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Preliminary Foreword

In August and September 1984 I delivered a series of lectures
on the representation theory of reductive groups at the East China
Normal University in Shanghai. I had been asked before to prepare
some lecture notes. This is the first part of a revised and

extended version of the notes I had written for those lectures.

When writing down the first version I had not yet decided
about the precise contents of my lectures. Therefore I included
more than I could hope to cover in the lectures (and than I did
cover). On the other hand, some parts of the theory about which
I lectured (the relationship with the representations of finite
groups) were not covered in the written notes as I had not had

enough time before leaving for Shanghai.

In this revised version of my notes I intend to deal also
with these matters missing in the original version. The first part
written up so far contains the general theory of group schemes
and their representations upto the amoung that appears to be
necessary for the more concrete representation theory of reductive
gtoups and of their most important subgroups (liké Borel subgroups,

Frobenius kernels, finite groups of Lie type).

This first part contains an introduction to some fundamental
concepté in the theory of algebraic groups as schemes, group
schemes, quotients, factor groups, algebras of distributions,
Frobenius kernels. The main source in these matters is [SGA 3]

to which one should add [T] in the case of algebras of distributions.
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The books [DG] and [W] contain more accessible approaches to the
theory. I have tried to be understandable to someone who has not
read these books but is familiar with linear algebraic groups

(in the sense of [Bol,[Hu],[Sp]) and fundamental notions of

commutative algebra (especially flatness) and of algebraic geometry.

So I give all the definitions and indicate the proofs where they
are not too involved but give a feeling what standard arguments
look like. In the case of deeper results I usually refer to [DG]

from where I'usually take also the terminology.

Furthermore this first part contains an introduction to the
main tools in the representation theory o? algebraic group schemes
like induction, injective modules, cohomology, associated sheaves,
reduction mod p and to some special aspects of the representation
theory of finite group schemes. Most things done here are general-
izations of constructions in the representation theory of (finite)
abstract groups and of Lie groups. I have therefore usually not

tried very hard to trace all sources and to attribute priorities.

The list of references is divided into three parts. The
first one contains text books on algebraic groups and related topics
to which is referred by a letter code like [Bo]. The second part
contains research articles on representations of algebraic groups
and related topics to which is referred by the family name of the
author(s) like [Curtis 2]. The last part contains references from
other areas of mathematics to which is referred to by numbers like

[3].

I should like to thank Henning Haahr Andersen for his useful
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comments on the first version of these notes and to thank Prof. Cao
Xihua, his colleagues and his students for the hospitality they
showed during my stay in Shanghai and for the patience with which

they listened to my lectures.



Part I : General Theory
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I General Theory

1. Schemes

The reader is assumed to be familiar with the theory of
algebraic groups as exposed in the text books by Borel, Humphreys
and Springer (i.e. in [Bo], [Hu],[Spl). He also ought to know the
fundamental properties of varieties as to be found in these books.
Though we are interested mainly in representations of such groups
it will be necessary to look at more general objects, called group
schemes, and similarly at the corresponding objects in algebraic

geometry, called schemes.

It is the purpose of this first chapter to give the necessary
introduction to schemes following the functorial approach of [DG].
This approach appears to be most suitable when dealing with group
schemes later on. After trying to motivate the definitions in 1.1
we discuss affine schemes in 1.2 - 1.6. What is done there is
fundamental for the understanding of everything to follow. As far
as arbitrary schemes are concerned it is most of the time enough
to know that they are functors with some properties so that all
affine schemes are functors and so that over an algebraically
closed field any variety gives rise to a scheme in a canonical way.
Sometimes, e.g. when dealing with quotients, it is useful to
know more. So we give the appropriate definitions in 1.7 - 1.9
and mention the comparison with other approaches to schemes and
with varieties in 1.11. The elementary discussion of a base change

in 1.10 is again necessary for many parts later on.

A ring or an associative algebra will always be assumed to have



a 1 and homomorphisms are assumed to respect this 1. Let k be a
fixed commutative ring. Notations of linear algebra (like Hom, &)
without special reference to a ground ring always refer to structures
as k-modules. A k-algebra is always assumed to be commutative

and associative. (For non-commutative algebras we shall use the

terminology!algebras over k.)

1.1 Before giving the definitions I want to point out how
functors arise naturally in algebraic geometry. Assume for the

moment that k is an algebraically closed field.

Consider a Zariski closed subset X of some kn and denote

by I the ideal of all polynomials £ € k[Tl,T ,...,Tn] with

2
f(X) = 0. Instead of looking at the zeroces of I only over Kk

we can look also at the zefoes over any k-algebra A, 1i.e. at

X(A) = {x € A"|f(x) = O for all £ € I}. The map Aw X(A) from
{k-algebras} to {sets)} is a functor: Any homomorphism ¢: A - A'

of k-algebras induces a map wn: A% 4 (A')n,(al,az,...,an)h+
(0(a,),0(ay), ... 0(a ) with £(¢"(x)) = ¢(£(x)) for all x € A”
and f € k[Tl""'Tn]' Therefore wn maps X(A) to X(A').

Denote its restriction by '§(¢)= é(A) > §(A'). For another homomor-

phism ¢': A' + A" of k-algebras one has obviously X(¢')X(¢) =

X(@'op) proving that X is indeed a functor.

A regular -map from X to a Zariski closed subset Y of some

m

k is given by m polynomials fl’fz""'fm € k[Tl,Tz,...,Tn]

as f: X > Y, xXpr (fl(x),fz(x),...,fm(x)). The £ define for

i
each k-algebra A a map f(A): AL Am, X b (fl(x),...,fm(x)).

The comorphism £(k)¥: k[Tl,...,Tm} + k[Tl""'Tn] maps the ideal



defining Y 4into the ideal I defining X. This implies that

any f(A) maps X(A) into Y¥(A). The family of all f£(A) defines
a morphism g: X+X of functors, i.e. a natural transformation.
The more general discussion in 1.3 {(cf. 1.3(2)) shows that the map
f> £ is bijective (from {regular maps X -+ Y} to {natural trans-

formations X + Y}).

Taking this for granted we have embedded the category of all
affine algebraic varieties over k into the category of all
functors from {k-algebras} to {sets} as a full subcategory. This
embedding can be extended to the category of all algebraic varieties,

Ssee 1l.11.

One advantage of working with functors instead of varieties
(i.e. of working with X instead of X) will be that it gives a
natural way to work with "varieties" over other fields and also
over rings. Furthermore we get also over k (algebraically closed)
new objects in a natural way. Instead of workiﬁg with I we might
have taken any ideal I'cC k[Tl,...,Tn] defining X, i.e. with
X = {x € kn]f(x) = QO for all £ € I'} or, equivalently by Hilbert's
Nullstellensatz, with +I' = I. Replacing I by I' in the
definition of X we get a functor, say X', with X'(Aa) = X(A)
for each field extension A Dk (or’even ea?h integral domain),
but with X(A') # X(A) for some A,}fsic: guﬁctors arise in a

natural way even when we deal with varieties and they play an

important role in fepresentation theory.

Before giving the proper definitions let us describe the

functor X without using the embedding of X into x®. For each



k-algebra A we have a bijection Hom, _ (k[Tl,Tz,...,Tn],A) + AP,

alg
sending any a to (a(Tl),a(Tz),...,u(Tn)). The inverse image of
X(A) consists of those a with 0 = £(a(T;),...,a(T )) = a(f)

for all f € I, hence can be identified with Hom __, (k[T ,,T,,...,

alg
Tn]/I,A). As k[Tl,Tz,...,Tn]/I is the algebra k[X] of
regular functions on X we have thus a bijection X(A) =

Hom _.14(k[X],a). If e: A+ A' is a homomorphism of k-algebras,

then X(¢) corresponds to the map Hom, _ (k[XI'A)”*'Homk—alg

alg

(k[x],A') with o > gea. A morphism £: X + Y is given by its

comorphism f£': k[Y] + k[X]. Then the morphism f£: X + ¥ is given
' *

by £(a): Homk_alg(k[X],A) -+ Homk_alg(k[Y],A), ar+ aof for

any k-algebra A.

1.2 (k-functors). Let us assume k +to be arbitrary again.
In the definitions to follow we shall be rather careless about the
foundations of mathematics. Instead of working with "all; k—-algebras
we should (as in [DG]) take only those in some universe. We leave

the appropriate modifications to the interested reader.

A k-functor ig a functor from the category of k—algebras to the

category of sets.

Let X be a k-functor. A subfunctor of X is a k-functor
Y with Y(A) € X(A) and Y(¢) = X(wlly(A) for all k~algebras

A,A' and all ¢ € Hom, _ (A,A").

alg

Obviocusly a map Y which associates to each k-algebra A a
subset Y(A) C X(A) 1is a subfunctor if and only if X(@)Y(A)c< Y(A')

for each homomorphism ¢: A + A' of k-algebras.



For any family (Y of subfunctors of X we define their

1)iex

intersection N Y, through ( N YQ(A) = N (Yi(A) for each
iex ierx iex

k~algebra A. This is again a subfunctor. The obvious definition

of a union is not the useful one, so we shall not denote it by

uY,.
ter ¥

For any two k-functors X,X' we denote by Mor(X,X') the set
of all morphisms (i.e. natural transformations) from X to X'.

For any f € Mor(X,X') and any subfunctor Y' of X' we define

the inverse image f—l(Y') of ¥Y' under f through ey ) =
f(A)"l(Y'(A)) for each k—algebra A. Clearly f-l(Y') is a sub-
functor of X. (The obvious definition of an image of a subfunctor

is not the useful one.) Obviously f-l commutes with intersections.

For two k-functors Xl,x2 the direct product X.xX is

1772
defined through (xlxxz)(A) = Xl(A)xxz(A) for all A. The project-

ions Py: X;xX, + X, are morphisms and (Xlxxz,pl,pz) has the

usual universal property of a direct product.

For three k-functors xl,xz,s and two morphisms fl: X1 + S,

f2: X2 + S the fibre product Xlxsx2 {relative fl'fZ) is

defined through

(Xixsxz)(A) = X, (B)xg )X, (A) = {(x;,x,)|x, € X, (R),x, € X,(R),

fl(A)(xl) = fz(A’(xz)}'

The projections from X to X and X

1%s%2 1 2
X, xgXy together withthese projections has the usual universal

are morphisms and



property of a fibre product. Of course we may also regard xleX2
as the inverse image of the diagonal subfunctor DSC:SXS (with

D (A) = {(s,s)|s € S(A)} for all A ) under the (obvious) morphism
(fl,fz): X, xX, * Sx8. (On the other hand inverse images and inter-

sections can also be regarded as special cases of fibre products.)

1.3 (Affine Schemes). For any n eN  the functor AP

a——"
==

with A™(a) = 2" for all A and A"(e) = ¢": (aj,...,a )

(m(al),....w(an)) for all ¢: A + A' is called the affine n~-space

over k. (We use sometimes also the notation /\; when it may be
doubtful which k we consider.) Note that IVD is the functor
with /\O(A) = {0} for all A. Hence there is for each k-functor
X exactly one morphism from X to AO (i.e. Ao is a final
object in the category of k-functors) and that we can regard any

direct product as a fibre product over /¥{

For any k—-algebra R we can define a k~functor Ska through
(Sp,R) (A) = Homk_alg(R,A) for all A and (SpyR)(¢): Homk_alg(R,A)
> Homk_alg(R,A'), ar> ¢ea for all homomorphisms ¢: A ~A'. We
call Ska the spectrum of R. Any k-functor isomorphic to some

Ska is called an affine scheme over k. (Note that the -Ska

generalize the functors X considered in 1.1.) For example the
affine n-space A" is isomorphic to Spkk[Tl""’Tn] (and will
usually be identified with it), where k[Tl,...,Tn} is the

polynomial ring oﬁer k in n wvariables Tl""'Tn'

We can recover R from Ska. This follows from:

Yoneda's Lemma: For any k-algebra R and any k-functor X

the map £+ f(R)(idk) is a bijection




Mor (Spy R, X) + X(R).

Indeed, take any k-algebra A and any a € Homk-alg(R'A) =
(Ska)(A). As f is a natural transformation, we have X(a)of(R)
= f(A)e(Ska)(a). Let us abbreviate Xe = f(R)(idR). As (Ska)
(u)(idR) = a‘idk = a, we get

(1) £(R) (a) = X(a) (xp).

This shows that f is uniquely determined by Xe and indicates
how to construct an inverse map. For each x € X(R) and any
k-algebra A let fx(A): (Ska) + X(A) be the map aw X(a)(x).
Then one may check that £, € Mor(Ska,X) and that x+r £ is

inverse to fe>r xf.

An immediate consegquence of Yoneda's lemma is
H hrd ]
(2)  Mor(Sp,R,Sp,R') Homk_alg(R /R)

for any k-algebras R,R'. We denote this bijection by f+»r £%*

and call f£* the comorphism corresponding to £. As Homk—alg

(k[TI],R)-; R under a+r u(Tl) we get especially

(3) Mor(Ska,Al) 3 R.

For any k-functor X we denote Mor(x,ﬁ\l) by k[X]. This
set has a natural structure as a k—-algebra and (3) is an isomorphism
k[Ska]-? R of k-algebras. (For f,,f, € k[X] define £ +f,
through (f1+f2)(A)(x) = fl(A)(x)+f2(A)(x) for all A and all



x € X(A). Similarly flf2 and af1 for a €

We shall usually write £(x) = £(A)(x) for x

are defined).

m =

X(A) "and

f € k[X]. Note that for X = Sp, R and f € R = k[X] we have

£{x) = x(£f) for x € (Sp R)(A) = Hom, _ (R,3).

alg

The universal property of the tensor product implies immediately
that a direct product xlxx2 of affine schemes over k 1is again
an affine scheme over k with k[xlxxz} = k[XI}C'k[XZ]. More

generally a fibre product xlx X

) with xl,xz,s affine schemes

is an affine scheme with

(4) k[xlxsxz] = k[X1]€§ k[XZ].

k[S]

1.4 (Closed Subfunctors of Affine Schemes). Let X be

an affine scheme over k.

For any subset IcCk[X] we define a subfunctor V(I) of X

through

(1) V(I)(A) = {x € X(A)|f(x) = O for all £ € I}

* {a € Hom, __, (k[X],8)]a(I) = O}

alg

for all A. (It is immediate to check that this is indeed a sub~
functor, i.e. that X(e)V(I)(A)e V(I)(A') for any homomorphism

®: A + A'.)

Of course V(I) depends only on the ideal generated by I

in k[X]. We claim:

(2) The map Iw V(I) from {ideals in k[X]} to {subfunctors

of X} 1is injective.




More precisely we claim for two ideals I,I' of k[x]:
(3) I g3 V(I)DV(I').

Of course the direction "=—=A" 18 trivial. On the other hand,
consider the canonical map a: k[X] -+ k[X]/T°® which we regard as an
element of X(k[X]/I'). As a(I') =0 it belongs to V(I')(k[Xl/1'). If

V(I')CV(I), then a € V(I)(k[X)/I) and a(I) =0, hence IC I'.

We call a subfunctor Y of X closed, if it is of the form

Y = V(I}) for some ideal Ick([X]. Obviously any closed subfunctor

is again an affine scheme over k as
(4) V(I) = sp (k[X]/I).

For any family (Ij)jEJ .0f ideals in k{X] one checks easily

(5) nNVv({I.) =v({z I.).
jes J je3 7

Thus the intersection of closed subfunctors is closed again.

For each subfunctor Y of X there is a smallest closed
subfunctor Y of X with Y(A)c Y(A) for all A. (Take the
intersection of all closed subfunctors with the last property.)
This subfunctor Y is called the closure of Y. We really do
not have to assume here that Y 4is a subfunctor: Any map Y will
do which assocliates to each A a subset Y(A)cX(A). We can for
example fix an A and consider a subset McCX(A). Then the

closure M of M is the smallest closed subfunctor of X

with McM(A).



Let I,,I, be ideals in k[x]. Because of (3) the closure

of the subfunctor Ak V(Il)(A) U V(Iz)(A) is equal to V(I1 n 12).

If A 1is an integral domain, then one checks easily that
V(Il)(A) u V(Iz)(A) = V(IlnIz)(A). For arbitrary A this
equality can be false. Still we define the union as

V(Il) u V(Iz) = V(Ilnlz).

Let f: X' +» X be a morphism of affine schemes over k. One

easlly checks for any ideal I of k[X] that

1

(6) £V(I) = w(k[x'1£%(I)).

Thus the inverse image of a closed subfunctor is again a closed

subfunctor. For any ideal I'c k([X'] the closure of the subfunctor

1

A E(A)(V(I')(A)) is V((£® 7 '1'). This functor is also

denoted as f(V(I')), but we do not want to define £(V(I')} here.

For two affine schemes xl,x over k and ideals

2
Ilc k[xl],Izc:k[XZ] one checks easily

(7)) V(I)xV(I,) = V(I,@k([X,]+k[X,]® I,).

If S is another affine scheme and if morphisms X. - S, X, + S

1 2

are fixed, then one gets
(8) V(Il)"sV(Iz) = V(Il® k{S]k[x2]+k[x1]®k[S]IZ)'

-1 -1
(Use e.g. that V(Il)xSV(IZ) =P, V(Il) 0 Py V(Iz) together with
(5),(6) where Py: xlxsx2 + Xy for 1 = 1,2 are the canonical

projections.)



1.5 (Open Subfunctors of Affine Schemes) Let X be an

affine scheme over k.

A subfunctor Y of X 1is called open, if there is a subset

I<ck[{X] with Y = D(I) where we set for all k-algebras A:

(1) D(I)(A) = {x € X(A)]| ¢ Af(x) = A}
fel

= (a€Hom _ (k[X],2) |Aa(I) = A}.

alg

Note that (1) defines for each ideal I a subfunctor: For each
¢ € Hom, _ (A,A') and each x € D(I)(A) one has I A'f(X(@)X) =
mk alg fel

L A'p(f(x)) = A'e( £ Af(x)) = A'e(A) = A'. Obviously:
fel fex

(2) If A is a field, then D(I)(A) = u {x€X(A)]|f(x) # O}.
- fer

Of ‘course, the right hand side in (2) would be the obvious choice
for something open. But it does not define a subfunctor as
homomorphisms between k-algebras are not injective in general.
Therefore we have to take (1) as the appropriatemgeneralization

to rings.

For I of the form I = {f} for some f € k[X] one writes

Xf = D(f) = D({f}) and gets

(3)  Xx.(n) = {aEHomk_alg(k[X],A)la(f) € A"},

hence
(4) X = sp, (k[X]y)

where k[X]f = k[x][f~1] is the localization of k[X] at f£.

So the open subfunctors of the form xf are again affine schemes.



For arbitrary I, however, D(I) may be no longer an affine scheme.

Obviously D(I) depends only on the ideal of k[X] generated
by I. As any proper ideal in any ring is contained in a maximal

ideal, we have for any A

D(I) (A)

il

{acHom, _ . (k[X],A)|a(I) =m for any m € Max(A)}

alg

{acHom __, (k[X],A) [a €D(I) (A/m) for any meMax(A)}

alg

where Max(A) 1is the set of all maximal ideals of A and o is
the composed map k[X]—% a—-S20, A/m. This shows that D(i)_

is uniquely determined by its values over fields and especially
that D(I) = D(/I) for any ideal I<k[X]. Denote for each

prime ideal P < k[X] the quotient field of k([X]/P by Qp

and the canonical homomorphism k[X] + k[XYP - Qp by Then

QP.
ap £ D(I) (Qp)E=> ap(I) = 0&=p PO I.

As /T is the intersection of all prime ideals P>I of k[X],
we get for any two ideals I,I' of k[X]

(5) D(I)CD(I')V=> VI /T'.

Thus I++D(I) is a bijection {ideals I of k[X] with I = /T}

+ {open subfunctors of X}.
For two ideals I,I' in k[(X] one checks easily

(6) D(I) n D(I')

D(I N I') = D(I-1Y



and gets especially for any f£,f' € kl[x]

(7) X nXx = X

4 £! ££°

For any ideal I in k[X] one has:

(8) If A is a field, then X(A) is the disjoint union of D(I)(A)

and V(I)(A).

For arbitrary A the union may be smaller. Also the next statement

may be false for arbitrary A: Consider a family- (Ij) of

JET
ideals in k([X]. Then obviously

(9) XIf A is a field, then U D(I4)(A) = D( I Iy)(A).
jes j€T

For any morphism f: X' + X of affine schemes over k one has
-1 *
(10) £ "D(I) = D(k[X']E (I))

for any ideal Ick[X] as one may check easily. We get especially

for any f' € k[X]
~1
(11) £ (xf,) = x'f*(f,).

For any fibre product Xlx of affine schemes over k

sX2
(with respect to suitable morphisms) and any ideals Ilczk[xl],

Izck[xz} one has

(12) D(Il)xSD(Iz) = D(Ilak{s]Iz).

(Argue as for 1.4(8).)

;ég (Affine varieties and Affine Schemes) An affine scheme




X 1is called algebraic, if k(x] 4is isomorphic to a k-algebra of
the form k[Tl,...,Tn]/I for some n ETQ and a finitely
generated ideal I in the polynomial ring k[Tl""'Tn]‘ It is

called reduced, if k[X] does not contain any nilpotent element

other than 0.

Assume until the end of this section 1.6 that k is an
algebraically closed field. Any affine variety X over k defines
as in 1.1 a k-functor X which we may identify with Sp, [X].

One gets in this way exactly all reduced algebraic affine schemes

over k. For two affine varieties X,X' one has Mor(X,X') =
Homk_alg(k[x'],k[x]) = Mor(X¥,X'). So we have indeed embedded the
category of affine varieties as a full subcategory into the

cateqgory of affine schemes.

When doing this, one has to be aware of several points. Any
closed subget Y of an affine variety X 1is itself an affine
variety. The functor Y 1is the closed subfunctor V(I) <X
where I = {f € k[X]]|£f(Y) = 0}. 1In this way one gets an
embedding {closed subsets of X} + {closed subfunctors of g}.

On the level of ideals (cf. 1.4(2)) it corresponds to the inclusion
{ideals I of k[X] with I = /I} < {ideals of k[X]}. The
embedding is certainly compatible with inclusions (i.e. YT Y'&
YcY'), but in general not with intersections: It may happen

that Y n ¥' is strictly larger than Y g Y'. Take for example
in X

k® (where k(X] = x[T,,T,]) the line Y = {(a,0)|a € k}
and the parabola Y' = {(a,a2)|a € k}. Then Y n Y' = {(0,0)1}.

The ideals I,I' of Y,Y' are I = (Tz) and I' = (Ti-Tz):
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hence I+I' = (Tf,mz) #(T,,T,) and Y N ¥' = V(I) N V(I') =
V(1+1')§; V(TI,TZ) =Y 0y,

So, when regarding affine varieties as (special) affine schemes,
we havé to be careful, whether intersections are taken as varieties
or as schemes. The same is true for inverse images and (more

generally) for fibre products.

Similar problems do not arise with open subsets. To any open
YCX we can associate the ideal I = {f € k[Xx]|f(X-Y) = 0O}
and then the open subfunctor D(I) which we denote by Y. Because
of 1.5(5) the map Y+ Y is a bijection from {open subsets of X}
to {open subfunctors of X} which is compatible with intersections.
It follows from 1.5(10),(12) that this bijection is also
compatible with inverse images and fibre products. (In case Y |is

affine the notation Y is compatible with the earlier one.)

(Open Subfunctors) (Let k again be arbitrary.)

1.7
=g

Let X be a k~functor. A subfunctor Y <X 1is called open if
for any affine scheme X' over k and any morphism £: X' + X

there is an ideal I < k[X'] with £ 1(Y) = D(I).

Note that this definition is compatible with the one at the

beginning of 1.5 because of 1.5(10). From 1.5(6) one gets

(1) If Y,Y' are open subfunctors of X, then so is Y n¥Y'.

Let f: X' » X be a morphism of k-functors. Then one has

obviously:

(2) If Y 4is an open subfunctor of X, then £1(y) is an

open subfunctor of X'.




Let xl,xz,s be k-functors and suppose X is defined
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with respect to some morphisms. Then one gets (using lesYz =
-1 -1

p, (Y;) n Py (Y,)).

(3) If Y, <X, and Y2Clx2 are open subfunctors, thgp Y, %Y,

is an open subfunctor of xlxsxz.

Let Y,Y' be open subfunctors of X. Then:

(4) Y = Y'é:;;.Y(A) = Y'(A) for each k—-algebra A which is a

field.

(Of caurse "=5" is trivial. 1In order to show "&=" suppose
Y # Y'. Then there is some k-algebra A with Y(A) # Y'(A).
Assume that there is x € Y(A) with x £ Y'(a). Vvia Y(A) =
Mor(SpkA,Y)c:Mor(SpkA,X) regaxrd X as a morphism SpkA + X.
Then 1d, € x 1(A)(A), £ x 1(¥')(a), hence x '(¥) #x ().

Now the result follows from the discussion preceding 1.5(5).)

A family of open subfunctors of X is called

(¥5) 5eq

an open covering of X, if X(aA) = U Yj(A) for each k-algebra
JET

A which is a field.

If X is affine and if Yj = D(Ij) for some ideal Ij<1k[X],

then formula 1.5(9) implies that the D(Ij) form an open covering

of X if and only if k[X] = I Ij. A comparison with the case
jeg

of an affine variety shows that this is the appropriate generali-

zation of the notion of an affine cover. Note that especially

(5) Let X be affine and fl’f ,...,fr € k{X]. Then the X

£

2 i



form an open covering of X _if and only if k[x] =
i

[

klxIfe,.
1 i

1.8 (Local Functors) As the notion of an affine scheme

generalizes the notion of an affine variety we want to define the
notion of a scheme generalizing the notion of a varieties.
Certainly a scheme should (by analogy) be a k-functor admitting an

open covering by affine schemes. This is however not enough.

Consider two k-functors X,Y and an open covering (Yj)jEJ

of Y. If X,Y correspond to geometric objects then a morphism

f: Y - X ought to be determined by its restrictions le' to all
]
Yj. Furthermore, given for each j a morphism ﬁa: Yj + X such
the
-— 3 41
that fjlY n., = fj'lY.nY., for all j,j' € J,/there ought to be
i3 B
a (unique) morphism £: Y » X with le = fj for all j. In
;]

other words, the sequence

8
(1) Mor(Y,X)——» I Mor(Y,,X)—— 1  Mor(Y.NnY.,X)
jes J vy 3,3'€d I

ought to be exact where «a(f) = (lej)jEJ and B((fj)jEJ)

resp. vy ((fj) resp.

s sey
jeJ) has (j,j')-component fj

Y.ny.
IJn].

fj'leﬁch'

For arbitrary x,Y;Yj) the sequence (1) will not be exact.
So we define a k-functor X to be local if the sequence (1) is
exact for all k-functors Y and all open coverings (Yj)jEJ'
(One can express this as saying that the functor Mor(?,X) is a

sheaf in a suitable sense.)



r
I RE, =R
1=1 1
the Spk(Rfi) form an open covering of the affine scheme Ska.

For any k-algebra R and any fl""'fr €E R with

In this case the sequence (1) takes (because of Yoneda's lemma)

the form

r
(2) X(R) + I X(R; )——=3 1 X(Rg ¢ )

i=1 i i<i j<x i73

where the maps have components of the form X(a) with a one of

the canonical maps R + R or R + R . Now one can prove
fi fi fifj

(c£f. [DG], I, §1, 4.13)

Proposition: A k~-functor X is local if and only if fér any k-algebra R and any
r

IR = R the sequence (2) is exact.
1=1 £y

fl""'fr € R with

(Note that in [DG] the second property is taken as the definition

of "local".)

For R and fl""’fr as in (2) the sequence

(3)

N::lH

f =3 Re £,

1«1, j<r 173

(induced by. the natural maps R + R and R, ~+ R ) 1s exact.
£, £y fif3

(This is really the description of the structural sheaf on Spec R
e.g. in [ Ha ] , II, 2.2.) For an affine scheme X over k
the exactness property of Homk_alg(k[xl,?) = X(?) shows that

the exactness of (3) implies the exactness of (2). Thus we get

(4) Any affine scheme over k is a local k-functor.




Consider k-algebras AI'AZ""’An and the projections

n n
P.: 1 Ai + A.. If we apply (2) to R = 1 Ai and the
R it - i=1

fi = (0;4e.,0,1,0,...,0), then we get

n n
(5) If X is a local functor, then X( I Ai)ﬁh m X(a;)
=L i
i=1 i=1
for all k-algebras Al,Az,...,An.
(The bijection maps any x to (X(Pi)x)lﬁ;:p’)

1.9 (Schemes) A k-functor is called a scheme (over k), if it

is local and if it admits an open covering by affine schemes.

Obviously 1.8(4) implies

(1) Any affine scheme over k is a scheme over k.

The category of schemes over k (a full subcategory of

{k-functors}) is closed under important operations:

(2) If X is a local k-functor (resp. a scheme over k) and if

X' 1s an open subfunctor of X, then X' is local (resp. a scheme).

In the situation of 1.8(1) the injectivity of o for X
implies its injectivity for X'. In order to show the exactness
for X one has to show then for any £ € Mor(Y¥,X) such that each
lej factors through X', that also f factors through X'.
The assumption implies ¥j<:f"1(x') for each 3j', hence by the
definition of an open covering that f—l(x')(A) = Y(A) for each
k-algebra A which is a field. Then 1.7(4) implies vee L (x1)

and f factors through X'. 'In order to get the affine covering

of X' in case X 1is a scheme one can restrict to the case



whexre X 1is affine, hence X' = D(I)}) for some ideal. Then the

(xf)fEI form an open affine covering.

Let xl,xz,s be k~functors and form xlxsxz with respect to

suitable morphisms. Then:

(3) If X,/X,,5 are local (resp. schemes), then so is X, %gXg.

The proof may be left to the reader.

1.10 (Base Change) Let k' be a k—-algebra. Any k'-algebra

A is in a natural way also a k-algebra, just by combining the
structural homomorphisms k -+ k' and k' + A. We can therefore
assocliate to each k-functor X a k'-functor xk’ by X&,(A) =
X(aA) for any k'-~algebra A. For any morphism £f: X + X' of
k-functors we get a morphism fH: xk, -+ xi, of k'-functors simply
by kaA) = £(A) for any k'-algebra A. 1In this way we get a

functor Xe»r Xk" fvur £ from {k-functors} to {k'-functore}

k!
which we call base change from k to k'.

For any subfunctor Y of a k-functor X the k'-functor
Yk‘ is a subfunctor of xk,. Furthermore the base change commutes
with taking inverse images under morphisms, with taking inter-

sections of subfunctors and with forming fibre products.

The universal property of the ténsor product implies that
(Ska)k, = Spk, (R®k') for any k—-algebra R. In other words,
if X 1is an affine scheme over k, then X is an affine
scheme over k' with k'[xk,] = k[x}gk‘. For any ideal I of

k[X] one gets then V(I)k. = V(I®k') and D(I)k, = D(I® k').



(Well, we really ought to replace I® k' in these formulas by
its canonical image in kiX]1® k', but for once we shall indulge

in some abuse of notation.)

For any k'-algebras A,R one has

(Sp, (R} (B) = Homk'—alg(R'A)C:Homk~alg(R’A) = (Sp R}y, (A).

Thus we have embedded Spk,R as a subfunctor into (Ska)k"

For any ideal I of R denote the corresponding subfunctors as
in 1.4/5 by V(I),D(I)C-Ska and Vk.(I),Dk.(I)C.Spk,R. Then one
sees immediately Dk.(I) = (Spk,R) n D(I)k. and Vk.(I) =

(Spk,R) 0 V(I

Using the last results it is easy to show for any open sub-
functor Y or a k-functor X that Yk' is opén in xk.. If X
is a local k-functor, then obviously X is a local k'-functor.
Now it is easy to show that oy is a scheme over k' if X

is one over k.

1.11 ("Schemes") In text books on algebraic geometry (like
that by Hartshorne to which I shall usually refer in such matters)
another notion of scheme is introduced which I shall denote by
"schemes" in case a distinction is useful. A "scheme" is a
topological space together with a sheaf of k-algebras and an open
covering by "affine schemes". The "affine schemes" are the prime
spectra Spec(R) of the k-algebras R endowed with the Zariski
topology and a sheaf having sections R on each Spec(Rf)C:

Spec{R) for all f €R. To each such "scheme" X one can



associate a k-functor X via X(A) = Mor(Spec a,X) for all A.

On the other hand one can associate in a functorial way to
each k-functor X a topological space !xl together with a
sheaf such that lSkaI = Spec(R) for each k-algebra R. It
turns out that |X| is a "scheme" if and only if X 1is a scheme
and that Xw— [X|] and X'+ X' are quasi-inverse equivalences
of categories, (This is the content of the comparison theorem

(DG], I, §1, 4.4.)

One property of tlils construction is that the open subfunctors
of any k-functor X correspond bijectivély to the open subsets
of |x|, cf. [DG], I, §1, 4.12. More precisely, if Y is an
open subfunctor of X, then |Y| can be identified with an open
subset of |X| and the k-algebra of sections in |Y| of the
structural sheaf of |X| is isomorphic to Mor(Y,ﬁ\l), ibid. 4.
14/15.

Suppose that k 1is an algebraically closed field. Consider
a scheme X over k which has an open covering by algebraic
affine schemes. We can define on X(k) a topology such that the
open subsets are the Y(k) for open subfunctors Y<X. The map

Y-+ ¥Y(k) turns out to be injective ([DG], I, §3, 6.8). We can

define a sheaf (Qx(k) on X(k) through (px(k)(Y(k))
Mor(Y,/\l). Then X+ (X(k),CZi(kg is a faithful functor and its

image contains all varieties over k in the usual sense.



2. Group schemes and Representations

In this section we define group schemes and modules over these
objects and discuss their fundamental properties. As in chapter 1

we follow more or less [DG].

After making the definitionS}of k-group functors and k-group
schemes in 2.1 we describe some examples in 2.2. The relationship
between algebraic groups and Hopf algebras generalizes to group
schemesa. This is done in 2.3/4.. (We always assume our group
schemes to be affine.) We then discuss the class of diagonalizable

group schemes in 2.5 and group.bperations in 2.6,

We then go on to define representations (2.7) and to discuss
the relationship between G-modules and k[G]-comodules (2.8).
We generalize standard notions of representation
theory to G-modules: submodules (2.9), fixed points (2.10),
centralizers and stabilizers (2.12), and simple modules (2.14).
The definition of a submodule has some unpleasant aspect which
disappears only when G is a flat group scheme (i.e. a group
scheme such that k[G] 18 a flat k~-module). This is the reason
why we shall restrict ourselves later on to such groups. We also
discuss one special property of representations of group schemes:
They are locally finite (2.13). Furthermore we describe
representations of diagonalizable group schemes (2.11) and mention
results about modules for trigonalizable and unipotent groups over
fields (in 2.14). Here we refer to [DG] for the proofs (which
require the notion of factor groups). Otherwise all proofs are

rather elementary.



2.1 (Definitions) A k~group functor is a functor from the

category of all k-algebras to the category of groups. We can
regard any k-group functor also as a k-functor by composing it
with the forgetful functor from'{q:oupslwto {sets}. 1In this way
we can and shall apply all ideas and notions from:section 1 also
to k-group functors. For two gfoupifunctoxs~'G;H we shall
denote by Mor(G,H) the set of all morphisms (= natural trans-
formations) from G to H considered as k-functors, and by
Hom(G,H) the set of all morphisms from G to H considered as
k-group functors. So Hom(G,H) consigts of those £ € Mor(G,H)

with f(A) a group homomorphism for’eachlk—algebra A. These

elements are called homomorphisms from G ‘to H.

A k-group scheme is a k-group“functor which is an affine

scheme over k when considered as a k-functor. (Of‘course, we
really ought to call such an object an affine k-group scheme and
drop the word "affine" in the definition of a k-group scheme.

But we shall consider only affine group schemes and then it is more

economical to call them group schemes.) An algebraic k-group

is a k-group scheme which is algebraic as an affine scheme. A
k-group scheme is called reduced if it is so as an affine scheme.
Over an algebraically closed field the category of algebraic
groups as in [Hu] or [Sp] can be identified with the subcategory

of all reduced algebraic k-groups.

Let G be a k-group functor. A subgroup functor of G 1is

a subfunctor H of G such that each H(A) 4is a subgroup of

G(A). The intersection of subgroup functors is again a subgroup



functor. The inverse image of a subgroup functor under a homomor-
phism is again one.. A direct product of k-group functor is again
a k-group functor, so is a fibre product if the morphisms used in

its definition. are homomorphisms of k~group functors.

A subgroup functor H of G is called normal (resp. central)
if each H(A) 1is a normal (resp. central) subgroup of G(a).
Again, normality is preserved under taking intersections and inverse
images under homomorphisms. The kernel ker ¢ of a homomorphism

¢: G+ G' is always a normal subgroup scheme.

A closed subgroup scheme of a k~-group scheme G 1is a subgroup

functor H which is closed if considered as a subfunctor of the
affine scheme G over k. If G and H are algebraic k-groups

we simply call H a closed subgroup of G.

A k~group functor G is called commutative, if all G(A)

are commutative.

2.2 (Examples) The notations introduced here for special

group functors G and their algebras k[G] will be used always.

The additive group over k 1is the k-group functor Ga with

G,(A) = (A,+) for all k-algebras A. It is an algebraic k-group
with k[Ga] isomorphic to (and usually identified with) the

polynomial ring k(T] 4in one variable.

Any k-module M defines a k—-group functor Ma with
Ma(A) = (M@ A,+) for all A. (So we have Ga -~ ka). If M |is
finitely generated and projective as a k-module, then Ma is an

algebraic k-group with k[Ma] = S(M", the symmetric algebra over



the dual k-module M . 1In case M = k™ for some n EEhJ we may
identify M_ with G, *G,*...*G, (n factors) and k[Ma] with

the polynomial ring k[Tl,Tz,...,Tn].

