Analytic combinatorics of the transfinite:
generalized Mahler partitions and natural Gédel
numberings for ordinals

Andreas Welermann
Vakgroep Zuivere Wiskunde en Computeralgebra
Krijgslaan 281 Gebouw S22
9000 Ghent
Belgium
e-mail: welerman@math.uu.nl

Abstract
We study the asymptotic of certain count functions which are connected with a
certain well-ordered subset of Hardy’s orders of infinity. As special cases we find
Mabhler partitions and its iterated versions as well as their multiplicative counter-
parts.

1 Introduction

We determine the asympotics of certain count functions for a natural subclass of Hardy’s
order of infinity. These results find applications in classifying phase transitions for
Gddel incompleteness and logical limit laws. The class of functions E in question is
defined as follows. Each member f € E is a function from N — N. Let g(x) :=0
be the function constant zero defined for non negative integers. We put ¢ € E. Now
assume that f,g are elements of E. Let h(x) := x'® 4-g(x). Then h is put into E. Now
we define E to be the least set containing ¢ which is closed under this formation rule.

The set £ comes equipped with a natural order < of eventual domination which is
defined as follows: f < g iff there is a k € N such that f(x) < g(x) for all x > k. Then
e.g. Hardy [?] has shown that the ordering < is a linear ordering on E. Moreover there
will not exist any infinite descending chain § > f1 = fo ... ofelementsinE, i.e. < is
a well-ordering on E. Moreover the well-orderedness of < with respect to arithmetical
sets cannot be proved from the Peano axioms for the natural numbers.

There are several canonical complexity measures which can be assigned to mem-
bers of E. The desired property of such a measure ¢ : E — N is that for any k € N and
any f € E the number of elements in {g < f : ¢(g) <k} is finite. A canonical choice
for ¢ is given by evaluation. We may put c(g) := g(k) for some fixed k. In this case we
put

M¥(n) :=#{g < f : g(k) = n} (1)



and one may ask for the asymptotic of M';(n) as n — oo, For a certain choice of f
there is much information on this problem available from the literature about Mahler

. L . X0 ()
partitions. Let f(x) = x* (which is an element from E since f(x) =x*  +%® 4
co(x)). Then M&(n) is the number of Mahler partitions of n in sums of exponentials
with base k. For example it is well known that

In(ME() ~ g ()2

as n — oo, In the sequel we stick to the case k = 2 when we consider this type of
investigation. The case for general k means that one has to replace in the corresponding
results In(2) by In(k). Therefore we drop in the sequel the upper index in m‘§ and
assume that this index is equal to 2.

Another natural complexity functions emerges from a natural Godel numbering of
. The idea is to assign to each object f in [E a unique natural number such that effective
operations on [E translate into elementary recursive operations on the corresponding
Gddel numbers. To this end note that every non constant zero element f in E has a
unique representation f = id™ -+ ... +id" with f; = ... = fq. We further let (p;){°,
denote the enumeration of the primes starting with p; = 2.

We put [co] := 1 and if f € E has the representation f =idf + ... +idf with
fp = ... = fq then we put [f] := pgm po‘ﬂ. There are different choices of the
Gddel numbering possible but we have chosen one which typically appears in textbooks
on recursion theory. We put

Gi(n):=#{g=<f:[g] <n} 2

For f = id'd we get a multiplicative analogue of the Mahler partition function as we
will see in a minute. Getting non trivial bounds on G; seems even more difficult then
for M;. But luckily large machinery from analytic combinatorics has already been
developed and a seminal paper by Parameswaran allows to obtain weak asymptotics for
M; as well as for G¢. These results are strong enough for the intended proof theoretic
applications. It seems that even better bounds are available by applying the saddle
point method a la Dumas and Flajolet [5] but we leave this for the experts in the field.
Parameswaran’s result is as follows.

Theorem 1 (Parameswaran [8]). Suppose that the following conditions hold.

1. L(u) and P(u) are functions on the non negative reals such that fORL(u)du and
fORP(u)du exist in the Lebesgue sense for every positive R.

2. exp(s [y %L(u)du) =5 [y P(u)e~du for all positive s,

3. (M,M*) form a pair of conjugate slowly varying functions,

4. M is non decreasing,

5. g‘ﬁdt ~ M(u) as u — o, and

6. P(u) is non decreasing.



Then logP(u) ~ g s u — o.

We now state our main results. For a compact presentation we use the following
notations. We put

Ing+1(x) := In(Ing(x)
where In1(x) = In(x). Moreover we put id(x) := x and let
idg1(K)(x) := x4k
where id (k)(x) = x¥. In addition we put
eXPg.1(X) 1= exp(expq(x))
where exp;(X) =exp(x) = 32 g f—,'

Theorem2. 1. If f =id1(k) then there exist explicitly calculable constants C1,Cp
such that

Mf(x) ~ Cp-x¥1 @)

In(x)
In(ln(x)))k @

2. If f =idz(k) then there exist explicitly calculable constants C3,C4 such that

Gi(x) ~ Ca-(

IN(M¢(x)) ~ Ca-(In(x)*** (5)

(G(0) ~ CorInin(o)- (i " ©)

3. If f =idg(k) and d > 2 then with the same constants C3,C4 as in the previous
item

Ing_1(M¢(x)) ~ Cs-(Ing_1(x))¥** )

g 1(Gr(¥) ~ Ca-Ing(x)- (%)k )

Proof. We prove the results for the generalized Mahler norms. The asymptotic (3)
is well known. Indeed we may consider {g < id*} as a generalized additive number
system generated from the additive primes id' for 0 < < k. By Theorem 2.48 in Burris
[4] we therefore obtain
1 1 k1
Mgk (X) ~ ——— ———X 9)
X D2

and assertion (3) follows.

