
On Thurston"s boundary of Teichmüller space
and the extension of earthquakes

Athanase Papadopoulos

Dept. de Mathematiques
Universite Louis Pasteur
7 rue Rene Descanes
67084 Strasbourg Cedex
France

and

MPI/88-26

Max-PIank-Institut für Mathematik:
Gottfried-Claren Straße 26
5300 Bonn 3
West Gennany



On Thurston"s boundary of Teichrnüller space
and the extension of earthquakes

Athanase Papadopoulos

1. Introduction

Consider a elosed surface M of genus 2: 2, equipped with a hyperbolic metric, and let
~ be a geodesic lamination on M, which has the property that its complementary regions
are all isometrie to ideal triangles.

Thurston has shown in [10] how we can associate to ~ aglobal parametrization for
the Teichmüller space, T, of M. The parameter space is a subspace of the space MF of
equivalence classes of measured foliations on M, whieh is defmed as the set of
equivalence classes which can be represented by measured foliations transverse to ~

There are two main results that we prove in this paper. The first one is that the
parametrization above extends to Thurston"s boundary, PMF, of Teichmüller space.
More precisely, we prove that if a sequence of hyperbolic metrics tends to infinity, then it
converges to a point on the boundary if and only if the sequence of projective classes of
measured foliations associated to these metrics eonverges in Pl\1F, and we prove that in
this case the limits of the two sequences are the same (see the precise statement in scetion
(4.1)). This generalizes a rcsult we have already obtained in a simpler case: the case
where the surface M has cusps and where the lamination has only a finite number of
leaves, each tending to a cusp (cf.[7]).

The second main result is proven as a consequence of the first; it is about the
extension of tbe earthquake flow to the boundary of Teichmüller space. To state this
result, we need first to recall that there are two distinet ways. of parametrizing the
eanhquake flow, which are both natural. To see how these two parametrizations are
defined, recall first that we can define the (parametrized) eanhquake flow associated to a
measured geodesie lamination v by taking a sequence of weighted simple closed

geodesics xi.Ci converging to v in the topology of MF, and taking the limit of the
sequence of (parametrized) Fenchel..Nielsen flows (twist flows) along the geodesics Ci,
weighted by the sequence ofreal numbers Xi.

There are two natural ways of parametrizing the Fenchel..Nielsen flow along a
geodesic. The first one (used for example by Kerckhoff in [2]) consists, at time t, of
twisting by an amount equal to t, along the geodesie Ch WI.t. the metric on Ci induced
by the hyperbolic metric on the smface. With this parametrization, it is easy to see that the



Fenchel-Nielsen flow extends continuously by the identity to the boundary of
Teichmüller space. Now it is natural to ask whether this flow can be reparametrized so
that it induces continuously a nontrivial flow on the boundary; in other words, we can ask
whether the follation of Teichmüller space induced by the flow admits an extension as a
foliation tangent to the boundary of that space.

Indeed, there is a second way of parametrizing the Fenchel-Nielsen flow along a
geodesie Ci. This is defined by twisting, at time t, by an amount equal to tlg(CD, where
19(Ci) is the length of Ci w.r.l the hyperbolic metric g which we are twisting. It is easy
to see that the time-I map associated to this flow induces on Teichmüller space the same
action as that of the mapping class defined by the Dehn twist along Ci. So this
parametrization is also quite natural. And in fact it turns out that the Fenchel-Nielsen flow
with this parametrization extends continuously to Thurston's boundary, where it induces
a flow which is the quotient flow of a flow defined on the space MF, which can be
described as "twisting" the measured follations whieh have nonzero interseetion number
with Ci. The zero set of the flow on PMF is equal to the subset defined by the equation
i(Ci,.) = O. This is explained in [7], and it uses loeal parameters near a point on the
boundary of Teichmüller space whieh are adapted to tbe curve Ci.

We shall refer to the Fenchel-Nielsen flow with this second parametrization as the
"normalizedll Fenehel-Nielsen flow. It defines, by taking limits, a normaJized eanhquake
flow on T.

In this paper, we consider the normalized earthquake flow associated to a measured
geodesie lamination Jl which is maximal (i.e. for which every complementary component
is isometrie to an ideal triangle). We use Thurston's parameters of Teichmüller space
associated to Jl that we referred to above, together With our result on the behaviour of
these parameters when a sequenee of hyperbolle metrics convc!ges to a point on the
boundary, to prove that the normalized earthquake flow associated to Jl extends
eontinuously to the boundary ofTeiehmüller space, on wbieh it induces a nontrivial flow.

The plan of this paper is as follows:

In scetion 2, we describe the parameters of Teiehmüller space that we will be working
with. This parametrization has been defined by Thurston and is contained in his paper
[10]. For the eonvenience of the reader, we recall the neeessary definitions together with
the main eonstruction, whieh is that of the horocyelie follation associated to a maximal
geodesie lamination on a hyperbollc surface.

We state as theorem (2.1) Thurston's result that we shall be using, which says that a
certain map from Teichmüller space to a subset of MF is a homeomorphism. This is the

paramctrization of Teicbmüller space associated to the maximal geodesic lamination Jl.

Scetion 3 contains some material about lengths of measured foliations and related facts
on a hyperbollc surface. This notion of length is a generalization of the notion of length
for simple closed curves, and is defined in the same way Thurston has defined the length
of a measured geodesie lamination. We prove somme facts about lengths and interseetion
functions which are used in the next section.
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Section 4 contains the proof of the main result on the convergence of sequenees of
hyperbolie metrics to points on the boundary of Teichmüller space. This is stated as
theorem (4.1).

Seetion 5 is independent of the remaining part of the paper. We diseuss in it some
simple facts coneeming the geodesics of a new metric on Teichmüller spaee, whieh is
defined by Thurston in bis paper [10]. These geodesics are called "stretch lines ll and are
defined in terms of the parameters of Teichmtiller space that are associated to a maximal

geodesie lamination ~ which we were using before. An immediate consequence of our
work is that any stretch Une converges to a defmite point on the boundary or Teichmüller
space. We consider also "anti-stretch" lines (i.e. stretch lines equipped with the opposite
orientation); these are not geodesics for the metric. (The metric is nonsymmetrie.) We
discuss their convergence to the boundary. '

Seetion 6 contains the proof of the result about the extension of the normalized
earthquake flow. To prove this result, we use adescription of the earthquake flow that
Thurston gives in bis paper [10], and this description makes use of shear coordinates for
measured foliations. For the convenience of the reader, we have included in this section a
description of these coordinates.

We conelude this introduction by fixing the notations for the rest of the paper.

In all this paper, M is a closed surface of genus g 2: 2. We begin by recalling a few
definitions.The details about all the notions that are used are contained in [1] and [9].

