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1. Introduction

Consider a closed surface M of genus 2 2, equipped with a hyperbolic metric, and let

u be a geodesic lamination on M, which has the property that its complementary regions
are all isometric to ideal triangles.

Thurston has shown in [10] how we can associate to i a global parametrization for
the Teichmiiller space, T, of M. The parameter space is a subspace of the space MF of
equivalence classes of measured foliations on M, which is defined as the set of

equivalence classes which can be represented by measured foliations transverse to L.

There are two main results that we prove in this paper. The first one is that the
parametrization above extends to Thurston’s boundary, PMF, of Teichmiiller space.
More precisely, we prove thatif a sequence of hyperbolic metrics tends to infinity, then it
converges to a point on the boundary if and only if the sequence of projective classes of
measured foliations associated to these metrics converges in PMF, and we prove that in
this case the limits of the two sequences are the same (see the precise statement in section
(4.1)). This generalizes a result we have already obtained in a simpler case: the case
where the surface M has cusps and where the lamination has only a finite number of
leaves, each tending to a cusp (cf.[7]).

The second main result is proven as a consequence of the first; it is about the
extension of the earthquake flow to the boundary of Teichmiiller space. To state this
result, we need first to recall that there are two distinct ways of parametrizing the
earthquake flow, which are both natural. To see how these two parametrizations are
defined, recall first that we can define the (parametrized) earthquake flow associated to a

measured geodesic lamination v by taking a sequence of weighted simple closed

geodesics  x{.Cj converging to v in the topology of MF, and taking the limit of the
sequence of (parametrized) Fenchel-Nielsen flows (twist flows) along the geodesics C;,
weighted by the sequence of real numbers x;.

There are two natural ways of parametrizing the Fenchel-Nielsen flow along a
geodesic. The first one (used for example by Kerckhoff in [2]) consists, at time t, of
twisting by an amount equal to t, along the geodesic Cj, w.r.t. the metric on C; induced
by the hyperbolic metric on the swrface. With this parametrization, it is easy to see that the



Fenchel-Nielsen flow extends continuously by the identity to the boundary of
Teichmiiller space. Now it is natural to ask whether this flow can be reparametrized so
that it induces continuously a nontrivial flow on the boundary; in other words, we can ask
whether the foliation of Teichmiiller space induced by the flow admits an extension as a
foliation tangent to the boundary of that space.

Indeed, there is a second way of parametrizing the Fenchel-Nielsen flow along a
geodesic C;. This is defined by twisting, at time t, by an amount equal to t.1(Ci), where
1g(Cy) is the length of C; w.r.t. the hyperbolic metric g which we are twisting. It is easy
to see that the time-1 map associated to this flow induces on Teichmiiller space the same
action as that of the mapping class defined by the Dehn twist along C;. So this
parametrization is also quite natural. And in fact it turns out that the Fenchel-Nielsen flow
with this parametrization extends continuously to Thurstons boundary, where it induces
a flow which is the quotient flow of a flow defined on the space MF, which can be
described as "twisting"” the measured foliations which have nonzero intersection number
with C;. The zero set of the flow on PMF is equal to the subset defined by the equation
i(Cj,.) = 0. This is explained in [7], and it uses local parameters near a point on the
boundary of Teichmiiller space which are adapted to the curve C;.

We shall refer to the Fenchel-Nielsen flow with this second parametrization as the
"normalized” Fenchel-Nielsen flow. It defines, by taking limits, a normalized earthquake
flowon T.

In this paper, we consider the normalized earthquake flow associated to a measured

geodesic lamination § which is maximal (i.e. for which every complementary component
is isometric to an ideal triangle). We use Thurston’s parameters of Teichmiiller space

associated to p that we referred to above, together with our result on the behaviour of
these parameters when a sequence of hyperbolic metrics converges to a point on the

boundary, to prove that the normalized earthquake flow associated to U extends
continuously to the boundary of Teichmiiller space, on which it induces a nontrivial flow.

The plan of this paper is as follows:

In section 2, we describe the parameters of Teichmiiller space that we will be working
with. This parametrization has been defined by Thurston and is contained in his paper
[10]. For the convenience of the reader, we recall the necessary definitions together with
the main construction, which is that of the horocyclic foliation associated to a maximal
geodesic lamination on a hyperbolic surface.

We state as theorem (2.1) Thurston s result that we shall be using, which says that a
certain map from Teichmiiller space to a subset of MF is a homeomorphism. This is the

parametrization of Teichmiiller space associated to the maximal geodesic lamination L.

Section 3 contains some material about lengths of measured foliations and related facts
on a hyperbolic surface. This notion of length is a generalization of the notion of length
for simple closed curves, and is defined in the same way Thurston has defined the length
of a measured geodesic lamination. We prove somme facts about lengths and intersection
functions which are used in the next section.



Section 4 contains the proof of the main result on the convergence of sequences of
hyperbolic metrics to points on the boundary of Teichmiiller space. This is stated as
theorem (4.1).

Section 35 is independent of the remaining part of the paper. We discuss in it some
simple facts concerning the geodesics of a new metric on Teichmiiller space, which is
defined by Thurston in his paper [10]. These geodesics are called "stretch lines" and are
defined in terms of the parameters of Teichmilller space that are associated to a maximal

geodesic lamination W, which we were using before. An immediate consequence of our

work is that any stretch line converges to a definite point on the boundary of Teichmiiller
space. We consider also "anti-stretch” lines (i.e. stretch lines equipped with the opposite
orientation); these are not geodesics for the metric. (The metric 1s nonsymmetric.) We
discuss their convergence to the boundary.

Section 6 contains the proof of the result about the extension of the normalized
earthquake flow. To prove this result, we use a description of the earthquake flow that
Thurston gives in his paper [10], and this description makes use of shear coordinates for
measured foliations. For the convenience of the reader, we have included in this section a
description of these coordinates.

We conclude this introduction by fixing the notations for the rest of the paper.

In all this paper, M is a closed surface of genus g 2 2. We begin by recalling a few
definitions.The details about all the notions that are used are contained in [1] and [9].

The Teichmiiller space of M is denoted by T and is viewed as the space of hyperbolic
metrics on M up to homotopy. More precisely, it is the space of couples (f,S) where S is
a hyperbolic surface and f : M — § is a homeomorphism defined up to homotopy, with
the equivalence relation that identifies two couples (f1,51)and (f3,S9) if there exists an

isometry g: S1 — S s.t. the homotopy classes f10g and {9 are equal.

