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HYPERBOLIC MANIFOLDS AND SPECIAL VALUES OF DEDEKIND ZETA-FUNCTIONS

by

Don Zagier

§1. 1Introduction

A famous theorem, proved by Euler in 1734, is that the sum
1

o
Z —2m is a rational multiple of x°®  for all natural numbers m
n=1 R
Ti .22, Fa.x § 1. _eo1 yl2
3 n? 6 ' §naf %0’ vt LD 638512875 ' " -

This result was generalized some years ago by Xlingen [3 ] and
Siegel [ 5], who showed that for an arbitrary totally real number

field K the value of the Dedekind zeta function

7 _(g8) = Z 1 s (sum over non-zero integral ideals a8 of K)
K s N(%)
at a positive even integral argument s =2m can be expressed by a

formula of the form

2nm

n
CK(Zm) = rational number x =

where n and D denote the degree and discriminant of K ,
respectively. However, little is known about the numbers CK(Zm)
for X not totally real. We will prove the following theorem which

describes the nature of these numbers for m =1



THEOREM 1. Let A(x) bLe the real-valued function

x
1) A(x) =
( g. 1+t2

logl—‘%z-dt ( x e R)

(see Fig. 1) . Then the value of te(2)  for an arbitrary number

field X can le expressed by a formula of the form

2r+2s
(2) £, (2) = L—=='xJ c A(x )...A(x ) ( finite sum )
K YTo] v VY v, 1 v, 8

where D, r and s denote the diseriminant and numbers of real

and complex places of K , respectively, the <, are rational,

and the x,,; are real algebraiec numbers.

?

The proof will show that the X, j

can be chosen of degree at most 8
’ .

over K, and will in fact yield the following stronger statement: let.

Ty» 61, cees O 63 denote the distinct complex embeddings of K ; then for

any totally imaginary quadratic extension K1/K and embeddings Gj: K1 +C

extending oj (1Sjss) there is a formula of the form (2) with xv,j/:T of

degree <2 over Bj(K1).

1 AC(x)
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Figure 1

More picturesquely stated, the Klingen-éiegel theoremisaysb
that a single transcendental number, “2' suffices to give the
contribution of each real place of a field tdﬁthe value 6f its

zeta-function at 8 =2 , and our result says that a single



transcendental {unction, wz‘A(x) , evaluated at algebraic arguments,
suffices to give the con;ribution of each complex place.

The proof of Theorem 1 will be geometric, involving the interpretation
of C%K(Z) as the volume of a hyperbolic manifold (the function A(x) is

equivalent to the dilogarithm and Lobachevsky functions occurring in the formulas



for the volumes of 3-dimensional hyperbolic tetrahedra). Since
it is only CK(Z) which can be interpreted geometrically in
this way, we did not get a formula for CK(Zm), m > 1. However,

we conjecture that an analogous result holds here, namely:

CONJECTURE 1: For each natural number m let Am(x)-'bé the

real-valued function

2m-1 o 2m-~1

2 t at )
(3) A (x) = / .
n (2m-1)1 0 x sinh’t + x ! cosh®t

Then the value of Ty (2m) for an arbitrary number field X equals

ﬂmwr+s)/7|ol times a rational linear combination of products of s

values of A (x) at algebraic arguments

The formulation of this conjecture, and the choice of Am,

are motivated by:

THEOREM 2: C(Conjecture 1 holds if KX 18 abelian over P; 1in fact,
in thig case the arguments x can be chosen of the form x==cot%?,
where N 18 the conductor of K (the smallest natural number

2ni/N

such that K C D(e )). For m =1, the function defined by

(3) agrees with the function A(x) 1in Theorem 1.

Theorems 1 and 2 and the Siegel-Klingen Theorem show that

Conjecture 1 is true if K is totally real (i.e. s = 0), if

m 1, or if K 1is abelian, special cases of a sufficiently
varied nature to make its truth in general very plausible. The
proof of Theorem 2, given in §4, uses routine number-theoretical

tools, and it is worth noting that, even for abelian fields, the



geometrically proved Theorem 1 gives a stronger statement (for
m = 1), namely that the arguments of A(x) can be chosen to be
of bounded degree over K. Thus,in the simplest case of imaginary

guadratic fields (r=0, s-l),vthe proof of Theorem 2 gives

(4) g (2) = —X ) Q@ A(cot )
K 6/To[ o<n<|p| [o]" °
vhere the arguments’of A(x) are of degree (D) over @, e.g. for D=-7

it gives



2 :
L
(5) cg(/:7)(2) - 35 ( A(cot%ﬁ + A(cot %1) +A(cot %;) ) .,

whereas the proof of Theorem 1 will lead to the formula

2
(6) S/Th () = I (280D + AGT+ 2/ + AT /D),

where now the arguments of A(x) , multiplied by /-1 ,» are
guadratic rather than cubic over X . In this connection we
observe that the values of A(x) at algebraic arguments satisfy
many non-trivial linear relations over the rational numbers; I
know of no direct proof, for instance, of the equality of the
right-h&nd sides of equations (5) and (6).

