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INEQUALITIES OF WILLMORE TYPE FOR SUBMANIFOLDS 

1) INTRODUCTION 

The well-known Willmore conjecture [11) asserts for all 

immersed tori T2 in R3 the following inequality: 

( 1 ) 

Here H denotes the mean curvature. Equality is attained 

in (1) for stereographic projections of the Clifford torus 

in s3 • So far (1) has been established only for special 

types of immersed tori, e.g. tubes around closed space curves 

[8,12J, tori of revolution [5], tori with a special intrinsic 

conformal structure [6J. It is however easy to prove for any 

compact surface M2 in a3 the following inequality [11]: 

(2) 

It has been noticed [3,6,10] that it is often useful to 

replace J H2 d A by the modified functional C, which for 

immersions 2 3 
f : M -> R is defined as 

(3) C(f) 



Here k, and k2 are the principal curvatures'of f. The 

functional C was studied already in the 1920's by Blaschke 

and Thomsen [2,9], who called it the "conformal area". Because 

nowadays this term is used in a different manner [6], we call 

C the "total conformal curvature" or the "Willmore functional". 

Because of the Gauss-Bonnet theorem the study of C is 

equivalent to the study of J H2dA , and the inequality (2) 

can also be written as 

(4) 

where 6
1 

is the first Z2-Bett1 number of M2 

In this paper we will define C(f) for all immersions 

n m 
f: M ->R where Mn is an arbitrary compact manifold. 

We will prove a generalization of (4) and state conjectures 

similar to (1). 

2) THE FUNCTIONAL C (f) 

Let Mn be a compact smooth manifold, f: M
n -> Rm an 

immersion, N(f) the unit normal bundle of f. To every 

there corresponds a shape operator 

--> T Mn , whose eigenvalues 
p , 

are called the principal curvatures at 

k1 (t) , •• • , kn (t) 

t . Let C1(At ) 
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denote the dispersion of the principal curvatures in the 

sense of probability theory: 

(5) 2 1 2 
a(A~) = ~ & (k.-k.) 

~ n i<j ~ J 

Then the total conformal curvature C(f) of the immersion 

f is defined as 

(6) C (f) = 

Here d~ denotes the natural volume element on N(f) • The 

functional C(f) has the following remarkable properties: 

(i) n = 2 "'* C(f) = 211f f2 (IHI
2

-K)dA 
M 

(ii) C (f) ~ 0 I C (f) = 0 <==> f is totally umbillic 

(iii) If i: Rm -> RP , P ~ m denotes the canonical 

inclusion, then C(iof) = C(f) • 

(iv) If tp: Rm U too} -> Rm U {oo} is conformal, then 

C (tpo f) = C (f) • 

The conformal invariance (iv) of C(f) is proved in [1]. 

The verification of (i), (ii) and (iii) is left to the reader. 
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3) AN ESTIMATE IN TERMS OF THE BETTI NUMBERS 

In this section we prove the following generalisation of 

inequality (4): 

THEOREM 1: Let M
n be compact, P a field, B

1
, ••• ,Bn the 

Betti numbers of .,fl with respect to P , 

f : Mn --> am an immersion. Then 

(7) 

where 0.= (-1L)n/2-k 
a k n-k 

PROOF: Let as above N(f) denote the normal bundle of f 

and define 

Nk = {tEN(f) I At has exactly k negative eigenvalues}. 

A standard argument from total absolute curvature theory [4] 

yields 

(8) 

On the other hand we have 

(9) 
1 n 

C (f) = -----:::- 1: f a (A )ndt 
vol (Sm-1) k=O N t 

k 
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By (5), (8) and (9) the theorem now follows from the lemma 

below. 

o 

LEMMA: Let k 1 , ••• ,kn be real numbers, r 1 G,n such that 

(10) 

Then 

( 11) a I k1 ••• k I r n 

PROOF: Since both sides of (11) are positively homogeneous 

of degree n we can restrict attention to the cylinder 

(12) 
2 I 1.: (k.-k.) = b} • 

i<j ~ J 

The constant b will be specified later on. The subset Zr 

of Z defined by the sign conditions (10) is bounded, and the 

function g: Zr --> R 

(13 ) 

vanishes on the boundary of Zr and is smooth in the interior 

of Zr' Therefore g assumes its maximal value at some point 
o 

(x1 ' ••• ,Xn ) € Zr • There is a Lagrangian multiplier A such 
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that for 1 ~ 1 S n we have 

(14) 

where 

(15 ) 

x - H i 

1 n 
H=- E xl." 

n 1=1 

By (14) for all i,j we have 

(16 ) 

, 

Thus all satisfy the same quadratic equation 

(17 ) 

From (17) we conclude 

( 18) x 1 = = xr =: x < 0 , xr+ 1 = = xn =: x> 0 

By (17) and Vietas theorem 

(19 ) 
.... 

x + x = H 

On the other hand (15) means 

(20) 
.-w 

px + qx = H I 
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where we have set p = r/n, q = 1-p • Subtracting (20) 

from (19) we obtain 

(21) "" qx + px = 0 

We now chose the free constant b such that x = -1 • Then 

(21) yields 

(22) 

x = .E q 

'" x - x 

Since Ik1 .•• knl was maximal at (x1 , ••• ,xn ) the assertion 

of the lemma follows from (22). 

