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H-SURFACES WITH ARBITRARY TOPOLOGY IN
HYPERBOLIC 3-SPACE

BARIS COSKUNUZER

ABSTRACT. In this paper, we show that any open orientable surface
can be properly embedded Iifi* as a minimizingH-surface for any

0 < H < 1. We obtained this result by proving a version of the bridge
principle at infinity for H-surfaces. We also show that any open ori-
entable surfac# can benonproperlyembedded ifl? as a minimal sur-
face, too.

1. INTRODUCTION

In this paper, we are interested in the existence of com@etestant
Mean Curvature (CMC) surfacesi#® of arbitrary topological type. CMC
surfaces in the hyperbolit-space has been an attractive topic for the last
two decades. Especially after the substantial results ymgiotic Plateau
problem, i.e. the existence and regularity of minimal stefainH?* by An-
derson[[A1]JA2], and Hardt and Lin [HL], the generalizai®of these re-
sults to CMC surfaces became interesting. In the followiearg, Tonegawa
generalized Anderson’s existence and Hardt and Lin’s exgulresults for
CMC hypersurfaces [To].

Later, Oliveira and Soret studied the questioriwhat kind of surfaces
can be minimally embedded ifi*?” and showed that any finite topologi-
cal type surface can be minimally embeddediihwhere the embedding
is complete[[OS]. Then, Ros conjectured that any open sifiact nec-
essarily finite topology) can be properly and minimally ewded inH?.
Very recently, Francisco Martin and Brian White gave a pesianswer to
this conjecture, and showed treaty open orientable surface can be prop-
erly embedded ifil* as an area minimizing surfad®W]. While in area
minimizing case, there have been many great results on #fizaton of a
surface of given topology ifil?, there has been no result for CMC case so
far in the literature.

In this paper, we address this problem, and generalize iantd White’s
result to CMC surfacesH-surfaces) fo < H < 1. Our main result is as

follows:
1
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Theorem 1.1. Any open orientable surface can be properly embedded in
H? as a minimizing -surface for0 < H < 1.

In particular, this shows that any open orientable surfacele realized
as a complete CMC surface with mean curvattiren H* where0 < H <
1. Also, H = 0 case corresponds to the area minimizing case mentioned
above [MW]. While generalizing Martin and White’s result#b-surfaces,
we followed a similar but different path (See Final Remarks)particular,
the outline of the method is as follows.

Like [MW], we start with a simple exhaustion of the open otaie sur-
faceS which is a decomposition into simpler surfacgsc S, C ...S, C ..
whereS = |J,~, S, [EMM]. In other words, the surfacé can be con-
structed by starting with a disk = S}, and by adding-handles iteratively,
i.e. S, —int(S,) is either a pair of pants attached$p or a cylinder with
a handle attached t6, (See Figuré]3). Hence after proving a version of
bridge principle at infinity forH -surfaces, we started the construction with
an H-plane inH?, sayS;. Then, if S,,, is a pair of pants attached to
S,, then we attach a bridge i (H?) to the corresponding component of
0-.S,,. Similarly, if S,, ;1 is a cylinder with a handle attachedgg, then we
attach two bridges successivelyd S, (See Figurekl4 arid 5). By iterating
this process dictated by the simple exhaustiof ,ofe construct a properly
embedded? surfaceX in H? with the same topological type &f.

After constructing properly embeddéfi-surfaces ifl?, we turn to the
guestion of'What kind of surfaces can be nonproperly embeddeiras
a minimal surface?’ By placing a bridgebetween the nonproperly em-
bedded minimal plane ifi® constructed in[Cad3], and the minimal surface
of desired topological type constructed above, we showahgtopen ori-
entable surface can be minimally and nonproperly embeddgd.i

Theorem 1.2. Any open orientable surface can be nonproperly embedded
in H? as a minimal surface.

The organization of the paper is as follows. In the next sactive will
give the basic definitions and results. In section 3, we withve a version
of bridge principle at infinity for/7-surfaces iffi®. In Section 4, we show
the main result, the existence of properly embedded, cdmpieimizing
H-surfaces ifl® of arbitrary topological type. In Section 5, we will show
the existence of non-properly embedded minimal surfacEs iof arbitrary
topological type. In section 6, we give some concluding nésxiaNote that
we postpone some technical steps to the appendix sectiba aht.

1.1. Acknowledgements. | would like to thank Brian White and Francisco
Martin for very valuable conversations and remarks.
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2. PRELIMINARIES

In this section, we will overview the basic results which weeun the
following sections. For further details, sée [Col, SecBpn

Let > be a compact surface, bounding a donaiim some ambient Rie-
mannian3-manifold. Let A be the area o¥, andV be the volume of
Q. Let’s vary X through a one parameter family;, with corresponding
areaA(t) and volumel/(¢). If f is the normal component of the variation,
and H is the mean curvature of, then we getd'(0) = — [,2H f, and
V'(0) = [, f whereH is the mean curvature.

Let X be a surface with boundary. We fix a surfacell with OM =
«, and definel/(¢) to be the volume of the domain bounded h§ and
Y. Now, we define a new functional as a combinationdodnd V. Let
Iy(t) = A(t) + 2HV (t). Note thatly(t) = A(t). If ¥ is a critical point
of the functional/y for any variationf, then this will imply 3 has con-
stant mean curvaturd [Gu]. Note that critical point of the functiondly
is independent of the choice of the surfdﬂesmce |fIH is the functional

which is defined with a different surfacM thenly — IH = (C for some
constant'. In particular,H = 0 is the special case of minimal surfaces and
area minimizing surfaces, for which the theory is very we\eloped. We
represent{ = 0 case in brackets [..] in the following definition. This def-
inition describes well why CMC surfaces are considered agigdizations

of minimal surfaces in a certain way.

Definition 2.1. i. ¥ is called asH-surface[minimal surface] if it is crit-
ical point of Iy [Io] for any variation. Equivalently}. has constant mean
curvatureH (0) at every point.

ii. A compact surface with boundaby is aminimizing H-surface[area
minimizing surface] ifx is the absolute minimum of the functiong} [ 1]
among surfaces with the same boundary.

lii. A surface (not necessarily compact) isnaimizingH-surface[area
minimizing surface] if any compact subsurface is a minimgzH -surface
[area minimizing surface].

iv. A minimizing H-surface [area minimizing surfacg] with 0., =
[ is auniquely minimizingH -surface[uniquely minimizing surface] if"
bounds a unique minimizing-surface (area minimizing surface) .

Notation: From now on, we will call CMC surfaces with mean curvature
H as H-surfacesand we will assum@ < H < 1 unless otherwise stated.
All the surfaces are assumed to be orientable unless otbestated.

Now, we will give the basic results oA -surfaces in hyperbolic space.
The following existence result is given in any dimension.
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Lemma 2.2. [To], [AR] LetI" be a codimension-closed submanifold in
Sm (H™+1), and let| H| < 1. Then there exists a minimizi+hypersurface
Y™ in H"*! whered,, X" = I'. Moreover, any suchi/-hypersurface is
smooth outside of a closed set of Hausdorff dimensient.

Beside the existence results, Tonegawa studied the réguainfinity
in [Ta], and obtained the following result.

Theorem 2.3.[To] Let I" be a collection ofC>°-smooth disjoint simple
closed curves irb? (H*). LetX be anH-surface inH® with 9,.% = T.
Then,X U T is aC* submanifold with boundary ifI3.

Note also that by using some barrier arguments, it is not tashow
that if 5 is the intersection angle at infinity between drsurface and the
asymptotic boundarg? (H?*), thencos 0y = H [T0].

The following fact is known as maximum principle.

Lemma 2.4. Let X, and X, be two surfaces in a Riemannian manifold
which intersect at a common point tangentially.>} lies in positive side
(mean curvature vector direction) &f; around the common point, thei,

is less than or equal té¢/, (H, < H,) whereH, is the mean curvature of
Y}, at the common point. If they do not coincide in a neighborhobthe
common point, theil; is strictly less thard, (H; < H»).

