BETTI NUMBERS OF 3-SASAKIAN QUOTIENTS OF SPHERES BY TORI

ROGER BIELAWSKI

Max-Planck-Institut
für Mathematik
Gottfried-Claren-Str. 26
53225 Bonn

GERMANY

BETTI NUMBERS OF 3-SASAKIAN QUOTIENTS OF SPHERES BY TORI

Roger Bielawski

Abstract. We give a formula for the Betti numbers of 3-Sasakian manifolds or orbifolds which can be obtained as 3-Sasakian quotients of a sphere by a torus.

A $(4 m+3)$-dimensional manifold is 3-Sasakian if it possesses a Riemannian metric with three orthonormal Killing fields defining a local $S U(2)$-action and satisfying a curvature condition. A complete 3-Sasakian manifold S is compact and its metric is Einstein with scalar curvature $2(2 m+1)(2 m+3)$. Moreover the local action extends to a global action of $S O(3)$ or $S p(1)$ and the quotient of S is a quaternionic Kähler orbifold.

A large family of compact non-homogeneous 3-Sasakian manifolds was found by Boyer, Galicki and Mann in [BGM2]. They are obtained by the 3-Sasakian reduction procedure, analogous to the symplectic or hyperkähler quotient construction, from the standard ($4 m+3$)-sphere. Recently, in [BGMR], Boyer, Galicki, Mann and Rees have calculated the second Betti number of a 7-dimensional 3-Sasakian quotient of the $(4 q+7)$-sphere by a torus, as being equal to q. Using the ideas from [BD], we shall give a formula for the Betti numbers of 3-Sasakian quotients of spheres by tori, valid in arbitrary dimension.

Theorem 1. Let S be a 3-Sasakian orbifold of dimension $4 n-1$ which can be obtained as a 3-Sasakian quotient of the standard ($4 n+4 q-1$)-sphere by a q-dimensional torus $N \leq S p(n+q)$. Then the Betti numbers of S depend only on n and q and are given by the following formula

$$
b_{2 k}=\operatorname{dim} H^{2 k}(S, \mathbb{Q})=\binom{q+k-1}{k}
$$

for $k \leq n-1$.
Remarks. 1. Galicki and Salamon [GS] have shown that the odd Betti numbers $b_{2 k+1}$ of any $(4 n-1)$-dimensional 3-Sasakian manifold vanish for $0 \leq k \leq n-1$. Our proof reproduces this result for orbifolds satisfying the assumptions of Theorem 1. The Poincaré duality gives now the remaining Betti numbers $b_{p}, p \geq 2 n$, of S.
2. The quotient of S by any 1-PS of $S O(3)$ is a contact Fano orbifold Z. Theorem 1 in conjunction with Theorem 2.4 in [BG] gives the Betti numbers of Z.
3. For any $n>2$, there is a bound on $q\left(q \leq 2^{n}-n-1\right)$ in order for S to be smooth (see Remark 2.3).
4.The formula of Theorem 1 gives also the Betti numbers of "generic" toric hyperkähler orbifolds; see section 3 .

Let us discuss some consequences of Theorem 1.
A compact 3-Sasakian manifold is regular if its quotient by the $S O(3)$ or $S p(1)$ action is a (quaternionic Kähler) manifold. At present the only known regular 3-Sasakian manifolds of dimension greater than 3 are homogeneous and in 1-1 correspondence with simple Lie algebras [BGM2].

Galicki and Salamon [GS] have shown that the Betti numbers of a regular 3Sasakian manifold of dimension $4 n-1$ must satisfy the following relation:

$$
\begin{equation*}
\sum_{k=1}^{n-1} k(n-k)(n-2 k) b_{2 k}=0 \tag{*}
\end{equation*}
$$

Theorem 1 shows that this relation is intimately related to S being regular:
Proposition 2. Let S be a 3-Sasakian manifold satisfying the assumptions of Theorem 1 with $n \geq 3$. Then the Betti numbers of S satisfy the relation (*) if and only if $q=1$, i.e. S has Betti numbers of the homogeneous 3-Sasakian manifold of type A_{n}.

Remark. There are smooth quotients with $q>1$ - see Theorem 4.1 in [BD] (given as Theorem 2.2 below) or Theorem 2.14 in [BGMR].

Corollary 3. Let S be a 3-Sasakian manifold satisfying the assumptions of Theorem 1 with $n>1$. Then S is regular if and only if S is homogeneous.