4) WILLMORE PROBLEMS 

Theorem 1 in the last section gives some information about 

the first of the following two types of "Willmore problems": 

a) Given a compact smooth manifold l-1n , determine (or 

estimate at least) 

C(Mn ) .- inf{C(f) If 0 Mn _> Rm an immersion} .- 0 

o 
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b) For n i:: 2 determine (or estimate) 

C(n) := inf{C(~) I~ not homeomorphic to Sn} • 

In this section we study problem b). Surprisingly there is 

a complete answer for n: 2 : 

THEOREM 2: 
2 C(2) : C(RP ) = 2 

Theorem 2 is an immediate consequence of (4) and Theorem 4 

in [6]. For n:i: 3 we have the following estimate: 

THEOREM 3: C(n) :i:2(n_1)1-n/2 

be compact, not homeomorphic to PROOF: Let Mn 

f : M
n -> Rm an immersion. Then by the Morse inequalities 

for any height function h = 10f (l:Rm --> R linear), which 

is a Morse function one of the following is true: 

(i) h ha~ at least two critical points of index 

1 or n-l . 

(ii) h has at least'one critical point of index r , 

where 1<r<n-1 • 

(iii) h has only two critical points (one minimum 

and one maximum). 

(iv) h or -h has two minima, one critical point of 

index 1, one maximum and no other critical points. 
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Case (iii) cannot occur, because Mn would then be homeo

morphic to sn. Similarly (iv) is impossible, because here 

the critical point of index one can be "cancelled" against 

one of the minima [7], that means there is another Morse 

function n 9 : M --> R having only two critical points. 

Again Mn would be homeomorphic to Sn. 

By the argument in the proof of theorem 1 this implies 

(23 ) 
n-2 m 

+ 2 E fldet A~ld~ ~ 2 voltS ) • 
k=2 Nk 

It is easy to check that for 2;$ r ;$ n-2 we have 

(24 ) a
r 
~ 3 a

1 
= 3 (n-1) 1-n/2 

The theorem now follows from (9), (11), (23) and (24). 

o 

We would like to state here the following conjecture, that 

might be regarded as a higher dimensional version of the 

original Willmore conjecture (the latter can be stated as 

C (T2) = 'IT) : 

CONJECTURE: For n ~ 3 we have C (n) = C (5 1 
x Sn-l) and 
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(25) C{n) =~-1* vol(Sn-l) .4n =: c 
nn vol (Sn) n 

The next theorem shows that at least C(n) and do not 

differ too much: 

THEOREM 4: O~64 c ~ C (n) ~ c 
n n 

PROOF: Let sn-l (R)c:Rn be a round sphere of radius R, S 1 (r) c:a2 
a 

circle, f: S 1 x sn-l _> .n+2 = .2 x an an embedding with 

f (S 1 x Sn-l) = S 1 (r) x Sn-1 (R) • Then for a suitable choice of 

the ratio r/R we obtain C(f) = c n • This proves C (f) $ c 
n 

In Theorem 3 we established a lower bound 

(26 ) := 2(n-l) l-n/2 

for C(n) • Thus it suffices to show 

have defined qn = cn/en • Explicitly 

(2 • 2 • 4. • • (2m- 2) (2m- 2 ) ) -1/ 2 

1 • 3 • 3· • • (2m- 3) (2m-l) 

qn = 
2 • 2 • 4· • • (2m ~ 2m~ ( )V2 
1·3· 3· •• (2m-11 (2m+i) 

The first two terms of the sequence 

q ~ 1/0.64 , where we 
n 

I2m=1' if n = 2m 
2 

ffm+1' if n = 2m+l 
1\' 

are 
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(27) 1 

and using Wallis l product we find 

(28) 

Since q3 ,q4 ~ 1/0.64 the proof will be finished once we have 

shown that the two subsequences (q2m) and (q ) are 2m+1 

monotonically decreasing, which means 

(29) 
nn-1 (n+ 1) n+2 

(n_1)n-1 (n+2)n+2 
= 

for all n. Taking the logarithm of both sides we see that 

(29) is equivalent to 

(n-1) log n + (n+2) log (n+1) 
(30 ) 

~ (n-1) log (n-1) + (n+2) log (n+2) 

(30) is a consequence of the obvious inequalities 

log n - log (n-1) < 1/(n-1) 

log (n+2) - log (n+1) > 1/(n+2) 

o 
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