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Parameterized Plane Curves, Minkowski Caustics,
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Max-Planck-Institut fur Mathematik, 53225 Bonn, Germany, and
Department of Mathematics, University of Arkansas, Fayetteville AR 72701, USA

o. Introduction

Some time aga I made the following observation ([Tl]) generalizing the classical 4­
vertex theorem. Consider a smooth closed strictly convex parameterized curve ,(t) in the
oriented affine plane. The acceleration vectors ,"(t) (where prime denotes d/ dt) generate
a smooth line field l(t) along the curve. Assume that these lines rotate in the same sense
along ,; analytically this means that [,..,."(t) ,,"'(t)] i= 0 for all t (where [ , ] denotes the
determinant of two vectors).

Theorem 0.1. For a generic curve ,..,.(t) the envelope oE the one-parameter Eamily oE lines
l(t) has at least 4 cusp singularities.

If ,(t) is a strictly convex curve in the arc-Iength parameterization then the lines l(t)
are perpendicular to , and their envelope is the eaustie of the curve. The singularities of
the caustic correspond to the vertices of the cuvre, i.e., to its curvature extrema. Thus
Theorem 0.1 is a generalization of the 4-vertex theorem wmeh asserts that a smooth closed
convex plane eurve has at least 4 vertices.

The trick used in [Tl] to prove the theorem does not explain its relation to coneepts of
differential geometry, in partieular, whether Theorem 0.1 ean be interpreted as a 4-vertex
theorem. The purpose of this paper is to provide such an explanation. I will show that
Theorem 0.1 is a 4-vertex theorem in Minkowski geometry in the plane associated with
the parameterized curve ,..,.(t).

An appropriate point of view is that of contact geometry which makes it possible to
naturally extend many a familiar results from the Euelidean setting to the more general
Minkowski and Finsler ones. For an approach to the 4-vertex theorem and related results
as theorems of sympleetic and contact topology see, e.g., [A 1, A 4].

1. Finsler metric from the contact geometrical viewpoint

Finsler geometry describes the propagation of light in an inhomogeneous anisotropie
medium. This means that the velocity of light depends on the point and the direction.
There are two equivalent descriptions of this process eorresponding to the Lagrangian and
the Hamiltonian approaches in classical mechanies.

On the one hand, one may study the rays of light, that is, the shortest paths between
points. The optical properties of a medium are described by a strictly convex smooth
hypersurface, called the indicatrix, in the tangent space at each point. The indicatrix
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consists of the velocity veetors of the propagation of light at a point in aU direetions. It
plays the role of the unit sphere in Riemannian geometry.

The distanee d(x, y) between points x aod y is the least time it takes light to travel
from x to y. If the indieatriees are not eentrally symmetrie this distanee may be not
symmetrie: d(x, y) i= d(y, x). However it still satisfies the triangle inequality:

d(x, y) + d(y, z) 2:: d(x, z).

Minkowski geometry is a particular ease of Finsler geometry in affine spaee in whieh the in­
dieatriees of aH points are identified by parallel translations. The rays of light in Minkowski
geometry are straight lines.

On the other hand, oue may study the wave fronts. The wave front of a point is the
hypersurface that consists of points which light can reach from the given point in a fixed
time. A wave front is characterized by its contact elements (hyperplanes in the tangent
spaces at the points of the front tangent to it) cooriented by the direction of the time
evolution of the front. This evolution is described by a vector field in the space of aU
cooriented contact elements.

We recall in this section (without proofs) the relevant facts from symplectic and COll­

tact geometry - see [A 2, A 3].
Let Mn be a smooth manifold and 1r : T* M -1 M its cotangent bundle. When the

need be one introduces local coordinates in T· M

where q are position coordinates in M and p are the corresponding momenta coordinates in
the tibers of the cotangent bundle. Denote by Ao the Liouville differentiall-forrn on T* M.
The value of Ao on a tangent vector v to T* M at point (x, B), where x E M, B E T; M,
is, by definition, B(d1r (v) ). In coordinates, ..\0 = pdq (= "L, Pi dqd . The 2-form dAo is the
canonical symplectic form in T*M.

The space of cooriented contact elements is the spherization ST* M of the cotangent
bundle. Consider the principle R+ -bundle

p: T*M - M -1 ST*M

(T* M - M is the complement to the zero seetion); its fiber over a cooriented contact
element consists of the linear functionals vanishing on this eontact element and positive
on its positive side. The codimension 1 distribution K er AO on T* M - M projects to the
canonieal contact structure in ST*M.

Finsler metric on M is determined by a (Hamiltonian) function H on T* M. This
funetion satisfies the following assumptions:

1). His a nonnegative function, homogeneous of degree 1 in momenta, Le., H(q, tp) =
tH(q,p) for all t > 0;

2). The level hypersurface S = H- 1(1) is fiberwise star-shaped, Le., each intersection
Sx = SnT; M, x E M, transversely intersects every ray from the origin in the linear spaee
T;M.
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3). The level hypersurface S = H- 1(1) is fiberwise quadratically convex, i.e., each
intersection Sx = S n T; M, x E M, is quadratically convex in the linear space T; M.

The surface Sx is sometimes called the figuratrix. It may be thought of as the set of
" unit covectors" in T;M.

