Restriction of Holomorphic Cohomology of a Shimura Variety to a Smaller Shimura Variety

L. Clozel* and T.N. Venkataramana

*	Max-Planck-Institut
Université de Paris-Sud	für Mathematik
Mathematiques	Gottfried-Claren-Str. 26
Bât 425, Orsay-Cedex	53225 Bonn
France	Germany

Restriction of Holomorphic Cohomology of a Shimura Variety to a Smaller Shimura Variety

L. Clozel*and T.N. Venkataramana

1. Introduction

Suppose $S=S(\Gamma)=\Gamma \backslash X$ is a Shimura variety obtained as the quotient of a Hermitian symmetric space $X=G(\mathbf{R}) / K_{\infty}-\mathrm{G}$ is a semisimple group over $\mathbf{Q}, K_{\infty} \subset G(\mathbf{R})$ a maximal compact subgroup - by an arithmetic subgroup Γ of $G(\mathbf{Q})$.

Suppose that H is a semisimple \mathbf{Q}-subgroup of G such that $Y=$ $H(\mathbf{R}) / K_{H}$ is also Hermitian symmetric, with $K_{H}=K_{\infty} \cap H$ a maximal compact subgroup of $H(\mathbf{R})$ and such that the natural inclusion i of Y in X is holomorphic.

For every covering $S\left(\Gamma^{\prime}\right) \rightarrow S(\Gamma)$ with $\Gamma^{\prime} \subset \Gamma$ of finite index the resulting map $i=i\left(\Gamma^{\prime}\right): \Gamma^{\prime} \cap H \backslash Y \longrightarrow \Gamma^{\prime} \backslash X$ is, as is well known, a morphism of varieties.

Let C be a correspondence on S which is of the form $z \rightarrow g(z)$ on the universal covering X of S with $g \in G(\mathbf{Q})$. We therefore get a finite covering $C: S\left(\Gamma^{\prime}\right) \rightarrow S(\Gamma)$ for some Γ^{\prime}.

In this article, we are concerned with the following question. Let ω be a cohomology class on S whose restriction (i.e. pullback via the composite of C with i) to $\Gamma^{\prime} \cap H \backslash Y$ is zero for all the correspondences C defined above - we will say then that ω vanishes stably along H . Then is ω itself zero?

[^0]This question is hard to answer for an arbitrary class ω, but we can give a criterion purely in terms of the linear algebra of G and H ; for holomorphic forms on S (which are cuspidal if S is not compact). One of the reasons for the holomorphic case being easier is that the restriction of a holomorphic form to a subvariety is indeed holomorphic whereas even if ω is a harmonic form on S , its restriction to $\Gamma^{\prime} \cap H \backslash Y$ need not be harmonic in general.

As in [Clo 1] and [Clo 2], we make use of the explicit description - as formulated in [V-Z] - of (g, K)-modules with non-zero cohomology. Indeed, the papers [Clo 1] and [Clo 2] deal with the question of vanishing or not, of cup-products of two holomorphic forms on S , which may be interpreted as the question of the vanishing of the restriction to the diagonal of the tensor-product of these two forms.

The question of the stable vanishing of ω along H (at least in the cocompact case ; when S is not compact, one must restrict oneself to cuspidal cohomology) has a simple description in terms of the Parthasarathy-VoganZuckerman theory : suppose that the infinity type of ω is A_{q}, associated to the θ-stable parabolic subalgebra q of the Lie-algebra $g=\operatorname{Lie} G(\mathbf{R}) \otimes \mathbf{C}$. Let p^{+}be the holomorphic tangent space of $X=G(\mathbf{R}) / K_{\infty}, u$ be the unipotent radical of q, u^{+}its intersection with p^{+}and R the dimension of u^{+}. Then, ω is stably non-zero along H if and only if the R -th exterior power of u^{+}(a line) lies in the smallest subspace of the R-th exterior power of p^{+}which contains the R-th exterior power of $p^{+} \cap h$ (here, $h=\operatorname{LieH}(\mathbf{R}) \otimes \mathbf{C}$), and is stable under the adjoint action of K_{∞}. We prove this in section 2 , first in the compact case ; the non-compact case is dealt with similarly (for cuspidal holomorphic cohomology) and we will briefly indicate the modifications necessary .

We then use this criterion in the case of the classical hermitian symmetric domains and some naturally embedded sub- hermitian domains. The results are set out in section 3 .

The conjectures of Langlands, Arthur and Kottwitz on the Zeta functions of Shimura varieties impose strong restrictions on the Galois representations occurring in the etale (intersection) cohomology of the Borel-Bailey-Satake Compactification of S. By working out the predictions of these conjectures in the special cases of $\mathrm{U}(\mathrm{g}, \mathrm{h})(g \leq h, g \geq 2$ and $h \neq 2)$ and $\operatorname{GSp}(\mathrm{g})$ ($g \geq 2$) we will see in section 4 , that the action of the Galois group on the cohomology degree g , of the Shimura varieties corresponding to these two groups is potentially Abelian.

As an application of the calculations of section 3 , we show in section 5 , that given a holomorphic g-form on a Siegel-modular variety (the Shimura variety associated to the group $\operatorname{GSp}(\mathrm{g})$, with $g \geq 2)$, its restriction to some product of g modular curves is non-zero. This is shown to imply that the

Mumford-Tate group of the compactly supported cohomology in degree g of the Siegel-modular variety is Abelian (this was implicitly proved in a paper of Weissauer in the case $g=2$), thereby confirming the heuristics of section 4 . As a consequence, we find that the action of the Galois-group on the (image of the compactly supported cohomology in degree g in the) etale intersection cohomology of the associated (Borel-Bailey -Satake) compactification of the Siegel-modular variety is potentially Abelian .

As another application, we show that the Mumford-Tate group of the (compactly supported) cohomology in degree g, of some Shimura varieties attached to $\mathrm{U}(\mathrm{g}, \mathrm{h})(2 \leq g \leq h$ and $(g, h) \neq(2,2))$ is also Abelian, by restricting the cohomology to an appropriate product of curves. Analogously , we show that the action of the Galois-group on the (image of the compactly supported cohomology in the) etale cohomology in degree g of the associated compactification of this Shimura variety is potentially Abelian .

The second named author would like heartily to thank the first for patiently explaining many of the ideas referred to above, especially the theory of Parthasarathy, Vogan and Zuckerman and the conjectures on the Zeta functions of Shimura varieties. He would also like to thank the Universite de Paris-Sud, Orsay柢for its hospitality while part of this work was done and the Institut Universitaire de France and the Commission on Developement and Exchanges of the International Mathematical Union for providing travel support to enable him to visit Paris.

The first named author wants to record here that the results contained in [Clo 1] concerning the vanishing of cup-products of holomorphic forms had been proved by Parthasarathy [Par 1]. Thus the new content of [Clo 1] is the non-vanishing of certain cup-products. An earlier result (for $U(n, 1)$) can be found in Shimura [Sh 1].

```
* and the MPI in Bonn
```


2. - General criteria

2.1. - Let G be a connected semi-simple group defined over \mathbb{Q}; by abuse of notation we will also denote by G the group $G(\mathbb{R})$. Let $K \subset G$ be a maximal compact subgroup. We assume that the symmetric space $X=G / K$ is of Hermitian type. There is then an element c belonging to the center of K such that $A d(c)$ induces, on the tangent space p_{0} of X at its base point $o=\bar{K}$, multiplication by $i=\sqrt{-1}$. Let

$$
\begin{equation*}
\mathfrak{g}=\mathfrak{k} \oplus \mathfrak{p}^{+} \oplus \mathfrak{p}^{-} \tag{2.1}
\end{equation*}
$$

be the associated decomposition of $\mathfrak{g}:$ thus $\mathfrak{p}^{+}=\{X \in \mathfrak{p}: A d(c) X=i X\}$ is the holomorphic tangent space.