We will discuss (6) and other examples of Theorem 1 later,

after giving its proof.

§2. Proof of Theorem 1. Assume first that s =1, i.e. K 1is

a field of degree r+2 with r real places and one complex place.
Let B be a quaternion algebra over K which is ramified at all
real places (i.e. B»QKR ~ Hamiltonian quaternions for each real
completion R of K ), 0 an order in B, and T a torsion-free
subgroup of finite index in the group 0l of units of (0 of reduced
norm 1. Then choosing one of the two complex embeddings of K
into L and an identification of BQKB with Mz(t) gives an

8 discrete subgroup
embedding of T into SL,(C) Yand hence, entIfying SL,(L)/{z1}

free and
with the group of isometries of hyperbolic 3-space K3 , a)properly

smooth and is
discontinuous action of T on R3 . The quotient I3/P is/compact



if B fui(x) (wvhich 1s automatic 4f r >0 and can be assumed in
any case) and its volume 1is well-known to be a rational -hltiéle
of £ (2)/m T A/B] (see e.g. 171, I, 81 or [1], 9.1(1)). We therefore
have to show that this volume can be expressed as a rational linear
combination of valués of A(x) at algebraic arguments x .

[The choice of B, 0 and T plays no role; the reader not
familiar with quaternion algebras can take

a+bi  c+di 2.2 2.2
(7) R { (-c+di :—bi)| a, b,c,d €ER, a“+b " +c +d =1 } C sL,(p) ,

where R CKCC 1is the ring of integers of K- or a subring of
finite index (e.g. the ring Z[a] , where a 1is one of the two
non-real roots of a polynomial f chosen as in the remark following

the theorem) and 1 = /-1 , corresponding to
0= R+Ri+Rj +Rij C B =K + Ki + Kj + Kij (122321, 1j=-31).

With this choice of B , the field K1 occurring below can be
taken to be K(1i).]

Choose a quadratic extension Kl of K which 18 a splitting
field for B i.e. such that B@KKI guz(xl) , and choose an
embedding KICIC extending the chosen complex place of K and
an identification of B®C with MQ(C) extending the isomorphism
BOK, 3)(2(1(1) . Then SLZ(KI) is embedded into SLZ(C) as a
countable dense subgroup containing the discrete group ', and T
acts on '13,fprcscrving the dense set of points whose coordinates
.2 , "1in the standard representation of K3 ‘a8 € XR_ belong to

Kl <. Hence if we choose a geodesic triangulation of R3IP with

sufficiently small simplices, then by moving the vertices slightly



to lie on this dense set we can get a new geodesic triangulation
whose vertices have coordinates which are algebraic and in fact
lie in thg chosen splitting field K1 . To prove the theorem
(still for s =1 ), it therefore suffices to show that the volume .
of a hyperbolic tetrahedron whose four vertices have coordinates
belonging to a field ch € can be expressed as a rational linear
combination of values of A(x) at arguments x of degree &4
over Kl « In fact, we will show that it is a combination of at
most 36 such values, with coefficients t% or t% .

Let, then, A<Zx3 be a tetrahedron with vertices Pi -
(z;,7,) € K; x(K;NR), € € xR, (4=0,1,2,3). The geodesic through
P0 and Pl » continued in the direction from Po to P1 ,c meets
the ideal boundary Pl(c) = € U{o} of R3 in a point of Pl(Kl) ,
and by applying an element of SLz(Kl) (which does not change the
volume of A ) we may assume that this point 18 <« , 1.,e. that
P0 is vertically below P1 . Then A 1is the difference of two
tetrahedra with three vertices
Py €Hy
2). Such a tetrahedron is bounded

and one vertex at = (Fig.

1 _ by (parts of) three vertical planes

and one hemisphere with base on

Cx0 C a(ic_3) . Let P be the top

point of this hemisphere. Looking

Figure 2 down from infinity, we see a triangle
and a point P ;vdrawing‘the straight
lines from P to the vertices and the perpendiculars from P to the side

of this triangle decomposes the triangle into six right triangles and the



tatrahedron into

Sa,y six tetrahedra of
« ) the kind shown in
“‘ﬁh Figure 3 (Fig. 4). !

. The volume of the
wia tetrahedron of

T2 Z Figure 3 is givén
Figure 3 by the formula

Figure 4
(8) Vol (S, ) = % (Ia+1) +Ma-v) + 2 AG -0) )

(cf. Chapter 7 of [6]), by Milnor, p. ), where JI(68) is the
"Lobachevsky function" (aétually introduced by Clausen in 1832,

and discussed extensively in Chapter 4 of [ ]), defined by

® 6
(9 Aoy = 3 ] 2200 o faog ]2 etnt] ar .
n=1 n 0
From
d | 1 1 _1 4
'a;ﬂ(arc cot x) = -Wﬁ'(arc cot x) = Im—:logm

we deduce that
(10) A(x) = 2 Jl(arc cot x) .
Hence (8) is equivalent to

. | 1 - 1
) vel (s, ) = § (AGIED) + AR + 2a(a) )

(a=tana, ¢ = tan vy ),
80 to complete the proof we need only check that the tangents of

@ and Y for the particular tetrahedra Sa Y occurring in the



decomposition of Figure 4 are algebraic and satisfy a/~1 € Kl s
c2 € Kl (so that the three arguments of A(x) in (11), multi-
plied by /-1, are at most quadratic over K, ). This is a
question of elementary analytic geometry. Let <(Z,R) be the
coordinates of the point P in Figure 4. Then the point (2,0)

is at a distance R from each Pi ='(zi,ri) ; 80

12+ r?2 = R® (1 =1,2,3) .