Denote by Ethe Hamiltonian veetor field of H, that is the field such that iedAo = dH.
In loeal coordinates,

~ = Hp 8j8q - Hq 8j8p.

The field Eis tangent to the hypersurface S. Let tPt be the time-t map of the flow E. Denote
by A the restriction of the Liouville form to S.

Theorem 1.1. Let the Hamilton function satisfy the above conditions 1)-2). Then:
a). The form A is a contact form, tbat is, A /\ (dA)n-1 =F 0 everywhere on S.
b). The field E is the cbaracteristic vector field of the form A, tbat is, i{dA = 0, A(E) = 1,
and the flow <Pt preserves tbe form A for a11 t.

The hypersurface S being fiberwise star-shaped, it is identified with ST* M, and the
eontact form Adetermines the canonical contact structure in ST* M. Conversely, a contaet
form A for the canonical contact structure in ST*M is a section <p of the bundle p : T* M ­
M -+ ST* M such that cP* Ao = A. The image of this section is a fiberwise star-shaped
hypersurfaee S C T* M, and one cao reconstruct the homogeneous Hamilton function H
by S = H- 1 (1).

The one-parameter group tPt describes the time evolution of cooriented contact ele­
ments of M mentioned at the beginning of the section. This flow will be referred to as the
geodesie flom in the space of cooriented contact elements.

Example. Let M be a Riemannian manifold and H(q,p) = Ipl. Then Eis the usual
geodesie flow: each coorented contact element moves with the unit speed in its positive
normal direction.

We assume that the figuratrices Sx are quadratically convex. The indicatrix Ix at
point x E M consists of the velocity vectors of the foot points of the contact elements in
Sx under the flow E. That is,

Ix = {d7f(E(x, O)}, 0 E Sx c T; M.

Definition. Let X be a smooth strictly convex star-shaped hypersurface in vector
space V. For every x E X there exists a unique functional y E V* such that y(x) = 1 and
Ker y = TxX. The set of such functionals for all x E X is called the dual hypersurface and
is denoted by X*.

Note that X* is strictly convex and star-shaped too; note also that (X*)* = X.

Theorem 1.2. The indicatrix Ix and the figuratrix Sx are dual to each other for every
xEM.

To the field of indicatrices a (Lagrangian) function L on the tangent bundle TM
corresponds: this function is homogeneollS of degree 1 in tangent vectors, and L -1(1) n
TxM = Ix for a11 x E M. This function gives the length of a tangent vector in Finsler
geometry. Trajectories of light in Finsler geometry are the extremals of the functional
f L(q, q) dt.
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Theorem 1.3. These extremals are the projections to M oE the trajectories oE the vector
neId ~.

Thus the Hamiltonian vector field ~ of the Hamiltonian function H describes the
propagation of light in an inhomogeneous anisotropie medium. In the ease of Minkowski
geometry H depends on the momenta variables only. The trajectories of light in Minkowski
geometry are straight lines, and the indicatrix is identified with -the time-l front of the
origin. The eooriented contaet elements of this front are the time-l images in the geodesic
flow of aU contaet elements at the origin.

Let N c Rn be a cooriented hypersurfaee in Minkowski space. The geodesic flow
trajectories of the foot points of the cooriented contact elements of N will be ealled
(Minkowski) normals of N. Note that the normaIs may change if the coorientation of
N is reversed. The reader interested in differential geometry of Finsler manifolds is re­
ferred to [Ru], and to [Bu, Gu] for the case of Minkowski geometry.

2. Minkowski geometry associated with a parameterized curve

Return to the situation of Introduetion: ')'(t) is a smooth elosed strictly convex pa­
rameterized plane eurve satisfying the condition [,"(t) , ')'111 (t)] -# 0 for aU t. The lines l(t)
generated by the acceleration vectors "'t" (t) constitute a smooth transverse line field along
')'(t). The eondition [')'''(t), ')''''(t)] -# 0 ensures that infinitesimally elose lines from the
family l(t) interseet, therefore their envelope is bounded.

Give ')' the inward coorientation. Then ')' determines a curve ;Y in the spaee of eoori­
ented contact elements of the plane. The curve :y is Legendrian, that is, tangent to the
contact structure in the space of cooriented contact elements.

Theorem 2.1. There exists a unique, up to a multiplicative constant, Minkowski metric
in tbe plane such that the lines l (t) are tbe Minkowski normals oE the cooriented curve ')'.

Proof. Identify the tangent planes at different points with R 2 by parallel translations.
Consider the eurve S(t) = ,'(t) C R 2

. Since "y is strictly convex, S is star-shaped.
Moreover, S' (t) = ," (t) 1 therefore [S' (t), S" (t)] -# 0 for an t. Thus the curve S is strictly
convex.

Assume that the curve ,(t) is oriented eounterclockwise. Identify the tangent and
cotangent planes by the bilinear form [ , ]: a vector v is considered as the covector [v, ].
Then one may eonsider S as a curve in the dual plane (R2)*.

Let H be the homogeneous of degree 1 function in (R2)'" whose level curve H- 1 (1)
is S. Consider H as a function on T* R 2 depending on the momenta only, and let ~ be
its Hamiltonian veetor field. We claim that the cooriented eontact element of the curve
, at point ')'(t) is translated by the field ~ in the direction of the line l(t). The desired
Minkowski metric is determined then by the Hamiltonian function H, as explained in the
previous section.