Now let $H \subset G$ be a connected reductive subgroup over \mathbb{Q}.
We will assume

$H \cap K$ is a maximal compact subgroup of H.

Then the restriction to H of a Cartan involution θ of G is a Cartan involution of $H=H(\mathbb{R})$. We have a corresponding decomposition

$$
\begin{equation*}
\mathfrak{h}=\mathfrak{e}_{H} \oplus \mathfrak{p}_{H} \tag{2.3}
\end{equation*}
$$

with $\mathfrak{p}_{H}=\mathfrak{p} \cap \mathfrak{h}$. We further assume

$$
\begin{equation*}
\mathfrak{p}_{H} \text { is stable by } \operatorname{Ad}(c) . \tag{2.4}
\end{equation*}
$$

Then $A d(c)$ defines a K_{H}-invariant complex structure on $\mathfrak{p}_{H, 0}$. The space $X_{H}=$ $H / H \cap K$ is Hermitian symmetric. We have a triangular decomposition

$$
\begin{equation*}
\mathfrak{h}=\mathfrak{e}_{H} \oplus \mathfrak{p}_{H}^{+} \oplus \mathfrak{p}_{H}^{-} \tag{2.5}
\end{equation*}
$$

compatible with (2.1); finally, the embedding $X_{H} \hookrightarrow X$ is holomorphic.
Now we assume that $\Gamma \subset G(\mathbb{Q})$ is a neat congruence subgroup. Precisely, we suppose that $\Gamma=G(\mathbb{Q}) \cap K_{f}, K_{f} \subset G\left(\mathbb{A}_{f}\right)$ being a compact-open subgroup such that $G(\mathbb{Q}) \cap\left(K \times g K_{f} g^{-1}\right)=\{1\}$ for any $g \in G\left(\mathbb{A}_{f}\right)$. We consider the Shimura varicty $S(\Gamma)=\Gamma \backslash X:$ it is one of the connected components of $S\left(K_{f}\right)=G(\mathbb{Q}) \backslash G(\mathbb{A}) / K \cdot K_{f}=$ $G(\mathbb{Q}) \backslash X \times G\left(\mathbf{A}_{f}\right) / K_{f}$.

Now assume $K_{f}^{H} \subset H\left(\mathbb{A}_{f}\right)$ is compact-open. If $K_{f}^{H} \subset K_{f}$ there is a natural map $S\left(K_{f}^{K}\right) \underset{j}{\longrightarrow} S\left(K_{f}^{G}\right)$. By our assumption on K_{f}, j is finite and unramified. We recall the following fact due to Deligne [De1, Prop. 1.15] :

Lemma 2.1. - Given $K_{f}^{H} \subset H\left(\mathbb{A}_{f}\right)$, there exists a compact open subgroup $K_{f}^{1} \subset$ $G\left(\mathbf{A}_{f}\right)$, with $K_{f}^{H} \subset K_{f}^{1}$, such that the natural map $j^{\prime}: S\left(K_{f}^{H}\right) \rightarrow S\left(K_{f}^{1}\right)$ is injective.

In particular, if we take $K_{f}^{H}=K_{f} \cap H\left(\mathbb{A}_{f}\right)$ we get a natural map $j: S\left(K_{f}^{H}\right) \rightarrow S\left(K_{f}\right)$; j is finite and if we replace K_{f} by a sufficiently small subgroup K_{f}^{1} we get a diagram

where π is the natural projection and j^{\prime} is injective. By restriction to the connected component $\Gamma \cap H \backslash H / K_{H}$ we get a map $j: \Gamma \cap H \backslash X_{H} \rightarrow \Gamma \backslash X$ with analogous properties.

Now assume $g \in G(\mathbb{Q})$. Fix $K_{f}^{H} \subset H\left(\mathbb{A}_{f}\right)$ and consider the map $j_{g}: H(\mathbf{A}) \rightarrow$ $G(\mathbb{A})$ given by $j_{g}(h)=g h$. It is easy to check that j_{g} yields an injective map $H(\mathbb{Q}) \backslash H(\mathbf{A}) / K_{f}^{H} \rightarrow G(\mathbb{Q}) \backslash G(\mathbb{A}) / K_{f}^{H}$; assuming $K_{f}^{H}=K_{f} \cap H(\mathbf{A}) \subset K_{f}$ (where K_{f} is compact-open in $G\left(\mathbf{A}_{f}\right)$) we then obtain a natural map $j_{g}: S\left(K_{f}^{H}\right) \rightarrow S\left(K_{f}\right)$ with our previous notation; this map is unramified and finite. On the connected component of $S\left(K_{f}^{H}\right)$ given by the orbit of o under $H(\mathbb{R}), j_{g}$ is the natural map $\left(H \cap g^{-1} \Gamma g\right) \backslash X_{H} \rightarrow$ $\Gamma \backslash X_{G}$. In this manner we obtain a family, parametrized by $g \in G(\mathbb{Q})$, of complex subvarieties of $\Gamma \backslash X$, the images of the j_{g}.

In the remainder of this section we assume that G is anisotropic over $\mathbb{Q} ; S(\Gamma)$ is then compact. For $r \geq 0$, let $H^{r, 0}(S(\Gamma))$ be the holomorphic subspace of $H^{r}(S(\Gamma), \mathbb{C})$ for the Hodge decomposition. Following Oda [Oda] we will study the restriction map

$$
\begin{equation*}
H^{r, 0}(S(\Gamma)) \xrightarrow[\text { Res }]{ } \prod_{g \in G(\mathbf{Q})} H^{r, 0}\left(S_{H}(g)\right) \tag{2.7}
\end{equation*}
$$

where $S_{H}(g)=\left(H \cap g^{-1} \Gamma g\right) \backslash X_{H}$, and the restriction map is deduced from the family of maps ($j g$). We want to obtain sufficient conditions for the injectivity of (2.7). We will denote by $R_{g}: H^{\tau, 0}(S(\Gamma)) \rightarrow H^{r, 0}\left(S_{H}(g)\right)$ the component of (2.7) associated to $j g$.

Proposition 2.2. - Assume that $\Lambda^{r} \mathfrak{p}^{+}$is spanned over K by $\Lambda^{r} \mathfrak{p}_{H}^{+}$. Then (2.7) is injective.

Proof: suppose $\omega \in H^{r, 0}(S(\Gamma))$ verifies Res $\omega=0$.
Identify \mathfrak{p}^{+}to the holomorphic tangent space at the base point o of $S(\Gamma)$; if $\lambda \in \Lambda^{r} \mathfrak{p}^{+}$ than $g \cdot \lambda$ is the translate of λ by g in the holomorphic tangent space at $g \cdot o$. Then $\omega_{g . o}(g \cdot \lambda)=0$ for all $g \in G(\mathbb{Q})$ and $\lambda \in \Lambda^{r} \mathfrak{p}_{H}^{+}$by our assumption. Therefore this is true for all $g \in G$. If $k \in K$ we than have $\omega_{g k \cdot o}(g k \cdot \lambda)=\omega_{g \cdot o}(g k \cdot \lambda)=0$. Therefore $\omega_{g . o}(g \lambda)=0$ for any $\lambda \in \Lambda^{r} \mathfrak{p}^{+}, g \in G$. This implies that $\omega=0$.
2.2. - We now give a more precise version of Proposition 2.2 using representation theory. If the representation-theoretic type of the form ω is fixed, we will obtain a necessary and sufficient condition for the vanishing of Res ω. We still assume G anisotropic.