1. Hyperkähler and 3-Sasakian structures

A $4 n$-dimensional manifold is hyperkähler if it possesses a Riemannian metric g which is Kähler with respect to three complex structures J_{1}, J_{2}, J_{3} satisfying the quaternionic relations $J_{1} J_{2}=-J_{2} J_{1}=J_{3}$ etc. Such a manifold is automatically Ricci flat.
Instead of giving the intrinsic definition of a 3-Sasakian manifold, which can be found in [Bä,BGM1-2,GS], we simply recall that a Riemannian manifold (S, g) is 3Sasakian if and only if the Riemannian cone $C(S)=\left(\mathbb{R}^{+} \times S, d r^{2}+r^{2} g\right)$ is hyperkähler [Bä,BGM2]. The three Killing vector fields on S, defining the local $S p(1)$ action, are then given by $\xi_{i}=J_{i} \frac{\partial}{\partial r}$ (we identify S with $S \times\{1\} \subset C(S)$).

To date the most powerful technique for constructing both hyperkähler and 3-Sasakian manifolds is the symplectic quotient construction, adapted to the hyperkähler setting by Hitchin, Karlhede, Lindström and Roček [HKLR], and to the 3-Sasakian setting by Boyer, Galicki and Mann [BGM2].
In the hyperkähler case we start with a hyperkähler manifold M with an isometric and triholomorphic action of a Lie group G. Each complex structure J_{i} gives a Kähler form ω_{i} and, in many cases, a moment map $\mu_{i}: M \rightarrow \mathfrak{g}^{*}$. We recall that an equivariant map μ from M to the dual of the Lie algebra of G is called a moment map if it satisfies $\langle d \mu(v), \rho\rangle=\omega\left(X_{\rho}, v\right)$, where $v \in T M, \rho \in \mathfrak{g}$ and X_{ρ} is the corresponding Hamiltonian vector field. If G is compact and acts freely on the common zero set of these moment maps, then the quotient by G of this zero set is a hyperkähler manifold.

If we start with a 3 -Sasakian manifold S, whose structure is preserved by G, we can do the reduction for the hyperkähler manifold $C(S)$. The moment maps on $C(S)$ are defined only up to addition of elements in the center of \mathfrak{g}^{*} and for a particular choice of of these elements we can obtain an induced \mathbb{R}^{+}-action on the hyperkähler quotient M of $C(S)$ by G. This means that M is is a Riemannian cone over a 3-Sasakian manifold.
More intrinsically, we can [BGM2] define the moment maps directly on S by the formula $\left\langle\mu_{i}(m), \rho\right\rangle=\frac{1}{2} \eta_{i}\left(X_{\rho}\right)$, where η_{i} is the 1 -form dual to the Killing vector field ξ_{i}.

2. 3-SASAKIAN AND HYPERKÄHLER QUOTIENTS BY TORI

We shall now quickly review the hyperkähler and 3-Sasakian quotients by tori (see [BD] for more information). We consider the diagonal maximal torus T^{d} of the standard representation of $S p(d)$ on \mathbb{H}^{d}. The three moment maps $\mu_{1}, \mu_{2}, \mu_{3}$ corresponding to the complex structures of \mathbb{H}^{d} can be written as

$$
\begin{gather*}
\mu_{1}(z, w)=\frac{1}{2} \sum_{k=1}^{d}\left(\left|z_{k}\right|^{2}-\left|w_{k}\right|^{2}\right) e_{k}+c_{1}, \tag{2.1a}\\
\left(\mu_{2}+\sqrt{-1} \mu_{3}\right)(z, w)=\sum_{k=1}^{d}\left(z_{k} w_{k}\right) e_{k}+c_{2}+\sqrt{-1} c_{3}, \tag{2.1~b}
\end{gather*}
$$

where c_{1}, c_{2}, c_{3} are arbitrary constant vectors in \mathbb{R}^{d}.
A rational subtorus N of T^{d} is determined by a collection of nonzero integer vectors $\left\{u_{1}, \ldots, u_{d}\right\}$ (which we shall always take to be primitive) generating \mathbb{R}^{n}. For then we obtain exact sequences of vector spaces

$$
\begin{equation*}
0 \longrightarrow \mathfrak{n} \xrightarrow{\mathbf{\imath}} \mathbb{R}^{d} \xrightarrow{\beta} \mathbb{R}^{n} \longrightarrow 0, \tag{2.2}
\end{equation*}
$$

$$
\begin{equation*}
0 \longrightarrow \mathbb{R}^{n} \xrightarrow{\beta^{*}} \mathbb{R}^{d} \xrightarrow{\mathfrak{i}^{*}} \mathfrak{n}^{*} \longrightarrow 0 \tag{2.3}
\end{equation*}
$$

where the map β sends e_{i} to u_{i}. There is a corresponding exact sequence of groups

$$
\begin{equation*}
1 \rightarrow N \rightarrow T^{d} \rightarrow T^{n} \rightarrow 1 \tag{2.4}
\end{equation*}
$$

