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Fritz
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Princeton 1953

I Chern classes cj of complex vector bundle

I 1 + c1 + c2...+ cn =
n∏

i=1
(1 + xi )

I For complex manifold X

ci (X ) = ith Chern class of tangent bundle

I Pontryagin classes pj of real vector bundle

1 + p1 + ..., pk =
2k∏
i=1

(1 + x2
i )

I For real manifold X

pi (X ) = ith Pontryagin class of tangent bundle
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Borel and Chern
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Todd genus

T =
∑
n
Tn(c1, c2, . . . ) =

∏
i

xi
1− e−xi

T1 =
c1

2
, T2 =

c2
1 + c2

12

T3 =
c1c2

24
, T4 =

1

720
(−c4 + c3c1 + 3c2

2 + 4c2c
2
1 − c4

1 )
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Leray and Cartan
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Spencer, Serre, Kodaira, Weyl
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L-genus

I

L =
∑

Lk(p1, p2, ...) =
∏(

xi
tanh xi

)
I

L1 =
p1

3

L2 =
7p2 − p2

1

45

L3 =
1

33 · 5 · 7
(62p3 − 13p1p2 + 2p3

1)

I Relation between T and L

x

tanh x
+ x =

2x

1− e−2x
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Riemann-Roch

I X compact complex manifold dimC X = n

I O sheaf of holomorphic functions on X

I Hq(X ,O) cohomology groups

I χ(X ,O) =
n∑

q=0
(−1)q dimHq(X ,O) Arithmetic Genus

I Theorem 1 (Hirzebruch Riemann-Roch)

χ(X ,O) = Tn(X )

I n = 1, X Riemann surface

χ =
c1

2
= 1− g .
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Signature

I X compact oriented manifold of dimension 4k

I H2k(X ;R) has a non-degenerate quadratic form, with
p + q = dimH2k(X ;R) non-zero eigenvalues, p positive signs,
q negative signs

I The signature of X is the signature of the form

Sign(X ) = p − q ∈ Z .

I Theorem 2 (Hirzebruch Signature Theorem)

Sign(X ) = Lk(X )

I k = 1, dimX = 4, Sign(X ) = p1/3.



11

Mexico, 1956
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Bonn, 1977
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Â-genus

I Â(p1, p2, ...) =
∏
i

xi/2

sinh xi/2

I T = e−c1/2Â (involves only c1 and pj)

I Theorem 3 (A-S 1963)

Â(X ) = indexD

I D Dirac operator
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Bernoulli numbers

I

x

1− e−x
= 1 +

x

2
+
∞∑
k=1

b2k

(2k)!
x2k

I Define
Bk = (−1)k−1b2k

I

B1 =
1

6

B2 =
1

30
...

B8 =
3617

510
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Cauchy Residues

I HRR for Pn(C) gives T (Pn(C)) = 1

I total Chern class of Pn(C) = (1 + x)n+1

I

T (Pn(C)) = coefficient of xn in

(
x

1− e−x

)n+1

I shown to be 1 by Cauchy residue formula

I
1

2πi

∫
dx

(1− e−x)n+1
=

1

2πi

∫
dy

yn+1(1− y)
= 1

(where y = 1− e−x)
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Defects (of singularities)

I If X has Riemannian metric (Hermitian in complex case) then
the pj and cj are represented by differential forms and
Theorems 1 and 2 express χ and Sign as integrals over X .

I If X has a singular set Σ, but χ or Sign are still defined, then
the difference between this invariant and the integral is called
the defect due to Σ.

I Three cases where this happens are:

1. X is a rational homology manifold (e.g. an orbifold),
so signature still defined.

2. X is a complex variety with singular set Σ, but χ is
still defined by sheaf cohomology.

3. X is a manifold but the metric has singularities along
Σ.
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Zagier and Patodi
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Special Cases

1. Hirzebruch (Zagier) studied orbifold singularities using the
G-signature theorem (equivariant version of Theorem 2) and
found interesting relations with number theory (Dedekind
sums).