The multiplicative group over k 1is the k~group functor Gm

with Gm(A) = A = {units of A} for all A. It is an algebraic
1

k-group with k[G ] = k[T, T

Any k-module M defines a k~group functor GL(M) with

GL(M) (A) = (EndA(M GA))X called the general linear group of M.

In case M = k" we may identify GL(M) with GLn where GLn(A)
is the group of all invertible (nxn)-matrices over A. Obviously
GL is an algebraic k-group with k{GLn] isomorphic to the
localization of the polynomial ring k[Tij,li;,jip] with respect
to {(det)”|n € N}. More generally, if M is a finitely
generated and projective k-module, then the k-functor

Ars EndA(M ® A) can be identified with the affine scheme M @
from above and GL(M) with thé open subfunctor D{(det). For
such M (projective of finite rank) the determinant defines a
homomorphism of algebraic k-groups GL(M) -+ Gm' Its kernel is

denoted by SL(M) and called the special linear group of M.

It is an algebraic k-group. Similarly we define San;GLn. Note
that GL1 = Gm and SLn = 1 = the group functor associating to

each A the trivial group {1}.

For each n ef\] 1let T, be the algebraic k-group such
that Tn(A) is the group of all invertible upper-triahgular

(nxn)-matrices of A, i.e. of all upper-triangular matrices

M)
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such that all diagonal entries belong to AY. oOne may identify

- . ~1 .
klr ] = k[Tijl1:;533p,Tiil15;391. Furthermore lét U be the
algebraic k~group such that each Un(A) consists of all g € Tn(A)
having all diagonal entries equal to 1. We may identify k[Un]

= k[Tij|15;<jip].

For any n eshJ we denote by ¥(n) the group functor with
u(n)(A) = {a € A[an =1} for all A. It is an algebraic k~-functor

with k{u(n)} = k[T]/(Tn-l) and a closed subgroup of G-

Let p be a prime number and assume pl = 0 in k. Then we
can define for each r ebJ a closed subgroup Ga r of G,
r ) 4
through G (A) = {a € A!ap = 0}.
a,r

2.3 ({Group Schemes and Hopf Algebras) Let G be a k~-group

functor. The group structures on the G(A) define morphisms of

k-functors m: GxG + G (such that each mG(A): G(A) xG(A)

G(A) is the multiplication), and 1.: Spyk + G (such that 1G(A)

maps the unique element of (Spkk)(A) to the 1 of G(A)), and

1G: G + G (inducing on each G(A) the map g » g*l).

Now assume G to be a k—-group scheme. Then these morphisms
correspond uniquely to their comorphisms Ag = mé: KKG] +kGl®

k[G] (called comultiplication), and = 1%: kx[G] » k (called

e G
counit or augmentation), and og = ig: k[{G] » k[G] (called
X
coinverse or antipode). So, if AG(f) = 7 fi@fi for some
i=1
xr
- ]
f € k[G], then f(9192) iilfi(gl)fi(gz) for each g,,9, € G(a)

and any A. Furthermore we have ¢, (f) = £(1) and o,(f)(g) =

f(g-l) for any g € G(A) and any A.



We shall drop in our notations the index G, whenever no

confusion is possible.

As in the case of algebraic groups (cf. [Bo]l, 1.5 or [Hul,
7.6 or [Spl, 2.1.2) the group axioms imply that A,e,0 satisfy

(1) (1d® A)or = (A® 1id)e,

{

(2) (¢ & id)ea= 1d = (id@¢c)e 4,

L]

(3) (c @1id)ear = ¢ = (id §o)eA.

(Here we denote by ¢®y the map a®a't g(a)y(a') in contrast
to ypev: a®@a''— ¢la)®@y(a’') and by ¢ the endomorphism
a— e(a)l of k[G].)

A morphism ¢: G + G' between two k-group schemes is a
homomorphism if and only if its comorphism w*= k[G'] + k[G]

satisfies

(4) 500" = (¢"@0™M0ny,.

If so, then one has automaﬁically
(5) eGow* = €qt

and

(6) GGow* = ¢*00G|~

A Hopf algebra over k 1is an associative (not necessarily
commutative) algebra R over k together with homombrpﬁisms of
algebras A: R+ R@R, ¢: R+ k, and o: R+ R satisfying (1)-(3).
A homomorphism between two Hopf algebras is a homomorphism of

algebras satisfying additionally (4)~(6) (with the appropriate



changes in the notation.) We call R commutative, if it is so

as an algebra, and cocommutative, 1f se¢A = A, where s: R®R -+

R® R is the map a@®@b++r b®a.

Let R be a commutative Hopf algebra over k. Then we can
define?:ach (Ska) (A) = Homk(R,A) a multiplication via «af =
(a@B)oa. In this way we get on Sp, R a structure as a k~-group
scheme. It is elementary to see that we get in this way a functor
{commutative Hopf algebras over k} » { k-group schemes} which

is quasi-inverse to Ge+ k[{G]. Thus these categories are anti-

equivalent.
Note that G is commutative,if and only if k[G] 1is cocommutative.

2.4 (Continuation) Let us look at the Hopf algebra structures

on k[G] on our examples in 2.2. 1In the case of Ga one has

A(T) = 1@T + T®1,¢(T) = 0, and o{(T) = -T. Similar formulas
hold for the G . In the case of G one has A(T) = T@ T,
a,r m n
= ) § -
e(T) =1, and o(T) =T ~. 1In GLn one has A(Tij) milTimQ

ij and e(Tij) = 61j (the Kronecker delta). The formula

for o(Tij) is more complicated. Furthermore one has A(det) =

det®det, c(det)= 1, and o(det) = det I.

Let G be a k-group scheme and set I, = ker ¢, the

1
augmentation ideal in k{G]. One has k{[{G] = kl & Il and

ar+ al,k + k1 1is bijective. This implies k[G]@& k([G] = k(1®1)

® (kOII) ® (I,®@k) @ (I1,®1,). The formula 2.3(2) implies

(1) A(f) € f@l + Lof + I,® I, for all f €I,



and then the formula 2.3(3) implies

(2) o(f) € -f+1f for all £ €1,.

Set
(3) X(G) = Hom(G,Gm).
This is a commutative group in a natural way. The embedding of
affine schemes GmC:Ga =/\1 yields an embedding

X(G) € Mor (G,G ) ©Mor(G,G,) = k[G]

which is compatible with the multiplication. Take f € k[G].
One has f*(T) = f, Therefore 2.3(4) implies easily
(4) X(G) * {f € k[G]|£(1) = 1,A,(f) = f@®f}.

Of course A (f) = f@f implies f£(1)% = £(1). If £(1) = O,
then f(g) = £(g.-1) = £(g)£f(1) = 0 for all g € G(A) and all A,

hence

(4') If k 4is an inteqral domain, then X(G) = (f € k[G]bG(f) =
ft®f,f £ 0}.

Let me refer to [DG], II, §1, 2.9 for the proof of

(5) If k is a field, then X(G) is linearly independent.

(This is just another variation on the theme "linear independence

of characters".) Usually we shall write the group law in X(G)

additively.

et I be an ideal in k([G]. Using 1.4(6),(7) one checks



easily that V(I) is a subgroup functor if and only if
(6) s(Inyci@klGcl+ kiGgl®aI, (1) = 0, o(I)cCI.

If s0, it will be a normal subgroup if and only if

(1 <Mmexlel® I,

where c% 1is the comorphism of the conjugation mép c: GxG + G
-1

with c(A)(gl,gz) = g,9,9, for all A and 9,195 € G(A). One

may check that

(8) c*=te(a®id)en
where t(flaf2®f3) = flc(f3)9f2.

2.5 (Diagonalizable Groups) Let A be a commutative group

(written multiplicatively) and let us identify A with the
canonical basis of the group algebra k[A]. We make k[A] into
a commutative and cocomutative , Hopf algebra via A()) = A ® A

and e(A) =1 and o(3) = A~ 1

for all A € A. In this way we
associate to A a k-group scheme which we denote by Diag(a).

If A 1is finitely generated, then Diag(A) 1is an algebraic k-group.

We call a k-group scheme diagonalizable, if it is isomorphic

to Diag(A) for some commutative group A. For example

G = Diag(Z) and - Diag(Z/ (n)) are diagonalizable. We

m H(n)
get also direct products of these groups as Diag(Alez) =

Diag(Al)iDiag(Az) for all commutative groups Al’Az‘

Any dgroup homomorphism a: A, + A

1 2 induces a homomorphism of



group algebras a*: k[AI] + k[A2] which is a homomorphism of
Hopf algebras, hence we get a homomorphism Diag{(a): piag(Al) -+
Diag(Az) of k—-group schemes. Thus Aw Diag(A) is a functor
from {commutative groups} to {k~group schemes} which maps

{finitely generated commutative groups} into {algebraic k-groups}.

Suppose that k is an integral domain. Then an easy compu-

tation shows (cf. [DG], II, §1, 2.11) for all A,A"

(1) X(Diag(A)) = A (k integral)
and
(2) Homgp(A,A')J!_;Hom(Diag(A'),Diag(A)) ({k integral)

Thus in this case Diag(?) 1s an énti—equivalence of categories
from {commutative groups} to {diagonalizable k-group schemes}.
Furthermore A is finitely generated if and only if Diag(A) is
an algebraic k~-group. We get from (1) that a k-group scheme G
is diagonalizable if and only if X(G) is a basis of k[G]

(for k integral).

2.6 (Operations) Let G be a k-group functor. A left
operation of G on a k-functor X 1is a morphism o: GxX » X
such that for each k-algebra A the map a(A): G(A)xX(A) » X(A)
is a (left) operation of the group G(A) on the set X(A). We
usually writé gx instead of a(A)(g,x) for g € G(A) and

X € X(A). We can similarly define right operations.

For example the conjugation map ¢ in 2.4 is an operation
of G on itself. Other operations of G on itself are by

left (a(A)(g,g') = gg') and right (a(A)(g,g') = g'g‘%



multiplication.

Let k' be a k-algebra. Then any operation of G on a

k-functor X defines in a natural way an operation of Gk' on xk,.
For any operation a as above we set
(1) x%(k) = {x € x(k)|gx = x for all g € G(A) and all A}.

(This is done by some abuse of notation. The x in gx = x 1is
really the image of x under the map X(k) »+ X(A) corresponding
to the structural morphism k + A. We shall stick to this abuse.)

We can define a subfunctor XG of X, the fixed point functor

via

G
2y x%;) = (x) ®

2 A

i

{x €e%A)] gx = x for all g € G(A') and all A-

algebras A'}

G

See [DG], II, §1, n° 3 for elementary properties of X~ and of
YP

normalizers and centralizers, also defined there.

Suppose G acts on another k-group functor H such that
each G(A) acts on H(A) through group automorphisms. Then we

can define the semi-direct product GuH where each (GwH) (A)

is the usual semi-direct product G(A)X H(A). As a k~functor

GKH 1s of course the direct product of G and H.

Let H,N be subgroup functors of G such that H normalizes
N, 4i.e. that each H(A) normalizes N(A). We can then construct

HXN as above and get a homomorphism ¢: HXN + G via ( h,n)+r



hn for all h € H(A), n € N(A) and all A. 1Its kernel is
isomorphic to H N N under h~ (h,h™!) for all h € H(A) N N(a)
and all A. If ¢ 1is an isomorphism, then we say that G is the
semi-direct product of H and N and write G = HKN. (If G

is a k-group scheme and G = HKN, then necessarily H and N

are closed subgroup schemes.)

2.7 (Representations) Let G be a k-group factor and M a

k-module. A representation of G on M (or: a G-module structure

on M)} is an operation of G on the k~functor Ma (as in 2.2)
such that each G(A) operates on Ma(A) = M&® A through A-linear
maps. Such a representation gives for each A a group homomor-
phism G(A) - EndA(MeA)x, leading to a homomorphism G -+ GL(M)
of group functors. Vice versa, any such homomorphism defines a
representation of G on M. There is an obvious notion of a
G-module homomorphism (or G-equivariant map) between two G-modules
M and M'. The k-module of all such homomorphisms is denoted

by HomG(M,M').

The representations of G on the k-module k, for example,
correspond bijectively to the group homomorphisms from G to
c;L-1 = G,

we denote k considered as a G-module via X by kl. In case

i.e. to the elements of X(G). For each X € X(G)

A =1 we simply write K.

Given one or several G-modules we can construct in a natural
way other G-modules. For example

(1) Any direct sum of G-modules is a G-module in a natural way.




(2) The tensor product of two G-modules is a G-module in a

natural way.

{(3) Any symmetric and exterior power of a G-module is a G-module

in a natural way.

In (3) for example we consider for each commutative ring R
the functor F_ from R-modules to itself with F (M) = S M.
We have for each R-algebra R' canonical isomorphisms FR{M)QbRR'
= FR, (MGRR') for all R-module M, i.e. the functors M
FRM® R' and M Fo,(M@pR') are isomorphic. If M is a
G-module, then G operates on the functor Arr FA(MQDA), each
g € G(A) via FA(g). By our assumption this functor is isomorphic
to F (M) , hence we get a G-module structure on F (M). The
functor M++ A"M has the same property, hence we can argue as

above. Our reasoning can easily be extended to functors in

several variables and then yields (1),(2).

If we deal with contravariant functors (F.), in our

Fplr

situation above, we ocught to let g € G(A) act via E‘A(gm1

).
This applies to the functor M M* which will however "commute
with ring extensions" only when restricted to finitely generated

and projective modules. Thus we get

(4) Let M be a G-module which is finitely generated and

projective over k. Then M* is a G-module in a natural way.

For M as in (4) one has canonically M*qg M' = Hom(M,M')

for any k-module M'. So we get combining (2) and (4)

(5) Let M,M' be G~modules with M _finitely generated and




and projective over k. Then Hom(M,M') is a G-module in a

natural way.

The following result is obvious from the definitions:

(6) Let k' be a k-algebra and M a G-module. Then M® k' |is

a Gy ,-module in a natural way.

Another way, how representations arise, is from an operation
of G on an affine scheme X. Then we get a G-module structure
on k(X]: If g € G(A) and f € k(X]® A = A[x,] for some
k-algebra A, then gf € A[xA] is defined through (gf)(x) =
f(g-lx) resp. = f(xg) (for a left resp. right operafion) for
all x € X(A') = XA(A‘) 'and all A-algebras A'. (Again, the
g in g-lx or xg 1s really the image of g wunder G(A) +
G(A')...).

In case G 1is a k~-group scheme we get thus the left and right

reqular representations of G on k[G] derived from the action

of G on itself by left and right multiplications. We shall
always denote the corresponding homomorphisms G -+ GL(k[G]) by

and LI - The coinverse o is an isomorphism of G-modules

Pe G
from k[G] with Py to k[G] with Pye Furthermore the conjugation

action of G on itself gives rise to the conjugation representation

of G on k[G].

2.8 (The Comodule Map) Let G be a k-group scheme. If M

is a G-module then idk[G] € G(k[G]) = Endk-alg(k[G]) acts on

M®k[G], 8o we get a k-linear map By M - M@k([G] with AM(m) =

idk[c;](mﬁl) for all m € M. We call AM the comodule map of the



G-module M. It determines the representation of G on M

completely: For any k-algebra A and any g € G(A) = Homk-alg

we have a commutative diagram

G(klc]))x(M® k[G]) 3 M®k[G]
G(g) x (idM@ g) idMQg
G(A)x(M® A) » M A

by the functorial property of an operation. As G(g)y = gop for

]

any ¢ € G(k[G]), we have g = G(g)idk[G], hence g(mel)

(iduﬁg)m&m(m) for all m € M. More explicitly, if AM(m)

r

i m e fi' then

i=1

r
(1) g(m®1l) = I misfi(g).
i=1

The fact that each G(A) operates on M®&A (i.e. g(g'm) =
(gg')m and 1m = m) yields easily the following formulas:
(2) (Aueidk [G])'AM = (idMGAG)o L
and
(3) (idMQ EG)OAM = idM.
If M' is another G-module and if ¢: M+ M' is a linear map,
then ¢ 1is a homomorphism of G-modules if and only if

(4) Au,ocp = (e® idk[G])'AM.

A comodule over the Hopf algebra k([G] is a k-module M

(klgl,a)



together with a linear map A,: M + M® k[G] such that (2),(3)

M
are satisfied. A homomorphism between two comodules is a linear
map satisfying (4). So we have defined a faithful functor from
{G-modules} to {k[Gl]-comodules}. On the other hand, any k[G]-
comodule gives rise to a G-module: Just take (1) as a definition.

In this way we can see that the two categories of G-modules and of

k[G]~comodules are equivalent.

Let a: XxG + X be an action of G on an affine scheme X
over k. Then k[X] 1is a G-module in a natural way (see 2.7) and

the comodule map A :k[X] » k[X]® k[G] 1is easily checked to be

kix]
the comorphism a*. If we take X = G and the action by right

multiplication, we get thus

(We write Ap and also Ap below instead of in order

A
r L k[6]

to indicate which representation is considered.) For the left
reqular action one gets

(6) Apz = s°(°G®idk[G])°AG

with s(f®f') = £'®f for all £,f', PFor the conjugation

representation on k[G] the comodule map is equal to

(7) t'O(idk[G]QAG)oAG

t —
where t (f1®f2®f3) = fZQcG(fl)f3

Remark: Suppose for the moment that k is an algebraically

closed field and that G 1is a reduced algebraic k-group. There is



a natural notion of representations of G(k) as an algebraic
group (or of a rational G(k)-module), cf. [Hul, p. 60. One can
show as above that the category of G(k)-modules is equivalent to
the category of comodules over k{G(k)] = k[G], hence to that of
G-modules. (To a G-module M we associate the operation of G(k)
on M given by the definition of a G-module.) Similarly one can
show that the notions of G-submodules (to be defined in 2.9) and of
G(k)-submodules coincide, using 2.9(1), and that M°) = M® (to
be defined in 2.10), using 2.10(2). Furthermore, one has
HomG(M,M') = Homc(k)(M,M') for any two G-modules M,M' (using
(4) above).

2.9 (Submodules) ILet G be a k-group functor. If k is a
field, we can define a submodule of a G~module M as a subspace
Nc<M such that N®A is a G(A)-stable submodule of M®A for
each k—-algebra A. Then N itself is a G-module in a natural way.
For arbitrary k this works out well as long as the natural map
N®A ~ M®A 1is injective for each A, e.g. if N is a direct
summand of M. Taking only such "pure" submodules (as in [DG],

II, 1.3/4) will be too restrictive and not allow kernels and

images of all homomorphisms.

S0 let us define a submodule of a G-module M to be a
k~submodule N of M which has 1itself a G-module structure such
that the inclusion of N into M 1is a homomorphism of G-modules.
If so, then M/N has a natural structure as G-module: We have for
each A an exact sequence of G(A)-modules N@®A +» M®A -+ (M/N)@®A

—+ 0. We call M/N the factor module of M by N. It has the




usual property of a factor module.

Still, our definition of a submodule has one disadvantage.
A given k-submodule N of M may conceivably carry more than one
structure as a G-module. In order to prevent this we shall prefer

to make special assumptions on our group and not on the modules.

An affine scheme X over k 1s called flat if k([X] is
a flat k-module. A k-group scheme is called flat, if it is so as

an affine scheme. This pfoperty i1s obviously preserved under base
change.

Asgsume now that G 1is a flat' k~-group scheme. If N is a
submodule of a G-module M, then N®k[G] is a G(k[G])-stable
submodule of M@®k[G] (by our assumption of flatness). Then we

get obviously

(1) AM(N)C—NG k[G]

and

() ay = ()

The second equality implies together with 2.8 that the G-module
structure on N 1is unique. On the other hand, if N 1is a
k-submodule of M satisfying (1), then (2) defines a G-module

structure on N and N is a G-submodule of M. So the G-submodules

of M are exactly the k-submodules N satisfying (1).

Using 2.8(4) one checks now easily:

(3) Let G be a flat k~group scheme. For each homomorphism

¢: M > M' of G-modules its kernel ker(y) and its image im(y)
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are G-submodules of M resp. M'.

We get from this that the G-modules
form an abelian category (for G flat). Under the same

assumption intersections and sums of submodules are again submodules.

Note that inductive limits exist in the category of G-modules

(for G-flat): Just take the inductive limit as k-modules: This is a
factor module of the direct sum (which is 0.K. by 2.7(1)) where we

divide by a sum of images of homomorphisms.

2.10 (Fixed Points) Let G be a k-group scheme and M a

G-module. Set

(1) M% = (m € M|gme@1) = m@1 for all g € G(A) and all A},

This is a k-submodule of M and its elements are called the fixed

points of G on M. We call M a trivial G-module, if M = M,
In the notations of 2.6 one has MG = (Ma)G(k). If we take

g = idk[G] € G(k[G]) 4in (1), then we get

(2) M% = (m € M[ay(m) = m @ 1).

This description of MG as kernel of AM—idMG 1 yields

(3) Let k' be a k-algebra which is flat as a k-module. Then

(M.&k')Gk' -MCe k'

In case k 1is a field, this implies of course (Ma)G = (MG)a.

(see [DG], II, §2, 1.6 for a generalization to k—group functors.)

If ¢: M+ M' 1is a homomorphism of G-modules, then obviously

w(MG)CZ(M')G. In this way M + MG is a functor from {(G-modules}

to {k-modules} which we call fixed point functor (relative to G).




It is certainly additive. We get from (2):

(4) If G is flat, then the fixed point functor is left exact.

Furthermore, it commutes with taking direct sums, intersections
of submodules, and direct limits (but in general not with arbitrary
inductive limits).

If we consider k[G] as a G-module via the left or right

regular representation, then the definition immediately yields:

(5) x[61® = x1 (for and ).

P r

Let M' be another G-module and suppose that M is finitely

generated and projective over k. We can then regard Hom(M,M')

as a G-module and get easily
[} G - ]
(6) Hom(M,M') ™ = HomG(M,M ).

Therefore (3) implies

(7) Let k' be a flat k-algebra and let M be finitely generated

and proijective as a k-module. Then the canonical map

Hom .(M,M') ® k' + Hom (M®k' M'® k')
G Gk‘

is an isomorphism for all G-modules M'.

This generalizes to the case where M is a direct limit of
such modules, hence to all M when k is a field, and to all flat

M when k 1is a Dedekind ring.



We can generalize (1)-(4) as follows. For each X € X(G) set

(1) M, = {m € Mlg(m®1)| = m® A(g) for all g € G(A) and all al.
Then:
(2') M, = {mE€ MIAM(m) =m ® 1i}.

(3') For k' as in (3) we have (M @ kﬂlg 1

= Mlﬁblc'.

(4') If G is flat, then the functor M+ M, is left exact.

Furthermore, we have

(8) If k is a field, then the sum of all M, is direct.

(Xf iaxmk = 0, where a, € k,mx € MA, then O = AM(i akml)
= % akmx® A . Now apply 2.4(5).)

X

2.11 (Representations of Diagonalizable Group Schemes) Let

A be a commutative group and take G = Diag(A) as in 2.5. As
k[{G] 1is a free k-module with basis A we can write the comodule
map AM for any G-module M as

(1) A(m) = & p.(m)@ A
¥ rer A

for suitable P, € End(M). Using the description of in

. bgieg

2.5 and the formulas 2.8(2),(3) one checks easily (cf. [DG], II,

§2, 2.5) that < p, =4id, and p.p,, = 0 for 2 # 1' and
ren. A M A5

pi =P, for all A. This implies that M is the direct sum of

all 'pl(M), that

(2) p,(M) = {mE€ Mlau(m) =m® A} = M,



using 2.10(6)) and

(3) M= @ MA’
A€EA

It follows easily that for all G-modules M,M'

(4) Hom (M,M') = 1 Hom(M,,M])

AEA A

and that the functor M+ MA ig exact for all .
If we consider for example k[G] und Py then we get
(5) k[G], = ki for all 1 € A.

Let (e(1)) be the canonical basis of the group ring

AEA
Zir) over Z. so e(y)e(r') = e(r+)r'), if we agree to write A

additively. If M is a G-module such that each M is a finitely

A
generated projective k-module, then we define its formal character

(6) ch M= I rk(M)e(a).
AEA

For an exact sequence O + M' + M + M" + 0O of G-modules of this

type one has
(7) ch M =ch M' + ch M",

For two G-modules M,,M, of this type, also Mlouz has this

17772

property and one has

(8) ch(MI@Mz) = (ch Ml)(ch Mz).

One uses for (8) that for any M and all i,\' €A

1M



(One can generalize (6) to the case where the M, are only assumed
to be finitely generated over k and where we replace Z by the
Grothendieck group of these k-modules.)

If k' is a k~algebra, then one has obviously for all i:
(10) (l‘ik.)x = (Mx)o k',

If ch(M) is defined, then so is ch(Mk.) and it is equal to
ch(M).

2.12 (Centralizers and Stabilizers) let G be a k-group

scheme and M a G~-module.

For any subset ScM we define its centralizer ZG(S) as the

subgroup functor of G with
(1) 2,(s)(A) = {g € G(A)|g(me@1l) = m@l for all m € S}.

Obviously ZG(S) depends only on the k-module generated by S.

It is equal to the intersection of all ZG(m) with m € S.

For any k-submodule N M we define its stabilizer Stab,(N)

in G as the subgroup functor of G with
(2) StabG(N) (A) = {g € G(A)|g(n® 1) ¢ N@¢A for all n € N}.
Here N®@A 1is the canonical image of N®A in M®&®A.

For two k-submodules N'CN of M we define another subgroup

functor G

N'.N of G through
14

(3) GN',N(A) = {g € G(A)|g(n®1l) - nol e N'@A for all n € N}.



Obviously GO,N

= ZG(N) and GN,N; = StabG(N).

Suppose that N' and M are free k-modules and that N' is

a direct summand. Choose a basis of M containing a

(&) jer
basis (ej)jEJ for some J< I of N'. For any n € N there are

ai(n) €k and f € k[G] (almost all O in both cases) with

i,n
n= g ai(n)ei and A, (n) = & e,®f

M Then g(n®&1l) -~ n®1l =
iex ' 1ex

i i,n’

iéx(fi’n(g)-—ai(n))ei. Then GN',N is the closed subgroup scheme

defined by the ideal generated by all £,
. r

I aj(n)l with j €J

for all possible n. We get:

(4) If M is a free k-module, then each ZG(S) is a closed

subgroup scheme of G.

(5) If M and N are free k-modules and if N is a direct

summand of M, then StabG(N) is a closed subgroup scheme of G.

(6) If M and N' are free k-modules and if N' 1is a direct

———

summand of M, then GN' N is a closed subgroup scheme of G,
14

The assumptions on M and N,N' are always satisfied over
a field. 1In general one can replace "free" by "projective of

finite rank", see [DG], II, §2, 1.4.

2.13 (Local Finiteness) Let G be a flat k-group scheme

e

and M a G-module.

We know that any intersection of G-submodules of M is again
a G-submodule. So for each subset S of M there is a smallest

G-submodule of M containing S. It is called the G-submodule



generated by S and usually denoted by kGS. (Note that in
general kGS # kG(k)S, the k~G(k)-submodule of M generated
by S8.)

r
Now take m € M and write AM(m) = I mi@f. with mi €M
i=1 *

and fi € k[(G]. We claim

r
(1) kGm < z:kmi.
i=1
r r
Let us write M' = ¥ km,. As lm=m we have m= I f (m)m, € M.
j=1 1 im 101

The same argument proves N« M' where we set N = {mle M|

8y(m) € M@ k(G]}. Obviously m € N. So it will be enough to
show that N 1is a G-submodule of M, i.e. that | ay(N)= N@ k[G].
By definition N = A:Sl(uak{G]). Using the flatness of k[G] we
get N®k[G] = (AMaidk[G])“l(M'g,k[G]a k(G]). Therefore it is

enough to show (AM&idk{G])AM(N)C.M' ®@k[G]® k[G]. By 2.8(2)

the left hand side is equal to (idMeAG)AM(N)C— (idM® bs)
(M@ k[cl)= M'® kl[c] & k[G].

As kGm is a G-submodule we have AM(m) € (kGm)® k(G]. We

therefore may choose the m
r

L kmi. This shows:

i=1

{ above all in kGm. Then kGm =

(2) Each kGm with m € M is a finitely generated k-module

and:

(3). Each finitely generated k-submodule in M is contained in a

G-submodule of M which is finitely generated over k.

This property is usually expressed as "any G-module is locally



finite".

In the case of a field one can show:

r
(4) If k is a field and if AM(m) = iilmie>fi with (fi)liigr
r
linearly independent, then kGm = I km,
i=1

(We may assume that also the mj are linearly independent.

§
If (mj)ifjgg is a basis of kGm then there are aji € k with
r

m{ = I a,,my for all j (by (1)) and there are f£f! € k[G]
3 i=1 ji 3 .
8 - r r s c
with A (m) = Imi@fl= :m® (I a,,f!) hence f, = ¢ a.,f!l
M j=1 3= 3 4=y 1 1=y 47377 1 42, 343

for all i. Hence r = s and the claim.)

2.14 (Simple Modules) In this subsection we assume that k

is a field. Let G be a k~group scheme.

As usual a G-module M 1is called simple (and the corresponding

representation is called irreducible) if M # O and if M has no

G-submodules other than O and M. It is called semi-simple if it

is a direct sum of simple G-submodules. For any M the sum of

all its simple submodules is called the socle of M and denoted
if
by socM (or simple by soc M, /it is clear which G is

considered). It is the largest semi-simple G-submodule of M.
For a given simple G-module E the sum of all simple G-submodules

of M isomorphic to E 1is called the E-isotypic component of

socGM (or the isotypic component of type E) and denoted by
(socGM)E.

By 2.13(3) each element in a G-module is contained in a



finite dimensional submodule. This implies:

{1} Each simple G-module is finite dimensional.

(2) ;; M is a G-module with M # O, then s0C M # O.

For any G-module M and any simple G-module E the map

¢® e+ gple) 1is an isomorphism
(3) HomG(E,M)e DE -+ (ssocGM)E where D = EndG(E) .

(Of course the algebra D over k 1is finite dimensional and a
skew field by Schur’s lemma. If k is algebréically closed,
then D = k.)

Each one-dimensional representation is irreducible. The

isotypic component of soc,
We get especially MG = (socGM)k.

M of type k, 1is just M,.

The discussion in 2.11 shows:

(4) If G 1is a diagonalizable k-group scheme, then each G-module

is semi-simple.

The socle series or (ascending) Loewy series of M

o< soclM = socGM < soczn < socBMC +es« 1is defined iteratively

through soc(M/soci_ln) = sociM/soci_lu. Again because of
2.13(3) one has

(5) U socin = M.
i>0

Any finite dimensional G-module M has a composition series

(or Jordan~HBlder series). The number of factors isomorphic to a



given simple G-module E is independent of the choice of the

series. It is called the multiplicity of E as composition

factor of M and usually denoted by [M:E] or [M:Elg.

If G 1is an algebraic k-group, then it is called trigonalizable

(resp. unipotent), if it is isomorphic to a closed subgroup of
T, (resp. Un) for some n € N (cf. 2.2). oOne can show ([DGI],
Iv, §2, 2.5 and 3.4): |

(6) G trigonalizable¢===; Each simple G-module has dimension one.

(7) G unigotent¢==;»Up to isomorphism k is the only simple

G-module.

If we assume G be to an arbitrary k-group scheme, then we may
take these results as definitions. For unipotent G we deduce

soc. M = M® for each G-module. We get using (2):

(8) G unipotenté=) For each G-module M # O we have MC # 0.

Any decomposition of M into a direct sum of two submodules
leads to the corresponding decomposition of soc M. If soc M

is simple, then M has to be indecomposable. Therefore (8)
and 2.10(10) imply

(9) If G is unipotent, then k[G] 1is indecomposable
(for Py and pr).




3. 1Induction and Injective Modules

In the representation theory of finite groups or of Lie groups
the process of inducing representations from a subgroup to the
whole group is an important technique. The same holds for algebraic
group schemes. So we start this section with the necessary
definitions (3.3), prove elementary properties (3.4-3.6) and
describe some easy special cases f3.7/8). All this is a more or
less straightforward generalization of what is done in the finite
group case or the Lie group case. We have however to assume that

the group G and its subgroup are flat.

We then use the induction functor to show that the category of
G-modules contains enough injective objects, i.e. that each G-module

can be embedded into an injective one (3.9).

In the case where our ground ring k is a field we can be
more precise. Then the injective G-modules are determined up to
isomorphism by their socle and any semi-simple G-module M occurs
as a socle of such an injective G-module, the injective hull of M.
The indecomposable injective G-modules are just the injective hulls
of the simple G-modules. We get especially a decomposition of K[G]
generalizing the decomposition of the regular representation of a
finite group into principal indecoﬁposable modules. (These results

are proved in 3.10~3.17.)

Let me mention as a source [Green 1] for the last part (3.12-
3.17). For the first part one may compare [Haboush 2], [Cline/

Parshall/Scott 3] or [Donkin 1]. (There is not much point in



attributing priorities for these generalizations.)

We assume from 3.2 on that G is a flat k-group scheme and

from 3.10 on that k 1is a field.

3.1 (Restriction) Let G be a k-group functor and H a

subgroup functor of G. Each G-module M is an H-module in a
natural way: Restrict the action of G(A} for each k—~algebra A

to H(A). We get in this way a functor

resg: {G-modules}——> {H-modules}

which is obviously exact. It commutes with the elementary

operations on G-modules described in 2.7(1)-(4).

If G and H are group schemes, then we get the comodule map
G
for resyM from 4, as (id,ey)ed, where vy: k[G] » k[B] is
the restriction of functions.

3.2 Lemma: Let H,H' be subgroup schemes of a k-group

functor G such that H' normalizes H and is flat. Let M be

a G-module. Then M' is an H'-submodule of M.

Proof: It is easy to check that the comodule map 4,:M +
M® k[H] of M considered as an H-module is a homomorphism of
H'-modules, if we regard k[H] as an H'-module under the conjugation
action. The same holds for the map m+ AM(m) - m®1l. Therefore

its kernel MH is an H'-submodule.

3.3 (Induction) Let H be a subgroup scheme of G. For

each H-module M there is a natural (GxH)-module structure on



M@k[G]: Let G .operate trivially on M and via the left regular
representation on k([G], 1let H operate as given on H and via
the right regqular representations on k(G], and then take tensor
products. Now (M®k[G1)® 1is a G-submodule of Me@kI[G! by

lemma 3.2. We denote this G-module by indgn and call it the

induced module of M from H to G. Obviously

indg : {H-modules}-—> {G-modules}
is a functor.

Let us mention that we can interprete the operation of GxH

on M@Xk[G] in a different way. We have M®k[G]

it

Ma(k[G]) =

e

Mor(G,Ma) by 1.3 and more generally (M®k[Gl)@A (MBR) D,
(k[cl®A) = (M®A) ®,A[G,] = Mor, (G,, (MBA) ) ‘for each k-algebra
A. Any {(g,h) € G(A)xH(A) acts on some f E MorA(GA,(MGA)a)

through
(1) ((g,h)£) (x) = h(£(g" xh))

for all x € G(A') and all A-algebras A'. (Let me remind you
that there is some abuse of notation going on: We really ought to

write ((g,h)£)(A*) (x) = hA,f(A')(g;}th.) with g,, € G(A')

the image of g under the map G(A) +» G(A') defined by the

structural map A + A', similarly for h ) In this inter-

At”
pretation we have

(2)  indgM = {f € Mor (G,M,) |£(gh) = h™*f(g) for all

g € G(A),h € H(A) and all k-algebras A}



and the operation of G 1is by left translation (in a natural sense).

3.4 Proposition: Let H be a flat subgroup scheme of G.

a) The. functor indg igs left exact.

b) The functor indg commutes with forming direct sums, inter-

sections of submodules, and direct limits.

Proof: a) As we assume G to be flat, the functor M+ M®k[G]
is exact. Therefore the claim follows from 2.10(4).
b) All these constructions commute with tensoring with a flat

k-module and with the fixed point functor (cf. 2.10).

Remark: If the fixed point functor ?H is exact, then
obviously also indg is exact. So indg' is certainly exact

whenever H is diagonalizable (by 2.11).

3.5 For any k-module M let ey M® k{G] - M be the

linear map = idM§ Eqe If we take the identification M ® k[G]=

€
M
Mor(G,Ma) we have eM(f) = £(1). Wé shall use the notation €M

also for the restrictions of €M to various submodules of

M@ k[G].

Proposition (Frobenius Reciprocity): Let H be a flat

subgroup scheme of G and M an H-module.

a) €yt in_dgﬁ + M is a homomorphism of H-modules.

b) For each G-module N the map o+ €09 1s an isomorphism

M

HomG(N,indgM) + Homﬁ(resgN,M).



Proof: a) We have for all A, all h € H(A) and f € indgu:

-1 _
(ey®1d,) (hf) = (RE)(1) = £(h™)) = h(£(1)) = h(e (D)@ 1).

b} In order to define an inverse consider for each y € HomH(N,M)
and any x € N the morphism §(x) € Mor(G,Ma) with §(x)(g) =
(v id,) (gwl(x@ 1)) for all A and all g € G(A). Using the
description in 3.3(2) one checks easily that y¢(x) € indgm <
Mor(G,Ma). Another straightforward calculation shows § € Hom

G

(N,indgM) and that the maps g+ § and ¢ w+ ¢,,0¢ are inverse

M
to each other.

3.5 (Transitivity of Induction) The last result implies of

course (for G,H as above):

(1) The functor indg is right adjoint to resg.

This of course determines 'indg uniquely up to isomorphisms.
(One can also say that the pair (indSM,eM) is uniquely determined

up to isomorphism by 3.4.b.)

Let H' be another flat subgroup scheme of G with H < H'.

'
oresG = I'GSG

We have obviously rest H H*

H Therefore (1) yields:

]
(2) There is an isomorphism indg,oindg - indg of functors.