The Teichmüller space of M is denoted by T and is viewed as the space of hyperbolic
metrics on M up to homotopy. More precisely, it is the space of couples (f,S) where S is

a hyperbolic surface and f: M --+ S is a homeomorphism defined up to homotopy, with
the equivalence relation that identifies two couples (f1,S l)and (f2,SV if there exists an

isometry g: SI --+ 52 s.t. the homotopy classes flog and f2 are equal.

We shall denote our swface by S er M, depending on whether or not it is equipped
with a hyperbolic strucmre.

MF denotes the space of measured foliations on M up to isotopy and Whitehead
moves, and PMF is the quotient space of MF W.f.t. the action of the set R+ of positive
real numbers.

S denotes the set of isotopy classes of simple closed curves on M which are not
homotopic to a point. There is a natural injection from the set R+.S into MF. We shall
denote by i (.,.) the intersection function defined on the product MF x MF. which
extends continuously the geometrie intersection function defined on couples of weighted
simple closed curves (cf. [8]).

For any element g in T, and any a element in S, we d.t;:note by 19(cx) the length of the

unique geodesic in the class a., measured with the hyperbolic metric g.
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We recall that the topologies of the spaces MF and T are defined by the inclusion of
these spaces in the space RrS of positive functions on S, via the functions i(F,.) and
19(.) respectively.

Finally, ifF is either a measured foliation or an elememt of the space MF, we denote
by [F] its image in Pl\1F.

Acknow/edgements The author acknowledges financial support from the Max-Plank
Institut filr Mathematik: (Bonn) and CNRS (France).

2. A parametrization of Teichmüller space (following Thurston)

This seetion contains some terminology and a eonstruetion of Thurston whieh
provides the global parameters of Teiehmüller spaee that we shall be worldng with.

For every maximal geodesie lamination J.1 on the hyperbolic surfaee S, Thurston
constructs in [10] a measured foUation, denoted by FJ.1(g), and whieh we shall call the

horocyc/icjoliation (associated to J.1 and to the hyperbolic strueture gon S).

The construetion is as follows:

The eomplementary eomponents of J.L are all isometrie to ideal triangles, and we ean
consider in each eomponent a partial foHation (i.e. a foilation whose support is a
subsurface) whose leaves are made up of pieces of horocycles, subject to the following
property: Eaeh segment joins 2 boundary components of the mangle in a perpendicular
way, and the support of the foliation is equal to the whole triangle except for a little
triangle bounded by 3 pieces of horocycles which meet tangentially (see figure 1). These
conditions uniquely detennine the foüation.

These partial foliations in the ideal triangles fit together on the surface and defme a
partial follation on this surfacc, whieh has a well-defined invariant transverse measure,

which is uniquely specified by the fact that on the leaves of J.L, this transverse measure

coincides with hyperbolle distancc. We obtain in this way a measured foliatioo, FJ.1(g),
which has a well-defined class in MF. Note that by constructioD, this class has the

property that it can be represented by a measured follation that is transverse to J.L

Conversely, Thurston proves in [10] that the elements of MF which possess this last

property are classes of horocyclic foliations which arise as above, far the same Il and for
some ~yperbolicmetric.
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Figure1

More precisely, let MF(J.!.) denote the subset cf MF which consists of equivalence'

classes which admit representatives transverse to J.1... Then we have the following

(2.1) Theorem (Thurston, [lO],§ 9) For any maximal geodesie lamination p, the map

if>p which associates to each hyperbolic metric the equivaIence class 0/ its horocyclic

foliation is a homeomorphismjrom Teichmüller space to the subset PMF(j.L) 0/ MF .

Remark Although Thurston"s Theorem is valid when IJ. is any maximal geodesie

lamination, in this paper we shall always suppose that IJ. is a measured geodesie
lamination in the usual sense, Le. that it admits a transverse measure of fuH support.
However, the result in seetion 5 about the behaviour of stretch lines is valid also in the

case where IJ. does not admit necessarily a transverse measure, as we remark it in that
section.

3. The length' of a foliation and of a lamination, and tbe geometrie
intersection function
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(3.1) If Jl is a measured geodesic lamination on the hyperbolic surface S, Thurston has

defined the length of J.l., as the total mass on the surface w.r.t the product measure dt x dl

where dl is the I-dimensional Lebesgue measure on the 1eaves of Jl, and dt the 1

dimensional transverse measure of Jl. We shall denote the 1ength of Jl w.r.t. the metric g

by 19{JJ.) (see [9] and [3]).

So there is a function 1(.)(.) (which we shall also denote as 1(.,.» defined on the

product space T x MF , where for ge T and Fe MF, in order to compute l(g,F), we have
to rep1ace F by the measured geodesie lamination (w.r.t. the hyperbolic structure g) which
represents itWe know that this function is continuous in the two variables (see [3]). If
xi.Ci is a sequence of weighted simple closed geodesics converging to Jl in the topology

of MF, thc quantity Ig(Jl) is therefore equal to the limit of the sequence of real numbers
xi.lg (Ci)'

We need to generalize this notion of length to any measured foliation or lamination
(which is not necessarily geodesic) on the surface S. So we make the following
definition.

(3.2) Definition Let F be a measured foHation on S, or a partial measured foHation
(i.e. a measured foliation supported on a subswface of S, like for example the horocyclic
foliation associated to a maximal geodesie lamination), or a measured lamination ( we can
stick to laminations isotopic to measured geodesic laminations). We define the length of
F with respect to the hyperbollc metric g, which we denote by L(g,F) , as the total mass
on S of the product measure dt x dl , where dt is the transverse measure of F and dl is the
Lebesgue measure along the 1eaves of F.

One way of making the above definition more explicit is the following:

By compactness, we can cover the support of the foliation or the lamination with a
finite number of rectangles (flow bpxes) of disjoint interiors, where if such a rectangle is
parametrized by W (where I is an interval), the induced follation (or lamination) is the
horizontal product follation on 1xB, where B is a closed subset of the interval I. ( In the
case where Fis a follation, B is equal to the whole interval L) Now, computing L(g,F) is
just a matter of integrating a product measure on the reetangles and adding the results. It is
easy to see that the definition does not d.epend on the choice of the cover.

Recall that for every F as abovc, we denote by l(g,F) the length of the unique
measured geodesic lamination representing F.

If C is a simple closed eurve which is not homotopic to a point, let 'Y be the closed
geodesie on S which represents it. It is a classical result that the length of Cis bounded
below by the length of y. We shall need a generalization of this result to the case of a
measured follation F; and this is the following:

(3.3) Proposition Let F be a measuredfoliation, or a partial measuredfoliation, or a
measured lamination on rhe suiface S. Then we have:
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l(g,F) ~ L(g,F).