To start with, the trajectories of ~ project to straight lines; in local coordinates,
~ = Hp 8/8q. Since H(,'(t)) = 1, one has dH(')'''(t)) = 0 (here ')" aod ')''' are eonsidered
as veetors in (R2)*). The differential dH E ((R2 )*)* = (R2), and, as a vector in (R2),
this is Hp 8/8q. In view of the chosen identification of (R2 )* with (R2 ), the equality
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dH(,") = 0 reads [Hp 8j8q, '"'("] = 0 in (R2
). Thus Hp 8j8q is collinear with '"'(" at every

point of the curve.
Conversely, the same argument shows that if the trajectories of the Hamiltonian field

€ project to the lines l(t) then H is constant on the curve S(t) = '"'('(t). This, along with the
homogenuity, determines H, and therefore the Minkowski metric, up to a multiplicative
constant.

Remark. Suppose a smooth strictly convex closed nonparameterized plane curve ,
is given. Then a choice of a homogeneous function H in (R2)*, such that S = H- 1(1)
is star-shaped, determines a parameterization ,(t) with the property that the trajectories
of the Hamiltonian vector field ~ project to the lines generated by the vectors '"'("(t) along
'"'(. Considering S as a curve in R 2, this parameterization is defined by the requirement:
'"'(' (t) E S for all t.

To describe the indicatrix ofthe Minkowski geometry constructed in the above theorem
aue needs the following lemma. As before, we identify the tangent and the cotangent planes
by the bilinear form [ , ].

Lemma 2.2. Let S(t) be a parameterized strictly convex star-shaped curve in (R2 )*.
Then the dual curve is S*(t) = S'(t)j[S(t), S'(t)].

Proof. By definition, the dual curve consists of the veetors S* (t) E R 2 such that
< S(t), S"'(t) >= 1 and < S'(t), S*(t) >= O. Clearly, the curve S*(t) = S'(t)j[S(t), S'(t)]
satisfies both equalities, and Lemma follows.

Trus lemma, applied to the eurve S(t) = ,'(t), along with Theorem 1.2, implies the
formula for the indicatrix:

I (t) = '"'(" (t)/ ['"'(' (t), '"'(" (t ) ].

This formula gives the plane projection of the velocity vector of the cooriented eontact
element of the curve '"'( at point '"'( (t) in the geodesic flow. Notice that the original param­
eterization '"'((t) is not, in general, by arc-Iength in the eonstructed Minkowski geometry.

Next, we give some explieit formulas in Euclidean terms. Let a(t) be the angle made
by the tangent vector ,(t) with a fixed direetion. Set f(a(t)) = log 1,'(t)l; then

'"'('(t) = e/(o(t» (cos O'(t), sin a(t)).

The plane projection of the vector of the geodesic flow at point '"'((t) is given by the formula

e-/(o(t» (f'(a(t)) cosa(t) - sina(t), f'(a(t)) sina(t) + cosa(t)),

where prime means d/da. The function f(a) determines the Minkowski metric. The COll­

vexity condition for the indicatrix reads: 1+ (/')2 > f". If r(t) is are-Iength parametrized
then f (0') = 1 identically, and the Minkowski metric is the Euclidean oue.

3. Oscullating indicatrices and Minkowski caustic

Consider the eurve J C R 2 centrally symmetrie to the indicatrix I with respect to the
origin, and coorient it inwards. Since I is the time-l front of the origin, the time-l map
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4>1 of the geodesie flow takes the foot points of all the cooriented contact elements of J to
the origin. Ir the curve J is a source of light in our anisotropie Minkowski plane then light
from all points of J focuses at the origin in unit time.

Let "y be a nonparametrized closed strictly convex curve in Minkowski plane, coori­
ented inwards. For every point x E "Y there exists a unique curve J(x), homothetic to J
(that is, obtained from J by a dilation with a positive coefficient a!1d a parallel translation)
which is second order tangent to , at x.

Definitions. CaU J(x) the osculating indicatrix of "Y at x. The coefficient r(x) of the
dilation that takes J to J(x) is called the (Minkowski) curvature radius of , at x. The
center of J(x), Le., the image of the origin under the homothety that takes J to J(x), is
called the (Minkowski) center of curvature of "Y at x. A point x E "Y is called (Minkowski)
vertex if the osculating indicatrix is third order tangent to , at x. Call the envelope r of
the Minkowski normals to , its (Minkowski) caustic.

Remark. The curvature radius at x E "Y is the focusing time for light, propagating
from a small piece of, around x in the direction of the coorientation. This time is positive
if the coorientation vectors point to the convex side of the curve, and negative otherwise.

If the metric is Euclidean all these notions coincide with the usual ones, e.g., the
osculating indicatrix is the osculating circle, etc. We list below a number of properties
of osculating circles and Euclidean caustics subject to a generalization in the Minkowski
setting.

Figure 1

1). The caustic of a curve is the locus of its centers of curvature.
2). A vertex of a curve corresponds to a singularity of its caustic.
3). A vertex is an extremum of the curvature radius.
4). The caustic of a generic CUfve is a piecewise smooth curve with an even number

of cusps and without infiection points.
5). If a caustic is bounded then the alternating surn of the lengths of its smooth pieces

equals zero.
6). A curve "Y is described by the free end of a stretched string developing from its

caustic f.
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7). (Kneser's theorem). The oseulating eircles of an are of a eurve, free from vertices,
are pairwise disjoint and lie one inside the other.