The moment maps for the action of N are

$$
\begin{gather*}
\mu_{1}(z, w)=\frac{1}{2} \sum_{k=1}^{d}\left(\left|z_{k}\right|^{2}-\left|w_{k}\right|^{2}\right) \alpha_{k}+c_{1} \tag{2.5a}\\
\left(\mu_{2}+\sqrt{-1} \mu_{3}\right)(z, w)=\sum_{k=1}^{d}\left(z_{k} w_{k}\right) \alpha_{k}+c_{2}+\sqrt{-1} c_{3} .
\end{gather*}
$$

The constants c_{j} are of the form

$$
\begin{equation*}
c_{j}=\sum_{k=1}^{d} \lambda_{k}^{j} \alpha_{k}, \quad(j=1,2,3) \tag{2.5c}
\end{equation*}
$$

where $\lambda_{k}^{j} \in \mathbb{R}$.
For our purposes it is enough to consider the case when $\lambda_{k}^{2}=\lambda_{k}^{3}=0$ for $k=$ $1, \ldots, d$. We then write $\lambda_{k}=\lambda_{k}^{1}, k=1, \ldots, d$, and we denote the hyperkähler quotient $\mu^{-1}(0) / N$ by $M(\underline{u}, \underline{\lambda})$ or sometimes just M.
In [BD] necessary and sufficient conditions for $M(\underline{u}, \underline{\lambda})$ to be a manifold or an orbifold were given. We shall only need the ones for an orbifold:

Theorem 2.1 [BD]. Suppose we are given primitive integer vectors u_{1}, \ldots, u_{d} generating \mathbb{R}^{n} and real scalars $\lambda_{1}, \ldots, \lambda_{d}$ such that the hyperplanes $H_{k}=\{y \in$ $\left.\mathbb{R}^{n} ;\left\langle y, u_{k}\right\rangle=\lambda_{k}\right\}, k=1, \ldots, d$, are distinct. Then the hyperkähler quotient $M(\underline{u}, \underline{\lambda})$ is an orbifold if and only if every $n+1$ hyperplanes among the H_{k} have empty intersection.

If the condition of this theorem is satisfied we refer to $M=M(\underline{u}, \underline{\lambda})$ as a toric hyperkähler orbifold.

If we set all λ_{k} equal to 0 , then the hyperkähler quotient or $M(\underline{u}, \underline{0})$ is the Riemannian cone over a (usually singular) 3-Sasakian space S. Equivalently S is the 3-Sasakian quotient of the unit sphere in \mathbb{H}^{d} by the torus N. We have (see also [BGMR])

Theorem $2.2[\mathrm{BD}]$. Let $\underline{u}=\left(u_{1}, \ldots, u_{d}\right) \in \mathbb{E}^{d}$ be a primitive collection of vectors generating \mathbb{R}^{n} and let N denote the corresponding torus defined by (2.4). Then the 3-Sasakian quotient S of the unit $(4 d-1)$-sphere by N is manifold if and only if the following two conditions hold:
(i) every subset of \underline{u} with n elements is linearly independent;
(ii) every subset of \underline{u} with $n-1$ elements is a part of $a \mathbb{Z}$-basis of \mathbb{Z}^{n}.

Condition (i) is necessary and sufficient for S to be an orbifold.
Remark 2.3. For $n=2$, the vectors u_{1}, \ldots, u_{d} satisfy both conditions if each of them has relatively prime coordinates and each pair of vectors u_{k} is linearly independent. On the other hand, if $n \geq 3$ and the vectors u_{1}, \ldots, u_{d} satisfy both conditions, then $d<2^{n}$. I am grateful to Krzysztof Galicki for informing me that Charles Boyer has found such a bound for $n=3$ and to Gerd Mersmann for the following argument. Suppose there are 2^{d} such vectors. Then either a vector u_{i} has all coordinates equal to zero $\bmod 2$ or two vectors u_{i}, u_{j} are equal $\bmod 2$. In either case we obtain a subset ($\left\{u_{i}\right\}$ or $\left\{u_{i}, u_{j}\right\}$) which cannot be a part of a \mathbb{Z}-basis.