We shall denote our surface by S or M, depending on whether or not it is equipped
with a hyperbolic structure.

MF denotes the space of measured foliations on M up to isotopy and Whitehead
moves, and PMF is the quotient space of MF w.r.t. the action of the set R, of positive

real numbers.

S denotes the set of isotopy classes of simple closed curves on M which are not
homotopic to a point. There is a natural injection from the set R...S into MF. We shall

denote by i (.,.) the intersection function defined on the product MF x MF, which
extends continuously the geometric intersection function defined on couples of weighted
simple closed curves (cf. [8]).

For any element g in T, and any « element in §, we denote by lg(ct) the length of the
unique geodesic in the class o, measured with the hyperbolic metric g.



We recall that the topologies of the spaces MF and T are defined by the inclusion of
these spaces in the space RS of positive functions on S, via the functions i(F,.) and
lg(.) respectively.

Finally, if F is either a measured foliation or an elememt of the space MF, we denote
by [F] its image in PMF.

Acknowledgements The author acknowledges financial support from the Max-Plank-
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2. A parametrization of Teichmiiller space (following Thurston)

This section contains some terminology and a construction of Thurston which
provides the global parameters of Teichmiiller space that we shall be working with.

For every maximal geodesic lamination p on the hyperbolic surface S, Thurston
constructs in [10] a measured foliation, denoted by Fy;(g), and which we shall call the

horocyclic foliation (associated to W and to the hyperbolic structure g on S).

The construction is as follows:

The complementary components of | are all isometric to ideal triangles, and we can
consider in each component a partial foliation (i.e. a foliation whose support is a
subsurface) whose leaves are made up of pieces of horocycles, subject to the following
property: Each segment joins 2 boundary components of the triangle in a perpendicular
way, and the support of the foliation is equal to the whole triangle except for a little
triangle bounded by 3 pieces of horocycles which meet tangentially (see figure 1). These
conditions uniquely determine the foliation.

These partial foliations in the ideal triangles fit together on the surface and define a
partial foliation on this surface, which has a well-defined invariant transverse measure,

which is uniquely specified by the fact that on the leaves of J, this transverse measure

coincides with hyperbolic distance. We obtain in this way a measured foliation, Fy(g),
which has a well-defined class in MF. Note that by construction, this class has the
property that it can be represented by a measured foliation that is transverse to L.

Conversely, Thurston proves in [10] that the elements of MF which possess this last

property are classes of horocyclic foliations which arise as above, for the same p and for
some hyperbolic metric.



Fgure 1

More precisely, let MF(1L) denote the subset of MF which consists of equivalence:
classes which admit representatives transverse to .. Then we have the following

(2.1) Theorem (Thurston, [10],§ 9) For any maximal geodesic lamination i, the map
du which associates to each hyperbolic metric the equivalence class of its horocyclic
foliation is a homeomorphism from Teichmiiller space to the subset PMF(u) of MF .

Remark Although Thurston’s Theorem is valid when U is any maximal geodesic

lamination, in this paper we shall always suppose that p is a measured geodesic
lamination in the usual sense, i.e. that it admits a transverse measure of full support.
However, the result in section 5 about the behaviour of stretch lines is valid also in the

case where {1 does not admit necessarily a transverse measure, as we remark it in that
section.

3. The length of a foliation and of a lamination, and the geometric
intersection function



(3.1) If u is a measured geodesic lamination on the hyperbolic surface S, Thurston has
defined the length of |, as the total mass on the surface w.r.t. the product measure dt x dl
where dl is the 1-dimensional Lebesgue measure on the leaves of U, and dt the 1-
dimensional transverse measure of u. We shall denote the length of L w.r.t. the metric g
by 1g(k) (see {9] and [3]).

So there is a function I(.)(.) (which we shall also denote as 1(.,.)) defined on the

product space T x MF , where for ge T and Fe MF, in order to compute I(g,F), we have
to replace F by the measured geodesic lamination (w.r.t. the hyperbolic structure g) which
represents it. We know that this function is continuous in the two variables (see [3]). If

x;.Cj is a sequence of weighted simple closed geodesics converging to W in the topology

of MF, the quantity lg(u) is therefore equal to the limit of the sequence of real numbers
xl lg (Cl)

We need to generalize this notion of length to any measured foliation or lamination
(which is not necessarily geodesic) on the surface S. So we make the following
definition.

(3.2) Definition Let F be a measured foliation on S, or a partial measured foliation
(i.e. a measured foliation supported on a subsurface of S, like for example the horocyclic
foliation associated to a maximal geodesic lamination), or a measured lamination ( we can
stick to laminations isotopic to measured geodesic laminations). We define the length of
F with respect to the hyperbolic metric g, which we denote by L(g,F) , as the total mass
on S of the product measure dt x dl , where dt is the transverse measure of F and dl is the
Lebesgue measure along the leaves of F.

One way of making the above definition more explicit is the following:

By compacmess, we can cover the support of the foliation or the lamination with a
finite number of rectangles (flow boxes) of disjoint interiors, where if such a rectangle is
parametrized by IxI (where I is an interval), the induced foliation (or lamination) is the
horizontal product foliation on IxB, where B is a closed subset of the interval L. ( In the
case where F is a foliation, B is equal to the whole interval L) Now, computing L(g,F) is
just a matter of integrating a product measure on the rectangles and addmg the results. It is
easy to see that the definitton does not depend on the choice of the cover.

Recall that for every F as above, we denote by l(g,F) the length of the unique
measured geodesic lamination representing F.

If C is a simple closed curve which is not homotopic to a point, let ¥ be the closed
geodesic on S which represents it. It is a classical result that the length of C is bounded

below by the length of y. We shall need a generalization of this result to the case of a
measured foliation F; and this is the following:

(3.3) Proposition Let F be a measured foliation, or a partial measured foliation, or a
measured lamination on the surface S. Then we have:



| Ug.F) SL(gF).

Proof. For the proof, we shall suppose that F is a measured foliation. The cases of a
partial measured foliation and of a lamination can be handled in the same way. We shall
prove first the inequality in a special case and then deduce the general case by a density
argument.

Suppose to begin with that all the leaves of F are closed leaves, so that F is the union
of a finite number of cylinders D1, ...,.D foliated by parallel circles, the interiors of the

cylinders being disjoint. Let Cy, ...,Cy, be the corresponding homotopy classes, and
Y1.----Yn be the geodesics representating them.