Proof. For the proof, we shall suppose that F is a measured foliation. The cases of a
partial measured foliation and of a lamination can be handled in the same way. We shall
prove first the inequality in a special case and then deduee the general case by a density
argument.

Suppose to begin with that all the leaves of F are closed leaves, so that Fis the union
of a finite number of eylinders D1, ,Do foliated by parallel circles, the interiors of the
eylinders being disjoint. Let CI, ,Cn be the corresponding homotopy classes, and

Yl,...,Yn be the geodesics representating them.

FOT each of the cylinders Di' we know that the length of a closed leaf is bounded

below by the length of the geodesic 'Yi. Now if hi is the hight of Di (Le. the transverse
measure of an arc joining the two boundary components of the cylinder and transverse to
the foHation), the length of this foliated eylinder (w.r.t. the produet measure of the
Lebesgue measure along the leaves with the transverse measure) is therefore bounded

below by the quantity hiJ(ii). Therefore, L(g,F) is bounded below by the sum ~ hiJ(ii),
which is equal precisely to the length of the measured geodesic lamination representing F.

Now that we SIe done with the particular ease, let F be any measured foliation on S.

We claim that there exists a sequence Fn of measured foliations which has the
followiilg 3 properti.es:

- For every n, the foliation Fn has all its leaves closed

-When n~,Fn converges to F for the topology ofMF

-When n ~oo, L(g,Fn) converges to L(g~.

There are many ways of proving the existence of such a sequence Pn; one of them
uses the machinery of train traeks (explained by Thurston in [9]), and we can describe it as
follows:

We can see the foHation F as supported on the fibred neighborhood of a train track,
and wherc each complementary region of that neighborhood has been collapsed onto a
spine. Thus, the follation F appears as a union of rectangles, each rectangle follatcd by
(say) horizontalleaves, the interiors of the rectangles being disjoinl These reetangles are
in natural one-to-one correspondenee with the edges of the train track, and there is a
system of positive weights on the train track whieh is induced by F, where the height of
the follation induced on each rectangle is equal to the weight on the corresponding edge of
the train traek. Now we can approximate this system of weights on the train track by a
sequence of rational systems of weights, which represents a sequence Fn of measured
follations each of which has all its leaves closed, and which converges to F in the topology
of MF. Furthermore, we cao choose the sequence of representatives to eonverge
geometrically to F in the train track neighborhood, so that each follation in the sequence is
a union of foliated rectangles (the same rectangles as for F), with the length of each
rectangle w.r.t. the follation induced by Fn converging to the length of the rectangle w.r.t.
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the foliation indueed by F. From this last property, we deduce that L(g,F'n) converges to
L(g,F) when n goes to infmity.

On the other hand, we know by the continuity of the geodesie length function on the
product TxMF (see (3.1)) that l(g~n) canverges to l(g,F) when 0 teods to infinity.

Fioally, by the particular case proven abave, we have l(g,Fn) S L(g,Fn)'

By making n tend to infinity in the last inequality, we obtain that l(g,F) ~ L(g,F),
which proves the proposition.

We shall also make use of the following few facts about the geometrie intersection
function, which are easy to prove. First, we make a definition: .

(3.4) For i = 1 and 2, let Fi be either a measured foliation, a partial measured foliation or
a measured lamination on tbe surfaee M, and suppose that FI is transverse to F2
(transverse at each point where they intersect; we da not suppose that the suppons are the
same). We define the quantity I(F1,Fz) as the total mass on the surface of the product
measu.re dx1x dx2, where far i = 1 and 2, dxi denotes the transverse measure of Fi. Theo
we have the following

(3.6) Lemma Suppose funhermore that there is 00 Whitney disk for the couple
(F1~V' that is, adisk on the surface whose boundary is the union of a segment in F1 and
a segment in F2. Then, we have I(F1,PU = i(F1'pU.

For the proof of lemmas (3.5) and (3.6), notice first that in the case where Flor F2 is a
simple closed curve, a proof is eontained in [1], expose S. The general case ean be
deduced by a density argument analogous to the one we have made· during the proof of
(3.3).

We make now the following!Wo remarks:

(3.7) IfFl and F2 are transverse measured foliations with the support of each one being
equal to the whole surface, then thete da not exist Whitney disks.This is a consequence of
the fact thal thcre does not exist a measured. foliation (with allowed singularities) on thc
closed disk. TherefoIC we have I(Fl,F2,) = i(Fl,F2,).

(3.8) If ~ is a maximal geodesie lamination on S and F~(g) an associated horocyclic
foliation (far some metric g), then this couple satisfies the condition of lemma (3.6).

We prove now same more facts whieh will be useful in the sequel:

(3.9) Lemma Far any hyperbolic metric g, and for any maximal geodesic lamination j..4

the quantity L(g,FJ.l(g)) is equal to -6K, where K is the Euler characteristie of the surface.
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Proo[ The transverse measure of the foliation F~(g) being a diffuse measure (with no

atoms), and the lamination IJ. being transversely of measure zero (see Thurston [9], eh.8),
we can compute the quantity L(g,FIJ.(g» as the total mass of the product measure

(Lebesgue measure along the leaves of FIJ.(g) x transverse measure of this foliation) in the

complement o[ J.l.

By the Gauss-Bonnet fonnula, there are -2K ideal triangles in the complement of lL
All the ideal triangles heing isometrie, we can make the calculation in any one of them, and
we take the one in the upper half-plane with vertiees at the points 0, 1 and 00. Now for the
eusp of this triangle whieh corresponds to the point 00, the pieces of horocyeles are
segments parallel to the x-axis; they start at the ordinate 1, and each piece of horocycle
which has ordinate t > 1 has length equal to e-(t-l). The length ofthe horocyclic foliation
in this region is therefore equal 10 Je-(t-l)dt = 1.

Therefore, the length of the foliation in each idal triangle is equal to 3.

We conclude that L(g,F~(g»isequal to -~ which proves the lemma.

In fact, we shall only use the following

(3.10) Corollary the quantity l(g,F~(g» is bounded above by a quantity whieh is

inelepend of the hyperbolie metric g and of the lamination J..l.

(3.11) Definition Given a geodesie lamination IJ., with a measured foliation F transverse
to it (F can be a partial measured foliation, as in the case of an F~(g», we shall make use

now and later on of the notion of a rectangular cover adapted to the couple (F,J.l).

BYdefinition, this is a finite set (Bi} of rectangles on the surface, s. t their union

contains the supports of F and of J,1, S.l for every distinct indices i and j, Bi and Bj have

disjoint interiors, and for each i, F induces a "vertical" foliation on Bi, and ~ induces a
"horizontal" lamination on this rcctangle.

Given F and IJ. as above, we can always find such a cover; first locally by using the
product structure, and then globally, using compactness.