Now, we will quote the following result fron_[C62], which issad to
prove the genericity of uniquely minimizing -surfaces idl®. This lemma
will also be an important tool for us to prove the bridge pite at infinity.

Lemma 2.5. [Co2, Lemma 4.1]Let " be a collection of simple closed
curves inS2 (H?). Then either there exists a unique minimizidgsurface
¥ in H? with 9., = T, or there are two canonical disjoint extremal mini-
mizing H-surfaces-t and X~ in H? with 9., X* =T.

Now, we will show that if two disjoint collection of simpleated curves,
say3; andf3;, does not "link” each other is% (H?), then the minimizing
H-surfacesl; andT5; in H? with 0,.T; = 5; must be disjoint.

Lemma 2.6. Let(2; and(2, be two open subsets (not necessarily connected)
in S2 (H®) with Q; N Qy, = 0. Let3; = 99; be smooth curves. Then, if
Ty and T, are two minimizingH-surfaces inH? with 0,,7; = £;, then
TN Ty = 0.

Proof: We will basically adapt the technique in_[Co2, Theorem 3.2]
to this case. Sincg; is smooth,T; U j; is smoothly embedded iH3 by
LemmaZ.B8. Sincd] is connected]; separatedl® into two regions, say
H3 —T; = A UA; whered, A = Q.
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Assume thafly; N T, # (). Then by maximum principle (Lemnia2.4),
ATNAT # 0. Since;NQ, = (0, thenW = ATNAJ isinthe compact part
of H3. Let@WﬁTl =24 andaWﬂTg = Y. Then,@El = 622 =TNT,
is a collection of simple closed curves, say

Now, recall thatl; and7}, are both minimizingH-surfaces inH?, and
hence, the compact subsurfaggsand>:; are minimizingH -surfaces with
the same boundary, i.e. I5(%2;) = Iy (3;). Now, letS; be a compact
subsurface of} with £, C int(S;). DefineS| = (S; — 31) U Xs. Clearly,
0S; = 057. Sincely (X)) = Iy(Xs), thenly(S;) = Iyx(S]) by con-
struction. AsS; is minimizing H-surface, andy (S1) = 1x(S7), thensS]
is also a minimizingH -surface with the same boundary. Howevgrhas
codimensiont singularity alongr. This contradicts to the regularity theo-
rem for minimizingH -surfaces. O

Remark2.7. Note that in the lemma above, we can take the open subsets
O, and, in S% (H?) with the conditionQ2; C €,. This is because this
would be equivalent té2; N int(Q5) = 0 which satisfies the assumption in
the lemma (i.e. take the second open(@etsint(€25)). In particular, this

is a nonlinking condition fop; andf, in S2 (H?).

We will finish this section with the following definition.

Definition 2.8. Let .S be a noncompact surface. An embeddingS — X

is properif for any compact subset’ of X, ¢~'(K) is compact inS. A
surfaceY is properly embeddedh X if there exists a proper embedding
v S — X with p(5) = X. Equivalently,X is properly embeddenh X if

Y = ¥ whereX is the closure oE in X.

3. A BRIDGE PRINCIPLE AT INFINITY FOR H-SURFACES

In this part, we will generalize the bridge principle at infyinoy Martin
and White toH-surfaces inH?® by using different techniques (See Final
Remarks). Lef" be a finite collection of smooth simple closed curves in
S% (H?). Let a be a smooth arc i? (H*) which meetd” orthogonally,
and satisfyingl N a = da. T separatess? (H?) into two regions, say
SZ(H3) —T' = X+ U X~ withdX+ = 90X~ =T (Notice that ifU C S?
andoU = ~ thendU*¢ = ~, too.). Of course Xt or X~ may have more
than one component d5 may not be connected. Lef™ be the region
which containsy. See Figuréll.

Let N.(T") be thee neighborhood of" in 5% (H?). Let N*(T') = X+ N
N(T). Let N.(«) be thee neighborhood ofy in 5% (H?). Let N (o) =
X' N N (a). In other words N («) is the component oN,(a)) — I' con-
taininga. LetY be the open planar regioi* (I') U N*(«) in Xt where
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FIGURE 1. LetI’ =~; U7, U...U~g be a collection of simple
closed curves ir6% (H?). Then,T separatesS2 (H?) into two
parts, sayX " and X~ with 9X ™ = 90X~ = I'. We call the gray
region which contains the bridge as X . In the pictures left
and right, the situations are given when the bridge in different
sides ofl".

0Y = I' UTy. FoliateY by smooth collection of simple closed curves
{I't]0 <t < d}suchthatl’, — I'Uaast N\, 0, andl’; — I's ast ¢
(See Figurél2).

Notice that if the endpoints af are in the same component Bf then

#(I'y) = #(T") + 1 and if the endpoints of are in different components of
T, theng(T';) = 4(I") — 1 wheref(T") represents the number of components

of I.

.‘ F6 .‘ -

FIGURE 2. The gray region represents an open planar region
Y with oY = T UT,. {I'y |0 <t < ¢} is a foliation of Y

by smooth curves. The red arcis the bridge. In the lefty is
connecting different components and~, of ', and hencéd; is
connected fof < ¢t < 4. In the right,I" is connected anfl; has 2
components fob < ¢ < 6.
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Now, we prove a bridge principle at infinity fdif -surfaces iffl®. Note
that we postpone some technical steps to the appendix sgetiich show
that there is no genus on the bridge near infinity by ugiligtrips andH -
skillets technique of [MW].

Theorem 3.1.[A Bridge Principle at Infinity]

LetS be a properly embedded, uniquely minimizing connettestirface
in H3 whered,.S = I is a finite collection of disjoint smooth curves. As-
sume also thab has finite genus. Let be a smooth arc ir52 (H?) with
I'Na = daandl’ L «. Consider the family of curved’, | 0 < t < §}
constructed above. Then there exists a sufficiently simall0 such that
I'; bounds a unique minimizing-surfacesS; wheres; is homeomorphic to
SUNI(«).

Proof:  First, by Lemmd 212, for any', C S2 (H?), there exists a
minimizing H-surfacesS; with 0,.5; = I';.

Step 1: For sufficiently smalt > 0, S; ~ S U N («).

Proof: In this step, we will mainly use the techniques lof [MW]. As
t, \( 0, S;, — T whereT is a minimizing H-surface inH? with 9,,7 C
I'Ua. By using the linking argument in [MW], one can show thatl” = T..
SinceS is uniquely minimizingH -surface withd,.S = I', S = T. Hence
Sy, — S and the convergence is smooth on compact sets.

We will use the upper half space model fiéit. Assume that foe,, \, 0,
there exist$) < ¢, < ¢, such thatS, , says, for short, is not homeomor-
phic to S = S U N (a). Since the number of boundary components are
same, this means, andS have different genus.

Let R, = {0 < z < a} in H3. In the appendix section, we show that
there existar > 0 such that for sufficiently large, S,, N R, has no genus.

Now, letC, = {z > a} and letS* = S N K,. Then, sinceS, —

S converge smoothly on compact seff, — S smoothly. Hence, by
Gauss-Bonnet$y andS® must have same genus. By above, this implies
for sufficiently largen, S;, and S must have the same genus. This is a
contradiction.

Hence, for sufficiently small’ > 0, we will assume that fob < ¢ < €,

S; iIs homeomorphic t& U N («). O

Step 2: For all but countably mang < ¢ < €, I'; bounds a unique mini-
mizing H-surface inH?>.

Proof: In this step, we mainly use the techniques from [Co2, Theorem
4.1]. By Lemmd2b (see also Rema&rk]2.7), for éany ¢, < t, < €,
if 51 andS, are minimizingH -surfaces witho,.S; = I';,, thenS; and.S,
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are disjoint. By Lemma2]5, iF; does not bound unique minimizing-
surface, then we can define two disjoint canonical miningzifrsurfaces
St andS; with 0,,5F =T,. Hence,S] U S, separates a regidr, from
H3. If 'y, bounds a unique minimizing/-surfaceS;, then letV, = S..
Notice that by lemmB2l63; N S, = () for ¢t # s, and hencé; NV, = () for
t # s.

