=l, ... ,k).

Proo!' Weuseinductionon k. Thecase k = 1 isclear, because [B1(ZI)]n+r =
[0 : Zl]n' Let k > 1. The claim then follows by the induction hypothesis from the
exact sequence

[ ( )] [ ( )]
[(ZI, ... ,Zk-I):Zk]n

BI Zl,···, zk-l n+r ---+ BI Zl, ... , Zk n+r ---+ [( )] ---+ 0
zl,· .. , Zk n

coming from the sequence

[ ]
'±Z,lcBI (z}, ... , Zk-l) n ---+

[H1(z}, . .. , zk-] )]n+r --t [H1(Zl, . .. , Zk)]n+r --t [BO(ZI, ... ,Zk-l )]n
'±ZII
---+ [Ho(z], ... ,Zk-l )].

2.11. Lemma. Let (A, m) be a loeal ring of dimension d and let I C A be
an m -primary ideal. Let (bI,"" bd ) be a minimal reduction of Iq. Let n E N
and k E {I, ... , d}. If

for i = 1, , k, then the following conditions are satisfied for each i = 1, ... ,k

1) (b], , bdIn n In+q+l = (b], ... , bdIn+l

2) «(bI, ,bi-I )1" : bd n In c (bI, .. . ,b i - I )In-q+ I n+].

Conversely, if these conditions hold for some i E {I, ... ,k}, we get that

[(b~, . .. ,bi-d : bi]n = [(bi,· .. ,bi-I )]n'

Proof Suppose first that

for i = 1, ... , k. Let i E {I, ... , k}. Denote R = RA(I) = A[It] and G = grA(I).
Consider the elements b] t q , • •• ,bitq E R q • From the long exact sequence of Koszul
homology corresponding to the exact sequence

we get the exact sequence
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By Lemma 2.10 we now have

HERRMANN et al.

In degree n + q the above sequence then yields a monomorpmsm

I"+q+l I"+q
o----+ ---+) .(b], . .. , bdI"+1 (bI, .. . , bi In

It then follows that we must have

(bI,' .. , bdln n In+q+I = (bI, ... , bdln+I.

Let us then show that if 1) holds for some i E {1, ... , k} , then 2)' is equivalent
to

[(b;, ... ,bi_I): biJn = [(b;, ... ,bi_l)]n.

One immediately sees that the last condition is equivalent to

(((bI, . .. , bi- 1 )In + I n+q+I) : bd n In = (bI, ... , bi - I )In-q + I n+1. (*)

Let us now prove that this is equival.ent to 2). Take

Then bix = y + z, where y E (bI, ... ,bi - 1 )I" and z E In+q+I. By 1)

z E (bI, . .. , bi)I" n I n+q+l = (bI, ... , bdln+l
.

It follows that

Hence

(((bI, . .. , bi-I )In + I n+q+1) : bd n In = ((bI, . .. , bi - 1 )1" : bd n In + I n+1
•

Then (*) becomes

((bI, . .. ,bi- I )In : bd n In c (bI, . .. , bi-l )In-q + 1n+1

as desired.

2.12. Lemlna. Let (A, m) be a loeal ring oE dimension d and let I C A be an
m -primary ideal. Let (bI, . .. , bd) be a minimal reduction oE Iq. Let t 1 ~ ... ~ td.

Then (b;, ... , b:i) is [tl,"" td] -regular iE and only iE the Eollowing conditions are
satisfied for i = 1, ... ,d and n ~ ti:

1) (bI,"" bdI" n In+q+l = (bI, . .. , bdI"+1

2) ((bI, ... ,bi_ 1 )In : bi)nln = (b], ... ,bi_I)In-q.
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Proof. It follows from Lemma 2.11 that (br, ... , bd) heing [tl,"" td] -regular
is equivalent to the conditions

1') (bI, , bi )In n In+q+l = (bI, .. . , bdln+I

2') ((bI, , bi- 1 )In : bd n In C (bI, .. . , bi-1 )In-q+ In+1

for i = 1, , d and n ;::: ti. One easily sees hy induction on n that these are
further equivalent to the conditions

