Stability of surfaces with constant mean curvature in \mathbb{R}^{3}

by

Miyuki Koiso

Max-Planck-Institut fïr Mathematik Gottfried-Claren-StraBe 26 D-5300 Bonn 3

Department of Mathematics
Osaka University
Toyonaka, Osaka 560
Japan
§ 0. Introduction

Let $x: M^{n} \longrightarrow \mathbb{R}^{n+1}$ be an immersion of an orientable n-dimensional connected manifold M^{n} into the ($n+1$)-dimensional Euclidean space \mathbb{R}^{n+1}. Then it is well-known that the mean curvature of x is constant if and only if x is a critical point of the n-area for all compactly supported volume-preserving variations. We say that an immersion $\mathbf{x}: M^{n} \rightarrow \mathbb{R}^{n+1}$ with non-zero constant mean curvature is stable if the second variations of the n-area for all such variations as above are non-negative.

When M is compact, Barbosa and do Carmo [2] proved that if the mean curvature of $x: M^{n} \longrightarrow \mathbb{R}^{n+1}$ is non-zero constant and x is stable, then $x\left(M^{n}\right)$ is a round sphere $s^{n} \subset \mathbb{R}^{n+1}$.

On the other hand, they conjectured that there are no complete stable immersions $x: M^{2} \longrightarrow \mathbb{R}^{3}$ with non-zero constant mean curvature. When M^{2} is non-compact, M^{2} is hyperbolic or parabolic with respect to the natural complex structure given by x. Under some additional condition about metric for the case that M^{2} is parabolic, we prove the above conjecture.

Theorem 1. Let M be a non-compact orientable 2-dimensional connected manifold. Then there is no complete stable immersion $x: M \longrightarrow \mathbb{R}^{3}$ with non-zero constant mean curvature which satisfies the following (i) or (ii).
(i) M is hyperbolic.
(ii) M is parabolic, and for the universal covering
$\pi: \mathbb{C} \longrightarrow M$, the metric $d s^{2}=\lambda^{2}|\mathrm{dz}|^{2}$ of \mathbb{C} induced by x - π satisfies the following inequality except some compact set.
$(0-1) \quad \lambda(z) \geqq c_{0}|z|^{-1}$,
where c_{0} is a positive constant and z is the canonical coordinate in \mathbb{C}.

This theorem is proved in section 2 as a corollary of a more general result Theorem 2.

It should be remarked that in the case of zero mean curvature, do Carmo and Peng [4] proved that the plane is the only "stable" complete minimal surface in \mathbb{R}^{3}. Of course, in their theorem "stable" means the usual stability of minimal surfaces, that is, the second variation of the area is non-negative for all compactly supported variations that need not be volume-preserving.

If we would employ the generalization of the usual stability of minimal surfaces as the definition of the stability of non-zero constant mean curvature surfaces, the statement of the above conjecture has already been proved by Mori [6]. However, we feel that our definition is more natural because even the sphere is not stable in the other definition of stability.
§ 1. Barbosa and do Carmo's formulation of stability

In this section, we recall Barbosa and do Carmo's formulation of stability of non-zero constant mean curvature hypersurfaces. In [2] we can find all definitions and formulas in this section with their proofs.

Let $x: M^{n} \longrightarrow \mathbb{R}^{n+1}$ be an immersion of an orientable n-dimensional differentiable manifold M^{n} into \mathbb{R}^{n+1}, and let $D \subset M^{n}$ be a relatively compact domain with smooth boundary ∂D. Then the n-area of D with respect to the induced metric by x (which we denote by $A_{D}(x)$) and the volume of D in x (which we denote by $\left.V_{D}(x)\right)$ are defined as follows.

$$
A_{D}(x)=\int_{D} d M, \quad V_{D}(x)=\frac{1}{n+1} \int_{D}\langle x, N\rangle d M,
$$

where $d M$ is the volume element of M^{n} with respect to the induced metric by \mathbf{x}, N is the unit normal vector field along \mathbf{x}, and $<,>$ is the inner product in $\mathbb{R}^{\mathrm{n}+1}$.

Let $x_{t}: \bar{D} \longrightarrow \mathbb{R}^{n+1}, t \in(-\varepsilon ; \varepsilon)(\varepsilon>0), x_{0}=x$, be a variation of $\left.x\right|_{D}$. We say that the variation X_{t} is volumepreserving if $V_{D}\left(x_{t}\right)=V_{D}(x)$ for all t, and that x_{t} fixes the boundary if $\left.x_{t}\right|_{\partial D}=\left.x\right|_{\partial D}$ for all t.

Formula. 1. The mean curvature of x is constant if and only if for any relatively compact domain D with smooth boundary and for any volume-preserving variation $x_{t}: \bar{D} \longrightarrow \mathbb{R}^{n+1}$ that fixes the boundary,

$$
\left.\frac{d A_{D}\left(x_{t}\right)}{d t}\right|_{t=0}=0 .
$$

Definition 1. Let $x: M^{n} \longrightarrow \mathbb{R}^{n+1}$ be an immersion with non-zero constant mean curvature. Then we say that \mathbf{x} is stable if and only if for any such D and x_{t} as in Formula 1,

$$
\left.\frac{d^{2} A_{D}\left(x_{t}\right)}{d t^{2}}\right|_{t=0} \geqq 0
$$

Formula 2. Let $x: M^{n} \longrightarrow \mathbb{R}^{n+1}$ be an immersion with nonzero constant mean curvature. Then x is stable, if and only if for any such D as in Formula 1 and for any function f belonging to the function space
(1-1) $F_{D}=\left\{f: M^{n} \longrightarrow \mathbb{R} \mid\right.$ support $f \subseteq \bar{D}, f$ is piecewise-smooth, and $\left.\int_{M^{n}} f \mathrm{dM}=0\right\}$,
the integral $I(f)$ defined below is non-negative.

$$
I(f)=-\int_{M^{n}}\left(\Delta_{M^{\prime}} f+\|B\|^{2} f\right) f d M,
$$

where $\Delta_{M} f$ is the Laplacian of f in the induced metric and $\|B\|^{2}$ is the square of the norm of the second fundamental form B of \mathbf{x}.