Now, consider a short arc segmenin H* with one endpoint is irS;,
and the other end pointis i}, where0 < ¢; < t, < ¢/. Hencey intersects
all minimizing H-surfacesS; with d..S; = I'; wheret; <t < t,. Now for
t1 < s < to, define thethickness\; of V; as\, = [p N V|, i.e. A is the
length of the piece of in V;.Hence, ifl’s bounds more than oné-surface,
then the thickness is ndt In other words, ifA\, = 0, thenI'; bounds a
uniqueH -surface int?.

AsV, NV, =(fort +# s, ﬁf As < |n|. Hence, for only countably many
s € [t1,t2], \s > 0. This implies for all but countably many € [t;, 5],
As = 0, and hencd’, bounds a unique minimizing/-surface. Similarly,
this implies for all but countably many € [0, €], I'; bounds a uniqué/-
surface. The proof follows. ]

Steps 1 and 2 implies the existence of smooth cliyweith 0 < ¢ < ¢
for any €', wherel'; bounds a uniqge minimizing/ -surfaces;, andS; has
the desired topology, i.65; ~ S U N (). O

4, THE CONSTRUCTION OFPROPERLY EMBEDDED H-SURFACES

Now, we are going to prove the main existence result for ptggenbed-
ded minimizingH-surfaces iffl® with arbitrary topology. In this part, we

53 S4 55

&V =1

Ol /]
\ /=) ] =

FIGURE 3. In the simple exhaustion of, S; is a disk, and
Sn+1 — Sy, contains a unique nonannular part, which is a pair of
pants (e.gS4 — S3), or a cylinder with a handle (e.@s — S9).
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will mainly follow the techniques in JMW]. In particular, foa given sur-
faceS, we will start with a compact exhaustion8fS; € S, C ...S,, C ...,
and by using the bridge principle in the previous sectioncamestruct the
minimizing H-surface with the desired topology.

In particular, by [EMM], for any open orientable surfaethere exists
a simple exhaustion. A simple exhaustisn c S, C ...S, C ... is the
compact exhaustion with the following properties:is a disk, andS,, | —
S,, would contain ainique nonannular piecehich is either a cylinder with
a handle (a torus with two holes), or a pair of pantsiby [EFMM3€%F-igure

)}

Hence, by starting with a round circle &, (H?*) which bounds a unique
H-surface inH? (a spherical cap), adding the bridges dictated by the simple
exhaustion, we get a minimizing-surface with the desired topology.

Theorem 4.1. Any open orientable surfacg can be embedded iH® as a
minimizingH -surfaceX..

Proof: LetS be an open orientable surface. Now, we inductively con-
struct the minimizingi-surfaceX: in H? which is diffeomorphic taS. Let
S; C S, C ...S, C ... be a simple exhaustion &f, i.e. S,,,; — S,, contains
a unique nonannular piece which is either a cylinder withradhe or a pair
of pants.

Here, adding a bridge to the same boundary component of acsurf
would correspond to the attaching a pair of pants. Addinglividges suc-
cessively to the same boundary component would correspothe tattach-
ing a cylinder with a handle. In particular,dfis the boundary component
in 05,, and the annulugl is a small neighborhood @fin S,,, then AU B,

FIGURE 4. If S,,;1 — S, contains a pair of pants in the simple
exhaustion, we add a briddg®, so thatS,, U B,, ~ S, 11 (left).

If S,+1 — S, contains a cylinder with a handle, then we add a
handle?,, so thatS,, U H,, ~ S, 1. Here the handl&{, is just
successive two bridges, i, = B, U B, (right).
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would be a pair of pants, whefg, is the bridge attached t&. On the other
hand, ifl§n is a smaller bridge connecting the different sides of thddwi
B,, let B, U B, be the handlé{,,. Then.4 U #,, would be a cylinder with
a handle (See Figufé 4).

Recall that ifX is an orientable surface of geny&:) with k(%) bound-
ary components, then its Euler Characterigtie) = 2 — 2¢g(X) — k(X).
Notice that by attaching a bridge,, we increase the number of bound-
ary components of,, by 1 and decrease the euler characteristicl pye.
8(0Sn+1) = 8(95,)+ 1 andx(Sn41) = x(Sn) —1. Henceg(S,) = g(Sn+1)
whereg(.) represents the genus of the surface. Similarly by attaching
handle?#,, to S,,, we keep the number of boundary components same,
but decrease the euler characteristichy.e. £(9S5,+1) = £(9S,) and
X(Snt1) = x(Sn) — 2. This impliesg(S,+1) = ¢g(S,) + 1 with the same
number of boundary components.

We start the construction with a minimizirig-planeX:; (a spherical cap)
in H? bounding a round circl&, in S% (H?). Hence,X; ~ S;. Now, we
continue inductively (See Figufé 5). Assume tl¥gt,; — S, contains a
pair of pants. Let the pair of pants attached to the componentos,,.
Let +' be the corresponding componentlof = 0,.%,,. By construction,
7/ bounds a diskD in S% (H?) with D N T, = 7. Let 3, be a smooth
arc segment inD with 5, N I',, = 938, C +/, andpg, L ~'. Now, as
Y, is uniquely minimizingH-surface, ands,, satisfies the conditions, by
using the Theorem 3.1, we get a uniquely minimizffigsurface:,, , ; with
Y11 ~ S,4+1. Note also that by Theorem 3.1, we can choose the bridge
along $,, as thin as we want. Hence, in the Poincare ball model, we can
get an increasing sequencge oo such thatB,, (0) N %,.; ~ S, and
By, . (0) N X410 =~ Spgr.

2188y Yty

S2 S2

FIGURE 5. X; is a uniquely minimizingH-surface where
Os0 X1 Is @ round circle. IfSy — S; contains a pair of pants, we
attach one bridg#; alongs; to X1, and getls = X148, (left). If

So — 57 contains a cylinder with a handle, we attach two bridges
successively t&; and gett, = X16H; (right).
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Now, assume tha,, . ; — S, contains a cylinder with a handle. Again, let
~ be the component @fS,, where the cylinder with handle attached, and let
7 C S2 (H?) be the corresponding componentigy,,. Let D be the disk
in S% (H?) with 9D =~ andD NT,, = +'. Like before, let3, be a smooth
arc segment i with 5,NI",, = 98, C 7/, ands,, L ~'. Now, by Theorem
3.7, we get a uniquely minimizing/-surface>, . ;. Again, by choosing the
bridge sufficiently thin, we can make sure that, N>/, ~ S,. Now, let
A1, be the small smooth arc ib connecting the opposite sides of the bridge
along 3,. Similarly, by using Theoreh 3.1, we add another tiny bridge
along 3] to ¥/ ., and get a uniquely minimizing/ surfaceX,, where
Y1 ~ S,i1. Like before, we can find sufficiently largg..; > 7, with
BTn (O) N Zn+1 ~ Sn andBrn_H (O) N Zn+1 ~ SnJrl.

Hence, we get a sequence of uniquely minimizihgurfaces,, in H?
such that forr,, * oo, if m > n, B, (0) N %, ~ S,. By using the
techniques in[([MW] and a diagonal sequence argument, we b@itang
surfaceX in H? where the convergence is smooth on compact sets.

¥ is a minimizing H-surface inH? as being limit of minimizingH -
surfaces if®. Moreover,> ~ S as¥ N B,, (0) ~ S, as the convergence
is smooth. FinallyY. is properly embedded ifi®* as for any compact set
K C M3, there exists,, > 0 with K ¢ B, (0), andB,,(0)NY ~ S,
which is compact. The proof follows. O

Remark4.2 Notice that to apply the bridge principle proved in the poes
section, one needs that the original curve must bound a amgaimizing
H-surface. Hence, in order to add the bridges successiveé/needs to
get a curve which bounds a unique minimiziAgsurface after adding the
bridge. This is the main idea here, and that is why we needtlee®nm 3.1
to give a uniquely minimizing?-surface after attaching the bridge.