;1 z, 1 z :i + lzllz

;2 z, 1 Z = r§ + |22|2 .

z, 25 1/ \&%-|z)? r3 + |z,)?
Since the numbers ri and z, belong to Kl s these imply that
Z and R2 belong to Kl . Referring to the picture, we see
that the angle % - a 1is the argument of A = (zj-zi)/(z—zi) €K1

for some i, § , from which V-1 tan a = %;% € K1 . We also find

cos Y = % and hence tanz Y = (RZ-DZ)/D2 , where D 1is the
distance from Z to the line joining z, and zj » and a simple

calculation shows that

2 L (2T 477 479 -Te 4% = -2 T 32 2
D - g (22 42z, 402, -T2 4z 2,02, 2;) Iz, zjl € K,

as claimed. This completes the proof of the theorem for s = 1,
Now let s be arbitrary. We choose B, 0 and T as

before (i.e. B #¥ MZ(K) a totally definite quaternioh algebra

over K, 0 an order in B, and T C 0 of finite index). The

embeddings OyreeesO: K<+ C give a map O0: B » Mz(c) such
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thgey‘a(t) viqﬂa discrete subgroup of SLQ(C)', and this gives
a piopérly discontinuous, free action of [ on ﬂ:. Let M =
x;/r denote the quotient; then M is a smooth, compact
3s-dimendional hyperbolic manifold whose volume is a rational

multiple of (2)/w2r+2s/|D| (loc. cit.). We will show that

z‘:K
M can be decomposed as the union (with multiplicities) of sets

(1) x . (s)

of the form =w(A - X4

(j)

), where TmW: x; + M is the pro-
jection and A C H3 is a hyperbolic tetrahedron each of
whose four vertices has both coordinates in Bj(Kl) (K1 a
splitting field of B over K, 5j as in the remark:following Theorem 1). T.
by the calculation just given, VOl(A(j)) is a rational linear
combination of values A(x) with x/-1 quadratic over Ej(Kl),
and the desired result will follow.

Since M is compact, we can choose compact sets
Fl""'rs C R3 so large that le «++ XFg contains a funda-

mental domain for the action of [ on K:. We can clearly

assume that Fj is triangulated by finitely many small tetra-

hedra A;J) whose coordinates lie in the dense subset
5.(K1) x (§,tK,) AR.) of ¥, ; here "small" means that each
J
product Aa = Aa(l) X eoo X A;s) is mapped isomorphically onto dte image in
1 s

M by 7. Hence M 1is covered by finitely many such products
n(Aa), and by the principle of inclusion-exclusion

vol(M) = Jwor(a) - I wol(ana) + VOl(ANANA ) - ---,
L Z a a<h a b ach a b ¢

where we haée ordered the multi-indices a in some way. But each inter-

(1) A (lhw... ceex(ABAA ()AL )
section A.n Ah N ... is itself a product (A‘1 Abl X >¢(Aas Abs ’



and each factor A:J)IIAéJ) N... can be further subdivided into small simplices

j j
with coordinates in Gv(K1) » 8iving a decomposition of the type claimed. This

completes the proof of Theorem 1.
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§3. Numerical Examples. Various examples of arithmetic hyper-

bolic 3-man1folds.witb explicit triangulations are given in
Thurston's notes [ 6 ]. Cbnsider, for instance, the knot shown in
Pig. 5(a). It was shown by Gieseking in 1912 that the complement
M of this knot in S3 can be triangulated by two 3-simplices
(minus their vertices), the triangulation being such that six
tetrahedron edges meet along each of the two 1l-simplices of the
triangulation. Hence, if the two 3-simplices are given the

‘ ( = tetrahedra with vertices in 3¥)
structure of ideal hyperbolicm with all dihedral angles
equal to 60°, then M acquires a smooth hyperbolic structure

with volume 2 x 3 D = 3 A(—lf:) (cf£. (10); we have used the
3

fact, proved in [ 6], that the volume of an ideal hyperbolic
tetraheron with dihedral angles a«, B, Y is Jita) + JB) +
JA(y)). on the other hand, Riley showed in 1975 that the same knot

complement ‘M has a fundamental group isomorphic to a subgroup T

= A

(a) (b) (c)