According to Parthasarathy, Kumaresan and Vogan-Zuckerman, the holomorphic cohomology of $S(\Gamma)$ can be described as follows. Let to $\subset \mathfrak{l}_{0}$ be a Cartan subalgebra. We consider θ-stable parabolic subalgebras $\mathfrak{q} \subset \mathfrak{g}[\mathrm{Vo}-\mathrm{Z}, \S 2]: \mathfrak{q}=\mathfrak{l} \oplus \mathfrak{u}$, where \mathfrak{l} is the centralizer of an element $X \in i t_{0}$ and \mathfrak{u} is the span of the positive roots of X in \mathfrak{g}. Then \mathfrak{q} is stable by θ, whence a decomposition $\mathfrak{u}=(\mathfrak{u \cap p}) \oplus(u \cap \mathfrak{p})$. We assume that $\mathfrak{u \cap p} \subset \mathfrak{p}^{+}$. Let $r=\operatorname{dim}\left(u \cap \mathfrak{p}^{+}\right)$. We write $\mathfrak{u}^{+}=u \cap \mathfrak{p}^{+}$.

Associated to \mathfrak{q}, there is a well-defined irreducible (\mathfrak{g}, K)-module $A_{\mathfrak{q}}$ characterized by the following properties. We assume that a choice of positive roots for $(\boldsymbol{\ell}, \boldsymbol{t})$ has been made, compatibly with u. Let $e(q)$ be a generator of the line $\Lambda^{r} u^{+} \subset \Lambda^{r} p$. Then $e(q)$ is the highest vector of an irreducible representation $V(\mathfrak{q})$ of K contained in $\Lambda^{r} \mathfrak{p}_{+}$. The representation A_{q} is then uniquely characterized by
(2.8) $A_{\mathfrak{q}}$ is unitary, with the same infinitesimal character as the trivial representation

$$
\begin{equation*}
\operatorname{Hom}_{K}\left(V(q), A_{q}\right) \neq 0 \tag{2.9}
\end{equation*}
$$

Moreover, $V(\mathfrak{q})$ occurs with multiplicity 1 in $A_{\mathfrak{q}}$ and $\Lambda^{\tau} \mathfrak{p}^{+}$and

$$
\begin{equation*}
H^{r, 0}\left(\mathfrak{q}, K ; A_{q}\right)=\operatorname{Hom}_{K}\left(\Lambda^{r} \mathfrak{p}^{+}, A_{\mathfrak{q}}\right) \cong \mathbb{C} . \tag{2.10}
\end{equation*}
$$

Cohomology classes (of type ($r, 0$) and) of type A_{q} are then obtained as follows. Suppose $\varphi: A_{q} \rightarrow C^{\infty}(\Gamma \backslash G)$ is an intertwining map. We then get a natural map $H^{r, 0}\left(\mathfrak{g}, K ; A_{\mathfrak{q}}\right) \longrightarrow H^{r, 0}\left(\mathfrak{g}, K ; C^{\infty}(\Gamma \backslash G)\right)=H^{r, 0}(S(\Gamma))$, the equality being Matsushima's isomorphism. Explicitly, φ_{*} is obtained as follows : fix a non-zero K-map $\omega: \Lambda^{r} \mathrm{p}^{+} \rightarrow A_{\mathrm{q}}$, which necessarily factorizes through the $V(\mathfrak{q})$-component. Define $\omega_{\varphi} \in H^{r, 0}(S(\Gamma))$ by $\omega_{\varphi}(g \cdot \lambda)=\varphi(\omega(\lambda))(g)\left(\lambda \in \mathfrak{p}^{+}=T_{o}(X), g \in G\right)$. Then $\omega_{\varphi}=\varphi_{\star} \omega$, where ω is considered as an element of $H^{r, 0}\left(\mathfrak{g}, K ; A_{q}\right)$. The $A_{\mathfrak{q}}$-component of $H^{r, 0}(S(\Gamma))$ is the sum, over a basis $\{\varphi\}$ of $\operatorname{Hom}_{\mathfrak{q}, K}\left(A_{\mathrm{q}}, C^{\infty}(\tau \backslash G)\right)$, of the forms ω_{φ}.

Write

$$
\begin{equation*}
\Lambda^{r} \mathfrak{p}^{+}=V^{\prime} \oplus V(\mathfrak{q}) \tag{2.11}
\end{equation*}
$$

V^{\prime} being the orthogonal complement of $V(q)$ for any invariant scalar product; equivalently, V^{\prime} is the sum of the K-submodules of $\Lambda^{\Gamma} \mathfrak{p}^{+}$non-equivalent to $V(\mathfrak{q})$.

Proposition 2.3. - The following conditions are equivalent:
(i) $\operatorname{Res}(\omega)=0$ for any $\omega \in H^{r, 0}(S(\tau))$ of type A_{q}.
(ii) $\Lambda^{r} \mathfrak{p}_{H}^{+} \subset V^{\prime}=V(\mathfrak{q})^{\perp}$
(iii) $\Lambda^{\Gamma} \mathfrak{p}_{H}^{+}$is orthogonal to the K-span of $e(q)$.

Proof : suppose ω_{φ} is associated to $\varphi: A_{q} \rightarrow C^{\infty}(\Gamma \backslash G)$. Then (i) says that $\omega_{\varphi}(g \cdot \lambda)=\varphi(\omega(\lambda))(g)=0$ for any $g \in G(\mathbb{Q}), \lambda \in \Lambda^{r} \mathfrak{p}_{H}^{+}$. Then this is true for any $g \in G$, so $\varphi(\omega(\lambda))=0$, whence $\omega(\lambda)=0$ by injectivity. Since A_{q} and $\Lambda^{r} \mathfrak{p}_{H}^{+}$have a unique component of type $V(\mathfrak{q})$ and ω is a $K-$ map, we may view $\omega: \Lambda^{r} \mathfrak{p}^{+} \rightarrow A(\mathfrak{q})$ as the projection π_{q} onto the second component in (2.11). Our assumption (i) then means that $\pi_{\mathfrak{q}}\left(\Lambda^{\top} \mathfrak{p}_{H}^{+}\right)=\{0\}$, which is (ii). Since $V(\mathfrak{q})$ is spanned over K by $e(\mathfrak{q})$ this is equivalent to (iii).

The following formulation will be useful :
Corollary 2.4. - The following are equivalent :
(i) $\operatorname{Res}(\omega)=0$ for any $\omega \in H^{r, 0}(S(\Gamma))$ of type A_{q}.
(ii) The K-span of $\Lambda^{r} \mathfrak{p}_{H}^{+}$in $\Lambda^{r} \mathfrak{p}^{+}$does not contain $e(q)$.

Proof : this follows from condition (iii) above and the fact that $V(\mathfrak{q})$ occurs with multiplicity 1.

We will denote by $E(G, H, r)$ the K-span of $\Lambda^{r} \mathfrak{p}_{H}^{+}$in $\Lambda^{r} \mathfrak{p}_{+}$. By Corollary 2.4, the restriction problem is then reduced to :

Problem 2.5. - Describe the θ-stable (holomorphic) q (with $\operatorname{dim} u^{+}=r$) such that $e(q) \in E(G, H, r)$.

We end this section with a useful, negative criterion. Let $T_{H} \subset K_{H}$ be a maximal torus. We may assume, up to conjugacy, that $T_{H} \subset T$ where $T \subset K$ is a maximal torus whose Lie algebra is t_{0} as above.

Let $T_{H, \mathrm{c}}$ be the complexification of T_{H}. Suppose we are given a one-parameter torus $M \subset T_{H, \mathbf{c}}$. Fix an isomorphism $M \cong \mathbb{G}_{m}$. Then M acts on H by conjugation, and on $\Lambda^{r} \mathfrak{p}^{+}$via $M \hookrightarrow K_{\mathbf{C}}$ and the adjoint action.

Proposition 2.6. - If there exists a 1-dimensional torus $M \subset T_{H, \mathrm{c}}$ that centralizes H but acts by strictly positive weights on $V(q)$, then $E(G, H, r) \cap V(q)=\{0\}$.

Proof : with the notations introduced before Proposition 2.3, we have $\operatorname{Hom}_{M}\left(\Lambda^{r} \mathfrak{p}_{H}^{+}, V(\mathfrak{q})\right)=\{0\}$ by assumption, whence $\operatorname{Hom}_{K}\left(\Lambda^{r} \mathfrak{p}_{H}^{+}, V(\mathfrak{q})\right)=\{0\}$ and $\Lambda^{r} \mathfrak{p}_{H}^{+} \subset V^{\prime}$, q.e.d.