Remark4.3 If S has infinite topology, then by following the arguments
in [MW] Theorem 4.1], it can be showed that the distinct enfisaore-
spondingH -surfaceX. are disjoint. Similarly by following the arguments
in [MW/| Theorem 4.4], it might be possible to show tlagt> is a smooth
curve except at one point. However, one might need more @ointthe
asymptotic boundary of the surfaces, as our bridge priaagoimpletely
changes the boundary curve at infinity unlike [MW] where tloeitdary
curve only changes near the bridge.

5. NON-PROPERLY EMBEDDED MINIMAL SURFACES INH?

In this section, we will show that any open orientable sweféican also
be nonproperly embedded ii* as a minimal surface. The basic idea is
by taking the minimal surfacg; in H? with the desired topological type
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constructed in previous section, and the nonproperly edsxtaninimal
planeX, in H? constructed in[[Ca3], and "placing” a bridge between
andX,. For this construction, first we need a generalization oftthége
principle at infinity (Theorerh 311) for area minimizing sacés.

5.1. A generalization of bridge principle at infinity for area min imiz-
ing surfaces. Recall that Martin and White’s bridge principle applies to
uniquely minimizing surfaces ifil®> [MW]. In particular, if a collection
of smooth simple closed curvésin S2 (H?) bounds a unique absolutely
area minimizing surfac&® (not necessarily connected) Iif?, then for any
smooth closed ar6 is 5% (H?) with 3N T = 93 wheres meetsl" orthogo-
nally, then there exists a unique minimizing surfaceith 3 is "close” and
homeomorphic ta U N(5).

In this part, we will generalize this result, in particulanéoreni 3.1 for
H = 0, and this will be the key component of the construction ofprop-
erly embedded minimal surfaceslif¥ with arbitrary topology.

Definition 5.1. Let ¥; andX, be two complete uniquely minimizing sur-
faces inH? with 0,.3; = I'; whereT'; is a smooth collection of disjoint
simple closed curves if% (H?*). If there exists a simple closed curgen
S? (H?) such thatS? (H?) — 8 = AT UA™ andl’; € At andl’, € A™,
then we will call>; and>:; areseparated

Remark5.2 Notice that if3; and X, are separated, thdn, andI'; are
disjoint, and hence;; andX; are disjoint. On the reverse direction, unfor-
tunatelyl’; N T’y = () andX; N X, = () does not necessarily implies that
andy), are separated, e.g. consider two area minimizing catemoibghe
same rotation axis. Notice also thafif andI'y are disjoint simple closed
curves (one component), th&h andy, are automatically separated.

Now assume that; and>:; are separated. Letbe a smooth closed arc
in S2 (H?) connectingl’; andl’y with o N (T’ UTy) = da anda L T';. By
using the notation at the beginning of Section 3[et I';UT', and defing”
as the one side of the neighborhood\fl U« ), i.e. Y = N* (D) UN*(a).
Let{T, | t € (0,8)} be the foliation oft” wherel', — I'; UT', U« ast \, 0.

Theorem 5.3. Let 3, and X, be two uniquely minimizing surfaces I
with 0..%; = I';. Assume that; andX; are separated. Let be a smooth
closed arc inS2 (H?) connectingl’; andT', witha N (T'; UT,) = da and
aLT;. Then for sufficiently smatl| ft bounds a minimal surfacﬁt in H3
which is homeomorphic t8; U ¥, U N («). In particular, 5, is uniquely
minimizing surface in a mean convex subsp&cef H?>.

Proof:  There are two steps in the proof. A priori, it is not known
whethery; U ¥, is uniquely minimizing inH?. ¥, U X, may not even be
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area minimizing i, see Remark5l5. In the first step, we will construct a
mean convex domaiX in H?* which looks like a neighborhood of a plane
is removed but still connected with a very thin solid cylinde the second
step, we will show thak; U >3, is uniquely minimizing inX', and by using
Theorem 3.1, we finish the proof.

Step 1 - Construction of the Mean Convex Subspac& in H?>:

Step 1a - Construction of Igloos:Let 3 separatd’; andTl', in S2 (H?),
i.e.S2 (H3) — 8 =ATUA™ wherel'y ¢ At andl’y, C A™. 3, separates
H? into open components, and 18 be the component ifil> — X, with
0,81 D B. Similarly, define, as the component iH? — X5 with 9., D
B. LetQ = Q; N Q. Then,Q would be a mean convex subspacéBiwith
00 C XU, LetA = 9,0 C S% (H?). Then,s C AanddA C T'UT,.

Consider the handlebody = QUA. By constructiordM is connected,
and it is a genug surface forg = g(3;) + g(3,). We claim thats C oM
is nullhomotopic inM. Let py, 71, o, T2, .., 14, 7, b€ the generators of the
m1(0M) wherey; curve is the meridian of genus wherer; curve is the
inner circle of genus. Hence, each; is trivial in 7 (). Notice that5 is a
separating curve inM, and it represents the trivial cycle f, (OM). This
meanss is just product of some commutatorsin( M), i.e. 5 = [u;,, 73, | *
iy Tin ). %[y, 72, ] Where[u, 7] = px7*p~tx7~1. Since each commutator
(i, 7] is nullhomotopic inM, thens = [, , i, | * [y, Tin] * - % [14,, T3] 1S
nullhomotopic inM.

Now, let 3™ and~ are very close curves toin 5% (H?) in the opposite
sides, say3™ U 8~ = ON.B where N.j is the ¢ neighborhood of5 in
S2 (H3) for sufficiently smalk > 0. As 5=+ nullhomotopic inM, by [MY],
we can define a sequence of least area digksn Q with 9D — g+ C
S2 (H?). Then, by [A2], [Ga], we obtain two least area plan@s and
P~ in Q in the limit. Note thatP* are just minimal planes ifil*>. By
constructionP* NY; = (), and indeed”* (alsoP~) separate#l® into two
components wherg; and:, belongs to different components.

By the definition of3, o N 3 # 0. By modifying S if necessary, we can
assume that N g consists of just one point, say letn = aNN(5). Then
n is a short subarc in betweens™ andg~. Let S5(n) = Ns(n) N N(B)
be a thin strip inS2 (H?) alongn. LetdSs(n) — (BT UB7) = nt Un~.
Definers = (51 U B~ — 0Ss(n)) U (n™ U n~) which is a simple closed
curve inS% (H?). Now, we will construct a minimal plang in H? such
thato, I = 75 andIl ~ P*f, P~ by using the techniques in [Co3].

Lety* andy~ be two round circles iV, (/) in the opposite sides of.
By choosingy™ and~~ sufficiently close, we can make sure that there is
a spherical catenoid in H? with 9,,C = v* U~~. LetT (tunnel) be the
"small” component off® — C whered,,T is union of two small disks in
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P

n

FIGURE 6. IIis the least area plane i = H? — T where
JsoIl = 7. In particular,Il = P*4,P~ andr = g7t,5".

S? (H?) boundingy* and~y~. LetQ = Q — T. Notice that()’ is mean
convex andr is nullhomotopic inQY’ as P U P~ U Ss(n) is a disk inQ
with boundaryr. Hence, like before, we can define a sequence of least area
disks D; in €’ with 0D; — 7, and in the limit, we get a least area pldie
in . By construction]T is "close” to P U P~ U Ss(n) [Co3].

Now, I separatel® into two components, and |&t be the component
of H? — II whered.,.Z does not contaim. In particular,Z looks like an
igloo, eskimo house, with a very tiny door, in the upper hpkice model
(See Figuréle). LeK = H?® — Z. Then, X is a mean convex subspace of
H? with ¥, U X, C X. Notice thatX looks like a two large balls (inside
and outside of the igloo) connected with a very thin solidrayér, sayneck
(the tiny doorway of igloo). Notice also that whilg is insideof the igloo,
Y, is in theoutsideof the igloo.