In the ease of Minkowski geometry these properties still make sense (using the above
definitions) exeept for 5) and 6) whieh require an explanation beeause Minkowski length
of a eurve depends on its orientation.

Give the normals of , the inward orientation; then every smooth piece of r gets an
orientation too. The length of a smooth oriented piece of r is understood to be its length
in Minkowski geometry. In this way property 5) makes sense - see Figure 1.

To explain property 6) eonsider a smooth are of the eaustic, oriented as above, and
let A and B be two its points such that A preeedes B on the are. Consider the tangent
segments to r at A and B whieh are normals to " oriented "from ,". Let rand R be
their respeetive Minkowski lengths and L be the Minkowski length of the are AB of the
eaustie. Property 6) asserts that R - r = L - see Figure 2.

B

R-r=L

Figure 2

B

The next theorem is, possibly, not new (at least some of its statements) - cf. [Cu].

Theorem 3.1. The properties 1)-7) hold true in the Minkowski setting.

Proof. As befare, H denotes the Hamiltonian funetion associated with the Minkowski
metrie, S = H-1(1) C T·R2 and 7t" : S -t R 2 is the projeetion. Let;Y be the lift of the
cooriented curve , to S (considered as the space of cooriented contact elements of the
plane), and Z C S be the cylinder that consists of the trajectories of the Hamiltonian
vector field € through;Y. Denote by r c Z the curve consisting of points at which the rank
of the projection 1l"lz is less than 2. Thus r is the set of points at wmch the fibers of 7t" are
tangent to Z. Since the trajectories of eproject diffeomorphically to the plane the rank of
7t"lz equals 1 along f. The curve r projects to the caustic r.

To prove property 1), consider the osculating indicatrix J(x) at xE" cooriented
inwards. Then J(x) C S is tangent to l' at point X, the cooriented contact element of l' at
x. Let r(x) be the curvature radius of 1 at x. Then rPr(x)(J(x)) is a fiber of 1r. Therefore

a fiber of 1l" is tangent to the curve <Pr (%) en C Z, and hence <Pr(x) (x) Er. Itremains to
note that 7t"(<Pr(x) (x)) is the center of curvature of 1 at x.
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Likewise, if xE, is a vertex then r is tangent to the curve <Pr(x) (J(x)) at point

<Pr(x) (x). Therefore r is tangent to a fiber of 1r, so r has a singuIarity at the respective
center of curvature. Property 2) follows. It follows also that the singularities of the caustic
are the singularities of the projection 1r : r -7 fj the curve r is smooth.

Next, note that an orientation of , gives r a coorientation. Give f an orientationj
then the pair (orienting vector, coorienting vector) is either a positive or a negative frame
along each smooth piece of r. The positive and negative pieces alternate, so the number
of cusps is even.

Consider the space of oriented lines in the plane (topologically, the cylinder) j the
tangent lines to the caustic constitute a curve a in this space. The family of Minkowski
normals to , being smooth, the curve a is smooth as weIl. An inflection of r would
correspond to a singularity of a. Thus r is inflection free, and property 4 follows. Note
that an inflec~ion of r corresponds to the tangency between rand a trajectory of the field
€. Therefore r is transverse to €.

Vertices correspond to the stationary osculating circles, therefore they are extrema of
the curvature radius. Conversely, consider a critical value of the curvature radius at xE"
and assume that the caustic is smooth at the corresponding eurvature center. Then the
direetion of r is parallel to the tangent line to , at x. However the tangent !ine to r is the
Minkowski normal to 'Y at x which is transverse to 'Y. Property 3 folIows.

One may use the Minkowski length of the tangent segment to r from T', that is, the
curvature radius T, as a Ioeal parameter on a smooth oriented pieee of the caustic. The
veIocity veetor ar/ar at a point of r is the projeetion under d1r of the veetor € at the
corresponding point of r. Therefore the vector ar/8r belangs to the indicatrix, and the
parameterization r(r) is by arc-Iength. Property 6 follows. Property 5 is obtained from 6
by summation over smooth pieces of the caustic.

A

r

L= R-r

c

Figure 3

Equivalently, the argument from the preceding paragraph means that the Minkowski
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length of a smooth arc 0 of the caustic, oriented as above, equals the integral of the contact
form A over the lifted arc ;5 c r. Likewise, rand R are the respective integrals of A over the
trajectory segments of the field e. Since i~dA = 0, the int~gral of dA over the quadrilaterals
in Z, bounded by the trajectories of eand thc curves 0 and 1', vanishes. Applying the
Stokes theorem and taking into account that ..\ = 0 on l' I the equality L - R +r = 0 follows.

To prove property 7), the Kneser theorem, assurne that two osculating indicatrices
intersect at some point C. Let A and B be the respective centers of curvature such
that A precedes B on the oriented smooth piece of the caustic, and let rand R be the
corresponding curvature radii. Then the length of the oriented segments CA and CB equal
rand R, respectively. By property 6) the Minkowski length of the arc AB equals R - r I

and this violates the triangle inequality - see Figure 3.
Remark. The definitions given at the beginning of this section extend to complete

Finsler metrics without conjugate points. Properties 1) - 7) hold in this case as weIl, and
the proof goes through without change.