Note that with this definition, the "vertical" sides of each rectangles are contained in
the leaves ofF, whereas the "horizontal" sieles are not necessarily contained in ~ (they can

be disjoint from ~).

(3.12) Lemma For any- maximal measured geodesie lamination IJ. on the hyperbolic

surface S, we have 19(Jl.) =i~lJ.(g».
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Prool Let dt denore the transverse measure of the lamination IJ., and let dx denore that of

FIJ.(g).

Consider a rectangular cover adapted to (~FIJ.(g».

Recall that dx coincides with the Lebesgue measure along the leaves of IJ.. Therefore,
the length of the lamination induced on a given rectangle (in the sense of (3.1» is equal to
its total mass w.r.t. the product measure dt x dx. We deduce that Ig(lJ.) is equal to the

intersection I(J.L,FIJ.(g». By (3.8), this quantity is equal to i(J.L,FJ.L(g», which proves
(3.12).

4. Converging to Thurston'5 boundary

Recall that we defined the set Pl\1F(IJ.) to be the set of all projective classes of measured

foliations which can be represented by measured foliations transverse to J.L. Because J..L is a
!fUJXimal geodesie lamination, this is also the set of elasses of measured foliations having
nonzero geometrie intersection with IJ..

The aim of this section is to prove the following theorem:

(4.1) Theorem . 1. Let gn be a sequence 01 elements in Teichmüller space which

converges to a point in PMF(J.l.). Then the sequence [FJJf.gnJJ 01projective classes 01 the
associated horocyclicloliations converges to that same point.

2. Suppose that the sequence gn tends to infinity in Teichmüller space,

with the sequence FJ.l(gnJ 0/ horocyclic measuredfoliations tending also to infinity (in

MF). 1/the sequence 0/associated projective classes [FJJ1gnJ) converges in PMF, then
the sequence gn converges also anti the (\.vo limits are the same.

The proof cf the theorem is divided iota several steps. First, we prove same lemmas
and we state separately a few facts whieh are used in the proof.

(4.2) Given a maximal measured lamination Jl and areal number e, we define the set
V(JJ.,e) as the subset ofTeiehmüller space eonsisting of the hyperbolic metries g for which

we have Ig(Jl) > e.

Let e be a given real number, and [F] a given element of PMF(Jl). We have the
following
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Lemma The subset PMF(!J.) u V(!J.,E) 01 the compactijied TeichmiUler space is an open
neighborhood of[F} in that space.

Prool Suppose for contradiction that gn is a sequence of points in Teichmüller space
which converges to [F] and S.t. for every index n, gn is contained in the complement of

V(Jl,e). We have therefore i(gn, Jl) Se ..

By ([1], expose 8, corollary (2.3», there exists a representative F of the class [F), and
a sequence xn ofrca! numbers , with

Therefore, we have i(F,Jl) =!im xnJ(gn,Jl) =0, which is a contradiction.

The lemma follows easily.

Assumption By the above lemma, in order to prove pan 1 of theorem (4.1), we can
make the following assumption without 1055 of generality:

There exists an E > 0 S.L the sequence gn belongs to the set V(Jl,e).

(4.3) Lemma Suppose that the sequence gn converges to a point [Gi in PMF(p), anti
let [Fp(gn)] be the associated sequence 0/ projective measured joliations. Consider a

converging subsequence olthe sequence [Fj..L(gn)] anti ler [F} denore its limit. Then we
have i(F,G) = 0 ( i.e. the interseetion number is zero for any choice 01 representatives, F
0/ [F) anti Goi[G}).

Proolo/(43} Denote by [PnJ the converging subsequence.

As gn ~ [0] , therc exists a sequence Xu ofrcal numbers , with

As [Fn]~F, there is a sequence Yn of real numbers S.l Yn.Fn~F.

Note now that xn. l(gn,Jl)~i(F,Jl) ~, which implies that the sequence of lengths

l(gn,Jl) teods to infinity . By lemma (3.12), I(gn,Jl) =i(Fn,Jl). We deduce that the
sequence Yn tends to O.

Now we have i(G,F) =lim n~ 00 xn.yn.I(gn,Fn).

By corollary (3.10), the sequence l(gn,Fn) is bounded.
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Therefore, i(F,G) = 0, which proves lemma (4.3).

The following fact is well-known, and we state it far future reference.

(4.4) Suppose that [FnJ is a sequenee in PMF(J.l) whieh eonverges to an element [F]
in that spaee. Tben, we can represent [Pn] and [F] by measured foliations Fn and F on the

surfaee (i.e. not only up to equivalenee) S.l the eonvergence Fn --+ Fis geometrie, whieh
means heTe that the foliations have the same singular points, and around eaeh point on the
surfaee, the sequenee of foliations Fn eonverges to the foliation F in the topology of line
fields.

There are several ways of proving this statement (for example by using the theory of
normal forms of measured foliations w.r. l a pants deeomposition of the surface). In the
present eontext, we ean deduee this statement from the fact that elements in MFQ.J.) have
geometrie reprcsentatives, whieh are the horocyelic foliations, which have the desired
property.

Actually, for a converging sequence [FnJ as above, it will be convenient for us to use
these horocyclic foliations as representatives which converge geometrically.

(4.5) We note now the fact that the measured geodesic lamination J.l being maximal (the

complementary components are all triangles) implies that every leaf cf J.l is bi-infinite and

dense in the support of IJ.. This can be deduced from the eorrespending (may be better
known) fact that if a measured follation has no leaves eonnecting singularities, then every
leaf is dense.

Given sueh a ~ and a hyperbolic metric g, let ß be a rectangular eover adapted to

(F,Il). We have the following:

Lemma There exists an integer N S.l if L is any segment in a leaf of J.l whieh has the
propeny that it intersects at least N times the union of (tbe vertical) sides of the rectangles
in the cover, then L crosses at least one time each of the rectangles in the cover.

The proof ean be done easily by taking a cross-seetion of J.l and using the density cf
the leaves.

(4.6) Let Fn be now a sequence of elements in Pl\1F(~) which converges to the element
[F] in that spaee, and let Fo be a sequence of reprcsentatives of [Pn] by horocycllc
foliations, converging geometrically to a horocyclic follation F representing [F).

Suppose that we arc given a rectangular cover ßadapted to (F,J.l) in the sense defined
in (3.11). Tben the following holels:
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For each Fo, we can find a sequence ßn of rectangular covers adapted to (Fn,J..L) S.t.

the sequence of covers ßn converges geometrically to the cover ß. More precisely, we
need a property of the following kind to hold=

For all integers i and j, there exists a one-to-one correspondence between the

rectangles of the cover ßi and the rectangles of the cover ßj, S.t. each sequence cf
correspending rectangles converges (in the Hausdotff topolegy on closed subsets cf the

surface) to a rectangle of ß.