Step 1b - Tiny Necks: Notice thato represents the width of the bridge
alongn for 11, and as) gets smaller, we get thinner necksih We will
show that when the neck is sufficiently thin, there is no categminimal
surface going through the neck between the inside and eut$ithe igloo.
In other wordsno minimal surface can pass through the neck

Now, we will use the upper half space modelidt. Let ¢* be the end-
point of n in 5+, and letg~ be the other endpoint of in 5~. Leti* be
the tangent line of3* at ¢*. Let P* be the geodesic plane iH? with
O P* = I*. Clearly,P* cuts through the bridge neaiin II. By choosing
§ sufficiently small, and translatirf§ into , small amount, we can assume
that P+ N II contains a line\* near neck such that one limit point af
is in n* and the other endpoint is i, i.e. 9,,A* C n" Un~. Let F* be
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the component oP™ — At near the bridge, i.6)..F* Nn # 0. Similarly,

let F~ be the component &~ — A\~ near the bridge, i.e), . F~ Nn # 0.
Clearly, ™ and F'~ are area minimizing surfaces as they are subsurfaces
of the geodesic planeB™ and P~ respectively. However, this does not
automatically implies that their unioR* U F'~ is also an area minimizing
surface. In this analogy, one might consider and /'~ are the inner and
outer doors of the igloo.

For eachh = 1/m (the thickness of the bridge), we can construct these
planes, and say'= be the corresponding surfaces for= 1/m. Now, we
will show that for sufficiently largen, Ft U F~ is an area minimizing
surface inH?3.

Notice that if £/ U F, is not an area minimizing surface, then there
are sufficiently large round circle§, C F.. and(,, C F, such that the
area minimizing surface;, U ¢,, bounds inH? is not the union of the disks
Uz C FE with oUE = (£, but a connected area minimizing surfadg,
(e.g. annulus) wit.A,, = ¢ U ¢,.. This is because it/ U U is not
area minimizing, then any couple of larger digks U U with U= ¢ U=
is not area minimizing either. Hence, we can cho@gsend(,, very large
coaxial round circles irF)t and ;. Then, asn — oo, d((, () — oc.
However, by[[Lo], if C; andC, are distant circles iil® with d(Cy, Cy) >
dy, then there is no connected minimal surfacie H? with 0S = C, U C,.

As A,, is a connected area minimizing -hence minimal- surfacs, itha
contradiction. This shows that for sufficiently large> 0, F,; U F, is an
area minimizing surface if.

Hence, we fix a sufficiently large: > 0 with 6 = 1/m for the mean
convex subspac& such thatF'* U F'~ is area minimizimg.

Step 2: ¥, U X5 is uniquely minimizing surface itX .

Proof of Step 2:Assume that there is an area minimizing surfaten X
different from>; U ¥, with 0. = I'; UT,. Since bothX; andX, are
uniguely minimizing inH? by assumptiony’ must have a componeist
such that,.S ¢ I'y andd. S € I's. In other words, at least one end9fs
in I'; and at least one end 6fis in I';. This shows that must go through
the neck region o near,.

Recall thatF* = P* N X, andF* U F~ is an area minimizing surface,
i.e. any compact subsurface# U F'~ is area minimizing. Since both*
andF'~ separates(, by constructions N '™ £ () andS N F~ # (). Since
they are all area minimizing, the intersection must be aectithn of closed
curves, says N F'* = o*. Let S’ be the compact subsurface $between
FtandF~,i.e.05 = o™ Uo~. Let D be the collection of disks i
with 9D+ = o*. Similarly, defineD~. As .S andD* U D~ are both area
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minimizing with same boundariesy’| = |D*| + | D~ | where|.| represents
the area.

Let D+ be a large disk i+ with D+ ¢ D+. Similarly, deflneD C
F~. SinceFF" U F~ is area mlnlmlzmg surface, so 8" U D~. Define a
new surface = (D* — D) U (D — —D~) U S'. Hence,

= (D= DT+ (ID7[ = [D7]) + 8] = [D¥| + D~

As D*UD- isan area minimizing surface, abidhas the same area with
the same boundary; is an area minimizing surface, too. Howeverhas
singularity alongr™ U o~. This contradicts to the regularity theorem for
area minimizing surface [IFe]. This shows that suchbazannot exist, and
the proof of Step 2 follows. ]

Finally, sinceX; U ¥, is uniquely minimizing in the mean convex sub-
spaceX, by using Theorern 3.1, we obtain a uniquely minimizing stefa
ﬁt in X, which is homeomorphic t&; U 3, U N («). The proof of the
theorem follows. O

Remarks.4. Notice that in the proof, we can start with uniquely minimgi
surfaces in a mean convex subspacef H*. Assume that:; andy, are
uniguely minimizing surfaces iX, and they are separated by a curve

[ in 05X which is nullhomotopic inX. Further assume that the bridge

is in 0, X. Then the whole proof goes through, and we obtain a uniquely
minimizing surfaces = Yifa2e In X' = X — Zz whereZ; is the igloo
overpgin X.

Remark5.5. This is an important generalization of Martin and White’s
bridge principle at infinity, as most of the time, the uniontwbd uniquely
minimizing surfaces irfil® may not be uniquely minimizing. Indeed, the
union ¥; U ¥» may not be area minimizing anymore, e.g. Ygtand>,

be two disjoint geodesic planes H# which are very close to each other.
If they are sufficiently close, then the absolutely area mining surface
for the union of their asymptotic boundary will not be therpaigeodesic
planes, but instead it will be a spherical catenbid!/[Wa].

Remark5.6. Notice that in the construction di, we used the least area
planesP*™ and P~ in €, instead of the least area planedtif. This is be-
cause the least area plan@s are disjoint from>; and>, by construction.
However, the least area planegih might intersect:; andX,, which com-
pletely fails the construction. Hence, this choice is vemportant for the
construction of the igloos, as it makes sure that the igla®disjoint from
the surfaceg; andX,, andX; UY, € X =H? — 7.
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5.2. The Construction of Nonproperly Embedded Minimal Surfaces

In this section we will construct nonproperly embedded malisurfaces
in H? with arbitrary topology. In particular, we will show the fowing
theorem:

Theorem 5.7. Any open orientable surface can be nonproperly embedded
in H? as a minimal surface.

Proof:  First, we give a short outline of the proof, and set the notati
Then, we proceed with the proof of the theorem.

Outline: Let the open orientable surfacebe given. Let); be the area
minimizing surface irfi® which is homeomorphic t§ by Theoreni 4]1 and
[MW]. Let ¥, be the nonproperly embedded minimal plan&linby [Co3].
Further assume that, and>, are far away from each other, asg — 3
andS? — 33, are the surfaces in the constructiorthfand,. To construct
nonproperly embedded minimal surfacevith & ~ S, we will alternate the
steps in these constructions, and define a new seqyéngeof complete
minimal surfaces, which is roughlf,, = S}4,52 wherey is the bridge
betweeAnEl andX,. Then, we show thdf,, — S is the minimal surface
whereX = >,4,>,. Hence,X will have the same topological type with
¥; ~ S, and it will be nonproper because B§.

Notation and SetupLet S be an open orientable surface. As in the previous
section, letS; € S, € .... € S, C ... be a simple exhaustion of given
by [EMM]. Now, let §n be the corresponding uniquely area minimizing
embedding of,, intoH?. Recall that in the construction in previous section,
if S,.1 — S, contains a pair of pants, we are adding a suitable "bridge at
infinity” to §n in order to ge@nH, and if S,,.1 — S,, contains a cylinder
with a handle, then we are adding "two bridges at infinity esstvely” to
S, in order to getS,.;. Without loss of generality, les, represents this
process dictated by the simple exhaustion, and%ay = §nﬂ6n for any
n, .e. 3, represents a bridge H,., — S5, contains a pair of pants, antl
represents consecutive two bridgessif,; — S,, contains a cylinder with
handle (See Figuig 4).

To recall the construction of a nonproperly embedded plania [Co3],
let P,, be the geodesic plane wheig P,, be the round circle,, in 5% (H?)
with radius1 + 1/n with center(0,0,0) (upper half space model). L&
be the geodesic plane whebg P is the round circle with radius 1 with
center(0,0,0). Clearly,, — P. Now, we define minimal planes,, with
E, = Pifa,Polla, - fa,_, Pn Wheret,  represents a bridge along, at
infinity (See Figurél7). However, the construction of thesddes is very
different from the one in this paper.
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FIGURE 7. {~v,} is a sequence of round circles Kt (H?)
where~v,, — 7. «, is the bridge connecting,, and~,,; (blue
segments). The small red circles are the bases of the tufipels
(the green tubes in the right) which goes over the bridge

Roughly, one needs to drill out a tunrng] which is the region inside
a minimal catenoid ifHl*> where its ends are small circles in the opposite
sides of the bridgev,. Then,E,, is a least area plane in the mean convex
subspaceX,, = X, 1 — 7, with 0 E,, = I';, wherel',, = y1iyst...87x.
Notice that whileX; is a least area plane in the mean convex subspace
of H3, it is just a minimal plane iffil?.