Figure 5

of PSLz(R): of 1hdex.12, where R = Z + X2 11%13 is the ring of

integers of Qf/fgfn so

3/3

2 Sp (V=) (P

VOl(M) = Vol (¥,/T) =12 Vol(¥,/SL,R) = 12 x
. 4



Comparing these formulas, we find

2
27 n L] 1
z - (2) = — M) = — A(-==).
R(v=3) 33 3 /3 /3

This formula is not too interesting since it agrees with the

formula (4) obtained by straight number-theoretical means (indeead,
s s ¢

CD(/:E)(S)/C(B) 1l 172" + 1/47 - +.., which at 8 = 2 reduces

to the series defining 5& ,ﬂ(%)). However, if we take M instead

3
to be the complement of one of the links is S5(b) or 5(c¢), then
Thurston [6 ,pp. 6.38, 6.40] shows Vol(M) = 6 Vo1(1C3/SL2R). where
now R is the ring of integers of P(v-7). On the other hand,

for the manifold of 5(b) he gives a decomposition into two pieces

of the form

and applying the volume formula on p. 7.16 of [6 ] we find that

each of these pieces has volume
28 (/7) + A(YT + /I2) + AT - /12).

Comparing these two formulas (and using the formula for
Vol(x3/SL2R)), we obtain equation (6) of the introduction. This
time, as we remarked at that point, the result is quite different
from the formula (5) obtained number-theoretically; as a numerical

check, we have the values
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A(/T) % 0.962673014617 A(cot -’7'-) & 1.004653150540
A(/7+/12) S 0.690148299958 A(cot 3.,1'- & 0.826499033472
A(ﬁ'«lﬁ) %.0.837664473558 A{cot 5;"-) £.0.307298022053

80 tha§ bqth (5) and (6)Mg§ve the valpe CD(/:7 2) £ 1.89484144897 to
twelve places. (We shall say in a moment how to calculate A(x)
numerically.) Alternatively, we can compute ;Q(/:73(2) inde-
pendently and check (5) and (6) directly, rather than against

one another. To do this, we note that D(v/-7) has class number

1 and hence the norms of ideals are just the values of the norm

from x2 + xy + 2y2, so

o 2 2
r(x +xy+2y~,n)
cﬂ(/-7)(s) = l 8 !

n=1 n

where r(Q,n) for a binary quadratic form @ is defined by

r{(Q.,n) = #{(er) Ezz/{il} IQ(le) = n}-

(-]
The series Z r(Q,n)/ns is called an Epstein zeta-function and
n=1 v

can be calculated by a well-known expansion which at s = 2

becomes

™ 2 2
(12) z r{ax +bxy+cy ,n)

n=1 ‘ n2
~Tnd
4 a 81 % a Ta Tnb
" © . -4  p—— —— m—
o T L L E T Zl (Tn +3)0_s(n)e cos —

90a S §“n

with & =/4ac-b?, o_,(n) = a3, r(3» = J a3 «1.202056903... .
-3 s
din 4az1
az1



The series converges exponentially, and four terms of (12)
suffice to compute CQ(V:7)(2) to twelve places.

Finally, we consider the field X = P(/3+2/5) of degree
4 with r = 2, s =1, |D|= 275 (this is the smallest discrim-
inant for this r and s). Taking an appropriate T herxe gives
a quotient) 33/P which can be triangulated by a single tetra-

hedron A with angles as shown in Figqure 6, while

P

69

90° 60°

0 90°
Figure 6

the arithmetic description of I' 1leads to

372
275 g, (2).

7.6 K

VOI(R3/F)
. 27

This example, due to Thurston, is discussed in Borel {1}, p. 30.
The group ' has torsion, so Ra/P is only an "orbifold” rather
than a smooth hyperbolic manifold; it is of special interest be-
cause it has the smallest known volume of any hyperbolic orbifola,
arithmetic or otherwise. We can compute this volume either .
number-theoretically or topologically. The number-theoretical

method uses the relation of K to the genus field of R(vV-55)
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(we do not elaborate on this); this gives

(13)

T ‘ 2 : . v
r{x " +xy+l4y ,n) - r(4x2+3xy+4y2,n)
-

14

Tels) = tp(sm (e x )

n=l. - . n

4

. i - I3 .

an& since ;Q(/E)(z)‘ — this permits us to calculate .CK(Z)
755

easily using equation (12) (in fact, very easily, since

< 1of}g,%..o the series in (12) is negligible for xz-bxy-+14y2

e-w/SS
and extremely rapidly convergent for 4x2-+3xy-#4y2). We find

: 4
g K(Z) = jg%: (1.1193564009 - 0.2122647724) = 1.053742217, Vol = 0.0390502856.
75v5

On the other hand, we can compute the volume of A geometri-
cally by the method used in the proof of Theorem 1. If we
choose PO' P1 as in Figure 6 and extend Popl

Figure 2, then because of the many right angles in A we can

to ® as in

subdivide A into four simplices sa Y of the sort shown in
: ’

Figure 3 rather than the usual twelve. Their angles can be com-

puted in a straightforward way, and we find

A = s - 8 - s + S
I,e B,0-T rr Teg, T
3 3 6°5 6 5
with
‘4 = arc cot('-/-:i;l-'/—g), 8 = arc cot (3+2/§ /3 + -—7—1—2-'-/-5-)
‘ 2/2/5 - 3

Now'equation (8) gives a formula for Vol(A) as a sum of 12

values of A(x) at (complicatedl) algebraic arguments. Computing



these values by the method given below, we find Vol(A) ¥
.039050286, in agreement with (13).