Finally we shall need some facts from [BD] about the topology of a toric hyperkähler orbifold $M=M(\underline{u}, \underline{\lambda})$. The hyperplanes H_{k} of Theorem 2.1 divide \mathbb{R}^{d} into a finite family of closed convex polyhedra, some unbounded. We consider the polytopal complex \mathcal{C} consisting of all bounded faces of these polyhedra. The support $|\mathcal{C}|$ of \mathcal{C} is the union of all polyhedra in \mathcal{C}. If $\phi=\left(\phi_{1}, \phi_{2}, \phi_{3}\right): M \rightarrow \mathbb{R}^{n} \times \mathbb{R}^{n} \times \mathbb{R}^{n}$ is the induced moment map for the action of $T^{n}=T^{d} / N$ on M, then it is shown in [BD] that the compact variety

$$
\begin{equation*}
X=\phi^{-1}(|\mathcal{C}|, 0,0) \tag{2.6}
\end{equation*}
$$

is a deformation retract of M. The variety X is a union of toric varieties corresponding to maximal elements of \mathcal{C} and intersecting along toric subvarieties (in other words X is the support of the complex of toric varieties corresponding to the polytopal complex \mathcal{C}).

3. Proof of Theorem 1

Let $d=n+q$. The idea is to consider a toric hyperkähler orbifold $M=M(\underline{u}, \underline{\lambda})$ where the vectors u_{1}, \ldots, u_{d} are the ones defining the torus N and to show that the infinity of M is homeomorphic to S. Observe that the condition of Theorem 2.1 is satisfied for generic choice of scalars λ_{k} if the vectors u_{k} satisfy the condition (i) of Theorem 2.2. We shall show that $M \cup S$ is a certain quotient of the closed unit ball \bar{B} in \mathbb{H}^{d}.

Let s be a diffeomorphism between $[0,1]$ and $[0,+\infty]$ with $s^{\prime}(0)=1$, and let $f(r)=s(r) / r$.
We define a "moment map" $\nu: \bar{B} \rightarrow \mathrm{n}^{*}$ by the formula

$$
\begin{equation*}
\nu(q)=\frac{1}{f^{2}(\|q\|)} \mu(f(\|q\|) q) \tag{3.1}
\end{equation*}
$$

where μ is given by (2.5). We observe that

$$
\begin{equation*}
\nu(q)=\mu(q)+\frac{1}{f^{2}(\|q\|)} c \tag{3.2}
\end{equation*}
$$

where c is given by (2.5c). In particular, restricted to the unit sphere, ν is just the 3 -Sasakian moment map. We denote by Σ the 0 -set of ν and by Σ^{0} the intersection of Σ with the open unit ball $B \subset \bar{B}$.
We observe that Σ is T^{d}-invariant and that Σ^{0} is T^{d}-equivariantly homeomorphic to the 0 -set of μ. Therefore the quotient Σ^{0} / N is T^{n}-equivariantly homeomorphic to $M=M(\underline{u}, \underline{\lambda})$ and the compact Hausdorff space Σ / N can be identified with $M \cup S$. Moreover, it follows from the proof of Theorem 6.5 in [BD] that the deformation $h: M \times[0,1] \rightarrow M, h(m, 1)=m, h(M, 0)=X$, where X is given by (2.6), extends to S (it is important here that every n among the vectors u_{k} are independent, and, therefore, each of the unbounded n-dimensional polytopes in the complement of the hyperplanes H_{k} of Theorem 2.1 has an ($n-1$)-dimensional face at infinity). Therefore $\bar{M}=\Sigma / N$ is homotopy equivalent to X.

We have the long exact sequence of rational cohomology

$$
\ldots \rightarrow H_{c}^{k}(M) \rightarrow H^{k}(\bar{M}) \rightarrow H^{k}(S) \rightarrow H_{c}^{k+1}(M) \rightarrow \ldots
$$

Since M is an orbifold, and so a rational homology manifold, we can apply Poincaré duality to M and obtain $H_{c}^{k}(M) \simeq H_{4 n-k}(M) \simeq H_{4 n-k}(X)$. If $k<2 n$, then $H_{4 n-k}(X)=0$ and so $H^{k}(S) \simeq H^{k}(\bar{M}) \simeq H^{k}(X)$ for $k<2 n-1$.