Here we should remark about the sign of Δ_{M}. Let p be a point in M^{n}, and let $\left(u^{1}, \ldots, u^{n}\right)$ be coordinates in a
neighbourhood of p in M^{n}. Denote the induced metric in M^{n} by $g=\sum_{i, j=1}^{n} g_{i j} d u^{i} d u^{j}$, and set

$$
G=\operatorname{det}\left(g_{i j}\right) \text { and }\left(g^{i j}\right)=\left(g_{i j}\right)^{-1}
$$

Then

$$
\Delta_{M}=\frac{1}{\sqrt{G}} \sum_{i, j} \frac{\partial}{\partial u^{i}}\left(\sqrt{G} g^{i j} \frac{\partial}{\partial u^{j}}\right)
$$

§ 2. The main theorem and its proof

From now on M is assumed to be a non-compact orientable 2-dimensional connected manifold. First we prove the following Theorem 2 which is more general than Theorem 1.

Theorem 2. Let M be the same as in Theorem 1. Then there is no complete stable immersion $x: M \longrightarrow \mathbb{R}^{3}$ with non-zero constant mean curvature which satisfies the following (i) or (ii).
(i) M is hyperbolic.
(ii) M is parabolic, and for the universal covering $\pi: \mathbb{C} \longrightarrow M$, the metric $d s^{2}=\lambda^{2}|d z|^{2}$ of \mathbb{C} induced by x. π satisfies the inequality
$(2-1) \cdot \int_{\rho_{1}}^{\rho_{2}}\left(\int_{0}^{2 \pi} \lambda^{4}\|B\|^{2} d \theta\right)^{1 / 4} d \rho \geqq c \log \frac{\rho_{2}}{\rho_{1}}$
for all ρ_{1} and $\rho_{2}\left(\rho_{2} \geqq \rho_{1}>\rho_{0}\right)$, where c and ρ_{0} are positive constants.

Lemma 1. Let $\pi: \widetilde{M} \longrightarrow M$ be the universal covering of M. If $x \circ \pi$ is not stable, then x is not stable also.

Proof. Let Ω be a relatively compact domain of $M^{*}(=M$ or $\tilde{M})$ with smooth boundary. Consider x and $x \circ \pi$ as critical points for the area functional with respect to compactly supported volume-preserving variations that fix the boundary. Then the corresponding Hessian form is

$$
\begin{aligned}
& I(f)=-\int_{\Omega}\left(\Delta_{M^{*}} f+\|B\|^{2} f\right) f d M^{*}, \\
& f \in F_{\Omega}^{*}=\left\{f \in H_{0}^{1}(\Omega) ; \int_{\Omega} f d M^{*}=0\right\},
\end{aligned}
$$

where we denote the second fundamental form of $x \circ \pi$ also by B.

Consider the following eigenvalue problem associated with the quadratic form $I(f)$.
(2-2) $\quad \Delta_{M^{*}} f+\|B\|^{2} f-\frac{\int_{\Omega}\left(\Delta_{M^{*}} f+\|B\|^{2} f\right) d M^{*}}{\int_{\Omega} d M^{*}}+\lambda f=0, f \in F_{\Omega}^{*}$.
Denote the eigenvalues of (2-2) by

$$
\lambda_{1}(\Omega) \leqq \lambda_{2}(\Omega) \leq \lambda_{3}(\Omega) \leq \ldots \longrightarrow+\infty .
$$

Then it follows that

$$
(2-3) \quad \lambda_{1}(\Omega)=\inf _{f \in F_{\Omega}^{\star}-\{0\}} \frac{I(f)}{\int_{\Omega}|f|^{2} \mathrm{dM}^{*}}
$$

(c.f. Berger-Gauduchon-Mazet [3, p. 186]). Set

$$
\begin{aligned}
\text { index }(\Omega) & =\#\left\{\lambda_{j}(\Omega) ; \lambda_{j}(\Omega)<0\right\} \\
\text { nullity }(\Omega) & =\#\left\{\lambda_{j}(\Omega) ; \lambda_{j}(\Omega)=0\right\}
\end{aligned}
$$

Let $c_{t}: \Omega \longrightarrow \Omega, t \geq 0$, be a smooth family of diffeomorphisms of Ω into Ω such that
(a) $c_{0}=$ identity,
(b) $c_{t}(\Omega) \underset{\ddagger}{\subset} c_{s}(\Omega)$ for $t>s$,
(c) $\quad \lim _{t \rightarrow \infty}$ Volume $\left(c_{t}(\Omega)\right)=0$.

Denote $c_{t}(\Omega)$ by Ω_{t}. Then from the Morse index theorem with constraints proved by Grid and Thayer [5],
(2-4) index $(\Omega)=\sum_{t>0}$ nullity $\left(\Omega_{t}\right)$.

Assume that $\mathbf{x} \circ \pi: \widetilde{M} \longrightarrow \mathbb{R}^{3}$ is not stable. Then there exists a relatively compact domain $G \subset \widetilde{M}$ with smooth boundary such that index (G) $\geqslant 0$. Set $D=\pi(G)$. Since π is locally diffeomorphic, by enlarging G if necessary, we can find a point $p_{0} \in \partial G$, a neighbourhood U of p_{0} in \tilde{M}, and a neighbourhood V of $\pi\left(p_{0}\right)$ in M such that
(i) $\pi\left(p_{0}\right) \in \partial D$,
(ii) $\pi^{-1}(V \cap D) \cap G=U \cap G$,
(iii) $\left.\pi\right|_{U}: U \longrightarrow V$ is a diffeomorphism.

Let $\left\{G_{t}\right\}_{t \geq 0}$ be a smooth and strictly decreasing family of domains $G_{t} \subset \tilde{M}$ such that

$$
G_{0}=G \text { and } \sum_{t} G_{t}=\left\{p_{0}\right\}
$$

By (2-4), there exist some $s>0$ and $\tilde{f} \in{\underset{G}{S}}_{*}^{*}-\{0\}$ which satisfy

$$
\Delta_{\widetilde{M}^{\tilde{I}}}+\|B\|^{2} \widetilde{\mathscr{I}}-\frac{\int_{G_{S}}\left(\Delta_{\tilde{M}} \widetilde{\mathrm{I}}^{\tilde{I}}\|\mathrm{~B}\|^{2} \tilde{\mathrm{I}}\right) \mathrm{d} \tilde{\mathbb{M}}}{\int_{G_{S}} d \widetilde{M}}=0
$$

in G_{S}. Set $D_{S}=\pi\left(G_{S}\right)$ and define a function f on M by $f(q)=\sum_{p \in \pi^{-1}(q)} \tilde{f}(p)$. Since \tilde{f} is analytic in G_{S} (c.f: Morrey [7, p. 166 Theorem 5.7.1]),

$$
\tilde{f}\left(p_{1}\right) \neq 0
$$

for some $p_{1} \in G_{s} \cap U$. Therefore

$$
f\left(\pi\left(p_{1}\right)\right)=\sum_{p \in \pi^{-1}\left(\pi\left(p_{1}\right)\right)}^{\{ } \tilde{f}(p)=\tilde{f}\left(p_{1}\right) \neq 0,
$$

by virtue of above (ii) and (iii). Moreover, $f \in F_{D_{S}^{*}}^{*}$ and we can show that $I(f) \leqq 0$ by the essentially same way as Barbosa and do Carmo [1, pp. 521-526]. Therefore, by (2-3),

$$
\lambda_{1}\left(D_{s}\right) \leqq 0 .
$$

Hence, by using (2-4), there exists a relatively compact domain $D^{\prime} \supset D_{S}$ of M such that

$$
\text { index } D^{\prime}>0,
$$

which implies that x is not stable.
Q.E.D.