. We have discussed this last example in some detail because
it shows how complicated the formula promised by Thébfen 1l can
be, even when the geometry of the hyperbolic manifold is very
simple (in this case triangulated by a'single, and very special,
hyperbolic tetrahedron). In general, it is very hard to find
examples of arithmetic hyperbolic manifolds for which one has
both a qood arithmeticAand geometric description., Thus it is
clear that getting actual formulas for CK(Z) by this method is
usually inpractical, so that, unless an arithmetical proof
giving an explicit formula of the form (2) is found, Theorem 1
must be considered as of Mostly theoretical interest.

Finally, we must say how to calculate A(x), or equivalently
(by (10)), the Lobachevsky function JI(8). Neither the sum nor
the integral in (9) are very gonvenient for numerical work, but
there is a very rapidly convergent method. By periodicity, we

w
can assume [8] < 5 - Then JU6) is given by

N

(14) %ﬂ("t) = t(2n+1-logl2sinmt]) - ] nlogli:
n=1
o N 2k +1
- I gy - ) ) P+
k=1 n=1 n2k) k"'l

2

for any N 2 0. This formula, which is easily proved by dif-
ferentiation, is a special case of the results of [2 j. The
series converges for_ ltl = N+ and therefore converges
very rapidly for |t| < % and quite modest N. Taking N = 4

and breaking off the series at k = 4, we get the formula,
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suitable for use on a programmable pocket calculator,

4
LNty = el ~log|2sinwt|) - | (e t2n+1+nlog——-—n+t) + €
m n n-t
“n=1
with
n | 1 2. 3 4
.00000076258

c. f .147548637158 .00142852188 .00002919407

and |e| < 1.1 1()—11 for lt] < % .




§4. Proof of Theorem 2. We begin by proving the special case
(4), even though this is well-known (see e;g., Miihor (61, p. ),
since it illustrates the general case. Let K = @ (VD) be an
imaginary quadratic field with discriﬁinént D< O énd. X(QiA?

(%) the associated character. Then ZK(s) factors as
2

8 n
’ 80 ZK(Z) - _6_ L(Z,X).

«©
¥(s)L(s,X), where L(s,X) = J X(n)n
n=1
The function X(n) 1is odd and periodic with period IDI, Y]

it has a Fourier sine expansion, well known to be

1l z 2nkn

X(k)sin .
VD] o<k<|D] D]

X(n) =

Hence, by (9) and (10),

L(2,X) = I X(k)A(cot %%T).

T oxAdEEy = Lo
ToT v]p|] o0<k<|D|

2
VD] o<k<|D]
Now let K be an arbitrary abelian field. Then KK(s)
is the product of [K:Q] L-series L(s,X), where the X are
primitive Dirichlet characters whose conductors f divide the
conductor N of K. If X 1is an even character, then X{(n)

has a Fourier expansion

1 f
X(n) = o Y X(k)cos

X k=1

2nkn
f

where Gx (defined by setting n = 1 4in this formula) 1is a

certain algebraic integer, the Gauss sum attached to X.
Therefore

2m f
L(2m,X) = X X (k)b (X even)

Gx k=1 2k, f
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., e . ’ »
where b - n ) 1 cog 2Ukn » which is known to be
ok, f n=1 an £

22m-1 X
a rational number (bﬁ;k,f'.‘?5377'32m(?)’ where Bf denotes

the nrth . Bernoulli polynomial)., If X 1is anodd character,

then instead.

£-1 '
X(n) = G—i- Y X(k)sin ﬂfiﬂ ,
X k=1

(vhere again G, 1is defined by setting n = 1). But

X
B © -4 ©
SZ;—E%! sin§:6 - 2 2 sin 2n6 [ e 2nt t2m 1 dt
2°™ n=1 n n=1 0
(-] o0
- 2 f Im( X e21n9—2nt)t2m-1 dt
0 n=1
o 2m-1
) t dt
= sin 20 g cosh 2t-cos 20
© 2m-1

t dt
0 coshzt tan 9-sinh2t cot ©

and comparing this with the definition of Am(x) -(eq.(3)) we find

§ sin 2n@

A (cot 68) = A
n n=1 an
(which in view of (9) and (10) proves that Ay=A) and
f-1
A Tk
L(?m,x) - 5, kzl X(k)Am(cot f) (X odd).

