Analytic combinatorics of the transfinite: generalized Mahler partitions and natural Gödel numberings for ordinals

Andreas Weiermann
Vakgroep Zuivere Wiskunde en Computeralgebra
Krijgslaan 281 Gebouw S22
9000 Ghent
Belgium
e-mail: weierman@math.uu.nl

Abstract

We study the asymptotic of certain count functions which are connected with a certain well-ordered subset of Hardy's orders of infinity. As special cases we find Mahler partitions and its iterated versions as well as their multiplicative counterparts.

1 Introduction

We determine the asympotics of certain count functions for a natural subclass of Hardy's order of infi nity. These results fi nd applications in classifying phase transitions for Gödel incompleteness and logical limit laws. The class of functions \mathbb{E} in question is defi ned as follows. Each member $f \in \mathbb{E}$ is a function from $\mathbb{N} \rightarrow \mathbb{N}$. Let $\varepsilon_{0}(x):=0$ be the function constant zero defi ned for non negative integers. We put $a_{0} \in \mathbb{E}$. Now assume that f, g are elements of \mathbb{E}. Let $h(x):=x^{f(x)}+g(x)$. Then h is put into \mathbb{E}. Now we defi ne \mathbb{E} to be the least set containing a_{0} which is closed under this formation rule.

The set \mathbb{E} comes equipped with a natural order \prec of eventual domination which is defi ned as follows: $f \prec g$ iff there is a $k \in \mathbb{N}$ such that $f(x)<g(x)$ for all $x>k$. Then e.g. Hardy [?] has shown that the ordering \prec is a linear ordering on \mathbb{E}. Moreover there will not exist any infi nite descending chain $f_{0} \succ f_{1} \succ f_{2} \succ \ldots$ of elements in \mathbb{E}, i.e. \prec is a well-ordering on \mathbb{E}. Moreover the well-orderedness of \prec with respect to arithmetical sets cannot be proved from the Peano axioms for the natural numbers.

There are several canonical complexity measures which can be assigned to members of \mathbb{E}. The desired property of such a measure $c: \mathbb{E} \rightarrow \mathbb{N}$ is that for any $k \in \mathbb{N}$ and any $f \in \mathbb{E}$ the number of elements in $\{g \prec f: c(g) \leq k\}$ is fi nite. A canonical choice for c is given by evaluation. We may put $c(g):=g(k)$ for some fi xed k. In this case we put

$$
\begin{equation*}
M_{f}^{k}(n):=\#\{g \prec f: g(k)=n\} \tag{1}
\end{equation*}
$$

and one may ask for the asymptotic of $M_{f}^{k}(n)$ as $n \rightarrow \infty$. For a certain choice of f there is much information on this problem available from the literature about Mahler partitions. Let $f(x)=x^{x}$ (which is an element from \mathbb{E} since $f(x)=x^{x^{c_{0}(x)}}+c_{0}(x)+$ $\left.c_{0}(x)\right)$. Then $M_{f}^{k}(n)$ is the number of Mahler partitions of n in sums of exponentials with base k. For example it is well known that

$$
\ln \left(M_{f}^{k}(n)\right) \sim \frac{1}{2 \ln (k)}(\ln (n))^{2}
$$

as $n \rightarrow \infty$. In the sequel we stick to the case $k=2$ when we consider this type of investigation. The case for general k means that one has to replace in the corresponding results $\ln (2)$ by $\ln (k)$. Therefore we drop in the sequel the upper index in m_{f}^{k} and assume that this index is equal to 2 .

Another natural complexity functions emerges from a natural Gödel numbering of \mathbb{E}. The idea is to assign to each object f in \mathbb{E} a unique natural number such that effective operations on \mathbb{E} translate into elementary recursive operations on the corresponding Gödel numbers. To this end note that every non constant zero element f in \mathbb{E} has a unique representation $f=i d^{f_{1}}+\cdots+i d^{f_{d}}$ with $f_{1} \succeq \ldots \succeq f_{d}$. We further let $\left(p_{i}\right)_{i=1}^{\infty}$ denote the enumeration of the primes starting with $p_{1}=2$.