Construction of the Sequen@g: Now, we are inductively building the
sequence of minimal surfac&s in H?, which will give us the desired non-
properly embedded minimal surfade i.e. T, — 53. Note that we will
construct the first four surfac&s, Ts, T3, T, of the sequence explicitly. The
construction of the remaining surfacgsin the sequence will be clear.

In the construction above, we translate "right” the condian of 3J; by
the parabolic isometry, (z, y, z) = (x+2,y, 2). Hence,S, is the geodesic
plane Where‘ic,o?l is the circlen of radiusl with center(2, 0, 0). Similarly,
we translate "left” the construction @i, by the isometryp_»(z,y,z) =
(x — 2,y,z). Hence,P; is the geodesic plane whebe, P, is the circley,
of radius2 with center(—2, 0, 0).

Let Ty = S,. Let u be the ard0, 1] x {0} x {0} in S2 (H?), connecting
951 andd..P;. Since bothS; andP; are uniquely minimizing surfaces in
H?3, and they are separated (say by the round cixcleith center(2, 0, 0) of
radius 3/2), we can use Theorém|5.3 to get a minimal sufface §1ﬁu791.
By Theoreni 5.8, note also th@} is a uniquely minimizing surface in the
mean convex subspacg of H? with X, = H? — Z, whereZ, is the igloo
over\; (See Figuréle).
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As T, is a uniquely minimizing surface in a mean convex subspégce
by applying Theorern 311, we gé&t = 7513, wherep; represents the col-
lection of bridges, or handles (successive two bridgeshénconstruction
of ¥; as in the proof of Theoren 4.1. Hendg,is homeomorphic t®, in
the simple exhaustion, and uniquely minimizing surfac&’in

Now, we definél,. Leta; be the arc connecting and-, in the construc-
tion of ¥, (See Figuré&l7)T; andP, are uniquely minimizing surfaces in
the mean convex subspagg, and they are separated by the round cirgle
with center(—2, 0, 0) of radius7/4). Hence, we can apply the generalized
version of the bridge principle at infinity (Theorém15.3 anehirar5.4) to
T3UP, once again, and we get a uniquely minimizing surface- T3, P>
in a mean convex subspaége = X; — Z,. Here,Z, represents the igloo
over .

After defining the firstt surfaces in the sequence, we can construct the
remaining surfaces in the sequence inductively as follows.

By induction, T3, is uniquely minimizing inX,,. Hence, by applying
Theoren 311, definé,,, ., = T5,45, wherej3, represents the correspond-
ing bridges, or handles in the construction’gf. Hence, T3, ,; is homeo-
morphic toS,, . in the simple exhaustion, and uniquely minimizingXn.

DefineTs, as follows. By induction7s,,_; is uniquely minimizing in the
mean convex subspacé,_;. SinceP, is uniquely minimizing inH?, it
is automatically minimizing inX,,_;. Notice that by convex hull property
foranyn,m > 0Z, NP, = (. Hence,1,,_, andP, are uniquely min-
imizing in X,,_; and they are separated by the round cirglewvith center
(—2,0,0) of radiusl + 2(”“) Leto,,_; be the arc connecting,_; and-,,
in the construction of, (See Figur&l7). Then, by applying Theorem/ 5.3,
we obtainTy,, = 15,144, _, P» Which is a uniquely minimizing surface in
X, = X,,_1 — I, whereZ, is the igloo over\,.

Nonproperly Embedded Minimal Surfaces with Arbitrary Tiogy: Let
=—, X, be the mean convex region. AsZ,, N T, = () for any
m > n by convex hull property],, C X.. SinceX,, C X, foranyn, T,
is a uniguely minimizing surface iK,,. Then the limit surfac& = T,
is an area minimizing surface iN., and hence a minimal surface k.
Clearly, S has the same topologlcal type with the given surdeey the
construction, i.eS ~ X1f,20. Sis nonproper as the closure Bfis S U P
whereP is the geodesic plane ifi® with 9., P is a round circle of radius
and centef—2,0,0). The proof follows. O
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6. FINAL REMARKS

In this paper, we first generalize Martin and White’s resulttioe exis-
tence of complete area minimizing surfaceddit of arbitrary topological
type. In particular, they showed thatSfis an open orientable surface, then
there exists a complete proper embedding afito H? as an area minimiz-
ing surface[[MW)]. We generalize this result by showing thegre exists a
complete proper embedding Sfinto H* as anH-minimizing surface for
0 < H < 1. Note that heréd? = 0 corresponds to the area minimizing case.

When generalizing their result, our approach is mainly lEimbut tech-
niques are very different in some particular steps. In batheps, when
constructing the topology of the given surface, the main i®the bridge
principle. In order to use this bridge principle, both agmio needs the
original surface to be uniquely minimizing to start with.sal to apply this
bridge principle again, the resulting surface after thddmiattached should
be uniquely minimizing, too.

In order to ensure the uniqueness after the bridges attaeindd Martin
and White use the analytic tools, namél§ stability condition on the sur-
faces, we use the generic uniqueness tools developéd ir,[@bh are
more topological. On the other hand, in order to prove theltieg surface
after the bridge attached has the desired topology, Manih\&hite uses
strips and skillets idea from the the original bridge prodeitheory devel-
oped by White[[Wh]. In particular, they used these tools tovsthat there
is no genus developed in the bridge when attaching. Simijlarthis paper,
we followed their methods for the same step, and generalimgdminimal
strips, and skillets idea dg-strips and skillets in the appendix.

While in section 3, we showed the existence of properly erdedd! -
surfaces inH® of arbitrary topological type, in the following section, we
generalize Martin and White’s result in a different direati Especially af-
ter Colding and Minicozzi’'s proof of the Calabi-Yau Conjea [CM], the
nonproper embeddings of minimal surfaces became veryestiag. We
show that ifS is an open orientable surface, then there exists a complete
nonproper embedding ofS into H* as a minimal surface. We show this
by "placing a bridge” between the area minimizing surfaceopblogical
type of S like above, and a minimal plane constructedin [Co3]. Fifstllp
unfortunately this surface is not area minimizing but jugtimal in H? by
construction. It would be an interesting question whetherd exists a non-
properly embedded area minimizing surfacélihof arbitrary topological

type.
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On the other hand, while we can construct properly embedtedrfaces
of arbitrary topological type ifil*, the same techniques do not apply to con-
structnonproperly embedded H -surfacesin H?. In particular, in the con-
struction above, we have this nonproperly embedded minpisale, and
we are attaching it via a bridge to the area minimizing sw@faictopolog-
ical type of S. However, in0 < H < 1, a similar nonproperly embedded
H-plane does not exist to start with. This is simply becausectinstruc-
tion in [Co3] does not apply t6 < H < 1 case, because of the orientation
issues. In Section 4, a summary of this construction is giaga when
we can attach the minimal plan&s andP,,,; via bridge and get another
minimal plane. However, fof -planes this is not possible. When we at-
tach correspondin@? andP/”. |, the bridge does not connect the convex
sides. In particular, when one end connects tdfasurface, the other end
connects to— H-surface, hence the construction fails very seriously. On
the other hand, Meeks, Tinaglia and the author showed tis¢tesde of the
nonproperly embeddeff -plane inH? for 0 < H < 1, which is an infi-
nite strip spiraling between twé -catenoids[[CMT]. It might be possible
to apply the construction above with this nonproperly endeed? -plane,
which would show the existence of nonproperly embedHesdurfaces in
H? of arbitrary topological type.