Proof of Theorem 2. By virtue of Lemma 1, it is sufficient to prove our theorem only for the case that M is simply-connected.

Let $x: M \longrightarrow \mathbb{R}^{3}$ be a complete stable immersion with non-zero constant mean curvature: Denote by K the Gaußian curvature of x. Consider M with the natural complex structure given by x. We assume that x satisfies (i) or (ii), and shall derive a contradiction. Let z be the canonical coordinate in \mathbb{C} : Then the induced metric $d s^{2}$ in M is given by

$$
\mathrm{ds} s^{2}=\lambda^{2}|\mathrm{~d} z|^{2}, \lambda>0 .
$$

Let Δ denote the Laplacian, ∇ the gradient, and $d A$ the area element in the flat metric.

At first we assume (i), that is, M is assumed to be conformally equivalent to $B=\{z \in \mathbb{C} ;|z|<1\}$. Let p be a point in M, and let ${ }^{B_{r}}(p)$ be the geodesic disks with p as their center and r as their radii which exhaust M. For any positive constant δ, we define a piecewise-smooth function $f_{r, \delta}: M \longrightarrow \mathbb{R}$ as follows.
$(2-5) \quad f_{r, \delta}(q)=\left\{\begin{array}{cl}1, & q \in B_{r}(p), \\ \because \quad 2-\operatorname{dist}(q, p) / r, & q \in B_{2 r+\delta}(p)-B_{r}(p), \\ \{\text { dist }(q, p)-(2 r+2 \delta)\} / r, q \in B_{2 r+2 \delta}(p)-B_{2 r+\delta}(p), \\ 0, & q \in M-B_{2 r+2 \delta}(p),\end{array}\right.$,
where dist (q, p) is the geodesic distance between p and $q \in M$. Now we claim the following statement which will be proved in section 3 in order to avoid confusion.

Claim 1. For any $r>0$, there exists a unique $\delta=\delta(r)>0$ such that

$$
\int_{M} \lambda^{-1} f_{r}, \delta(M M=0 .
$$

Therefore, $\lambda^{-1} f_{r, \delta} \in F_{B_{2 r+2 \delta}}(p)$. Hence, by virtue of the stability of x and Formula 2,

$$
\begin{equation*}
I\left(\lambda^{-1} f_{r, \delta}\right) \geq 0 \tag{2-6}
\end{equation*}
$$

Therefore,

$$
(2-7) \quad \int_{M} f_{r, \delta}{ }^{2}\left|\nabla_{M} \lambda^{-1}\right|^{2} d M<\int_{M} \lambda^{-2}\left|\nabla_{M}{ }^{f} r, \delta\right|^{2} d M,
$$

where ∇_{M} is the gradient in the induced metric. In fact, if we set $\phi=\lambda^{-1}$ and $f=f_{r, \delta}$, by using the well-known formula $K=-\lambda^{-2} \Delta \log \lambda$ and the Stokes' theorem, we can achieve the following calculation.

The left hand side of (2-6)

$$
\begin{aligned}
& =\int_{M}\left\{\left|\nabla_{M}(\phi f)\right|^{2}-\left(4 H^{2}-2 K\right) \phi^{2} f^{2}\right\} d M \\
& <\int_{M}\left\{\left|\nabla_{M}(\phi f)\right|^{2}+2 K^{2} \phi^{2} f^{2}\right\} d M \\
& =\int_{M}\left\{\phi^{2}\left|\nabla_{M^{\prime}} f\right|^{2}-3 f^{2}\left|\nabla_{M^{\prime}} \phi\right|^{2}-2 \phi f\left(\nabla_{M} \phi, \nabla_{M^{f}}\right)\right\} d M \\
& \leqq 2 \int_{M}\left(\phi^{2}\left|\nabla_{M} f\right|^{2}-f^{2}\left|\nabla_{M} \phi\right|^{2}\right) d M .
\end{aligned}
$$

It follows from (2-7) that

$$
\begin{aligned}
\left.\int_{B_{r}(p)}\left|\nabla_{M^{\lambda}}\right|^{-1}\right|^{2} \mathrm{dM} & <\int_{M} \lambda^{-2}\left|\nabla_{M^{f}} r_{r, \delta}\right|^{2} \mathrm{dM} \\
& <r^{-2} \int_{B} d A \\
& =\pi r^{-2} .
\end{aligned}
$$

By letting $r \longrightarrow+\infty$, we know that $\left|\nabla_{M} \lambda^{-1}\right| \equiv 0$ on M, that is, $\lambda \equiv$ constant, which contradicts the completeness of the metric $d s^{2}=\lambda^{2}|d z|^{2}$ in B. (A similar inequality to (2-7) and a similar method to the above limitting process are found also in do Carmo and Peng [4] and Mori [6]).

Next, we assume the condition (i.i). Set $\psi=\lambda^{2}\|B\|^{2}$. Then there exists some constant $\beta>0$ such that the inequality
(2-8) $\quad \int_{\mathbb{C}} \psi^{3} f^{6} d A \leqq B \int_{\mathbb{C}}|\nabla f|^{6} d A$
follows for all compactly supported piecewise-smooth functions $f: \mathbb{C} \longrightarrow \mathbb{R}$ that satisfy $I\left(\psi f^{3}\right) \geqq 0$, which is proved by Mori [6].