Returning to the situation of Introduction one sees that Theorem 0.1 is the 4-vertex
theorem in the Minkowski geometry associated with a parametrized curve (as explained
in Section 2). In particular, the envelope of the lines l(t) is the Minkowski caustic. The
explicit formulas are as follows. The caustic is

[,I(t),,"(t )J "
r (t) = ,(t) + [')''' (t ), ')'111 ( t )] ')' (t ) ,

and the radius of curvature is
[,I (t) , 1''' (t )]2

r (t) = [')''' (t ), ')'111 (t )] .

Examples.

1). Let, be a nonparametrized smooth closed strictly convex plane curve and 0
be its interior point. Take 0 as the origin in R 2 . There exists a parameterization 'Y(t)
such that [')'(t) , 'Y1(t)] = 1 for all t. Then 'Y"(t) is collinear with 'Y(t), and the caustic in
the corresponding Minkowski geometry degenerates to the point O. All points of l' are
Minkowski vertices, and all osculating indicatrices coincide with the curve itseif.

2). Let a parameterization ')'(t) satisfy [,/(t), ')'''(t)] = 1 for all t (an affine parameter).
The indicatrix in the corresponding Minkowski geometry is given by the formula I (t) =
')''' (t). The lines 1(t), generated by the vectors ')''' (t), are called' affine normals of the curve.
The Une l(t) is tangent to the curve that consists of midpoints of the segments, bounded
by the intersections of l' with the Hnes, parallel to the tangent Hne to , at point ')'(t) - see
Figure 4. The envelope of the affine normals is called the affine caustic.

Differentiating the equality ['YI(t) , ,"(t)] = 1 oue finds: ')'1II(t) = -k(t) ')'/(t) where
the function k(t) is called the affine curvature. The affine curvature is reciprocal to the
curvature radius in the corresponding Minkowski geometry. Critical points of the affine
curvature are called affine vertices (or sextactic points). A smooth closed convex curve
has at least 6 affine vertices (see [BIl]); thus a generic affine caustic has at least 6 cusps.
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Figure 4

Affine vertices are points of 5-th order contact of the curve with a conic; at an ordinary
point the order of contact is one less.

To conclude this section, note that the Minkowski metric gives rise to a symplectic
form w in the space C of oriented Hnes in the plane. Indeed, C is identified with the space
of trajectories of the geodesie flow €. Let ..\ be the contact form in the space of cooriented
contact elements associated with the Hamilton function H (see Theorem 1.1). Then the
2-forrn dA descends to Cj this is the symplectic form in question.

The family of Minkowski normals to , is a curve 0' C C. Let 0'0 C C be the curve
that consists of oriented lines through a fixed point x in the plane.

Lemma 3.2. The w-area oE the region in C between the curves 0' and 0'0 equals zero.

Proof. Denote by 1'0 the set of cooriented contact elements with the foot point at x.
Then 1'0 is a Legendrian curve. The projections of t and 1'0 along the trajectories of € are
the curves u and 0'0. The area under eonsideration is the integral of the form dA ave! a
film spanned by l' and 1'0' By the Stokes theorem, this area equals

1..\-1 ..\=0, ,0
since both curves are Legendrian.

In particular, the eurves 0' and 0'0 intersect at least twice. Therefore at least two
Minkowski normals to '"'f pass through an arbitrary point x in the plane. If the Minkowski
metric is associated with a parameterized curve ,(t) then the corresponding values of t are
the critical points of the function ['"'f(t) - X, ,'(t)].

Remark. In the Euclidean case a convex closed curve has at least 2 double normals
(chords, perpendicular to the curve at both ends). ThiB is still true in the Minkowski
setting, provided the indicatrix is centrally symmetrie, but does not seem to hold in general.
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4. Minkowski vertices and Chebyshev systems

In this section we give proofs of the 4-vertex theorem in the Minkowski setting, differ­
ent from the one in [Tl]. The arguments used are more-or-less standard in the Euclidean
case. We emphasize that the 4-vertex theorem in Minkowski geometry is not new: an
equivalent statement can be fouod, e.g., in [BI 2].

Let J have the same meaning as in the previous section and J(t) be some parame­
terization of this curve, °::; t ~ T. Let ,(t) be a strictly convex closed smooth curve,
parameterized so that the tangent vector "'(' (t) has the same direction as J' (t) for all t.
Denote by r(t) the Minkowski curvature radius at point "'((t) and by k(t) = l/r(t) the
Minkowski curvature. Fix a linear coordinate system in the plane, and let ("'(1(t),"'(2(t)) be
the coordinates of the point "'((t).

Lemma 4.1. The function k' (t) is L 2-orthogonal to tbe functions {I ,'11 (t), "'(2 (t)} on the
circle RITZ.

Proof. Clearly, foT k'(t)dt = 0. A curve, homothetic to J(t) with the coefficient r(t),
is second order tangent to "'((t). Therefore "'('(t) = r(t)JI(t). One has:

foT k'(tJ'y(t)dt = _foT k(tJ'y'(t)dt = _foT J'(t)dt = O.

Thus k' (t) is orthogonal to ,I(t) and 12 (t) .

Ir the Minkowski metric is associated with a parameterized curve l(t), as in Section
2, then the above argument boils down to the easily verified identity:

["'("(t) , "'(1II(t)] 't _ "'("(t) 1
[-y'(t), -y"(t)J2 -y ( ) - - ([-yl(t), -Y"(t)]) .