We shall now calculate the rational cohomology groups of X. In [BD] it was shown that if the complex \mathcal{C} satisfies certain technical assumption, then the usual combinatorial formula for the Betti numbers of a toric variety (cf. [Fu]) holds for X (and so for M). We shall show now that this formula holds without any further assumptions for our toric hyperkähler orbifolds $M=M(\underline{u}, \underline{\lambda})$.

Theorem 3.1. Let $M=M(\underline{u}, \underline{\lambda})$ be a toric hyperkähler orbifold with the vectors u_{k} satisfying the assumption (i) of Theorem 2.2. Then $H^{j}(M, \mathbb{Q})=0$ if j is odd and

$$
\begin{equation*}
b_{2 k}=\operatorname{dim} H^{2 k}(M, \mathbb{Q})=\sum_{i=k}^{n}(-1)^{i-k}\binom{i}{k} d_{i} \tag{3.3}
\end{equation*}
$$

where d_{i} denotes the number of i-dimensional elements of the complex \mathcal{C}.
Proof. We observe first that both sides of (3.3) depend only on vectors u_{k}. Indeed, Theorem 6.1 in $[\mathrm{BD}]$ shows that it is so for the Betti numbers. On the other hand, since every n among of the vectors u_{k} are independent, the hyperplanes H_{k} are in general position and the number d_{i} depends only on d and n.

We proceed now by induction on n. Suppose that the formula (3.3) holds for $k<n$ (n may be 1). In dimension n we proceed by induction on the number d of hyperplanes H_{k}. The formula holds for n hyperplanes. Suppose that the formula holds for $q \leq d-1$ hyperplanes in \mathbb{R}^{n} and let us consider a toric hyperkähler orbifold $M(\underline{u}, \underline{\lambda})$ corresponding to hyperplanes H_{1}, \ldots, H_{d}. By the remark above we can move the hyperplane H_{d} until all of $|\mathcal{C}|$ lies to one side of H_{d}, say $|\mathcal{C}| \subset$ $\left\{x ;\left\langle x, u_{d}\right\rangle \geq \lambda_{d}\right\}$. The intersections of H_{d} with the $H_{k}, k<d$, determine a simple arrangement of hyperplanes in $H_{d} \simeq \mathbb{R}^{n-1}$ which gives a toric hyperkähler orbifold Y of quaternionic dimension $n-1$. Let us denote its polytopal complex by \mathcal{E}. On the other hand the hyperplanes H_{1}, \ldots, H_{d-1} also determine a toric hyperkähler orbifold W with a polytopal complex \mathcal{F}. By inductive assumptions, (3.3) holds both for Y and for W. We observe that, as the hyperplanes H_{k} are in general position and $d \geq n+1$, every maximal element of \mathcal{C} has dimension n, and therefore every i-dimensional element of \mathcal{E} is a face of an (i+1)-dimensional element of \mathcal{C}. This implies, that if e_{k} (resp. f_{k}) denotes the number of k-dimensional faces of \mathcal{E} (resp. \mathcal{F}), then $d_{0}=f_{0}+e_{0}$ and $d_{k}=f_{k}+e_{k}+e_{k-1}$ for $k>0$.

Let us now consider the neigbourhoods of $|\mathcal{E}|$ and $|\mathcal{F}|$ in $|\mathcal{C}|$ defined by $U_{1}=$ $|\mathcal{C}| \cap\left\{x \in \mathbb{R}^{n} ;\left\langle x, u_{d}\right\rangle<\lambda_{d}+2 \epsilon\right\}$ and $U_{2}=|\mathcal{C}| \cap\left\{x \in \mathbb{R}^{n} ;\left\langle x, u_{d}\right\rangle>\lambda_{d}+\epsilon\right\}$. Then $U_{1} \cap U_{2}$ is homeomorphic to $|\mathcal{E}| \times(0, \epsilon)$. We consider the deformation retract X of M given by (2.6). We have $X=V_{1} \cup V_{2}$ where $V_{1}=\phi_{1}^{-1}\left(U_{1}\right)$ and $V_{2}=\phi_{1}^{-1}\left(U_{2}\right)$. Now, by the argument used in the proof of Theorem 6.5 in [BD], V_{1} can be deformed onto the corresponding deformation retract of Y and so V_{1} is homotopy equivalent to Y. Similarily V_{2} is homotopy equivalent to W. Moreover $V_{1} \cap V_{2}$ is homotopy equivalent to an S^{1}-bundle P over Y (the S^{1} corresponds to the 1-PS of T^{n} determined by the vector u_{d}). We now use Mayer-Vietoris and Gysin sequences which, since the odd Betti numbers of Y and W vanish, split off at each even level as

