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Abstract

We study the asymptotic of certain count functions which are connected with a
certain well-ordered subset of Hardy’s orders of infinity. As special cases we find
Mahler partitions and its iterated versions as well as their multiplicative counter-
parts.

1 Introduction

We determine the asympotics of certain count functions for a natural subclass of Hardy’s
order of infinity. These results find applications in classifying phase transitions for
Gödel incompleteness and logical limit laws. The class of functions E in question is
defined as follows. Each member f ∈ E is a function from N → N. Let c0(x) := 0
be the function constant zero defined for non negative integers. We put c0 ∈ E. Now
assume that f ,g are elements of E. Let h(x) := x f (x) +g(x). Then h is put into E. Now
we define E to be the least set containing c0 which is closed under this formation rule.

The set E comes equipped with a natural order ≺ of eventual domination which is
defined as follows: f ≺ g iff there is a k ∈ N such that f (x) < g(x) for all x > k. Then
e.g. Hardy [?] has shown that the ordering ≺ is a linear ordering on E. Moreover there
will not exist any infinite descending chain f0 � f1 � f2 � . . . of elements in E, i.e. ≺ is
a well-ordering on E. Moreover the well-orderedness of ≺ with respect to arithmetical
sets cannot be proved from the Peano axioms for the natural numbers.

There are several canonical complexity measures which can be assigned to mem-
bers of E. The desired property of such a measure c : E → N is that for any k ∈ N and
any f ∈ E the number of elements in {g ≺ f : c(g) ≤ k} is finite. A canonical choice
for c is given by evaluation. We may put c(g) := g(k) for some fixed k. In this case we
put

Mk
f (n) := #{g ≺ f : g(k) = n} (1)
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and one may ask for the asymptotic of Mk
f (n) as n → ∞. For a certain choice of f

there is much information on this problem available from the literature about Mahler

partitions. Let f (x) = xx (which is an element from E since f (x) = xxxc0(x)
+c0(x) +

c0(x)). Then Mk
f (n) is the number of Mahler partitions of n in sums of exponentials

with base k. For example it is well known that

ln(Mk
f (n)) ∼

1
2ln(k)

(ln(n))2

as n → ∞. In the sequel we stick to the case k = 2 when we consider this type of
investigation. The case for general k means that one has to replace in the corresponding
results ln(2) by ln(k). Therefore we drop in the sequel the upper index in mk

f and
assume that this index is equal to 2.

Another natural complexity functions emerges from a natural Gödel numbering of
E. The idea is to assign to each object f in E a unique natural number such that effective
operations on E translate into elementary recursive operations on the corresponding
Gödel numbers. To this end note that every non constant zero element f in E has a
unique representation f = id f1 + · · ·+ id fd with f1 � . . . � fd . We further let (pi)

∞
i=1

denote the enumeration of the primes starting with p1 = 2.
We put dc0e := 1 and if f ∈ E has the representation f = id f1 + · · ·+ id fd with

f1 � . . . � fd then we put d f e := pd f1e
1 · . . . · pd fde

d . There are different choices of the
Gödel numbering possible but we have chosen one which typically appears in textbooks
on recursion theory. We put

G f (n) := #{g ≺ f : dge ≤ n}. (2)

For f = idid we get a multiplicative analogue of the Mahler partition function as we
will see in a minute. Getting non trivial bounds on G f seems even more difficult then
for M f . But luckily large machinery from analytic combinatorics has already been
developed and a seminal paper by Parameswaran allows to obtain weak asymptotics for
M f as well as for G f . These results are strong enough for the intended proof theoretic
applications. It seems that even better bounds are available by applying the saddle
point method a la Dumas and Flajolet [5] but we leave this for the experts in the field.
Parameswaran’s result is as follows.

Theorem 1 (Parameswaran [8]). Suppose that the following conditions hold.