Definition. A (2n + l)-dimensional space of functions on the circ1e is called a Cheby­
shev system if every function from this space has at most 2n zeroes, multiplicities counted.

The functions {I, 11(t) , "'(2 (t)} constitute a Chebyshev system: zeroes of a fuction
a + b "'(I (t) + c "'(2(t) are the intersections of the line a + bx + cy with the curve 1, and
"'( is strictly convex. Since Minkowski vertices of 1 are critical points of its Minkowski
curvature, the 4-vertex theorem follows from the next result from [A4, G-M-O].

Theorem 4.2. A function f, orthogonal to a (2n + l)-dimensional Chebyshev system on
the circle, has at least 2n + 2 distict zeroes.

Sketch of Proof. Assume f has 2n simple roots Xl, ... , X2n' There exists a function
9 in the Chebyshev system with zeroes at Xl, ... , X2n' By definition of Chebyshev systems,
this function has no other zeroes. Thus the constant sign intervals of fand 9 coincide,
and f f 9 # 0, a contradiction. (The argument adopts to the general case of fewer and,
possibly, multiple roots).

Next, we construct the support function of the curve "'((t). Let 0 be the origin in R2.
The tangent lines to 1 at point ,(t) and to J at point J(t) are parallel; let p(t) be the
coefficient of the homothety with the center at 0 that takes the latter Une to the former.
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Definition. The periodic function p(t) is called the support function of the curve
,(t).

A curve is uniquely determined by its support function. In the Euclidean case the
support function is the signed distance from the origin to the oriented tangent lines to ,.

Let 8(t) be the parametrized figuratrix, considered as a curve in R 2 , and let
(81 (t), 82 (t)) be its linear coordinates. Consider the collection of curves obtained from
J(t) by parallel translations and dilations with positive coefficients.

Lemma 4.3. The support functions ofthese curves are the functions {a+b 8 1 (t)+c S2(t)}
where a, b, c are constants and a > O.

Proof. Clearly, the support function of J(t) is 1. By Lemma 2.2., [J(t), S(t)] = 1
and [J'(t), S(t)] = O. Thus the linear functional [ ,8(t)] equals 1 on the tangent line to
the curve J at point J(t). It follows that the support function p(t) of a curve ,(t) equals
[,(t) ,8 (t)]. Applying the dilation with coefficient a and the parallel translation through
vector v to the curve J(t) one obtains the support function

p(t) = [aJ(t) + v, S(t)] = a + [v, 8(t)].

The result follows.

The curve 8(t) being strictly convex, the vectors S'(t) and S"(t) are everywhere
linearly independent. Thus

8"'(t) = u(t) S"(t) + v(t) S'(t)

for same T-periodic functions u(t), v(t). Consider the linear differential operator on the
circle RITZ:

L = (dldt)3 - u(t) (d/dt)2 - v(t) d/dt.

The kernel of L consists ofthe functions a+b 81(t)+c 82 (t). It follows from strict convexity
of 8 that these functions constitute a Chebyshev system.

Example. If the parameterization S(t) is an affine one then the operator L equals
(d/dt)3 + k(t) (d/dt) where k(t) is the affine curvature.

Definition. A linear differential operator of odd degree is called disconjugate on the
circle RITZ if every function in its kernel is T-periodic and this kernel is a Chebyshev
system.

The operator L is disconjugate. In the Euclidean case S(t) is the unit circle, and
L = (d/dt)3 + d/dt. Disconjugate operators enjoy the following property proved in (A4,
G-M-O].

Theorem 4.4. Let L be a disconjugate differential operator on the circ1e oE degree 2n + 1.
For every smooth function f on the circle the function L(f) has at least 2n + 2 distinct
zeroes.

Vertices of a curve ,(t) present themselves as follows in terms of the support function
p(t).

12



Lemma 4.5. A point ,(to) is a Minkowski vertex iE and only jE L(p)(to) = O.

Proof. Let Po(t) be the support function of the osculating indicatrix at point ,(to).
Then (j2p)(tO) = (j2 pO )(tO)' If ,(to) is a vertex then the 3-jets are equal: (j3p)(tO) =
(j3pO )(tO)' Since L(po) = 0, one has: L(p)(to) = O.

Conversely, if L(p)(to) = 0 then

pll/(to) = u(to) p"(to) + v(to) p'(to),

and the function Po satisfies the same equation. Since the 2-jets of p and Po at to coincide,
it fo11ows that p",(to) = p~'(to) as weH. Therefore the osculating indicatrix is third order
tangent to , at point ,(to).

Thus Theorem 4.4 again implies the Minkowski 4-vertex theorem.

Remark. In the Euclidean case the following result holds ([BI 2)): if a closed convex
curve intersects a circle at 2n points then it has at least 2n vertices. Does a similar result
hold in the Minkowski setting?

5. Conservative transverse line fields

In this section we discuss the fo11owing problem: given a smooth strictly convex closed
plane curve , and a smooth transverse line field l along it, when a parameterization ,(t)
exists such that the line l(t) at point ,(t) is generated by the acceleration vector ,"(t) for
a11 t?

Definition. A transverse line field along a closed plane curve, generated by the
acceleration vectors for some parameterization of the curve, is called conseroative.