With this condition on the sequence ßn, the following fact is true as a consequence of
the lemma in (4.5):

Lemma There exists an integer N S.t. for every i = 1,2,... , and for every segment L in
a leaf of J.L which intersects at least N times the set cf vertical sides of the rectangles of ßi,
the segment L passes at least one time through each rectangle of ßi .

(4.7) We continue now the discussion begun in (4.1), with the assumption made in (4.2).

Let gn be a sequence cf elements in V(J.L,e) cenverging in R+S to a point [F] in

PMF(Jl). Consider the sequence [FJl(gn)] of prejective classes cf the associated
horocyclicmeasured foliations, and let [F] be a cluster point of this sequence. We wish to
prove that [F] = [0]. This will prove that the sequence [FJl(gn)]converges to [0].

Before going 00, we need to make a definition:

(4.8) Definition A subset S" of S is said to bc compIere if any element of T er of
Pl\1F is complctely determined. by its intersection number with S".

By the classification cf measured foliations and of hyperbolic structures on surfaces,
we know that there exists camplete subsets of S which are finite.

We shall nced also the following:

Lemma If V is any nonempty open subsct of PMF, we can find a complete subset of S
which is cootained in the· subsetV" of MF, defined as the R+-cone over V.

Proof One proof consists in taking a pseudo--Anosov mapping class of the surface,
whose projective class of unstable foliation is contained in V. Then, by the dynamics cf a
pseudo-Anosov on PMF (see [1], expose 12), if S" is any finite complete subset of S,
for all n Iarge enough, fO(S") (which is also a compIete subset), is contained in V". This
proves the lemma.

With the notations of (4.7), consider a subscquence of [Po] converging to [F], and to
simplify notations, suppose that the subsequence is equal to thc sequence itself.
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In order to prove that [F] =[G], it suffices to prove the following lemma, which is an
analogue of the" fundamental lemma 11 of [1], expose 8.

(4.9) Lemma There exists a complete subset S' 01 S which has the following
property:

For every element a o[S', there exists a constant C S.t. thefollowing is trne:

Por every n =1,2,..., we have i(Fn,a) ~ l(g/tJa) S i(FflJa) + C

The proof of lemma (4.9) is given below in seetions (4.11) through (4.16). Let's pmve
[JISt the following:

(4.10) Claim: lemma (4.9) implies that [P] = [Gl.

Proof of the Claim As gn converges 10 [G] in P14S, there exists a sequence Xn of real
numbers, converging to 0, S.t. xn.gn converges to G in 14S .

By (4.9), we have, for every a in S',

Therefore, I i(xn.Fn,a) - xn.l(gn,a) I~ 0 when n .~ 00 , which implies that xn.Fn~

F, and [Fn]~ [F].

(4.11) Proofofthe first inequality of (4.9)

Tbe proof can be done in the same way as for the case treated in [7], where the

lamination J.1 is finite ( Le. where the surface has cusps and the lamination is the I-skeleton
of an ideal triangulation). For the convenience of the reader, we reproduce here the main
steps.

Thc'proof applies to any element a in S.

Given the hyperbolic metric gn on the surface, let a* denate the cIosed geodesie

representing the class a.. (Ta save notations, we do not put an index to Cl.)

a* is transverse to J.1, since J..L has no closed leaves.

Define K to bc the subset of the surface S equal to the complement of the lamination J..L

in the support ofFn.

K is equal to a union of foliated parts of ideal triangles (where we do not include the
boundary of the triangle).

14



Consider a connected component of the interseetion of 0.* with K, and let k denote its
closure. k is a segment which can be of one of the following 3 types, represented
respectively in figure 2 (a), (b) and (c).

-type 1: the two endPQints of k are on J..L

-type 2: there is exactly one endpoint of k is on J..L

-type 3: no endpoint of k is on J..L.

(a)F------~~---I

figurc 2

By elementary hyperbolic geometry, the segment k can have at most one point of
tangency with the follation Fo. We can therefore modify kinthe following manner:

If k is of type 1 or 2, we replace it by a segment k" having the same endpoints, and
which is transverse to Fn- If it is of type 3, we push it in the nonfoliated region of the
surface.

Note now that in the cases where k is of type 1 or 2, the transverse measure I(FnJcJ
of the segment k' is equal to the length of the projection of the segment k on one side of
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the ideal triangle in which it is contained (tbe projection being done along the leaves of the
horocyclic follation).

Again, by elementary hyperbolic geometry, the Iength of the projection is not greater
than that of k.

Therefore, we have:

(4.11.1) l(Fn,kj S; l(gn,k).

Let a ** denote the closed curve obtained out of a * by applying the above

modification to each connected component cf the intersection of a* with K.

By (4.11.1), we have l(a**,Fn) S; l(gn,a).

Therefore, I(a ,Pn) S; I(gn,a), which is the desired inequality.

In sections (4.12) through (4.16) we prove the second inequality of (4.9).

(4.12) The second inequality of (4.9) is also true far any isotopy class (x, but to avoid
further teehnicalities in the proof, we shall prove it only for the following campiete family:

This is the family of classes a. which have the propeny that they can be represented by
simple closed curves on the surface which have minimum intersection number with F and
which are transverse to this follation. (Recall that in the general case, Le. for a general

isotopy class 0., curves with minimum interseetion number are made up of segments
which are either transverse to F er contained in a leaf cf F and joining singular points; this
is discussed in [1], expose 5).

It is easy to find a nonempty open subset of PMF in which the isotopy classes of
curves satisfy the property we are requiring (for example, by taking a follation which is
transverse to F, and taking a sufficiently small neighborhood of its class in PMF).
Therefore, by the lemma in (4.8), the collection cf such isotopy classes constitutes a
complete subset of S. We call this subset S ....

(4.13) Let a. be an element of S"', represented by a curve· a" which has minimum
intersection number with F and which is transverse to that foHation.

Let ßbe a rectangular cover adapted to (F,~) ( in the sense of (3.11». The curve cx" is
transverse to the vertical sides of the rectangles, since these are in F. By general position,
we may also assume that it is transverse to the horizontal sides.

Consider now a segment k in cx", which is equal to the closure of a connected

component of the intersection of cx with the interior cf a rectangle in ß. By transversality to
F, the intersection pattern of the segment k with the sieles of the rectangle in which it is
contained is of one of the types represented in figure 3 ( in which the vertical sides of the
rectangles are of course, those in F).
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Figure3

Tyfe 3

We perform now the following operations on lc

If k is of onc of the types 1, 2 or 3, then we replace it by a segment in the same
homotopy class with endpoints fixed, which is transverse to F and which is either

contained in a leaf of~ or transverse to IJ..