We now include another criterion that is easier to check in some cases. Let $E(G, H, r)$ be as before. Given a θ-stable parabolic subalgebra \mathfrak{q}_{H} of \mathfrak{h} such that $\mathfrak{p}_{H} \cap \mathfrak{u}\left(\mathfrak{q}_{H}\right)=\{0\}$ (a holomorphic θ-stable parabolic subalgebra) and $r=\operatorname{dim}\left(\mathfrak{p}_{H}^{+} \cap \mathfrak{u}\left(\mathfrak{q}_{H}\right)\right)$, let $V_{G}\left(\mathfrak{q}_{I I}\right)$ denote the K-span of the line $\Lambda^{r}\left(\mathfrak{p}_{I}^{+} \cap \mathfrak{u}\left(\mathfrak{q}_{H}\right)\right)$ in $\Lambda^{r}\left(\mathfrak{p}_{G}^{+}\right)$. Let

$$
\begin{equation*}
A(G, H, r)=\sum V_{G}\left(\mathfrak{q}_{H}\right) \subset E(G, H, r) \tag{2.12}
\end{equation*}
$$

where the sum runs over all holomorphic θ-stable parabolic subalgebras q_{H} relative to our choice of T.

Proposition 2.7. - The following conditions are equivalent:
(i) $\operatorname{Res}(\omega)=0$ for any $\omega \in H^{r, 0}(S(\Gamma))$ of type A_{q}.
(ii) $A(G, H, r) \subset V^{\prime}=V(q) \perp$.

Proof : (i) \Longrightarrow (ii) by Proposition 2.3. Conversely, if Res $\omega \neq 0$, we may, as in the proof of Proposition 2.3, replace ω - seen, say, as a form on X - by a $G(\mathbb{Q})$ translate ω^{\prime} such that ω_{0}^{\prime} does not vanish on $\Lambda^{r} \mathfrak{p}_{H}^{+}$. Then the form ω^{\prime} restricts to a non-vanishing holomorphic form on a quotient of H, with must be a sum of forms of type $A\left(q_{H}\right)$ in the notation of the paragraph following (2.10), applied to H. Thus $\left.<\omega^{\prime}, e_{q H}\right)>\neq 0$ for some θ-stable, holomorphic parabolic q_{H}. This implis that ω^{\prime} does not vanish on $A(G, H, r)$ and therefore $A(G, H, r) \supset V(q)$. Thus (ii) \Longrightarrow (i).

2.3. - Generalizations

The results of $\S 2.2$ generalize quite naturally in two directions: (a) non-trivial systems of coefficients; (b) non-anisotropic groups.

Part (a) is obvious: suppose E is a finite-dimensional representation of $G \times \underset{\mathbf{Q}}{\mathbb{C}} ; E$ defines a local system \mathcal{E} on $S(\Gamma)$ and on all the varieties considered in the previous arguments. Suppose for simplicity E irreducible. Since \mathcal{E} is locally trivial, $H^{\bullet}(S(\Gamma), \mathcal{E})$ again has a Hodge decomposition and $H^{r, 0}(S(\Gamma), \mathcal{E})$ can be decomposed according to certain representations $A_{q}(E)$ associated to certain θ-stable parabolic subalgebras [VoZ]. The results in § 2.2 then remain true.

In the sequel we will generally neglect coefficient systems, which are irrelevant to our problem.

Consider now the case when G is isotropic over \mathbb{Q}. Then $H^{\bullet}(S(\Gamma), \mathbb{C})$ is no longer endowed with a Hodge decomposition. The subspace $H_{\text {cusp }}^{\bullet}(S(\Gamma), \mathbb{C})$ of classes represented by cusp forms, however, inherits of Hodge decomposition (cf. Borel [Bo3], as well as [BoWa, § II.4]). If $\omega \in H_{\mathrm{cusp}}^{r, 0}\left(S(\Gamma)\right.$), we may again restrict ω, via the maps j_{g}, to $S_{H}(g)$. The restriction is obviously a holomorphic r-form on this arithmetic quotient. Moreover :

Proposition 2.8. - If $\omega \in H_{\text {cusp }}^{r, 0}(S(\Gamma)), j_{g}^{*} \omega \in H_{\text {cusp }}^{r, 0}\left(S_{H}(g)\right)$.
Proof: we extend an argument in [Cl1].
Since Hodge theory applies to cuspidal cohomology, we may view ω as a holomorphic form on $S(\Gamma)$. Let $\eta=j_{g}^{*} \omega$ seen as a holomorphic form. Then $\bar{\partial} \eta=0$, and therefore η is annihilated by the Hodge Laplacian : in terms of the automorphic functions that are coefficients of η, this translates into the vanishing of the Casimir operator. A finitedimensionality argument in [Cl1, p. 80] then shows that η is annihilated by an ideal of finite codimension in the center $\mathfrak{Z}_{I I}$ of the enveloping algebra for H, if we can show that η (or its coefficients) are square-integrable. We will in fact show :

Lemma 2.9. - η is rapidly decreasing on $H \cap g^{-1} \Gamma g \backslash H$.
Then, by the preceding argument, η is an automorphic form of rapid decrease. By Lemma 5.3 in [Cl1], η is a cusp form, and Lemma 2.8 is proved.

Proof of Lemma 2.9 : if G is the set of \mathbb{R}-points of a semi-simple \mathbb{Q}-group and f a function on G, left-invariant by an arithmetic subgroup Γ and K-finite on the right ($K \subset G$ maximal compact), the following conditions are equivalent :
(2.13) $\quad f$ is rapidly decreasing in Siegel domains
in the usual sense ([Bo-Ja, (1.6)]) and

$$
\begin{equation*}
|f(x)|=0\left(\|x\|^{-N}\right) \quad \text { for all } \quad N \geq 0 \tag{2.14}
\end{equation*}
$$

x ranging over a Siegel domain \mathfrak{G}.
In (2.14), \|\| is any norm on G, in the sense of [Bo-Ja]; for the equivalence see Moeglin-Waldspurger [Mo-Wa, p. 20].

Since ω is cuspidal, its coefficients verify (2.13) and therefore (2.14). A norm on G restricts to one on H. We now need only check that the coefficients of η-i.e., the restrictions of the coefficients of ω-verify (2.14), but now on a Siegel domain \mathfrak{S}_{H} for H.

Fix a minimal parabolic \mathbb{Q}-subgroup P_{H} of H, and let U_{H} be its unipotent radical. Let T_{H} be a maximal \mathbb{Q}-split torus in P_{H} and consider $B_{H}=U_{H} \rtimes T_{H} \subset P_{H}$. Then B_{H} is a "split solvable group" in the sense of [Bol]. We may similarly define P, T, U for G, and $B_{G}=U \rtimes T$. By a theorem of Borel and Tits [Bo2, Vol. III, p. 533], there exists $g \in G(\mathbb{Q})$ such that $g B_{H} g^{-1} \subset B_{G}$. Thus we may assume that $B_{H} \subset B_{G}$. Then $U_{H} \subset U$, and we may assume (upon conjugation by an element of U) that $T_{H} \subset T$. Let Φ^{+}be the set of roots of T in U, Φ_{H}^{+}the set of roots of T_{H} in U_{H}.