I") (b1, ,bdlti nln+q+1 = (bI, ... ,bdln+1

2") ((bl, ,bi_I)Iti-l: bdnln c (b l , ... ,bi_I)In-q+ln+1

for i = 1, , d and n ;::: ti. It is thus enough to show that 2") implies 2) for
i = 1, , d and n ;::: ti. By 2")

((bI , ,bi_I)Iti-l : bdnln C (bl, ... ,bi_t)In-q+((bt, ... ,bi_t)Iti-l : bdnln+1

for every n ;::: ti so that

((bI, . .. , bi-I )Iti-l : bd n In c n ((bI"'" bi-I )In-q + I n+k
)

k~l

= (b t , ... , bi - 1 )In-q.

2.13. Theorem. Let (A, m) be a formally equidimensionallocal ring of
dimension d and let I C A be an m -primary ideal. Then RA(Ir ) is Cohen­
Macaulay for some r > 0 if and only if r(l) ::; d - 1 and all minimal reductions
(bI," . , bd ) of every Iq, q > 0, satisfy the following conditions for i = 1, ... , d
andn;:::q(i-1):

a) (bI,"" bdln n In+q+l = (b], . .. , bdln+l

b) ((bI,"" bi_I)In : bd n In = (bI,"" bi - 1 )In-q.

PrüoE. Because A is formally equidimensional, we get that grA(I) is equidi­
mensional. The claim then follows from Proposition 2.4 (2) and Lemma 2.12.

The next proposition provides us some insight in the "intersection conditions"
of Theorem 2.13 a) (cf. [T2, Lemma 5.1]):

2.14. Proposition. Let (A, m,) be a loeal ring of dimension d and let I C A
be an m-primary ideal. Let (b], ... , bd ) be a minimal reduction of Iq. Suppose
that grA(I) and hence also A are generalized Cohen-Macaulay. H (bI, ... , bd) is
a standard system of parameters of A, then

00

,L:: l((b t , . .. , bd)In n I n+q+l f(b], . .. ,bd)In+1
) ~ I(grA(I») - I(A)

n=O

and the equality holds ifand only if (bi-, ... ,bd) is a standard system ofparameters
of grA(I).
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PrüoE. Denote b = (b1 , • •• ,bd ) and b'" = (bt l' •• ,bd). Write

q-1 N+q-1
l(AI [N+q) = L l(InI [n+l) + L l(InI [n+1)

n=O n=q
q-1 N-l

= L I(InI [n+1) + L l(In+q I I n+q+1)
n=O n=O

N-l
l(Alb[N) = l(Alb) + L l(blnIb[n+1).

n=O

For N ~ 0 we have [N+q = bIN so that

q-1 N-1 N-l
L I(InI [n+l) + L l([n+qI[n+ q+l) = l(Alb) + L l(blnIbln+1

).

n=O n=O n=O

It follows that

q-1 00

I(Alb) = L l(InI [n+l) + L(I(In+q I I n+q+1) - l(blnIbln+1
)).

Because

n=O n=O

q-l 00

l(grA(I)/b*) = L l(InI [n+1) + L I(InIbln-q + [n+1)
n=O n=q
q-1 00

= L I(InI I n+1
) + L(l(1nI I n+1) - l(bln-q + I n+1/ 1n+1))

n=O n=q
q-1 00

= L I(InI I n+1
) + L(I(In/ [n+l) - l(bln-q Ib[n- qn I n+1

))

n=O n=q
q-1 00

= L I(In/ [n+1) + L(l(In+q I I n+q+1) - l(blnIbln n I n+q+1 )),
n=O n=O

we get

00

l(grA(I)/b*) -1(Alb) = L(l(blnIbln+1) - l(blnIbln n I n+q+l))
n=O

00

= L [(bIn n [n+q+1 /bln+1 ).

n=O
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Now observe that e(b*j gr(A» = e(bj A). Then

I(gr(A» 2: l(grA(I)jb*) - e(b*; gr(A»

= l(grA(I)jb*) - I(Ajb) + I(Alb) - e(bj A)
00

= L l(bI" n I"+q+l jbI"+l) + I(A)
"=0

15

and the equali ty holds if and only if (br, ... , b'd) is standard system of parameters
of grA(I).