If k is of type 4, we push it aloog the leaves of F ioto the neighboring rectangle, as
indicated in figure 4.

In each case, we perform the above operation without changing the interseetion
number of the curve' with the follation F.

...

Figure 4

Note that in the case of type 4, the operation we perform reduces strictly the number of
intersection points of the curve with the sides of the rectangle, so that after a finite number
of steps, we can suppose that the connected. components of the interseetion of cx' with the
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rectangular cover are made up of segments which are of type 1, 2 or 3, and which are

either transverse to Jl or contained in a leaf of j..L

(4.14) Now, following (4.4) and (4.6), as [Po] converges (0 [F), we can consider
representatives Fo which are horocyclic foliarions converging geometrically to F, together

with a sequence of rectangujar covers ßn adapted [0 (Fn,IJ.) converging geometrically (0

the cover ß (in the sense of (4.6)).

Given the element a in the set S" defined in (4.12), we can suppose (by the geometric

convergence of Po (0 F) that for 0 large enough, we have a representative an' of a which
is transverse to Fn,which has minimum interseetion number with that measured follation,

that the patterns of intersection of an" with the rectangles of ßn are of the types 1, 2 or 3

of figure 3, and that in each rectangle, an" is either transverse to Jl, or is a segment in Il
joining the two opposite vertical sides of the rectangle. We can also suppose that for n
large enough, the following two properties hold:

(4.14.1) Tbe number of connected components of the intersection of an" with each of

the rectangles in ßn is independent of n (we are using here the fact that the rectangles in

any two covers in the sequence ßn are in one-to-one correspondence).

(4.14.2) the numbers of connected components in an"contained in the nonfollated region
of the smface is independent of n.

(4.15) For each fi, we rcplace an' by a curve an'" constructcd in the following way:

Let SI be a connected component of the interseetion of an" with the interior of a

rectangle in ßn. We replace SI by two con5ecutive segments 52 and 53 which are

projections of sI on Il and Fn respectively, as indicated in figure 5. (If 51 is contained in

J.I., we let 52 = SI, and 53 i5 reduced to a point.)
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We have now the following

Lemma The fength 0/ each ofthe segments s3 is bounded above by a quantity which is
independent 0/n .

Proof Recall that by assumption, al1 the metrics gn in the sequence satisfy l(gn,ll) > E.

By (3.12), for each n, this length is equal to the surn, over al1 rectangles in ßn, of the area
of each rectangle, where the area is measured w.r.t the product of the transverse measures

of Fn and J.1.

The transverse measure (w.r. t J.1) of the vertical siele of a rectangle is bounded above

independently of J.1., since the sequences of sides converge geometrically to sides ofF, and

the transverse measure of J.1 is independent of n.

Therefore, we have the following:

(4.15.1) The sum of the Fn-measures of the horizontal sides of the rectangles in ßn is
bounded below by a constant h which is independent of n.
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By the lemma in (4.6), there is an integer N, which is independent of n, S.l if a

segment L in Il has at least N points of intersection with the union of the vertical sides of

the cover ~n, then it crosses at least aue time each rectangle in the cover Fn. BY (4.15.1),
L has therefore length > h.

Consider now one of the segments bi referred to above.

The set of intersection points of s3 with the lamination Il has measure zero (w.r.l the
Lebesgue measurc on s3). Therefore, we can calculate l(gn,s3) as the infinite sum of the

lengths of the components of the interseetion of s3 with the complement of Il, Le. with
the interiors of the ideal triangles.

There are fmitely many ideal triangles, so it suffices to show that the sum of the
lengths of the segments of interseetion cf s3 with any oße of them is bounded above
independently of n.

Consider ODe- of the ideal triangles, and look at one of the 3 foliated regions in this
triangle.

The intersection of 83 with this foliated region is an infinite union of segments of the

horocyclic follation, and we have proven that if two of these segments in a cusp of Il are
separated by at least N other segments in that cusp, then they are separated by a distance
at least equal to h.. .

By looking (as in (3.9), in. the ideal triangle in the upper half-plane with vertices at 0,
1 and 00, to the foliated region eorresponding to the point 00, we see that if a horocyclie
segment is at distance t from the nonfoliated region, its length is equal 10 e-t .

This proves that tbe infinite sUm convergcs and is bounded above by a quantity which
is independent of n.

This finishes the proof of the lemma.

(4.16) We ean finish now the proof ofthe second inequality of (4.9):

We write the quantity L(gn,an"1 as the sum of the following 3 quantities(using the
notations of (4.15)):

-the sum of the lengths of segments of the form s2

-tbe sum of the lengths of segments of the form s3
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-the sum of the lengths of the connected components of the interseetion of an'" with
the nonfoliated regions of the sUlface.

Note now that the number of segments involved in each of the 3 quantities above is
finite and is independent of n ( by (4.14.1) and (4.14.2)).

Tbe first quantity is equal, by construction, to i(Fn,a).

The second quantity is bounded above independently of n, by the lemma in (4.15).

Fmally, we can change each connected component of the interseetion of cxn" with the
nonfoliated part of the surface, so that it has length S 1 (since the diameter of such a
region is bounded by 1).

Therefore, there exists a constant C, independent of n, S.l l(gn,a.) S i(Fn,cx) + C.

The proof of lemma (4.9) is now compIete.

(4.17) We finish now the proof of theorem (4.1).

We have already completed the proof of part 1 of that theorem (see (4.7».

Ta prove part 2, suppese that the sequence gn tends to infinity in T, and suppose that

the sequence F~(gn) tends to infinity in MF, with [F~(gn)] converging to a point [F] in

PMF(J.1).

Let [G] be a cluster point of the sequence gn.

By the proof of lemma (4.3), we have also i(G,F) = 0, so that G is also in PMF(Il).
By the part of the theorem we have already proven, we have [F] =[0].

Therefore, the whoIe sequence gn converges to [F].

The proof of theorem (4.1) is now complete~
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s. Remarks on stretch lines in Teicbmüller space

There is a family of lines in Teichmüller space which arises naturally in terms of the

parameters of that space associated to the lamination IJ., and this family is particularly
interesting.

One of the properties of the lines in this family is that they are geodesic lines for a
metric on Teichmüller space which is defined by Thurston in bis paper [10].

We will not recall the definition of the metric since we do not need it; we refer the
interested reader to the paper [10]. WE shall prove a property of the behaviour at infinity
of these lines.

To see what these lines are, recall that the set MF(J.1) of equivalence classes of

measured foliations transverse to J.1 has a natural cone structure, and define a positive ray
in that space to be a one-parameter family of measured foliation classes of the fonn

(x.F)x~O ' where F is an element of MF(J.1), and where this ray is equipped with the

positive orientation induced by the real numbers. The image of such a ray by the map eflJl
(defined in theorem 2.1), is called a stretch fine in TeichmUller space, and is a geodesic
far Thurston"s metric that we referred to above.