Let M be the centralizer of T in P (or G). Then $M=M^{0} T$ where M^{0} is anisotropic and therefore $M^{0} \cap T$ is finite. We similarly define M_{H}^{0}. Let A be the connected component of 1 in $T(\mathbb{R}), \Omega_{U} \subset U(\mathbb{R})$ and $\Omega_{M} \subset M^{0}(\mathbb{R})$ be compact subsets, and for $t>0$ define

$$
\begin{equation*}
A_{t}=\left\{a \in A: a^{\alpha}>t \quad \forall \alpha \in \Phi\right\} \tag{2.15}
\end{equation*}
$$

Fix maximal compact subgroups K_{H} and K of H and G with $K_{H} \subset K_{G}$. A Siegel domain \mathfrak{S}_{G} of G is then a set

$$
\begin{equation*}
\mathfrak{S}_{G}=\Omega_{U} \cdot \Omega_{M} \cdot A_{t} K \tag{2.16}
\end{equation*}
$$

Similarly a Siegel domain \mathfrak{S}_{H} of H can be written

$$
\begin{equation*}
\mathfrak{G}_{H}=\Omega_{U_{H}} \Omega_{M_{H}} A_{H, t} K_{H} \tag{2.17}
\end{equation*}
$$

where $A_{H, t}$ is of course defined by Φ_{H}.
Suppose now Ω_{G} is a compact subset of G. We first prove that

$$
\begin{equation*}
|f(x)|=0\left(\|x\|^{-N} \quad \forall N \geq 0 \quad \text { for } x \text { ranging in } \mathfrak{S}_{G} \Omega_{G}\right. \tag{2.18}
\end{equation*}
$$

f being a cusp form. Indeed, if $x=g \omega, g \in \mathfrak{S}_{G}, \omega \in \Omega_{G}$, write $g=n m a k$ according to (2.16) and $h=k \omega$. By the Iwasawa decomposition, $h=n_{0} a_{0} k_{0}, n_{0} \in U(\mathbb{R}), a_{0} \in A$, $k_{0} \in K$. Clearly a_{0} is constrained to lie in a fixed compact subset of A. Now

$$
x=n m a h=n m a n_{0} a_{0} k_{0}=n\left({ }^{m a} n_{0}\right) m a a_{0} k_{0}
$$

where ${ }^{u} v:=u v u^{-1}$. Let $\Omega_{U}^{\prime} \subset U(\mathbb{R})$ be a compact subset such that $U(\mathbb{R})=(\Gamma \cap U(\mathbb{R})) \Omega_{U}^{\prime}$. Then $n\left({ }^{m a} n_{0}\right) \in(\Gamma \cap U(\mathbb{R})) u$ for $u \in \Omega_{U}^{\prime}$, whence $f(x)=f\left(u m a a_{0} k_{0}\right)$. Now we may replace Ω_{U} by $\Omega_{U}^{\prime} ; m \in \Omega_{M}, a_{0}$ is bounded, and the growth property of f on $K_{U} \Omega_{M} A_{t} K$ implies (2.18).

We now note that if $\sigma \in G(\mathbb{Q})$ is fixed, (2.18) remains true for x ranging in $\sigma \mathfrak{S}_{G} \Omega_{G}$ since the left-translate of f is a cusp form. The corresponding estimates are uniform in σ if σ belongs to a finite set. Therefore Lemma 2.9 will follow if we can prove :

Lemma 2.10. - Let \mathfrak{S}_{H} be a Siegel domain (2.17), and $W=N_{G}(T) / Z_{G}(T)$ be the $(\mathbb{Q})-$ Weyl group of (G, T). Then there exists a compact subset Ω_{G} of G and a Siegel domain \mathfrak{S}_{G} such that

$$
\begin{equation*}
\mathfrak{S}_{H} \subset \bigsqcup_{\sigma \in W} \sigma \mathfrak{S}_{G} \Omega_{G} \tag{2.20}
\end{equation*}
$$

Indeed, the coefficients f of η then satisfy, by (2.18), the estimate (2.14) on \mathfrak{S}_{H}, whence Lemma 2.9.

Proof of Lemma 2.10 : let $\Sigma \subset \Phi_{I I}^{+}$be a fixed subset. Then $\Omega_{U_{H}}$ is contained in a product $\Omega_{\Sigma}^{+} \Omega_{\Sigma}^{-}$where $\Omega_{\Sigma}^{+} \subset U_{\Sigma}^{+}=\prod_{\alpha \in \Sigma} U_{H, \alpha}$ and $\Omega_{\Sigma}^{-} \subset U_{\Sigma}^{-}=\prod_{\alpha \notin \Sigma} U_{H}$ are compact. If $a \in A_{H}$ let $\Sigma(a)=\left\{\alpha \in \Phi_{H}^{+}: a^{\alpha} \leq 1\right\}$. Let \mathfrak{S}_{H} be a Siegel domain (2.17). Then \mathfrak{S}_{H} is contained in the union over all Σ of the subsets

$$
\begin{equation*}
\bigsqcup_{a} \Omega_{\Sigma} \Omega_{\Sigma}^{+} \Omega_{M_{H}} a K_{H} \tag{2.21}
\end{equation*}
$$

where $a \in A_{H, t}$ verifies the condition $\Sigma(a)=\Sigma$. The eigenvalues of $X \longrightarrow a^{-1} X a$ in $\operatorname{Lie}\left(U_{\Sigma}^{+}\right)$are given by $a^{-\alpha}(\alpha \in \Sigma(a))$ and are therefore bounded by t^{-1}. Thus $a^{-1} \Omega_{\Sigma}^{+} a$ is contained in a fixed, compact set, that we now denote by Ω_{Σ}^{+}. Then (2.21) is contained in

$$
\begin{equation*}
\bigsqcup_{a} \Omega_{\Sigma}^{-} a \Omega_{\Sigma}^{+} \Omega_{M_{H}} K_{H} \tag{2.22}
\end{equation*}
$$

Now fix a, and choose $\sigma \in W$ such that

$$
a^{\prime}=\sigma a \sigma^{-1} \in A_{1}=\left\{a \in A: a^{\beta} \geq 1 \forall \beta \in \Phi_{G}^{+}\right\}
$$

If x belongs to a root subgroup of U_{Σ}, x is (strictly) dilated by $\operatorname{Ad}(a)$ and $\sigma x \sigma^{-1}$ is therefore dilated by $A d\left(a^{\prime}\right)$. This implies that $\sigma x \sigma^{-1} \in U_{G}$. Now

$$
\begin{equation*}
\sigma\left(\Omega_{\Sigma}^{-} a\right)=\left(\sigma \Omega_{\Sigma}^{-} \sigma^{-1}\right) a^{\prime} \sigma \subset \Omega_{U}^{\prime} A_{1} \sigma \tag{2.23}
\end{equation*}
$$

where $\Omega_{U}^{\prime} \subset U_{G}$ is compact. Finally, we see that \mathfrak{G}_{H} is contained in $\bigcup_{\sigma, \Sigma} \sigma^{-1} \Omega_{U}^{\prime} A_{1} \sigma \Omega_{\Sigma}^{+} \Omega_{M H} K_{H}$. This is an expression (2.20), whence the lemma.

In conclusion we note that all the arguments in § 2.2 extend to cusp forms in the non-compact case. The differential criteria given there permit one to test when the restriction $\operatorname{Res}(\omega)$ of a holomorphic cusp form (as a differential form) is non-trivial. If the restriction does not vanish, the associated cohomology class is non-vanishing by results of Borel [Bo3].

3. Computations in the case of the Classical Hermitian domains

In this section we consider the hermitian symmetric domains of type A, B C and D . The subsections on groups of type A will be denoted (3 .A.*) and so on. We refer to [Clo 2] for the explicit description of these domains .

In the following $M_{m \times n}(\mathbf{C})$ denotes the space of matrices with m-rows and n -columns and with complex entries. $E_{\mathrm{i}, j} \in M_{m \times n}(\mathbf{C})$ is the matrix whose entry in the i -th row and j -th column is one and the other entries are zero. The group of non-singular $p \times p$ matrices (resp. of determinant one is denoted $G L_{p}\left(\right.$ resp. $S L_{p}$). The group of $p \times p$ unitary matrices (resp. of determinant 1) is denoted $\mathrm{U}(\mathrm{p})$ (resp. $\mathrm{SU}(\mathrm{p})$). Similarly the group of $p \times p$ real orthogonal matrices (resp. of determinant 1) is denoted $\mathrm{O}(\mathrm{p})$ (resp. $\mathrm{SO}(\mathrm{p})$).