3. Testing the Cohen·Macaulay property by length functions

Let (A, m) be a local ring and I C A an m -primary ideal. In this section
we eompare the Cohen-Macaulay property of RA(Ir ) and RA(Iß ), where s < r.
Theorem 3.6 gives a necessary and sufficient eondition for the Cohen-Macaulayness
of RA(I,,) if RA(Ir ) is Cohen-Maeaulay.

Let G be a graded ring of dimension d defined over an Artinian Ioeal ring B.
Suppose that G is generalized Cohen-Macaulay and (Zl, ... ,Zd) is a homogeneous
system of parameters of G. Denote

and

where 9J1 is the homogeneous maximal ideal of G.

3.1. Lemma. Let G be a graded ring of dimension d denned over an
Artinian ioeal ring A. Suppose G is generalized Cohen-Maeaulayand (Zl , ... ,Zd)
is a standard system of parameters of G consisting of homogeneous elements oE
degree r. Then

i-I (' ). l - 1 .
1~(Zl" .. ,Zd) = L . h~_rj(G)

j=O )

for all i = 1, ... ,d and n E N.

Proof. The lemma is weH knawn, but in a lack af a suitable referenee we
sketch a praof. 0 bserve first that
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so that l~(zl"'" Zd) = h~(G/(Zl, . .. , Zi-I))' Let us prove by induction on i that
the following more general formula holds for all i = 1, ... , d and k = 0, ... , d - i :

The case i = 1 being trivial assume i > 1. Denote Cj = Gfez}, ... ,Zj-I) and
Kj = (ZI, ... ,Zj-l): Zj/(z}, ... ,Zj-I) (j = 1, ... ,d). We then have the exact
sequences

and
o-t Ci- I /Ki-I(_r) .~ Ci- 1 --+ Gi --+ 0

Since dirn J(i-I = 0, the long exact sequence of cohomology corresponding to
the first sequence implies that H~t(Ci- 1 / J(i-l) = H~(Ci-I) for j > O. Be­
cause Zi_IHk(Ci- 1

) = 0, the cohomology sequence corresponding to the second
sequence gives the exact sequenee

Thus
h~(Gi) = h~(Gi-l) + h~!.~(Gi-I)

and we ean use the induetion hypothesis to get the claim.

The lemma shows that in the ease (Zl, ... , Zd) is standard we may in fact
denote l~(z}, . .. ,Zd) by l~(G).

3.2. Remark. Note especially the following consequenee of Lemma 3.1.
Since

i-I (' ). 1. - 1 .
o= l~(G) = l: . h~_rj(G)

j=O J

for n < 0, we obtain that [Hk(G)]p = 0 for p < -rj.

For the' following let (A, m) be a loeal ring of dimension d and let I C A be
an m-primary ideal such that r(J) :s; d - 1. Suppose that grA(I) is generalized
Cohen-Macaulay and that the sequence (ai, ... , ad) is [0, ... , d -.1] -regular for
some minimal reduetion (al, ... ,ad) cl. Suppose, moreover, that for a certain
r the sequence (ar r , ... , adr ) is a standard system of parameters of grA (I). It
follows from Corollary 1.3 by the preeeeding remark and Corollary 2.3 that RA(I,,)
is always Cohen-Macaulay for s :2:: r(d - 1). For exampIe, in the ease grA (I) is
Buchsbaum, we can take r = 1 and get that RA(I,,) is Cohen-Macaulay for all
s :2:: d - 1. The following proposition answers the question, when RA(Ir ) itself is
Cohen-Macaulay. We first we need a lemma.
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3.3. Lemma. Let (A, m) be a loeal ring and I C A an m-primary ideal.
Put G = grA(l). JE RA(Ir ) is Coben-Maeaulay, the ring G is a generalized
Cohen-Maeaulay ring and .the ideal (G+Y c G a standard ideal.