Let $n>1$ be a constant. For any $r>1$ and $\delta>0$, we define a piecewise-smooth function $f_{r, \delta}: \mathbb{C} \longrightarrow \mathbb{R}$ as follows. Since $f_{r, \delta}$ is defined to be depending only on ρ, we write $f_{r_{r, \delta}}(z)=f_{r, \delta}(\rho)$, where (ρ, θ). is the polar coordinates in \mathbb{C}. If $0<\delta \leqq r$,
$(2-9) \quad f_{r, \delta}(\rho)=\left\{\begin{array}{cl}1, & 0 \leq \rho \leq r, \\ 2-\frac{\rho}{r}, & r \leq \rho \leq 2 r+\delta, \\ \frac{\delta}{r}(2 r+\delta)^{-k}\left\{r^{-n}(\rho-2 r-\delta)^{n}-1\right\} p^{k}, & 2 r+\delta \leq \rho \leq 3 r+\delta, \\ 0, & \rho \geqq 3 r+\delta,\end{array}\right.$
and if $\delta \geqq r$,
(2-10)

$$
f_{r, \delta}(\rho)=\left\{\begin{array}{cl}
1, & 0 \leq \rho \leq r, \\
2-\frac{\rho}{r}, & r \leq \rho \leq 3 r, \\
(3 r)^{-k}\left\{\delta^{-n}(\rho-3 r)^{n}-1\right\} \rho^{k}, & 3 r \leq \rho \leq 3 r+\delta, \\
0, & \rho \geq 3 r+\delta,
\end{array}\right.
$$

where $k>0$ depends only on r. Now we claim

Claim 2. There exists some constant $a_{0}, 0<a_{0}<\frac{1}{2}$, such that the following statement holds. Consider (2-9) and (2-10) substituted $k=\frac{2}{3}-a_{0} r^{-3}$. Then, for sufficiently large r, there exists a unique $\delta=\delta(r)>0$ such that

$$
\begin{equation*}
\int_{M} \psi f_{r, \delta}{ }^{3} d M=0 \tag{2-11}
\end{equation*}
$$

which will be proved in section 3 .
From the stability of \mathbf{x}, inequality $(2-8)$ is satisfied for $f=f_{r, \delta}$ in Claim 2. Let us calculate the right hand side of (2-8) for $f=f_{r, \delta}$. If $0<\delta<r$, then
$\int_{\mathbb{C}}\left|\nabla f_{r, \delta}\right|^{6} d A=2 \pi \int_{r}^{2 r+\delta} r^{-6} \rho d \rho+2 \pi\left\{\frac{\delta}{r}(2 r+\delta)^{-k}\right\}^{6} \int_{2 r+\delta}^{3 r+\delta}\left(\frac{d}{d \rho}\left[\left\{r^{-n}(\rho-2 r-\delta)^{n}-1\right\} \rho^{k}\right]\right)^{6} \rho d \rho$
$\leqq 2 \pi r^{-6} \int_{r}^{2 r+\delta} \rho d \rho+2 \pi(4 n+k)^{6}(2 r)^{-6 k} \int_{2 r+\delta}^{3 r+\delta} \rho \rho^{6 k-5} d \rho$
$<8 \pi r^{-4}+2 \pi(4 n+k)^{6}(2 r)^{-6 k} \int_{2 r}^{+\infty} \rho^{6 k-5} d \rho$
$=8 \pi r^{-4}+2 \pi(4 n+k)^{6}(2 r)^{-4}(4-6 k)^{-1}$
$(2-12)<8 \pi r^{-4}+\pi\left(4 n+\frac{2}{3}\right)^{6}\left(48 a_{0}\right)^{-1} r^{-1}$.

And if $\delta \geqq r$, then

$$
\begin{aligned}
\int_{\mathbb{C}}\left|\nabla f_{r, \delta}\right|^{6} d A & \left.=2 \pi \int_{r}^{3 r} r^{-6} \rho d \rho+2 \pi(3 r)^{-6 k} \int_{3 r}^{3 r+\delta}\left(\frac{d}{d \rho}\left\{\delta^{-n}(\rho-3 r)^{n}-1\right\} \rho^{k}\right]\right)^{6} \rho d \rho \\
& \therefore \underbrace{2 \pi r^{-6} \int_{r}^{3 r} \rho d \rho+2 \pi(4 n+k)^{6}(3 r)^{-6 k} \int_{3 r}^{3 r+\delta} \rho^{6 k-5} d \rho} \\
& <8 \pi r^{-4}+2 \pi(4 n+k)^{6}(3 r)^{-6 k} \int_{3 r}^{+\infty} 6 k-5 d \rho \\
& =8 \pi r^{-4}+2 \pi(4 n+k)^{6}(3 r)^{-4}(4-6 k)^{-1} \\
(2-13) & <8 \pi r^{-4}+\pi\left(4 n+\frac{2}{3}\right)^{6}\left(243 a_{0}\right)^{-1} r^{-1} .
\end{aligned}
$$

Both of (2-12) and (2-13) go to zero as r goes to infinity. On the other hand, as for the left hand side of (2-8),
(2-14) $\quad \int_{\mathbb{C}} \psi^{3} f_{r, \delta}{ }^{6} d A>\int_{0 \leq|z| \leqq r} \psi^{3} d A>\int_{0 \leqq|z| \leqq 1}\left(\lambda^{2}| | B \|^{2}\right)^{3} d A$.

The most right term of (2-14) is a positive constant independent of r, which contradicts the inequality (2-8).
Q.E.D.

Proof of Theorem 1. If an immersion $x: M \longrightarrow \mathbb{R}^{3}$ satisfies (0-1), then x satisfies (2-1). In fact, if we choose a sufficiently large ρ_{0} so that the exceptional compact set in Theorem 1 (ii) is

$$
\begin{gathered}
\text { contained in }\left\{z \in \mathbb{C}\left||z| \leqq \rho_{0}\right\} \text {, then for } \rho_{2} \geqq \rho_{1}>\rho_{0}\right. \\
\int_{\rho_{1}}^{\rho_{2}}\left(\int_{0}^{2 \pi} \lambda^{4}\|\mathrm{~B}\|^{2} \mathrm{~d} \theta\right)^{1 / 4} \mathrm{~d} \rho \\
=\int_{\rho_{1}}^{\rho_{0}}\left(\int_{0}^{2 \pi} \mathrm{c}_{0}^{4} \rho^{-4} \cdot 2 \mathrm{H}^{2} \mathrm{~d} \theta\right)^{1 / 4} \mathrm{~d} \rho \\
\\
\left.=\mathrm{c}^{2}\right)^{1 / 4} \log \frac{\rho_{2}}{\rho_{1}} .
\end{gathered}
$$