Since K 4is abelian, it is either totally real (r = [K:Q],
' 1
8 = 0) or totally imaginary (r =0, s = i[K:Q]). In the first

case all of the X are even, 8o



f

2m[K Q] TT E
£ (2m) = ( X(k)b )
K T[c X k=1 m,k, £,
2mr

and this has the form x (rational number) because

VD]
TTGx = VD , D >0, and the set of X 1is closed under
X

the action of Gal(Q/Q). (We could also have appealed to the
Klingen-Siegel theorem.) 1In the second case half of the X

are even and half are odd, so

ﬂzmsis TT If§ TT (fi_l nk )
£,(2m) = ——=— X (k)b X(k)A (cot =) J.
K 1T-GX X even'‘k=1 “'k'fX}x odd' k=1 £x
X

The factor in front equals ﬁzms/VTBT because 11'Gx = VD and
(-1)3D > 0; the second factor is rational for the same reason

as before, and for the same reason the third factor is a rational
(in fact, integral) linear combination of products of 8 values

of Am(x) at arguments Xx = cot %?. This completes the proof.
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;55,,:Partial zata-functionssahd‘deconposition.of the volume. The

z&tqtfunc:iqn. Zx(a) splits up naturally into h summands

KKQ&,q),;ﬁwhere h  18 the class number of K and for each

ideal class A the partial zeta-function ¥ (A,s) is defined

as ‘3§"N(I)fs. From a number-theoretical point of view, these
.

partial zeta~functions are just as good as Dedekind zeta-functions,

8o it is mnatural to make

CONJECTURE 2: Conjecture 1 remains true with (K(Zm) replaced

by ;KCL,Zm) for any ideal class A of K.

This conjecture can be vérified in some cases. For instance,
if K = Q(VD) 1is an imaginary quadratic field with class

number 2, then the theory of genera gives
Yy Chgo8) + L (hin8) = X (8) = X(s)L(s,Xp) ,

X (Ays8) - ZK(Al,s) = L(s,xDl)L(s,xnz) ,

where 40 and AW denote the trivial and non-trivial ideal classes

and D1> 0>»D2 are fundamental discriminants with D_*D, =D ; the

1 72

proof of Theorem 2 sho&s that for s =2m the right-hand side of both
expressions is i2m|D|-§ times a rational linear combination of numbers
Aﬂ(coti%%). Similar formulas hold for any imaginary quadratic field
with one class per genus. A less trivial example is provided by the
field Q(/~55) , whose class group is cyclic of order 4 ; here we can
verify Conjecture 2 for m=1 using eq. (13).

In the proof of Theorem 1, we obtained cK(Z) as (essentially)

the volume of‘<%§/r , where T is a torsion-free group without paraBoli



elements contained in a totally definite quaternion algebra over K .
However, the proof works even in the presence of elliptic or‘éarasdlic
elements and for quaternion algebras not ramified at the real places
of K, except that then we have to take quotients of qﬂ;%ﬂ; (0£tsr)
and these may be non-compact. In particular, we can take T = SLQ(GK)
acting on ﬁ;xkg (Hilbert modular group), in which case the qﬁotiépt X has
h cugps, but still has finite volume given as a simple multiple of
K(2) (cf. [1], 7.4(1)). The fact that X has exactly the same
number of cusps as the number of summands CKC‘,Z) into which ¢K(2)
naturally decomposes suggests a possible geometric interpretation of Conjecture
2 for m=1 : it may be possible to break up X into h vpieées,

each containing one cusp, in such a way that the volumes of the

individual pieces are proportional to the cK(A,Z) s then if the pieces can be
triangulated by simplices with algebraic coordinates, Conjecture 2 follows. There
are in fact various natural decompositions of X into h neighborhoods of cusps
(these will be described explicitly in the next section for the case r=0, s=1),

but I have not been able to ascertain whether any of them gives the right volumes.

§6. Geometrical decomposition of CQ(/:E)(Z) . In this section we will prove

the following sharpening of Theorem 1 for imaginary quadratic fields.
THEOREM 3. [et K be an imaginany quadratic uud of discrniminant -d . Then
5,(2)  can be written as a §inite sum

() = [(A( ~ 2%y 4 a(d —29%) 4+ 24(s,) )

+
a C av v

with 2 G,F'Q , cK?E Q .

Proof. We will describe geometric decompositions of X -'ﬁ%/SLz(OK) into h
pieces, each of which is in a canonical way a union of finitely many tetrahedra

Sa y as in FPigure 3 with a, vy satisfying
H



(15) tan a € 7%Q , tan’y € Q .