One other very interesting question coming out of the cowetbn of
nonproperly embedded minimal surfaces is the a geitei@ddje principle
at infinity for complete, stable minimal surfadadi®. The bridge principle
at infinity developed in[[MW], or in this paper is just for umnigly mini-
mizing surfaces. One suspects that a more general versgin be true. In
particular, itis a very interesting question whether thddpe principle at in-
finity is true for globally stable minimal surfaces (Hrsurfaces) iff?, i.e.
if ¥, andX, are globally stable minimal surfacesi¥ with 0..%; = T,
anda is an arc inS2 (H?) betweenl’; andl'y, then is there a complete sta-
ble minimal surface. = Y1fa2o With 5~ Y Ua U X,? Itis reasonable
to expect to use the tools (like igloo trick) in the proof ofednen{’5.B to
employ the techniques ithe original bridge principle for stable minimal
surfacegWh]. Recall that to prove the original bridge principle fable
minimal surfaces:; and X, whereoX; = I'; anda is an arc connecting
I'1 andT'y, one first constructs a small mean convex neighborh§oof
Y1 Ua U Y, in the ambient space. Then, the area minimizing surfaceé in
boundingl’ = I'1£,I's C ON is a minimal surface very close ¥ Ua U,
because of the choice @f. Hence, if one can construct the appropriate
mean convex neighborhoadd of ¥, U ¥, U « in H?, and solve the Plateau
problem inX for I' = I'14,I's C 0, X, it would give the desired surface,
and prove the bridge principle at infinity in full generality
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7. APPENDIX: H-STRIPS ANDH-SKILLETS

In this part, we will show that there is no genus developedhénldridge
near infinity in Theoreni 3]1. We will use the notation of SestB. In
particular, lefl’y be a collection of simple closed curvesSf (H?) which
bounds a uniqué/-surfacel’. Let a be the bridge andl; be a foliation of
positive part of the neighborhoad. (T'U«) with ', — I'yU« ast N\, 0. Let
S, be minimizingH-surface inH? with 0,,S; = T',. Then, as in sectios,
there exists a sequente™, 0 with S, — T'. SaysS,, = S;, andl’,, =T, .
Let R, = {0 < z < a} in H3. In this section, we will prove the following
lemma:

Lemma 7.1. There exists: > 0 and N > 0 such that for anyr > N,
S, N R, hasno genus, i.e5, N R, ~ T’y x (0, a]

Proof:  Assuming tha#7-strips andH -skillets are uniquely minimizing
H-surfaces (proved below), the proof is as follows. Simi@iMW], as-
sume on the contrary that for any> 0, there exists a subsequerteN R,
has genus. Then, lé},, be the component dfl* — S,, which contains the
bridgea. SinceS,, N R, has genus, theA,, N R, must be a nontrivial han-
dlebody, i.e. itis not &-ball. Hence, there must be a poptin S, N R,
where the normal vectar, =< 0,0,1 > pointing insideA,,.

Letp, = (2, Yn, z,). Consider the isometny, (z,y, z) = i(x—xn,y—
Yn, ) Which is a translation by-(z,,, y,,, 0) first, and homothety b;% later.
Then, consider the sequence of minimiziAgsurfacesS! = v,,(S,,) and
P, = Un(pn) = (0,0,1). LetT! = ¢,(I',) = 05,,. After passing to a
subsequence, we get the limi#§ — S’, p/, — p’ = (0,0,1) € S, and
I — I". Note also that by construction the normal vectorStaat p' is
vp, — v, =< 0,0,1 > pointing insideA’.

Then like [MW], there are 4 possibilitied” is either a line, a T-shape,
the union of two parallel lines or the boundary of a skillgt.I'l is a line
or a T-shape, thef” would be a half plane which makég angle with the
ry-plane, i.e.5% (H?). Hence, the normal vector cannot ki), 0, 1 > for
any pointins’.

If TV is the union of two straight lines, the$i must be an/-strip for
—1 < H < 1 asH-strips are uniquely/-minimizing. However, there is no
normal vector 0,0, 1 > on H-strips pointing inside\’. Similarly, if [ is
the boundary of a skillet, thest would be an/-skilletfor —1 < H < 1 as
H-skillets are uniquely?-minimizing. Again, as there is no normal vector
< 0,0,1 > on H-skillets pointing inside\’, this is a contradiction.
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Now, following [MW] and [WHh], we defineH -strips andH -skillets in
3, and show thatf/-strips andH-skillets are uniquely minimizing7-
surfaces with special asymptotic boundaries.

First, we defineH-strips. We use the upper half space modelHor
Hence,S? (H*) = {z = 0} U {oc}. With this notation, let3, be union of
two straight lines parallel t@-axis inxy-plane in upper half space model,
ie. B = U B = {(z,6,0)} U{(z,—¢0)}. Let be the region in
S? (H?) between these two lines, i.8.= {(z,y,0) | |y| < ¢}. Notice that
f3. is union of two round circleg=* in S2 (H?*) where they touch each other
at one point ¢o) in Poincare ball model (See Figdrke 8). D&t be a mini-
mizing H-surface withd,. X, = . (Lemmd2.2). We calt, an H-strip.

Claim: H-strips are uniquely?-minimizing.

Proof:  Fix ¢, and letg, = . By [T0], there exists a minimizing/ -
surfaceX with 0,.,3 = (. First, notice that for sufficiently smadl > is
connected. To see that,Xf is not connected, theR = P}, U P, where
Pi is the minimizingH -surface withd,, P;; = 4*. Notice that ags* and
[~ are both round circles ifi%2 (H?) (Poincare ball model},™ andX~ are
both spherical caps correspondingite< H < 1. In particular, in upper

half space modelP;; would be half planes wit®;, = {y = \/ETZ + ¢}
andPy; = {y = — 72 — ¢} which makes angléy, with 52 (H?) [Td].

Now, letCy be the sphericall-catenoid (seé [Go]) with,.Cr; = yTUy~
wherey* are two small round circles in opposite sideg3ofu 3, e.g.y*

NH

52 (S O
N g R

FIGURE 8. In the left, if Xy is an H-strip with ., Xy =
BFrups for -1 < H < 1, then¥y = ny x R whereny is
a smooth arc inyz-plane with endpointge, 0) and (—e, 0), and
which makes angléy with S% (H?). In the right, the lines3;
and - are pictured in the Poincare ball model, whefecorre-
sponds to point$0, +e, 0).
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is the circle of radiu®) < ¢ < e with center(0, £2¢,0). In particular,
Cy intersectsP;" in two round circlesr™ U 7= which bounds two disks
D* U D™ in P U Py, and an annulust in Cy. For sufficiently small
e > 0, and appropriate choice of C, is a least area catenoid by [Wa].
Hence,|D*| + |D~| > |A| and it is easy to show th& U P, is not area
minimizing by a swaping argument. Similar comparison argotrwith
the sphericalH-catenoidCy shows thatP;; U P is not a minimizingH -
surface. Hence, the minimizing-surface> with 9,,3 = g+ U~ must be
connected.

Now, assume thak is not uniquely minimizingH-surface. Then by
Lemmd2.b, there exists canonical minimiziAgsurfaces:t andX~ with
DX = BT U B~. In particular, letQ; < S2 (H?) be an exhaustion
of 2 by compact connected regions, i.€;, C Q, C .Q; C .. with
Q=2 Q. LetdQ; = a;, andX; be the minimizingH -surface with
O0X; = a; by LemmaZR. Then, as; — (% U 5~ by construction,
there is a convergent subsequeite — >~ whereX~ is a minimizing
H-surface withd,.>X~ = g+ U g~. Similarly, one can definE* by using
a decreasing sequence of regiéljsin S2 (H*) with Q;°, > Q;” > Q and
Q =2, Q. Definea;” andx; — X+ similarly. Moreover, by Lemma
2.3, andX~ are canonical and independent of the choiceSn#.