For each of the cylinders Dy, we know that the Iength of a closed leaf is bounded

below by the length of the geodesic v;. Now if h; is the hight of Dj (i.e. the ransverse
measure of an arc joining the two boundary components of the cylinder and transverse to
the foliation), the length of this foliated cylinder (w.r.t. the product measure of the
Lebesgue measure along the leaves with the transverse measure) is therefore bounded

below by the quantity h;.1(Y;). Therefore, L(g,F) is bounded below by the sum X; h;.1(y}),
which is equal precisely to the length of the measured geodesic lamination representing F.

Now that we are done with the particular case, let F be any measured foliation on S.

» We claim that there exists a sequence Fn of measured foliations which has the
following 3 properties:

- For every n, the foliation Fy has all its leaves closed
-When n —ee, Fp converges to F for the topology of MF

-When n —eo, L(g,Fn) converges to L(g,F).

There are many ways of proving the existence of such a sequence Fy; one of them

uses the machinery of train tracks (explained by Thurston in [9]), and we can describe it as
follows :

We can see the foliation F as supported on the fibred neighborhood of a train track,
and where each complementary region of that neighborhood has been collapsed onto a
spine. Thus, the foliation F appears as a union of rectangles, each rectangle foliated by
(say) horizontal leaves, the interiors of the rectangles being disjoint. These rectangles are
in natural one-to-one correspondence with the edges of the train track, and there is a
system of positive weights on the train track which is induced by F, where the height of
the foliation induced on each rectangle is equal to the weight on the corresponding edge of
the train track. Now we can approximate this system of weights on the train track by a
sequence of rational systems of weights, which represents a sequence Fj of measured
foliations each of which has all its leaves closed, and which converges to F in the topology
of MF. Furthermore, we can choose the sequence of representatives to converge
geometrically to F in the train track neighborhood, so that each foliation in the sequence is
a union of foliated rectangles (the same rectangles as for F), with the length of each
rectangle w.r.t. the foliation induced by Fj, converging to the length of the rectangle w.r.t.



the foliation induced by F. From this last property, we deduce that L(g,F,) converges to
L(g,F) when n goes to infinity.

On the other hand, we know by the continuity of the geodesic length function on the
product TxMF (see (3.1)) that I(g,F,,) converges to 1(g,F) when n tends to infinity.

Finally, by the particular case proven above, we have 1(g,Fp) S L(g,Fp).

By making n tend to infinity in the last inequality, we obtain that 1(g,F) < L(g,F),
which proves the proposition.

We shall also make use of the following few facts about the geometric mtersectlon
function, which are easy to prove. First, we make a definition:

(3.4) Fori=1 and 2, let Fj be either a measured foliation, a partial measured foliation or
a measured lamination on the surface M, and suppose that Fi is transverse to Fp

(transverse at each point where they intersect; we do not suppose that the supports are the
same). We define the quantity I(F1,F7) as the total mass on the surface of the product

measure dx)x dxp, where fori1=1 and 2, dxj denotes the ransverse measure of Fj. Then
we have the following

(3.5) Lemma I(F,Fp)2 i(Fl,Fz).

(3.6) Lemma  Suppose furthermore that there is no Whitney disk for the couple
(F1,F2), that is, a disk on the surface whose boundary is the union of a segment in Fy and

a segment in F9. Then, we have I(F1,Fp) =i(F1.Fp).

For the proof of lemmas (3.5) and (3.6), notice first that in the case where Fj orFp is a

simple closed curve, a proof is contained in [1], exposé 5. The general case can be
deduced by a density argument analogous to the one we have made during the proof of
(3.3).

We make now the following two remarks:

(3.7) If F1 and F7 are transverse measured foliations with the support of each one being

equal to the whole surface, then there do not exist Whitney disks.This is a consequence of
the fact that there does not exist a measured foliation (with allowed singularities) on the
closed disk. Therefore we have I(F1,F2) =i(F1,Fp).

(3.8) If pis a maximal geodesic lamination on S and Fp_(g) an associated horocyclic
foliation (for some metric g), then this couple satisfies the condition of lemma (3.6).

We prove now some more facts which will be useful in the sequel:

(3.9) Lemma For any hyperbolic metric g, and for any maximal geodesic lamination |,
the quantity L(g,Fu(g)) is equal to -6K, where K is the Euler characteristic of the surface.



Proof The transverse measure of the foliation F,(g) being a diffuse measure (with no
atoms), and the lamination [ being transversely of measure zero (see Thurston [9], ch.8),
we can compute the quantity L(g,Fu(g)) as the total mass of the product measure
(Lebesgue measure along the leaves of Fu(g) X transverse measure of this foliation) in the

complement of |.

By the Gauss-Bonnet formula, there are -2K ideal triangles in the complement of L.
All the ideal triangles being isometric, we can make the calculation in any one of them, and
we take the one in the upper half-plane with vertices at the points 0, 1 and . Now for the
cusp of this triangle which corresponds to the point oo, the pieces of horocycles are
segments parallel to the x-axis; they start at the ordinate 1, and each piece of horocycle

which has ordinate t > 1 has length equal to e=(t-1), The length of the horocyclic foliation
in this region is therefore equal to | e-(t-Ddt = 1.

Therefore, the length of the foliation in each idal triangle is equal to 3.
We conclude that L(g,F,(g))is equal to -6K, which proves the lemma.
In fact, we shall only use the following

(3.10) Corollary the quantity 1(g,F|,(g)) is bounded above by a quantity which is
independ of the hyperbolic metric g and of the lamination [

(3.11) Definition Given a geodesic lamination p, with a measured foliation F transverse
to it (F can be a partial measured foliation, as in the case of an Fy;(g)), we shall make use

now and later on of the notion of a rectangular cover adapted to the couple (F, ).

By definition, this is a finite set {Bj} of rectangles on the surface, s.t. their union
contains the supports of F and of y, s.t. for every distinct indices i and j, Bj and Bj have

disjoint interiors, and for each i, F induces a "vertical” foliation on Bj, and | induces a
"horizontal"” lamination on this rectangle.

Given F and p as above, we can always find such a cover; first locally by using the
product structure, and then globally, using compactness.

Note that with this definition, the "vertical" sides of each rectangles are contained in
the leaves of F, whereas the "horizontal” sides are not necessarily contained in | (they can
be disjoint from p).

(3.12) Lemma For any-maximal measured geodesic lamination y on the hyperbolic
surface S, we have lg(u) = i(p.,F]_l(g)).