ProoE. If RA(Ir ) is Cohen-Macaulay, we know by Theorem 1.1 that also
grA(Ir+1 ) is Cohen-Macaulay. Put Q = G+. We now have

=

EB .Qn 1+...+n,. = EB ( EB Gk)
n1.···,n,. 2::0 k2::n1 + ...+n,.

EB (EB Gn1 + ...+n,.+1 )
n1, ... ,n,.2:: 0 n,,+12:: 0

EB Gnt+...+n,,+1

"1 ,... ,n,,+1 ~O

By Corollary 1.2 this implies that also RG(Qr) is Cohen-Macaulay. But we then
know by [RIO, Theorem 45.7] that Qr is a standard ideal.

3.4. Proposition. Let (A, m) be a loeal ring oE dimension d and let I C A
be an m-primary ideal. Let (al, ... , ad) be a minimal reduetion oE I. Then
RA(Ir ) is Cohen-Maeaulay iE and only iE the Eollowing eonditions bald:

1) r(l) :::; d - 1

2) Tbe sequenee (ar, ... ,a;i) is [0, ... ,d - 1] -regular.

3) grA(l) is a generalized Cohen-Macaulay ring· and (ar r
, ... , adr ) a standard

system oE parameters.

4) 11r_q(grA(!)) = (d ~ 1) l::~q(grA(!)) (i = 1, ... ,d - 1, q = 1, ... , r ).

ProoE. Put G = grA(l). If 3) holds, 2) is by Proposition 2.3 equivalent to
ai(G) < 0 for i = 0, ... ,d - 1. By Corollary 1.3 it is then enough to assume that
1), 2) and 3) hold and show.that 4) is equivalent to h~(G) = 0 for p < -r and
i = 1, ... , d - 1. Let 0 < q ~ r. By Lemma 3.1

1::~q(G) = t (i)hti_i)r_q(G) = h~q(G)
)=0 \j

for all i = 0, ... ,d - 1. Moreover,

d-l ( )d d -1 .
lir-q(G) = ?= . hfi-i)r-q(G)

)=0 J
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(
d- 1). . d-1 (d - 1) .

= i h~q(G) + .~ . hti_j)r_q(G)
}=1+1 J

()

d-1 ( )_ d - 1 i+1 d - 1 hj
- i lir_q(G) + .~ . (i-j)r-q(G).

. }=1+1 J

It follows that 4) is equivalent to hfi_j)r_q(G) = 0 for j = 0, ... , d -1, i < j and

o< q :::; r. Since always h~(G) = 0 for p < -jr, this is the same as h~(G) = 0
for p < -r. The claim hM thus been proved.

3.5. Lemma. Let (A, m) be a Ioeal ring of di!flension d and let I c A be
an m -primary ideal such that RA (Ir) is Cohen-MacauIay. Let (al, .. " ad) be a
minimal reduetion of I. Let m be the homogeneous maximal ideal of RA (Ir) .
Suppose i < d and p E {I, ... , r}. Tben

lll.~(grA(I))]_p = 0

if and only if the following conditions are satisfied:

1) (ar ar)Iir-P n I(i+1)r-p+1 - (ar ar)Iir-p+1I,···, d - 1'"'' d

2) (( ar ar )Iir-p . ar) n Iir-p C (ar ar )I(i-l)r-p + Iir-p+l
I,···, d-1 . d I"'" d-l .

H this is the ease, we also have

1) (ar ar)Iir-p n I(i+l)r-p+1 - (ar ar )Iir-P+1u .. ·, k - 1"'" k

2) ((ar ar )Iir-p . ar) n Iir-p C (ar ar )I(i-1)r-p + I ir-p+1
1,··" k-l . k 1"'" k-l

for k < d

ProoE. By using Lemma 3.1 as in the proof of Proposition 3.4 we see that

if k < i + 1

if k ~ i + 1.