Clearly, not every line field is conservative: consider, for example, a field of lines
that everywhere malm an acute angle with the curve. Theorem 0.1 provides a necessary
condition: the envelope of the lines from a conservative line field has at least 4 cusps.
Lemma 3.2 gives another one: there exist at least 2 tangent lines to this envelope through
every point in the plane.

We start with the following situation. Let M 3 be a contact manifold and l' C M be
a closed smooth Legendrian curve. Recall that the characteristic line field 1] of a contact
form). is the field K er d).. Assume that the contact distribution along l' is coorientablej
then it can be determined by a contact form. Let 1] be a line field along 7, transverse to
the contact distribution.

Question: When does a contact form exists in a vicinity of l' for which 1] is the
characteristic field?

Be this the case we ca11 the field 1] chamcteristic.
Let ). be some contact form near l' and v be a vector field along l' that generates the

line field 1]. Consider the I-form (iv d)") I )..(v) and set:
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Theorem 5.1. Tbe number ß(i, 1]) does not depend on tbe choice oE the contact form A
nor the vector Held v. This number vanisbes if and only if the Held 1] is characteristic.

Proof. Clearly, (iv dA)1 A(V) does not change if v is multiplied by a nonvanishing
function. Let Al = fA with f # 0 be another contact form. Then dAl = df /\ A + fdA.
One has:

ri v dA1 = rf i v dA + df (v) A - A(v) df = riv dA + r df (v) ..\ _ rdf
J;y A1(V) J;y f ..\(v) J;y A(V) J;y f ..\(v) J;;y f .

The second integral on the right hand side vanishes because l' is a Legendrian curve,
tangent to the kernel of df(v)>../f >..(v) , and so does the third because df I f is an exact
I-form. Thus ß(i,1]) does not depend on the choices involved.

If 1] is characteristic for a contact form Athen iv dA = 0, so ß(1', TJ) = O. Conversely,
let ß(i,1]) = O. A neighbourhood of i in M is contactomorphic to a neighbourhood of
the zero section in the space of I-jets )lSl (see [Ar 3]). That is, there exist coordinates
(x, y, z), x E sI, y, zER1 in which the contact structure is given by the I-form >"0 =
dz - ydx, and;Y is the curve y = z = O. Since 1] is transverse to the contact structure one
mayassume it to be generated by the vector field

v = a(x) BI8x + b(x) 818y + 818z,

where a(x) and b(x) are functions on the circle. Then

(- r iv dAQ J ()ß ,,1]) = J;;y Ao(v) = - b x dx.

If ß(i, 1]) vanishes then there exists a function g(x) such that b(x) = g/(x).
Next, a direct computation shows that the characteristic line field of the contact form

e!(x,y,z) Ao is generated by the vector field

fv 818x - (fx + yfz) 818y + (1 + Yfv) 818z,

which equals, along 1',
u = Iv 818x - fx 818y + 818z.

Therefore, setting fex, y, z) = a(x)y-g(x), one has: v = u, and the field 1] is characteristic.

Thus the characteristic line fields constitute a codimension 1 subspace in the (infinite
dimensional) space of line fields along i, transverse to the contact structure.

Return to the situation at the beginning of the section. Let "y be a smooth strictly
convex closed curve, cooriented inwards, and l be a smooth transverse line field along J.
As before, i is the Legendrian curve in the space of cooriented contact elements ST"'R2

,

corresponding to J' For every point x E J consider the family of cooriented contact
elements along the line lex), parallel to the contact element of , at x. This gives a line
field 17 along i, a lift of the field l. The field 17 is transverse to the contact structure.

Choose a parameterization ,(t), 0 :::; t :::; T, and a vector field u(t) along , that
generates the !ine field l (t).
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Lemma 5.2. One has:

ß( - ) = rT
[,"(t), u(t)] dt

" 11 J0 [" ( t ), u (t)] .

Proof. Let v be the lift of u to ST*R2 that generates the field 7]. In Theorem 2.1 a
Hamilton function H in ST*R2 is constructed, associated with the parameterization ,(t)
(oDe does not need the assumption [,"(t) , ,11I (t)] 1:- 0 here). The space ST*R2 is identified
with R 2 x S, where the star-shaped curve S C (R2 )*, the level curve of H, consists of the
covectors [,/(t), ]. The corresponding contact form A is the restriction of the Liouville
form pdq to R 2 X S. The curve ..y is given by the formula:

..y (t) = (,(t), [,' (t), ]) .

It follows that A(V(t)) = [i(t), u(t)]. Likewise,

(iv(t) dA) (t '(t)) = (iv (t) dp 1\ dq)(..y' (t)) = [,"(t), u (t)].

Therefore
riv dA = rT [," ( t ), u (t )] dt
Ji A(v) Jo [,/(t), u(t)] .

Lemma is proved.

In particular, the value of the integral

rT [," ( t), u (t)]dt
J0 [,' ( t ), u (t )]

does not depend on the parameterization ,(t) nor on the choice of the vector field u(t).
Denote this integral by a("l).

Lemma 5.3. The line Held l along, is conservative iE and only iE the line Held 7] along i
is characteristic.

Proof. If l is generated by the vectors ,"(t) then 7] consists of the characteristic
directions of the contact form in ST*R2 , associated with the parameterization ,(t) in
Theorem 2.1 (cf. the proof of the preceding lemma).