Proof Letdt denote the transverse measure of the lamination y, and let dx denote that of
Fu(g).

Consider a rectangular cover adapted to (WL,Fpu(g)).

Recall that dx coincides with the Lebesgue measure along the leaves of [ Therefore,
the length of the lamination induced on a given rectangle (in the sense of (3.1)) is equal to

its total mass w.r.t. the product measure dt x dx. We deduce that 1g(u) is equal to the

intersection I(1,Fu(g)). By (3.8), this quantity is equal to i(1,Fy(g)), which proves
(3.12).

4. Converging to Thurston’s boundary

Recall that we defined the set PMF(p) to be the set of all projective classes of measured

foliations which can be represented by measured foliations transverse to U. Because [Lis a
maximal geodesic lamination, this is also the set of classes of measured foliations having

nonzero geometric intersection with L.
The aim of this section is to prove the following theorem:

(4.1) Theorem  I. Let gn be a sequence of elements in Teichmiiller space which

converges to a pointin PMF (). Then the sequence [F(gn)] of projective classes of the
associated horocyclic foliations converges to that same point.

2. Suppose that the sequence g, tends to infinity in Teichmilller space,
with the sequence Fy(gn) of horocyclic measured foliations tending also to infinity (in

MF). If the sequence of associated projective classes [F(gn)] converges in PMF, then
the sequence gn converges also and the two limits are the same.

The proof of the theorem is divided into several steps. First, we prove some lemmas
and we state separately a few facts which are used in the proof.

4.2) Given a maximal measured lamination . and a real number €, we define the set
V(.£) as the subset of Teichmiiller space consisting of the hyperbolic metrics g for which
we have lg(w) > e.

Let € be a given real number, and [F] a given element of PMF(it). We have the
following

10



Lemma The subser PMF(u) U V(u,e) of the compactified Teichmiiller space is an open
neighborhood of [F] in that space.

Proof Suppose for contradiction that gy is a sequence of points in Teichmiiller space
which converges to {F] and s.t. for every index n, g, is contained in the complement of

V(,8). We have therefore i(gn, W) S€.

By ([1], exposé 8, corollary (2.3)), there exists a representative F of the class [F], and
a sequence Xy of real numbers , with |

Xp— 0 and Xn.&n — F.

Therefore, we have i(F,)L) = lim xy.1(gn.1t) = 0, which is a contradiction.

The lemma follows easily.

Assumption By the above lemma, in order to prove part 1 of theorem (4.1), we can
make the following assumption without loss of generality:

There exists an € > 0 s.t. the sequence gy belongs to the set V(1,€).

(4.3) Lemma Suppose that the sequence gn converges to a point {G] in PMF(u), and
let [Fu(gn)] be the associated sequence of projective measured foliations. Consider a

converging subsequence of the sequence [Fy(gn)] and let [F] denote its limit . Then we

have i(F,G) = 0 { i.e. the intersection number is zero for any choice of representatives, F
of [F] and G of [G]).

Proof of (4.3) Denote by [Fn] the converging subsequence.

As gn = [G] , there exists a sequence x, of real numbers , with

xn—> 0 and xpn.gn = G

As [Fp]-F, there is a sequence yp of real numbers s.t. yp.Fy— F.

Note now that xp. I(gn,1)—i(F,u) #0, which implies that the sequence of lengths
1(gn.K1) tends to infinity . By lemma (3.12), I(gq.H) = i(Fq,1). We deduce that the
sequence yp, tends to 0.

Now we have i(G,F) =lim n—o oo Xp.yn.l(gn.Fn).

By corollary (3.10), the sequence 1(gn,Fpn) is bounded.

11



Therefore, i(F,G) = 0, which proves lemma (4.3).

The following fact is well-known, and we state it for future reference.

(4.4) Suppose that [Fp] is a sequence in PMF(u) which converges to an element {F]
in that space. Then, we can represent [Fp] and [F] by measured foliations Fp and F on the
surface (i.e. not only up to equivalence) s.t. the convergence Fp — F is geomerric, which
means here that the foliations have the same singular points, and around each point on the

surface, the sequence of foliations Fp converges to the foliation F in the topology of line
fields.

There are several ways of proving this statement (for example by using the theory of
normal forms of measured foliations w.r.t. a pants decomposition of the surface). In the

present context, we can deduce this statement from the fact that elements in MF(u) have
geometric representatives, which are the horocyclic foliations, which have the desired
property.

Actually, for a converging sequence [Fp] as above, it will be convenient for us to use
these horocyclic foliations as representatives which converge geometrically.

(4.5) We note now the fact that the measured geodesic lamination | being maximal (the
complementary components are all triangles) implies that every leaf of | is bi-infinite and

dense in the support of . This can be deduced from the corresponding (may be better-

known) fact that if a measured foliation has no leaves connecting singularities, then every
leaf is dense.

Given such a |l and a hyperbolic metric g, let B be a rectangular cover adapted to
(F,1). We have the following:

Lemma There exists an integer N s.t. if L is any segment in a leaf of |1 which has the
property that it intersects at least N times the union of (the vertical) sides of the rectangles
in the cover, then L crosses at least one time each of the rectangles in the cover.

The proof can be done easily by taking a cross-section of |t and using the density of
the leaves.

(4.6) LetFp be now a sequence of elements in PMF (i) which converges to the element
[F] in that space, and let F be a sequence of representatives of [Fp] by horocyclic
foliations, converging geometrically to a horocyclic foliation F representing [F].

Suppose that we are given a rectangular cover P adapted to (F,J) in the sense defined
in (3.11). Then the following holds:

12



For each Fp, we can find a sequence By of rectangular covers adapted to (Fp,u) s.t.

the sequence of covers Pp converges geometrically to the cover B. More precisely, we
need a property of the following kind to hold:

For all integers i and j, there exists a one-to-one correspondence between the

rectangles of the cover fi and the rectangles of the cover fj, s.t. each sequence of
corresponding rectangles converges (in the Hausdorff topology on closed subsets of the

surface) to a rectangle of .

With this condition on the sequence Pp, the following fact is true as a consequence of
the lemma in (4.5):

Lemma There exists an integer N s.t. for every i = 1,2,..., and for every segment L in
a leaf of L which intersects at least N times the set of vertical sides of the rectangles of P,
the segment L passes at least one time through each rectangle of 3 .

(4.7) We continue now the discussion begun in (4.1), with the assumption made in (4.2).