1. L(u) and P(u) are functions on the non negative reals such that
R R

0 L(u)du and
R R

0 P(u)du exist in the Lebesgue sense for every positive R.

2. exp(s
R ∞

0
e−su

1−e−su L(u)du) = s
R ∞

0 P(u)e−sudu for all positive s,

3. 〈M,M∗〉 form a pair of conjugate slowly varying functions,

4. M is non decreasing,

5.
R u

0
L(t)

t dt ∼ M(u) as u → ∞, and

6. P(u) is non decreasing.
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Then logP(u) ∼ 1
M∗(u) as u → ∞.

We now state our main results. For a compact presentation we use the following
notations. We put

lnd+1(x) := ln(lnd(x)

where ln1(x) = ln(x). Moreover we put id(x) := x and let

idd+1(k)(x) := xidd(k)(x)

where id1(k)(x) = xk. In addition we put

expd+1(x) := exp(expd(x))

where exp1(x) = exp(x) = ∑∞
i=0

xi

i! .

Theorem 2. 1. If f = id1(k) then there exist explicitly calculable constants C1,C2

such that

M f (x) ∼ C1 · x
k−1 (3)

G f (x) ∼ C1 · (
ln(x)

ln(ln(x))
)k (4)

2. If f = id2(k) then there exist explicitly calculable constants C3,C4 such that

ln(M f (x)) ∼ C3 · (ln(x))k+1 (5)

ln(G f (x)) ∼ C4 · ln(ln(x)) · (
ln ln(x)

ln(ln(ln(x))
)k (6)

3. If f = idd(k) and d ≥ 2 then with the same constants C3,C4 as in the previous
item

lnd−1(M f (x)) ∼ C3 · (lnd−1(x))
k+1 (7)

lnd−1(G f (x)) ∼ C4 · lnd(x) · (
lnd(x)

ln(lnd(x))
)k (8)

Proof. We prove the results for the generalized Mahler norms. The asymptotic (3)
is well known. Indeed we may consider {g ≺ idk} as a generalized additive number
system generated from the additive primes id l for 0≤ l < k. By Theorem 2.48 in Burris
[4] we therefore obtain

Midk (x) ∼
1

(k−1)!
1

∏l<k 2l
xk−1 (9)

and assertion (3) follows.
Let us now prove assertion (5). By remark 2.32 and Theorem 2.48 in Burris [4] we

obtain

m(x) := #{g ≺ idk : g(2) ≤ x} ∼
1
k!

1

∏l<k 2l
xk (10)
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Let

n(u) = ∑
2l≤u

Midk(l) = m(
ln(u)

ln(2)
).

Then

n(u) ∼
1

k!(∏l<k 2l)(ln(2))k)
(ln(u)k =: L(u).

Let

C :=
1

k!(∏l<k 2l)(ln(2)k)
.

Let

M(u) :=
Z u

a

L(t)
t

dt

where a > is arbitrary but fixed. Then by de l’Hospital’s rule

M(u) ∼
C

k +1
(ln(u)k+1).

Let
P(u) := ∑

l≤u

M
ididk (l).

By Theorem 1 of Parameswaran we obtain

ln(P(u)) ∼
C

k +1
(ln(u)k+1).

Moreover this yields ln(M
ididk (u)) ∼ C

k+1 (ln(u)k+1) as indicated on the last page of

Parameswaran. So we may put C3 := C
k+1 .

Let us now prove assertion 7 by induction on d. Put

m(x) := #{g ≺ Midd(k) : g(2) ≤ x}. (11)

Let

n(u) = ∑
2l≤u

Midd(k)(l) = m(
ln(u)

ln(2)
) := L(u).

The induction hypothesis yields

logd−1(m(x)) ∼C · (logd−1(x))
k+1

. (12)

for C = C3. Let

M(u) :=
Z u

a

L(t)
t

dt

for some arbitrary fixed a > 0 Let

P(u) := ∑
l≤u

Midd(k)(l).
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By Theorem 1 of Parameswaran we obtain

ln(P(u)) ∼ M(u).

We claim that
lnd(P(u)) ∼C · (lnd(x))

k+1
.

Proof: Pick
ε > 0.

Then (12) yields

m(u) ≤ expd−1((1+
ε
2
)C(lnd−1(u))k

for large enough u. Hence

L(u) ≤ expd−1((1+
ε
2
)C(lnd−1(

ln(u)

ln(2)
))k+1

.

Thus

M(u) ≤

Z u

a

expd−1((1+ ε
2)C(lnd−1(

ln(u)
ln(2)))

k+1

u
du.