We can express this also in this way: Induction is transitive.

For any H-module M we can write down isomorphisms indgblz

]
indg.vindg M explicitly. To any f € indgM we assoclate
o
f € Mox(G,(ind M) ) with f(g)(h') = £(gh') for all g € G(A),
h’e H(A) and all A.



1 -
To any f € indg'. (indg M) we assoclate f € Mor(G,M_) with
a
f(g) = £(g)(1) for all g € G(A) and all A. The maps £w* ¥

and f~ f turn out to be inverse isomorphisms.
Observe that 2.10.(3) implies

(3) Let k' be a flat k-algebra. Then we have for each H-module

M a canonical isomorphism

G Gy
(inaSM)@ k' = ina [ (M@ K').
k|

——

3.6 Proposition (The Tensor Identity): Let H be a flat

subgroup scheme of G. For any G-module N and any H-jmodule N

there is a canconical isomorphism of G-modules

G G ~ G
indH(M@ resHN) + (indHM)a N.

Proof: Both sides may be embedded into Mor (G, (M& N)a) =

M@N® k[G] using 3.3(2), the left hand side as

L = {f: G» (M@N)_|f(gh) = (W l@n l)ye(g) for all g,h},
the right hand side as

R = (£

*8

G > (M@N)_|f(gh) = (A" '®1)£(g) for all g,h}.

Here "for all  g,h" means "for all g € G(A),h € H(A) and all A".
We define two endomorphisms a,8 of Mor(G, (Mo N)a) through
(af) (g) = (lag)f(g) and (8f)(g) = (1 mgpl)f(g) for all g.
Obviously they are isomorphisms and inverse to each other. A
straightforward calculation shows a(L)e R and B8(R)<.L and that

a,8 are G-equivariant for the two actions of G we consider.



(On L. we have gf = f(g-l?) and on R we have gf = (lc:g)f(gnl?).)

This implies the proposition.

Remark: We ought to express the proposition (the tensor
identity) as saying: The functors (M,N)++ indg(M& resgN) and
(M, N)p=r (indgn)g N from {H-modules}x{G-modules} to {G-modules}

are isomorphic.

3.7 (Trivial Examples) We can apply all this especially

to the subgroup schemes H = 1 and H = G. The first case yields
(1) indfM = M® k{G] for any k-module M

(where M 1s considered as a trivial G-module on the right hand

side), especially
G
(2) indlk = k[G].

{Here and below k[G] 1is considered as a G-module via 91')
‘Combining (2) with 3.5.b (Frobenius reciprocity) we get for any
G-module M

(3)  Hom,(M,k[G]) = gl

(This can also be shown directly using matrix coefficients, cf.
[DG], §2, 2.3.) Taking M = k in 3.6 we get for each G-module

N an isomorphism
(4) N&@k[G] > N, ®k[G]

where Ntr denotes the k~module N considered as a trivial

G-module. Going back into the proof and the definitions one checks



that this isomorphism is given by

x® fir (lsf)AN(x),.,

If we restrict this map to the G-submodule N®kl = N of N®k[G]

we see:

(5) Ayt N =+ Ntrﬂbk{G] is an injective homomorphism of G-modules.

(This can be checked directly, of course).

As reng = M for each G-module M we have by 3.5(1) also
(canonically)
(6) M 3 inalm for each G-module M.

This isomorphism M 3 (M®k[G])®cMek[c] is given by (id, B0 )es,.
(In other words, any m € M is mapped to the morphism G -» Ma

with g+ g '(me1l) for all g € G(A) and all A.)

3.8 (Induction and Semi-direct Products) Let G' be a flat

k-group scheme operating on G through automorphisms and let H be
a flat subgroup scheme of G stable under G'. We can then form
the semi~direct products HXG' and GXWG' and we can regard

HX¥ G' as a subgroup scheme of GXG'.

Let M be an (HXMG')-module, i.e. a k-module which is
simultaneously an H-module and a G!'-module so that these two
operations are compatible: g'(hm) = (g‘hg'_l)(g'm). Then G
acts naturally on Mor(G,M ) = k[G]® M via (g'f)(g) =

g'(f(g'—lgg')), i.e. through the tensor product of the conjugation



action with the given action on M. This defines a structure of
an (HX G')-module and also of a (GHG')-module where H,G
operate as usually in the construction of indgu. As G*
normalizes H, it operates also on indgM = Mor(G,Ma)H, cf.

3.2, Therefore we get on indgM a structure as a (GXG')-module.

We claim that we have an isomorphism of (GXG')-modules

G, ~ GGt
(1) ind M =+ ind ol i M-

. . . 1)
We simply associate to £ € indgMCMor(G,Ma) the map F € indg:g.M

< Mor(GMG',M)) with F(g,g') = g' 'F(g), and to any F the
map f with f£(g) = F(g,1). The claim follows now from elementary

calculations.
Taking H = 1 we get especially for any G'-module M:

G G!
G!

1

(2) ind M k[G}OM-"-Mor(G,Ma)

with G acting via on k[G] and trivially on M and with

p
L
G' acting via the conjugation action on k{G] and as given on M.

GHG'

We can also describe indG

N for any G-module N. There
is an isomorphism

(3) ing8>€'

3 [ = ¥
ds N -+ Mor(G 'Na) k{G']® N

L]
mapping any F € indng

N cMor(GX)G‘,Na) to f: G' -+ Na with
f(g') = F(1,9') and any f to F with F{(g,g') = g‘—lgg‘f(g').
This isomorphism is compatible with the G'~action if we let G'

act on k[G'] via and trivially on N. The action of G on

Py



some f: G' » N_ 1is given by (gf)(g') = (g'gg’' ")f(g'). This

implies:

(4) If N is a trivial G-module, then G acts trivially on

GH G
G

ind N.

3.9 We define an injective G-module to be an injective object

in the category of all G-modules.

Proposition a) For each flat subgroup scheme H of G the

functor indg maps injective H-modules to injective G-modules.

b) Any G-module can be embedded into an injective G-module.

c) A G-module M is injective if and only if there is an injective

k-module I such that M is isomorphic to a direct summand of

I®k[G] with I regarded as a trivial G-module.

Proof: a) This is obvious as indg is right adjoint to the

exact functor resg.

b) Let M be a G-module. We can embed . M as a k-submodule into
an injective k-module I. Then I@k[G] = indfx is injective by

(a) and ind(l;M =M @ k{G] is a submodule of I®k[G]. Now

t
combine this with the embedding of M into Mtrﬁbk[G} from 3.7(4).

c) If M is injective, then the embedding M » I®Kk[G]
constructed ih the proof of (b) has to split. This gives one
direction in (c¢). The other is obvious, as I®k[G] 1is

injective by (a), hence also each direct summand.

3.10 Let us assume from now on in chapter 3 that k is a

field. Then we can simplify the last result:



Proposition a) A G-module M 1is injective if and only if

there is a vector space V over k such that M is isomorphic

to a direct summand of Vek{G] with V regarded as a trivial

G-module.

b) Any direct sum of injective G-modules is injective.

c) If M,Q are‘G—modules with Q injective, then M®Q is
injective.

Proof: (a) is just 3.9.c and (b) is an immediate consequence

of (a). If Q 1is a direct summand of V@k[G] as in (a), then
M®Q 1is8 a direct summand of MaVak{G], which is isomorphic to

Mtrﬂ v k[G] by 3.7(3). This yields (c).

3.11 Before looking at indecomposable injective G-modules in

general, let us treat one important example.

Suppose G = HK G' with H a diagonalizable and G' a

unipotent group scheme. We set for each A € X{(H):

- G
(1) Q = indeA.

H

We have k[G] = 1ndfk = indgind = indgk[H] by the transitivity

1
of induction and k{(G] = @ k
AEX(H)

to Pyt of course), hence

A by 2.11(5) (also with respect

(2) kfgl = e Q,.
AEX(H)

We know by 3.8 that Q)k is isomorphic to k[G'] when

considered as a G'-module. Therefore 2.14(8) implies

(3) Each Q, is an indecomposable and injective G-module.




Each A € X(H) can be extended to an element of X(G)
with G' in the kernel. We denote also this extension by

and also the corresponding G-module by kz‘ For each G-module

L}
M the subspace MG is a G-submodule by the remark to 3.2.

Because of 2.11 it is a direct sum of one dimensional G~-submodules

| ]
of the form kx with A € X(H). This shows especially that MG

1
is a semi-simple G-module. On the other hand, we have MG #0
for any simple G-module because of 2.14(7). Therefore the kx
with A € X(H) are all simple G-modules (up to isomorphism) and

we have

(4) soc M = MG'

for any G-module M. The discussion in 3.8 shows that Q, =

k, ® k[G'] where H operates on k[G'] via the conjugation action.
L]
19°)

e

Then ()% = k, ®(k[c = k,®kl = k,, hence by (4):

A'

(5) Boc = k

GQA A’

This shows that in this case there is for each simple G-module

E an indecomposable and injective G-module with socle isomorphic
to E. We want to generalize this result. At first we shall

prove the uniqueness of such a module (up to isomorphism).

3.12 Prqposition: et M,M' be injective G-modules and

¢ € HomG(M,M'). Then ¢ _is an isomorphism, if and only if ¢

induces an isomorphism socGM - socGM'.

Proof: The "only if" part is obvious, so let us look at

the "if". We know by 2.14(2) that



ker ¢ £ O =p 0O # socG(ker p) = ker(w'soc ).

GM
Assuming ¢ to induce an isomorphism of the socles we get
ker ¢ = 0O and the injectivity of ¢. Therefore ¢(M) = M 1is

an injective G-module, hence a direct summand of M'. If Ml is
a G-stable complement, then M' = @(M) & M, implies socG(M') =
aocgw(ﬂ) @ soc M,. The assumption socGM' = w(socGM) yields

socGM1 = O, hence M1 = 0 by 2.14(2). Therefore ¢ 1is bijective.

3.13 Corollary: Two injective G-modules are isomorphic, if

and only if their socles are isomorphic.

Proof: Because of the injectivity any isomorphism of the
socles can be extended to a homomorphism of the whole modules.

Then apply 3.12.

3.14 Proposition: Let M be an injective G-module and let

®, € EndG(socGM) be idempotent. Then there is ¢ € EndG(M)

idempotent with wlsoc MT -
G

Proof: Consider the socle series of M as in 2.14(5).
Let us abbreviate M; = soc/M. Each endomorphism of M has to
preserve all Mi. Therefore the injectivity of M yields for

each 1 an exact sequence

res
(1) O+ m + End.(M}—=—33End.(M;) + O
where m, is the two-sided ideal

(2) m, = {¢ € End (M) |o(M;) = O}.



Any ¢ € m, maps Mj into Mj-i for all j > 1. This implies

(3) gigjcz §i+j for all 1i,j > 1.

We deduce from M = U M that
i>1 1

(4) End .M = lim End (M,).

Therefore the proposition follows from a version of Hensel's lemma

proved below.

3.15 Proposition: Let R be a ring and let m,. 2 m, > ...

1 2
a chain of two-sided ideals of R with mmyC Mg for all

i,j >1 and R = lim R/m, naturally. Then there is for each

idempotent element e, € R/m, an idempotent element e€R with

e, = e+m

1 1°

Proof: Because of R = éim R/gi it is enough to construct

€yr€37.0. € R such that each ei+gi'e R/Ei is idempotent and

for each i > 1. We define

2

i*
= e%+m, =

+tm, = e;+m, = e,+m,. Furthermore we get

such that ei

iteratively e

iy T 8atRi

_ .2 :
= 2e,(e;-e;) + e As e ,+m, 1is assumed to be

i+l

idempotent we have €11

2 3 2 4, 2 _ 2 2 2 2 a2
@4y € dej(e;-el)te +m, = 3e, (e ~ej)+e (e —ey)+my < 2e,(e;-ey) +
2
eytmy Ly hence €10y is idempotent. Therefore we can go on.

%

.16 Proposition: a) For each simple G-module E there is

an injective G-module QE (unique up to isomorphism) with

E = so0c¢ QE'

b) An injective G-module is indeccmpdsable if and only if it is

isomorphic to QE for some simple G-module E.




¢) Any injective G-module Q is a direct sum of indecomposable

submodules. For each gimple G-module E the number of summands

isomorphic to E is equal to the multiplicity of E in socGQ.

Proof: Let (Q be an injective G-module. Any decomposition

socGQ = M, @ M2 leads by 3.14 to a decomposition Q = Q1 @ Qz.

1
As we can embed any G-module into an injective G-module by 3.9.b

we get the existence of the QE in (a) immediately. The uniqueness
follows from 3.13. The other parts of the proposition are now

obvious.

3.17 The module QE from 3.16.a is called the injective hull

of E. More generally we can find for each G-module M an

injective G-module QM (unique up to isomorphism) with socGM =

GM into Q c¢an be extended to an

embedding of M into QM' We call QM the injective hull of M.

socGQM. The embedding of soc

It is clear that this is compatible with the general definition

e.g. in [2] , ch.x, §1, n° 9,

In the situation of 3.16.c the number of summands isomorphic

to QE is equal to

dim HomG(E,Q)/dim EndG(E),

cf. 2.14(3). If we take especially Q = k[G] we get from 3.7(3)

d(E)

(1) k(Gg] v @ Qe

E

where



(2) a(g) = dim(E)/dim(EndG(E))

and where the direct sum is taken over a system of representatives
of all simple G-modules. (If k 1is algebraically closed, then

d(E) = dim(E) of course.)

In the situation of 3.11 we have obviously Q, =0 and
A
3.11(2) illustrates (1) very well. 1In the case of an unipotent

group one has k[G] = Qe cf. 2.14(9).

Let us mention one standard property of injective hulls: Let
E be a simple G-module and M a finite dimensional G-module.

Then
(3) [M:E]G = dim(HomG(M,QE))/dim(EndG(E)).

(For the notation cf. 2.14.)



4. Cohomology

Throughout this chapter let G be a flat k-group schenme.

We have shown in the last chapter that each G-module has a
resolution by injective G-modules. Therefore we can define (right)
derived functors of left exact functors from the category of
G-modules. We can for example describe the Ext-functors as derived
from the Hom-functor and we can introduce the cochomolegy functors
Hn(G,?) as derived from the fixed point functor. Furthermore
there are for each flat group scheme H of G the derived

functors Rpindg of the induction functor.

After recalling some general facts about derived functors
(4.1) and making the definitions (4.2) we prove many elementary
properties of the derived functors mentioned above (4.3-4.13).

We prove equalities between two derived functors and mention
several spectral sequences. We show that the cohomology can be
computed using an explicit complex, the Hochschild complex
(4.14-4,16). Besides proving a universal coefficient theorem
(4.17) this complex is used for the computation of the cohomology
of the additive group over a field (4.20-4.27). Because of later
applications we formulate the results at once not for Ga but

for direct products GaxGax...xGa.

As in the last chapter there is not much point in attributing
priorities for generalities. 1In addition to the papers listed
there one ought to mention [Andersen 12] where some results were

extended to the case of an arbitrary ground ring (instead of a



field.) When discussing the Hochschild complex I follow [DG] more
or less. The computation of H'(Ga,k) is due to [Cline/Parshall/

Scott/van der Kallen].

4.1 (Derived Functors) Let C be an abelian category

containing enough injectives, i.e. such that each object can be
embedded into an injective object. Then certainly each object
admits an injective resolution. We can then define the (right)

derived functors Rng of any additive (covariant) functor F

from ¢ into some other category ('. We have Rog = F if
and only if F is left exact. An cbject M in F is called
acyclic for E, if R'E(M) =0 for all n > O. Any short

exact sequence in C gives rise to a long exact sequence in g'.

Suppose now that F: € + C' and F': C' + C" are additive

{covariant) functors where c,C'C" are abelian categories with

€.C' having enough injectives.

Proposition (Grothendieck's spectral sequence): If F' is

left exact and if F maps injective objects in ¢ to objects

acyclic for F', then there is a spectral sequence for each object

M in ¢ with

(1 3™ = (R (R M= K"

One can find a proof (and more background material) in the second

(E'DE)M.

edition of S. Lang's "Algebra".
Let us mention two trivial special cases:

(2) _If E' 1is exact then E'sR"F = R®(E'eF) for all n €N,




(This is obvious).

(3) If F is exact and maps injective objects to objects acyclic

for F', then (R'E')+F = R°(F'»F) for all n €N.

————y—

(This can be proved by degree shifting, i.e. induction on n,

using the long exact sequence.)

For future refervence let us mention that one has for any
spectral sequence (E;’m) with Eg,m =0 for n<0 or m<O
)

converging to some abutment (E an exact sequence (cf. [2] ,

ch. X, §2, exerc. 15¢).

(4) 0+E;'0+E1+Eg’l

called the five term exact sequence.

4.2 Throughout this chapter let G be a flat group scheme

over k and H a flat subgroup scheme of G.

We know by 2.9 and 3.9.b that the G-modules form an abelian
category containing enough injective objects. So we can apply the
general principles from 4.1. For example the fixed point functor
from {G-modules} to (k-modules} is left exact. We denote its
derived functors by My Hn(G,M) and call Hn(G:M) the n-th

(rational) cohomology group of M.

For any G-module M the functor HomG(M,?) is left exact.
Its derived functors are denoted (as usually) by Extg(M,?). They
can (as always) also be defined using equivalence classes of

exact sequences of G-modules.



For the trivial module k the functor aomG(k.?) is isomorphic

to the fixed point functor: For each G-module M we have an

G

isomorphism Homg,(k,M) + M with or> ¢(l). We get therefore

isomorphisms of derived functors
(1) Extg(k,?) = (6, ?)
The induction functor from H to G 1is left exact. We can

G

therefore define also its derived functors Rnindﬁ.

4.3 Lemma: Suppose that G is diagonalizable., Let A be

an _abelian group with G = Diag(ﬁ). Then one has for all G-modules
M,N:

a) Extg(M,N) 2 1 Ext:(ux,uk) for all n e N.
AEA

b) Hn(G,M) = 0 for all n eN D > 0,

¢) _If k is a field, then Exti(M,N) =0 for a1l neN, n > o.

Proof: The first claim follows easily from 2.11(4). The

other statements are immediate consequences.

4.4 Lemma: Let M,N,V be G-modules. If V is finifely

generated and projective as a k-module, then we have for all

n e€ N a canonical isomorphism

Ext{(M,V@N) I Extg(MOV',N).
Proof: We have a canonical isomorphism

Hom(M,V®N) 3 Hom(M®V",N)



sending any ¢ to the map m® a+r (¢ ® idN) (p{m)). It is easy

to check that this induces an isomorphism

Hom, (M,V®N) + Homcmav',m .

This is functorial in N and can be interpreted as an isomorphism

of functors

Hom,(M,?)e(V®?) F Bomcmev*,?) )

The functor V@&@? is exact and maps injective G-modules to

injective G-modules (cf. 3.9.c). We can therefore apply 4.1(3).

4.5 Proposition: lLet M be anH-module.

a) For each G-module N we have a spectral sequence with

Eg'm = Extg(N,RmindgM):::..——.é Extgﬂn(NrM)

b) There is a spectral sequence with

n n-+m

)" = 8" (6, K inaiM)=— """ (1, m)

c) Let H' be a flat subgroup scheme of G with H CH'. Then

there is a spectral sequence with

n,m n G n H! n+m G
Ez’ = (R 1ndu.)(R indu )M===3(R"indg ) M.

Proof: a) The Frobenius reciprocity in 3.4 can be interpreted

as an isomorphism of functors



Hom (N, ?) e 1nd§‘! Hom, (N, ?) .

As indg maps injective H-modules to injective G-modules by 3.9.a,
we can apply 4.1(1).

b) This is the special case N = k of a).

c) Take the isomorphism in 3.5(2) and argue as in the proof of a).

4.6 We call H exact in G, 1if indg is an exact functor.

For example any diagonalizable subgroup scheme of G 1g exact
in G. (See the remark to 3.4.) The last proposition implies
obviously:

Corollary: Suppose that H is exact in G. Let M be an

a) For each G-module N and each n e N there is an isomorphism

n G - n

b) For each n € h’ there is an isomorphism:

Kn(G,indgM) = g™ (H,M).

Remark: These results are also known as “generalized

Frobenius reciprocity® and "Shapiro's lemma“.

4.7 When we regard k[G] as a G-module and do not mention

the representation explicitly, we will deal with or p.-

P
| X

As both structures are equivalent it is most of the time not

necessary to specify which of these two we consider. The same

applies to H 1instead of G.



Lemma: Let nEN.

a) We have for each G-module N:

i (g, N @ klG]) =

o if n > O.

b) We have for each H-module M:

MQk[G] 3.—5 n = ol
n"mdg(um klH]) =
(0] £f n > 0.

Proof: a) The trivial subgroup 1 of G is exact in G as
it is diagonalizable (or even more trivially, as indf = ki{G]l& ?
is obviously exact). Therefore a) is an immediate consequence of

4.6.b(applied to H = 1 and of the tensor identity.

b) RApply the spectral sequence ‘4.5.c to (H,1) instead of (H',H).
As 1 is exact in H the spectral sequence together with the

tensor identity yields isomorphisms
R*inal (M@ k(r]) = R°inafm).
As 1 13 exact in G the right hand side is O for n > 0O and

equal to M @& k{G] by the tensor identity. This implies b).

Remark: If k is a field, then N® k{G] 1is an injective
G-module by 3.10.c. Similarly M@ k(H] is an injective H-module.

S0 the lemma is obvious in this case.



4,8 Proposition (The Generalized Tensor Identity).

let N be a G~-module which is flat as a k-module. Thcxg we

have for each H-module M and each 'n‘ EN an Lsomoiﬁ!‘ iam

Rnindg(HQN) z (R“indgu)e N.

Proof: The tensor identity may be interpreted as an

isomorphism of functors
G o G
indCo(resSN @ ?) = (N ® ?)eindg.

Tensoring with N 1is exact and maps because of 3.9 and 4.7.b
injective H~modules to modules acyclic for indg. S0 we can apply
4.1(2),(3).

gﬂ.}g (Semi-direct Products)

Let G' be a flat k-group scheme which operates on G. We

can therefore form the semi-direct product GYMG'.

We may regard the fixed point functor 26 by 3.2 also as

a functor from {(GMG')-modules} to {G'-modules}. There is an
] 3 L J

obvious isomorphism rescl; 02 > ?Gcresgf‘c of functors. The

isomorphism of k-algebras k['G:dG"] = k[G] ® k[G'] 1is compatible

with the action of G via p, on k[G»G'] and k{G] and with

the trivial action on k[G']. Therefore 3.9 and 4.7.a imply that
L Fell

resg G mags injective modules to modules acyclic for the_ fixed

point functor. We: therefore get isomorphisms of derived functors

by 4.1(2),(3). So we have for all n EM and any (GxG')-



module M a natural structure as a G'-module on Hn(G,M).

Suppose now that G' stabilizes the subgroup scheme H of G,

G>AG* GUG', , .G HXG'
We can interprete 3.8(1) as an isomorphism res. _.o;nt%MGpnﬂt%fnxk

) 1
of functors. As above 3.9 and 4.7.b imply that resg G maps

injective modules to modules acyclic for indg. Therefore

4.1(2),(3) yleld isomorphisms of functors (for all ne N ):

G NG

%
(1) res. cRninaG>‘G

H>G'

H>G'

R + G
R indHoresH .

For H =1 this shows that G' is exact in G>IG' which is

already clear by 3.8(2). Similarly G is exact in GxG' by
3.8(3).

4.12 Proposition: We have for each H-module M and each

n ebJ an isomorphism of k-modules

"

i, M®k[G]) 5 (Rnindg)M.

Proof: The definition of indg ylelds an isomorphism of

functors
Feinds = 2" o(k[G]® ?),

where F is the forgetful functor from {G-modules} to {k-modules}.
As kiGl]® ? 1is exact and maps injective H-modules to modules
acyclic for the fixed point functor (by 4.7.a), we can apply
4.1(2),(3).

4.11 Corollary: If k[G] is_an injective H-module, then

H ias exact in G.

Proof: Under our assumption k[G] is a direct summand of
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some M, ® k[H], hence M®@k[G] of soine M, ® x[H] (for
suitable H-modules M,,M,). Then 4.10 and 4.7.a ;mplxvthgﬂclgim.

Remarks: 1) Suppose that k is a field. Then the corollary
can be proved directly as follows. If O - M, Mi > M, + 0
is an exact sequence of H~modules, then O =+ Ml ® k(G] + 320 k[G] »
M;® k[G] » O 1is an exact sequence of injective H-modules (by
3.10), hence split as a sequence of H-modules. The:nférewaisc the

R G
sequence of all (Miak{G]) = i"dnmi) has to be exact.

2) The example H = 1 shows that the converse will not hold in

general. However:

4.12 Proposition: Suppose that k is a field. kThen H

is exact in G if and only if k[G] 4is an injective H-module.

Proof: Because of 4.11 we have to prove one direction only.
Suppose that H is exact in G. We have for each finite dimen-
sional module V by 4.4, 4.2(1) and 4.10

Extg(v,k(c.l) a zxt{;(k,v‘g k[G]) = H*(H,V*® k[G]) = O

for all n > 0. Therefore the functor Hom,(?,k{G]) is exact
when restricted to finite dimensional H-modules. This implies
easily the exactness on all H-modules (i.e. the injectivity of
k[G]) because each H-module is the direct limit of finite

dimensional H-modules.

4.13 Proposition: Let k' be a flat k-algebra. ALet n € N

a) For each G-module N there is an isomorphism




B (G,N) & k' = a“(sk.,nak').

b) Por each H-module M there is an isomorphism

R“(indgma Kkt =, (" de "y (M@K ')

Proof: We get from 2.10(3) and 3.5(%) isomorphisms of functors
to which we want to apply 4.1(2),(3). This is possible as ? @ k'
is exact and maps injective G-modules to modules acyclic for the
Gk.-fixed point functor (by 3.9 and 4.7.a) and maps injective
H-modules to modules acyclic for the induction from H, to Gy
(by 3.9 and 4.7.b).

4.14 Let M be a G-module. The cohomology H'(G,M) can be

computed using the Hochschild complex C°(G,M}) which we are

going to describe now.

We set C(G,M) = M ® k[G] for all n €I\l and define

n+1l
n+1(G,M) of the form 30 = = {= 1.);"3n

i=0

boundary maps 3": c?(G,M) + C

where

n

n
ai(m&fla ...@fn) = meIQ...QH'Ii_lQ AG(fi)gfi_'_l@...@fn
for 1 <1i < n,

iy (MPEf @... @F ) = nBE V... Rf B1.

We can interprete cn(G,M) also as Mor(Gn,Ma) where G" is the

direct product of n copies of G, cf. 3.3. Then the a? look



like

n

20f(9y119p0 e 1Tnyy) = 9 E (G0 agy )y

n

84809 v renerOngy) = FlOyae o9y 10939543 090427 0 1 Iney)

for 1 < i

[a

n,

n
dne1El910950 00009, ,) = £lgyseeeigy).

n-1

n,

It is easy to check that 2 = 0 for all n. Therefore
(C°(G,M),3") 1is a complex. We want to prove that its cohomology

is just H'(G,M).

4.15 If our last claim is true, then C°(G,k[G]) ought to be
exact except in degree O by 4.7.a. Let us consider k(G] as a
G-module via P, 8O that Ak[G] = AG’ We define for each n a

linear map
s": c™lie,xien) = @™ kie] + @™ k(6] = (6, k6]

through s® = 5G6®n+lidk (6] An elementary calculation using
2.3(2) shows s™" = 1d-2""!'s™! for all n > O. This implies
the exactness of C°(G,k[G]) at each point n > O whereas

20: CO(G,k[G]) = k[{G] + cl(G,k[G]) = k[G] ® k[G] maps £ to
A(f)-£®1, hence has kernel kl. Therefore we have an exact

sequence

(1) 0 + k » k[G] +®2k[G] +®3k{G] + e

This sequence can be regarded as a sequence of homomorphisms of
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G-modules when we let G operate on CSan[G] via p, on the
first factor and trivially on all the other factors. It is for
this operation that k[G] » k[G] & k[G], frr A (E)-f® 1 is

G~equivariant. If we tensor ngw (1) with M we get a resolution
(2) 0+ M-+ Meklc] + Maf’k(c] + ...

of M by acyclic modules. Furthermore we can by 3.7(4) make the
operation of G on the factor M in any M@ Cgbik[G] trivial,

hence get a resolution
2
(3) o+M+M @kicl+M_ & @%lc] ...

using the same notation as in 3.7(4). Therefore H'{(G,M) 1is the

cohomology of the complex

G 2 G
(49 o0+ M _®k[eh" » (M_ @ “kiechH® + ...

As G operates trivially on all but one factor and as k[G]G = k
n+l G

the n-th term in (4) is equal to (M & & 'k[6]) =

u'tr@ ®nk[G] = Cn(G,M) . Furthermore tracing back the maps one

finds that 2" is just the map from c®(G,M) to Cn+l(G,M)

occurring in (4). (The shortest way of doing it is via the

interpretation as functions G" » M.) This proves our claim.
4.6 Let M be a G-module.

Proposition: The cohomology of the complex C'(G,M) is equal
to H'(G,M).

Remark: In [DG], II, §3 the case of arbitrary group functors



- 79%a -

(instead of our flat group scheme) is treated and more general

coefficlents are considered.

4.17 We can identify C° (Gk,,MGbk') for any k-algebra k!
with C*(G,M)® k'. Suppose that M is a flat k-module. Then
also all Cn(G,M) are flat. If k has the property, that any
submodule of a flat module is flat, then we get a universal
coefficient theorem e.g. by [ 2], ch. X., §4, cor. 1 du th. 3
(after re-indexing). Any Dedekind ring has this property as
for such a ring the notions "flat" and "torsion free" coincide
(e.g. by [ 31, ch. VII, §4, prop. 22). We get therefore the

first part of:

Proposition: Suppose that k is a Dedekind ring. Let k!

be a k-algebra and let n € hl.

a) There is for each G-module N which is flat over k an

exact sequence

n+l

o+ E(G,M® k' » B (G, ,NBK') > Tor’i(a (G,N}k') + O.

b) There is for each H-module M which is flat over k an exact

sequence of Gk‘~modules

Gk'

n+l

0+ (Rnindgu)gk- + Bnd X (M®K') - Tor’;m indgM,k') > 0

Note that b) follows on the level of k'~-modules from a) and 4.10.
It may be left to the reader to find the Gk,—module structure on

the Tor-group and to prove the equivariance of the maps.



4.18 If k' 1is flat over k, then we get from 4.17.a that
#0(6,M) @ k' = B%(G,, ,N® k') which we know already from 2.10(3)
to hold for all N. If k' is not flat, however, such a state-
ment will not be true, even for flat N (in spitevof the lemma
1.17 in [Andersen 12]). Take e.g. G = G, and its representation

1 2a 2 F
ap-+ on k and get a contradiction for k = Z, k' = 2
c 1

Such a formula will however hold for acyclic modules as then
the last term in 4.17.a is zero. We can for example (by 4.7.a)
take for N a direct summand of some E® k[G] where E is a
flat k-module, regarded as a trivial G-module. If N' 1is another
G-moduie which is finitely generated and projective over k, then
Hom(N',N) = (N')*@® N is again of this type because of the tensor

identity. So we have a canonical isomorphism Hom (N',N)® k' =

HomGk (N'® k', N® k). This generalizes to all N' which are
| ]
flat over k by taking direct limits. This shows:

(1) Let N,N' be G-modules such that N' is flat over k and

such that N is isomorphic to a direct summand of some G-module

E®k[G] with E flat over k. Then we have for each k-algebra

(N' ®k' . N k').

k' a natural isomorphism Hom.(N',N)®k' = Hom

Gk'
Let us mention as a special case, that we have for each k'

an isomorphism

(2) EndG.(k[G]) ® k' = Ende'(k'[Gk.])

4.19 For any k there is on | H'(G,k) = @ Hi(G,k) a
i>0 :

structure as (associative) algebra over k. The multiplication



is called the cup-product and satisfies the usual anti-commutativity

formula: If a € H'(G,k) and b € HJ(G,k) then ab =
(*l)i+jba. Furthermore there is {for each G-module N) a natural

structure of a H'(G,k)- right module on H'(G,N) = & Hl(G,N).
120

Let us describe these structures using the Hochschild complexes
for k and N. We can obviously identify Cn(G,k) ==G§nk{G} and
then have to write ag in the form ag(x) = 1®xX. Furthermore we

n-+m

identify c™(G,M)® c™(G,k) and c"™(g,N) for all n,m e N.

For all a € Cn(G,N) and b ¢ Cm(G,k) one checks easily

3n+m(a®b) = ("a)®b+(-1)"a® (Fb). Hence a® b is a cocycle
if a and b are so. Another simplé computation shows then,

that the cohomology class {[a®b] of asb dépends only on the
classes [a] of a 'and [b] of b. Then the action of [b] € Hm(G,k)
on [a] € Hn(G,N) is defined through [a]l[b] = [a® b].

In the case N = k we get thus the cup-product on H'(G,k).

Let G' be a flat group scheme operating on G through
group automorphisms. If N is a (G>4G‘)—modulé {e.g. N = k),
then G' acts on each Hn(G,N), cf. 4.9. This operation can
be described using the Hochschild complex. The discussion above
shows that G' acts on H'(G,k) through algebra automorphisms and
that the action of H'(G,k) on an arbitrary H'(G,N) is compatible
with the G'-~action, i.e. that H' (GN)@H (G k)4 (GN)is a homomorphism

of G'-modules.



4.20 We want to discuss H’(Ga,k) or (more generally)
Hf(Va,k) for a free k-module V of finite rank, say xk(V) = n.
Of course, there is a Kiinneth formuia, reducing the second problem
to the first one. But we shall prefer to formulate our results at
once for V in order to keep track of the GL(V)-operation on

the cohomology groups (as in 4.19).

Choosing a basis we identify k[va] with the polynomial ring
k[T),Tps...,T J. We get then an NP-grading and an ﬁJngraaing
on the ocomplex C'(Va,k). For each a = (ar“Z""’“n) epjn let
Ci(Va,k)a be spanned by all tensor products of monomials such
that the degrees of Ty in the factors add up to a, for each 1.

Set Ci(va,k)m equal to the sum of all Ci(va,k)a with m = |al

n
i
(where !(al,...,an)] = iilai). Obviously the C™(V_,k) ~ are

GL(V)~-stable whereas the Ci(va,k)u are not (for n > 1). As
the comultiplication is given by A(Tj) = lﬁij+TjQ§1 for all j,
the formulas for the 3% in 4.14 show aici(va,k)a<: Ci+1(Vaek)a

i i i+l

for all o and 3°C (Va,k)mc: C (Va,k)m. Therefore we get

also gradings for the cohomology groups

i _ i _ i
(1) H (Va,k) = @ H (Va,k)a = @ H (Va,k)m.

GE}Jn mEbJ
(Note that these gradings simply describe the representations of
the diagonal subgroup of GL(V) on the cohomology resp. of the

subgroup of scalar diagonal matrices.)
4.21 We can now easily compute KI(Va,k).

Lemma: Suppose that k is an inteqral domain.




n
a) 1If char(k) =0, then H'(V_,k) = I kT, =V as a GL(V)-
. — i=1 —
module.
1 no® o
b) If char(k) =p # 0, then H (V_,k) = © L kr¥ .
— — a i=1 r=0

Proof: We have obviously HG{Va,k) = k and 80 = O, hence

H}'(Va k) = ker(al). This map is given by 31(f) = 1@ f-A(f)+Ef@R 1.
L)

n n ,
Because of 4.20(1) the monomials n Tir(i) with 81( I T§(1>) = Q

i=1 i=1
form a basis of ker(el). If at least two r(i) are positive,
then each Tici)qa i Tg(j) occurs with coefficient -1 in
j#i

n
31( } Ti(i)) so that this element is different from O. As 81(1) =

i=0
1©€1 we have to look only at
r-1

(1) al(Ti) =~ I

e o

J
This is certainly O, if r = 1. We then have to determine all

r > 1 with all those binomial coefficients egqual to 0. The

result is well known and implies the lemma.

4.22 Keep the assumption of lemma 4.21. The cup product

induces a homomorphism of GL(V)-modules
vt v ,x) @ 8Y(v_,k) » B(V_,k)
a’ a’ a’™’’

Because of the anti-commutativity of the cup product (i.e. because
of £® f'4f'®E = d1(f£') for £,£' € ker(sl) this map has to
factor through Azﬁl(va,k), if char(k) # 2, and through

sznl(va,k), if char(k) = 2.



Let us denote the image of this map by M. We want to show

Azﬂl(va,k) if char(k) ¢ 2,

(1) M=

Sznl(va,k) 1f char(k) = 2.

The image of 31 in cz(va,k) = k{va}® k[VaI consists of

symmetric elements, i.e. of elements stable under f & f'v+ '@ £,
If we take two different basis elements f£,f' in 4.21, then

f&f' is not symmetric, hence the class [fl[f'] = [f@® £f'] €
Hz(Va,k} is non-zero. 1In oxrder to get their linear independence
we just have to observe that these tensor products are homogeneous
of pairwise different degrees (except for the trivial equality
[faf'] =-[f'@f ]).

This proves (1) for char(k) # 2. For char(k) = 2 we have
still to show f® £ ¢ 1m(al) for any basis element £ in 4.21.
We can do something more general. Suppose char(k) = p ¥ O,

1

set {1;} = I—;(i’) for 1 <1 < p-1 and

p-1 -
(2) () = 1 (B1ete P71
i=1
for all £ ¢ k[va]. (so B(f) = f®@f if char(k) = 2.) This map
is of course induced from the map f+»r ((1&8 f+f®1)P - 10 £F
- fP@1)/p on ZIT,,-..,T ]. Using this fact (or a direct calculation)
into
we get that 8 maps ker(al) = Bl(va,k) /)m(az),hence we get a map

B: Hl(Va.k) + Hz(va,k). A simple computation shows

. p-1
= - a1 T Pyelep-i
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for all £ ,f, € Hltva,k). Therefore 8 is additive. Obviously

2
8 is GL(V)-equivariant and satisfies B8(af) = aPB(f) for all

"a € k. Take now for f a basis element from 4.21. Then B8(£f) is
homogeneous with degree p-times the degree of f£. The only element
(up to scalar multiple) in k[Va} having this degree is £P,

As al{fp) =0, we get B(f) g im(al). This concludes the proof
of (1) and shows for p # 2 that the §(T§r) with 1 <i<n

and r eh} span as a basis a GL{V)-submodule in HZ(Va,k)

intersecting M in O.