Let gn be a sequence of elements in V(i,€) converging in R4S to a point [F] in
PMF(u). Consider the sequence [Fuu(gn)] of projective classes of the associated
horocyclicmeasured foliations, and let [F] be a cluster point of this sequence. We wish to
prove that [F] = {G]. This will prove that the sequence [Fji(gn)]converges to [G].

Before going on, we need to make a definition:

(4.8) Definition A subset S” of S is said to be complete if any element of T or of
PMF is completely determined by its intersection number with S°,

By the classification of measured foliations and of hyperbolic structures on surfaces,
we know that there exists complete subsets of S which are finite.

We shall need also the following:

Lemma If Vis any nonempty open subset of PMF, we can find a complete subset of S
which is contained in the subsetV” of MF, defined as the R4-cone over V.

Proof One proof consists in taking a pseudo-Anosov mapping class of the surface,
whose projective class of unstable foliation is contained in V. Then, by the dynamics of a
pseudo-Anosov on PMF (see [1], exposé 12), if §” is any finite complete subset of S,

for all n large enough, f1(S”) (which is also a complete subset), is contained in V~. This
proves the lemma.

With the notations of (4.7), consider a subsequence of [Fp] converging to [F], and to
simplify notations, suppose that the subsequence is equal to the sequence itself.
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In order to prove that [F] = [G], it suffices to prove the following lemma, which is an
analogue of the " fundamental lemma" of [1], expos€ 8.

(4.9) Lemma There exists a complete subset S* of S which has the following
property:

For every element @ of S°, there exists a constant C s.t. the following is true:

Foreveryn=12,..,we have i(Fpca) < l(gna) S i(Fpa) + C

The proof of lemma (4.9) is given below in sections (4.11) through (4.16). Let’s prove
first the following:

(4.10) Claim : lemma (4.9) implies that [F] = [G].

Proof of the Claim As gn converges to [G] in PR...S, there exists a sequence xp, of real
numbers, converging to 0, s.t. xn.gn converges to G in R,S.

By (4.9), we have, forevery ain §°,
i(xn.Fp,o) < Xn.l(gn,a) < i(xp.Fp,o) + xpn.C.

Therefore, | i(xpn.Fn,o) - xp.1(gn,&) | = 0 when n -— oo , which implies that xp.Fh—
F, and [Fp]— [F]. '

(4.11) Proof of the first inequality of (4.9)

The proof can be done in the same way as for the case treated in (7], where the

lamination y is finite ( i.e. where the surface has cusps and the lamination is the 1-skeleton
of an ideal triangulation). For the convenience of the reader, we reproduce here the main
steps.

The proof applies to any element ¢ in S.

Given the hyperbolic metric gn on the surface, let a* denote the closed geodesic
representing the class a. (To save notations, we do not put an index to ¢.)

o* is transverse to |, since L has no closed leaves.

Define K to be the subset of the surface S equal to the complement of the lamination 1
in the support of Fp.

K is equal to a union of foliated parts of ideal triangles (where we do not include the
boundary of the triangle).

14



Consider a connected component of the intersection of a* with K, and let k denote its
closure. k is a segment which can be of one of the following 3 types, represented
respectively in figure 2 (a), (b) and (c).

-type 1: the two endpoints of k are on L

-type 2: there is exactly one endpointof kison p

-type 3: no endpoint of k is on {.

figure 2

By elementary hyperbolic geometry, the segment k can have at most one point of
tangency with the foliation Fpn. We can therefore modify k in the following manner:

If k is of type 1 or 2, we replace it by a segment k” having the same endpoints, and

which is transverse to Fp. If it is of type 3, we push it in the nonfoliated region of the
surface.

Note now that in the cases where k is of type 1 or 2, the transverse measure I(Fp.k")
of the segment k” is equal to the length of the projection of the segment k on one side of
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the ideal triangle in which it is contained (the projection being done along the leaves of the
horocyclic foliation).

Again, by elementary hyperbolic geometry, the length of the projection is not greater
than that of k.

Therefore, we have:
(4.11.1) IFnk) < l(gn.k).

Let ao** denote the closed curve obtained out of a* by applying the above
modification to each connected component of the intersection of a* with K.

By (4.11.1), we have I(a**.Fpn) < I(gn,o).

Therefore, 1(ct Fn) < 1(gn,&), which is the desired inequality. -

In sections (4.12) through (4.16) we prove the second inequality of (4.9).

(4.12) The second inequality of (4.9) is also true for any isotopy class &, but to avoid
further technicalities in the proof, we shall prove it only for the following complete family:

This is the family of classes & which have the property that they can be represented by
simple closed curves on the surface which have minimum intersection number with F and
which are transverse to this foliation. (Recall that in the general case, i.e. for a general

isotopy class o, curves with minimum intersection number are made up of segments
which are either transverse to F or contained in a leaf of F and joining singular points; this
is discussed in [1], expos€ 5).

It is easy to find a nonempty open subset of PMF in which the isotopy classes of
curves satisfy the property we are requiring (for example, by taking a foliation which is
transverse to F, and taking a sufficiently small neighborhood of its class in PMF).
Therefore, by the lemma in (4.8), the collection of such isotopy classes constitutes a
complete subset of §. We call this subset 8.

(4.13) Let o be an element of S”, represented by a curve & which has minimum
intersection number with F and which is transverse to that foliation.

Let B be a rectangular cover adapted to (F,i) ( in the sense of (3.11)). The curve " is
transverse to the vertical sides of the rectangles, since these are in F. By general position,
we may also assume that it is transverse to the horizontal sides.

Consider now a segment k in a’, which is equal to the closure of a connected

component of the intersection of o with the interior of a rectangle in B. By mansversahty to
F, the intersection pattern of the segment k with the sides of the rectangle in which it is
contained is of one of the types represented in figure 3 (in which the vertical sides of the
rectangles are of course, those in F).
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Typel Type 2 Type 3 Type 4

Figure 3

We perform now the following operations on k:

If k is of one of the types 1, 2 or 3, then we replace it by a segment in the same
homotopy class with endpoints fixed, which is transverse to F and which is either

contained in a leaf of |L or transverse to L.

If k is of type 4, we push it along the leaves of F into the neighboring rectangle, as
indicated in figure 4.

In each case, we perform the above operation without changing the intersection
number of the curve with the foliation F.