Put
N(u) := expd−1((1+ ε)C(lnd−1(ln(u)))k+1

.

Then de l’Hospital’s rule yields

M(u) = o(N(u))

as u → ∞. In particular we obtain that M(u) ≤ N(u) for large enough u. Therefore

ln(P(u)) ∼ M(u) ≤ N(u)

for large enough u. Hence

P(u) ≤ expd((1+ ε)C(lnd(u))k+1
.

By a similar argument we obtain

P(u) ≥ expd((1− ε)C(lnd(u))k+1
.

Thus
logd(P(u)) ∼C(lnd(u))k+1

.

Further
lnd(Midd+1(k)) ∼C(lnd(u))k+1(u))

as indicated on the last page of Parameswaran.
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The intended proof-theoretic applications are as follows. Let small Greek letters
range over elements of E. With ω we denote the identity function id. Elements in E of
the form α+ωc0 are called successors. Non zero elements of E which are not succes-
sors are called limits. For a limit λ ∈E let λ[x] be the x-th element of the canonical fun-
damental sequence for λ. This means that if λ = ωα1 + · · ·+ωαn where α1 � . . . � αn

and αn = γ+ωc0 then λ[x] := ωα1 + · · ·+ωγ · x and that if λ = ωα1 + · · ·+ωαn where
α1 � . . . � αn and αn is a limit then λ[x] := ωα1 + · · ·+ ωαn[x]. Then we have that for
all β ≺ λ there is an x such that β ≺ λ[x] so that λ[x] converges to λ as x → ∞. It
is convenient to introduce a top element for the elements of E. We call this ε0 and
we write α ≺ ε0 in place of α ∈ E. For ε0 the fundamental sequence is defined via
ε0[x] := ωx = idx. We then can define Fα for α � ε0 as follows by recursion on ≺.

F0(x) := x+1,

Fα+1(x) := F(x)
α (x) where the upper index denotes number of iterations,

Fλ(x) := Fλ[x](x) where λ is a limit.

Let c be a complexity measure for the elements of E. Let SWO(β, f ,c) be the
statement

(∀K)(∃L)(∀α0, . . . ,αL ≺ β)((∀i ≤ L)[c(αi) ≤ K + fα(i)] → (∃i < L)[αi � αi+1]) .

Theorem 3. Let
fα(i) := expF−1

α (i)(
√

lnF−1
α (i)(i)).

Then the following phase transition result holds for SWO(ε0, f ,M).

1. If α ≺ ε0 then
PA ` SWO(ε0, fα,M).

2. If α = ε0 then
PA 0 SWO(ε0, fα,M).

Let IΣd be the fragment of PA where the induction scheme is restricted to formulas
with at most d quantifiers.

Theorem 4. Let d ≥ 1. Let

fα(i) := expd(
F−1

α (i)
√

lnd(i)).

Then the following phase transition result holds for SWO(ωd+1, f ,M).

1. If α ≺ ωd+1 then
IΣd ` SWO(ωd+1, fα,M).

2. If α = ωd+1 then
IΣd 0 SWO(ωd+1, fα,M).

In the multiplicative situation the following phase transition results are obtained.

6



Theorem 5. Let
fα(i) := exp

(

expF−1
α (i)(

√

lnF−1
α (i)(i))

)

.

Then the following phase transition result holds for SWO(ε0, f ,d·e).

1. If α ≺ ε0 then
PA ` SWO(ε0, fα,d·e).

2. If α = ε0 then
PA 0 SWO(ε0, fα,d·e).

Let IΣd be the fragment of PA where the induction scheme is restricted to formulas
with at most d quantifiers.

Theorem 6. Let d ≥ 1. Let

fα(i) := exp
(

expd(
F−1

α (i)
√

lnd(i))
)

.

Then the following phase transition result holds for SWO(ωd+1, f ,d·e).

1. If α ≺ ωd+1 then
IΣd ` SWO(ωd+1, fα,d·e).

2. If α = ωd+1 then
IΣd 0 SWO(ωd+1, fα,d·e).

In a sequel paper we will exploit our investigations to prove (joint project with A.R.
Woods) logical limit laws for segments of E. We plan to investigate further properties
of M f and G f with J.P. Bell.
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