We put $\left\lceil c_{0}\right\rceil:=1$ and if $f \in \mathbb{E}$ has the representation $f=i d^{f_{1}}+\cdots+i d^{f_{d}}$ with $f_{1} \succeq \ldots \succeq f_{d}$ then we put $\lceil f\rceil:=p_{1}^{\left[f_{1}\right\rceil} \cdot \ldots \cdot p_{d}^{\left\lceil f_{d}\right\rceil}$. There are different choices of the Gödel numbering possible but we have chosen one which typically appears in textbooks on recursion theory. We put

$$
\begin{equation*}
G_{f}(n):=\#\{g \prec f:\lceil g\rceil \leq n\} . \tag{2}
\end{equation*}
$$

For $f=i d^{i d}$ we get a multiplicative analogue of the Mahler partition function as we will see in a minute. Getting non trivial bounds on G_{f} seems even more diffi cult then for M_{f}. But luckily large machinery from analytic combinatorics has already been developed and a seminal paper by Parameswaran allows to obtain weak asymptotics for M_{f} as well as for G_{f}. These results are strong enough for the intended proof theoretic applications. It seems that even better bounds are available by applying the saddle point method a la Dumas and Flajolet [5] but we leave this for the experts in the fi eld. Parameswaran's result is as follows.

Theorem 1 (Parameswaran [8]). Suppose that the following conditions hold.

1. $L(u)$ and $P(u)$ are functions on the non negative reals such that $\int_{0}^{R} L(u) d u$ and $\int_{0}^{R} P(u) d u$ exist in the Lebesgue sense for every positive R.
2. $\exp \left(s \int_{0}^{\infty} \frac{e^{-s u}}{1-e^{-s u}} L(u) d u\right)=s \int_{0}^{\infty} P(u) e^{-s u} d u$ for all positive s,
3. $\left\langle M, M^{*}\right\rangle$ form a pair of conjugate slowly varying functions,
4. M is non decreasing,
5. $\int_{0}^{u} \frac{L(t)}{t} d t \sim M(u)$ as $u \rightarrow \infty$, and
6. $P(u)$ is non decreasing.

Then $\log P(u) \sim \frac{1}{M^{*}(u)}$ as $u \rightarrow \infty$.
We now state our main results. For a compact presentation we use the following notations. We put

$$
\ln _{d+1}(x):=\ln \left(\ln _{d}(x)\right.
$$

where $\ln _{1}(x)=\ln (x)$. Moreover we put $i d(x):=x$ and let

$$
i d_{d+1}(k)(x):=x^{i d_{d}(k)(x)}
$$

where $i d_{1}(k)(x)=x^{k}$. In addition we put

$$
\exp _{d+1}(x):=\exp \left(\exp _{d}(x)\right)
$$

where $\exp _{1}(x)=\exp (x)=\sum_{i=0}^{\infty} \frac{x^{i}}{i!}$.
Theorem 2. 1. If $f=i d_{1}(k)$ then there exist explicitly calculable constants C_{1}, C_{2} such that

$$
\begin{align*}
M_{f}(x) & \sim C_{1} \cdot x^{k-1} \tag{3}\\
G_{f}(x) & \sim C_{1} \cdot\left(\frac{\ln (x)}{\ln (\ln (x))}\right)^{k} \tag{4}
\end{align*}
$$

2. If $f=i d_{2}(k)$ then there exist explicitly calculable constants C_{3}, C_{4} such that

$$
\begin{align*}
\ln \left(M_{f}(x)\right) & \sim C_{3} \cdot(\ln (x))^{k+1} \tag{5}\\
\ln \left(G_{f}(x)\right) & \sim C_{4} \cdot \ln (\ln (x)) \cdot\left(\frac{\ln \ln (x)}{\ln (\ln (\ln (x))}\right)^{k} \tag{6}
\end{align*}
$$

3. If $f=i d_{d}(k)$ and $d \geq 2$ then with the same constants C_{3}, C_{4} as in the previous item

$$
\begin{align*}
\ln _{d-1}\left(M_{f}(x)\right) & \sim C_{3} \cdot\left(\ln _{d-1}(x)\right)^{k+1} \tag{7}\\
\ln _{d-1}\left(G_{f}(x)\right) & \sim C_{4} \cdot \ln _{d}(x) \cdot\left(\frac{\ln _{d}(x)}{\ln \left(\ln _{d}(x)\right)}\right)^{k} \tag{8}
\end{align*}
$$