Figure 4

_ Note that in the case of type 4, the operation we perform reduces strictly the number of
intersection points of the curve with the sides of the rectangle, so that after a finite number

of steps, we can suppose that the connected components of the intersection of a” with the
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rectangular cover are made up of segments which are of type 1, 2 or 3, and which are
either transverse to | or contained in a leaf of |

(4.14) Now, following (4.4) and (4.6), as [Fp] converges to [F], we can consider
representatives Fp which are horocyclic foliations converging geometrically to F, together

with a sequence of rectangular covers fn adapted to (Fp,)t) converging geometrically to
the cover P (in the sense of (4.6)).

Given the element & in the set §” defined in (4.12), we can suppose (by the geometric

convergence of Fp to F) that for n large enough, we have a representative otp” of o which
is transverse to Fp,which has minimum intersection number with that measured foliation,

that the patterns of intersection of otpn” with the rectangles of Bp are of the types 1, 2 or 3

of figure 3, and that in each rectangle, o’ is either transverse to L, or is a segment in |
joining the two opposite vertical sides of the rectangle. We can also suppose that for n
large enough, the following two properties hold:

(4.14.1) The number of connected components of the intersection of ap” with each of
the rectangles in fp is independent of n (we are using here the fact that the rectangles in
any two covers in the sequence 3y are in one-to-one correspondence).

(4.14.2) the numbers of connected components in op ‘contained in the nonfoliated region
of the surface is independent of n.

(4.15) For each n, we replace 0in” by a curve ap ™ constructed in the following way:

Let sj be a connected component of the intersection of g~ with the interior of a
rectangle in Bn. We replace s1 by two consecutive segments s2 and s3 which are
projections of s1 on | and Fp, respectively, as indicated in figure 5. (If s1 is contained in
H, we let s2 = 51, and s3 is reduced to a point.)

18
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Figure 5

We have now the following

Lemma The length of each of the segments s3 is bounded above by a quantity which is
independent of n .

Proof Recall that by assumption, all the metrics gp in the sequence satisfy {(gn,}) > €.

By (3.12), for each n, this length is equal to the sum, over all rectangles in By, of the area
of each rectangle, where the area is measured w.r.t. the product of the transverse measures

of Fp and .

The transverse measure (w.r.t. 1) of the vertical side of a rectangle is bounded above
independently of |, since the sequences of sides converge geometrically to sides of F, and
the transverse measure of L is independent of n.

Therefore, we have the following:

(4.15.1) The sum of the Fp-measures of the horizontal sides of the rectangles in By, is
bounded below by a constant h which is independent of n.
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By the lemma in (4.6), there is an integer N, which is independent of n, s.t. if a
segment L in y has at least N points of intersection with the union of the vertical sides of

the cover P, then it crosses at least one time each rectangle in the cover Fp. By (4.15.1),
L has therefore length > h.

Consider now one of the segments bj referred to above.

The set of intersection points of s3 with the lamination  has measure zero (w.r.t. the
Lebesgue measure on s3). Therefore, we can calculate 1(gn,s3) as the infinite sum of the

lengths of the components of the intersection of s3 with the complement of y, i.e. with
the interiors of the ideal triangles.

There are finitely many ideal triangles, so it suffices to show that the sum of the
lengths of the segments of intersection of s3 with any one of them is bounded above
independently of n.

Consider one of the ideal triangles, and look at one of the 3 foliated regions in this
triangle.

The intersection of s3 with this foliated region is an infinite union of segments of the

horocyclic foliation, and we have proven that if two of these segments in a cusp of y are
separated by at least N other segments in that cusp, then they are separated by a distance
at least equal to h. ‘

By looking (as in (3.9)), in the ideal triangle in the upper half-plane with vertices at 0,
1 and ee, to the foliated region corresponding to the point eo, we see that if a horocyclic
segment is at distance t from the nonfoliated region, its length is equal to e-t.

This proves that the infinite sum converges and is bounded above by a quantity which
is independent of n.

This finishes the proof of the lemma.

(4.16) We can finish now the proof of the second inequality of (4.9):
We have l(gn,a) < L(gn.an”).

We write the quantity L{gn,0n ") as the sum of the following 3 quantities(using the
notations of (4.15)):

-the sum of the lengths of segments of the form s2

-the sum of the lengths of segments of the form s3
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-the sum of the lengths of the connected components of the intersection of ap ™ with
the nonfoliated regions of the surface.

Note now that the number of segments involved in each of the 3 quantities above is
finite and is independent of n ( by (4.14.1) and (4.14.2)).

The first quantity is equal, by construction, to i(Fp,ot).

The second quandty is bounded above independently of n, by the lemma in (4.15).

Finally, we can change each connected component of the intersection of o *” with the

nonfoliated part of the surface, so that it has length < 1 (since the diameter of such a
region is bounded by 1).

Therefore, there exists a constant C, independent of n, s.t. 1(gn,&) < i(Fp,o) + C.

The proof of lemma (4.9) is now complete.

(4.17) We finish now the proof of theorem (4.1).
We have already completed the proof of part 1 of that theorem (see (4.7)).

To prove part 2, suppose that the sequence gn tends to infinity in T, and suppose that
the sequence Fy(gn) tends to infinity in MF, with [F| (gn)] converging to a point [F] in
PMF (). '

Let [G] be a cluster point of the sequence gp.

By the proof of lemma (4.3), we have also i(G,F) =0, so that G is also in PMF(u).
By the part of the theorem we have already proven, we have [F] = [G].

Therefore, the whole sequence gn converges to [F].

The proof of theorem (4.1) is now complete.
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5. Remarks on stretch lines in Teichmiiller space

There is a family of lines in Teichmiiller space which arises naturally in terms of the

parameters of that space associated to the lamination W, and this family is particularly
interesting.

One of the properties of the lines in this family is that they are geodesic lines for a
metric on Teichmiiller space which is defined by Thurston in his paper [10].

We will not recall the definition of the metric since we do not need it; we refer the
interested reader to the paper [10]. WE shall prove a property of the behaviour at infinity
of these lines.

To see what these lines are, recall that the set MF(u) of equivalence classes of
measured foliations transverse to | has a natural cone structure, and define a positive ray
in that space to be a one-parameter family of measured foliation classes of the form
(x.F)x>0 , where F is an element of MF (i), and where this ray is equipped with the

positive orientation induced by the real numbers. The image of such a ray by the map ou

(defined in theorem 2.1), is called a strezch line in Teichmiiller space, and is a geodesic
for Thurston’s metric that we referred to above.