Note It is important to specify the orientation in the definition of a stretch line, because
this line equipped with the opposite orientation is not a stretch line, and is not a geodesie
(the metric is nonsymmetric).

When J.1 is a maximal measured geodesic lamination, we have, as an immediate
consequence oftheorem (4.1), thc following result on stretch lines:

(5.1) Theorem' Any stretch line which is the image by the map <pJ.1 of a ray of the
form (x.F)UO converges to the point [F] on the boundary ofTeichmüller space.

Remark Thurston"s theorem (2.1) is valid when Jl is any maximal geodesic lamination
(not necessarily equipped with a transverse measure of full support). But to prove

theorem (4.1), we had to suppose that Jl was a measured geodesic lamination; we made

an assumption about the length of J.L not being too small, and we used the transverse
measure of fuil support. However, theorem (5.1) is true for any maximal geodesic

lamination J.1, and to prove this, we can prove the double inequality in lemma (4.9) in the
case where the sequence of hyperbolic metrics goes to infinity on a stretch line, without

the hypothesis on the existence of a transverse measure far j.l; we can just follow step by
step the proof done in seetions (4.11) to (4.16), and what makes things easier here is that
the sequence of foliations Fn is the same as F, except that its transverse measure is heing
multiplied by a sequence ofrca! numbers going to infinity.
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(5.2) Since we have been talking about stretch lines, it is natural to ask what is their
limiting behaviour when we endow them with the opposite orientation.

Again, these lines are defined for any maximal geodesic lamination ).1, and their
definition does not use a transverse measure on the Iamination.

Recall that without a transverse measure, ).1 does not define an element on the
boundary of T. It can, for example, admit more than one proportionality class of
transverse measures (this is the case of a nonuniquely ergodic lamination), or no

transverse measure at all (like in the case cf a punctured surfaee, with the lamination ).1
having a finite number of leaves, all eonverging to eusps; recall here that in the ease of

punetured surfaces, in order for a transverse measure for).l to define a point on the
boundary of Teichmüller space, it has to be of eompact support.) But in all these cases,

the mapping <P).l still makes sense.

There is a case where we can assure that these "anti-stretch" lines have a limit point on

the boundary cf Teichmüller space, and this is the case where ).l is a uniquely ergodie
measured lamination. In that case, we have the following

(5.2.1) Prop~ition For a uniquely ergodic p, every anti-stretch Une converges to the

point on the boundary 01TeichmiUler space defined by lhe class [ p} 01J.L

Before proving this proposition, we prove the following lemma

(5.2.2) Lemma Let).l be uniquely ergodic maximal geodesie lamination, and let gn be a

sequence ofhyperbolic metries going to infinity. If the sequenee of lengths of Il w.r.t gn

is bounded, then gn eonverges to [J,1] in the topology of PR+S.

Pro%/ the lemma Let [F] be a cluster point cf the sequence gn in PMF. Then there
exists a representative F of this class, with a sequenee xn of real num.bers converging to 0

S.l the sequence xn.gn converges to F in the topology of R+S.

We have i(F,~) = lim xnJ(gn,).l) = 0 . The fact that J.1. is uniquely ergodie implies now

that [F] = (Jl] (see Masur [4]), and therefore gn converges to [F].

Proof 0/proposition (53.1) Let gn be a sequenee of elements of T, associated by the

map <P)J. to a sequence of elements Fn in MF(Jl), where Fn =l/Yn.F, with Yn a sequence
of positive rea1s converging to infinity.

Tbe sequence gn goes to infmity in T, for by lemma (3.12), we have
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Tbe fact that l(gn,Jl) is bounded above implies also, by lemma (5.3.1), that gn

converges to Jl.

(5.3.3) Remarks

1. For the proof of proposition (5.3.1), we could not appeal to theorem (4.1), because,
although the sequence of metrics goes [0 infinity, the sequence of horocyclic foliations
does not go to infinity in .MF, but [0 O.

2. In the case treated in [7], where the surface has cusps and where the lamination Jl is

fmite, the behaviour of the anti-stretch lines is completely different In this case (where Jl
does not have compactly supported transverse measures), the lines da not converge to
infinity but to a point in Teichmüller space which corresponds to a "symmetrie gIuing of
the ideal triangIes", using the terminology of Thurston in [IO],§ 9.4. As Thurston points
out, in that case the cone MF(Jl) is naturally a vecter space, with the origin corresponding
[0 this point of symmetric gIuing.

6. The extension of the earthquake now

(6.1) Throughout the rest of this paper, eJl will denote the nonnalized eanhquake flow

associated [0 the maximal measured lamination J.l, in the sense defined in the introduction.

In [10]; Thurston gives adescription of this flow in terms of the parameters of
Teichmüller space associated to Jl which we have been working with. This description is
simple, in the sense that it does not involve taking limits of earthquake flows along simple
elosed curves. On the ather hand, using our theorem (4.1), we shall show that the flow
on MF which appears naturally in this description gives rise to a flow on PMF which
extends continuously the earthquake flow eJl'

For the convenience of the reader, we shall recall Thurston"s description of the
earthquake flow that we are refemong [0; this involves the nation of shear coordinates for
the space MF(J,J.) of equivalence classes of measured foliations transverse to Jl, on which
we make some digresssion.

(6.2) Let F be a measured foliation transverse to Jl, and't a train track on the surfaee S,

whieh is an e-approximation of Jl (in the sense of [9], eh. 8).
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If the approximation is fine-enough, we can represent t by a train track which is

transverse to F, since J.1. is itself transverse to F.

Following Thurston [10], § 9, the measured follation F induces a system of weights t
on , which are called the shear coordinates of F, and which are defined in the following
manner:

Let e be an edge of t. To each one of the two sides of e on the surface, there is

naturally associated a component of S-t. This component is a triangle, and by the

transversality of F to t, it is easy to see that each such triangle contains exactly oße
singular point of F, which is a 3-prong singulariry, and furthetmore, if we consider the
foliation induced by F on this region, for each oße of the 3 sieles of this region, there is a
leaf issuing from the singular point that hits this siele.

Let VI and V2 be the complemenrary regions of't associated to the edge e. (Note that
VI may be equal to V2.) The edge e is contained in a sitte of each of these components (a
side being a union of edges joining two· cusps), and on such a side, there is a
distinguished point, which is the point where the leaf issuing from the singularity of F
contained in that component hits this side.