3/2
In view of equation (11) and the formula Vol(X) = QZ,"" CK(Z) , this will prove
n

the theorem. The decomposition of X. will depend on the choice of .positive

weights C-A;E Q .for each ideal class A of K ; since only the ratios of the

CA matter, we will normalize by taking C[oK], =1 . The cusps of the action of

r -.SLZ(OK)_ on H3 are the points of P’(K) CP‘(C) =€ U{w} = 333 , and the
I'-equivalence classes of cusps are mapped bijectively onto the ideal class group C1K
by seqdi.ng x = (a:h) 61?,(1() to the ideal class of the ideal (a,b) (greatest
common divisor of a,b). We write [x] for the I'-equivalence class of «x or

for the corresponding element of CIK . If P=(z,r) €ECxR_= H3 s We set

-1 {bz-al? + Ib1%c2
r

d(R,€) = Cp g Nl((a,b))

the "distance” from the point P to the cusp «x =(a:b) (if k=« this is
si.mply» -:,—) . This is cleaﬂy well-defined (i.e. independent of the choice of
a and b) and satisfies the invariance property d(yP, yk) = d(P,x) for YET .
It follﬁwa that we have a I'-invariant decomposition

Hy = u Y o, oY - {P] d(P,x) SA(P,)) V AERP'(K)},

x €EP'(K)

the union being disjoint except for the boundaries of the Y.< . The I - invariance
implies that the image of Y  in X depends only on [k] and equals YK/I“<
(T, = stabilizer of « in T ):

X = Ux, X o« Y /T .
Aec1K‘* ] kKK

We will now describe the geometry of a typical region YK and show that Y K/I’K
is a union of finitely many sa,y subject to (15). (The method of finding a
fundamental domain for 113/'1‘ we are in the process of describing goes back to Picard
Hurwitz and Bianchi and has been given by several other authors.)

We first transform by an element of SLz(K) to map «x to infinity. For

each A €K the set H, = {p €H3 | d(P,x) =d(P,A)} is a hemisphere with center A



and radius r()A) satisfying r(l)ZGQ (because we chose CAEQ); Y‘< is the
part of H3 lying above all of these hemispheres. The stabiiizet I‘K is a
free rank 2 module contained in K<€ (actually a fractional ideal in the class
A~2 , where A <+ [k]) and acting on H, by translations; this action ﬁréséi'ves‘
;JHA and there are only finitely many A modulo r. for which ‘ﬂx coﬁtribute%
to 3Y . Any two H, meet, if at all, along a vertical semicircle (Fig. 7a).
Looking from <, we see the hemispheres as circles and their intersections as
the line segments joining the two intersection points of two circles. Thus the
part of Hl contributing to aYK looks from above like a polygon (Fig. 7b) and
we have a decomposition of C/I‘K into finitely many such bolygogs and of Yk/rK
into cylinders whose cross—section is a polygon and whose base is patt'of a
hemisphere. Connecting the center X of Hy by line segments to the vertices

and by perpendiculars to the sides of the corresponding polygon (cf. Fig. 7c)

gives a decomposition of each n-gon into 2n right triangles and a decomposition

(a) » (b) (c)

Fig. 7

of the corresponding cylinder into 2n standar& tetrahedra SO.Y ; we will give
formulas for @ and Yy implying (15) in a moment. We have now given a triangu-
lation of the torus (:/I"c into finitely many right triangles; these can be.
recombined 6 at a time (Fig. 8a) t:c; give a triangulation of C€/T x with vertices
at the ) (this triangulation is dual to the original decomposition of ..€/T

into polygons centered at the A) and a corresponding decomposition of Yx/rk
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into “standard pieces" bounded by three vertical sides and six hemispherical
right triangles (Fig. 8b).* Each such "standard piece" is described by six
positive real numbers: Aij = hi-leZ (15i<js3), the squares of the lengths
of the sides of the triangle, and a, = t'(ki)2 (1s5is3) , the squares of the
radii of the hemispheres; it is a union of six standard tetrahedra S y and

its volume is given by

F(Ay3,A13,A12381,85,35) = ) Vol (S ),
T {4,5,k3=(1,2,3}  %ijk*Vijk

o Aja(Ajs+Aga~Ago+a +as-a,) + (Ara~Ay4) (a3-a,)
(16). tan aypy = O e
A;,+a,+a
e Y WOl

1271

B = (A A +A,5) - 2(AT2+ATs+AT,) °

where Vol(Sn ‘Y) is given by (11). Note that

L]

A = 4 xarea of the triangle A; Ay = 2 m(x,i2+x,i,+x,i ),

so that in our case AiGK we have A€Q+/d , and since the a; and Aij

* It may happen that A in Fig. 7b falls outside the polygon or that the
central point in Fig. 8b falls outsid- the triangle Xj;AzAy , in which case



art;. rational this proves (15). We have thus proved even more than Theorem 3:
3/2
d

T (2) can be written not only as a finite combination of § wiﬁh
w CK y ° a,Y

@, v satisfying (15) but as a finite sum of the function F defined by (16)
with arguments Aii » a, €Q and A€Q/d . (Since F is hqitogeneous of

degree 0 in its 6 arguments, we can even take Aij > 8, ami A/fd- m z.)
Moreover, this decomposition is canonical if h=1 and depends only on the

choice of the C A in general.
We end with some examples. For d=7 we have h=1, so there is
only one region YKI I'K =Y /0. ; the corresponding decomposition is shown

in Fig. 9 and gives the formula

3/2
7 -
= Cq(/_—n(Z) Vol X 2F(2,2,131,1,1)
(= 2Vol s -3”+4Vols _11").
tan v ] tan 7%

For K=Q(v¥-23) we have h=3. Choosing CA = { for all three ideal classes
gives the triangulations of (I/I‘K shown in Fig. 10 for the principal class