Proof. We prove the results for the generalized Mahler norms. The asymptotic (3) is well known. Indeed we may consider $\left\{g \prec i d^{k}\right\}$ as a generalized additive number system generated from the additive primes $i d^{l}$ for $0 \leq l<k$. By Theorem 2.48 in Burris [4] we therefore obtain

$$
\begin{equation*}
M_{i d^{k}}(x) \sim \frac{1}{(k-1)!} \frac{1}{\prod_{l<k} 2^{l}} x^{k-1} \tag{9}
\end{equation*}
$$

and assertion (3) follows.
Let us now prove assertion (5). By remark 2.32 and Theorem 2.48 in Burris [4] we obtain

$$
\begin{equation*}
m(x):=\#\left\{g \prec i d^{k}: g(2) \leq x\right\} \sim \frac{1}{k!} \frac{1}{\prod_{l<k} 2^{l}} x^{k} \tag{10}
\end{equation*}
$$

Let

$$
n(u)=\sum_{2^{l} \leq u} M_{i d^{k}}(l)=m\left(\frac{\ln (u)}{\ln (2)}\right)
$$

Then

$$
n(u) \sim \frac{1}{\left.k!\left(\prod_{l<k} 2^{l}\right)(\ln (2))^{k}\right)}\left(\ln (u)^{k}=: L(u)\right.
$$

Let

$$
C:=\frac{1}{k!\left(\prod_{l<k} 2^{l}\right)\left(\ln (2)^{k}\right)}
$$

Let

$$
M(u):=\int_{a}^{u} \frac{L(t)}{t} d t
$$

where $a>$ is arbitrary but fi xed. Then by de l'Hospital's rule

$$
M(u) \sim \frac{C}{k+1}\left(\ln (u)^{k+1}\right)
$$

Let

$$
P(u):=\sum_{l \leq u} M_{i d^{i d^{k}}}(l) .
$$

By Theorem 1 of Parameswaran we obtain

$$
\ln (P(u)) \sim \frac{C}{k+1}\left(\ln (u)^{k+1}\right)
$$

Moreover this yields $\ln \left(M_{i d^{i d} d^{k}}(u)\right) \sim \frac{C}{k+1}\left(\ln (u)^{k+1}\right)$ as indicated on the last page of Parameswaran. So we may put $C_{3}:=\frac{C}{k+1}$.

Let us now prove assertion 7 by induction on d. Put

$$
\begin{equation*}
m(x):=\#\left\{g \prec M_{i d_{d}(k)}: g(2) \leq x\right\} \tag{11}
\end{equation*}
$$

Let

$$
n(u)=\sum_{2^{l} \leq u} M_{i d_{d}(k)}(l)=m\left(\frac{\ln (u)}{\ln (2)}\right):=L(u)
$$

The induction hypothesis yields

$$
\begin{equation*}
\log _{d-1}(m(x)) \sim C \cdot\left(\log _{d-1}(x)\right)^{k+1} \tag{12}
\end{equation*}
$$

for $C=C_{3}$. Let

$$
M(u):=\int_{a}^{u} \frac{L(t)}{t} d t
$$

for some arbitrary fi xed $a>0$ Let

$$
P(u):=\sum_{l \leq u} M_{i d_{d}(k)}(l)
$$

By Theorem 1 of Parameswaran we obtain

$$
\ln (P(u)) \sim M(u)
$$

We claim that

$$
\ln _{d}(P(u)) \sim C \cdot\left(\ln _{d}(x)\right)^{k+1} .
$$

Proof: Pick

$$
\varepsilon>0
$$

Then (12) yields

$$
m(u) \leq \exp _{d-1}\left(\left(1+\frac{\varepsilon}{2}\right) C\left(\ln _{d-1}(u)\right)^{k}\right.
$$

for large enough u. Hence

$$
L(u) \leq \exp _{d-1}\left(\left(1+\frac{\varepsilon}{2}\right) C\left(\ln _{d-1}\left(\frac{\ln (u)}{\ln (2)}\right)\right)^{k+1} .\right.
$$

Thus

$$
M(u) \leq \int_{a}^{u} \frac{\exp _{d-1}\left(\left(1+\frac{\varepsilon}{2}\right) C\left(\ln _{d-1}\left(\frac{\ln (u)}{\ln (2)}\right)\right)^{k+1}\right.}{u} d u
$$

Put

$$
N(u):=\exp _{d-1}\left((1+\varepsilon) C\left(\ln _{d-1}(\ln (u))\right)^{k+1}\right.
$$