We claim that we have found all of HZ(Va,k} in case k is
a field. We refer to [DG], II, §3, 4.6 for the proof and just

state the result:

Lemma: Suppose that k is a field

a) If char(k) =0, then H’(V_k) = r’ml(v_X).

i

b) If char(k)

i

2, then HZ(Va,k) a szal(va,k).

¢) If char(k) # 2,0, then Hz(Va,k) x Agﬁl(va,k) o kénl(va,k).

———

4,23 In order to get all of H’(Va,k), we shall reduce its
computation to that of the cohomology of finite cyclic groups.

This is done using a filtration of the Hochschild complex.

Set k{va,m] for all m ePJ equal to the span of all

r(l)Tr(Z)

monomials Tx ...Tr(n)

2 n
the formula A{Ti) = 15‘1‘14—'1‘19 1 implies A(k{Va,m})C k{Va,m}

with r{i) <« m Ffor all i. Then

k[v,,m]. Set Cj(va,k,m) ==6§jk{va,m]¢: Q§3k{va} = Cj(Va,k).

Then we see that ajcj(va,k,m)cz c3+1(va,k,m). Hence c'(Va,k,m) =



= ja cj(va,k,m) is a subcomplex of c’(v&,k,m). Let us denote
20

its cohomology by H'(V_,k,m) = @ BY(V_,k,m).
a 1>0 a

For m,m' €N with m < m we have an inclusion c'(va,k,m‘)
c.c'(va,k,m), hence a homomorphism L—y HY(V, k,m) ~ H‘(Va,k,m}.
We have obviously

a for any m" < m'.

Gm,m‘° m',m” ~ “m,m"-
Similarly the inclusion C’(Va,k,m) -+ C'(Va,k) induces a
= 0

-

hompmorphism L H'(Va,k,m) + H’(Va,k) with «a -

n® *m,m
We get thus a homomorphism a: ljim H'(Va,k,m) -+ H‘(Va,k}..
Obviously H"(V,,k) is the union of all o (H°(V_,k,m)) and for
each f € ker(a ) there is m' > m with f € ker(am'm,). This

implies

(1) Iim B (V_,k,m) * B (V_,k).

Note that c'(v_,k,m @ ¢ (v ,k,m) = I (v_,k,m). therefore
we can define a cup-product on each H'(Va,k,m) and the @, are

homomorphisms of algebras. Hence so is the isomorphism (1).

Let me point out that this construction can be generalized to
any Va~module M wﬁich is finitely generated over k. For such
an M there is some r(M) €N with A (M)< M® k(v ,r(M)].
Then all C'(Va,M,m) with m > r(M) are subcomplexes of C'(Va,H)

and we get as above

(2), lim H‘(Va,M,m) e H'(Va,k)

-

4.24 Obviously we can define a complement Cj(va,k,m)c

to CJ(Va,k,m) in CJ(Va,k): Take the span of all tensor products
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of all monomials not belonging to Cj(va,k,m), i.e. where in at
least one factor some Ti occurs with an exponent > m. In

general the Cj(V‘a‘,k,m)c do not form a subcomplex.

Suppose however that p is a prime number and that pl =0
r r r
in k. Then A(T§)=1®T§+T§®1 for all i and r. This
implies that all Cj(va,k,pr)c are subcomplexes and that
HJ(Va,k,pr} is a direct summand of Hj(Va,k). We may write
4.23(1) in the form
(1)  H(V_,k) = U H'(Va,k,pr) (1f pk = 0).

r>0

(We can generalize 4.23(2) in a similar way.)

Of course our computations in 4.21/22 are compatible with

this formula. 1In the situation of 4.21.a we have

s

n r-1 J
r 1 kTP,

(2) # (v, ,k,p%) P
i=1 j=0

i

in 4.22.c:

(3 B2 v .k,pH) = a25hv_k,5%) @ kel (v, k),
and in 4.22.b:

(0 (v k25 = s’mt(v,k,25).

4.25 The groups H'(Va,k,pr) in 4.24 have a different
interpretation. Let p be still a prime and suppose pl = O in

k. Identify V with k® via the T and consider the (Frobenius)

i
endomorphism ¥ of Va with F(al,...,an) = (ag,...,ag) for

n

all (a,,...,a ) € A" = K“ea = V_(A) and all A. This is an



endomorphism of algebraic k—-groups with F*(Ti) = Tf for all .

The kernel Vi r of FX is therefore also an abgebraic k-group
! r r

with k[v, .| = k(T),. .2 1/(05, ..., 70 ). (Obviocusly Vor

is independent of the choice of the identification V * k™.

Notice that Va r is isomorphic to the direct product of n copies
s

of the algebfaic k~group Ga r introduced in 2.2.)
1

)
induces an isomorphism k{va,r] + k[v& r} compatible with the
, .

Obviously the restriction of functions k[va} + k{va,r

comultiplication, hence an isomorphism C’(Va,k,pr) + C‘(Va r,k)
: r

of complexes and an isomorphism of algebras

- r g .
(1) H (Vatkpp ) - H (Va'r:k)-

Any Cj(Va,k,pr)c is just the kernel of the restriction map

CJ(Va,k) -+ CJ(Va r,k). This gives a better reason for @ Cj(Va;k,pr)
¥

to form a subcomplex and hence for the injectivity of the map

H (Va,k,pr) > H'(V_,k) .

Again we can generalize (1) to any Va-module M, rinitely

generated over k, and get

. Ty ~ .. T
{2) H (Va,M,p }y » H (Va,r'M) if p” > r(M).

Notice that the gradings on K'(Va,k) considered in 4.20

induce similar gradings on H'(Va r,k).

¥

4.26 Let us assume that k is a field of characteristic

p # 0. It will be convenient to suppose for the moment that k



1s finite. Consider the endomorphism F of Va as in 4.25 and
define for each r E'V » T > 0 a closed subgroup Va(pr) of
Va- via

v (65)(a) = (v e V_(B)[F*(v) = v}.

x

It is defined by the ideal generated by all Tg - T, with 1 <i <
n. Therefore the restriction of functions induces alsc an isomoxr-
phism k[Va,pr] -+ k[va(pr)] compatible with the comultiplication,

hence an isomorphism
- r > . r
(1) H (Vapktp ) ~ H (Va(P Y.k).

If A is an extension field of k, then V_(p')(A) is
simply the group of all points in al having all coordinates in

the finite field F:r' Let us denote this group by V(pr).
P

It is an elementary abelian p-group of order ”prn. We may regard
k{Va(pr)] as the algebra of all functions from V(pr) to k.
The comultiplication on k[Va(pr)} is given by the group law in
the finite group V(pr). Therefore the Hochschild complex for
Va(pr) computes the cohomology of the finite group V(pr).
{Equivalently one can say that the category of Va(pr}—modules

is “the same"™ as the category of k-V(pr)~modules.)

Now the cohomology of a cyclic group is well known {(cf.
e.g. { 8 1])and the cohomology of an elemehtary abelian group

follows using the Kiinneth formula. The results can be formulated



as follows:
. r, . 1 r
(2) If p =2, then H (Va,k,p ) # 8H (Va,krp ).

We denote here by S(M) resp. A(Mi the Symmetric resp. exterior
algebra of a k-module M given its natural grading. If we put

each element of SiM in degree 2i then we write S'(M).

(3) If p # 2, then

H'(V,,k,p") = ant (v, k,p%) @ 8" (V")
with v = w2 (v_,k,p5) /0% (v, k,p).

These results are certainly also true, if k is finite, e.g. by
4.16(1).

4.27 Combining 4.26(2),(3) with 4.24(1) we get a complete
description of H‘(Ga,k). Before formulating the result we want

to introduce some notation how to describe the operation of GL(V)

n

r r
on the spaces I kT¥ and xB (TP ).
1=1 1 1 i

1

s

We can define a group endomorphism of GL(V), a;so denoted

by F, such that F(gv) = F(g)F(v) for all g € GL(V}(A) and

1t

v €E VBA and all A. If we identify GL(V) GL, using the

same basis as for VvV = kn, then F(a for all

— (P
_ ij) (aij)
(aij) € GLn(A) and all A. Using G we can define for each
CL(V)-module V' and each r € va a new GL(V)-module V'(r}
which is equal to V' as k-module and where any g € GL(V) (A)

acts on v'(r)e A as Fr(g) acts on V'®A. (We shall discuss



such "Frobenius twists® more systematically in 9.9).

J

). We can therefore express

Writing down the effect of any g on the TE in terms of
Boopd o B () s ()
"gT, one sees immediately that I kT = ( £ kT.) = v .
i i ¥ i
: i=1 i=]1
n _ _J .
Similarly one gets z kB(TE ) = VM:H'l

i=1
the results as follows:

Proposition: Suppose that k is a field of characterxistic

p # 0.

a) If p =2, then

(v, k) = s( e v¥(3))

j>0
and (for all r > 0)
r-1 .
BY(V, _/K) =8(8 v*(3)y,
4 j____o

b) If p # 2, then

H(V,,k) = A( @ vy s (e v

j20 i1
and (for qll r > 0)
r-1 . ko .
Ry, .= a(e Ve s e v,
] j=0 j=1

Remarks: 1) The explicit description of H1 and H2 gives

also the gradings of the generators of the generators of H‘(Va,k)
and H'(Va r,k). All elements in V*(j) are homogeneous of degree
[ 4

3

p° with respect to the {\|-grading.

2) If kx is a field of characteristic O, then H'(V_/k) ¥ Av®y.

This follows e.g. from the proposition applying the universal
coefficients theorem to ZP,



5. Quotients and Associated Sheaves

Some properties of the derived functors of induction can be
proved only by interpreting the RnindgM as cchomology groups
Hn(G/H,Z:QM)) of certain quasi-coherent sheaves on G/H. Before
we can define these "associated sheaves® (5.10/11) and prove the
equality RnindgM = Hn(G/H,lf(M)) in 5.13, we have to introduce

the guotients G/H.

This is a non-trivial problem. Assuming G to be a (flat)
group scheme and H a (flat) subgroup scheme we want _G/H to be
a scheme. The choice at first sight, the functor Aw+ G(A)/H(A),
will in general be no scheme. On the other hand, there is an
obvious definition of a quotient scheme via a universal property
(cf. 5.1) which however gives no information about existence and

how the quotient looks like, if it happens to exist.

It has turned out to be useful to construct quotieﬁts not at
once in the category of schemes over k but in the larger category
of all k-faisceaux. These are the k-functors having a sheaf
property with respect to the faithfully flat finitely presented
(Grothendieck) topology, cf. 5.2/3. The quotient faisceau G/H
has a not too complicated description (5.4/5). 1In the most
important cases (e.g. over a field) the quotient faisceau is a
scheme (hence the quotient scheme) and has nice properties (5.6/7).
It is only in this case that we can prove the relation between

sheaf cohomology and the functors of induction mentioned above.

One consequence of this relation is that indg is an exact



functor, if G/H 1is an affine scheme. This can be proved more
directly (5.8) following [Cline/Parshall/Scott 3] who prove

also the inverse for linear algebraic groups over an algebraically
closed field. 1In 5.14 we mention some more conseguences, but

will make use of deeper applications only in later chapters.

I follow more or less [DG] in the sections 5.1 - 5.7.
Proposition 5.13 was first proved in [Haboush 2]. Let me add that

closely related matter is treated in [Cline/Parshall/Scott 91].

5.1 (Quotients) For a linear algebraic group G over an
algebraically closed field and a ciosed subgroup H of G it is
well known how to make the coset space G/H into a variety. We
should like to have a generalization to the case where G is a
k-group scheme and H a closed subgroup scheme. Unfortunately
the "obvious" choice, i.e. the functor A+ G(A)/H(A) turns out

to be the wrong one (in general) as it will be no scheme in general.

Let us define instead a quotient via a universal property.
This can be done in the more general situation of a k-group scheme

G operating on a scheme X over k. A gquotient scheme of X by

G is a pair (Y¥,n) where Y is a scheme and 3 X » ¥ is a
morphism sgch that » 4is constant on G-orbits and such that for
each morphism f£f: X + ¥Y' of schemes constant on G-orbits there is
exactly one morphism f£f': Y » ¥' with f'sr = £. ("Constant on
G-orbits" means that each =(A): X(A) + Y(A) is constant on the
G(A)-&rbits.) Of course, such a quotient scheme is unique up to

unique isomorphism, if it exists @nd that is the problem).



Let us give another formulation of this definition. We want
to assume that G operates from the right. (The necessary changes
for left actions will be obvious.) Consider the two morphisms
a,a': XxG » X with a(x,g9) = xg and a«'(x,g) = x. Then a
morphism £f: X » ¥Y' will be constant on G-orbits if and only if
foa = fea'. So (Y,w) 1is a quotient scheme if and only if
moa = woa' and if for all morphisms f: X » ¥' with fea = foa'
‘there is a unique morphism f£f': Y - ¥' with f'on = £f. (We
assume Y,Y¥' to be schemes.) S0 a quotient scheme of X by G
is (in categorical language) the cokernel of the pair (a,a'} in

the category of schemes over k.

This way of formulating the universal property allows for
generalizations. Take for example a "schematic" equivalence
relation on X, i.e. a subscheme RCXxX such that each R(A) 1is
an equivalence relation on X(A). Then a quotient scheme of X
by R 1is the cokernel in the category of schemes of the pair of
the projections from R to X. There is a generalization of
these two situations (i.e. of XxG':;;x for group actions and
.of ‘R:;;X for equivalence relations) called groupoid., This is

(s}

discussed e.g. in [DG], IIX, §2, n~ 1.

5.2. (The fppf-topology) Of course, we can define quotients

P
—_—

by group actions also in larger categories than {schemes over k}
using the same type of universal property as before but allowing

any Y,Y' in that larger category. If we take e.g. the category
of all k~functors, then certainly & X(A)/G(A) is the quotient.

If we had now a functor from {k-functors} to {schemes over k}



left adjoint to the inclusion, then it would map Ar> X(A)/G(A)
to the gquotient scheme. But we do not have such a functor. It
has shown to be useful in this situation to replace the category
{achemes over kl} by a larger one for4which there is such a

functor and has nice properties.

Any scheme X is by definition local (cf. 1.8), i.e. Y

Mor(Y,X) is a sheaf in some sense: If (¥.). is an open covering

i‘d
of ¥, then any o € Mor(Y¥,X) is uniquely determined by its

restriction to the Yj and one can glue morphisms “j € Mcr(Yj,X3
together if they coincide on intersections. The open coverings

were defined using the Zariski topology.

One can now consider more general topologies, called Grothendieck

topologies where the property "open" is no longer attached to
subsets (or rather subfunctors) but to certain morphisms. We

shall consider only the faithfully flat, -finitely presented

topology (for short "“fppf" as the French is much more symmetric
in this case), and the k-functors with the sheaf property for this
topology will be called faisceaux (reserving the term "sheaf" to

objects related to the Zariski topology).

As in 1.8 it is enocugh to consider open coverings of affine
schemes by affine schemes. Let R be a k-algebra., An fppf-open
covering of R is a finite family Rl'Rz""'Rn of R-algebras
such that each Ry is a finitely presented R-module and such that
RlxR2£..fon is a faithfully flat R-module. (The last condition

is equivalent to: Each R is a flat R-module and S8Spec(R) is

i
the union of the images of all Spec(R;), cf. {3 1, ch. 11,



§2, cor. 4 de la prop. 4.)

5.3 (Faisceaux) A k~functor X is called a faisceau if for
each k~algebra R and each fppf-~open covering RI'RZ""’Rn of

R the sequence

(1) X(R) > I X(RI===41 X(R; @ gR,)
i i,j

is exact. (The maps are the obvious ones, induced by the structural

maps R =» Ri and by Ri + RiéaRRj resp. Ry ~+ RjﬁBRRi with

ar+ a®@l resp. a+~ l®a.) (A k-faisceau is defined as a k-functor

which is a faisceau.)

‘For any k-algebras Rl’RZ""’Rn we can regard each Ri as a
n
(0 Ri)-algebra via the projection . The Ri form cobviously an
i=1
n

fppf-open covering of T R, =R. BAs RiGbRR. =0 for 1 # 3
i=1 ]

the exactness of (1) amounts in this case to:

(2) The projections induce for all k-algebras Rl,...,Rn a bijection

ed
X(RIX...XRH)“+ X(Rl)x...XX(Rn).

A single R-algebra R' 1is an fppf-open covering of R if and only
if it is faithfully flat and finitely presented as an R-module.

Let us call this an "fppf-R-algebra". So the exactness of (1)

implies:

(3) If R 1is a k-algebra and if R' is an fppf-R-algebra, then

X(R) + X(R')=—3 X(R' @RR') is exact.



So the arguments above prove one direction of:

(4) A k-functor X 1is a faisceau, if and only if it satisfies

(2) and (3).

For the converse one applies (3) to R' =
i

= 5

R and (2} to IR,
1 i i i

and nR &_1R..
i 1R i 3
Suppose that R' is a faithfully flat R-algebra. We have then

‘an exact sequence
O ->R > R' » R'QbRR'

where R » R' 1is the structural map and where any a € R' is
mapped to a®1l - 1®a. (This is only the beginning of a long
exact sequence, see [DG], I, §1, 2.7. It is enough to show the
exactness of 0O » R&RR' + R! @RR' - R'@RR'QRR’ . The last map
sends a®@a' to a@®@li®a' - 1@a®a'. If this is O, then

0 =apa' - 1®aa', hence a@®a' 1is in the image of the previous

map.) We can express the exactness above also as:

(5) R + RR=— R' @RR' is exact

vhere the two maps are ai> a®l1l and apr 1®a). Now the left
exactness of Homk-al g(A,?) shows that each affine scheme SpkA
over k 1is a faisceau. More generally one can show ([DG], III,

§1, 1.3)

(6) Any scheme over k is a faisceau.




et M be a k-module and k' a faithfully flat k-~algebra.

Then the same argument as above gives as an exact sequence
O+ M~ M®k' > Mpk'®@ k'

with maps mre m®1 and m@br m@b®1l - m® lgeb. Applying this

to all M@®A we get:

(7) PFor each k-module M the functor Ma is a faisceau and a

local functor.

Of course we could have mentioned the "local" part earlier. It
n r

follows from the fact that I Af, = A implies that I (Af )
' i=1 i=1 i

is faithfully flat over A. (See also the description of the

i

quasi-coherent sheaf on Spec(A) associated to M®A in [Ha],
I, 5.1.)
The following property is obvious:

(8) Let X be a k-functor and k! a k-algebra. f X is a

faisceau, then X is a faisceau.

5.4 {(Associated Faisceaux) There 1is a natural construction

how to assocliate to each k~functor X a k-faisceau X (called

the associated. faisceau) together with a morphism 1i: X -» X such

that for all k-faisceau Y the map f+> foi 1s a bijection

Mor (X,¥) + Mor(X,¥). We get thus a functor X&+ X from {k-functors}

to {k-faisceaux} left adjoint to the inclusion of {k-faisceaux}
construction

into {k-functors}. This/should be regarded as an analogue of

the construction of a sheaf associated to a presheaf. The details



~

may be found in [DG], III, §1, 1.8 - 1.12. I shall describe X
only in a particularly simple case where X 1is already close to

being a faisceau. To be more precise I want to assume the following:

(1) X satisfies 5.3(2) and X(R) + X(R') is injective for

each k~algebra R and each fppf-R-algebra R'.

Under this assumption X has the following form. Take a
k-algebra A and consider for each fppf-A-algebra B the kernel
X(B,A) of X(B)—z»X(B ®,B). 1If B' is an fppf-B-algebra,
then B' is also fppf over A and the natural inclusion from
X(B) into X(B') maps X(B,A) into X(B“Y). More precisely

B‘GAB' is fppf over B®,B, hence the standard map X(BQAB} >
and

A
X(B'GDAB‘) is injective/we can identify X{B,A) with the inter-
section of X(B',A) and X(B). The X(B,A) with B fppf over
A form a direct system. (If Bl,B2 are fppf over A, then

31®ABZ is fppf over B, and BZ')
limit of these X(B,A) and this is our X(A):

So we can form the direct

(2)  X(A) = lim X(B,A).

As all maps X(B,A) » X(B"A) are injective so are all maps
X(B,A) + X(A), we can identify X(B,A) with its image in X(A)

and regard X{a) as the union of all X(B,A). We see especially:

(3) For X as in (1) each X(A) » X(a) is injective.

(For arbitrary X this will not be true.)

If A+ A' is a homomorphism of k-algebras, then BtaAA‘ is

fppf over A' for any fppf-A-algebra B, and the natural map



X(B) X(BdbAA') maps X(B,A) to x(aquA',A'). Taking direct
limits we get a map X(A) + X(A') which is easily checked to be
functorial. In this way X is a k-functor. It is rather obvious
that X inherits the property (1) from X. Consider any element
in the kernel of X(B)=—=% X(B® aB) for some fppf-A-algebra B.
Then it belongs to X(B',B) for some fppf-B-~algebra B'. The
restrictions of the two maps from X(B) to X(B',B) are induéed
by the maps X(B',B) + X(B'®(B&,B),B®,B) > X(B'®,B,B&,B)C
X(B'®,B' ,B®,B)C X(B®,B) and X(B',B) > X(B'®,(B®,B),B@,B) >
X(B@ ,B',B@®,B) C X(B' ® B',B@,B)C i(BeAB) where isomorphism
in the second step is induced by b' &(bla bz)w (b’bl)a b2 in
the first case and by b'®(b@b,)~ b, ® (b'b,) in the second
case. (We use here that B'GBAB' = B'saB(BGDAB') = {B'QBAB)GDBB'
is fppf over BGDAB’ and Bé?AB'.) Therefore the intersection

of ker(f{(B):::,’ f{(B&AB)) with X(B',B) is equal to ker(X (B',B)
=3 X(B'&,B',B®,B)) = ker (X(B')3 X(B'® ,B')) = X(B',A), hence

contained in }E(A). This shows that X is a faisceau.

For any morphism f: X - Y into a k-faisceau Y any f(Blx
with x € X(B,A) as above has to belong to Y(A)< Y(B) so we
can define f: X +Y through f(A)x = £(B)x € Y(A). This is
easily checked to be a morphism and to be unique with £ Ix = f.

So X has indeed the universal property we wanted.

Notice: If each f(A) 1is injective, so is each £(A). So we

can regard X as a subfunctor of Y. One getgseasily the following:
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(4) Let X be a subfunctqr 0of a k~faisceau Y ésuch that X

satisgfies 5.3(2). Then X is a subfunctor of Y. One has

X(A) = {x € Y(A)| there is a fppf-A-algebra B with x € X(B)}.

It is c¢lear in a situation as in (1), but can be proved
also in the general situation, that taking the associated faisceau

commutes with base change:

(5) Let X be a k-functor and k' a k-algebra. Then (%)

ig the faisceau associated to xk,.

3.5 (Images and Quotients) ILet £: X + Y be a morphism of
k-faisceaux., The subfunctor A+ im(£f(A)) = £(A)X{A) of ¥
satigfies obviously 5.3(2). So 5.4(4) yields a rather precise
description of the associated faisceau which is called the image
faisceau of f. We shall usually denote this associated faiscean
by £(X) or im{f). 8o in general £(A)X(A) is properly

contained in Ff(X)(A).

Notice: If X 4is a subfunctor of some k~functor Y and if
both X and Y are faisceaux,then X(A) = X(B) n ¥Y(A) £for each
k-algebra A and each fppf~A-algebra B. This is obvious from

the description of X(A) as the kernel of X(B):tX(B@AB}-

Now let G be a k-group faiscean and HE G a subgroup
faisceau, i.e. G is a k~-group functor and H is a subgroup
functor such that both are faisceaux (as functors). Then the
functor Ar+r G(A)/H(A) satisfies 5.4(1). This is clear for the
part about direct broducts. If B is an fppf-A-algebra and if

g,9' € G(A) have the pioperty gH(B) = g'H(B), then



- 102 -~

g_lg' € G(A) n H(B) = H(A) as observed above. Therefore G(A)/
H(A) + G(B)/H(B) is injective. We call the faisceau associated

to Ar> G(A)/H(A) the quotient faisceau of G by H and denote

it by G/H. (So in general (G/HXA) # G(A)/H(A)). Obviously

the universal property of Xe+ X shows that (G/H,x) where

x: G > G/H 1is the canonical map G(A) + G(A)/H(A) + (G/H)(A)

has the universal property of a quotient within the category of
{k-faisceaux}. We know by 5.4(3) that the canonical map G{(A})/
H(A) + (G/H)(A) 1is injective for each A. This can be expressed

in the following form: Consider the fibre product Gx G with

G/H

regspect to w (twice). Each (Gx G) (A) conslists of those

G/H
(g,9') € G(A)xG(A) with n(g) = x(g'), hence (by the injectivity)
with gH(A) = g'H(A). Therefore the maps G(A)xH(A) + G(A)xG(A)

with (g,h)+(g,gh)induce an isomorphism

(1) GxH =2 Gx . /s Ge

/H
Suppose G acts from the left on a k~functor X satisfying

5.4(1). Let x € X(k). Then the subgroup functor StabG(x) of

G 1is a faisceau where
stab,(x)(A) = {g € G(A)|gx = x}

for all A. We may identify the functor A G(A)/Stabs(x)(A)
with a subfunctor of X. Suppose now that X is a faisceau. Then
the associated faisceau G/StabG(x) can be identified with a
subfunctor of X. More precisely the morphism LI G » X,

g+ gx factors through G/StabG(x) and induces an isomorphism
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(2) G/StabG(x) = im(ﬁx)

onto the image faisceau of Ty which is also called the orbit

falsceau of x.

We can define for each 9peration of a k-group faisceau G
on a k-faisceau X (say from the right) a gquotient faisceau X/G
as the associated faisceau of the functor A~ X(A)/G(A). 1In
general this functor will not satisfy 5.4(1) so in general the '
description of X/G is more complicated than what is done in

5.4. If however each G(A) acts fixed point free on X(a),

then 5.4(1) and 5.4(3) hold and one has similar to (1) an
isomorphism XxG > Xxy/gX+ One has always (%/6) (k) = X(k)/G(k)
if k is an algebraically closed field, e.g. by [DG], III, §1,
*1.15. Take such k and assume X(k) and G{k) to be varieties.
In general there will be orbits of G(k) on X(k) which are not
closed. Then X(k)/G(k) cannot be a variety such that the
canonical map X(k) + X(k)/G(k) is a morphism. Therefore in this
situation‘ X/G 4is not a scheme. It is only for very nice

operations (like a subgroup on a whole group) where the quotient

faisceau leads (most of the time) to the quotient scheme.

Let us mention one special case. Take G,H as above and
let H operate on some k-faisceau X from the left. Then H
operates on GxX from the right via (g,x)h = (gh,hnlx). This
operation is fixed point free (as the operation of H on G is

H

80). Let us denote the quotient (GxX)/H by Gx X and call it

the associated bundle over G/H corresponding to X. Notice
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that the morphism GxH + G/H, (g,x)~ x(g} with x as above is
constant on the H(A)-orbits and takes values in a failsceau, hence
factors through GxHX so that we have a canonical map Byl

exPx G/H. It is easily checked that the map (g,x»—+ (g,(g,x)H)
is an isomorphism from GxX to the functor Ak G(A)x(G/H)(A)
(G(A)xX(A)/H(A). So the right hand side is a faisceau. On the
other hand its associated faisceau is GX(G/H)(GxHX). o we get

an isomorphism

(3)  @xx = Gx.,. (GxHx).

a/u’

5.6 (Quotient Faisceaux as Schemes) Let G be an affine

group scheme and H an-affine subgroup scheme. If the quotient
faisceau G/H happens to be a scheme, then it is because of 5.3(6)

also the gquotient scheme.

In general G/H is not a scheme, see the counter-examples in
[DG], III, §3, 3.3 and in [10] , p. 157. There are however some

important cases where it is a scheme which we want to mention now.

(1) If k 1is a field and if G and H are algebraic k-groups,

then G/H is a scheme.

This is proved in [DG], III, §3, 5.4. (Remember that "algebraic”
means that k{G] and k[H] are finitely generated as k-algebras.)

It is-a special case of the following:

(2) If k 1is a Dedekind ring, if G is an algebraic k-group and

if H 1is a closed and flat subgroup scheme of H, then G/H is

a scheme.
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This is proved in [ 1], Thm. 4.C.

Let us call an affine group scheme G over k finite if

k[G] is a finitely generated projective k-module. Now one has

(3) If H is finite, then G/H is an affine scheme.

This is really a special case of the following, more general result:

(4) Let X be an affine scheme on which G operates fixed point

free. If G is finite,then X/G is an affine scheme. It is

isomorphic to Spk(k{X]G).

Though not stated iﬁ this way this follows easily by combining
[pGl, III, §2, n° 4 and §1, 2.10. The results at the first place
imply that k[X] 4is finitely generated and projective as a
module over ktX]G and that X/G is a subfunctor of Spk(k{X]G).
The second result quoted implies that the inclusion k{Xlgc: kix]
induces an epimorphism X + Spkﬁk{X]G) in the category of
k~faisceawxwhile on the other hand the image faisceau is equal to

X/G.

There is in [DG], III, §2 also a discussion of the case

where X 1is not affine or where G does not act fixed point free.

5.7 (Flatness of Quotients) ILet G and H be a group

scheme such that H is a subgroup scheme of G. Let us guote from

DG}, 1II, §3, 2.5 and 2.6 the following result:

(1) If H 1is flat and if G/H is a scheme, then the canonical map

w G+ G/H is faithfully flat and affine.
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If UCG/H 1is an open and affine subscheme and if we are in
the situation of (1), then 7 1(U)C G is an affine subscheme
of G and ki{= Y(u)] 1is faithfully flat over k[Ul. If G 1is
flat, then k[+ '(U)] 4is flat over k, hence also kl[U] is

flat over k. 8So we get:

(2) If G and H are flat anf if G/H is a scheme, then G/H

is flat.

2.8 Proposition: Let G be a flat group scheme gver k

and H a flat subgroup scheme in k. If G/H is an affine

scheme, then H 1is exact in G.

Proof: Set R = k[G/H] = xic1®. The isomorphism GxH +

Gx G in 5.5(1) is compatible with the action of H by right

G/H
multiplication on the second factors, hence the isomorphism

k[GleRk{G} + k[Gl@ k[H] is compatible with the representation
of H via P on the second factors {(and the trivial represen-

tation on the first factors).

Iet M be an H-module. Then we can tensor the last

isomorphism'with M (over k) to get an isomorphism of H-modules
(1) M@ k[GI®k[H] = k[C]® (M@kI[C]).

As H operates trivially on the first factor k{[G], we get for

the Hochschild complex
(2) C‘(H,k[G}@R(MQk[Gl)) = k[G]@RC'(H,MOk[G]).

We know by 5.7(1) that k[G] is faithfully flat over R, hence
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(2) yields

(3) H‘(H.kic}@R(mak[Gl)) = k[G]QRH'(H,ka[G}).
Now (1), (3) and 4.7.a imply
(4) x[c]l® RH“(H,M@k{G}) =0 for all n > O.

Again the faithful flatness of k[G] over R together with 4.10

vields Rpindgm = 0 for all n > 0, hence our claim.

Remarks: 1) This proposition follows also from the inter-
pretation of the RnindgM' as sheaf cohomology groups, cf. 5.13.
2) For linear algebraic groups over an algebraically closed field
the converse of the proposition is proved in [Cline/Parshall/

Scott 3], 4.3.

5.9 Corollary: Let G be a flat group scheme over k and

H a finite subgroup scheme. Then H 1is exact in G.

This is clear from 5.6(3).

5.10 (Associated Sheaves) Let us assume from now on that G
is a flat group scheme over k and that H is a flat subgroup
scheme of G such that G/H is a scheme. Let us denote the

canonical map G + G/H by .

It was mentioned in 1.11 that there corresponds to each
scheme X a topological space |X| with a sheaf of rings.
Furthermore the open subsets of |X| correspond bijectively to
the open subfunctors of X. We can therefore describe a sheaf on

|X| as a contravariant functor from {open subfunctors of X}
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(with inclusions as morphisms) to some other category having ﬁhe
usual sheaf property for open coverings of open aubfunc;ors
(defined in 1.7(4)). For example,'the structural sheaf éz{
assoclates to each open subfunctor ¥ the ring @X(Y)W |
Mor(¥,Aly = xlvl.

We want to apply this to X = G/H and to associate to each
H-module M a sheaf Qf(M) =$Zfé/H(M) on G/H. We set for each
open subfunctor U C G/H:

(1) Z () = {f € Mor (s 'U,M_)|£(gh) = b f(g) for all

h € H(A),g € (v U)(A) and all A}.

If u_IU is affine, then we have a representation of H on
x[+ lu] by right translation. Tensoring this with the given

action we get obviously

(2) Zm(w = (kl+ tvl® m for = Yu affine,

especially

(3) oL (M) (G/H) = indgM.

If U,U' are open subfunctors of G/H with U< U' then we have
an obvious restriction map e:f(n) (u*) - Z(M) (. so LM is

at least a presheaf.

We can express the definition of faf(M) as follows. Consider
the morphisms «a: u~1(U)xH -> n“l(u), (g,h)+ gh and a':

M“xH -+ Ma’ {m,h Yy hwl

m. Then f € Mor(t"I(U),Ma) is in
x(!&) (U) 4if and only if fea = u'o(fxidu). So we have an exact

sequence
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(4) LM (0) + Mor ("1 (u), M )==3 Mor(r Yu)xH,M_).

Because of 5.3(7) the functors U+ Mor{w’l(u),na) and U
Mor(w'l(U),Ma) are sheaves, hence s0 is ‘Jf(M). It is called the

associated sheaf to M on G/H. It is obviously a sheaf of

Ggglﬁwmodules. If ¢: M+ M' is a homomorphism of H-modules, then
(5) Lo): L= L M), £ oof

is obviously a homomorphism of (gé/ﬁ—madules. So ;f> is a functor

from {H-modules} to {@G/H-modules}.

5.11 Proposition: a) The functor aZi is exact.

b) For each H-module M the égglﬂwmodule ¢2?(M)V'is quasi—-coherent.

c) If M is an H-module which is finitely generated over k, then

;f(M) is a coherent (Z)

G /H~module .

Proof: a) It is enough to show that My+<2£(M)(U) is exact
for any open and affine U< G/H. For such U also U' = n'lU
is affine and k[U'] 4is faithfully flat over k{U] by 5.7(1).
It is therefore enough to show that
(kv j@ M)

M k(U@ LAM) (U) = k[U']®

k[U] k(U]

is exact, cf. 5.10(2). The isomorphism in 5.5(1) induces an
isomorphism U'xH - U'xUU’ compatible with the right action of
H on the second factor, hence so is the corresponding

isomorphism k[U']® K[U'] = k[U'] @ k[H]. As (k[H]}® MT = M

k{u]

(cf. 3.7(6)), the functor above can be identified with Mw> M k[U'].
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This is exact, as we assume G to be flat.

b) For each scheme X and each k-module M the sheaf U+ Mor(U,Ma)
is gquasi~coherent. (If X is affine, then it is the quasi-
coherent sheaf associated to the k[X]-module k{xX]® M, cf.

Yoneda's lemma, 1.3). The sheaves U~ Mor(w‘I{U),Ma) and

U Mor(n”1U)xH,Ma) in 5.10(4) are direct images of suéh shéaves,
hence quasi-coherent (cf. [Ha], II, 5.8), hence so is the kernel

L (M), cf. [Ha], II, 5.7.

c) We have to show that Jf(M)(U) is finitely generated over
k[U] for each U C.G/H open and affine. As k[ ‘U] is faith-
fully flat over k[u] by 5.7(1) it is enough to show that
k[u”IU]GDk[U}Rf(M)(U) finitely generated over ki ‘U], e.g.

by [ 3], ch. I, §3, prop. 11. This module is isomorphic to
k{n~lU}E§M as seen in the proof of a), hence finitely generated

by assumption.

5.12 (Exampleg) Let us mention a free trivial cases. The

trivial H-module k yields (k) (U) = Mor(x Y(um), AhHY =

Mor (v~ L(uy/H, AY) = Mor(u, Al), hence

1y Zx = @

G/H’

Consider on the other hand the H-module k{H] under L

or, more generally, any M& k[H] for any k-module M regarded as
a trivial H-module. For any U< G/H open and affine we can
identify uor(«’lu,(uekm])a)a Mor((u"lmxa,ua) and the

1

H-invariance condition translates into £f(g,h') = f(gh,h- h') for

all g,h,h'. The map (g,h)r+ (gh,h) is an automorphism of
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(wwlu)xn and transfers the condition into f(g,hh') = £{g,h').
In this way o (M) (U) is identified with Mor(ﬂ—lU,Ma) =

Z?G”(u)(u"lu) = (n*-‘fG/l(M))(U). This implies

(2) L (M@k[H]) = = (M) .

* G/1

This is a special case of the following result. Let H'< H
be a flat subgroup scheme such that also G/H' is a scheme. There

is a canonical morphism =': G/H' + G/H. Then we get an isomorphism

of functors

' = A -
(3) n*o%/ﬂ, O\C;;/Holndﬂ,.

On the level of global functions this is just the transitivity of

induction 3.5(2). Theproof may be left to the reader.