Hence h~p(grA(I)) = 0 if and only if 11r_p(grA(I)) = O. Moreover, if this is the

case we have lfr_p (grA (I)) = 0 for k = 1,.,., d. The claim then follows from
Lemma 2.11.

If RA(Ir ) is Cohen-Macaulay, we know by Theorem 2.13 that the following
condi tions are satisfied for i = 1, , d and n ~ (d - l)r:

a) (ar, ... , ad)In n In+r+l = (ar, , ad)In+1

b) ((al" ~., ad_I)In : ad) n In = (al,'" ,ad_I)In-r.
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It turns out in the following Theorem 3.6 that in order to RA (I,,) be Cohen­
Macaulay for some s < r similar conditions must ~lso hold for certain n < (d-l)r.

3.6. Theorem. Let (A, m) be a local ring oE dimension d and let I C A
be an m -primary ideal. Let (al,"" ad) he a minimal reduction of J. H RA(l r )

is Coben-Macaulay and s < r, tben RA(I,,) is Cohen-Macaulay iE and only iE the
following conditions hold for i = 1, ... , d - 1 and p = s + 1, ... , r

1) (ar ar ) n J(i+I)r-p+I = (ar ar)Iir-p+1
1"'" d p ... , d

2) «ar a r )Iir-P. ar ) n Iir-p C (ar a r )I(i-I)r-p + Iir-p+I
I"'" d-I . d I"'" d-I .

Proof. As RA(l r ) is Cohen-Macaulay Theorem 1.1 implies that RA(I,,) is
Cohen-Macaulay if and only if h~p(grA(I» = 0 for i = 1, ... , d - 1 and p =
s + 1, ... , r. By Lemma 3.5 this is equivalent to the conditions

1') (a1, ... ,ad)Iir-p nI(i+l)r-p+l = (al
1
••• ,ad)Jir-p+1

2') «ar a r )Jir-p . ar) n Jir-p C (ar ar )I(i-I)r-p + rir- p+1
1"'" d-l . d 1"'" d-I .

We only need to prove that 1') implies 1). We use descending induction on p.
Suppose p = r. Since RA(lr) is Cohen-Macaulay, also RA(Ir) is Cohen­

Macaulay. Let 'Jl be the homogeneaus maximal ide~ of grA(Jr). By [TI] we
have

. { 0
[H:n(grA(Jr»]n = H~(A)

for i < d. This implies that

if n i= -1

if n = -1

It then follows from Proposition 2.14 that

(a r ar)Ikr n J(k+2)r _ ( r r)J(k+l)r
I' ... , d - a1 ,···, ad

for k ~ O. From this it is easy to see that also

( r r) n J(k+2)r (r, r)I(k+I)ra I , .•. , ad = a l ,···, ad

for k ;::: O. By 1') we then obtain

(ar ar)J(i-l)r+l = (aT aT)J(i-l)r n Jir+l - (ar ar) n Jir+1
1'"'' d 1"'" d - 11"" d
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so that 1) holds if p = r.

Then suppose p < r. By the induction hypothesis we have

( r r) n Iir-p+r (r r)Iir-pa 1 , ••• , ad = a 1 ,···, ad .

Hence

(a r ar)Iir-p+l - (ar r)Iir-p n I ir-p+r+l - ( r r) n I ir-p+r+l
l' ... , d - l' ... , ad - a 1 ,···, Ud .

3.7. Rernark. If A is Cohen-Macaulay in Theorem 3.6, then 1) implies 2).

In order to see this let us first show that if 1) holds, then

( r r) n Iir-p _ ( r r )I(i-l)r-p
a1,···,ad-l - a 1 ,···,ad-l

for i = 1, ... , d - 1 and p. = s + 1, ... , r. Use induction on i. The case i = 1
being clear assume i > 1. Take

E ( r r) n Iir-p C ( r r) n Iir-p (r r)I(i-l)r- p
x a 1 , ... , ad-l a 1 , ••• , ad = a 1,···, ad .