Q.E.D.
§ 3. Proof of Claim 1 and 2

Proof of Claim 1. Fix $r>0$, and set

$$
J(\delta)=\int_{M-B_{2 r}(p)^{\lambda^{-1}} f_{r, \delta} d M}
$$

From the definition of $f_{r, \delta}, \int_{B_{2 r}(p)} \lambda^{\lambda^{-1}} f_{r}, \delta d M>0$ and $J(\delta)<0$ for any $\delta>0$. If we can show the following (3-1), (3-2), and (3-3), then we know that Claim 1 is valid.
(3-1) $\quad \lim _{\delta \rightarrow+0} J(\delta)=0$.
(3-2) $\quad \lim _{\delta \rightarrow+\infty} J(\delta)=-\infty$.
(3-3) $J(\delta)$ is strictly decreasing with respect to $\delta>0$.
(3-1) is trivial. Let us prove (3-2). Let $\alpha>0$ be a fixed positive constant. Then for any δ which is greater than α,

$$
\begin{aligned}
-J(\delta) & >\alpha \int_{B_{2 r+2 \delta-\alpha r}(p)-B_{2 r+\alpha r}(p)^{\lambda^{-1}} \mathrm{dM}} \\
(3-4) & =\alpha \int_{B_{2 r+2 \delta-\alpha r}(p)^{\lambda^{-1}} \mathrm{dM}-\alpha \int_{B_{2 r+\alpha r}(p)} \lambda^{-1} \mathrm{dM}} \\
& \longrightarrow+\infty, \text { as } \delta \longrightarrow+\infty
\end{aligned}
$$

In fact, the first term of (3-4) goes to $+\infty$ as δ goes to
$+\infty$ by virtue of the completeness of the metric $d s^{2}=\lambda^{2}|d z|^{2}$, and the second term of (3-4) is a finite constant which is independent of δ. At last, let us prove (3-3). To do this, it is sufficient to show $J(\delta)-J(\delta+\varepsilon)>0$ for $\delta>\varepsilon>0$. Denote the geodesic distance between p and q by $d(q)$.

$$
J(\delta)-J(\delta+\varepsilon)
$$

$$
=\int_{B_{2 r+\delta+\varepsilon}(p)-B_{2 r+\delta}(p)} \lambda^{\lambda^{-1}} \cdot \frac{2\{d-(2 r+\delta)\}}{r} d M
$$

$$
+\int_{B_{2 r+2 \delta}(p)-B_{2 r+\delta+\varepsilon}(p)} \lambda^{-1} \cdot \frac{2 \varepsilon}{r} d M
$$

$$
+\int_{B_{2 r+2 \delta+2 \varepsilon}(p)-B_{2 r+2 \delta \cdot}(p)} \lambda^{-1} \cdot \frac{(2 r+2 \delta+2 \varepsilon)-d}{r} d M
$$

$$
>0 .
$$

Q.E.D.

Proof of Claim 2. Let us fix $r>\max \left\{1, \rho_{0} / 3\right\} . f_{r, \delta}(\rho)$ is continuous with respect to $\delta>0, f_{r, \delta}(\rho)>0$ for $0 \leqq \rho<2 r$, and $f_{r, \delta}(\rho)<0$ for $2 r<\rho<3 r+\delta$. Therefore, if we set

$$
L_{1}(\delta)=\int_{\{\rho \leq 2 r\}} \psi f_{r, \delta}{ }^{3} d M \text { and } L_{2}(\delta)=\int_{\{\rho \geq 2 r\}} \psi f_{r, \delta}{ }^{3} d M,
$$

then $L_{1}(\delta)>0$ and $L_{2}(\delta)<0$ for any $\delta>0$. Moreover, $L_{1}(\delta)$ is independent of δ from the definition of $f_{r, \delta}$. Hence we set

$$
L_{1}=L_{1}(\delta)
$$

On the other hand, $\mathrm{L}_{2}(\delta)$ is strictly decreasing with respect to δ. In fact, for any positive constant $\delta_{0}, f_{r, \delta}(\rho)$ is non-increasing everywhere and is strictly decreasing at least in $\left\{p ; 3 r<\rho<3 r+\delta_{0}\right\}$ with respect to $\delta\left(\delta>\delta_{0}\right)$. Therefore, if there exists some $\delta=\delta(r)$ which satisfies $(2-11)$, it is unique.

At first suppose that $L_{1}+L_{2}(r)<0$. Since $L_{2}(\delta)$ is continuous with respect to $\delta, \lim _{\delta \rightarrow+0} L_{2}(\delta)=0$, and $L_{1}>0$, there exists some $\delta(r>\delta>0)$ such that $L_{1}+L_{2}(\delta)=0$ (i.e. (2-11)) is satisfied.

Next, we assume that

$$
\begin{equation*}
L_{1}+L_{2}(r) \geqq 0 \tag{3-5}
\end{equation*}
$$

Let us find some $\delta \geq r$ which satisfies the equality $L_{1}+L_{2}\left(\delta^{\prime}\right)=0$. Set

$$
\begin{equation*}
\varphi(\rho)=\int_{0}^{2 \pi} \lambda^{4}\|B\|^{2} d \theta \tag{3-6}
\end{equation*}
$$

For some fixed $b, 0<b<1 / 2$, we define subsets $E_{j}(j=1,2,3)$ of $\mathbb{R}^{+}=\{\rho \in \mathbb{R} ; \rho ; 0\}$ as follows.

$$
\left\{\begin{array}{l}
E_{1}=\left\{\rho \in \mathbb{R}^{+} ; \varphi(\rho) \leqq \rho^{-4-4 b}\right\}, \tag{3-7}\\
E_{2}=\left\{\rho \in \mathbb{R}^{+} ; \rho^{-4-4 b} \leqq \varphi(\rho) \leqq \rho^{-4+4 b}\right\}, \\
E_{3}=\left\{\rho \in \mathbb{R}^{+} ; \rho^{-4+4 b} \leqq \varphi(\rho)\right\}
\end{array}\right.
$$

Since $\|B\|^{2}=2 \mathrm{H}^{2}+\left(2 \mathrm{H}^{2}-2 \mathrm{~K}\right) \geqq 2 \mathrm{H}^{2}$,

$$
\begin{aligned}
\varphi(\rho)^{1 / 4} & \geq\left(2 \mathrm{H}^{2} \int_{0}^{2 \pi} \lambda^{4} \mathrm{~d} \theta\right)^{1 / 4} \geqq\left(2 \mathrm{H}^{2}\right)^{1 / 4}\left(\int_{0}^{2 \pi} \mathrm{~d} \theta\right)^{-\frac{3}{4}} \int_{0}^{2 \pi} \lambda d \theta \\
& =\left(\mathrm{H}^{2} /\left(4 \pi^{3}\right)\right)^{1 / 4} \int_{0}^{2 \pi} \lambda d \theta
\end{aligned}
$$