Note It is important to specify the orientation in the definition of a stretch line, because
this line equipped with the opposite orientation is not a stretch line, and is not a geodesic
(the metric is nonsymmetric).

When ¢ is 2 maximal measured geodesic lamination, we have, as an immediate
consequence of theorem (4.1), the following result on stretch lines:

(5.1) Theorem Any stretch line which is the image by the map ¢y of aray of the
form ( x.F)x>() converges to the point [F] on the boundary of Teichmiiller space.

Remark Thurston’s theorem (2.1) is valid when | is any maximal geodesic lamination
(not necessarily equipped with a transverse measure of full support). But to prove

theorem (4.1), we had to suppose that L was a measured geodesic lamination; we made

an assumption about the length of | not being too small, and we used the transverse
measure of full support. However, theorem (5.1) is true for any maximal geodesic
lamination y, and to prove this, we can prove the double inequality in lemma (4.9) in the
case where the sequence of hyperbolic metrics goes to infinity on a stretch line, without
the hypothesis on the existence of a transverse measure for |1; we can just follow step by

step the proof done in sections (4.11) to (4.16), and what makes things easier here is that
the sequence of foliations Fy, is the same as F, except that its transverse measure 1s being

multiplied by a sequence of real numbers going to infinity.
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(5.2) Since we have been talking about stretch lines, it is natural to ask what is their
limiting behaviour when we endow them with the opposite orientation.

Again, these lines are defined for any maximal geodesic lamination i, and their
definition does not use a transverse measure on the lamination.

Recall that without a transverse measure, )L does not define an element on the
boundary of T. It can, for example, admit more than one proportionality class of
transverse measures (this is the case of a nonuniquely ergodic lamination), or no

transverse measure at all (like in the case of a punctured surface, with the lamination gt
having a finite number of leaves, all converging to cusps; recall here that in the case of

punctured surfaces, in order for a transverse measure for i to define a point on the
boundary of Teichmiiller space, it has to be of compact support.) But in all these cases,

the mapping ¢, still makes sense.

There is a case where we can assure that these "anti-stretch” lines have a limit point on

the boundary of Teichmiiller space, and this is the case where | is a uniquely ergodic
measured lamination. In that case, we have the following

(5.2.1) Proposition For a uniquely ergodic y, every anti-stretch line converges to the
point on the boundary of Teichmuiller space defined by the class [ uj] of L.

Before proving this proposition, we prove the following lemma

(5.2.2) Lemma Let 1L be uniquely ergodic maximal geodesic lamination, and let g, be a
sequence of hyperbolic metrics going to infinity. If the sequence of lengths of y w.r.t. g,
is bounded, then g, converges to [u] in the topology of PR.,_S.

Proof of the lemma Let [F] be a cluster point of the sequence g, in PMF. Then there
exists a representative F of this class, with a sequence xp of real numbers converging to 0

s.t. the sequence xyq.g, converges to F in the topology of R_,,s.

We have i(F,1t) = lim xp.1(gp.}t) = 0 . The fact that L is uniquely ergodic implies now
that [F] = [1] (see Masur [4]), and therefore gy converges to [F].

Proof of proposition (53.1) Let g, be a sequence of elements of T, associated by the

map ¢, to a sequence of elements Fy, in MF(u), where Fyy = 1/yp,.F, with y, a sequence
of positive reals converging to infinity.

The sequence gy goes to infinity in T, for by lemma (3.12), we have

I(gn. W) =i(u,1/yn.F) = 1/yn.i(t,F) which tends to O.
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The fact that 1(g,,p) is bounded above implies also, by lemma (5.3.1), that g,
converges to L.

(5.3.3) Remarks

1. For the proof of proposition (5.3.1), we could not appeal to theorem (4.1), because,
although the sequence of metrics goes to infinity, the sequence of horocyclic foliations
does not go to infinity in MF, but to 0.

2. In the case treated in [7], where the surface has cusps and where the lamination W is

finite, the behaviour of the anti-stretch lines is completely different. In this case (where U
does not have compactly supported transverse measures), the lines do not converge to
infinity but to a point in Teichmiiller space which corresponds to a “symmetric gluing of
the ideal triangles", using the terminology of Thurston in [10],§ 9.4. As Thurston points

out, in that case the cone MF(|L) is naturally a vector space, with the origin corresponding
to this point of symmetric gluing.

6. The extension of the earthquake flow

(6.1) Throughout the rest of this paper, 8,_,, will denote the normalized earthquake flow
associated to the maximal measured lamination [, in the sense defined in the introduction.

In [10], Thurston gives a description of this flow in terms of the parameters of

Teichmiiller space associated to i which we have been working with. This description is
simple, in the sense that it does not involve taking limits of earthquake flows along simple
closed curves. On the other hand, using our theorem (4.1), we shall show that the flow
on MF which appears naturally in this description gives rise to a flow on PMF which

extends continuously the earthquake flow &), .

For the convenience of the reader, we shall recall Thurston’s description of the
earthquake flow that we are referriong to; this involves the notion of shear coordinates for

the space MF()t) of equivalence classes of measured foliations transverse to |1, on which
we make some digresssion.

(6.2) LetF be a measured foliation transverse to W, and T a train track on the surface S,
which is an e-approximation of W (in the sense of [9], ch. 8).
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If the approximation is fine-enough, we can represent T by a train track which is
transverse to F, since W is itself transverse to F.

Following Thurston [10], § 9, the measured foliation F induces a system of weights ©
on , which are called the shear coordinates of F, and which are defined in the following
manner:

Let e be an edge of 1. To each one of the two sides of e on the surface, there is
naturally associated a component of S-t. This component is a triangle, and by the

transversality of F to 1, it is easy to see that each such triangle contains exactly one
singular point of F, which is a 3-prong singularity, and furthermore, if we consider the
foliation induced by F on this region, for each one of the 3 sides of this region, there is a
leaf issuing from the singular point that hits this side.

Let V1 and V7 be the complementary regions of T associated to the edge e. { Note that
V1 may be equal to V7.) The edge e is contained in a side of each of these components (a
side being a union of edges joining two’cusps), and on such a side, there is a
distinguished point , which is the point where the leaf issuing from the singularity of F
contained in that component hits this side.