If E is a representation of a group then denote by E^{*} its contragredient . If $e_{1}, e_{2}, \ldots e_{m}$ is a basis of E then its dual basis in E^{*} is denoted $e_{1}^{*}, e_{2}^{*}, \ldots e_{m}^{*}$. The r -th exterior (resp. symmetric) power of E is denoted $\wedge^{r}(E)\left(\right.$ resp. $\left.\operatorname{sym}^{r}(E)\right)$.

We assume from now on, that the reductive group G is almost \mathbf{Q}-simple , i.e., has no connected non-central normal subgroups defined over \mathbf{Q}. It follows, as is well known, that all the simple factors of the complex Lie algebra g (mod centre) are isomorphic. We assume furthermore that the group $G(\mathbf{R})$ of real points is the product of a compact group and a real almost simple non-compact group; denote the latter by $G^{n c}$.
(3.A.1).Notation : Let $G^{n c}=\mathrm{U}(\mathrm{p}, \mathrm{q})$ where p and q are positive integers with $p \leq q$. Thus the real rank of G is p . Now,

$$
G^{n c}=\left\{g=\left(\begin{array}{ll}
A & B \tag{3.1}\\
C & D
\end{array}\right) ; \quad{ }^{t} \bar{g}\left(\begin{array}{cc}
1_{p} & 0 \\
0 & -1_{q}
\end{array}\right) g=\left(\begin{array}{cc}
1_{p} & 0 \\
0 & -1_{q}
\end{array}\right)\right\}
$$

where $A \in M_{p \times p}(\mathbf{C}), \quad B \in M_{p \times q}(\mathbf{C}), C \in M_{q \times p}(\mathbf{C}), D \in M_{q \times q}(\mathbf{C})$. Let

$$
K=\left\{g=\left(\begin{array}{cc}
A & 0 \\
0 & D
\end{array}\right) \in G^{n c} ; A \in U(p), D \in U(q)\right\} .
$$

The complexification K_{C} of K is the group

$$
K_{\mathbf{C}}=\left\{g=\left(\begin{array}{cc}
A & 0 \\
0 & D
\end{array}\right) \in G(\mathbf{C}) ; A \in G L_{p}, D \in G L_{q}\right\} .
$$

The Cartan involution θ is given by $x \rightarrow-\bar{x}$. Let

$$
C=\left\{g \in K_{\mathbf{C}} ; g=\left(\begin{array}{cc}
A & 0 \\
0 & D
\end{array}\right) \text { with A, D scalar matrices }\right\}
$$

and

$$
T=\left\{g \in K_{\mathbf{C}} ; g=\left(\begin{array}{cc}
A & 0 \\
0 & D
\end{array}\right) \text { with A, D diagonal matrices }\right\}
$$

Elements of T or of its Lie algebra are denoted ($x_{1}, \ldots, x_{p} ; y_{1}, \ldots, y_{q}$). Now the Lie algebra of $G(\mathrm{C})$ is obviously $M_{(p+q) \times(p+q)}$ and we will view its elements in block form as in (1). Let

$$
p^{+}=\left\{\left(\begin{array}{ll}
0 & B \\
0 & 0
\end{array}\right) \text { with } B \in M_{p \times q}\right\}
$$

and

$$
p^{-}=\left\{\left(\begin{array}{ll}
0 & 0 \\
C & 0
\end{array}\right) \text { with } C \in M_{q \times p}\right\} .
$$

Let C^{p} (resp. C^{q}) be the standard representation of $\mathrm{U}(\mathrm{p})$ (resp. of $\mathrm{U}(\mathrm{q})$). Then, as a representation of $K_{\mathbf{C}}, p^{+}=\mathbf{C}^{p} \otimes\left(\mathbf{C}^{q}\right)^{*}$.

Let $e_{1}, \ldots e_{p}$ and $f_{1}, \ldots f_{q}$ be the standard bases of C^{p} and C^{q} respectively. Fix the Borel-subalgebra b_{0} of k to be the one which is upper triangular on C^{p} and lower triangular on C^{q} with respect to these bases. The roots of T occurring in p^{+}are the linear forms $x_{i}-y_{j}$ with $1 \leq i \leq p$ and $1 \leq j \leq q$.
(3.A.2) Proposition: Assume that $G^{\text {nc }}=U(1, q)$ and that H is an arbitrary subgroup as in section (1.1). Let A_{q}, and $u=u(q)$ be as in section (1.1) such that A_{q} has holomorphic cohomology in degree R with $\operatorname{dim}\left(h \cap p^{+}\right) \geq$ $R\left(=\operatorname{dim}\left(u \cap p^{+}\right)\right)$. Then ,

$$
E(G, H, R) \supset V(q)
$$

Proof: As a representation of $K_{\mathbf{C}}$,

$$
\wedge^{R} p^{+}=\wedge^{R}\left(\mathbf{C}^{1} \otimes\left(\mathbf{C}^{q}\right)^{*}\right)
$$

is irreducible. The proposition now follows from (2.2).
We now classify all the θ-stable parabolic subalgebras q of g which have holomorphic cohomology. As in (2.2) assume that $q=q(x)$. Then, by (2.2) we have $u \cap p^{-}=0$. Let $\mathrm{x}=\left(a_{1}, \ldots, a_{p} ; b_{1}, \ldots, b_{q}\right)$ be such that its eigenvalues on the Borel subalgebra b_{0} are ≥ 0. Therefore

$$
a_{1} \geq \ldots \geq a_{p} \text { and } b_{q} \geq \ldots \geq b_{1}
$$

Now p^{+}has the $E_{i, p+j}$ as a basis with $1 \leq i \leq p$ and $1 \leq j \leq q$. Moreover $u \cap p^{+}$has the $E_{i, p+j}$ as a basis where i and j are such that $a_{i}-b_{j}$ is strictly positive. Let $r \leq p$ and $s \leq q$ be defined by the conditions

$$
\begin{gathered}
(*)_{r, s}: \quad a_{1} \geq \ldots \geq a_{r}>a_{r+1}=\ldots=a_{p}= \\
\quad=b_{q}=\ldots=b_{s+1}>b_{s} \geq \ldots \geq b_{1} .
\end{gathered}
$$

Thus $\mathrm{q}=\mathrm{q}(\mathrm{x})$ with x satisfying $(*)_{r, s}$ for some r and s exhaust the list of all the paraboloic subalgebras with holomorphic cohomology.

The roots of T occurring in $u \cap p^{+}$are of the form $x_{i}-y_{j}$ with (a) $i \leq r$ and j arbitrary, or (b) $i \geq r+1$ and $j \leq s$. Let $\mu=2 \rho\left(u \cap p^{+}\right)$. Then,

$$
\mu=\sum_{i=1}^{r} \sum_{j=1}^{q}\left(x_{i}-y_{j}\right)+\sum_{i=r+1}^{p} \sum_{j=1}^{s}\left(x_{i}-y_{j}\right) .
$$

Thus,
$\mu=(q-s)\left(x_{1}+\ldots+x_{r}\right)+s\left(x_{1}+\ldots+x_{p}\right)-(p-r)\left(y_{1}+\ldots+y_{s}\right)-r\left(y_{1}+\ldots+y_{q}\right)$.
Consider the representation of $K_{\mathbf{C}}$

$$
\begin{equation*}
\otimes^{s}\left(\wedge^{p} \mathrm{C}^{p}\right) \otimes \operatorname{Sym}^{q-s}\left(\wedge^{r} \mathbf{C}^{p}\right) \otimes \operatorname{Sym}^{p-r}\left(\wedge^{s} \mathrm{C}^{q}\right)^{*} \otimes^{r}\left(\wedge^{q}\left(\mathbf{C}^{q}\right)^{*}\right) . \tag{3.2}
\end{equation*}
$$

We note that μ is the weight associated to the vector

$$
e=\otimes^{s}\left(e_{1} \wedge \ldots \wedge e_{p}\right) \otimes^{q-s}\left(e_{1} \wedge \ldots \wedge e_{r}\right) \otimes^{p-r}\left(f_{1}^{*} \wedge \ldots \wedge f_{s}^{*}\right) \otimes^{r}\left(f_{1}^{*} \wedge \ldots \wedge f_{q}^{*}\right)
$$

Also note that e is obviously a highest weight vector in this representation space, therefore under K_{C} it generates an irreducible submodule. This module is isomorphic to A_{q}.