Then de l'Hospital's rule yields

$$
M(u)=o(N(u))
$$

as $u \rightarrow \infty$. In particular we obtain that $M(u) \leq N(u)$ for large enough u. Therefore

$$
\ln (P(u)) \sim M(u) \leq N(u)
$$

for large enough u. Hence

$$
P(u) \leq \exp _{d}\left((1+\varepsilon) C\left(\ln _{d}(u)\right)^{k+1} .\right.
$$

By a similar argument we obtain

$$
P(u) \geq \exp _{d}\left((1-\varepsilon) C\left(\ln _{d}(u)\right)^{k+1}\right.
$$

Thus

$$
\log _{d}(P(u)) \sim C\left(\ln _{d}(u)\right)^{k+1}
$$

Further

$$
\left.\ln _{d}\left(M_{i d_{d+1}(k)}\right) \sim C\left(\ln _{d}(u)\right)^{k+1}(u)\right)
$$

as indicated on the last page of Parameswaran.

The intended proof-theoretic applications are as follows. Let small Greek letters range over elements of \mathbb{E}. With ω we denote the identity function id. Elements in \mathbb{E} of the form $\alpha+\omega^{c_{0}}$ are called successors. Non zero elements of \mathbb{E} which are not successors are called limits. For a limit $\lambda \in \mathbb{E}$ let $\lambda[x]$ be the x-th element of the canonical fundamental sequence for λ. This means that if $\lambda=\omega^{\alpha_{1}}+\cdots+\omega^{\alpha_{n}}$ where $\alpha_{1} \succeq \ldots \succeq \alpha_{n}$ and $\alpha_{n}=\gamma+\omega^{c_{0}}$ then $\lambda[x]:=\omega^{\alpha_{1}}+\cdots+\omega^{\gamma} \cdot x$ and that if $\lambda=\omega^{\alpha_{1}}+\cdots+\omega^{\alpha_{n}}$ where $\alpha_{1} \succeq \ldots \succeq \alpha_{n}$ and α_{n} is a limit then $\lambda[x]:=\omega^{\alpha_{1}}+\cdots+\omega^{\alpha_{n}[x]}$. Then we have that for all $\beta \prec \lambda$ there is an x such that $\beta \prec \lambda[x]$ so that $\lambda[x]$ converges to λ as $x \rightarrow \infty$. It is convenient to introduce a top element for the elements of \mathbb{E}. We call this ε_{0} and we write $\alpha \prec \varepsilon_{0}$ in place of $\alpha \in \mathbb{E}$. For ε_{0} the fundamental sequence is defi ned via $\varepsilon_{0}[x]:=\omega_{x}=i d_{x}$. We then can defi ne F_{α} for $\alpha \preceq \varepsilon_{0}$ as follows by recursion on \prec.

$$
\begin{aligned}
F_{0}(x) & :=x+1 \\
F_{\alpha+1}(x) & :=F_{\alpha}^{(x)}(x) \text { where the upper index denotes number of iterations, } \\
F_{\lambda}(x) & :=F_{\lambda[x]}(x) \text { where } \lambda \text { is a limit. }
\end{aligned}
$$

Let c be a complexity measure for the elements of \mathbb{E}. Let $\operatorname{SWO}(\beta, f, c)$ be the statement

$$
(\forall K)(\exists L)\left(\forall \alpha_{0}, \ldots, \alpha_{L} \prec \beta\right)\left((\forall i \leq L)\left[c\left(\alpha_{i}\right) \leq K+f_{\alpha}(i)\right] \rightarrow(\exists i<L)\left[\alpha_{i} \preceq \alpha_{i+1}\right]\right) .
$$

Theorem 3. Let

$$
f_{\alpha}(i):=\exp _{F_{\alpha}^{-1}(i)}\left(\sqrt{\ln _{F_{\alpha}^{-1}(i)}(i)}\right)
$$

Then the following phase transition result holds for $\operatorname{SWO}\left(\varepsilon_{0}, f, M\right)$.

1. If $\alpha \prec \varepsilon_{0}$ then

$$
\mathrm{PA} \vdash \mathrm{SWO}\left(\varepsilon_{0}, f_{\alpha}, M\right) .
$$

2. If $\alpha=\varepsilon_{0}$ then

$$
\operatorname{PA} \nvdash \operatorname{SWO}\left(\varepsilon_{0}, f_{\alpha}, M\right) .
$$

Let $I \Sigma_{d}$ be the fragment of PA where the induction scheme is restricted to formulas with at most d quantifi ers.