AO and a non-principal ideal class A1 . This gives

Vol (XA ) = 2F(1,6,6;4,2,2)+2F(4,3,2;2,2,1)+2F(1,8,6;4,2,2)
] .
= ,609313... + .971546... + .637795... & 2.2186552639 ,
Vol (xA1) = 2F(2,3,4;2,2,1)+2F(3,2,6;2,2,1)

.979093... + 1.136175... = 2.1152684701 ,

not the same as the values

23312 | 23372 |
—l;rr CAO(Z) & 3.4066738851, —Z;z-—cAl(Z) g 1.5212591595

obtained using (12). Thus the hope expressed in §5 is not fulfilled for the
geometric decomposition of X corresponding to the obvious choice CA = 1.

Another natural choice is

C, = min{Nb | b integral, b € ATty

which corresponds to



Y, = {(z,v) €n, | |bz-a|2+!blz 21V a,b €0y , mot both 0}

= {(z,r) | |bz-a|2+|b|2r22N(a) for all principal ideals a

of K and all a,b€a , not both 0}

(the choice CA-1 for all A corresponds to 'Y' defined by the same formula

but without the word "principal”). Here we find the decompositions of C€/T <

shown in Fignre 11 for AO and A‘ and the corresponding volumes

Vol (on) = 4?(1,8,12;8,2,1)+2F(1,6,6;4,1,1)+2F(1,64,72;64,8,8)
+2F(1,8,12;16,8,8)+2F(2,3,4;4,4,2)+2F(8,9,8;8,8,1)
= .958015... + 1.024692... + .190774... + .112422...
+ .373173... + .704497... % 3.3635757982 ,

Vol (XAI) = F(2,3,4;2,2,2) = 1.5428082030 ,

again differing (though this time by very littlel!) from the zeta-values. As

a check, we can verify that the equation

: 23372 23372
Vol (on) + 2 Vol (xAl) iy o ‘Ao(Z) + 2 o tAl(z)

holds numerically for both decompositions described. It would be of some

interest to compute the unique real number C (holding C, =1 fixed)
' 3/2 Ay Ao
making Vol(XA ) = 3%1" tA (2) and look whether it appears to be rational.
i ¥ i



({=A)® 107 uoy3IInIuUETI] 9yl ‘g 2andrg

.ﬂ@, I
N_T:.. 4

ay3 91w sa8ps ay3 wo

siaqunu ayy ¢ Nﬁméu -

3yl aaw 83DTIA3A Y3 3B
slaqunu 3y] ‘Y S90T3IA
YItm saydupray ay3 jo sa8pa
3yl 21w sIUIT PIIOS Y3

¢ y sautrod ayl punoaw suoBfiod
3yl moys saulry paisiop Iyl




——y - - e

! Dy

\ ,
\ \ x>

\ X

PRI i WS g [

\

1 cusp

incipa

Non-pr

1 cusp

incipa

Pr

Figure 10. First triangulation for Q(v-23)



dsno aaum0ﬂmunscoz

(EZ=M)0 203 Uor3awindueras puooss -1l vandid

dsnd jedrouray

e e e e e - - -




Bibliography

“1
(2}
3}
sl

[s]

(6]

l?l: :

A !}@gql, Acm:ur_abiirity"cla‘sse's and volumes of hyperbolic

'3-manifolds. Ann. Scuola Norm. Sup. Pisa 8 (1981) 1-33.

K.-H. H8rsch, Ein Verfshren zur Berechnung von L-Reihen,
Diplomarbeit, Bonn 1982.

H. Klingen, _Uber die Werte der Dedekindschen Zetafunktionen,

Math. Ann. 145 (1962) 265-272.

'L‘.-"Leivin, Polylogarithms and Associated Functions, North

Holland, New York-Oxford 1981.

C.L. Siegel, Beigchngng von Zetafunktionen an ganzzahligen
Stellen, Rachr. Akad. Wiss. Gottingen (1969) 87-102.

W.P. Thurston, The Geometry and Topology of Three-Manifolds,
Mimeographed lecture notes, Princeton University, 1979.

M.-F. Vignéras, Arithmétique des Algébres de Quaternions,

'I’.ectui‘e Notes No. 800, Sptihger-Verlag, Berlin-Heidelberg-
“New York 1980.



	Seite 1 
	Seite 2 
	Seite 3 
	Seite 4 
	Seite 5 
	Seite 6 
	Seite 7 
	Seite 8 
	Seite 9 
	Seite 10 
	Seite 11 
	Seite 12 
	Seite 13 
	Seite 14 
	Seite 15 
	Seite 16 
	Seite 17 
	Seite 18 
	Seite 19 
	Seite 20 
	Seite 21 
	Seite 22 
	Seite 23 
	Seite 24 
	Seite 25 
	Seite 26 
	Seite 27 
	Seite 28 
	Seite 29 
	Seite 30 
	Seite 31 
	Seite 32 
	Seite 33 
	Seite 34 