$$
\begin{gathered}
0 \rightarrow H^{2 k-1}(P) \rightarrow H^{2 k}(M) \rightarrow H^{2 k}(Y) \oplus H^{2 k}(W) \rightarrow H^{2 k}(P) \rightarrow H^{2 k+1}(M) \rightarrow 0 \\
0 \rightarrow H^{2 k-1}(P) \rightarrow H^{2 k-2}(Y) \rightarrow H^{2 k}(Y) \rightarrow H^{2 k}(P) \rightarrow 0
\end{gathered}
$$

The Gysin sequence implies that $H^{2 k}(Y) \rightarrow H^{2 k}(P)$ is surjective and so the odd cohomology of M vanishes. Moreover the even Betti numbers satisfy the relation $b_{2 k}(M)=b_{2 k}(W)+b_{2 k}(Y)+b_{2 k-1}(P)-b_{2 k}(P)$ and $b_{2 k}(Y)=b_{2 k-2}(Y)+b_{2 k}(P)-$
$b_{2 k-1}(P)$. From these we deduce that $b_{2 k}(M)=b_{2 k}(W)+b_{2 k-2}(Y)$ for $k>0$ and $b_{0}(M)=b_{0}(W)$. We now write down the left-hand side of (3.3) using these equalities and the corresponding formulas (3.3) for W and Y and we rewrite the right-hand side of (3.3) using the formula $d_{k}=f_{k}+e_{k}+e_{k-1}\left(e_{-1}=0\right)$. Then the equality between the two sides reduces to the following equality $\binom{i}{k-1}=-\binom{i}{k}+\binom{i+1}{k}$ which is easily checked.

Remark 3.2. We expect that the proof given here will carry to general toric hyperkähler orbifolds, proving Theorem 6.7 of [BD] in full generality. All there remains to be shown is that \mathcal{C} is either contained in a single hyperplane or that every maximal element of \mathcal{C} has dimension n.

In order to finish the proof of Theorem 1 we have to calculate the number d_{i} of i-dimensional elements of the complex \mathcal{C} and to apply the formula (3.3). As noticed above, since every n among of the vectors u_{k} are independent, the number d_{i} depends only on d and n. We use the formula 18.1 .3 in $[\mathrm{Gr}]$ giving the number $f_{i}(d, n)$ of i-dimensional faces of the simple (i.e. no more than n of the hyperplanes have a nonempty intersection) arrangement \mathcal{A} of d hyperplanes in $\mathbb{R} P^{n}$:

$$
f_{i}(d, n)=\binom{d}{n-i} \sum_{j=0}^{i}\binom{d-n-1+i}{j}
$$

The number of i-dimensional faces of the complex \mathcal{C} is the number of i-dimensional faces in the arrangement \mathcal{A} which do not meet the infinity in $\mathbb{R} P^{n}$. In other words

$$
d_{i}=f_{i}(d, n)-f_{i-1}(d, n-1)=\binom{d}{n-i}\binom{d-n-1+i}{i}
$$

This yields

$$
\begin{equation*}
\operatorname{dim} H^{2 k}(S, \mathbb{Q})=\sum_{i=k}^{n}(-1)^{i-k}\binom{i}{k}\binom{q+n}{n-i}\binom{q+i-1}{i} \tag{3.4}
\end{equation*}
$$

for $k \leq n-1$. We now use the simple identity

$$
\binom{i}{k}\binom{q+i-1}{i}=\binom{q+i-1}{i-k}\binom{q+k-1}{k}
$$

to rewrite the formula (3.4) as

$$
\begin{equation*}
\operatorname{dim} H^{2 k}(S, \mathbb{Q})=\binom{q+k-1}{k} \sum_{i=k}^{n}(-1)^{i-k}\binom{q+n}{n-i}\binom{q+i-1}{i-k} \tag{3.5}
\end{equation*}
$$