5.13 Proposition: We have for all H-modules M and all

_——=

n EbJ isomorphisms of k~modules

1% 6/, L)) = (RPinal) (M),

Proof: We can interprete 5.10(3) as an isomorphism of functors
Feindy = HO(G/H,?)e &

where g is the forgetful functor from {G-modules} to {k-modules}.
In order to apply 4.1(2),(3) we have to know that QZf maps
injective H-modules to acyclic sheaves. By 3.9.c it is enough to
consider H-modules of the form M® k[H] for a trivial H-module M.

Because of 5.12(2) we have to look at all Hn(G/H,n* G/l{M))'
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But as G and v are affine we get e.g. from [Hal, III,

exerc. 4.1 and thm. 3.5 that

Hn(G/H,n*;f;/l(M)) = Hn(G,:Cg/I(M}) =0

for all n > O.

5.14 Of course 5.13 gives another approach to proposition 5.8.

————

Let us mention two corollaries which follow from well known

results on sheaf cohomology (cf. [Hal, III, 2.7 and 5.2(a)):

(1) Suppose that G/H is noetherian. Then Rnindg = 0 for all

n > dim G/H.

(2) Suppose that k 1is noetherian and that M is finitely

generated over k. If G/H is a projective scheme,6 then each

Hn(G/H,zf(M)) = Rnindgm ig a finitely generated k-module.

One can use 5.13 also to get new approaches to earlier results.
For example 5.12(3) yields at first isomorphisms of derived
i, = i H
functors (R n*)o;f;/H, Qf;/ﬂo(R indH,), cf. [Andersen 2],
1.2, and then we get 4.5.c¢ from the Leray spectral sequence

HJ(G/H,Rin;?)=4>H1+3(G/H',?).

5.15 (Associated Sheaves and Bundles) The associated sheaves

:f(M) can also be described using the associated bundle GxHMa
as in 5.5. Set T(U,GxHMa} for each open U< G/H equal to
the set of all morphisms s: U + GxHMa with T8 = idu, i.e.

of all sections of Ty over U. (Here L is the L from
a

5.5.) We claim that we have for each such U a canonical bijection
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(1) LU 3 r(u,efM ).

Any f e Z(M)(U) is a map f£: 7 ‘U +M_, hence defines a
map flz n-lU + GJHMa with ﬂﬁofl = 7 by mapping any g € n~lU
at first to (g,f(qg)) € GxM, and then to its canonical image in
GQHMa. This map f1 is obvious constant on H~-cosets, hence
factors through n.IU/H which we can identify with U wvia .
{Note that gflu is an open subfunctor of G, hence a scheme,
hence a faisceau so that w_lU/H makesiZESQis equal to U.)

The factorisation f: U ~+ GXHM satisfies 1w _ofew = 7w, hence
a

H

“M°E = id;,, 1i.e. £ € r(u,Gx M) .

Consider on the other hand s € F(U,GXHMa). Take the isomorphism

a: GxG/H(GxHMa) > mea from 5.5(3). Combining the map gv {(g,s(g))

from % U to Gx (GxHMa) with o and then the second

G/H

projection GxM_, » M_ we get a morphism s,: lu - M_. It can

1
now be checked that N € If(M)(U) and that the maps S s1
and fr+ f are inverse to each other. See [Cline/Parshall/Scott 9],
1.3 for more details. (In down to earth terms sl(g) is for any

g € v-lU(A) the unique element in M@®A such that s(x(g)) is

the class of (g,sl(q)}-

5.16 (Pull-backs) Let o¢: G* + G be a homdmorphism of k—-group
schemes and let H' be a subgroup scheme of G' with @(H')c H.

Suppose that G'/H' 1is a scheme.

The universal property of G'/H' yields a morphism
®: G'/H' + G/H with 169 = gor' where =: G » G/H and 17':

G' + G'/H' are the canonical maps. We can now form for each
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H-module M the inverse image sheaf 5’ G/H(M). On the other hand

we can consider M via @tH, as an H'-module and form ;ZTG,/H,(M).

We claim that these sheaves of G,/H,~modules are isomorphic :
i -
1) F L =L, ).

One can show that the inverse image of the sheaf Us~ P(U,GXHMa}

is the sheaf - U'%—r r(U',G'/H'xG/H(GxHMa)). One can check that

Hl

there is an isomorphism G'x Ma + G'/H'x GXHMa) of the form

o/’
(g',m)H'> (g'H',(0(g'),m}H). (Details may be left to the reader.)

From this we get (1) using 5.15.
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6. Factor Groups

If G is a k~-group faisceau and N a normal subgroup faisceau
of G, then G/N is again a k~group faisceau and has the
universal property of a factor group. This and related things are

described in 6.1/2 following [DG].

In this chapter we discuss the relation between the represen-
tation theories of G}N and G/N under the assumption that they
all are flat group schemes. The results are usually generalizations
of known theorems in the case of abstract group theory like e.q.
the Lyndon-Hochschild-Serre spectral sequence in 6.6 or the

Clifford theory in 6.14/15.

More or less all necessary references have been given before.

Let me add that 6.11 generalizes 3.1 in [Andersen/Jantzen].

6.1 (Factor Groups) Let G be a k-group faisceau and N a

normal subgroup faisceau of G. Obviously A& G(A)/N{(A) is a
k-group functor. Then so is the associated faisceau G/N. This
follows (on one hand) from the universal property (cf. [DG],

ITIT, §3, 1.2) and is (on the other hand) clear from the construc~-
tion in 5.4/5: PFor any g,g9' € (G/N)(A) there is an fppf-A-algebra
B with g,g' both in the kernel of G(B)/N(B)—=3 G(B® ,B)/N(B®,B).
As these maps are group homomorphisms also gg' and g»l belong

to the kernel. This yields easily the group structure on each

(G/N) (A). Furthermore it is simple to see that all maps (G/N) (A)

+ (G/N)(A') and G(A) + (G/N)(A) are group homomorphisms.

Hence G/N is a k-group faisceau and the canonical map =: G + G/N
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is a group homomorphism. We call G/N the factor group of G

by N.

Note that G/N has the universal property of a factor group:
If ¢: G+ G' is a homomorphism of k-group faisceaux with
NC ker(¢), then there is a unique group homomorphism g: G/N + G'
with gex = ¢. (As ¢ is constant on the N-cosets, the universal
property of G/N as a quotient faisceau gives the existence of ¢
as a morphism. It is immediate from the construction that ® is
a group homomorphism. This follows alsc from the uniqueness of

®.)

For any homomorphism ¢: G + G' of k—-group faisceaux the
kernel ker(p) is a normal subgroup faisceau of G. We can
identify G/ker(y) with the image faisceau im(¢) which is a
subgroup faisceau of G'. This is really a special case of an
orbit faisceau as we can make any g € G(A) operate on G'(A) as

multiplication with ¢(g).

o

.2 (Product Subgroups) Let G be a k-group faisceau and

}i

let

n

;N be subgroup faisceaux of G such that H normalizes

N. We can then form the semi-direct product H®N and have a
natural homomorphism H™N - G, (h,n)++ hn with kernel isomorphic
to the intersection H N N {(cf. 2.6). Both HxN and H NN

are k-group faisceaux. We denote the image faisceaux of the
homomorphism H#N - G by HN and call it the product of H and

N. It is a subgroup faisceau of G with

(1) (HpeN)/(H n N) = HN.
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(2) (HN)(A) = {g € G(A)| there are an fppf-A-algebra B and

h € H(B), n € N(B) with g = hn in G(B)}.

Obviously N is a normal subgroup faisceau of HN. The canonical
homomorphism HN -+ (HN)/N has kernel N, hence its restriction to
H has kernel H N N. We get thus an embedding H/{(H n N) =

(HN) /N which has to be an isomorphism: For all g,h,n as in (2)
the element h(H(B) n N(B)) defines an element in (H/H n N)) (&)
which is mapped to gN(A). Therefore all (HN)(A)/N(A) are in
the image, hence all ((HN)/N)(A) in the image faisceau. So we

get the isomorphism theorem
(3) H/(H n N) - (HN)/N.

Suppose now that N is normal in G and let 1a: G > G/N be
the canonical map. Let us denote by =1(H) the image faisceau of

"lH‘ Then
_ =1
(4) HN = v “(w(H))

Indeed, if g € n “(w(H))(A) then there is B (fppf over A)

with =x(g) € =(H(B)), hence h € H(B) with gh '

€ Rexr(w) (B) =
N(B) and g € (HN)(A) by (2). The other inclusion is even more

obvious.

If HD N, then obviously HN = H and H = 1 '(x(H)). So
we have for normal N the usual bijection between {subgroup

faisceauxof G containing N} and {subgroup faisceaux of G/N}.
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Furthermore one can then show (for H > N) that H is normal in G
if and only if H/N is normal in G/N and that one has a
canonical isomorphism (G/N)/(H/N) > G/H of faisceau which is a

group isomorphism, i1f H 4is normal, cf. [bG}, 1II, §3, 3.7.

6.3 (G/N-modules) Let us assume from now on until the end of
this chapter that G is a flat group scheme over k and that N

is a normal and flat subgroup scheme of G.

Via the canonical map w: G + G/N any G/N-module M is in a
natural way also a G-module. We denote this G-module by #*M in
case a special notation is useful, otherwise we simply write M.
Obviously F is a funétor from {G/N-modules} to {G-modules}

which is exact and faithful, i.e. we have for all G/N-modules M,M':

{1) Hom (M, M') = HomG(u*M,n*M').

G/N

(iny g € (G/N){(A) has a representative g € G(B) with B fppf
over A. If ¢ € HomG(rr*M,n*M'), then ¢® idB commutegwith g,
hence ¢ @ id, with g as M® A 1is mapped injectively into

M®B.)

The image of »* consists of all G-modules V on which N
operates trivially. For such V the k-group functor Ar+r G(A)/N(A)
operates naturally on Va and this operation can be extended
uniquely to the associated faisceau G/N as Va igs itself a
faisceau. This follows from the universal property of G/N and

also from its explicit description in 5.4/5.

The full subcategory of all G-modules on which N operates
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trivially is obviously an abelian category. So we see that the
category of all G/N-modules is an abelian category even without
knowing whether G/N is a flat group scheme (what we needed in

2.9) or not.

N is a G-submodule

6.4v For any G-module V the subspace V
of V be 3.2 on which N operates trivially. We therefore can
regard VN as a G/N-module and Vi VN as a left exact functor

from {G-modules} to {G/N-modules}.

Lemma: The functor Ve V' from {G-modules} to {G/N-modules}

is right adjoint to «*. It maps injective G-modules to injective

G/N-modules. The category of G/N-modules contains enough injective

objects.

Proof: We have for any G/N-module M and any G-module V

M, V)

HomG(w*M,V) = HomG(n*M,VN% = HomG/N

by 6.3(1) where the first isomorphism is induced by the inclusion
VN<: V. This shows that Ve VN is right adjoint to the exact
functor u', hence also that injective objects are mapped to
injective objects. Any embedding of =*M into an injective G-module
Q induces an embedding of M into the injective G/N-module QN.

Therefore {G/N-modules} contains enough injective objects.

Remark: We can generalize the above as follows. Let E be
a G-module which is finitely generated and projective over k.
Then Mr+ " (M)®E is an exact functor from {G/N-modules} to

©-modules}. The functor Vi Homy(E,V) = E*oY, cf. 2.10(6),
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is right adjoint to it. It is therefore left exact and maps
injective G-modules to injective G/N~modules. Indeed, one has for

any G-module V and any G/N-module M

]

N N
Hom M, (E*®V)") = Hom (M, (E'®@V)") = Homg (M,E*® V)

1]

HomG(MgE,V)

using 4.4 for the last step. Notice that we can regard this also
as an isomorphism of functors

(1) HomG/N(M,?)oHomN(E,?) = HomG(Mch,?).

6.5 (PFPactor Groups as Affine Schemes) Let us quote from [DG],

——
——

I11, §3, 5.6 the following result:

(1) If k is a field and if G,N are algebraic k-groups, then

G/N is an algebraic k-group.

Notice that in our convention an algebraic k-group is assumed

to be affine.

Another case where we know G/N to be affine is when N is

a finite group scheme (by 5.6(3)).
Let us recall from 5.7(2) andIS.B;

(2) If G/N 4is an affine scheme, then it is flat and N is

exact in G.

Of course in this case we do not need 6.3/4 to see that
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{G/N-modules} is an abelian category and has enough injective
objects. The functor Vi w maps Me@klel for any k-module M
to Mak[G}N = M@k[G/N] if k is a field. Therefore we can use
also 3.9.c to show that it maps injective G-modules to injective

G/N-modules (in that case).

6.6 Proposition: Suppose N is exact in G. Let E be a

G-module which is finitely generated and projective over k.

Then the derived functors of V> HomN(E,V) from {G-modules}! to

{G/N-modules] can be identified with Vi Extg(E,V). There are

for each G/N-module M and each G-module V spectral sequences

n,m _ n m n-+m
(1) Ez’ -—ExtG/N(M,ExtN(E,V)):}ExtG (M® E,V)
and

n,m _ n m n+m
(2) Ez' -ExtG/N(M,H (N,V)):_—:)ExtG (M, V)
and

(3) EX™ = g (e/N, 8™ (N, V) =" (e, V).

Proof: As N is exact in G the functor resg maps

injective G-modules to modules acyclic for the fixed point functor
?N. (Use 3.9.c and 4.10.) The composition of ?N from
{N-modules} to{k-modules}with resG

N
?/N with ?N from {G-modules} to {G/N-modules}.

Therefore 4.1(2),(3) implies that all Vi Hn(N,V)' can be regarded

is isomorphic to the compo-

gition of res

as the derived functors of Vi= VN from {G-modules} to {G/N-modules}.

The same is true for Vi Hn(N,Eca V) = Extg(E,V), cf. 4.4,
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and v (E¥@w)¥ = Homy (E, V) .

AS HomN(E,?) maps injective G-modules to injective G/N-
modules we can apply 4.1(1) to 6.4(1) and get the spectral sequenée
in (1). Taking E = k we get (2), and setting M = k yields
(3).

Remark: The spectral sequence in (3) is known as the Lyndon-

Hochschild-Serre spectral sequence.

6.7 In the special case E = k the proposition 6.6 implies
that each Hn(N,V) for any G-module V has a natural structure
as a G/N-module. This can be constructed using the Hochschild
complex. We make G act on each Cn(N,V) = V‘c.ébpk[N1 via
the given representation on V and via the conjugation action
on each factor k[N]. Then each 2" is a homomorphism of G-modules
as A and A

v
G-module.

N are so. This makes each Hn(N,V) into a

One can now check that all connecting maps Hn(N,Vf) +
Hn+l(N,V‘) for any exact sequence O + V! ; V+ V" » 0 of G-modules
are homomorphisms of G-modules. (See [Sullivan 3], 4.1 for the
case of a field.) The universal property of derived functors
(via é-functors) shows then that the G-modules H"(N,V) constructed
in this way yield the derived functors of Ve VN from {G-modules}
to {G-modules}. This functor can be written as the composition of
Vit VN from {G-modules} to {G/N-modules} with the natural inclusion
of {G/N-modules} into {G-modules}. The last functor being exact

implies that G/N-structure on Hn(N,V) given by the proposition
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must lead to the same G-structure as the construction using the
Hochschild complex.

Notice that this implies in the case G = N that the action
of G on the Hn(G,V) constructed with the conjugation action on

the Hochschild complex is trivial.

6.8 Corollary: Suppose that N is diagonalizable. Then we

have for all G-modules V and E with E finitely generated and

projective over k, for all G/N-modules M and all n € hJ

isomorphisms

(1) Extg/N(M,HomN(E,V) = Extg(MQE,V)

and

‘ n = n

(2) ExtG/N(M,VN) Extg (M, V)
and

Sv———

(3) e/, v = 5% (G,vV).

Proof: All this follows immediately from 6.6 and 4.3 as each
E1 is a projective k-module and as N is exact in G (cf. 4.6).
Remark: If we apply (3) to the G-module n*M, then we get

(4) B (G/N,M) = H®(G,M).

6.9 Corollary: Suppose that G/N is a diagonalizable group

scheme. Then we have for all G-modules V and E and for all

G/N-modules M with E,M projective over k _and rkk(E} < w
isomorphisms for all n € N :
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(1) HomG/N(M,Extﬁ(E,V)) = Extg(MQE,V)
and

(2) Hom.,. (M,A%(N,V)) = Extg(M,V)

G/N
and

(3) BN, YN = gc,v).
Proof: As G/N is affine, hence N exact in G, we can
apply 6.6. The formulas follow now immediately from 4.3.

Remark: Suppose G/N = Diag{(A) for some abelian group A.

We have by 2.11(3) decompositions

(4) Extg(E,V) = @ Ext;;(E,V)A
AEA

{for all ne N). The map @+ @(1) is for any G/N-module M’
an isomorphism HomG/N(kA,M') > Mi , cf. 2.11(4). We can there-

fore identify the direct summands in (4),(1) and 4.4 as follows:

(5) Ext{;(E,V))L = Exté(E@ A, V) = Exté(E,V@(ﬂ\)).

#ie use the convention E® A = E® kx etc.) In the special case

E =k we get (for all 2 € A and nEN)

(6) H(N,V), = H'(N,V®(-1)).

6.10 Proposition: Let H be a flat subgroup scheme of G

with N« H. Suppose that both G/N and H/N are affine. Then

one has for each H/N-module M and each n el an_isomorphism

of G-modules
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n G - n, .G/N
(1) (R indH)M {R lndH/N)M’

Proof: Let 7: G-+ G/N and «': H > H/N be the canonical
maps. Our claim ought to be formulated as an isomorphism of

functors:

' n G A SRS S ;| G/N
{(1') (R indH)ou 1 OR indH/N'

Let us consider at first the case n =1, i.e. get an

isomorphism
G - G/N
(2) indH(M) indH/N(M).

The right hand side is a subset of Mor(G/N,Ma) which we may
identify with Mor(G,Ma)N because of the universal property of

G/N. (Remember that Ma is a faisceau.) 2any f € Mor(G,Ma)

G/N
H/N

f(gh) = h"Y£(q) for all g € G(A), h € H(A), n € N(A) and all A.

will belong to ind (M) 4if and only if £(gn) = £(g) and
As N(A) < H(A) operates trivially on M&A we can drop the
first part of the condition. The second one alone describes just
indg(M) so that we get (2). As above we ought to have formulated

this as an isomorphism of functors

G/N

(2') 'indgon' = q OindH/N.

This formula implies (1) using 4.1(2), (3) as soon as we can
show that =»'" maps injective H/N-modules to H-modules acyclic
for indg. By 3.9.c it is enough to look at H/N-modules of the

H

form Q®&k[H/N] = indl/N(Q) for injective k-modules Q. Applying

(2) to (H,N) instead of (G,H) we can identify v’*(indﬁqu)
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with indg(Q) where we regard  as a trivial N-module.

By our assumption N is exact in H and G. The spectral

sequence 4.5.c yields therefore
(3)  (R™ind?) o(indll) = o for all n > O.

This certainly implies the required acyclicity of indg(Q)

above, hence (1l).

Remark: We use often only the following part of the proposition:
Let M be an H~module. If N operates trivially on M, then

it operates trivially also on indgu and even on all (Rnindg)u.

6.11 The isomorphism in 6.10(2) can be regarded as a
of a

special case/more general statement which we are going to prove

now.

Proposition: Iet H be a flat subgroup scheme of G.

Suppose both G/N and H/(H N N) are affine schemes.

a) The functors F,, E, from {H-modules} to {G/N-modules} with
{G/N-modules} with
- G, N
E, (M) = (ind M)

and

_ G/ NN
E,(M) = indghh oo 0™

are isomorphic.
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b} For each H-module M there are spectral sequences

(1 Y™ = 5Py, R naluy =DM )m
and
nm _ ,.n._.G/N m n+m
(2) E,'" = (R indH/(KnN)H (HNN,M) =>(R F,)M.

Proof: a) Let #: G > G/N and «': H » H/(HNN) be the

G = * G/N

. ok
canonicalkmaps. Obviously resyem T reSH/(HnN)‘

This yields

an isomorphism of the adjoint functors, i.e. of F and gz.

1
b) Both §1 and 22 are compositions of two left-exact functors.
It is enough to show that the first one maps injective objects
to acyclic objects with respect to the second one. Then we can

apply 4.4(1).

The functor indg maps injective H-modules to injective
G-modules (3.9). This gives the claim for gl’ Notice that we
have to apply 6.6 in order to regard the Hn(N,?) as derived

functors on the cateqgory of G-modules.

In the second case we have to apply 6.4 to (H,HNN) instead

of (G,N).

Remark: Notice that a) implies Rpgl = Rpgz for all uo,

so the two spectral sequences (1) and (2) have the same abutment.

6,12 Proposition: Let H be a flat subgroup scheme of G

such that HN is an affine scheme. Then there are isomorphisms
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of functors

HN BN N
N aindH HON

&
5
L

(1) res

and

N

H
ind oreanN.

HNN

Rk

(2) resﬁNaindgN

Proof: Let H' be the kernel of the obvious homomorphism
HXN > G which can be identified with H n N via h~ (h,h"1),
cf. 2.6. We have an isomorphism (H»cN)/B' = HN, 80 HN 1is by

our assumption and by 6.5(2) flat.

et M be an H-module and M' an N-module. Because of
H' n N=1=H' NH (in HKN) we get from 6.11.a isomorphisms

indg" (M) = (indg"‘NM)H' and indah(M') = <1nd§°‘Nm')H'.

Now 3.8(2),{3) vield

] 1
indl ' = (k[NJem)"  anda inal (') = (k[ul® My
Here any h € H(A) and n € N(A) operate via pc(h)ﬁ n
resp. pz(n)a 1 on k[N}j® M where P is the conjugation
action. If. h € H(A) n N(A), then (h,h™}) € H'(A)  acts

therefore as pr(h)sh. So N and H NN act on ki(N]J®&M

N

as in the definition of indHnN’

This yields (1).

Similarly, any h € H(A) will operate on k[H]®M' as in

the definition of indgnN(M'). Some (n,n"') € H'(A) with
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n € N(A) N H(A) will not operate in that way, but the set of

fixed points will be the same. (Regarding f € klHlgM' as

1

morphism H + M_, then (m,nHem = ety Fmer " ) L)

From this we get (2).

Remark: Suppose that also H/(H N N) is affine. Then

N

gy 2%

resgnN maps injective H-modules to modules acyclic for ind

(RnindgnN) (Qeklal) = 5™ EMN,Q@k[HI® KIN])

Rk

(Rnindgnn) (0@ k[N]) =0

for all n > 0 and all k-modules Q. We therefore get from (1)

and 4.1(2),(3) isomorphisms of derived functors (for each n € N

HN
N

N H

(3} res qoN CSann”

RindfM = %ind
In (2) the higher derived functors are 0 {for H/(HNN) =

(HN)Y/N affine).

6.13 Keep the notations of 6.12., The inclusion of H into
HN induces by 6.2(3) an isomorphism H/(HNN) = (HN)/N. Similarly
one can show that the inclusion of N into HN induces an
isomorphism of faisceaux N/(HNN) = (HN)/H. (One can regard

(HN)/H as an orbit faisceau of N, cf. 5.5(2).)

Suppose now that these quotient faisceau are schemes. Then
any N-module M' resp. any H-module M defines a sheaf

] . N
:i(HN)/N(M ) resp. ;f(HN)/H(M) as in chapter 5. The isomorphisms
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03 I ] . N ‘ ~
above identify it with ;Z;/(HHN)(reanNM ) resp. °;f;/(nnn)
(resH M). This is a consequence of 5.16(1). Using 5.13 one

HNN
gets another approach to 6.12(3) and the symmetric statement

with H and N interchanged.

This can be generalized as follows: Let H,H' be flat
subgroup schemes such that the multiplication map m: HxH' -+ G
has image faisceau equal to G. Then one gets an isomorphism of
faisceaux H/(HNH') > G/H'. If these quotient faisceauxare

sheaves, then one gets as above

H H'

G n. .G . _.n
«R 1ndH, R indHnH,oreanH,.

(1) resH

A (slightly) more general result is proved in [Cline/

Parshall/Scott 9], 4.1.

6.14 Any g € G(k) operates through conjugation on each

N(A). We can define for each N-module V another N-mddule gV,
the module twisted by g, by taking the same k-module but by
making any n € N(A) act as g"lng acts on V. Then obviously
g(g‘v) = (ggf)v for any g,g9' € G(k). Furthermore Oy =y

for all n € N(k): The action of n on V gives the isomorphism.
More generally, if V is an N-submodule of a G~module M, then

gV is another N-submodule of M which is isomorphic to Iy.

Suppose from now on that k is a field. Any N-module V
is simple (resp. semi-simple) if and only if gV is so. This

implies:

(1) If M is a G-module, then soc /M 1is G(k)-stable.

N
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et L,M be G-modules with dim(L) < «. Then Hom(L,M) =
L* ® M 1is also a G-module and HomN(L,M) = (L*Q; M)N is a
G-submodule, cf. 6.3/4. The map ¢ ®x+ ¢(x, £from Hom(L,M)® L
to M is easily seen to be a homomorphism of G-modules. There-

fore 2.14(3) implies

(2) If L is simple as an N-module with End (L) = k, then we

have an isomorphism HomN(IuBUQ;I.= (socNM)L of G-modules.

6.15 We call G(k) dense in G if there is no closed
subfunctor X < G with X(k)> G(k) and X # G, c¢f. the
definition of closuresin 1.4. If k is an algebraically closed
field and G is a reduced algebraic k—-group, then G(k) is
dense in G (by Hilbert's Nullstellensatz). The same is true
for G reduced connected and algebraic over any infinite perfect
field ([Bo], 18.3). For reductive G one may even drop the

assumption "perfect”.

Proposition: Suppose that k is a field and that G(k)

is dense in G. Let M be a G-module.

a) The N-socle socNM is a G-submodule of M.

by If ' M is a semi-simple G-module, then M 1is also semi-simple

for N.

Proof: As G(k) is dense any subspace of M is by 2.12(5)
a G-submodule if and only if it is G{k)-stable. Hence {(a)
follows from 6.14(1). If M # 0, then socNM #F 0 by 2.14(2).

Therefore (b) follows from (a).
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flat
6.16 Let ¢: G~ G' be a homomorphism of/group schemes.

Each G'-module M is in a natural way alsc a G-module. This
yvields an exact functor w* fram {G'-modules} to {G-modules]}.

In two special cases we have constructed a left adjoint functor

GI
GI
induces an isomorphism G/ker ¢ > G', then o, =7?

9. : When ¢ 1is an inclusion, then e, = ind and when ¢

*

ker(e) 1

general ¢ 1is a composition of maps of this type ([DG], III,
§3, 3.2) so we get such a left adjoint in general. See [Donkin 1],
section 3 or [Cline/Parshall/Scott 6], 1.2 for a unified treat-

ment.
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7. Algebras of Distributions

Over a field of characteristic O the representation theory
of a connected algebraic group G 1is very well reflected by the
representation theory of its Lie algebra g. Any representation
of G gives rise to a representation of g. Then the notions
of "submodule", "fixed point" or "module representation" give the

same result whether applied to G-modules or to g-modules.

This is no longer true in characteristic p # 0. Still any
G-module yields a g-module in a natural way, but now there may be
g~submodules which are no G-submodules, or g-homomorphisms which

are no G-homomorphisms, etc.

It is however still possible to save some of the advantages
of the linearization process (of going from G to g) by looking
not only at g but at the algebra Dist(G) of all distributions
on G with support at the origin. (See 7.1 and 7.7 for the
definition.)

In characteristic O it will not contain more information,
as then Dist(G) is isomorphic to the universal enveloping algebra
of g. This is no longer true in characteristic p # O and
there Dist(G) will do everything that g does not do (7.14 -

7.17).

In this chapter we give at first the definitions of distributions
with support in a rational point on an affine scheme, prove

elementary properties and then go over to distributions on group
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schemes with support in the origin.

The definitions and results are more or less contained in
[DG], [T] and [Y]. In [T] and [Y] there are many more results
on distributions on schemes over a field than I could include
here. 1In some cases it was necessary to extend their results

from fields to rings. There [Haboush 3] was very useful.

7.1 (Distributions with support in a point) Let X be an

affine scheme over k and x € X(k). Set I, = {f € k[X]|£f(x) = 0O}.

Then k[X] =kl & Ix =k @ Ix'

A distribution on X with support in x of order < n

is a linear map wu: k[X] » k with u(12+1) = 0., These distributions

form a k-module which we denote by Distn(x,x). We have

(1) (k[x]/xﬁ“)* = pist_(X,x) € k[X["

Obviously Disto(x,x) = x¥ = x and for any n

(2) Dist_(X,x) = k @ Dist;(x,x)

where

{u € Distn(X,x)lu(l) = 0} = (Ix/I§+1)*'

il

(3) Dist;(x,x)

For each yu € Distn(x,x) we call p(l) its constant term and

elements in Dist;(x,x) are called distributions without
constant term. The k-module Dist;(x,x) = (Ix/Ii)* is called

the tangent space at X in x and denoted by Txx. (Cf. [DG],

11, §4, 3.3 for another description.)
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The union of all Dist (X,x) in k[x1* is denoted by
Dist(X,x) and its elements are called distributions on X with

support in x:

(4) pist(X,x) = {we k[x1*|am e N: v(@®) =01 = u pist_(x,x).
X n>0 n
This is obviously a k-module. Similarly Dist’(X,x) = U Dist, (X,x)
n>p

is a k-module.

For each £ € k[X] and p € k[X]¥ we define fyu € k[x]"
through (£u)(£;) = u(ff,) for all £, € k[X]. In this way k[x1¥
is a k{Xl-module. As each 12+1 is an ideal in k[X]; obviously
each Distn(x,x) and hence also Dist(X,x) is a k[X]-submodule

of k[X}*.

We have restricted ourselves above to the case of affine
schemes. There is however a definition available for all schemes.
One defines distributions in general as special deviations([DG],
IT, §4, 5.2), shows that all these deviations form a k-module{[DG],
II, §4, 5.4), and uses [DG], II, §4, 5.7 in order to prove that one

gets in the affine case the same definition as above.

In the case of a ground field, however, we can easily give
another description which works for all schemes. Suppose that k
is a field. Then we can associate to x € X(k) the local ring

GS;,X and its maximal ideal m.- In the affine case these are

localizations Gox,x = k[X}x and gx = (Ix)x. Furthermore the
natural map k[ x] +£29X x induces then isomorphisms k{x}/1§+1 =

4
é;;;xﬂmx)n ! for all n. So we can in general define Dist (X,x)
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as (CZ; x/(gx)n+l)*. Similarly we get Dist(X,x), Dist+(x,x),
’ ' :

+
Distn(x,x).

7.2 (Elementary Properties) Let ¢: X - Y be a morphism of

affine schemes over k and let ¢ : k[¥] > k[X] be its comorphism.
n+l

* -1 »
Then (¢ ) Ix = Iw(x) for all x € X(k), hence ¢ (Iw(x))
Ig+1 and " induces a linear map k[Y]/IﬁIi) > k[x]/I§+1. The

transposed maps for all n yield a linear map
{1) (dw)x: Dist(X,x) + Dist(Y,e(x))

with (de) (Dist (X,x))< Dist (Y,0(x)) and (de) (Dist, (X,x))

< Dist;(Y,m(x)) for all n. We get on Txx = Dist;(x,x) the

usual tangent map and call (d(p)x in general the tangent map

of ¢ in x. One checks easily d(wcw)x = (dy) odwx for

p(x)

any morphism ¢: Y + Z 1into another affine scheme.

Let X be an affine scheme over k and x € X(k). Suppose
I 1is an ideal in k{X] with x € v(I)(k), i.e. with I CLIx,
cf. 1.4 for the notation. We can then apply the construction
above to the inclusion of V(I) into X. We have k[V(I)] =
k[X1/1, +the ideal of x is Ix/I, its n-th power is (12+I)/I.

This implies that the inclusion yields isomorphisms
(2) Dist (V(I),x) = {ueznistn(x,x)lu(r) = 0}

and

(3) Dist(Vv(I),x) = {u € Dist(X,x)]|u(I) = 0},
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similarly for Dist] and Dist’. We shall usually identify both
sides in (2) and (3). If I' 4is another ideal with x € V{(I')(k),
then 1.4(5) implies

(4) Dist(Vv(I)NV(I'),x) = Dist(V(I),x)NDist(V(I'),x)

similarly for Dist, pist”, Dist;. If x € D(£)(k) for some

f € kx[X], then the canonical map k[X] + k{x}f induces an

n+l
X

D(f). Therefore the inclusion of D(f) into X induces an

isomorphism of each k[Xl/1 onto the corresponding object for

isomorphism
(5) Dist(D(f),x) = Dpist(X,x),
similarly for Distn, etc.

The constructions and results above have generalizations to
the case where the schemes are not affine. This is particularly
obvious when k 1is a field and when we can work with é%'x.
One can also generalize (5) to Dist(Y¥,x) = Dist(X,x) for any

open subscheme Y of X with x € Y(k).

7.3 (Distributions on Zfﬁ Let us consider as an example

at first X = ,Ae = Spyk[T] and x =0, hence I = (T). The
k-module k{x]/Il:'1 is free and has the residue classes of

1 =10, 7 = !, p?

,...,Tn as a basis. Define Yn € k{TI*=
k[A'1* through v (T") =0 for n#m und v, (T = 1.
Then obviously Dist({ AI,O) is a free k-module with basis

l . .
(Ym)meN and each Distn( A 0) 1is a free k~module with basis

(v )

m’ 0<m<n’ If k is a field of characteristic O, then obviously
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() ™) (0) .

2|

Yp(£) =

This can be easily generalized to AT = Spkk{Tl,...,Tml

for all m., For each multi-index a = (a(l),a(2),...,a(m)) € me

set Ta = Ta(llTa(z)_‘.Ta{m)

1l 2 m
map with Ya(Tb) = 0 for all b Eihlm, b #a and ya(Ta) = 1,

and denote by Ya the linear:

One checks easily that Dist(ﬁcnﬂn is free over k with all

Y as a basis and that Distn(ﬁ\m,O) is free over k with all

o

Yy, .with |al <n as a basis. (For a as above set |a] =

a(i).) If k 1is a field of characteristic 0, then
1

hetd o

a({l)

3
) (55-)
T, T,

a(2) 3 a{m)
. e (-5'.17—) £) (0).

m

1
Ha(i)!

Y, () = «

If k is a field, then any Dist(X,x) will only depend on

the gx—adic completion of CZ; X So for a simple point x all
’

Dist (X,x) and Dist(X,x) will look like Dist (A™,0) and
Dist(}\m,O) where m = dim X, cf. [DG], I, §4, 4.2.

7.4 (Infinitesimal Flatness) Let X be an affine scheme

over k and x € X(k). We call X infinitesimally flat in x

n+l
X

{or, equivalently, projective) k-module. (In [Haboush 3] this

if each k{[x}l/1 with neN isa finitely presented and flat

property is called "infinitesimally smooth". As obviously over a
field any algebraic scheme (cf. 1.6) has this property, I think

that name to be not appropriate.)

If X is infinitesimally flat in x, then also each

Ig/lﬁ with n <m is finitely generated and projective and
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each 12 is a direct k-summand of k[X].

Let k' be a k-algebra. Any x € X(k) defines a point in
X(k') = X, (k') with ideal I @k'cC kixle®k' = k*'[x ,1.

Then k'{xk,ll(lx@k') %

& k'. Now ring extension
commutes with taking the dual module as long as the module is

finitely generated and projective. So we get:

(1) If X is infinitesimally flat in x, then X, is

infinitesimally flat in x for each k-algebra k'. .There are

natural isomorphisms Distn(x,x)® kY = Distn(xk,,x) and

Dist(X,x)®k' = Dist(xk, $X) .

Of course, we use here the letter x also for the image of x

in Xk.(k') = X(k').

Consider two affine schemes X,X' and points x € X(k) and
X' € X'(k). Then the ideal of (x,x') in k[xXxx'] = k[xX1®k[x']

= ' y '
is I(x,x'} Ix@k[x]+k[x]g}:x,. If X and X are

infinitesimally flat in x resp. x', then I?zlx,) can be
n+l . . '

identified with 5 I) @ 127" and then with
3=0

n . .
n (k[x1& I::fl”} + Ii’”@ k[X']). Now some elementary considerations
j=0

vield:

(2) If X and X' are infinitesimally flat in =x resp. x',

then XxX' is infinitesimally flat in (x,x'). There is an

isomorphism Dist(X,x) ® Dist(X',x') = Dist(XxX',(x,x'})) mappin

n
I Dist_ (X,x) & Dist (X',%') onto Dist (XxX'(x,x')) for
n=0 m n-m — n —_
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each n € PJ.

We can apply (2) to X' = X. Consider the diagonal
morphism SX: X » XxX, % (x,x). Let us regard the tangent map
(d&x) as a map A! _: Dist(X,x) - Dist(X,x)® Dist(X,x}). It

b 4 X, x
makes Dist(X,x) into a coalgebra, i.e. satisfies 2.3(1) as

(idxax)osx = (6xxi&)oax. This coalgebra is cocommutative, i.e.

4 - ¥ = .
soAx,x Ax*x where s(fl®f2) f2®f1. The map €} frr £(x)

is a counit, i.e. satisfies 2.3(2). If ¢: X+ ¥ is a morphism,
then (dcp)x is a homomorphism of coalgebras, as (@xm)oax =

éYom. S0 we have seen:

(3) If X 4is infinitesimally flat in x, then Dist(X,x) has

a natural structure as a cocommutative coalgebra with a counit.

Tangent maps are homomorphisms for these structures.

7.5 2an affine scheme X 1is called noetherian, if k[X]
is a noetherian ring, and it is called integral, if k{[X] is an

integral domain.

Proposition: Let X be an affine scheme over k and

X € X(k). Let I,I' ideals in k[X] with x € V(I)(x) n V(I')(x).