Then
d-l

X = L ).jaj + ).da~,
j=l

where )q"",).d E j(i-l)r-p. Since (ar, ... ,ad) is a regular sequence, we get by
the inductive assumption that

\ . ( r r) n j{i-l)r-p (r r )I{i-2)T-p
AdE a1,···,ad-l = a1, ... ,ad-l .

This implies the above claim. Let us now show that 2) is satisfied. We obtain

(( T T )Iir-P r) n Iir-p (( r r) r) n Iir-pa 1 ,· •• , ad-l : ad C al,' .. ,ad-l : ad

C ( r T) n jir-pa 1 ,· •• , ad-l

As an application of Theorem 3.6 we give the following corollary.
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3.8. Corollary. Let (A, m) be a Joeal ring oE dimension two and let I c A
be an m -primary ideal such that RA(Ir ) is Cohen-Macaulay. Let (at, a2) be a
minimal reduction of I. Then RA(Ir - l ) js Cohen-Macaulay jf and only iE the
Eallawing implieation holds:

PraoE. Aecording to Theorem 3.6 RA(Ir - l ) Cohen-Macaulay means that
(ar, a;) n I r+l = (ar, a;)I and (ar) : a; Cl, (a!l) : ar Cl. These conditions are
clearly equivalent to the implication mentioned in the claim.

3.9. Remark. If A is a local Cohen-Macaulay ring of dimension two, RA(Ir )

Cohen-Macaulay implies always that RA(I) is Cohen-Macaulay. If A has dimen­
sion three, the same holds for I = m. Since r(I) ::; 1 and r(m) ::; 2 in these
cases, this follows from [VV] and [5].

3.10. Remark. If A is not Cohen-Macaulay, I = m and dirn A = 2, it
may happen that RA(m r ) is not Cohen-Macaulay for any r ~ 1. As an example
consider A = k[[s2,s3,8t,t]], where 8 and t are indeternlinates. Now (82,t) is a
minimal reduction of m. Since 8 3 E (s2 m : t) n ffi, hut s3 fj. (82 ), we see from
Theorem 2.13 b) that RA (m r ) eannot be Cohen-Maeaulay for any r 2:: 1.

Next we want to mention a class of examples where RA(Ir ) is Cohen-Maeaulay
for some r ~ 1, hut RA(I) is not Cohen-Macaulay.

3.11. Example. Let (A, m) he a loeal generalized Cohen-Macaulay ring of
dimension d. Let I c A be a standard parameter-ideal. By [RIO, Theorem 40.10]

[H~(grA(I»]n = {H~(A), if n = ~i
o , otherwlse

(i < d),

Uf~(grA(I»]n = 0, if n > -d,

where 9.J1 is the homogeneous maximal ideal of RA(I). Let 1 ::; r < d. By [GI] it
is always possible to find a local Buchsbaum ring (A, m) with d 2:: 3, depth A > °
and H~(A) i= 0, H~(A) = 0 for r < i < d. Then RA(Ir ) is Cohen-Macaulay,
but RA(I r - l ) is not Cohen-Macaulay.

3.12. Example. Let (A, m) be a d-dimensionallocal Buchsbaum ring of
maximal embedding dimension. By [Tl, Proposition 5.11]

ru i ( (»] _ {H~(A), ifn=-(i-1)LHm-r grAl n- o ,otherwise

Uf~(grA(I»)]n = 0, if n > 1 - d,

(i < d),
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where DJ1 is the homogeneous maximal ideal of RA(I). Let 1 ::; r < d-l. By [G2]
it is always possible to find a local Buchsbaum ring (A,m) ofmaximal embedding
dimension such that d 2:: 4, depth A > 0 and H~+l (A) =1= 0, H:n (A) = 0 for
r + 1 < i < d. Then RA(mr ) is Cohen-Macaulay, hut RA(mr-l) is not Cohen­
Macaulay.
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