It remains to show that the summed expression is equal to 1 for $k \leq$ $n-1$. Let us denote this expression by $G(q, n, k)$ and let $F(q, n, k, i)=$ $(-1)^{i-k}\binom{q+n}{n-i}\binom{q+i-1}{i-k}$, so that $G(q, n, k)=\sum_{k=i}^{n} F(q, n, k, i)$.
We observe that $F(q, n, k, i)=F(q-1, n+1, k+1, i+1)$ and therefore $G(q, n, k)=$ $G(q-1, n+1, k+1)$. It follows that $G(q, n, k)=G(1, n+q-1, k+q-1)$. However for $q=1$ the right-hand side of (3.5) must be 1 for $k \leq n-1$, since the lefthand side is 1 for the homogeneous 3-Sasakian manifold of type A_{n} [GS]. Therefore $G(q, n, k)=G(1, n+q-1, k+q-1)=1$ for all q and $k \leq n-1$. This proves Theorem 1.

4. Consequences

We shall now prove Proposition 2 and Corollary 3. The formula (*) is invariant under the symmetry $k \mapsto n-k$ and we can write it as

$$
\sum_{k=1}^{[(n-1) / 2]} k(n-k)(n-2 k)\left(b_{2 k}-b_{2(n-k)}\right)=0
$$

To prove Proposition 2 it is enough to show that, for $q>1, b_{2 k}-b_{2(n-k)}<0$ for all $1 \leq k \leq[(n-1) / 2]$. By Theorem 1 this is equivalent to $\frac{(q+n-k-1)!}{(n-k)!}>\frac{(q+k-1)!}{k!}$ for $1 \leq k \leq[(n-1) / 2]$. We can write both expressions as products of $q-1$ terms such that each term on the left is greater than the respective term on the right. Proposition 2 follows. For Corollary 3 we observe that Proposition 2 implies that if $n \geq 3$, then $q=1$, and so S is the 3 -Sasakian quotient of a sphere by a circle. These were analyzed in detail by Boyer, Galicki and Mann in [BGM2] and the result follows in this case from their work. For $n=2$ it is well-known that the only compact 4dimensional self-dual Einstein manifolds are S^{4} and $\mathbb{C} P^{2}$ [Hi]. This proves Corollary 3 in this case.

ACKNOWLEDGMENTS. I thank Simon Salamon for suggesting this problem, Krzysztof Galicki for several e-mail conversations and informing me of the results of [BGMR], and Gerd Mersmann for the argument in Remark 2.3. I also thank the Max-Planck-Institut für Mathematik for hospitality and financial support.

References

[Bä] Bär, C. Real Killing spinors and holonomy. Commun. Math. Phys. 154, 509-521 (1993).
[BD] R. Bielawski and A.S. Dancer The geometry and topology of toric hyperkähler manifolds. preprint (1996).
[BG] C.P. Boyer, and K. Galicki The twistor space of a 3-Sasakian manifold. to appear in Int. J. of Math.
[BGM1] C.P. Boyer, K. Galicki and B.M. Mann Quaternionic reduction and Einstein manifolds. Communications in Analysis and Geometry 1, 229-279 (1993).
[BGM2] C.P. Boyer, K. Galicki and B.M. Mann The geometry and topology of 3Sasakian manifolds. J. Reine Angew. Math. 455, 183-220 (1994).
[BGMR] C.P. Boyer, K. Galicki, B.M. Mann and E.G. Rees Compact 3-Sasakian 7-manifolds with arbitrary second Betti number. preprint (1996).
[Fu] W. Fulton Introduction to toric varieties. Ann. Math. Studies 131, Princeton University Press, Princeton (1993).
[GS] K. Galicki and S. Salamon Betti numbers of 3-Sasakian manifolds. to appear in Geom. Ded.
[Gr] B. Grünbaum Convex polytopes. Interscience, London (1967).
[Hi] N.J. Hitchin Kählerian twistor spaces. Proc. London Math. Soc. (3) 43, 133-150 (1981).
[HKLR] N.J. Hitchin, A. Karlhede, U. Lindström and M. Roček Hyperkähler metrics and supersymmetry. Commun. Math. Phys. 108, 535-589 (1987).

Max-Planck-Institut fur Mathematik, Gottfried-Claren-Strasse 26, 53225 Bonn, Germany
E-mail address: rogerb@mpim-bonn.mpg.de