If V(I) 4is integral, noetherian and infinitesimally flat in x,

then:

V(I) < V(I')&—> Dist(V(I),x) . Dist(V(I'),x).

Proof: If V(I) < V(I'), then I'< I by 1.4(3), hence’

Dist(V(I),x) < Dist(V(I'),x) by 7.2(3).
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Suppose now Dist(V(I),x) < Dist(V(I'),x). We want to show

(1) I'c I+ I§+1

for all n € hJ. If not, then (I'+I§+1+I)/(I§+1+I) # 0 for
some n. Now Ix/I is the ideal of x in k[V(I)] = kIx]/1

n+l

+I) is a
bid

and its (n+l)-st power is (I§+l+1)/1. So kixl/(z1
finitely generated and projective module. For any
§+1+I), a # 0O there is some u € (k[X]/(I§+l
= Distn(V(I),x) with u(a) # 0, hence u(I') # 0 and u €&

a e (x+12*lery /(1 +I)) Y

Dist(V(I'),x). So we get a contradiction and have established (1).

We can now apply Krull's intersection theorem to k[V(I)] =

k[X]/I and get I = n (I—!-I::+l

n>0

J D> I', hence V{(I}cV(I').

Remark: This generalizes obviously to the case where I is
no longer integral, but where Il contains all associated prime

ideals of 1I.

7.6 Proposition: Suppose that k is a field. Let o: X+ Y

be a morphism of algebraic schemes over k and let x € X(k).

If ¢ is flat in x, then (d¢)x: Dist(X,x) - Dist(Y,e(x))

is surjective.

Proof: Set A = é? and B = CZ7 » The flatness of

Y,0(x) XX
@ 1in x amounts to the following: Using the comorphism (we may
assume X,Y to be affine) we may regard A as a subalgebra of B
such that B is a faithfully flat A-module. This faithful flatness
n+l n+l1

implies m

Do (%) for all n € PJ, ef. [ 3 1,

ch. I, §3, prop. 9. As we assume our schemes to be algebraic
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the rings A,B are noetherian and each A/mn?i) is finite

dimensional. So Krull's intersection theorem yields

n+l _ r+l n+l
Blox) T 0o Bx T BEp(x)e

hence

n+1 r+l n+1

= f{} + N

and dim(A/mn?l)) < » implies that there is some r with
gﬁti) AN (mr+1 n Bmgti)) We can therefore embed A/mzti) =
(A+Bm ’;‘f}l{) r“)/(amﬁ’gi) ') into B/(an‘:l) mith . as k is

n+l

a field, any u € Distn(Y,w(x)) = (A/m M (x )) has an extension to

B/(Bmgri) m 1) which gives some u' € (B/mr+l = Distr(x,x).
Then obviously (dm)xu’ = u. Therefore (d¢)x is surjective.

Remark: Note that we do not claim that each Distn(x,x) is
mapped onto Distn(Y,w(x)). Indeed, it is well known that e.q.
the "classical" tangent map Txx = Dist;(x,x) -+ Dist;(Y,m(x}) =

T )Y will not be surjective in general.

o(x

7.7 (Distributions on a Group Scheme) ILet G be a group

scheme over k. In this case we set
Dist(G) = Dist(G,1).

We can make Dist(G) into an associative algebra over k.

For any u,v € k{G]* we can define a product uv as



- 143 -

(1) wv: klel-2>klglokic]l—* koK 5 k.

We have obviously uv €k[G]* and the bilinearity of (u,v)r
pv. Purthermore 2.3(1) implies that this multiplication is

associative and 2.3(2) that ¢ is a neutral element. So kIG]*

G
has a structure as an associative algebra over k with one.

It will in general be not commutative.

Now Dist(G) is a subalgebra of k[G]* with
(2) Dpist (G) Distm(G)C- Dist . (G).

n
This follows easily from the formula A(I?) < I Iﬁé&l? r,
r=0
cf. 2.4(1). (We have written here IiQBI?’r instead of its

image in k[GI® k[G].) More precisely, 2.4(1) implies

n-1
AME™) € Lef+tf@a)® + 3 e} r
r=1

for all £ € Il and n EIQ . We get therefore

(3) If u e Distn(G,) v € Distm(G), then f[u,v] = pv-vu €

Dist ., (G).

So Dist(G) has a structure as filtered associative algebra

over k such that the associated graded algebra is commutative.

We call Dist(G) the algebra of distributions on G, dropping the
addendum "with support in the origin®. (Some people call Dist(G)

the hyperalgebra of G.)
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Because of A(l) = 1®1 the subspace Dist+(G) is a two-

sided ideal in Dist(G). Therefore (3) implies [Dist(G),

+
n+m-1

is a Lie algebra which we denote by Lie(G) and call the

Dist;(G)]CZ Dist (G). This shows especially that DistI(G)
Lie algebra of G. Note that Lie(G) = TlG as a k-module, cf.
7.1. It can be shown that we have constructed the usual structure

as a Lie algebra on T.G.

1

7.8 (Examples) Let us look at first at the additive group
G = G,. As a scheme we may identify G, = Sp k(T] with ﬁ\l.
Therefore we have deécribed Dist(Ga) as a k-module already in 7.3.
Let as before Yn be the element with Yn(Tn) =1 and yn(Tm) =0

for m #£# n. We have A(T) = 1@T + T®1l, hence A(Tnv) =

n
z (n)Tiden i. This implies easily
1=o ¥

_ (n+m
(1) vpYy = (,n )Yn+m’

hence
n —

So Dist(G can be identified with the polynomial ring

a,(f)

(:{Yl}, and Dist(Ga ) with the zz—lattice spanned by all
[ 4

Z

. In general Dist(Ga) = DiSt(Ga,z_)ébg:k‘

n
"1
ni

Let us consider now the multiplicative group Gm =

Spkk{T,T’l}. Then I is generated by T~1. The residue classes

n+l
i+,
) =0 =5 ((r-1)")

1
of 1, (T-1), (T—l)z,...,(T—l)n form a basis of k[Gm]/I

n+l

There 1is a unique Gn € Dist(Gm) with an(Il
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for 0 <1 <n and § ((T-1)") = 1. From this and the binomial

development of Tt = (('1‘-—1)-!-1)n one gets Br(Tn) = (?) for all

n.EEIi and r € NJ. If k is a Gl—alqebra, then obviously
r
_ 1 )
6rf = T ((Ef) £) (1)

all &_ with r €N form a basis of Dist( ), all &

X x

with r < n one of Dist (G ). We get A(T-1) = (T-1)& (T-1) +
(T-1)® 1 + 1®(T-1) from A(T) = T&®T, hence
min{xr,s)

(3) 6.5 = =
r i=0

{r+s-1i)! 5
(r-1)l({s-1)!il "“r+s-~i

We get as a special case § = (r+1)5r+1+r5r' hence (sl—r)ﬁr =

lﬁr
(r+1)s_,, and inductively

(4) rls_ = 51(51~1)...(5

r ~r+l}).

1

8
l). Therefore pist(G

1f k is a (R-algebra, then §_ = { -

b o

C Z e
- _ . . .
[6;] and ﬁiSt(Gm,ji) is the lattice in DlSt(Gm,(;)

Z

)
i) , .
generated by all ( rl- In general Dlst(Gm) = DlSt(Gm,EZ)Qg k.
7.9 (Elementary Properties) If o: G »G' is a homomor-

phism of group schemes over . k, then
(1) da = (da)l: Dist(G) » Dist(G')

is a homomorphism of algebras. This follows easily from the
definition of the multiplication. On Lie(G) = Dist:(G) we get
the usual tangent map Lie(G) -+ Lie(G') which is a homomorphism

of Lie algebras.
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If H,H' are closed subgroup schemes of a group scheme G,
then the inclusions of Dist(H) and Dist(H') into Dist(G),

cf. 7.2(3), are homomorphisms of algebras, and 7.2(4) implies
(2) Dist(HME') = Dist(H) N Dist(H'),

similarly Lie(HNH') = Lie(H) N Lie(H'). (The same statement for
linear algebraic groups is known to be false in general. There
the intersection as varieties is considered,not as schemes as we

do here.)

We call G infinitesimally flat if it is so at 1. Now 7.4(2)

implies easily

(3) £ G,,G, are infinitesimally flat group schemes, then

——————

GIXG2 is infinitesimally flat and there is an isomorphism of

algebras over k

Dist(Gl)Gb[nst(Gz) - Dist(G1XG2).

In the case of a semi-direct product there is still an

isomorphism of k-modules.

If we take G, = G2 = G and consider the multiplication map

mg: GxG > G, then we see easily:

(4) If G 1is an infinitesimally flat group scheme over k,

then d(mG): Dist(G)&Dist(G) + Dist(G) 1is given by &(mG)(udb v)

= pv for all u,v € Dist(G).

For G as in (4) and any k-algebra k' the isomorphism
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Lie(G)®@k' + Lie(G,) resp. Dist(G)®k' = Dist(G,), ocf.
7.4(1), are isomorphisms of Lie algebras resp. of associative

algebras. Furthermore the comultiplication aé = Aé 1t
1

Dist(G) + Dist(G)@®Dist(G) can be checked to be a homomorphism

of algebras over k.

The map i.: G+ G with g g ! has as a tangent map
(cf. 2.3)

(5) cé = d(iG): uE Jeo ..

One checks easily that ¢! is an anti-automorphism of

G
Dist(G), 1i.e. satisfies cé(pv} = cé(v)dé{u) for all wu,v. 1If
G is infinitesimally flat, then ¢! is a coinverse for the

G
coalgebra structure, i.e. 2.3(3) is satisfied by (Aé,oé,ec)

instead of (A,o0,¢).

7.10 (Distributions and the Enveloping Algebra) To each

'Lie algebra g over k one can associate its universal enveloping
algebra U(g). One may consult [ 4 1, ch. I, §2, or [ 6 1, ch. 2
for the definition and the elementary properties of this object.

It has a natural filtration U,(g) =kl <U,(g) =kl &6 g <
Uz(g)cz ... where Un(g) is spanned over k by all products

X;Xpeeox,, with r <n and all x, € g.

Let G be a group scheme over k. As Lie(G) = Distz(G)
is a Lie subalgebra of Dist(G) the universal property of
U(Lie(G)) yilelds a homomorphism vy: U{(Lie(G)) » Dist(G) of

algebras which induces the identity on Lie(G). It maps
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Un(Lie(G)) to Distn(G) because of 7.7(2).

(o)

It is not very difficult to prove (cf. [DbGl, 1I, §6, n” 1):

(1) If k is a field of characteristic O and G an algebraic

k-group, then <y 1is an isomorphism U(Lie(G)) +> Dist(G) and

maps each Un(Lie G) bijectively to Distn(G).

Using this one can then show that algebraic k~groups are
smooth and reduced over fields of characteristic O, cf. [DGI,

IT, §6, 1.1.

If k is a field of characteristic p # O, then the situation
is completely different. In this case for each u € Lie(G) =
DistI(G) also its p-th power in Dist(G) belongs to Lie(G). This
is more easily seen by identifying Dist(G) with the algebra of
left or right invariant derivations of k[G] as in 7.18 below.
Let us denote this p-th power in Lie(G) C Dist(G) by x[p}
in order to distinguish it from the p-th power xF  in U{Lie G)).
The pair (Lie(G), xwr x[p]) is an example of what is called a
p-Lie algebra. (One can find the general definition in [DG],

© 3.) For any p-Lie algebra (g, xr x[p]) set U[p](g)

11, §7, n
equal to the quotient of U(g) by the two-sided ideal generated
by all xP - x{p} with x € g. This algebra is called the

restricted énveloping aléebra of g. We can still regard gq as
a subspace of U[p](g). I1f XiveosrXy is a basis of g, then
i(l)xg(z)...x;(m) with 0 < a(i) < p for all i form a

basis of U[p](g), cf. [DG], 1II, §7, 3.6. So dim U[p](g) =
dim(g)

all x

P
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By the definition of x{p} for x € Lie(G) it is clear

that <y has to factor through U{p}(Lie(G)). One can show:

(2) If k is a field with char(k) =p #0 and G an

algebraic k~group, then y induces an injective homomorphism

U{p}(Lie(G)) + Dist(G).

o

For this and for more details one may consult [bG], II, §7, n~ 2-4.

7.11 (G-modules and Dist(G)-modules) Let G be a group

scheme over k. Then any G-module M carries a natural structure

as a Dist(G)-module: One sets for each u € Dist{G) and m € M:
(1) wm = (18, @u)a,(m),

i.e. the operation of u on M is given by

By id, ®u .
(2) Me—m—> M@ k[G] ~————3 M®k > M.

It is obvious that (u,m) um 4is bilinear and it is easy to see
that u(vm) = {(uyv)m and gt = m for all m €M and u,v € Dist{G)
using 2.8(2),(3) and 7.7(1).

Obviously 2.8(4) implies for all G-modules M,M':

(3) HomG(M,M’)CZ HomDist(G)(M,M').

Applying this to inclusions we get

(4) Any G-submodule of a G-module M is also a Dist(G)~submodule

of M.

0f course on a factor module the structure as a Dist(G)-module
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coming from the G-structure is equal to the structure as a factor

nmodule for Dist(G).

The Dist(G)-structure on a direct sum of G~modules is the one

as a direct sum of Dist(G)-modules.

We get from 2.10(2):
(5) If m e M% then um = p(l)m for all u € Dist(G).
More generally, 2.10(2') implies for each i € X(G) < k{[G]
(6) If m € M,, then um = p(M)m for all u € ‘Dist(G).

For any G-module M and any 1 € X(G) we can construct the
G-module M @& kx which we usually denote by M® ). We can

identify M@®2 with M as a k-module. If AM(m) = I mi%fi,
i
then AMGx(m) = f. migxfi. This implies (cf. 7.1 for the

k[G]-module structure on Dist(G)):

(7) Any u € Dist(G) operates on M@® A as iy operates on M.

If G 1is infinitesimally flat, then any u € Dist(G)
operates on a tensor product of two G-modules through

Aé(u) € Dist(G) @ Dist(G).

Let M be a G-module which is finitely generated and
projective over k. Then M* is a G-module in a canonical way,

cf. 2.7(4). The operation of Dist(G) on M* is then given by
(8) (ue)(m) = w(cé(u}m)

for all u € Dist{(G),¢ € M and m € M.,
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If G 1is flat, then 2.13(2) implies that each m € M is
contained in a Dist(G)-submodule of M finitely generated over

k. In this sense M 1s a locally finite Dist(G)-module.

7,12 {The Case G = Ga) Let us use the basis (Tn)nEbJ

of Dist{Ga) as in 7.3 and 7.8. As k{Ga] = kiT] is free with
basis (Ti) we can write uniquely A, (m) = I m.® 7t for

i>0 M is>o ¥
and Ga—module M and m €M with almost m, = 0. Then obviously

y.m =nm for all n, i.e. A, (m) = I {(y_ m)® . So the
n n M n>o B

structure as a Dist(Ga)-module determines the comodule map
uniquely, hence alsc the structure as a Ga—module. This implies
for G = G, that there is equality in 7.11(3) and that the

converse holds in 7.11(4),(5).

In general not all locally finite Dist(Ga)~mcdules arise
from Ga-modules. If e.g. k 1is a field of characteristic O,
then one can define for each b €k a structure as Ga-module on
k where each Y, operates as multiplication with b /(x1).
For b # O this module does not come from a G,-module. If k
is a field of characteristic p # O, then we can make kz intoc a
a1

Dist(Ga)—module letting each Y; operate as (0 A) if i is of
the form Pr with rEN,r>O as 1 if i =0, and as O

otherwise. This structure does not come from Ga.

7.13 (The Case G = Gm) Let us use the basis (53:)1:_3“0

of Dist(Gm) as in 7.8. If M is a G-module and m € M, then

Au(m) = I mi&'l‘i with uniquely determined m, € M, almost all
ieZ 1
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zero. Then

(1) ,Gnm = I (ﬁ)mi for all n € bJ.
ie7Z

Remember that M = & M
ie T

in the situation above, cf. 2.11.

where M, = {m'eM|ay(m') =m'@ rt)

and that m, € M

i i

For Ayr857ceesa, E:Z pairwise different there is
£e@Qlr] with f(a)) =1, f(ay) = ... =f(a) =0 and £(l)cZ.
There are integers bj e:Z_ with £ = jzobj(§)' cf. (8t 1],
p. 16. Denote then by f the element ;éobjsj € Dist(G ).
If we apply this construction to {al,...:;r} = {i E‘Zi[mi # 0},

then we get :Ei € Dist(G ) with E£m =m,.

This shows for any Dist(G)-submodule N of M that N =
@(NnMi), hence that N 1is also a G-submodule, i.e. the converse

of 7.11(4). Also the converse of 7.11(5), (6) is true, i.e. for

all j e/ :
(2) My = {meM|s m = (g)m for a1l n eN 1.

Indeed, consider any m as on the right hand side. Take the m,
)} _ (i) .

as above. Then (n)mi = nl™y for all n € bJ. For 1 # 3

we take £ as above with f(i) =1 and f(j) = 0 and get

m1 = fmi = 0. Hence m € ﬂj.

Note that (2) implies that the Dist(Gm)—structure determines
the Gm—structure, especially that we have equality in 7.11(3)

for G = Gm.
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In general not every locally finite Dist(Gml~module arises
from a Gm-module. If k 1is a field of characteristic O and if
ae k, then we make k into a Dist(Gm)-module letting any Si
operate as (i}. For a‘EZZ this structure does not come from
Gm' If k 1is a field of characteristic p # O one can make a

similar construction with any p-adic integer a.

7.14 Lemma: Let G be an infinitesimally flat, noetherian

and integral group scheme over k. If M is a G-module which is

projective over k, then for all i € X(G):

M, = {meM{um = p())m for all u € Dist(G)}

Proof: Observe at first that there is for each x € M@k[G]

with xﬁM@I?+1 some u EDistn(G) with (idM@u)x#-o. {Use

n+l1

embeddings of M and k[G}/Il

into free modules.)

Now if um = u{A)m for all 1y € Dist{(G), then (idmgyp)
n+l

(AM(m)'-mo;\) = 0 for all yu, hence AM(m)~m8A € M® I, for
all n by the argument above, hence AM(m)—m@x € N (M®I§’+l) =
n>0
M@ ( n I?+1).( Use a split embedding of M into a free module
n>0

for the last equality.) Now Krull's intersection theorem shows that

the last term is O, hence AM(m) = m&x and m € MA.

Z.15 Lemma: Let G be an infinitesimally flat, noetherian

and integral group scheme over k. Iet M be a G-module and M'

a k~gubmodule of M such that M/M' is projective over k.

Then M' 1is a G-submodule of M if and only if it is a Dist(G)-

submodule.
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Proof: As M/M' is projective, the k-submodule M' 1is a
direct summand of M and we can identify M'@k[G] with the kernel
of M@®k[G] » (M/M')@Kk[G]. We have to show: If M' is a
Dist (G) -submodule, then AM(M‘)C: M'&k[G]}, 4i.e. the image N of
Ay(M') in (M/M')@Kk[G] is zero. Now Dist(G)M'CM' is equivalent
to (idn?éu')AM(M')c:M' for all yu € Dist(G), hence implies
(idM/M' @ u)N = 0. As in the last proof this yields

Ne o (M@t = awmuy e n 177 = o,

n>0 1 n>0

hence the lemma.

7.16 Lemma: Let G be an infinitesimally flat, noetherian

and integral group scheme over k. Then one has for all G-modules

M,M' which are projective over k, if M is finitely generated

over k

HomG(M,M') = Homnist(G) (M, M").

Proof: Under our assumption we can identify Hom(M,M') =
M*@&M', this is a G-module and projective as a k-module. As
HomG(M,M'} = (M*@M‘)G we can apply 7.14 and have to show only
that any yu ¢ Dist(G) operates on any y € HcmDist(G) (M,M') as

multiplication with u(1). But if Al(y) = Luy@ uj , then
i
uy = Zuiotpocé(ui) for all y € Hom(M,M'), hence yuy = z“i“é(“i)”’
i i

for EHQmDist(G) (M). As i“i“é(”i) = u(l}eG we get the claim.
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Remark: If M is a direct limit of G-modules to which we
can apply 7.16, then 7.16 holds alsoc for M. Hence the local
finiteness of M implies, that we can take any M in 7.16 as long
as k 1is a field. Similarly we can take for M any torsion free
k-module, if k is a Dedekind ring and G flat, as in that case

finitely generated torsion free modules are projective.

2,17 {The Case of a Ground Field) An affine scheme X over

k 1is called irreducible, if Y0 is a prime ideal in k[X]. This

is equivalent to the irreducibility of Spec(k[X]) with respect
to the Zariski topology, c¢f. [Hal, II, 3.0.1. It is integral if

and only if it is irreducible and reduced, cf. [Hal, II, 3.1.

If k 1is a field of characteristic O, then any algebraic
k-group 1is smooth, hence reduced. So in this case the notions

"irreducible" and "integral" coincide.

Suppose now that k is a perfect field of characteristic p.
If G is an irreducible algebraic k-group, then there is by [DGI,
III, §3, 6.4 an isomorphism G = XxY of affine schemes with Y
integral and where k[X] is a finite dimensional local k-algebra.

The only maximal ideal of k[X] is nilpotent., This shows that

we have n I?+l =0 in k({G]. It was for this property that we
n>0

needed G to be integral in the last proofs. 8o we see:

(1) Suppose that k 1is a perfect field. Then the results of

7.14 - 7.16 hold for any irreducible algebraic k-group.

We can use the same argument with respect to 7.5.
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(2) Suppose that k 1is a perfect field. Let G be an algebraic

k-group and H,H' closed subgroups of G. If H is irreducible,

then

H < H' &> Dist(H) < Dist(H').

7.18 (Distributions as Differential Operators) Let G be a

group scheme over k. Any operation of G on an affine scheme X
leads (cf. 2.7) to a representation of G on k{Xl, hence makes
k[X] into a Dist(G)-module. When dealing with a right operation

a: XxG + X (resp. a left operation B8: GxX -+ X), then the operation
of u € Dist(G) on k[X] 4is given by (idkixféu)aa* (resp.

oL (WS idk{x])OB*)-

There is a general notion of differential operators on a scheme,

cf. [DG], II, §4, 5.3. In the case of an affine scheme X they
can be described as follows ([DG], II, §4, 5.7): Each £ € k[Xx]
defines ad(f):End(k[X]) + End(k[X]}) through (ad(f)w)(fl) =
fW(fl)-¢(ffl), i.e. ad(f)y is the commutator of the left
multiplication by £ and of 4. Then a differential operator on
X of order < n is some D € End(k{X]) with ad(fo)ad(fl)...

ad(fn)D = 0 for all £ fn € k[X]. A differential operator

0'0.!'
on X 1is then defined as a differential operator of order <n
for some n € PJ. The differential operators form a subalgebra

of End(k[X]).

"For G operating on X 'as above, any u € Distn(G) operates
on k[X] as a differential operator of order < n as an elementary

argument shows, cf. [DG], II, §4, 6.3.
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When dealing with the operation of G on itself by left resp.
right translation, then we get an operation of any u € Dist{(G) as
a differential operator on G which commutes with the operation of
G by multiplication from the other side. This construction turns
out to yield an isomorphism of Dist(G) onto the algebra of all
differential operators on G which are right resp. left invariant
(i.e. which commute with the action of G by right resp. left

translation), cf. [DG}, II, §4, 6.5.

The conjugation action of G on itself yields a representation

of G on k[{G] which stabilizes I,, hence also all I?+1.

We get thus G-structures on all k{G}/Iﬂ'!'l

1 I
pist (6) = (k[Gl/1]"1)*, provided G is infinitesimally flat.

hence also on all

If so, then we get also a representation of G on the direct
limit Dist(G). The representation of G on Lie(G) = Dist] (G)
constructed thus is the adjoint representation of G. We use the
notation Ad for the representation of G on Dist(G) and all
Dist (G), Dist;(G) and the notation ad for the corresponding

operations of Dist(G) on itself or its submodules.

Suppose that G is infinitesimally flat. An elementary
calculation shows that the adjoint representation on Dist(G) and
the action of Dist(G) on any G-module M are related by the

formula
(1) (Ad(g)e)m = glo(g tm))

for any ¢ € Dist(G)® A&~ Dist(GA) m € M®A, g € G{A) and any A.
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Let us write down explicitly how any u € Dist(G) operates
on k[G] and Dist(G) under the conjugation resp. adjoint

action (for -G infinitesimally flat). Suppose Aglu) = Zn, @& e
i

Then the conjugation action of u is because of 2.8(7) given by

As Ac';oa('; = (cé@ Oé)°Aé the adjoint action is given by (using
7.11(8) and 7.7(1))

(3) ad (u)u' i(uigu‘EGG(ui)) °o(1d) [ 1D Ag)o A,

= 1 |

7.18 For any family (Xj)jEJ

G there is a smallest closed subgroup scheme H of G containing

of subfunctors of a group scheme

all Xj. {(Take the intersection of all closed subgroup schemes
.containing all xj.) We call H the closed subgroup of G

generated by all xj.

Proposition: Suppose that k 1is an algebraically closed field.

Let G be an algebraic k-group and let (Hj) be a family of

jeJ
inteqral closed subgroups of G. Let H be the closed subgroup of

G generated by all (Hj) Then H is inteqral and Dist(H)

jeg*
is the subalgebra of Dist(G) generated by all Dist(H

j)'

Proof: The reduced subgroup of G defined by H(k) contains
all Hy hence H is reduced. We can assume (by [DG], II, §5,

4.6 or [Bo], 2.2) that (Hj) = {HI'HZ""'HI} and that the

jEd
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multiplication map a: Hlxﬁzx...XHr + H 1is surjective on points
over k. This implies that H 1is irreducible, hence integral.
Furthermore, the theorem of generic flatness ([DG], I, §3, 3.7)
provides us with a point over k where a is flat, hence da

by 7.6 surjective on the distributions with support in that point.

A8 da in (1,1,...,1) is multiplication, the same argument as

in [Bo}, 7.5 yields
(1) Dist(H) = (Ad(hl)Dist(Hl)){Ad(hz)Dist Hz))...(Ad(hr)Dist(Hr))
for suitable hl,...,hr € H(k).

et R be the subalgebra of Dist(G) generated by all
Dist(Hi). As Hic:H for all i, also RcDist(H). Because of
(1) we have to show that R is stable under Ad{(h) for all
h € H{(k), or by the surjectivitiy of a(k) that k is an Hi~
submodule of Dist(G) for each i. By 7.15 it is enough to show
stability under each Dist(Hi) for the adjoint action. This is
now clear from 7.18(2) as Aé(Dist(Hi))<: Dist(Hi}Qg Dist(Hi) and

aé(Dist(Hi)) = Dist(Hi) for all i. .Indeed Al

)
& resp. og

regstrict to Al

H oy

and ! on Dist(H,).
i i +
Remarks: 1) There is another proof in [Y], 10.10. The

proof above follows the one in [Bol, 7.6 that Lie(H) is generated
as a Lie algebra by all Lie(Hi) provided char(k) = 0.

2) Drop the assumption that k is algebraically closed. Let K be
an algebraic closure of k. If each (Hj}K
then the claim of the proposition is still satisfied: We get from

is still integral,

[Bo]l, 2.2 that HK is the closed subgroup generated by all (Hj)K.
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- With R as in the proof we get R®K = Dist(BK) = Dist(H)@® K,

hence R = Dist(H) wusing 7.4(1).

Now (Hj)K

[DGl, II, §5, 1.1. This will certainly be satisfied, if k is

is integral if and only if it is reduced, cf.

perfect, cf. [Bo], AG 2.2.

1.20 The algebras of distributions have recently been used
by M. Takeuchi (in [ }) to give a proof of the uniqueness theorem
{and the isogeny theorem) for reductive groups without using
rank-2-computations. Let us sketch a minor modification of his

argument (using standard notions about reductive groups).

Suppose that k is an algebraically closed field. Let us
work in the category or linear algebraic groups overl_k. Let
G1,62 be reductive algebraic groups over k with maximgl tori
Tl,T2 and suppose there is an isomorphism y¢: T, » T

1 2
an isomorphism of the root data in the sense of [Sp]}, 9.1.6.

inducing

Suppose both root systems are identified and let S be a set of

simple roots. For each o € 8 let G, = Z, ((ker a)O) and
I
1

let U1 c‘,,U be the root subgroups corresponding to a.
r

1,-

Define similarly G U

2,& Z,Q'UZ'_Q’

The complete description of the semi-simple rank-l-case gives

isomorphisms wa: G + G

1,a 2,0 for all o € S with *ulTl = ¥

and y (U, ) =0, .,y (U, _)=0U cf. [Hu], 32.3.

2,"“,

Set T = {(tl,w(tl)){tl €T} and G_= {{gys9 (9,01 |9, € G ]

l,~a

for all o € S and define similarly U, U_,-
L
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Let G be the group generated by all G_ - G in G,xG,.
o 1,0 1 72

As all G“ are closed and irreducible subgroups alsc G is

closed and irreducible. We want to show that the projections

Py Glez + Gi for i = 1,2 induce isomorphisms G :;Gi‘ (That

is obviously enough.) Let us restrict to i = 1.

Now P, is surjective as G1 is generated by all G%a with
= I I Ad{g) Lie(G also dpl: Lie(G) -
gEG1 a€S

a € S. As Lie(G

1) ya)

Lie(Gl) is surjective. Therefore it suffices to show ker{pl) neG
= 1. Obviously ker(pl) NT=1. If we can show that T is a
maximal torus in G, then any normal subgroup # 1 of G inter-
sects T non-trivially, hence ker(pl) nG=1. Now TCG is
certainly contained in some maximal torus T' of G, which then

must be contained in % = P _xT.. {Note that no root of

(T)
Glez 1772
Gle2 vanishes on T.) It is therefore enough to show Dist(G) n
Dist(Tlez) = Dist(T) as then Dist(T) = Dist(T'), hence T = T!
by 7.5.

The multiplication induces an isomorphism of U, o Tlei a
r L4

onto an open neighbourhood of 1 in G, . Therefore Dist(G; ) =
I

Dist(U JDist (T )Dist(U }. Similar results hold in G and G.

1,~a 1 l,a 2
Therefore Dist(G) is the subalgebra generated by Dist(T) and
all Dist(U ) and Dist(U_ ) with o €S. If a,8 €5, a # 8,

. Di
then U)o and Uy, g commute, hence DlSt(Ul'a) and 1st(U1,_8)

do so. The same holds for U and U

2,-8" for Ua and U_

Using this and the formula for Dist(Ga) one gets

B

2,a

(1) Dist(G) = Dist(G) Dist(T)Dist(c)’
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where Dist(G)' resp. Dist(G)™ 1is the subalgebra generated by

all Dist(U ) resp. Dist(U_.) with a € S.
Using the big cell in Gle2 one gets similarly an isomorphism
induced by the multiplication

~ - +
(2) Dist(GleZ)&—-—Dist(GleZ) emst('rlx'rz)@ Dist(G1XG2)

where Dist(G) CIDist(G1XG2)- and Dist(c)’ CZDist(Glez)+ and
of course Dist(T) c Dist(T1XT2); Comparing (1) and (2) one gets

Dist(T) = Dist(G) N Dist(TIXTz) as claimed.

The isogeny theorem can be proved similarly. One simply

starts with ¢ and wa which are isogenies.

We shall look at Dist(G) for G reductive in more detail

in part II.
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8. Representations of Finite Algebraic Groups

Let us suppose throughout this chapter that k is a field.

A k~-group scheme G is called a finite algebraic group if
dim k[G] < «. We have met already some examples (p(n}’Ga,r)'
One can associate to each finite abstract group a finite algebraic
group in a natural way (8.5.a). The examples which are most
important for us will be introduced in chapter 9 (the Frobenius

kernels).

We look in this chapter at some special features of the
representation theory of such finite G. Let me mention right away
that one can find in [Voigt] many more results which we do not

look at here.

One of these special features is that injective G-modules are
also projective as in the representation theory of abstract finite
groups. Whereas in that case (abstract finite groups) the injective
hull of a simple module is also its projective cover this is no
longer true in our situation (in general). Herxe the simple head
and the simple socle of an injective indecomposable module differ
by a character of G which we call the modular function of G

(8.13).

Another special feature is seen when dealing with a closed

subgroup H of G. We do not only have the right adjoint ind

el Jan i op

to the restriction functor resg

(the coinduction). Both functors are exact and they are related

but also a left adjoint coind

by dualizing (8.14-8.16). In fact one can get one from the other

by at first tensoring with a character depending on the modular
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functions of H and G (8.17).

One main ingredient in the proofs of these results is the
fact that k[G] and k[G]* are isomorphic as G-modules (8.7 and
8.12). This is a special case of a more general theorem of
Larson and Sweedler (cf. [ 11 ]). As a source for the other non-

trivial results let me mention [ 9 ] and [13.

When working not over a field but over an arbitrary
commutative ring (say R) then one should define a finite algebraic
group over R as an R-group scheme G such that RtG] is
finitely generated and projective as an R-module. It is elementary
how to generalize 8.1 - 8.6 to this more general situation. For
an extension of 8.12 and 8.17 to this situation one may consult

(13, cf. alse [ 9 1.

8.1 (Finite Algebraic Groups) A k-group scheme G is called

finite (hence: a finite algebraic k-group), if dim k[G] < «. It

is called infinitesimal, if it is finite and if the ideal Il =

{f € k[G]|£(1) = 0} is nilpotent.

If k' is an extension field of k, then obviously G 1is

finite (resp. infinitesimal), if and only if Gk' is so.

The closed subgroups Ga r of the additive group (introduced
14
at the end of 2.2) are infinitesimal groups. They are examples of
Frobenius kernels, the (for us) most important class of infinitesimal

groups, which will be introduced in'chapter 9.

The groups n) for each n Efﬂ are finite (cf. 2.2). If
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char(k) = p # 0 and if n 1is a power of p, then ”Gﬁ is

infinitesimal.

8.2 Lemma: Let G be an algebraic k-group.

f—

a) G is finite, if and only if G(K) is finite for each extension

K of k.

b) G is infinitesimal, if and only if G(X) =1 for each extension

K of k.

Proof: a) If dim k[G] < =, then each element in k[G] is
algebraic over k, hence has only a finite number of possible

images in any K (under an element of G(K) = Hom _ (k{c1,K)).

alg
As any g € G(K) is given by its values on the basis of klG]

there are only finitely many possibilities for dg.

Consider on the other hand an algebraic closure XK of k
and suppose that G(XK) 1is finite. We can replace G by G,,
hence suppose k = K. We can write k[G] in the form k[Tl,...,Tn]/I’
for some ideal I. Any prime ideal containing I has to be a
maximal ideal. The same is true for any associated prime ideal of

I. This implies easily dim k[G] = dim k[Tl""’Tn}/I < @,

b) If 1 is nilpotent, then it has to be annihilated by any

1
homomorphism of k-algebras k[G] + K into a field extension.
as klgl = k1 @ I1 there is only one such homomorphism, hence

G(K) = 1.

Suppose on the other hand G(K) = 1 for an algebraic closure
K of k. We may assume k = K and can identify k[G]/+0 with all
functions from G(K) to K. This implies I, = YO, hence that

I1 is nilpotent.
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8.3 (Duality of Finite Dimensional Hopf Algebras) For any

finite dimensional vector space V (over k) the canonical map

* W

vV -+ (V) is an isomorphism. Mapping any linear map ' ¢: V1 > Vv,

between two finite dimensional vector spaces to its transposed map

o¥: V; + V: is therefore a bijection Hom(V,,V,) 5 Hom(vz,vr).

ILet R be a finite dimensional vector space over k. We get
from above isomorphisms Hom(k,R) + Hom(R*,k) and End(R) - End(R*)
and Hom(R®R,R) > Hom(R*,R*®R") using the isomorphism R*® rR* 3
(R@R)'. So multiplication on R (i.e. bilinear maps RxR + R or,
equivalently, linear maps m: R® R + R) correspond bijectively to
comultiplications on R* (i.e. linear maps n*: r* + R"®R").
Similarly comultiplications A: R-> R&R on R correspond
bijectively to multiplications 2*: R”*"®&R* » R* on R". Further-
more m 1is associative (resp. A is coassociative, i.e. satisfies
2.3(1)), if and only if m* is coassociative (resp. A is
associative). BAn element a € R is a 1 for the multiplication m,
if and only if the map €,° R* » k, ¢+ @{a) 1is a counit for m”
(i.e. satisfies 2.3(2) with the appropriate modifications in the

notation). Similarly e € R* is a counit for 4, if and only if

it is a 1 for a¥.

If we have on R both a multiplication m and a comultiplicatio
A, then A is a homomorphism of algebras (with respect to m),
if and only if n* is a homomorphism of algebras (with respect to
A*). If so, then some ¢ € End(R) 1is an antipode for A and m
(i.e. satisfies 2.3(3) and o(ab) = o(b)o(a) for all a,b € R),

if and only if o is an antipode for m* and aA*. This shows:
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If R 1is a Hopf algebra, then so is R* in a natural way. For
two such finite dimensional Hopf algebras RI’RZ a linear map

¥: R, + R is a homomorphism of Hopf algebras if and only if

1 2
¢*: R; + R; is a homomorphism of Hopf algebras. Thus we get

(1) The functor R+~ R, P ¥ is a self-duality on the category

of all finite dimensional Hopf algebras.

This anti-equivalence has obviously the property that R is

commutative, if and only if R* is cocommutative (cf. 2.2).

8.4 (Finite Algebraic Groups and Hopf Algebras) We have by

2.3 an anti-equivalence of categories {group schemes over Kk} »
{commutative Hopf algebras over k}. Combining this with 8.3(1)

we get an equivalence of categories:

(1) {finite algebraic k-groups} + {finite dimensional cocommutative

Hopf algebras over kl}.