2. Hirzebruch also studied cusp singularities of Hilbert modular
surfaces and this motivated extension of Theorems 1 and 2 to
manifolds with boundary and introduction of η-invariant
(A-Patodi-Singer, 1973)

3. If Σ ⊂ X is real codimension 2 sub-manifold (e.g. complex
codimension 1) then we can have metrics on X with conical
singularities (of fixed angle β) along Σ. (A. 2013)
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Cones

I Local model - dimension 2
I C = R2 vertex at origin

Slit coneCone

2 π β

I metric = dr2 + β2r2dθ2

I flat except at origin (vertex) where curvature κ is multiple of
delta function: 2π(1− β)δ

I

β < 1 κ > 0 positive curvature
β = 1 κ = 0 flat
β > 1 κ < 0 negative curvature

I Smooth out metric near vertex preserving rotational
symmetry. Then Gauss-Bonnet relates curvature integral to
geodesic curvature along boundary.

I Note: For β > 1 picture cannot be drawn in R3.
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Integer Angles

I When β =
1

q
with q integer, cone is just quotient of R2 by Zq

cyclic group of order q. In complex coordinates

z = uq

and the u-plane is q-fold branched covering of z-plane.

I The standard flat metric on u-plane pushes down to a conical

metric with β =
1

q
on z-plane.

I But we can reverse the process and lift up the flat metric on
z-plane to give a conical metric on u-plane with β = q.

I Note. C ∼= C/Zq either in topology or in complex analysis
(invariant functions are functions on quotient). But not in
real differential geometry, which is where cones appear.
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Rational Angles I.

I Cones with β =
p

q
rational occur for the correspondence

between u-plane and v -plane where

uq = vp ( = z)

I The flat u-metric pushed down to z-plane and then lifted up
to the v -plane becomes conical with

β =
p

q

In polar coordinates if u = e iθ, v = e iφ

qθ = pφ .
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Rational Angles II.

I All maps are compatible with rotation. Formally they are
U(1)-equivariant where U(1) is the phase group of the
w -plane, with z = wpq

I

w -plane

yy %%
u-plane

%%

v -plane

yy
z-plane
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Todd genus defect I.

I Σ ⊂ X codimension 2 with metric on X with (constant) angle
2πβ. Define the defect

δT (β) =

∫
X
Tn −

∫
X−Σ

Tn(β)

where Tn is the Todd form of a smooth metric on X and
Tn(β) is the Todd form of the conical metric.

I Theorem 1 (β)

δT (β) =

[
T (Σ)

x

{
x

1− e−x
− βx

1− e−βx

}]
[Σ]

where x ∈ H2(Σ) is c1 of normal bundle.
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Todd genus defect II.

I Expanding in terms of Bernoulli numbers we get

δT (β) ={
1− β

2
Tn−1(Σ) +

∑
k>1

(−1)k−1Tn−2k(Σ)Bk(1− β2k)

2k!
x2k−1

}
[Σ]

I Example. dimX = 4

δ =
1− β

2
(1− g) +

(1− β2)

12
Σ2
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L-genus defect

I Theorem 2 (β)

I Similar formula to Theorem 1(β) but with L-genus instead of
T -genus and using the formula

1

tanh x
=

2

1− e−x
− 1

I We get essentially same extra terms involving Bernoulli
numbers but with the constant term dropped.

I Example dimX = 4 we get no dependence on the genus of Σ

only a term
1− β2

3
Σ2.

I There is also Theorem 3(β) dealing with the Dirac index of a
spin-manifold and more generally the Dirac index of a
Spinc -manifold where the formula is just that of the
Todd-genus.
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Euler characteristic defect

I Theorems 1(β), 2(β) and 3(β) should be compared with the
more elementary formula for the ordinary Euler characteristic
E where the defect is just

(1− β)E (Σ)

I This just comes from the one odd Bernoulli number b1 and is
the obvious extension of the formula for dimension 2.
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First Arbeitstagung 1957

I Grothendieck-Riemann Roch

I Algebraic Geometry

I K -theory of coherent sheaves, vector bundles and resolutions.
I Key components:

1. K -theory of vector bundles via exact sequences.

2. K -theory of coherent sheaves isomorphic (for
non-singular X ) to K -theory of vector bundles: use
projective resolutions.