Let us now prove assertion (5). By remark 2.32 and Theorem 2.48 in Burris [4] we
obtain
1 1

m(x) :=#{g < id¥: g(2) <x} ~ me

(10)



Let

W)= M) =m<%>
2'<u
Then 1
")~ e mE W :
Let 1
C = =) (@R
Let

M(u) == /:#dt

where a > is arbitrary but fixed. Then by de I’Hospital’s rule

M(u) ~ %(In(u)k”).

Let
P(u) := Iz M. gk ()

By Theorem 1 of Parameswaran we obtain

IN(P(W) ~ = (In()*)

Moreover this yields In(M, 4 (u)) ~ &l(ln(u)k”) as indicated on the last page of

Parameswaran. So we may put Cg := ;&;.

Let us now prove assertion 7 by induction on d. Put

m(x) 1= #{g < Migy() 1 9(2) <X} (11)
- ()= 5 M) — (W),
£ In(2)

The induction hypothesis yields
logy_(M(x)) ~ C- (logg_y (x))***. (12)

forC =Cas. Let

for some arbitrary fixed a > 0 Let

P(u) := % Migyqi (1)

I<u



By Theorem 1 of Parameswaran we obtain

We claim that
Ing(P(u)) ~ C- (Ing(x))***.
Proof: Pick
e>0
Then (12) yields

m(U) < expg_1((1+ 5)C(Ing-(u))¥

for large enough u. Hence

LW < expg 4((1-+ GC(Ina a4,
" o xDg_((1+ 5)C(Ing_1(119))+2
M(u)g/a 2T
Put

N(u) := expg_1((1+€)C(Ing_1(In(u)))***.
Then de I’Hospital’s rule yields
M(u) = o(N(u))
as U — oo, In particular we obtain that M(u) < N(u) for large enough u. Therefore
In(P(u)) ~ M(u) < N(u)

for large enough u. Hence

P(u) < expq((1+€)C(Ing(u)) ™.
By a similar argument we obtain

P(u) > expg((1—€)C(Ina(u))*.

Thus
logg(P(u)) ~ C(Ing(u))*"*.
Further
Ina (Migy, ,19) ~ C(Ina(u)*+*(u))

as indicated on the last page of Parameswaran.



The intended proof-theoretic applications are as follows. Let small Greek letters
range over elements of E. With w we denote the identity function id. Elements in E of
the form a + w® are called successors. Non zero elements of E which are not succes-
sors are called limits. For alimit A € E let A[x] be the x-th element of the canonical fun-
damental sequence for A. This means that if A = w + .-+ w" where ay > ... = an
and o = y+ w® then A[x] := w1 + -+ w"-x and that if A = w1 - - - 4+ " where
ay > ... > dpand ap is a limit then A[x] := @™ + - -- 4+ «* X Then we have that for
all B < A there is an x such that B < A[x] so that A[x] converges to A as X — oo. It
is convenient to introduce a top element for the elements of E. We call this €9 and
we write o < &g in place of a € E. For g the fundamental sequence is defined via
€o[X] := wy = idx. We then can define R for a < g as follows by recursion on <.

Fo(x) = x+1,
Fat1(X) := FO((X> (x) where the upper index denotes number of iterations,
R(X) = Fy(x) where A isalimit.

Let c be a complexity measure for the elements of E. Let SWO(p, f,c) be the
statement

(VK)(3L) (Vato, ..., ar < B) (Vi < L)[c(ai) < K + fo(i)] — (3i < L) < dtiza]).

Theorem 3. Let
fo(i) := eprafl(D( InFJ;L(i)(i)).

Then the following phase transition result holds for SWO(go, f,M).

1. Ifa < gy then
PA + SWO(eg, fa,M).

2. If a =¢gg then
PA ¥ SWO(gg, fa,M).

Let 124 be the fragment of PA where the induction scheme is restricted to formulas
with at most d quantifiers.

Theorem 4. Letd > 1. Let
. -1 "
fa (i) := expa( " 4/ Ig (7).
Then the following phase transition result holds for SWO(wq-1, f,M).

1. If a < wy41 then
1Zg - SWO(wy+t1, fa, M).

2. If a = wyq then
124 ¥ SWO(wy+t1, fa,M).

In the multiplicative situation the following phase transition results are obtained.



Theorem 5. Let
fo (i) 1= exp (eprgl(i)( |nFafl<i>(i))) .

Then the following phase transition result holds for SWO(go, f, [-]).

1. Ifa < gpthen
PA+ SWO(eg, fa, [])-

2. If a =¢gg then
PA ¥ SWO(gg, fa, [-])-

Let 124 be the fragment of PA where the induction scheme is restricted to formulas
with at most d quantifiers.

Theorem 6. Letd > 1. Let
fa(i) := exp (expa( =" V/Ia) ).

Then the following phase transition result holds for SWO(wq1, f,[-]).

1. If a < wyy1 then
1Z4 - SWO(wy1, fa, [])-

2. If o = wyy1 then
1Z4 ¥ SWO(wy1, fa, [])-

In a sequel paper we will exploit our investigations to prove (joint project with A.R.
Woods) logical limit laws for segments of [E. We plan to investigate further properties
of Mt and Gt with J.P. Bell.
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