Each finite algebraic k-group G is mapped to k[G}*. We
denote this Hopf algebra by M(G) and call it the algebra of all
measures on G. We usually denote its comultiplication by Aé ’
s> u(l).

its antipode by aé = g% and its counit by ¢

]
G G
We have an cbvious embedding G(k) = Hcmk-alg(k{G]'k)
Hom(k[G],k) = M(G): To each g € G(k) there corresponds the
(Dirac) measure of 59: fr £{(g). An element yu € M(G) = k{G]*
is a hbmomorphism of algebras if and only if Aé(u) = u@® p. The
multiplication on G(k) is just the multiplication in M({(G). More

generally, one can identify
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G(a) = Homk__alg(k[G},A) < Hom(k[G],nr) =

1

k[GI"® A = M(G)® A

for any k-algebra A with

{u € MG)® A!(A(‘;QidA)(u) = u®y, eily) =1}

In chapter 7 we have associated to each group scheme G the
algebra Dist(G), c¢f. 7.1 and 7.7. If G is finite, then
obviously Dist(G) is a subalgebra of M(G) and G is infinitesimal

if and only if M(G) = Dist(G). One checks easily that
(2) Lie(G) = Dist} () = {u € M(G) [AL() = u @ 1+1 @ u}.

8.5 (Examples) a) If T 1is an abstract finite group, then

its group algebra koI is a cocommutative Hopf algebra in a natural
way. Considered as a vector space kI' has a basis which we can
identify with TI. These basis elements multiply as in I and we
define the comultiplication via yw y @& vy, the counit via

y— 1 and the antipode via yrr y“l for each y € I' . Hence

there is a finite algebraic k-group G with M(G) = kr. For any
k—-algebra A the group G(A) can be identified with the set of all

b2 ayyeAP“kFGA with  alvyv@y) = ¢ aa,{yr@r"

YerT ver ¥ yoy'er ¥ Y

and I a =1. If A 1is an integral domain (or, more generally,
YeT

has no idempotents # 0,1), then G(A) =r. This construction can

obviously be carried out over any ring, not only over a field.

b) Suppose that char k = p # 0 and let g be a finite dimensional
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prLie algebra, cf. 7.10. Then its restricted enveloping algebra
U(p](g) is a cocommutative Hopf algebra. Any x € g is mapped
to x®1l+l®x under the comultiplication, to O under the counit,
and to -x under the antipode. So there is a finite algebraic
group G with M(G) = U{p1(g). One gets obviously g< Lie{(G)

from 8.4(2). The embedding of U[p}(Lie G) into Dist(G) < M(G) =

U{p}(g) has therefore to be an isomorphism. We get Lie(G) =g
and M(G) = Dist(G) so that G is infinitesimal. See [DG], II,

§7, 3.9 - 3.12 for more details.

8.6 (Modules for G and M(G)). Let R be a finite

dimensional Hopf algebra. If M is an R-module, then M 1is an
R¥-comodule in a natural way: Define the comodule map M »~ M® rR*
* Hom(R,M) by mapping m to ai» am. If M is an R-comcdule,
then M is an R¥-module in a natural way: Define the action of

any u € R* as (idy & e A if A, is the comodule map

M’ M

M+ M®R. PFor two such comodules Ml’M a linear map {: Ml > M2

2
is a homomorphism of R~comodules if and only if.it is a homomorphism

of R*modules. In this way we get an equivalence of categories
(1) {R-comodules} > {R*-modules}.

Let G be a finite algebraic k—-group. Then the categories of
G-modules and k[G]-comodules are equivalent by 2.8. Combining

this with (1) we get an equivalence of categories
(2) {G-modules} » {M(G)-modules}.

Here to any G-module M there corresponds the M(G)-module M with
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¥ € M{G) operating as (idM'Eiu)bA We recover the action of

MQ
G(k) via the embedding G(k)< M(G)" and, more generally, the
action of any G(A) via the embedding G(A) C(M(G)®A)" and the

operation of M(G)®@ A on M®A,

It is clear that we get on Dist(G)<< M(G) the same operation
as in 7.11. Furthermore all the statements in 7.11 generalize to
M(G). The claims in 7.14 - 7.17 hold obviously for any finite

algebraic group G with Dist(G) replaced by M(G).

The representations of G on k[G] via and p. lead

)
to two (contragredient) representations of G on M(G), hence to
two structures of an ﬁ(G)—module on M(G). Using the generalization
of 7.11(8) one checks that anyb u E M(G) operates on M(G) as

left multiplication by u when we deal with Pyt and as right

multiplication with cé(h) when we deal with 0 e

For G corresponding to a finite abstract group T as in
8.5.a the theory of G-modules is the same as that of kr-modules,

hence equal to the representation theory of I over k.

For G corresponding to a p-Lie algebra as in 8.5.b the
theory of G-modules is the same as that of U[p](g)-modules,
hence equal to the representation theory of g considered as a

p-Lie algebra.

8.7 Let from now on until the end of this chapter G be a

finite algebraic k-group.

When we regard k[G] resp. M(G) as a G-module it will be
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with respect to Py Or p,. resp. the contragredient representation

which we call also the left or right regular representation of G.

In case we want to distinguish in our notations between or

Py
pr we add an index "&" or "r" to the modules, i.e. write e.g.

k[G]L and M(G)n.

Lemma: The G-modules M(G) and k[G] are isomorphic. We

have dim M(G)¢ = 1.

Proof: By the tensor identity we have M(G) & kiG] = k[Gc]*
where r = dim k{G]. On the other hand M(G) & k{g] = k[G3*®k{G}
is self-dual as a G-module, hence also isomorphic to (k{G}*)r.
The Krull-Schmidt theorem about unique decomposition into (finite
dimensional) indecomposable modules implies that k[G] = k[G1"
has to hold as k[G]¥ = (k{G}*)r for some r > 0. The last

equality follows now from 2.10(5).

8.8 (Invariant Measures) We call an element in M(G)i

(resp. M(G)S) a left (resp. right) invariant measure on G.

(In [11] such elements are called "integrals”, in [Haboush 3]

"norm forms".)

The description of the left and right regular representations

of M(G) on itself in 8.6 implies

(1) M@ = {uy € M(G) Juny = n(1)uy, for all u € M(G))

and

(2)  M(G)T = {uy € M(G) Jugn = u(1) , for all u € M(G)}
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as oé(u)(l) = u(l) for all y € M(G). Purthermore we have

G G
! =
(3)  ofM(G))) = M(Q),
as cé intertwines the left and the right regular representations
(or, using (1), (2), as it is an antiautomorphism of M(G)

considered as an algebra).

Obviously M(G)i is stable under right multiplication by
elements of M(G), hence a M(G)- and G-submodule of M(G) with
respect to the right regular representation. (This can also be
seen directly.) As dim M(G)f = 1 the representation of G on
M(G)f is given by some GG € X(G) ¢ k[G]. So for all g € G(A)

and any A

(4) pr(g)(uoﬁl) = 4y ® GG(g) for all

G
HO € M(G) % ’

and, eguivalently, for all 1y € M(G)
(5) wow = ot (W) (8)u. = u(s ). for all e M(e)°.
o¥ G'H/\8glHg T Hllg J¥g Yo L

(Observe that o, (x) = x ! for all x € X(G).) This character 8¢

is called the modular function of G. We call G unimodular if

5G = 1l. (In the examples in 8.9 each G will be unimodular. We

shall meet a case where 6G # 1 later on in part II.)

We could have defined éG also via M(G)S as (3) implies

for all u € M(G)

_ -1 G
(6) HHy = u(GG )uo for all Hg € M(G)r
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or, equivalently, for all g € G(A) and all A

1

() 0,(9) (1y®1) = ug® 85 (9) for all uy € M(G)S .

Yo

8.9 (Examples) If G corresponds to an abstract finite

group I as in 8.5.a, then

(1 mes = M@ =k y
y el

Consider as another example G = Ga r with r ESAJ, r >0
1

assuming char(k) =p # 0. Set q = pr. As G, . is a subgroup
' 14

of G, = Spkk[T], we can identify M(Ga,r) = Dlst(Ga,r) with
ati

the subalgebra of Dist(Ga) spanned by all u with u(T ) =0

for all i > O. Using the basis {Yn)neN of DlSt(Ga) as in

7.8 we get
a-i
M(G_ ) = % ky_ .
a,r neo D
As  yy(l) =1 and y, (1) =0 for =n >0, as YV, , = Vg, and

+n-1

Tn¥g-1 7 (qn-l )Yn+q—1 =0 for O <n < g-1 we see that

Y is an invariant measure on Ga " Using dim M(G)G = 1 or

r

g-1

some additional computations we get

G _ G _ , -
(2) M@ =M@ = kv, for G =G, .

Assume again char Kk = p # 0, let r EEhJ, r > 0 and set
q = pr. Let us consider G = g(q) and determine M(G)G. As “(q)
is an infinitesimal and closed subgroup of Gm we can identify
M(”(q)) = Dist(u(q)) with a subalagebra of Dlst(Gm). Let us use

the notations of 7.8. Then M(u(q)) consists of all v € Dist(Gm)
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with v(rr(19-1)) = 0 for all 1 € Z. Obviously

s (vt r¥-1)) = (1) - (1)

for all 1 6'2:. The standard formula for binomial coefficients
mod p (cf. e.g. [Haboush 3], 5.1) shows 6n(Ti(Tq~1)) = 0 for all

1€/ 4if 0<n <qg. As dim Mlug)) = dim k[u(q)] = q,

we get
g-1
M(p ) = & ké&_.
(q) neo B
We claim
g-1
3) M@ =m@%=x £ (-1 for G =u, ..
r L 120 i {q)
g-1 i
Set Vg =  (-1) 61. As 60 is the 1 in M(G) and 50(1) = 1
i=0

and Gn(l) =0 for n > 0, we have to show ¢ =0 for all n

n*o
with O < n < gq. We have by 7.8(3):

g~-1 min(i,n)

ifn+i-3\ 4n
p, o= I (-t ()a _
no 1i=0 j=0 ( i-j il n+i-j

§

If n+i-j » g-1, then (n+i-3

i-j
ponding summand . Substituting s = i~j we get

= 0 and we can delete the corres-

a-1l i min(i,g-1-n)

_ +8\ / n
120( H s=m§x(0,i—n) (ns )(1'8)6n+8

§

i

n*o

g-l-n nts

50 (iia(al)i(tr-ls)) (a7 6es = ©-
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8,10 (Projective and Injective Modules) We call a projective

object in the category of all G-modules simply a projective G-module.
They correspond under the equivalence of categories to the
projective M(G)~-modules. This shows that each G-module is a homo-
morphic image of a projective G-module, hence that projective
resolutions exist in the category of G-modules. (This is not true

for arbitrary group schemes.)

The representation theory of finite dimensional algebras shows
that the indecomposable projective G-modules are (up to isomorphism)
the indecomposable.direct summands of M(G). For each simple
G-module E there is a unique (up to isomorphism) projective
G-module Q with Q/rad(Q) % E. It is called the projective cover
of E. One gets in this way a bijection between the isomorphism
classes of simple G-modules and of indecomposable projective

G-modules,

Now the isomorphism M(G) = k[G] £from 8.7 together with 3.10
shows that a finite dimensional G-module is projective if and only
if it is injective. The indecomposable injective indecomposable
G-modules are exactly the indecomposable projective G-modules.
There is a bijection Er E' on the set of isomorphism classes of
simple G-modules such that the injective hull QE of E (cf. 3.16)

is the projective cover of E', i.e.
= |
(1) QE/rad(QE) E'.

We intend to describe this bijection and have to be more

precise about the isomorphism M(G) = k[G] at first.
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(M(G) as a Module over k(G]). There is a natural

8.11

structure as a k[G]-module on M(G): For any f € k[G] and

u € M(G) we define fu through
(1) (£u) (£,) = w(££,) for all £, € klG]l.

The following properties follow from straightforward computations

which may be left to the reader.

(2) feG = f(l)sG for all f € k[G],
(3) oé(fu) = oG(f)cé(u) for all f € k[Gl, u € M(G),
r
(4) If wu,,u, € M(G) and f € kx[{G] with A (f) = [ £ ®E!,
== H1'"2 = — "¢ 1= i

1

- ' '
then f(ulpz) = i(fiul)(fiuz)-

We have A (x) = x@ x and x(1) =1 for all x € X(G) < klGl.

Therefore (2) and (4) imply:

(5) If x € X(G), then u+r xu 1is an algebra endomorphism of M(G).

Its inverse is u++ ¥ lu.

We claim furthermore for any f € k{G], v € M(G) and g € G(A)

{for all A):

il

(6) pg(g)(fu) (pz(g)f)(pz(g)u)

and

(7)o, (9) (£u) (p () £) (p (gIu).

(We really ought to write pz(g)(fu &1} etec.}) Indeed we have
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(£w)op, (g7 ") = we(£2)o0,(g™ 1)

p,(g) (fu)

]

neo, (g™ Moo, (9)£2) = (o, (9In)e(p, (9)£?)

(e (@) f) (o, (g)u).

The proof of (7) is similar.

8.12 If M is a G-module, then we denote by u*  the (GxG) -
module which is equal to M as a vector space and where the first
factor G operates as on M and the second factor operates
trivially. Similarly M° is defined. For i € X(G) we shall
usually write Az ~and AT  instead of (kx)2 and (kx)r. We
regard k[G] and M(G) as a (GxG)-modules with the first factor

operating via »p and the second one via Prr

%

Proposition: Let u. € M(G)f,po # 0. Then fr> fpo is an

O
isomorphism of k[Gl-modules and of (GxG)-modules:

k[G] ® (55)° > M(G).

Proof: It is obvious from the definitions and from 8.11(6),
(7) that the map considered is a homomorphism of k[G]- and of
(GxG)-modules. We have to prove only its bijectivity. As both

sides have the same dimension it is enough to prove its injectivity.

Consider the endomorphism vy of M(G)® k[G] which is the

composite of the map idM(G

k[G] with the map M(G)® k[G]® k[G] »~ M(G)D k[G], n@f, &£

y® Ag: M(G) ® k[G] » M(G) @ k[G]&®

2
- fludb fz. We can identify M(G)® k[G] with Mor(G,M(G)a)

associating to each y ®f the map g+ f(g)u. Then y{ue £) is
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easily checked to be the map gt (p_(g)E)u.

Let us fix now f € k[G] and consider F € Mor (G,M(G) )

with F(g) = (p (g)f)uy = o, (g) (fuy) for all g € G(A) and all
r r -
, then pt(g)f = L fi(g l)f‘, hence F

g. If AG(f) = I £ &f}
i=1

r
corresponds to T (fiuo)o oG(fi) EM(G) ® k(G]. Its image under

i=1
r
y 1is therefore the morphism g+ ( & (pr(g)OG(fi))f:{)“O' Now
i=1
r Y -1
1 ' ' ' t =
1il(pr(g)cs(fi‘))fi maps any g' to 1ilf1((g g} )fi(g")

£(g"g' " g") = €(g”!). This implies y(F) = bo ® 0g(£). If

fu., = 0, then F = 0, hence eaG(f) = 0. As uo;éc, this

o) Yo
implies f = 0. So the map considered is injective.

Remarks: 1) If we take By € M(G)g, Yo # 0, then frr fuo is an

isomorphism of k{[G]- and (GxG)-modules

L

klel®(sgh? 3 M.

2) The affine and finite scheme G 1is also a projective scheme

of dimension 0. It has therefore a dualizing sheaf, cf. [Ha],

ﬁ). 241. This is easily seen to be the coherent sheaf with global
sections equal to M(G) = k{G]*: We have for each finite

dimensional k[{G]-module M a non-degenerate pairing Homk{ G)(M,k[Gﬁ ‘
xM k{G}* + k mapping at first (¢,m) to ¢(m) and then

to u(l). (Use Homk{G](M,k[G}*) ~ Homy ;o1 (k[G],M ) = M* with

the obvious structure as a k[G]-module on M*.)

In [Kempf 5], 5.1 the proposition is proved using the inter-
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pretation of M(G) as the dualizing sheaf.

8.13 Proposition: Let E be a simple G-module and Q a

projective cover of E. Then

soc Q - EQ® SG.

Proof: Choose a complete set €1reces€ of primitive,

r
orthogonal idempotents in M(G), hence a decomposition

M(G) =

. M(G)ei

&K

1

into indecomposable (projective and injective) modules. There
are simple G-modules E; and Ei (L < i <r) with M(G)ei/
rad M(G)ei = Ei and soc M(G)ei = Ei for all i. We have to

' =
show Ei Eia GG for all i.

'For any G-module M the map o+~ m(ei) is an isomorphism
HomG(M(G)éi,M) > e,M. If M is simple, then M = E, if and
only 1if eiM # O. Any u € M(G) operates on m* through
ne = moué(u) and on M@y for y € X(G) as xu operates on

M. Therefore (for M simple)

(1) M=E &DeM# oﬁ:—.é,mé(eim* #£0
= (xolle,) (" @x Y # 0.
Because of 8.,11(5) also xcé(el),...,xcé(er) is a

complete orthogonal set of primitive idempotents in M(G). We

get from (1)
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—l:

* 1] 4
(2) E; ®X M(G)XUG(ei)/rad M(G)xog(ei)
for all 1i.
Choose u, as in 8.12 and let ¥: M(G) - k{G] be inverse

to the map £t f%) from 8.12. The (GxG)-homomorphism property
of 8.12 implies for all u,u' € M(G)

I

Plup') w(pz(u)u’) = pz(u)w(u')

]

w(pr(cé(u‘ﬁu) = pr(écoé(u'))w(u)-

Therefore each ¢(M(G)ei) = pr(sgoé(ei))ﬂ(n(c)) is orthogonal
to each M(G)GGcé(ej) with j # 1. As ¢ 1is an isomorphism for

p, we get for all i

- - : *
M(G)ei = w(M(G)ei) = (M(G)GGGG(ei)) ’
hence

(3) soc M(Gle, = (M(G)6gotle,)/rad M(G)éeaé(ei))*.

Now (2) and (3) imply

Vo * —lyw
E{ (EiQGG ) E;®65-

Remark: If 6G =1 (i.e. if G is unimodular), then the
projective cover and the injective hull of every simple G~module
coincide. If we apply the proposition to the trivial G-module k,

then we get that also the converse holds.

One can show for unimodular G that M(G) is a symmetric

algebra in the sense of [5], ch. IX, cf. [Humphreys 9]}. 1In
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general M(G) is only a Frobenius algebra.

8.14 (Coinduced Modules) Any closed subgroup H of G is

E— g

itself a finite algebraic k-group. We can identify M(H) with
the subalgebra {u € M(G)|u(I(H)) = O} where I(H)C k[G]

is the ideal of H, cf. the corresponding result for Dist(H)
in 7.2(3).

The equivalence of categories 8.6(2) enables us to define a

functor coindg from {H-modules}! to {G-modules} through

(1) coindgM = M(G)® \y )M

for any H~module M. We call this functor the coinduction from

H to G. (When comparing this to what is done for Lie algebras
e.g. in [6], ch. 5 one has to observe that there the terms
induction and coinduction have just the opposite meanings. Also

in [Voigt] our coindgM is called an induced module.)

We have obviously:

(2} The functor coindg is right exact.

For any H-module the map iM: M+ coindgm with iM{m) = l®@m
is a homomorphism of H-modules. The universal property of the
tensor product implies for each G-module V that we get an

isomorphism

G ~ G .
(3) HomG(coindHM,V) -+ HomH(M,resHV), e poly.
Hence:

{4) The functor coindg is left adjoint to resg.
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Furthermore:

{(5) The functor coindg maps projective H-modules to projective

G-modules.

8.15 Lemma: Let H be a closed subgroup of G and M a

finlte dimensional H-module. Then there igs an isomorphism of

G-modules
G - G * *
coindHM = (indH(M y) .

Proof: For all finite dimensional G-modules V.,V the

1772
bijection Hom(vl,vz) = Hom(v;,v;) mapping each ¢ to its
transposed w* induces a bijection HcmG(Vl,Vz) = HomG(V;,V;).

we get L
Using this and 8.14(3)/for each finite dimensional G-module

V canonical isomorphisms

G, . *, ~ G *
HomG(V,(coindHM) ) > HomG(coindﬁM,V )

- HomH(M,V*) > HomH(V,M*)

mapping any ¢ to (iM)*°¢- This generalizes to all V by
taking direct limits. Therefore (coindgM)* has the universal

property of indng*) as in 3.5, hence is isomorphic to indg(M ).

8.16 (Exactness of Induction) Let H be a closed subgroup

of G. As H 1is a finite algebraic k-group the quotient G/H
is affine by 5.6(3), hence 5.8 implies:

{1) indg is exact.
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We get now from 4.12:

(2) k[G] 4is an injective H-module.

Hence:

(3) M(G) is a projective left and right M(H)-module,

and:

(4) coindg is exact.

Of course (4) follows also directly from (1) and 8.15. One can
improve (3} and show that M(G) is a free module over M(H),

cf. [ 91, 2.4. We do not have to go into this.

If M' is a projective and finite dimensional right M(H)-

module, then we have for each H-module M an isomorphism

(5) M'QpM(H)M + HomM(H)(HomM(H)(M',M(H)),M)

mapping each m'®@m with m' € M' and m e M to the map

]
g+ p(m*im. Here we form HomM(H

M(H) on itself by right multiplication and we consider it as

)(M',M(H}) via the operation of

an M(H)-module via the left multiplication on M(H). 1In order to
prove bijectivity in (5) one restricts to the case M' = M) ?

for some n where both sides are isomorphic to ME.

Because of (3) we can apply this to M(G) considered as an
M(H) -module under right multiplication. The map in (5) is now

easily checked to be an isomorphism of G-modules

(6) coindgM 5 Hom,_ (Homy (M(G) ,M(H)) ,M)
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where the operation of G on the right hand side is derived from

the left reqular representation on M(G).

8.17 Proposition: Let H be a closed subgroup of G. Then

we have for each H~module M an isomorphism:

coind M > ind (M ® (& )lH Hl).

Proof: We have isomorphisms of (GxH)-modules

Hom,, (M(G) ,M(H)) = M6 *omm)n ¥

|}

(klcleomEN? = (klcl® klnl® 5"

H .
indH(k[GleaH) = x[cl® Sy

This is regarded as an H-module via the right regular representation

on k[G] and via GH and as a G-module via the left regular

representation on k[G].

We get now from 8.16(6) isomorphisms of G-modules

2

G
coindHM Homﬁ(k[Gjad ,M)

1

MGEe)® 5 e mH

f:

-1 H
(k[c]l® (GG) (HGH M)

i

G -1
ind, (M 9(66)[1163 ).

8.18 Corollary: Let H be a closed subgroup of G and M

a finlte dimensional H-module. Then:
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G, * . G, * -1
(indHM) = indH M & (rSG) iHéH ).

Proof: This follows from 8.17 and 8.15.

Remark: One can interprete this as Serre duality for the sheaf

cohomology of ;Z;/H(M), cf. 5.10.

8.19 Proposition: Let G' be a k-group scheme operating on

G through group automorphisms. Then G' operates naturally on

k{G] and M(G). The space M(G}f is a G'-submodule of M(G) and

the operation of G' on M(G)f is given by some x € X(G'). If

Uy € M(G)f, ¥o # O, then the map £~ fpa is an isomorphism

k[Gl@x » M(G) of G'-modules. If G is a closed normal subgroup

of G' and if we take the action of G' by conjugation on G,

then X{G = Sg.

Proof: We can form the semi-direct product G>G' and make
it operéte on G such that G acts through left multiplication
and G' as given. This yields representations of GxMG' on k[G]
and M(G) = k[G]* which yield the operations considered in
proposition when restricted to' G' and which yield the left
regular representations when restricted to G. Hence M(G)f are
the fixed points of the normal subgroup G of GX»G', hence a
G'-submodule by 3.2.

It is now obvious that G' operates through some x € X(G')
on M(G)f and that £+ fu, is an isomorphism k[Gl@x +~ M(G) of
G'~modules. Suppose finally that G is a normal subgroup of G'

and that we consider the conjugation action of G' on G. Then
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each g € G(A) < G'(A) acts through the composition of »,(g)
and pr(g) on M(G)® A, hence through pr(g) on uy@& 1. There-

fore the definitions show x(g) = GG(g).

8.20 Proposition: Let G' be a k-group scheme containing

G as a closed normal subgroup. Let H' be a closed subgroup of

G and set H =H'NG. Let M be an H'-module. Then there is a

natural structure as an H'G-module on coindgM extending the

structure as a G-module. For each H'G-module V there is a

canonical isomorphism

2

(1) HomH,G(coindgM,V) HomH,(M,V).

If x € X(G') «zresp. x' € X(H') is the character through which

G' resp. H' operates on M(G)f resp. M(H)z, then we have an

isomorphism of H'G-modules

(2) coindgh > indl,SMe (x)y ' Th.

If dim M < », then we have an isomorphism of H'G-modules

(3) (inaf,%m* 3 indg:G(M'*«s(x}H.)x'”l).

Proof: Let us work with the description of coindgn as in
8.16(6). We make H' .operate on M(G) and M(H) via the
conjugation action on G and H. We get thus a representation
of H' on Hom{(M(G),M(H)) which extends to H'sH if we let
H operate through the two right regular representations. By 3.2
the subspace HomH(M(G),M(H)) is an H'-module. Together with the
given action of H' on M this makes Hom(ﬁomH(M(G),M(H),M)

into an H'-module. This operation of H' can be extended to



- 187 -

H'p<H with H operating via ¢ on M(H) and through the

%
restriction of the H'-action on M. Again HomH(HomH(M(G),M(H)),M)
is an H'-submodule. We can extend the operation of H' +to

H'' G 1letting G act through on M(G), i.e. inducing the

Py
action of G on coindgM.

For any h € H(A) for some: - A the element (h,hnl) € (H'bG)(A)
acts trivially. (This follows easily from the definitions.) There-
fore we get a representation of (H'wG)/H = H'G, cf. 6.2(1), on

coindgM extending the given one of G.

Using this structure, the isomorphism in 8.;4(3) is easily
checked to be an isomorphism of H'-modules (provided V is an
H'-module). It therefore has to induce an isomorphism of the H'-~

fixed points. This implies (1).

We get (2) by examining the proof of 8.17. After replacing
GG by ¥x and 5H by x*' all isomorphisms there are also
compatible with the H'-action, hence with the structure as H'G-
module. Similarly 8.15 generalizes from G to H'G and together

with (2) yields (3) as in 8.18.

Remark: We dencote coindgm when considered as an H'G-module
;] ]

by coindg,GM. Obviously coindg,G is a functor from {H'-modules}

to {H'G-modules} and 8.14(2)-(4), 8.16(4), generalize to this.

Note that we have by construction an isomorphism of functors

H'G H'G . G H'

res. c:COlndH, = coxndH oresy

which 18 dual to 6.12.
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9. Representations of Frobenius Kernels

Throughout this chapter let p be a prime number. We shall

always assume that k 1is a perfect field with char(k) = p.

Let G be an algebraic k-group. If k = F:p, then the map
£ fP on k[G] is an endomorphism of k-algebras and defines a
morphism FG: G + G which is a group endomorphism. The kernels

Gr = ker(Fé) are called the Frobenius kernels of G. They are

infinitesimal algebraic k-groups. One can generalize this to all

r (r)

c 2as ahove by some group homomorphism G + G
c(¥),

k by replacing F

into a suitable k-group

We give in this chapter at first the definitions and‘elementary
properties (9.1 - 9.7). We then compute their modular functions

in the case of reduced groups (9.8 combined with 8.19).

The representation theory of the first Frobenius kernel Gl
of G is equivalent to that of Lie(G) as a p~Lie algebra. There-
fore each cohomology group Hi(GI,M) is equal to the corresponding
"restricted Lie algebra cchomology group” in the sense of
[Hochschild 3]. In that paper these groups are compared to the
ordinary Lie-algebra cochomology groups {(cf. 9.16), especially in

low degrees.

One of his main results can now be interpreted as a "“six
term exact sequence" arising from a spectral sequence (9.18/19).
This spectral sequence was found for p # 2,3 and G reductive
in [ Friedlander/Parshall 1], (But compare also the remark at the

end of section 3 in [Hochschild 3].) Their results were somewhat
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generalized in [Andersen/Jantzen]. The present version of
proposition 9.18 is the same as in my lectures in Shanghai and

was proved also by Friedlander and Parshall.

9.1 (The Frobenius Morphism on an Affine Variety) Before

defining Frobenius morphism in general we want to motivate the
definitions by an example. Let us assume in this section k +to

be algebraically closed.

Let X be an affine variety over k (as in 1.1}. We can
embed X as a Zariski closed subset into some k®. fThe map
n n i . R
F: ¥ » k7, (al,az,...,an)h» (a?,ag,...,aﬁ) is a bijective
morphism of varieties. It is also a closed map. (Using that

£P ¢ im(F*) for all f € k{Tl,...,Tn} one shows

AT, oo sT IF*(F*) 7T = /T for each ideal T k[T ,...,T 1.)
Therefore each F'(X) with r EEhJ is a closed subset of k"
and F' induces a bijective morphism X ~» Fr(x). We want to
show that the pair (Fr(X),Fr: X > Fr(X)) has an intrinsic
meaning, i.e. is independent (up to isomorphism) of the embedding

of X into kn.

Define for each f € k[X] a map @r(f): Fr(X) + k through
o (£)(x") = £(F "(x'))P for all x' € F'(X). Obviously ¢, is
an injective ring homomorphism from k[X] to the algebra of all
functions from F'(X) to k and satisfies o_(af) = aprmr(f)
for all a €k and f € k{x]. If f is the i-th coordinate
function on k” restricted to X, then mr(f) is the i-th

coordinate function restricted to Fr{X). Therefore o, induces a
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bijection from k[X] to k[FT(X)].

Denote by k(X]{™) the k-algebra which coincides as a ring
with k[X] but where eéch a € k operates as a(p“r) does on
k{X]. Then we can regard ¢, as,an isomorphism of k-algebras
x[x1¢F) 3 k[F*(X)]. This shows that F (X) as a variety has an
intrinsic meaning. If we identify k[F'(X)] with k(x1™F) via

® then the comorphism of F° is the map k[X}(—r) » k[X]1,

rl
r
£rr £P for all £, hence also F* has a description independent

of the embedding of X into k™.

9,2 (The Frobenius Morphism on a Scheme) From now on let

k be again an arbitrary perfect field of characteristic p.

For each k-algebra A and each m EII we define A(m) as

the k-algebra which coincides with A as a ring.but where each

(0)

m
b € k operates as bP does on A. Trivially A = A. One

has obviously isomorphisms
(1) (A(m))(n) = plmtn) for all m,n € Z

and (for all k-algebras A,A')

@) wom ., ™ a0y = mom (At ™) for all moe Z.

(This is the identity map.) For each k-algebra A, each m Ezi
and r eN the map

(3) Y.t A(m) + A(m+r)' ar+r aP

is a homomorphism of k-algebras.
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We define now for any k-functor X and any r € hJ a

(r)

new k-functor X through

(4) X(r)(A) = X(A(r)) for all k-algebras A.

(x)

Furthermore we define a morphism Fi: ¥ > X through

(5) F§(A) = X(y_ ): X(a) » x(A(r)) = x(r)(A)

for all A. We call F. the r-th Frobenius morphism on X.

X
(r) is a faithful functor from {k~-functors} to

Obviously X + X
itself.

One gets from (1) for all r,se N and all X

(6) (x(r))(s) = x{x+s) 4 S r _ orts

If we consider an affine scheme X = Ska for some k—algebra R,

then (2) implies for all r e N

(1) (spR) ) = sp (17

r
Furthermore F. has as comorphism R(‘r) + R, fi=r £fP . so the

X
(r)

construction of X and F§ generalizes the situation

considered in 9.1.

We can interprete the definition (4) as saying that X(r}

arises from X through base change from k to k(r) which then
is identified with k as a ring. We can therefore apply the
general remarks about base change in 1.10. 8o the functor X -» X(r)

maps subfunctors to subfunctors, commutes with taking inter—
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sections and inverse images of subfunctors and with taking direct
and fibre products. It maps local functors to local functors,
schemes to schemes, and faisceaux to faisceaux {(c¢f. 5.3(8)). If

X is an affine scheme and I an ideal in k[x], then wv(I)'¥) =
vy and b)) = pxT)) where 1¢ ) c k(x1¢T) is

just I with the new operation of k.

(r)

If k = F;, then obviocusly X = X for all r and any

k-functor X. If X 1is affine and if F is the endomorphism

rz
X

X
of X with F;(f) = £ for all f € k[X]), then obviously F

(Fx)r. More generally, if k 1is again arbitrary, but if X
has an F;—structure (i.e. there is some F:p—functor X' with

(r) with X. 1In the affine

X = (X')k), then we can identify X
r

case one has k[X] = FP{X'] ®F k and the map f® arr f® aP
P

(for all f € Frg{x'] and a € k) 1induces an isomorphism
k{x(r)] = k{x}(—r) > k{X]. (This map is called for r =1 the

arithmetic Frobenius endomorphism of k[X].) Taking this

identification F§ is the endomorphism of X with comorphism

r.
f® ar fPe@a (for all f£,a as above.) This map is called for

r = 1 the geometric Frobenius endomorphism of k[X].

Remark: It is clear that (4) makes sense not only for our
perfect field k but also for any lzﬁ-algebra as only r € PJ
appears in that formula. We can also take the interpretation via
base change in that situation. It may be left to the reader to

find out later on how much generalizes to this case.

9.3 (Fibres of the Frobeniug Morphism) Let X be an affine
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scheme over k. Consider a point x € X(k) and let us denote its
tdeal by T, = {f € k[xX]|f(x) = 0}. Then the ideal of Fy(x) € x'*)(x)
in k[xF)] = kix1CT) i I;_r) (i.e. I_ with the new scalar
operation) as f(Fi(x)) = £(x)P? for all £. This implies (for

all r eN)

r
(1) (FpTHER0) = vz kX1 ).
fer
X
So the (F;)~1(F;(x)) form an ascending chain of closed subschemes

of X.

Suppose now that X 1s algebraic. Then Ix is a finitely

m
generated ideal, say I_ = £ k[X]f.. Then
X 1=1 i
m r
r.~l,_r _ s)
(Fg) " (Fe(x)) = V(iilk[xjfi )

xr

for all r. The ideal defining (Fx)

—l(Fﬁ(x)) is contained in

r o
IE and contains pr . This implies (cf. 7.1, 7.2(2))

(2) Dist(X,x) = u Dist((Fi)“l(F§(x>},x).
r>0

We can choose the fi such that the fi+1i {1 < i «<m) form

a basis of Ix/Ii. If x is a simple point of X then m =
dimxx and the fi(l < i < m) are algebraically independent.
Therefore the residue classes of all f?(l)fg(z)...f;(m) with all
n(i) < p* form a basis of k{(Fi)—i(F§(x))}. This shows

(3) If x is a simple point of X, then dim k[(Fp) '(FE(x)] =

prm where m = dimxx.
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Let us add that (1) generalizes to

- - r
(0 D vy = vz xix1eP )
fel

for all ideals I in k[X] (and any affine X) whereas

(5) 7™ = pa.

r
(Use that /T = //z k[x1£?  and 1.5(5), (10).)
fEI

9.4 (Frobenius Kernels) Let G be a k-group functor. Then
(r) ' (r)

obviocusly each G is alsc a k-group functor and Fé: G+ G
is a homomorphism of k~group functors. Its kernel Gr = ker(Fé)
is a normal subgroup functor of G which we call the r-th

Frobenius kernel of G. The factorization in 9.2(6) implies that

we get an ascending chain

(1) Glc Gz <:G3C....

of normal subgroup functors of G.

(r)

If H 1is a subgroup functor of G, then H is a subgroup

(r)

functor of G and FE is the restriction of FL to H. This

G
implies

(2) Hr =Hn Gr'

especially for all «r,r! E?d

G for r' < r,
(3) (Gplypy = G, for r' > r.
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If k = F?p or if G is defined over F?p, then we can
identify each G(r) with G and interprete Fé as the r-th

G+ G (which is P>

power of some Frobenius endomorphism F G

G:
after the identification G = G(l)). This is true e.g. for

7P in the

I

*
G = Ga and G = Gm. In these cases (FG} (T)

notations of 2.2. Therefore Gm r= ¥ for all r and the
! (p™)
Ga r from 2.2 are the Frobenius kernels of Ga' {So our new
14

notation is compatible with the old one.)

9.5 Let G be a k-group scheme. The image faisceau (cf. 5.5)

r
of FG

ker(Fé). For each subgroup scheme H of G we can identify

in G(r) is isomorphic to G/Gr (by 6.1 ) as Gr =

r - r P
(1) FG(H) = FH(H) = H/Hr

by 9.4(2) and (F%

-1l_r
G) FG(H) with GrH' cf. 6.2(4).

1 .
The factorization Fg = gr "% pt

yields
glxr) "G

(2) G

_ r.—-1 {xr)
= (FG) ((G )r’- )

r'! r

for all r' > r.

Proposition: If G is a reduced algebraic k~group, then each

x
G

for all r' > r.

= oflx) = ()
F; induces isomorphisms G/G. = G and Gr‘/Gr (77 vy

Proof: By [DGl, II, §5, 5.1.b the embedding of FE(G) = G/G,

(r)

into G is a closed immersion. Therefore G/Gr is identified

()

with the closed subgroup of G defined by the kernel of the

r

r
G)*‘ k[G]( ¥, k[G] which maps each f to £P

comorphism . (F
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i1.e. we get
r p* (-x
(3) FL(6) = V({f € k[c]|£P = o1 !7F),

If G is reduced, i.e. if k[G] does not contain nilpotent

elements # O, then obviously Fr(G) = G(r).

As we have shown Fg

subfaisceau Y of G'F) is equal to the image faisceau Fg((Fé)—

to be an epimorphism of faisceaux,each

ly)

Therefor the last claim follows from (1) and (2).