3. Definition of f! : K (X )→ K (Y ) for a map
f : X → Y , reducing to χ(X ) when Y = {point}.

4. Functoriality of f!.

5. K (X × P1) ∼= K (X )⊗ K (P1), K (P1) = Z⊕ Z
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Grothendieck
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First Decade of AT

I Bott Periodicity 1957

I Topological K -Theory (AH) 1959

I Index Theory (AS) 1963

I Equivariant KG -theory (Segal) 1968

I Key Point for topological K -theory:

Bott periodicity is essentially equivalent to

(A) K (X × P1) ∼= K (X )⊗ K (P1)

or

(B) KG (C) ∼= KG (point) = R(G ) = Z[η, η−1]

where G = U(1)24
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Bott
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Basic Exact Sequence

I A = origin in C, O holomorphic functions on C, or on P1(C),
exact sequence

0 // O(−1)
z // O // OA

// 0

I View this equivariantly for G = U(1) in K -theory
(Grothendieck or Bott)

i∗ : KG (A)
∼= // K̃G (C) (compact support)

i∗(1) = 1− η−1

where η is line bundle O(1)
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Localization

I Pass from ring R(G ) to field C(η) of rational functions.
Torsion modules drop out and compact support can be
ignored, so can consider element 1 and write

i−1
∗ (1) =

1

1− η−1

I Passing to equivariant cohomology of G , via Chern character,
we get

1

1− e−x
=

1

x
+

1

2
+ ...

I Clearly the polar term
1

x
has to be dealt with!
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Cancelling the pole

I Consider the q-fold branched cover u 7→ zq. The polar terms
in the difference

(
1

1− e−x
− q

1− e−qx
)

cancel, and this gives the formula appearing in Theorem 1(β)

for β =
1

q
.

I Doing the same for an integer p and using the correspondence

uq = vp we get the formula for β =
p

q
.

I Continuity gives it for all β.
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Proof of Theorem 1 (β) : Outline

1. First we note that the difference of integrals can be localized
near the subspace Σ, since the two metrics can be chosen to
agree elsewhere.

2. This gives us U(1) symmetry and means that the contribution
of the normal bundle is a universal calculation for U(1) acting
on C. The formulae involve equivariant cohomology of U(1)
but using the Weil model we get equivariant differential forms
with basic 2-form ω representing the Chern class x .

3. The local calculation has been sketched above.
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Weil
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Final comments I.

1. For function f on circle, the ”distribution property” is that,
for all q,

1

q

∑
γ

f (zγ) = f (zq) (|z | = 1)

γ in the finite cyclic group of q-th roots of 1.

2. Holds for f (z) =
1

1− z−1
,

1

1− z
, 1

3. In the space of Schwartz distributions on the circle

f (z) =
∞∑
−∞

anz
n (an polynomial growth)

the only ones with ”distribution property” are those in (2)
(expanded as power series) and linear combinations.

4. The three functions in 2. correspond (essentially) to the
L-genus, Todd-genus and Euler characteristic.
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Final comments II.

5. Can extend Theorems to include the Hirzebruch χy genus

χy =
∑
p

ypχ(Ωp)

6. Distributional characters occur in index theory for transversally
elliptic operators. Interprets the pole of f (z) at z = 1, and its
appearance in the expansion of (1− e−x)−1 at x = 0.
Example: Holomorphic functions on C, graded by degree.

7. The limit case of β = 0 in Theorems 1 (β) and 2 (β) is of
interest, and was studied (with Lebrun) in dimension 4.
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Edinburgh 2009
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Edinburgh 2010