For future reference we note that

$$
\operatorname{dim}\left(u \cap p^{+}\right)=r q+(s)(p-r)=R^{+}=R .
$$

Let $a \leq p$ and $b \leq q$. Let E^{a} be the C-span of e_{1}, \ldots, e_{a} and let F^{b} be the C -span of f_{1}, \ldots, f_{b}. Then the restriction of the hermitian form

$$
\left(\begin{array}{cc}
1_{p} & 0 \\
0 & -1_{q}
\end{array}\right)
$$

to the subspace $E^{a} \oplus F^{b}$ of $\mathrm{C}^{p} \oplus \mathrm{C}^{q}$ is non-degenerate. Thus we get an embedding of $U(a, b)$ in $U(p, q)$.

From now on, we assume (as we may, thanks to Proposition (3.A.2)) that $q \geq p \geq 2$.
(3.A.4) Proposition: Let $G^{n c}=U(p, q)$ with $p, q \geq 2$. Let $H^{n c}=U(a, b)$ with $a<p$ and $b<q$ embedded in $U(p, q)$ as above. Let q be a proper θ stable parabolic subalgebra which contributes to holomorphic cohomology in degree R. Then

$$
E(G, H, R) \cap V(q)=0
$$

Proof: Let $\xi: \mathbf{G}_{m} \rightarrow T$ be defined, for $t \in \mathbf{G}_{\boldsymbol{m}}$, by

$$
\xi(t)=\left(1, \ldots, t^{-1}\right)
$$

Then the image of ξ centralises H. To prove the proposition we will use the criterion of Proposition (2.6). We therefore compute the weights of $\xi(t)$ on the tensor space (3.2) above. We see that the weights of $\xi(t)$ are of the form t^{N} where $N=(p-r) \times A+r$, with $0 \leq A$. Therefore N is strictly positive unless A is 0 and r is zero. If r is not zero, then by Proposition (2.6) $E(G, H, R) \cap V(q)=0$.

Similarly, by looking at the embedding

$$
\xi^{\prime}(t)=(1, \ldots, 1, t ; 1, \ldots, 1)
$$

(where t occurs as the p -th coordinate) whose image also centralises H , we see that, unless s is zero, $E(G, H, R) \cap V(q)=0$. This completes the proof.
(3.A.5) Proposition: Let $G^{n c}=U(p, q)$ with $p, q \geq 2$. Let $H^{n c}=U(p, b)$ with $b<q$ be embedded in $U(p, q)$ as above. Let $q=q(x)=q(r, s)$ be a proper θ - stable parabolic subalgebra where x satisfies $(*)_{r, s}$ with dimu $^{+}=$ $R \leq \operatorname{dim} p_{H}^{+}$. Then

$$
E(G, H, R) \supset V(q) \text { if and only if } r=0 .
$$

Proof: Consider again, the map ξ defined in the proof of Proposition (3.A.3). Its image still centralises our new $H^{n c}$. As in the proof of (3.A.3) we see that the eigenvalues of $\xi(t)$ are of the form t^{N} where $N=(p-r) A+r$ with $0 \leq A$.

If $r \neq 0$ then N is strictly positive and by Proposition (2.6), $E(G, H, R) \cap$ $V(q)=0$.

If $\mathrm{r}=0$, then $R^{+}=s p \leq \operatorname{dim}\left(p^{+} \cap h\right)=p b$. and $V=V(q)$ is the K_{C}-stable subspace generated by the vector

$$
e_{q}=\wedge_{i, j} e_{i} \otimes f_{j}^{*}(i \leq j, s+1 \leq j \leq q) .
$$

Now $p_{H}^{+}=C^{p} \otimes\left(F^{b}\right)^{*}$ is the span of the vectors

$$
e_{i} \otimes f_{j}, \quad(1 \leq i \leq p, \quad 1 \leq j \leq b) \quad(b \geq s)
$$

and therefore,$\wedge^{p s} p_{H}^{+}$contains the wedge of the vectors

$$
e_{i} \otimes f_{j}, \quad(1 \leq i \leq p, \quad 1 \leq j \leq s)
$$

which is precisely e_{q}.
(3.A.6) Proposition: Let $H^{n c}=U(a, q)$ be embedded in $G^{n c}=U(p, q)$ as before. Let $q=q(x)$ be a θ-stable parabolic subalgebra associated to x satisfying $(*)_{r, s}$ and $R^{+}=R \leq \operatorname{dimp} p_{H}^{+}$. Then

$$
E(G, H, R) \supset V(q) \text { if and only if } s=0 .
$$

Proof: The proof is entirely similar to that of (3.A.3) and will be omitted.

Notation: Let $p \leq q$, and $G^{n c}=U(p, q)$. Let $H^{n c}$ be the subgroup of $G^{n c}$ which fixes pointwise the C-span of f_{p+1}, \ldots, f_{q} and leaves stable the C-span of e_{i} and f_{i} for each i with $1 \leq i \leq p$. Thus $H^{n c}=U(1,1)^{p}$. We recall that the real rank of $G^{n c}$ is p.
(3.A.7) Proposition : Let \mathbf{q} be a θ-stable parabolic subalgebra of the Lie algebra g such that $\operatorname{dim}\left(u \cap p^{+}\right)=p$. Let $U(1,1)^{p}$ be embedded in $U(p, q)$ as above. Then,

$$
E(G, H, p) \supset V(q) .
$$

Proof : In the notation of (3.A.3) $\mathbf{q}=q(p, 0)$ or $q(0, p)$ (if $p=q$). For definiteness, assume that $\mathrm{q}=\mathrm{q}(\mathrm{p}, 0)$. Then $u \cap p^{+}$is the span of the vectors $e_{1} \otimes f_{1}^{*}, e_{2} \otimes f_{1}^{*}, \ldots, e_{p} \otimes f_{1}^{*}$, and $\mathrm{V}(\mathbf{q})$ is the K-span of the vector

$$
\begin{equation*}
e_{\mathbf{q}}=e_{1} \otimes f_{1}^{*} \wedge e_{2} \otimes f_{1}^{*} \wedge \ldots \wedge e_{p} \otimes f_{1}^{*} \tag{3.3}
\end{equation*}
$$

Now, $\mathrm{E}(\mathrm{G}, \mathrm{H}, \mathrm{p})$ is the K-span of the vector

$$
\text { (3.4) } \quad e_{1} \otimes f_{1}^{*} \wedge e_{2} \otimes f_{2}^{*} \wedge \ldots \wedge e_{p} \otimes f_{p}^{*}
$$

(the line through $\left({ }^{* *}\right)$ is $\wedge^{p} p_{H}^{+}$).
Let $t_{2}, t_{3}, \ldots, t_{p}$ be variables. Now $K_{\mathbf{C}}=G L_{p} \times G L_{q}$ and there exists an element $g \in 1 \times G L_{q}$ which sends the basis $f_{2}^{*}, \ldots, f_{p}^{*}$ into the vectors $f_{2}^{*}+t_{2} f_{1}^{*}, \ldots, f_{p}^{*}+t_{p} f_{1}^{*}$. The g-translate of (3.4) is a polynomial in $t_{2}, t_{3}, \ldots, t_{p}$ with values in $\mathrm{E}(\mathrm{G}, \mathrm{H}, \mathrm{p})$ and the coefficient of the monomial $t_{2} \times \ldots \times t_{p}$ is precisely the vector (3.3); this shows that $V(\mathbf{q}) \subset E(G, H, p)$