Now for the edge e, there is a real number s(e) which we can associate to it, which is
the algebraic distance between the hitting points on each side of this edge, with the rule
that left shears are counted positively, and right shears negatively. Because the two hitting
points are not neccesarily joined by a smooth arc in the train track, we have to be more
precise in the definition. For this, we choose a reference point P on the side e, and we
measure the shear coordinates on each side of e w.r.t. that reference point. The sign
convention is the one that is used usually to define left earthquakes or left Fenchel-Nielsen
deformations. Note that the definition does not involve the choice of an orientation on the
edge e. For the sign convention, we refer to figure 6.

dl6jp to symmetry, there are 2 cases, and these 2 cases are represented in figures 6 (a)
and 6(b). :

In figure 6, P is the reference point on the edge e, and C and D are the hitting points
on the corresponding sides (the leaves of F are represented in fat lines).

In figure 6 {a), the shear coordinate induced by F on the edge e is equal to the sum

X +y , where x and y are respectively the transverse measures of the arcs PC and PD.
In figure 6 (b), the shear coordinate is equal to the difference x -y.
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(a) (b)

Figure 6

(6.3)  According to Thurston ([10], § 9), we can define the earthquake flow &, on
Teichmiiller space by transporting, via the homeomorphism ¢, defined in section (2.1), a

flow hy, defined on the space MF(L). In other words, the deformation of hyperbolic
structures is defined vig a deformation of the associated horocyclic foliations.
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To define the flow hll' let F be an element of MF(i). Then as before, we consider a

train track T which is an e-approximation of |, and which is ransverse to F. F induces a
system of shear coordinates on the edges of 7.

The measured lamination QL also induces a system of weights on the edges of T, which
we shall call the transverse coordinates of |, to distinguish them from shear coordinates,
and which are the set of weights that the lamination p induces on the fibres of a regular
neighborhood of {. ( So these are the usual train track coordinates, defined in [9].)

We can now define he flowline h,* (F)ye R passing through the point F:

(6.3.1) Theelement Ft = hut (F) in MF () is defined by its shear coordinates on t. For
any edge ¢ of this train track, if s(a) is the shear coordinate of F on e, and x(e) the
transverse coordinate of W, then the shear coordinate of Ft on e is equal to the quantity
s(e) + t.x(e).i(L,F). This defines the element Ft of MF ().

We note the following 2 facts:

(6.3.2) The quantity i(i,F) is equal (by (3.12)) to the length of p w.r.t. the initial metric
(at ime t = 0). It is also equal to the length of L w.r.t. the metric at any time t, since the
length of  is invariant under the earthquake flow. Therefore, it is also equal to i(u,F®).

(6.3.3) In the desription of the earthquake flow given by Thurston in ([10], § 9), the

term i(WL,F) does not appear in the formula giving the new shear coordinates. This is
because he is considering the non-normalized earthquake flow.

Now we prove an extension property of the flow hy, on measured foliations space:

(6.4) Proposition The flow hy, extends to a continuous flow defined on the whole
space MF, which is the identity flow on the complement of the space MF(11).

Proof From the description in local parameters, it is clear that on the space MF()), the
flow is continuous. So what we have to prove is the continuous extension to the
complement of this set.

Consider the non-normalized flow defined on the set MF (), i.e. the one where at
time t, the new shear coordinate (using the notations of ((6.3.1)) is equal to s(e) + t.x(e).
This non-normalized flow has constant derivative in the whole coordinate system

associated to the train track t. This shows in particular that the flow hy, is a Lipschitz flow
on the whole space MF(u).

On the other hand, the intersection function i(y,.) defined on the whole space MF is
contnuous and takes the value zero on the complement of the space MF(W). From this,
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we deduce that the normalized flow hy, extends continuously by the identity flow to the
complement of MF ().

Remark This flow hy, which is a generalized twist flow on MF, was studied in [6].

The extended flow on MF is homogeneous, and defines therefore a quotient flow on
the space PMF which is continuous, and which we shall denote by ¥5,t.

The zero set of ‘Jﬁp} is equal to the complement in PMF of the set PMF().
We can now prove the following

(6.5) Theorem The normalized earthquake flow & 1 admits a continuous extension to
Thurston’s boundary of Teichmiiller space, and the induced flow on the boundary is the
ﬂow %ut.
Proof Let gq be asequence of points in T converging to the point [F] in PMF.

Suppose first that [F] is in PMF(u).

By the first part of theorem (4.1), we know that the sequence [F,(gn)] of projective
classes of the associated horocyclic foliations converges also to [F].

Let t be an arbitrary real number.

By the continuity of the flow 3%, on PMF (see (6.4)), the sequence %utﬂ:p(gn)]
converges to the point ¥, {F].

Therefore, [hut(Fu(gn))] converges to fl-B,_,_‘[F].

Note now that by (6.3), for every n, hpt(Fp.(gn)) is the horocyclic foliation of the
hyperbolic structure &,'(gp).

Note also that as the sequence g converges to the class [F], with i(F,pu) # 0, the
sequence 1(gn,4) tends to infinity. But 1(gn,u) = i(Fy,(gn),1) , by lemma (3.12).

Therefore, the sequence Fy;(gp) tends to infinity in MF.

By the continuity of the flow hy on MF, the sequence hp.t(Fp.(gn)) also tends to
infinity in MF.
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Therefore, we can use the second part of theorem (4.1) to conclude that the sequence
o th( gn) converges to the point 3 ut[Fj.

We deal now with the case where the point [F] is not in PMF(u).

We have a sequence x;, of positive real numbers that converges to 0, with
(6.5.1) xp.2n — F (in the topology of RS ).
In particular, we have

(6.5.2) xpl(gn.pt) = (F,u) =0, when n — oo,

Now note that for any real number t, and any element ¢ in the set S, we have the
following inequality:

1€ En), @) - (g, @) I S 1. Wgn,p). i(1,).

To see that the above inequality is true, note that it is true, by [5], if W, instead of
being a minimal measured geodesic lamination, was a simple closed geodesic ( and so the

flow would be a Fenchel-Nielsen twist flow). The case where | is a measured lamination
follows then by the density of weighted simple closed geodesics in measured
laminations space and the fact that the earthquake flow is equal to the limit of the twist
flows along a sequence of weighted geodesics approximating the lamination.

Therefore, we have also
| xp. UEpHER), @) - xn.l(gn. o) ! S xpd 1. 1(gn,W). i(1,00).
Now using (6.5.1) and (6.5.2), we have

| X 1(8 p_t(gn). ) -i(F,a) | = 0asn — ee.

Therefore, x,.8,,(gp) = Fin R.S ,and the sequence 81, (gn) converges to [F] in
PR,S.

This completes the proof of theorem (6.5)
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