Therefore, by virtue of the completeness of M,

$$
\begin{aligned}
\int_{1}^{+\infty} \varphi(\rho)^{1 / 4} d \rho & \geq\left(H^{2} /\left(4 \pi^{3}\right)\right)^{1 / 4} \int_{1}^{\infty}\left(\int_{0}^{2 \pi} \lambda d \theta\right) d \rho \\
& =\left(H^{2} /\left(4 \pi^{3}\right)\right)^{1 / 4} \lim _{R \rightarrow+\infty} \int_{0}^{2 \pi}\left(\int_{1}^{R} \lambda d \rho\right) d \theta \\
& =+\infty .
\end{aligned}
$$

Hence,
(3-8) $\int_{[1, \infty) \cap E_{1}} \rho^{1-b} d \rho+\int_{[1, \infty) \cap E_{2}} \varphi(\rho)^{1 / 4} d \rho+\int_{[1, \infty) \cap E_{3}} \varphi(\rho) \rho^{3-3 b} d \rho \geqq \int_{1}^{\infty} \varphi(\rho)^{1 / 4} d \rho=+\infty$.
Since the first term of the left hand side of (3-8) is finite,
$(3-9) \int_{[1, \infty) \cap E_{2}} \varphi(\rho)^{1 / 4} \mathrm{~d} \rho+\int_{[1, \infty) \cap E_{3}} \varphi(\rho) \rho^{3-3 b} d \rho=+\infty$.
Now we separate our situation into two cases as follows.
Case I. $\int_{[1, \infty) \cap E_{3}} \varphi(\rho) \rho^{3-3 b} d \rho=+\infty$,
Case II. $\int_{[1, \infty) \cap E_{3}} \varphi(\rho) \rho^{3-3 b} d \rho<+\infty$.

At first, we consider Case I. Let a be a constant such that $0<\mathrm{a} \leqq \mathrm{b}$. Assume that
$(3-10) \quad \delta \geq \max \left\{r,\left\{1-(3 r)^{-(b-a)}\right\}^{-1}\right\}$.

If
$(3-11) \quad 3 r \leqq \rho \leqq 3 r+\delta^{1-\frac{1}{n}}$,
then

$$
\left\{1-\delta^{-n}(\rho-3 r)^{n}\right\} \rho^{b-a} \geqq\left(1-\delta^{-1}\right)(3 r)^{b-a} \quad[\text { because of }(3-11)]
$$

(3-12)
≥ 1
[because of (3-10)].

Therefore, for $k=\frac{2}{3}-a$;

$$
\begin{aligned}
&-L_{2}(\delta)>-\int_{\{3 r \leq \rho \leq 3 r+\delta\}} \psi f_{r, \delta}{ }^{3} d M=(3 r)^{-3 k} \int_{3 r}^{3 r+\delta} \varphi(\rho)\left\{1-\delta^{-n}(\rho-3 r)^{n}\right\}^{3} \rho^{3 k+1} d \rho \\
& \geqq(3 r)^{-3 k} \int_{\left[3 r, 3 r+\delta^{1-\frac{1}{n}}\right] \cap E_{3}} \varphi(\rho) \rho^{3-3 b}\left[\left\{1-\delta^{-n}(\rho-3 r)^{n}\right\} \rho^{b-a}\right]^{3} d \rho \\
& \geqq(3 r)^{-3 k} \int_{\left[3 r, 3 r+\delta^{1-\frac{1}{n}}\right] n E_{3}} \varphi(\rho) \rho^{3-3 b} d \rho \quad[\text { because of }(3-12)]
\end{aligned}
$$

as $\delta \longrightarrow+\infty$ by virtue of the assumption of Case I. Hence, there exists some $\delta=\delta(r) \geqq r$ such that

$$
L_{1}+L_{2}(\delta)=0
$$

If we take any constant $a_{0}, 0<a_{0}<b$, then $0<a_{0} r^{-3}<a_{0}$ $<b<\frac{1}{2}$ for $r>1$. By setting $a=a_{0} r^{-3}$, we see that Claim 2 is valid for Case I.

Next, we consider Case II. For any $r>1$ and $\delta>0$,
$L_{1}=\int_{\{\rho \leqq 2 r\}} \psi f_{r, \delta}{ }^{3} \mathrm{dM}<\int_{\{\rho \leqq 2 r\}} \psi d M=\int_{0}^{2 r} \varphi(\rho) \rho d \rho$
$\sum \int_{0}^{1} \varphi(\rho) \rho \mathrm{d} \rho+\int_{[1,2 r] \cap E_{1}} \rho^{-3-4 b} d \rho+\int_{[1,2 r] \cap E_{2}} \rho^{-3+4 b} d \rho+\int_{[1,2 r] \cap E_{3}} \varphi(\rho) \rho^{3-3 b} d \rho$

From the assumption of case II and $b<\frac{1}{2},(3-13)$ is a finite constant, which we denote by α. That is,
(3-14) $\quad L_{1}<\alpha$
for any $r>1$.
For any $\delta>0$, define $\widetilde{\mathfrak{F}}_{r, \delta}(\rho)$ as the right hand side of (2-10). Then, for any fixed positive constant $\delta_{0}, \widetilde{f}_{r, \delta}(0)$ is non-increasing everywhere and strictly decreasing in $\left\{\rho ; 3 r<\rho<3 r+\delta_{0}\right\}$ with respect to $\delta, \delta>\delta_{0}$. Therefore

$$
\tilde{\mathrm{L}}_{2}(\delta)=\int_{\{\rho \geqq 2 r\}} \psi \tilde{\mathrm{f}}_{r, \delta}^{3} \mathrm{dM}
$$

is strictly decreasing with respect to $\delta>0$. Moreover,

$$
\tilde{L}_{2}(\delta)=L_{2}(\delta) \text { for any } \delta \geqq r,
$$

and
(3-5) $\quad L_{1}+L_{2}(r) \geqq 0$.

Therefore, if we find some $\delta_{1}=\delta_{1}(r)>0$ such that

$$
(3-15) \quad L_{1}+\widetilde{L}_{2}\left(\delta_{1}\right)<0
$$

then $\delta_{1}>r$, and there exists a unique $\delta=\delta(r)\left(\delta_{1}>\delta \geqq r\right)$ such that the equality

$$
L_{1}+L_{2}(\delta)=0
$$

holds, which proves Claim 2.
Set $k=\frac{2}{3}-a(0<a<b)$. For $\varepsilon>0$, assume that

$$
\delta \geqq\left\{1-(3 r)^{-\varepsilon}\right\}^{-\frac{1}{\varepsilon}}
$$

Then if $3 r \leq \rho \leq 3 r+\delta^{1-\varepsilon / n}$,
(3-16) $\quad\left\{1-\delta^{-n}(\rho-3 r)^{n}\right\}_{p}^{\varepsilon} \geqq 1$.