Now for the edge c, there is areal number s(e) which we can associate to it, whieh is
the algebraic distanee between the hitting points on each side of this edge, with die rule
that left shears are counted positively, and right shears negatively. Because the two hitting
points are not neccesarily joined by a smooth arc in thc train traek, we have to be more
precise in the defmition. For this, we choose a reference point P on the side c, and we
measure the shear coordinates on each side of e W .r. t that reference point The sign
convention is the one that is used usually 10 define left earthquakes or left Fenchel-Nielsen
deformations. Note that the definition does not involve the choice of an orientation on the
edge e. For the sign convention, we refer to figure 6.

Up to symmetry, there are 2 eases, and these 2 cases are represented in figures 6 (a)
and 6(b). .

In figure 6, Pis the reference point on the edge e, and C and D are the hitting points
on the corresponding sides· (the leaves of F are represented in fat lines).

In figure 6 (a), the shear coordinate indllccd by Fon the edge e is Cqllal to the sum
x + y , where x and y are respectively the transverse measures of the arcs PC and PD.
In figure 6 (b), the shear coordinate is equal to the differenee x - y.
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(a)

Figure6

(b)

(6.3) According to Thurston ([10], § 9), we can defme the earthquake flow eJl on

Teiehmüller space by transporting, via the homeomorphism cf>Jl defined in scetion (2.1), a

flow hJ.1. defined on tbe space MF{J.1.). In ather words, the defannation of hyperbolic
structures is defined via adeformation of the associated horocyclic foliations.
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To define the flow hll, let F be an element of MF(~). Then as before, we consider a

train track t which is an e-approximation of Il, and which is transverse to F. F induces a

system of shear coordinates on the edges of t.

The measured lamination Il also induces a system of weights on the edges of t, which

we shall call the transverse coordinates of Jl, to distinguish thern from shear coordinates,

and which are the set of weights that the lamination Jl. induces on the fibres of a regular

neighborhood of~ ( So these are the usual train track coordinates, defined in [9].)

We can now define he flowline hll
t (F)te lR passing through the point F:

(6.3.1) Tbe element pt = h~t (F) in MF(Il) is defmed by its shear coordinates on t. For
any edgc c of this train track, if s(a) is the shear coordinate of F on e, and x(e) the

transverse coordinate of Il, then the shear coord.inate of pt on e is equal to the quantity

s(e) + tx(e).i(J,4F). This defines the element pt of MF{J.1.).

We note the following 2 facts:

(6.3.2) The quantity i(J.4F) is equal (by (3.12)) to the length of Il w.r.t. the initial metric

(at time t = 0). It is also equal [0 the length of Il w.r.t the metric at any time t, since the

length of Il is invariant under the earthquake ·f1ow. Therefore, it is also equal [0 i(!J.,Fl).

(6.3.3) In the desription of the earthquake flow given by Thurston in ([lOL § 9), the

term i(Jl,F) does not appear in the formula giving the new shear coordinates. This is
because he is considering the non-nonnalized earthquake flow.

Now we Pr0ve an extension property ofthe flow hJl on measured foliations space:

(6.4) Proposition The flow hj.J. extends to a continuous /low defined on the whole

space MF, which is the identity jlow on the complement ofthe space MF(j.J.).

Proof From the description in local parameters, it is elear that on the space MF(Il), the
flow is continuous. So what we have to prove is the continuous extension to the
complement of this set

Consider the non-normalized flow d.efined on the set MF(Jl), Le. the one where at
time t, the new shear eoordinate (using the notations of «6.3.1)) is equal to s(e) + tx(e).
This non-normalized flow has eonstant derivative in the whole eoordinate system

associated to the train track t. This shows in panieular that the flow hJ,1 is a Lipsehitz flow

on the whole space MF(Jl).

On the other hand, the interseetion funetion i(J.l,.) defmed on the whole space MF is

continuous and takes the value zero on the complement cf the space MF(Jl). From this,
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we deduce that the normalized flow hJl extends continuously by the identity flow to the

complement of MF(Jl).

Remark This flow hJl which is a generalized twist flow on MF, was studied in [6].

The extended flow on MF is homogeneous, and defines therefore a quotient flow on
the space PMF which is continuous, and which we shall denote by %Jlt.

The zero set of %Jlt is equal co the complement in PMF of the set PMF(Jl).

We can now prove ehe following

(6.5) Theorem The normalized earthquakeflow e).1. admits a continuous extension to
ThUTston "s boundary 0/Teichmüller space, and the induced flow on the boundary is the
f/ow %).1.t.

Proof Let gn bc a sequence of points in T converging CO tl:te point [F] in PMF.

Suppose first that [F] is in PMF(Jl).

By the first part of theorem (4.1), we know that the sequence [FJl(gn)] of projective
classes cf ehe associated. horocyclic foliations converges also CO [F].

Let tbc an arbitrary real number.

By ehe continuity of the flow %Jl on PMF (sec (6.4», the sequence %Jlt[F).1(gn)]

converges to the point %Jlt[F].

Therefore, [hJl!(FJl(go»] converges to % Jlt[F] .

Note now that by (6.3), for every n, hJ..Lt(FJl(gn» is ehe horocyclic faHation of the

hyperbolic structtIre eJlt(go)'

Note also that as ehe sequence gn converges to ehe class [F], wich i(F,Jl) ~ 0, the

sequence l(gn,Jl) tends to infinity. But l(gn,Jl) = i(FJl(gn),Jl) , by lemma (3.12).

Therefore, ehe sequence FJl(gn) tends to infinity in MF.

By ehe continuity of ehe flow hJl on MF, the sequence hJ..L t(FJl(gn» also tends [0

infinity in MF.
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Therefore, we can use the second part of theorem (4.1) to conclude that the sequence
eJ.lt(gn) converges to the point % J.lt[F].

We deal now with the case where the point [F] is not in PMF(J.L).

We have a sequence xn of positive real numbers that converges to 0, with

(6.5.1) xn.gn ~ F (in the topology of R+S ).

In particular, we have

(6.5.2) xn.l(gn,J.L) ~ i(F,J.L) = 0, when n ~ 00.

Now note that for any real number t, and any element cx in the set S, we have the
following inequality:

To see that the above inequality is true, note that it is true, by [5], if J.L, instead of
being a minimal measured gecxlesic lamination, was a simple closed geodesie (and so the
flow would be a Fenchel-Nielsen twist flow). The case where J.1. is a measured lamination
follows then by the density of weighted simple closed geodesics in measured
laminations space and the fact that tbe earthquake flow is equal to the limit of the twist
flows along a sequence of weighted geodesics approximating the lamination.

Therefore, we have also

Ixn. l(eJ.lt(gn)' cx) - xn.l(gn,a.) I S xn.l t I . l(gn,J.1.). i(J.L,a.).

Now using (6.5.1) and (6.5.2), we have

Therefore, xn.eJlt(gn) ~ F in R+S ,and the sequence eJ.lt(gn) converges to [F] in
PR+S.

This completes the proof of theorem (6.5)
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