Theorem 4. Let $d \geq 1$. Let

$$
f_{\alpha}(i):=\exp _{d}\left(F_{\alpha}^{-1} \sqrt[(i)]{\ln _{d}(i)}\right)
$$

Then the following phase transition result holds for $\operatorname{SWO}\left(\omega_{d+1}, f, M\right)$.

1. If $\alpha \prec \omega_{d+1}$ then

$$
\mathrm{I} \Sigma_{d} \vdash \operatorname{SWO}\left(\omega_{d+1}, f_{\alpha}, M\right)
$$

2. If $\alpha=\omega_{d+1}$ then

$$
\mathrm{I} \Sigma_{d} \nvdash \mathrm{SWO}\left(\omega_{d+1}, f_{\alpha}, M\right) .
$$

In the multiplicative situation the following phase transition results are obtained.

Theorem 5. Let

$$
f_{\alpha}(i):=\exp \left(\exp _{F_{\alpha}^{-1}(i)}\left(\sqrt{\ln _{F_{\alpha}^{-1}(i)}(i)}\right)\right)
$$

Then the following phase transition result holds for $\operatorname{SWO}\left(\varepsilon_{0}, f,\lceil\cdot\rceil\right)$.

1. If $\alpha \prec \varepsilon_{0}$ then

$$
\mathrm{PA} \vdash \operatorname{SWO}\left(\varepsilon_{0}, f_{\alpha},\lceil\cdot\rceil\right)
$$

2. If $\alpha=\varepsilon_{0}$ then

$$
\operatorname{PA} \nvdash \operatorname{SWO}\left(\varepsilon_{0}, f_{\alpha},\lceil\cdot\rceil\right)
$$

Let $\mathrm{I} \Sigma_{d}$ be the fragment of PA where the induction scheme is restricted to formulas with at most d quantifi ers.

Theorem 6. Let $d \geq 1$. Let

$$
f_{\alpha}(i):=\exp \left(\exp _{d}\left(\sqrt[F_{\alpha}^{-1}]{(i)} \ln _{d}(i)\right)\right)
$$

Then the following phase transition result holds for $\operatorname{SWO}\left(\omega_{d+1}, f,\lceil\cdot\rceil\right)$.

1. If $\alpha \prec \omega_{d+1}$ then

$$
\mathrm{I} \Sigma_{d} \vdash \operatorname{SWO}\left(\omega_{d+1}, f_{\alpha},\lceil\cdot\rceil\right)
$$

2. If $\alpha=\omega_{d+1}$ then

$$
\mathrm{I} \Sigma_{d} \nvdash \mathrm{SWO}\left(\omega_{d+1}, f_{\alpha},\lceil\cdot\rceil\right)
$$

In a sequel paper we will exploit our investigations to prove (joint project with A.R. Woods) logical limit laws for segments of \mathbb{E}. We plan to investigate further properties of M_{f} and G_{f} with J.P. Bell.

References

[1] Toshiyasu Arai: On the slowly well-orderedness of ε_{0}. Mathematical Logic Quarterly 48 (2002) 125-139.
[2] Nicholas H. Bingham, Charles M. Goldie and Jozef L. Teugels: Regular variation. Encyclopedia of Mathematics and its applications 27. Cambridge University Press, 1989.
[3] N.G. de Bruijn: Pairs of slowly oscillating functions occurring in asymptotic problems concerning the Laplace transform, Nieuw Arch. Wiskunde 7 (19659), 20-26.
[4] Stanley N. Burris: Number Theoretic Density and Logical Limit Laws. Mathematical Surveys and Monographs 86. American Mathematical Society 2001.
[5] P. Dumas, P. Flajolet, Philippe: Asymptotique des recurrences mahleriennes: le cas cyclotomique. J. Theor. Nombres Bordeaux 8 (1996), no. 1, 1-30.
[6] Harvey Friedman and Michael Sheard: Elementary descent recursion and proof theory. Annals of Pure and Applied Logic 71 (1995), 1-45.
[7] G.H. Hardy: Orders of infinity. The Infinitärcalcül of Paul du Bois-Reymond. Reprint of the 1910 edition. Cambridge Tracts in Mathematics and Mathematical Physics, No. 12. Hafner Publishing Co., New York, 1971. v+62 pp.
[8] S. Parameswaran. Partition functions whose logarithms are slowly oscillating. Transactions of the American Mathematical Society 100 (1961), 217-240.
[9] Andreas Weiermann. An application of graphical enumeration to PA. The Journal of Symbolic Logic 68 (2003), 5-16.