Therefore,

$$
\begin{aligned}
& -\tilde{\tilde{L}}_{2}(\delta)>-\int_{\{3 r \leq \rho \leqq 3 r+\delta\}} \psi \tilde{r}_{r, \delta}^{3} d M=(3 r)^{-2+3 a} \int_{3 r}^{3 r+\delta} \varphi(\rho)\left\{1-\delta^{-n}(\rho-3 r)^{\left.n^{n}\right\}^{3} \rho^{3-3 a} d \rho}\right. \\
& >(3 r)^{-2+3 a} \int_{3 r}^{3 r+\delta^{1-\varepsilon / n}} \varphi(\rho)\left\{1-\delta^{-n}(\rho-3 r)^{n}\right\}^{3} \rho^{3-3 a} d \rho \\
& \geqq(3 r)^{-2+3 a} \cdot \frac{\left(\int_{3 r}^{3 r+\delta^{1-\varepsilon / n}} \varphi(\rho)^{1 / 4} d \rho\right)^{4}}{\left(\int_{3 r+\delta^{1-\varepsilon / n}}^{3 r}\left\{1-\delta^{-n}(\rho-3 r)^{\left.n^{n}\right\}^{-1}} \rho^{-1+a} d \rho\right)^{3}\right.} \\
& \left.\geqq(3 r)^{-2+3 a} \cdot \frac{\left(\int_{3 r}^{3 r+\delta^{1-\varepsilon / n}} \varphi(\rho)^{1 / 4} d \rho\right)^{4}}{\left(\int_{3 r+\delta^{1-\varepsilon / n}}^{3 r} \rho^{-1+a+\varepsilon} d \rho\right)^{3}} \text { [because of }(3-16)\right]
\end{aligned}
$$

$(3-17) \quad 3 c^{4}(a+\varepsilon)^{3}(3 r)^{-2+3 a} \cdot \frac{\left(\log \frac{3 r+\delta^{1-\varepsilon / n}}{3 r}\right)^{4}}{\left\{\left(3 r+\delta^{1-\varepsilon / n}\right)^{a+\varepsilon}-(3 r)^{a+\varepsilon}\right\}^{3}}$,
where the last inequality follows from the assumption (2-1). Now we claim

Claim 3. There exists some constant $a_{0}, 0<a_{0}<1 / 2$, such that the following statement holds. For sufficiently large r, there exist some $\varepsilon=\varepsilon(r)>0$ and $\delta=\delta(r) \geq\left\{1-(3 r)^{-\varepsilon}\right\}^{-1 / \varepsilon}$ such that
(3-18) $\quad c^{4}\left(a_{0} r^{-3}+\varepsilon\right)^{3}(3 r)^{-2+3 a_{0} r^{-3}}$.

$$
\left.\frac{\left(\log \frac{3 r+\delta^{1-\varepsilon / n}}{3 r}\right)^{4}}{\left\{\left(3 r+\delta^{1-\varepsilon / n}\right) a_{0} r^{-3}+\varepsilon\right.}-(3 r)^{a_{0} r^{-3}+\varepsilon}\right\}^{3} \geqq \alpha
$$

If Claim 3 is valid, then, from (3-17) and (3-18), we have
$-\tilde{L}_{2}(\delta)>\alpha$.

Therefore, by using (3-14), it follows that

$$
L_{1}+\tilde{L}_{2}(\delta)<0,
$$

which is just the required inequality (3-15). Therefore, remaining thing is only to prove Claim 3.

Set
(3-19) $R=3 r, m=a_{0} r^{-3}+\varepsilon$, and $x=\delta^{1-\varepsilon / n}$.

Then the left hand side of (3-18) becomes

$$
c^{4} m^{3} R^{-2+3 m-3 \varepsilon} \cdot \frac{\left(\log \frac{R+x}{R}\right)^{4}}{\left\{(R+x)^{m}-R^{m}\right\}^{3}}
$$

which we denote by $f(x)$. Then

$$
(3-20) \quad f^{\prime}(x)=\frac{c^{4} m^{3} R^{-2+3 m-3 \varepsilon}\left(\log \frac{R+x}{R}\right)^{3}}{(R+x)^{1-m}\left\{(R+x)^{m}-R^{m}\right\}^{4}}\left[4\left\{1-\left(\frac{R}{R+x}\right)^{m}\right\}-3 m \log \frac{R+x}{R}\right] .
$$

Set

$$
g(y)=4\left(1-y^{-m}\right)-3 m \log y, \quad y>1,
$$

then

$$
g^{\prime}(y)=m y^{-m-1}\left(4-3 y^{m}\right)
$$

Therefore, $g(y)$ is strictly increasing in $1<y<(4 / 3)^{1 / m}$, and strictly decreasing in $y>(4 / 3)^{1 / m}$. Moreover,

$$
\lim _{y \rightarrow 1+0} g(y)=0 \quad \text { and } \quad \lim _{y \rightarrow+\infty} g(y)=-\infty:
$$

Hence there exists a unique $y_{0}>1$. such that $g\left(y_{0}\right)=0$. Since $g\left((4 / 3)^{3 / m}\right)=4\left\{1-(3 / 4)^{3}\right\}-9 \log (4 / 3)=-0.276<0$,
(3-21) $\left(\frac{4}{3}\right)^{1 / m}<y_{0}<\left(\frac{4}{3}\right)^{3 / m}$.

From (3-20) and the property of g mentioned above, we know that $f(x)$ is strictly increasing in $0<x<\left(y_{0}-1\right) R$, and strictly decreasing in $x>\left(y_{0}-1\right) R$. Moreover, since $g\left(y_{0}\right)=0$,

$$
\log y_{0}=4\left(1-y_{0}^{-m}\right) /(3 m)
$$

Therefore,
(3-22) $\max _{x>0} f(x)=f\left(\left(y_{0}^{-1) R)}=\left(\frac{4}{3}\right)^{4} c^{4} m^{-1} R^{-2-3 \varepsilon} y_{0}^{-3 m}\left(1-y_{0}^{-m}\right)\right.\right.$.

From (3-21) and (3-22),
$(3-23) f\left(\left(y_{0}-1\right) R\right)>\frac{3^{5}}{2^{12}} c^{4} m^{-1} R^{-2-3 \varepsilon}$.
Choose ε so that $0<\varepsilon \leqq 1 / 3$. Then $R^{-2-3 \varepsilon} \geqq R^{-3}$. Therefore, by (3-19) and (3-23),
$(3-24) f\left(3 r\left(y_{0}-1\right)\right)>\frac{9}{2^{12}} c^{4}\left(a_{0} r^{-3}+\varepsilon\right)^{-1} r^{-3}$.