Now, consider the parabolic isometyy of H? which is a translation
alongz-axis, i.e. pi(x,y, 2z) = (x + t,y, z). Clearly, ¢, fixes 5™ and s~
for anyt, i.e. p;(8%) = BE. Letp(X7) = %, . Clearly,0,.%; = 0,2~
for any¢. On the other handy; is the limit of X! with 0,.X! = of =
o0t = 0y (). However, X~ is canonical, and it is independent {d®; }.
Hence for anyt, ¥, = X~. As X~ is invariant undery,, this shows that
¥~ =n~ x Rwheren~ is a smooth simple arc inz-plane with endpoints
(¢,0) and(—¢, 0) andR represents the direction inH? upper half space
model. Similarly,>* = n* x R (See Figuré&lg).

Now, consider the hyperbolic isometty (z,y, z) = (Az, Ay, A\z). Let
PA(X7) = X, and henc&; = n, x R wheren, = ¢,(n7). Let\; =
sup{A | ny Nn™ # 0}. Clearly,v is the identity map, and < X\, < cc.
However, this impliess, andX* has tangential intersection as one lies in
one side of the other. This contradicts to the maximum ppieciLemma
2.4. O

Now, we define -skillets, and show that they are uniquélyminimizing.
Again, we use the upper half space model. First, we definesigmp-
totic boundaryl’ in S2 (H?). Letwu : (—oo,—1) U (1,00) — RT be a
smooth convex function”(z) > 0 such that.(z) = 0 when|z| > 2 and
u(x) — oo when|z| — 1. Definel’ = graphu) in the zy-plane, and let
Q={(z,y) |y <u(z)}U[-1,1] xR, i.e.00 =T'. Similarly, defineQ2* =
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Pe(2), X = (), andﬁei = wE(ﬁi) wherey (z,y,z) = (ex, ey, €2)
is the dilating isometry. Since, keepx, andy axis fixed, X is another
H-skillet with a very thin handle (See Figure 9).

It is easy to see thdt is star shaped 92 (H?®) with respect to the star
pointp* = (0,—6,0). Note also that in Poincare ball modéllooks like
union of two star shaped curvgs ands~ (with different star points) where
they touch each other at one point) (See Figurél9).

We claim thaf" bounds a unique minimizing -surfaceS, which we call
H-skillet.

Claim: H-skillets are uniquelyd-minimizing.

Proof:  First notice thatS is connected. IfS is not connected, then it
would bound two symmetric uniquely minimizing-surfacesP*™ and P~
with 9., P* = BT as they are both star shaped curVes|[GS]. Simild{{o
strip case, it is possible to find a spheri¢alcatenoidCy with 0,,Cy =
v+ U+~ wherey* are the round circles of radivswith centers(c + 2, ¢ +
2,0)and(—c—2, ¢+2,0). Similar to H-strip caseCy transversely intersect
bothP* andP~ in simple closed curves. Again for suitable choice:pof
we get a contradiction as before. The existence of sucham be seen by
using the isometry),, asy.(I') = T'. has width2e instead of2 along the
skillet handle.

Now, assume thdt bounds more than one minimizirg-surface. Then
as before, there are canonical minimiziigsurfacesS— andS* by Lemma
[2.5. Here, we take the exhausting sequence of redi@ng in the side of

FIGURE 9. In the left,X¢; is anH-skillet with 0. Xy = 5 U
B for —1 < H < 1. Inthe right, the lineg™ ands~ are pictured
in the Poincare ball model, wherg* corresponds to points
(0, +2¢,0).
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pe, €. U2, 7 = Q, and for anyi, p. C €, and this sequence gives the
canonicalS—. ConsiderS* and.S~ in Poincare ball model dfi®. Near the
infinity point, the part ofl” which corresponds to the skillet edgedxis) is
smooth, say. In other words, let C I'" N.(oc0) andoo € 7 wherer C I’
is the smooth piece. Notice thatis an arc in the great circle of? (H?)
corresponding ta:-axis in upper half space model, i.e. in the upper half
space modet = {|z| > C'andy = 0} U{o0}. LetT+ = ST N N.(o0) and
T~ = S~ NN(o0) inthe Poincare ball model for some smalt 0. By the
proof of Lemmd2.B, both surfacés"™ and7~ are graphs over x [0, p)
for somep > 0. Note that as5™ and S~ are disjoint, so aré+ and7'~.

Now, consider the hyperbolic isometty (x, y, z) = (Az, Ay, Az) again.
By construction, for some sulfficiently largg, for any A > X\, ¥, (S7) =
Sy would intersectS™. Hence for sufficiently large,, 7, N7 would be
an infinite linex in upper half space model. Hence, in Poincare ball model,
K is asymptotic to the pointo, andz is a simple closed curve H? with
o € k. LetDy C T, andD* C T+ be theH-surfaces with boundary

%. Notice that bothD, andD" are both embedded compact disks with

boundaryz in Poincare ball modéi.

Now, we will get a contradiction via maximum principle by niog D"
towards D, by isometry. In particular, lep; be the parabolic isometry
which fixes the poinb (origin in the upper half space model) &% (H?),
and translateB® along the great circle i82 (H?) which corresponds to the
y-axis in upper half space model. Then(co) = ¢, whereg, is a point in
a great circler, in S2 (H?) corresponding tg-axis, i.e.q = (0,—C;,0)
in the upper half space model. Hej@ —C;,0) is the image ofy in the
conversion of Poincare ball model into upper half space meberet ™, 0
impliesC; 7 oo. Then,¢;(7) = 7, is an arc in a round circlg, in 52 (H?)
corresponding to the great circle going throughnd (0, —C;,0), i.e. &
corresponds ta? + (y + C/2)? = C?/4 in the upper half space model.
This is because,(o,.) = & by the definition of the parabolic isometyy.

Let ¢,(D*) = D;. Then, for sufficiently smalt > 0, D" N D}, # 0
and lett; = sup{t | D; N D;, # 0}. Then,D} andD;" have tangential
intersection in an interior point, and one lies in the onesfithe other.
However, as bottD; andD;" are H-surfaces, this again contradicts to the
maximum principle by Lemmia2.4. O

Remark7.2. Notice thatH-strips andH -skillets are defined for1 < H <
1 instead o0 < H < 1. This is because depending on whether the side we
are attaching the bridge is the convex side or concave sitleeodriginal
surface, thef{ -strips or H-skillets can be either positiv® (< H < 1 and
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mean curvature vector points downwards along the skillatieg or neg-
ative (—1 < H < 0 and mean curvature vector points upwards along the
skillet handle). In particular fob < H < 1, consider thet H-skillet S},
asymptotic toP;; = {y = +—-L-2} and the— H-skillet S;; asymptotic

VI_I?
toP,; = {y = —ﬁz}. Then,0,.S}; = 0,55 = T define above, and

the skillet handles are in the same sidg/{axis). However, in+- H-skillet

S}, the skillet goes towards the skillet handle, whereas Hi-skillet S},

the skillet goes away from the skillet handle (See Figuiref§:I Similarly,

in +H-skillet S};, the mean curvature vector points downwards along the
skillet handle, while in—H-skillet S;;, the mean curvature vector points
upwards along the skillet handle.

To see these situations in our constructions in Section 3alet>:; be
the uniquely minimizingH -surface (a spherical cap) with,>; = I'; is
a round circle of radiug with center(0,0,0) in upper half space model.
Let « be an arc in the unit disk with N I'; = da, anda L T'. By using
Theoren 311, we get a uniquely minimiziifrsurfaceX,. Then, along the
bridge the mean curvature vector points upwards, hencerttigeblooks
like — H-strip. In other words, near the endpoints of the bridgene sees
that>2, looks like — H-skillet S;;. This is true for any bridge: which is in
the bounded side &f? (H?) — 0,.%; in upper half space model.

However, if the endpoints of the bridge are in different components
of 0,2 whereX is a uniquely minimizingH -surface, then after applying
Theoren{ 311, we get a uniquely minimizirfg-surfaceX’. However this
time, along the bridge the mean curvature vector points e@xts, hence
the bridge looks liket- H-strip. In other words, near the endpoints of the
bridgea, one sees that, looks like + H-skillet S};. Again, this is true for
any bridgea which is in the unbounded side 6§ (H?*) — 9., in upper
half space model. In particular, the second bridges in timelleacases are
examples of this situation.
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