Remark: If G is defined over F:p, we can express the

-~

results as G/Gr < G and Gr'/Gr = Gy e

9.6 (Dist(G) and the Dist(Gr)) let G be an algebraic

k~group scheme and I the ideal in k[G] defining i. Keep

1
this assumption and convention until the end of this chapter.
OCbviously Gr is the closed subscheme of G defined by

o
s k[G1fF . Therefore k{6 ] is finite dimensional and the
fex
1

ideal of 1 in k[Gr} is nilpotent. Hence (cf. 8.1):

{1) Each Gr is an infinitesimal k—group.

The Dist(Gr) form because of 9.4(1) an ascending chain of sub-

algebras of G and one has by 9.3(2):

(2) Dist(G) = U Dist(Gr).
r>0

Therefore 7.14 - 7.17 imply, if G 1is irreducible:

G
(3) If M is a G-module, then M= n MF¥
x>0

(4) If M,M' are G-modules, then Hom.(M,M') = n Hom, (M,M').
r>0 r
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(5) Let M be a G-module and N a subspace of M.

Then N is a G-gsubmodule if and only if it is a Gr~subm0dule

for all r e N .

Gy B2 G
In (3) and (4) we have descending chains M " DOM "o M~ D...

and Hom, (M,M') > Hom

1 1 4 ©
G G (M,M ):-“J'HomG MM Y2 ... If dim M <

1 2 3
resp. 1f dim M@ M' < », then these chains have to stabilize.

So we get (still for G irreducible):

(6) If M is a G-module with dim M < «, then there is an nelN with
G

r

M =M for all r > n.

(7) If M,M' are G-modules with dim(M ® M') < «, then there is

an n eN with HomG(M,M') = Hom, (M,M') for all r > n.
r

9.7 (Lie(G) and Gl) Choose fl,...,fm € I1 such that the

fi + Ii form a basis of Illli' Then m = dim Lie(G) and
the fi generate Il as an ideal. One has obviously dim k[Gr} <

prm for all r, and egquality holds, if 1 is a simple point of

G (cf. 9.3(3)). So we get (e.g. by [DG], II, §5, 2.1/3)

r dim(G) for all r eN .

(1) If G is reduced, then dim k[Gr] = p
We have obviously for all r € N] (and any G)
(2) Lie(Gr) = Lie G.

The subalgebra U'Pl(rie(@)) = ulPl(nie(e)) of bpist(c)c
Dist(G), cf. 7.10(2), has dimension p~, whereas dim Dist(G,) =

dim k[Gll < pm. This implies
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(3) ulPlrie(a)) = Dist(G,).

This shows that G is the infinitesimal k-group corresponding to

1
the p-Lie algebra Lie(G) as in 8.5.b and that the representation
theory of Gl is equivalent to that of Lie(G) as a p-Lie algebra

(cf. 8.6).

9.8 Proposition: Let G be a reduced algebraic k-group and
' G
r ef\l. Then G operates on Dist(Gr)zr through the character

X
gt det(ad(g))P 1

where Ad denotes the adjoint representation of G on Lie(G).

Proof: Recall from 8.19 that the conjugation action of G

on Gr leads to representations of G on k[Gr} and M(Gr) =
G
Dist(Gr) and that M(Gr)zr is a one dimensional submodule on

which G has to operate through some character x € X(G).

Set q = pg and choose £ ,...,fm €I such that the

1 1

£f.+I form a basis of Il/Ii. Let fi be the image of fi in

2
i1
}.

k[Gr As G is reduced, hence 1 a simple point, the monomials

Ei(l)fg(z)...fg(m) with O < a(l) < g for all i form a basis

of k{Gr].
We can identify k{Gr] with the factor ring k{Tl,...,Tm]/
(T?,...,Tg) of the polynomial ring k{Tl,...,Tm]. It is there-

fore a graded ring in a natural way. Any endomorphism ¢ of the

m
vector space z kfi induces an endomorphism of the graded
i=1
m
algebra k[Gr]. As F = 1 fg_l is the only basis element of

i=1
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degree m(g-l) it has to be mapped under ¢ into a multiple
c(p)F of itself. Obviously e¢¥r c{p) has to be multiplicative.
This implies c(g) = det(w)q—l for all ¢ as this is obviously
true for ¢ in upper or lower triangular form (with respect to
the fi), hence for all ¢ by multiplicativity. This extends

m

easily to any k-algebra A and any endomorphism of b2 kfieiA
i=1

as c(¢) 1is obviously a polynomial in the matrix coefficients

of .

This can be applied especially to the operation of any
g € G(A) for any k-algebra A on k{Gr]GD.A derived from the

conjugation action on Gr. Then the action of g on
m

t xE, @A = (I,/I) ® A = Lie(G)*® A is Qual to the adjoint
i=1
1

action on Lie(G) ® A, hence has determinant equal to det(Ad(g)) .

S0 this implies

gF = det(Ad(g) )"(q"l)F‘

G

Consider now € Dist(Gr)zr # 0. 1If pO(F) = 0,

po ] uo
then uo(k[Gr]F) =0 as k{Gr}F = kF, hence (k{Gr}uO)(F) =0

by the definition of the k{Gr}-mcdule structure on Dist(Gr)

in 8.11, hence Dist(Gr)(F) = 0 by 8.12. This is a contradiction,

80 we must have pO(F) # 0. Then

[}

X(@)ug(F) = (gug) (F) = u (g 'F)

b

det(Ad(g))q"luo(F)

implies x(g) = det(Ad(g))q—l as uO(F) is a unit in A.



Remark: The same proof works for any algebraic k-group G
and for r =1 because of 9.7(3). So we can take any p-lLie
algebra g over k and consider the infinitesimal k-group G
corresponding to G as in 8.5.b. Then G = Gl and Dist(G) =
U{p}(g). Then the proposition implies that the modular function
8; 1s given by &.(g) = det(Ad(g))P™). The representation of g
on Dist(G)f is then given by the differential, i.e. by
(p-1)tr(ad(?)) = -tr(ad(?)). BAs the operation of g determines
that of G in this case, we see that G 1s unimodular if and
only if tr(ad(x)) = 0 for all x € g. This is a theorem of

Larson and Sweedler, cf. the discussion in [Humphreys 9].

\=]

.9 (Frobenius Twists of Representations)

Let M be a G-module. We can define for each r € PJ a new

G-module which we denote by M(r)

(r)

and call the r-th Frobenius
twist of M. We set M as a group equal to M and make it
into a vector space over k by letting each a € k operate on

-r
M(r) p does on M. (This convention is certainly awkward

as a
as 9.2 suggests that we should call it MO"F) | Sei11 in the
context of representations the present notation is more useful,
and we shall always be careful whether we deal with k-algebras or
G-modules. )

For each k-algebra A there is a semli-linear map Ya? M®@A -+

r

M(r)® A with YA(ma a) = m@ aP for all m e M, a € A. If
(mi)iEI is a basis of M, then the basis (mida l)iEI of the
A-module M 1is mapped to a basis of the A-module M‘r)eb A.
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Therefore for each ¢ € EndA(M& A) there is a unique

p! € EndA(M(r)@) A) with zp'ayA = Ypo©- The map EndA(MSDA) -+
EndA(M(r)® A), o ¢' is semi-linear, compatible with the
composition of maps, and fungtorial in A. The given representation

of G wvon M yields for each A a homomorphism

G(A) » EndA(MQA)x > EndA(M(r)Gs a

which is functorial in A, hence a G-module structure. This is

the twisted module we wanted to define. If (m.;i..)iel is a basis
)

of M as above and if g g€ G(A) has the matrix (a,

ij'i,jex
with respect to (m; & l)ieI’ then g has the matrix
r
(alijj)i. jer with respect to the corresponding basis of M(r)@A.
. [

(r)

_-r)

(This 1s one reason for the notation M instead of M(

.)

If AM(m) = In ® fi for some m € M, then AM(r) {m) =
r
P

Emi @fi .

Suppose now that M has a fixed §~structure, i.e. an

Fp-—subspace M'c M with M'&F. k = M. We get then a
P

Frobenius endomorphism FM on M and on each M®A = M'&F A
P

through FM(m ®a) =m ® aP. Then each F;‘“;

of A-modules M®A » MF)® A. Suppose that G is defined

is an isomorphism

over F;) and denote the corresponding Frobenius endomorphism

by Fe: G » G. If the representation of G on M is defined over
Fp (L.e. if FG(g)FM(m) = FM(gm) for all m e M, g € G{&)),
then we can define a new representation of G on M by composing

the given G + GL(M) with F.: G + G. Then F(r)*

{(x)
G M s MM is
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an isomorphism of G-modules if we take the new structure on M

(x)

just defined and on M as above. (This follows from an

elementary computation.)
Note that our definitions are compatible with 4.27.

9.10 (The Associated Graded Group) The powers of I,

define a filtration of k[G] and we can form the associated graded

n+l

algebra gr k{G] = ® I?/I1 . There is obviously a surjection

n>0
from the symmetric algebra S(Il/Ii) onto gr k[G] compatible

with the grading.

The formulas 2.4{1),(2) show that A and induce also

G 9g
a comultiplication and an antipode on gr k[G] making (together
with the obvious augmentation) gr k[G] into a (commutative and

cocommutative) Hopf algebra. So there is a k~group scheme gr(G)

with gr k[G] = k[gr(G)] (the associated graded group).

2 2, % N
We can interprete S(I,/I]) as Kk[((I,/I})7),] = k[(Lie G)_].
Then the surjection S(Illli) + gr k[G] = k[gr(G)] is compatible
with the Hopf algebra structure (again because of 2.4(1),(2)).

Thus:

(1) gr(G) is canonically isomorphic to a closed subgroup scheme

of Lie(G)a.

The same arguments as in 9.7(1) imply

(2) If G is reduced, then gr(G) = Lie(G),

and
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(3) If G is reduced, then gr(G,) = (Lie(®))  for all r e N.

.11 (A Filtration of the Hochschild Complex) The filtration

of k[IG] as in 9.10 leads also to a filtration of the Hochschild

complex C’(G,M) for each G-module M. We set for all i,n € kJ
'

i _ a(l) a(2) a(i)
(1) cC (G,M)(n) = IM® Il @11 Fo2Y ...@11

where we sum over all i-tuples (af{l),...,a(i)) € in with
L a(j)>>» n. Because of 2.4(1),(2) and as A (m)-m &1 € M T,
3

for all m € M the definition of the coboundary operators in
4.14 shows

(2) aicl(G,M)(n)cz ci+1(G,n)(n)
for all i and n.

Each quotient Ci(G,M)(n)/Ci+1(G,M)(n+l) can be identified
with the direct sum of all

e (oM e @(Ial‘(l)/:ri(l”l)
n
over all i-tuples (a(l),...,a{i)) with % a{i} = n. We can on
i=1
the other hand regard M as a trivial gr(G)-module and form

C*(gr(G),M). The grading on klgr(G)] leads in a natural way
(cf. 4.20) to a grading on each Cl(gr(G),M). We denocte the

homogeneous part of degree n by Ci(gr(G),M)n. Then
3 ctem g, ctem oy = cere

for all 1i,n. These identifications are easily checked to be
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compatible with the boundary operators so that the associated
graded complex of C°(G,M) is isomorphic to the graded complex
C*(gr(G),M) = C'(gr(G),k) ® M. |

The general theory about filtered complexes (consult e.g.

)
[71, I.4) shows that there is a spectral sequence with El~terms

Ev') = gt (gr G/k); @M. If G is irreducible, them 0N 3t = o,
n>0
hence n Ci(G,M) =0 for all 1. Therefore in this case

(n)

the spectral sequence converges to the cohomology of the original

n>0

complex.

9,12 Proposition: Suppose G is irreducible. Then there

is for each G-module M a spectral sequence with

(1 Eld = wgre,0, @1 =t em.

This is what we proved in the last section. Let us add that
the spectral sequence is compatible with the cup-product in case
M = k resp. with the H'(G,k)-module structure on H'(G,M} in

the general case.

If some other group H operates on G through group auto-
morphisms, then it operates on C'(G,k) preserving the filtration.
Then we get a natural action of H on each term of the spectral
sequence such that all differentials are homomorphisms of H-modules.
Also the filtration on the abutment is compatible with the action
of H. This generalizes to an arbitrary G-module M if we have
also an operation of H on M compatible with the operation of

G (li.e. defining a representation of G»H).
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9.13 Proposition: Let G be reduced and irreducible.

Set g = Lie(G).

a) There is for each G-module M a spectral converging to

H'(G,M) with the following E -terms:

1

If p # 2, then

el cene s?Mg"H P e (s2PgH P e L.
@Ab(l)g_* ®(1,‘1)‘{2){&)(1)
where we sum over all finite sequences (a(n)),,, and

(b(n)) ., in N with

i+j = I (2a(n)+b(n)) and i = = (a(n)p™+b(n)p™ ).

n>1 n>1
If p =2, then

a(2) =

a(l) = g }(l)éb .

d - me s?g* e (s

i
Ey

where we sum over all finite sequences (a(n)), . , in t¢ with

i+ = T a(n) and i = £ a(mp® i
n>1 n>l

b) Let «r EPJ and M be a Gr—module. If we take above only

r-tuples (a(n)) and (for p # 2)(b(n))1§p§r then we get

1<n<r
the Ei'j-terms in a spectral sequence converging to H'(Gr,M).

Proof: This follows from 9.12 and 4.27 using 9.10(2),(3).

Remark: Again these spectral sequences are compatible with
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the operation of some group H on G or Gr through automorphisms
if H operates also on M in a compatible way (e.g. always for

the trivial module M = k). This follows from the fact that H

then operates on gr(G) = g, or gr(Gr) = (ga)r through a
representation on g so that the isomorphisms in 4.27 are
compatible with the action of H. (This applies especially to

the operation of G on Gr through conjugation.) The (r)

denotes a twist of the operation of H as in 9.9.

9.14 The spectral sequence in 9.13.b is especially easy for

r = 1l.

Lemma: If p = 2, then we can compute H'(GI,M) for any

G1~module M as the cohomology of a complex
* 2 » 3 =
OrM>MBRg »M®Sg ~M&®S5S g ~ ...

where g = Lie(G).

Proof: We have by 9.13 that M® Sig = E%’O whereas

i’J =0 for j#0 or i < 0. So the only non-zero differentials

i,0, i,0 i+1,0
1 ¢ El -+ El .
the maps in the complex and its cohomology groups

B

in the spectral sequence are d They provide

Ei,O

are
2

equal to its abutment.

Remark: Note that we do not have to assume G to be reduced
and irreducible when dealing with- Gl (here and below.) The
assumption of irreducibility is needed to make the spectral

sequence in 9.12 converge to the G-homology. As each G, is
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irreducible we do not need the irreducibility of G in 9.13.b.
The assumption of reducedness was needed to get 9.10(3). But we

have gr(Gl) = (Lie(G)a)l for and G by 9.7(3).

9.15 Lemma: Let M be a G,-module and set g = Lie(G).

If p # 2, then there is a spectral sequence with

el - n e sigh Mo 7" = e,

o

Proof: We have in 9.13.b as El-terms

M®(Sé1 *) (2) ®Ab—a_c_;* for all b > a > 0O and all other E;:':’

Ea(p»l)+b;*(?*2)a _
1 =

are O. So Ei'j = 0 for (p—2)* j, hence di’J =0 for r.§1
mod (p~2) as dr has bidegre (r,1-r). We can therefore re-index
the‘spectral sequence by calling now E;’J the old Eég %;;:g,—(p~2)1

This gives then E;'J as above,

.16 (Lie Algebra Cohomology) In order to compute the

El—terms of the spectral sequence from 89.15 it will be necessary
to deal with (ordinary) Lie algebra cohomology (cf. e.g. [4],

ch. I, §3, exerc. 12).

If g is a finite dimensional Lie algebra over any field
and if M is a g-module, then the Lie algebra cohomology
H (g,M) of M can be computed using complex M & Ag* where we
take the standard grading of Ag*. The map d : M+ M@ g
maps any m g M to the unique element Jz mjéb mj € M& g

with xm = j(x)mj for all x € g. (It is something like a
:’3=1

comodule map.) In general one has for any m € M and y € Alg*
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(1) d,me@¥) = ;: my @ (04AY) + mad‘iw)

with W6y as above and where dl: Aig* +uﬂ*lgf is the boundary
operator in the case of the trivial module. This in turn is
uniquely determined by d;: g* + £q* = (A%g)" which is the
transposed of Azg + g, xayv - [x,y] and by the derivation

property

(2) a, = a niead
i_‘_j(‘p(\#’) = i(‘p)/\w + (-1) @Adj(")

f i * j *

or all ¢ € A™g and ¢ € A°g .

2.17 ZLemma: Let M be a G ,-module and set g = Lie{(G).

Suppose p # 2. Then one has in 9.15

0,3

1 = Hj(g,M) for all 3 € M .

E

*

Proof: We have Eg’J =M&® A:‘g" ana a2cJ maps M@ A'g

4]
to M® A3+1g* for all j € N So we have to show that the

O, 0,0
(0] 'dO )

algebra cohomology.

complex (E is the same as the one computing the Lie

The compatibility of the spectral sequence with the cup-product

in the case k = M and with corresponding module structures in

general implies that the dg’i have derivation properties
analogous to 9.16(1),(2). It is therefore enough to prove that
0,0 * 0,1 * 2 =

dy’' "t M > Ma& g° and dy’"t g + A"g" in the case M =k are

the same maps as in 9.16.

0,1

In the original notation of 9.13 our present E0

was
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r i i
called E and arose as a subquotient of C (Gl'M)(i)/c (GI,M)(1+1).

has a representative & € Ci(Gl,M)(i) with
i i, .
378 € C (Gl’M)(i+1) and d (e) is the class of 3 & in

0,i+1 1+1
the subgquotient E0 of C (Gl'M)(l+1)/C I'M)(i+2)'

In the case i = 0 we have 30: M - M@k{Gl], mr> AM(m) -

ma 1. We can write AM{m) =m&® 1 + m & £, where £, €1
j=1 i i
_ o _ 1
{f € k{Gl}{f(l) = 0}. We have C (Gl'M)(n) =M and C (GllM)(n)

i ™0

1

- n 0,1 _ 2 _ .1
M@ I} for all n e N, hence EO = M® I,/I] =C (G /M) 1,/
Cl(G M) . Therefore do'o(m) = Z m, & f where f, =

1777 (2) 0 121 i i

fi+1§. The operation of any x € g = (Il/Ii)* is given by

Xxm =

B

fi(x)mi. This shows that dg’o is the same map as in
i=]1

9.16.

0,1

O »
1 1 . 2

C (Gl'k)(l)/c (Gl,k)(z) into a subquotient of C (Gl,k)(z)/

Take now M = k and consider d It maps g = 11/15 =

2 . _
c (Gl'k)(B) . PFor any £ € I, we can write AG(f) =1& f +

]
] ¥
f& 1+ fiQ§ fi with fi,f

i € I., cf. 2.4{(1). Then
1=1 !
alf = : f £} So f = f+12 € I /I2 = Eo'l is mapped to
L@ =&y e L/5 = B PP
S 2
the ¢lass of - I fi¢3 fi in the subquotient H" (gr Gl,k)2 of

2 2 2
C (Gl,k)(2)/C (Gl'k)(B) = C”(gr Gl,k)z. By the definition of

the cup product this is the sum of the products of Ei = fi+1§

and fi = fi+I§ in H'(gr Gl,k). It belongs to the subalgebra
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generated by Hl(gr Gl,k) = gf which is identified with Agf.
s

So dg'lf = - I fiA?I. As the Lie algebra structure on
i=1

(Illli)* = Dist';(G) is defined through [x,y] = (x®y -~ y® x)oA .

we see that dg’l is transposed to xay++ [x,y] as claimed.

Remark: Notice that this computation gives also the boundary

maps in the complex of lemma 9.14.

9.18 (Ordinary and Restricted Cohomology) If M,M' are Glf

modules, then we can interprete each Exté {M',M} resp.
1
Exti(M',M) as set of equivalence classes of exact sequences

g

]
O-> M~ Ml -+ M2 P+ eea Mi + M + O

of homomorphisms of G,-modules (resp. g-modules). So we have a

i

G,y

natural map H'(G ,M) » H'(g,M). Let us describe this explicitly

natural map BExt. (M',M) > Ext;(M‘,M). Taking M' = k we get a

for i = 1.

Each l-cocycle ¢: g -+ M defines an extension of g-modules
O+ M- M{p) >k + 0O where M{p) = M ® k as vector space with
X € g operating through x(m,a) = (xm+ae(x),0) for all a €k
and m € M. One checks easily that this is an extens%on of Gl—
modules if and only if m(x[pl) = xP"lo(x) for all x € g. This
equation is certainly satisfied, if ¢ 1is a coboundary, i.e.
of the form x++ xm for some m € M. So we get an embedding
Hl(Gl,M)c;aiﬂl(g,M). More precisely the image is exactly the

kernel of the map associating to the class of ¢ as above (in



- 211 -

HI(Q,M)) the map x+* w(x{p]) - xp'lw(x) from g to M. This
map is semilinear, i.e. it is additive and satisfies o¢{ax) =
aPp(x) for all a ek and x € g. Let Homs(g,M) be the space

of all such maps. We have so far constructed an exact sequence
o ~ut(a,,M - (q,M) + Hom®(g,M)
1’ =1 Gr21) .

We can be more precise. An elementary computation using the
cocycle property o(lx,y]) = xe(y)-yo(x) for all x,y € g shows

w(x[p}

)-xP"1o(x) e Ml for all x €g. So we can replace
Homs(g,M) by Homs(g,Mﬂ). We can now go on and associate to

any ¢ € Homs(g,Mg) a p-Lie algebra g(¢) which is an extension
O~»M~>g(y) »g+0

of p-lLie algebras, where we regard M as a commutative p-Lie

algebra with m{p]

=0 for all m € M. We take g(y) = M8 g
with Lie bracket [(m,x),(m',x')] = (xm'-x'm,[x,x']) and p-th
power (m,x)[p] = (xp“1m+u4x{p}),x[9}) for all m,m' € M and
X,x' € g. (It may be left to the reader to check that this is

indeed a p—th power map on the semi~direct product.)

Now g(¢9) and g(O) are equivalent extensions if and only
if there is an isomorphism g(0) -+ g(y) of p-Lie algebras of the
form (m,x)> (m+e¢(x),x) for some ¢ € Hom(g,M). Such a map is
a homomorphism of Lie algebras, if and only if ¢ is a l-cocycle,
and it is compatible with the p-th power map, if and only if

v(x) = m(x[p])-xpnlw(x) for all x € g. So g{¥),g(0) are
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equivalent if and only if % 4s in the image of H(g,M) -

Homs(g,M).

The set of all equivalence classes of all central extensions
of p-Lie algebras (resp. of Lie algebras) O + M + h + g+ O such
that the adjoint operation of g = h/M on M 1is the given
operation,is a vector space in a natural way with g(0) as zero.
One can identify this group with Hz(Gl,M) resp Hz(g,n) and
one can show that the map v+ g(¥) induces a linear map
Homs(g,Mi) + HZ(GI,M). One can furthermore show that the image
is exactly the kernel of the forgetful map HZ(GI,M)v* Hz(g,M)-

In this way we get an exact sequence

(1) O~ HI(GI,M) + Hl(g,M) + Homs(g.Hg)

> B2(G,,M) » B%(g,M) » Hom® (g,H (g,M)

where I want to refer to the original proof in [Hochschild 3]}
(cE. p. 575) for the last map aﬁd the exactness at the last two
places to be looked at. We shall construct an exact sequence in
9.19(1) which will contain the same terms as (1) and ought to be
isomorphic to (1). In order to prove that all terms are the same

in both sequences, we need (1) in a special case:

(2) If M is an injective G,-module, then the canonical map

1
Hl(g,M) -+ Homs(g,Mg) is an isomorphism.

9.19 Proposition: The spectral sequence in 9.15 has the

following El~terms:

el = g3 g, @ s'gh D).
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Proof: The derivation property of the differential

*)(1) Aj-’i+1 *

al'd: me AiTig* g (slq s M® g* @ (stghH M

implies di'ime@ v ®y) =ad T me o) @v + m@e @)

(1@ di’y(v)) for all mem, o € A¥78g* and 4 e (sig )V

i,i

0.k is the differential in the case M = k. Therefore it
7

where d

i,i
0,k

derivation property shows that it is enough to show d

is by 9.17 enough to show d = 0 for all i. Again the

1,1
o,k = ©

We know from 9.15 that E.'J # 0 implies j > i > 0. B2s

dr has bidegree (r,1-r) this shows Eé'l

(ilj) € {(011)'(0,2),(1,1)} and Ei'l = Ei’l/im(d?’l),

2
0,1 0,1 0,2 _ 0,2 0,2
Ez 1 and E2 = ker(d1 El .

also that E = Hl(Gl,M) and that there is an exact sequence
1,1 0,2

« o0

= E.'J for all

= ker(dcl)'l) C E
1

We see
0
- -]
2

O+ E + H (GI'M) + B + 0. Combining this with 9.17 we get

a six-term-exact-sequence

(1) o+ u' (M »ul(gm » Bt

2 2 1,2
+ H (GI,M) + H (g,M) ~ El’ .
1,1 _ 1,1 1,1 _ *(1)
Here E; ker:(d0 y< E,” =M @g .

9
Take now an injective Gl—module Ml with M1 =k, e.g. the

injective hull of k or k[Gll with the left or right regular

)
representation. Now 9.18(2) implies Hl(g,Ml) = Homs(g,Ml) =

g'(l) and that (because of the naturality of the maps) the

induces a surjection Hl(g,k) > Hl(g,Mll;

1
hence (by the naturality of (1)) a surjection of Ei’l for M=k

inclusion of k into M
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1 . _#{1)

for M = Ml, hence to Hl(g,ul) | . But E

= k 1is equal to ker(dé'i)cz g*(l), so dimension
L4

1,1

1
to E, 1
for M

14

considerations show dé ; = Q.
r
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10. Reduction mod p

Let G be a group scheme over Z . If Vv is a finite dimen-

sional GGl~module, then we can find a G-module V. with VELQ%ZCQ

Z
=V, cf. 10.3. We can then form the Gk—module Vk = VZF%ZF
for any ring k. If p is a prime number and k = F:p (or

k = an algebraic closure of F;), then we say that we get Vk

from V through reduction mod p.

In general there will be more than one module {(even up to
isomorphism) which we can get from V through reduction mod p,
as we can choose different VEL' One can still show that they
have the same composition factors. (One can express this in the
form that the class of Vk in the Grothendieck group of Gk is
uniquely determined by V.) This independence was proved in
[Serre] generalizing the corresponding statement for abstract
finite groups due to Brauer. One can even generalize Brauer's
lifting of idempotents. So every injective indecomposable qzmodule
lifts to the p-~adic completion of Z . Furthermore then Brauer's

reciprocity law holds in this situation. These results were

proved in [Green 1], and we follow Green's approach here.

We can replace 21 above by any Dedekind ring R and ‘:;
by any residue field of R. Then all the results will still hold
and we do everything in this generality. (Therefore the term
"mod p® occurs only in the title and the introduction of this

chapter.)
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10.1 (Restriction of Scalars) Let k' be a k-algebra and
G a k~-group functor. We observed in 2.7(6) that any G-module M
leads in a natural way to a Gk,—module M@® k': For each k’~algébru
A' the group Gk,(A') = G(A') operates as given on M@ A' =
MR k') & k.A'.

There is a functor in the opposite direction: We can regard
each Gk,—module V in a natural way as a G-module. For any k-algebra
A the map a++ 1@& a 1s a homomorphism of k~algebras A + k'@® A,
hence induces a group homomorphism G(A) ~ G(k'& A) = Gk' (k'e A)
and thus an operation of G(A) on V &k,(k' ®&A) = V®A. These
operations are compatible with homomorphisms of k-algebras and

lead therefore to a representation of G on V regarded as a

k-module.

In the case of a group scheme we get the comodule ‘map of V
as a G-module (i.e. V » V® k[G]) £from that as a Gk,—-module
(i.e. V>Ve®,  ,k'[G]) using the identification V &, k' [Gl=
Ve, k' ek(c]) = vekic].

If M 1is a G-module, then the map iM: M>>M®k', m->m&S 1
is a homomorphism of G-modules,if we regard the Gk.-module M®k'
as a G-module as above. Indeed, the operation of any G(A) on
M®k'e®@ A comes from the operation of G(k'@& A) on this module
and the homomorphism jA: ar> l1gga from A to k'@® A. We can
regard 1M®idA: Mep A»rMek'®A also as idM® jA and it

is therefore compatible with the action.

The universal property of the tensor product implies that
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or—r ‘”iu is a bijection Homk, (M® k!, V) » Homk(M,V) for any
k-module M and any k'-module ' V. We claim that it yields a
bijection

(1) HomGk‘ M® k',V) + HomG(M,V)

when M is a G-module and V a Gk,-module. As iM is a homomor-
phism of G~-modules we have already proved one diréétion. Suppose
now that zpciM is a homomorphism of G-modules and let us show
that ¢ 1is a homomorphism of Gk,—modules. Consider any k'-algebra
A' and themap ¢ & idA,: M®k'® k,A' > M? ®k'A" We have to
show that it commutes with the action of Gk‘ {A') = G(A'). We can
identify M@ k! @k,A' = M@& A' and then factorize the map into

at first (moiM) & id M&A' » M"® A' and then the canonical

ard
map M'& A' » M' ®k,A' . By assumption the first map is G(A')~-
equivariant where we get the action of G(A') on M'& A' from

that of Gk,(k'® A') on M'ek,(k'a A') = M'® A' via

A" + k'@ A', a+ 1l a. As k's& A' » A', b® av> ba is a homo-
morphism of k‘-—algebras,the corresponding map M'&xA' = M'X k! (k'®A')
+ M @k,A' is compatible with Gk‘ (k'® A'Y ~» Gk,(A'), hence

with the action of G'k' {A'), This is what we had to prove.

10.2 (Lattices) Let R be a Dedekind ring and K its field
of fractions. ILet me remind you that a lattice in a finite dimen~
sional vector space V over K 1is a finitely generated R-submodule

M of V such that the canonical map M @RK + V is an isomorphism.

This map is always injective, so we can weaken the condition

to "V 1is generated by M over K", cf. [3], ch. VIiI, §4, n° 1,
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rem. 1. As R 1is a Dedekind ring, any such lattice is a projective
R-module and its rank is equal to dimKV. If M 1is a lattice in

V and V' is a subspace of V, then M A V' is a lattice in V!
and (M+V')/V' is one in V/V'. If Mlcz.vl and Mzc: V2 are
lattices, then MldbRuz is one in VIEBKVZ. (For more details,

o

consult [ 3 ]}, ch. VII, §4, n 1.)

10.3 Lemma: ILet R be a Dedekind ring and G a flat group

scheme over R. Let X be the field of fractions of R and V

a finite dimensional GK-module. Then there is a G-stable lattice

in V.

Proof: Let VyrVoresesVy be a basis of V. By 2.13(3) there

is a G-submodule M of V containing all v, which is finitely

i
generated over R. As M generates V over K, it is a lattice.

10.4 Proposition: Let R be a complete discrete valuation

ring with k as its residue field. Let G be a flat R-group

scheme. Then there is for each idempotent e € EndG (k{Gk]) an
k

e € Endgjk[G]) inducing e.

Proof: Denote the maximal ideal in R by m. Let me remind
you that by 4.18(2) the canonical map from EndG(R{G})é§ Rk =

EndGR[G]/g EndGR{G] to EndG (k[Gk}) is an isomorphism.
.4

We want to apply proposition 3.15 to the ring EndGR[Gl and

its chain of ideals m, = giEndGR[G]. If that is possible, we get

i
the lemma as an obvious consequence. So we have to prove that

naturally
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- i
(1) End.R[G] # lim End_R[G]/m End R[G].

If M 1is a G-submodule of R[G] which is finitely generated
over R, then it is a free R-module and we have an isomorphism
HomG(M,R{G]) = u* by Frobenius reciprocity. As R is complete,

we get
~ i
Hom,(M,R[G]) = lim Hom,(M,R[G])/m Hom,(M,R[G]).
This implies (1), as R[G] is the direct limit of such M.

10.5 Corollary: Let R be as in 10.4. For each indecomposable

and inijective G -module Q there is a direct summand 'é of R[G]

with Q=§®R.

Proof: We may assume that Q is a direct summand of k{Gk}.
‘ Gk(k[Gk})
idempotent with Q = ¢(k[Gk}). Let ¢ € EndG(R[G}) be idempotent

(Continue 3.16 and 3.10!) Therefore we can find ¢ € End

inducing ¢. Then ¢(R[G]) is a direct summand of R[G] and

Q = o(k[G]) = (¥@1d k(G ] = ¥(R[E]) & k.

10.6 (Reciprocity) Let us assume from now on in this chapterxr

P

that R 1s a Dedekind ring which is not a field. We denote its

field of fractions by K. Let m be a maximal ideal of R and

suppose that k = R/m.

Let G be a flat R-group scheme. If V is a finite dimen-
sional Gx-module,then we can find by 10.3 a G-stable lattice V,

in VvV and then form the Gk—module Vk = VR® Rk. We have obviously
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dim Vk = rkR(VR) = dimKV.

The choice of a G-stable lattice is not unique and different
choices will lead in general to non-isomorphic Gk—medules. We

claim however that the composition factors of V

x are uniquely

determined by V.

ILet E be a simple Gk-module and let QE be an injective
hull of E, cf. 3.16/17. The multiplicity [Vk:E] of E as

Gk

a composition factor of V, is then equal to (cf. 3.17(3))

k

(1) [Vk:E} = dim Hom {Vk,QE)/dim End

Sk G S

A
et R be the m-adic completion of R and denote by KX its

(E).

field of fractions. We can identify k with the residue field
of ‘ﬁ. By 10.5 there is a direct summand éE of the Gk-module
A -~ ~

R{Gﬁ} = R{G]é%g with QEébRk QE. Now 4.18(1) implies (as

Ve = (V@ RI® oK)

A
(2) Hom (VRQBRR,QE)Gbﬁk = HomG

Vi Q5.
GR k'"RE

(
k
M A AN
On the other hand (VR@RR)QﬁK = V@KK and K 1is flat over R,

s0 already 2.10(7) implies

N~ oL AN~ ~
{3) HomGﬁ(VRéBRR,QE)Qbﬁg = Hom (VGQKK,QEﬁbﬁK).

R

A comparison of ranks and dimensions implies the "Brauer reciprocity

formula®
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~ A .
(4) [V'k:E]Gk = dimgﬁoqu;VEQKK,QEébﬁﬁ}/dlm Ende(E).

10.7 Assume in addition that each simple G, _-module is

IR k
absolutely simple (hence satisfies EndG = k), that also each
k
simple Gx-module is absolutely simple, and that each GK~module

is semi-gimple. (this is e.g. satisfied for a split connected
reductive group, if char (K) = O, see part II.} Let us assume

- A
in order to simplify that R = R.

Consider a simple GK-module V and a simple kamodule E.

Let us construct éE and V as in 10.6. The semi-simplicity

k
of Q.®_ K and the absolute simplicity of V implies that
dimK HomGK(V,éEquK) is equal to the multiplicity of V as a
composition factor of QEQBRK. So 10.6(4) yields

(1) {Vk:E}Gk = {QEQRK:V]GK.

If we take an abstract finite group T and carry out the
construction of 8.5.a over R, then we get Brauer's original

theorem.

10.8 Return to the more general situation of 10.6! We can

TERERER

interprete the result as a statement about Grothendieck groups.

Recall that one can associate to each abelian category a
Grothendieck group. One starts with the free group generated by
the objects of the category (let [M] denote the gener;zggﬁto an
object M) and divides out the subgroup generated by all [M]-[M']

-{M"] for all short exact sequences O +~ M' +.M > M" » 0 in the
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category.

Let us denote by g(G) the Grothendieck group of all those
G-modules which are finitely generated over R. Define §(GK)
and g(Gk) by analogy. Then §(GK) and g(Gk) are free abelian
groups with the classes [E'] resp. [El of all simple Gy-modules
E' resp. simple Gk—modules E as a basis. For any finite dimensional

Gk—module M one has

[M] = z[M:E]

[E]
E  k

where E runs through a system of representatives of isomorphism
classes of simple Gk—modules. (Similarly for GK.) In these cases
(over a field) the Grothendieck groups have a natural ring
structure induced by the tensor product, i.e. with [M®M'] =

[M]1[M'].

of V

We can now deduce from 10.6(4) that the class [V k

]
is uniquely determined by V and does not depend on the choice
of VR. One gets in this way easily a homomorphism of rings

R(Gy) » R(G,) with [VI~[V.].

10.9 Let me mention some results about R(G) proved in
[Serre]. The map Mé> M®K induces a homomorphism R(G) - §(GK) .
Its kernel is equal to the subgroup of R(G) generated by all
[M] such that M is a (finitely generated) torsion module (and a
G-module). Lemma 10.3 implies that the map is surjective, i.e.

that we get an exact sequence of the form
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(1) 0+ R (G) > R(G) » R(Gy) + O.

Conslder the category of all G-modules which are finitely
generated and projective over R and let §Pr(G) be its Grothen-
dieck group. The inclusion of categories induces a homomorphism

from gpr(G) to R(G) which turns out to be an isomorphism

(2) (G * R(G).

R
=p
The reduction mod m (i.e. M+ M®k = M/mM) defines a

homomorphism gpr(G) -+ g(Gk), by (2) also R(G) - g(Gk). One
checks that §tor(G) is mapped to O and gets R(G,) ~ §(Gk)

by (1). This is the same map constructed using 10.6(4).

If R is a principal ideal domain, then §tor(G) = 0. {If
M 1is a G-stable lattice in a finite dimensional GK—module V.
then [M/mM] = 0 in R(G) as M = mM. One can show that

§tor(8) is generated by such [M/EM} for all possible m.)
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