Hence, if there exists some $a_{0}\left(0<a_{0}<\frac{1}{2}\right)$ which is independent of r and $\varepsilon=\varepsilon(r)(0<\varepsilon \leqq 1 / 3)$ such that
$(3-25) \quad \frac{9}{2^{12}} c^{4} \alpha^{-1} r^{-3} \geqq a_{0} r^{-3}+\varepsilon$
holds, then (3-18) follows for $\delta \cong\left\{3 r\left(y_{0}-1\right)\right\}^{n /(n-\varepsilon)}$. Let a_{0} be a positive constant which satisfies the inequality

$$
a_{0}<\min \left\{\frac{1}{2}, \frac{9 c^{4}}{2^{13 \alpha_{\alpha}}}\right\}
$$

and set
(3-26)

$$
\varepsilon=\frac{9 c^{4}}{2^{13}} r^{-3}
$$

Then, for sufficiently large $r, \varepsilon \leqq 1 / 3$ and (3-25) is satisfied. Moreover, it follows that
$(3-27) \quad\left\{3 r\left(y_{0}-1\right)\right\}^{n /(n-\varepsilon)} \geqq\left\{1-(3 r)^{-\varepsilon}\right\}^{-1 / \varepsilon}$,
as we shall prove it below.

$$
\begin{gathered}
\text { Set } c_{1}=9 c^{4} /\left(2^{13} \alpha\right) \text {. Then, from }(3-26), \\
\varepsilon=c_{1} r^{-3} .
\end{gathered}
$$

$(3-27)$ is equivalent to
$(3-28) \quad\left\{1-(3 r)^{-c_{1} r^{-3}}\right\}\left\{3 r\left(y_{0}-1\right)\right\}^{\frac{n}{n-c_{1} r^{-3}} \cdot c_{1} r^{-3}} \quad \geqq 1$.

From (3-21),
$(3-29) \quad y_{0}-1>\left(\frac{4}{3}\right)^{\frac{r^{3}}{a_{0}+c_{1}}}-1$.

For sufficiently large r, the right hand side of (3-29) is greater than 1 and $n /\left(n-c_{1} r^{-3}\right)>1$. Therefore, the left hand side of (3-28)

$$
\begin{aligned}
& >\left\{1-(3 r)^{-c_{1} r^{-3}}\right\}\left[3 r\left\{\left(\frac{4}{3}\right)^{r^{3} /\left(a_{0}+c_{1}\right)}-1\right\}\right]^{c_{1} r^{-3}} \\
& =\left\{(3 r)^{c_{1} r^{-3}}-1\right\}\left\{\left(\frac{4}{3}\right)^{r^{3} /\left(a_{0}+c_{1}\right)}-1\right\}^{c_{1} r^{-3}} .
\end{aligned}
$$

Therefore, for the purpose of proving (3-28), it is sufficient to prove the inequality
(3-30) $\left\{(3 r)^{c_{1} r^{-3}}-1\right\}^{r^{3}}\left\{\left(\frac{4}{3}\right)^{r^{3} /\left(a_{0}+c_{1}\right)}-1\right\}^{c_{1}} \geqq 1$.

Let us prove
(3-31) $\lim _{r \rightarrow+\infty}\left\{(3 r)^{c_{1} r^{-3}}-1\right\}^{r^{3}}=+\infty$.
(3-31) is equivalent to
(3-32) $\quad \lim _{r \rightarrow+\infty} r^{3} \log \left\{(3 r)^{c_{1} r^{-3}}-1\right\}=+\infty$.

Here, the left hand side of $(3-32)$ is equal to

$$
\lim _{y \rightarrow+0} \frac{\log \left\{\left(\frac{3}{y}\right)^{c_{1} y^{3}}-1\right\}}{y^{3}}
$$

We see that

$$
(3-33) \lim _{y \rightarrow+0} \log \left\{\left(\frac{3}{y}\right)^{c_{1} y^{3}}-1\right\}=0 \text { and } \lim _{y \rightarrow+0} y^{3}=0
$$

In fact,

$$
\lim _{y \rightarrow+0} \log \left(\frac{3}{y}\right)^{c_{1} y^{3}}=\lim _{y \rightarrow+0} c_{1} y^{3}(\log 3-\log y)=0
$$

therefore
(3-34) $\lim _{y \rightarrow+0}\left(\frac{3}{y}\right)^{C_{1} y^{3}}=1$.
By virtue of (3-33), it follows that
the left hand side of (3-32)
$=\lim _{y \rightarrow+0} \frac{\frac{d}{d y} \log \left\{\left(\frac{3}{y}\right)^{c_{1} y^{3}}-1\right\}}{\frac{d}{d y} y^{3}}$
$=\lim _{y \rightarrow+0} \frac{c_{1}\left(\frac{3}{y}\right)^{c_{1} y^{3}} \frac{(3 \log 3-1-3 \log y)}{3\left\{\left(\frac{3}{y}\right)^{c_{1} y^{3}}-1\right\}}}{y^{3}-1}$
$=+\infty$ [because of (3-34)],
which proves (3-32) and assures (3-31). Moreover, for sufficiently large $r,\left\{(4 / 3)^{r^{3} /\left(a_{0}+c_{1}\right)}-1\right\}^{c_{1}} \geqq 1$. Therefore $(3-30)$ holds for
sufficiently large r, which completes the proof of Claim 3 .

References

[1] Barbosa, J.L. and do Carmo, M.: On the size of a stable minimal surface in \mathbb{R}^{3}, Amer. J. Math. 98 (1976), 515-528.
[2] Barbosa, J.L. and do Carmo, M.: Stability of hypersurfaces with constant mean curvature, Math. Z. 185 (1984), 339-353.
[3] Berger, M., Gauduchon, P., and Mazet, E.: Le Spectre d'une Variété Riemannienne, Lecture Notes in Math. No. 194, Springer-Verlag, Berlin-Heidelberg-New York, 1971.
[4] do Carmo, M. and Peng, C.K.: Stable complete minimal surfaces in \mathbb{R}^{3} are planes; Bull. Amer. Math. Soc. (N.S.) 1 (1979), 903-906.
[5] Frid, H. and Thayer, F.J.: The Morse index theorem for elliptic problems with a constraint, An. Acad. Brasil. Ci. 55 (1983), 9-10.
[6] Mori, H.: Stable complete constant mean curvature surfaces in R^{3} and H^{3}, Transactions Amer. Math. Soc. 278 (1983), 671-687.
[7] Morrey, Jr., C.B.: Multiple Integrals in the Calculus of Variations, Springer-Verlag, New York, 1966.