Conversely, a contact form A along t, whose characteristics are the lines 1], is a field of
covectors p along, which vanish on the tangent lines to , at the respective points. Define
the parameterization ,(t) by the condition: [,/(t), ] = P (,(t)) for all t. Then the contact
form in ST*R2 , associated with this parameterization according to Theorem 2.1, coincides
with A along..y. Therefore the liues l(t) are generated by the vectors ,"(t).

Combining Theorem 5.1, Lemma 5.2 and 5.3, oue arrives to the following result (dis­
covered in [T 2] and proved therein by a direct computation).
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Theorem 5.4. A transverse line Held l along a smooth strictly convex closed plane curve
"Y is conservative if and only if a("Y,l) = O.

Thus conservative line fields constitute a codimension one subspace in the space of
transverse line fields along a closed curve. .

. Example. L. Guieu and V. Ovsienko studied the following situation in {G-O]. Given
a smooth convex closed plane curve consider the field of lines conilecting each point of the
curve with a focus of its osculating conie at this point (see Example 2 in Section 3). This
line field is conservative, and its envelope, called the gravitational caustic in {G-O), has at
least 6 cusps.

Consider a curve "Y with a transverse line field l. A (partial) diffeomorphism of the
plane F takes "Y to a new curve F("Y) with the transverse line field dF(I). The field dF(I)
does not have to be eonservative even if l iso

Example. Let "Y be the unit eircle, l consists of its normals, and F is given near , in
polar coordinates by the formula: (a, r) --+ (a + T, r). Then F(,) = " and the lines dF(l)
make a constant acute angle with the circle.

However the following result holds (to answer a question by V. Arnold).

Theorem 5.5. Every projective transformation of the plane takes the conservative line
neIds to the conservative ones.

Proof. Consider R 2 as the plane {z = I} in Euclidean 3-space, and let

1r : (x, y, z) -t (x/z, y/z)

be the projection of the half-space Rt = {z > O} on R 2 • Consider a parameterized curve
f(t) c Rt, and let ,(t) = 1r(f(t)).

Claim: the field (d1r)(f"(t)) is conservative along the curve ,(t).
Indeed, a direct computation (which is left to the reader) shows that

(dll")(r"(t)) = -r"(t) + 2 ~gj -r'(t).

Therefore

ab, (dll")(r"(t))) = - f 2 ~g? dt = -2 f d log z(t) = O.

The claim follows from Theorem 5.4.
Let A be a linear transformation of space. Then F = 1rA : R 2 --+ R 2 is a projective

transformation, and all projective transformations are obtained this way. Consider a curve
,(t) C R 2 , and let l(t) be generated by the acceleration vectors ,"(t). Let f(t) = A(,(t));
assurne, without loss of generality, that f(t) C Rt. One has: r"(t) = A(,"(t)), and it
follows from the above claim that the field (d1r)(f"(t)) is conservative along the curve
1r(r(t)). Thus the line field dF(I) is conservative along the curve F(,).

Remark. Theorem 5.5 shows that the notion of the conservative line fields along
closed curves is a projective, and not an affine, one. The theory of this paper can be
extended to spherical curves in the spirit of {A 5}.

16



Acknowledgements. I am grateful to V. Arnold, S. Lvovsky, V. Ovsienko, G. Thor­
bergsson and M. Umehara for numerous stimulating discussions. It is a pleasure to ac­
knowledge the hospitality of the Max-Planck-Institut in Bonn. The research was supported
in part by an NSF grant DMS-9402732.

References

[A 1] V. Arnold. Topological Invariants of Plane Curves and Caustics. University
Lecture Series, v. 5, AMS, 1994.

[A 2] V. Arnold. Mathematical Methods of Classical Mechanics. Springer-Verlag,
1989.

[A 3] V. Arnold. Contact geometry and wave propagation. l'Enseign. Math., t. 36
(1990), 215-266.

[A 4] V. Arnold. On the number of flattening points on space curves. AMS Trans!.
v. 171 (1996), 11-22.

[A 5] V. Arnold. Geometry of spherical curves and algebra of quaternions. Russ.
Math. Surv., 50, N 1 (1995), 3-68.

[BI 1] W. Blascbke. Vorlesungen uber Differentialgeometrie II. Springer-Verlag, 1923.

[BI 2] W. Blaschke. Kreis und Kugel, Leipzig 1916.

[Bu] H. Buseman. The foundations of Minkowskian geometry. Comm. Math. Helv.,
24 (1950), 156-187.

[Gu] H. Guggenheimer. On plane Minkowski geometry. GeoID. Dedicata, 12 (1982),
371- 38l.

[G-M-O] L. Guieu, E. Mourre, V. Ovsienko. Theorem on six vertices of aplane curve
via the Sturm theory. To appear.

[G-O) L. Guieu, V. Ovsienko. Caustique affine et caustique gravitationelle d'une
courbe plane. In preparation.

[Ru] H. Rund. The Differential Geometry of Finsler Spaces. Springer-Verlag, 1959.

[T 1] S. Tabachnikov. The four-vertex theorem revisited - two variations on the old
theme. Amer. Math. Monthly, 102, N 10 (1995), 912-916.

[T 2] S. Tabachnikov. Introducing projective billiards. Preprint, 1995.

17