More generally, we may split the hermitian space $\mathbf{C}^{p} \oplus\left(\mathbf{C}^{q}\right)^{*}$ into a direct sum of hermitian subspaces and consider the restriction of the holomorphic cohomology.
Notation: $G=U(p, q)$ preserves the standard hermitian form

$$
h(x, y)=\sum\left|x_{\mu}\right|^{2}-\sum\left|y_{\nu}\right|^{2}
$$

on the direct sum $\mathbf{C}^{p} \oplus\left(\mathbf{C}^{q}\right)^{*}$. Write $\mathbf{C}^{p}=\oplus_{i=1}^{m} E_{i}$ and $\mathbf{C}^{q}=\oplus_{i=1}^{m} F_{i}$. Let $p_{i}=\operatorname{dim}\left(E_{i}\right) \geq 1$ and $q_{i}=\operatorname{dim}\left(F_{i}\right) \geq 1$. Write $P_{i}=\sum_{j \leq i} p_{j}$ and
$Q_{i}=\sum_{j \leq i} q_{j}$. Assume that E_{i} (resp. F_{i}) is the span of the vectors e_{μ} with $P_{i-1}+1 \leq \mu \leq P_{i}$ (resp. f_{ν}^{*} with $Q_{i-1}+1 \leq \nu \leq Q_{i}$).

Let H be the subgroup of G which leaves stable the subspaces $E_{i} \oplus F_{i}$ for each i. We therefore have $H=\prod_{i} U\left(p_{i}, q_{i}\right), \sum p_{i}=p$ and $\sum p_{i}=p$.
(3.A.8) Proposition : Let $H=\prod_{i} U\left(p_{i}, q_{i}\right)$ be embedded in $G=U(p, q)$ as in the preceding paragraph. Let $q=q(r, s)$ be a θ-stable parabolic subalgebra of the Lie-algebra g, which contributes to holomorphic cohomology. Then a cuspidal holomorphic form on $\Gamma \backslash X$ of type $A_{\mathbf{q}}$ is stably non-zero along H if and only if either $r=0$ and $s \leq q_{i}$ for each i or $s=0$ and $r \leq p_{i}$ for each i.
Proof : (1) We first show that if $\mathrm{r}=0$ and $s \leq q_{i}$ for all i , then $A(G, H, R) \supset$ $V(\mathbf{q})$ where R is the dimension of $u \cap p^{+}$. Observe that $\mathrm{R}=\mathrm{ps}$. Let P_{i} and Q_{i} be as in (3.A.7). Then, we have $Q_{i-1}+s \leq Q_{i-1}+q_{i}=Q_{i}$. Denote by h_{i} the Lie algebra of $H_{i}=U\left(p_{i}, q_{i}\right) \subset U(p, q)$ and q_{i} the θ-stable parabolic subalgebra of h_{i} which contributes to holomorphic cohomology in degree $p_{\mathrm{i}} s$. Let $u_{i}^{+}=q_{i} \cap p_{H_{i}}^{+} ;$it is the span of the vectors $e_{\mu} \otimes f_{\nu}^{*}$ with $P_{i-1}<\mu \leq P_{i}$ and $Q_{i-1}<\mu \leq Q_{i-1}+s \leq Q_{i}$. Now $\wedge^{p_{i} s}\left(u_{i}^{+}\right)$is the line through the vector $\xi_{i}=\wedge\left(e_{\mu} \otimes f_{\nu}^{*}\right)$ where $P_{i-1}<\mu \leq P_{i}$ and $Q_{i-1}<\nu \leq Q_{i-1}+s \leq Q_{i}$.

Let $\left(t_{\nu} ; 1 \leq i \leq m, Q_{i-1} \leq \nu \leq Q_{i-1}+s\right)$ be variables and let $g \in 1 \times G L_{q} \subset K_{\mathbf{C}}$ be the element which takes the basis ($q_{\nu}^{*} ; 1 \leq i \leq$ $\left.m, Q_{i-1} \leq \nu \leq Q_{i-1}+s\right)$ of $\left(\mathrm{C}^{q}\right)^{*}$ into the vectors $\left(q_{\nu}^{*}+t_{\nu} q_{\nu-Q_{i-1}} ; 1 \leq\right.$ $\left.i \leq m, Q_{i-1} \leq \nu \leq Q_{i-1}+s\right)$. Then the vector $\wedge_{i=1}^{m} \xi_{i}$ changes into the A(G,H,R)-valued polynomial

$$
\wedge_{i=1}^{m} \wedge_{\mu, \nu}\left(e_{\mu} \otimes f_{\nu}^{*}+t_{\nu} f_{\nu-Q_{i}}^{*}\right)
$$

(where $P_{i-1}<\mu \leq P_{i}$ and $Q_{i-1}<\nu \leq Q_{i-1}+s \leq Q_{i}$). The coefficient of the monomial $\Pi_{1 \leq i \leq m} \Pi_{Q_{i-1}<\nu \leq Q_{i-1}+s}\left(t_{\nu}\right)$ is the vector $\wedge_{i=1}^{p} \wedge_{\mu, \nu}\left(e_{\mu} \otimes f_{\nu}^{*}\right)$ with $P_{i-1}<\mu \leq \bar{P}_{i}$ and $1 \leq \nu \leq s$. This vector is precisely e_{q}. Therefore , $e_{q} \in A(G, H, R)$ and $V(q) \subset A(G, H, R)$.
(2) The case of $s=0$ and $r \leq p_{i}$ for each i can be handled similarly.
(3) We will prove that if $A(G, H, R) \supset V(q)$ then
(3.5) $r s=0, r \leq p_{i}, s \leq q_{i} \quad \forall i$.

Observe that in the product $H=U\left(p_{1}, q_{1}\right) \times U\left(p_{2}, q_{2}\right) \times \ldots \times U\left(p_{m}, q_{m}\right)$
the factors may be switched in any order by conjugating by an element k of K (in fact k may be chosen to be a permutation matrix in $K=G L_{p} \times G L_{q}$). The new group H^{\prime} then has the property that $\mathrm{A}\left(\mathrm{G}, H^{\prime}, \mathrm{R}\right)=\mathrm{A}(\mathrm{G}, \mathrm{H}, \mathrm{R})$. To prove (3.5), it is therefore enough to show that $r s=0, r \leq p_{1}, s \leq q_{1}$. By replacing H by the larger group $U\left(p_{1}, q_{1}\right) \times U\left(p-p_{1}, q-q_{1}\right)$, we may assume -while proving (3.5)- that $\mathrm{m}=2$. We will then show that $r s=0, r \leq$ $p_{1}, r \leq p_{2}$ and $s \leq q_{1}, s \leq q_{2}$.

Let $H=U\left(p_{1}, q_{1}\right) \times U\left(p_{2}, q_{2}\right)$ and let q_{H} be a θ-stable parabolic subalgebra of h which contributes to holmorphic cohomology in degree R . We write, in the notation preceding the Proposition, $\mathrm{C}^{p}=E_{1} \oplus E_{2}$ and $\left(\mathrm{C}^{q}\right)^{*}=F_{1} \oplus F_{2}$. Let w be the permutation matrix in $G L_{p}$ such that it takes the basis

$$
e_{1}, \ldots e_{p_{1}} ; e_{p_{1}+1}, \ldots e_{p}
$$

into the elements

$$
e_{p_{2}+1}, \ldots e_{p} ; e_{1}, \ldots e_{p_{2}}
$$

The conjugate of H by w is $H^{\prime}=U\left(p_{2}, q_{2}\right) \times U\left(p_{1}, q_{1}\right)$ and the conjugate $q_{H^{\prime}}$ of q_{H} is also a θ-stable parabolic subalgebra of the Lie algebra h ' of H^{\prime}. In the notation of (A.2), suppose $q_{H}=q\left(r_{1}, s_{1}\right) \oplus q\left(r_{2}, s_{2}\right)$. Then $q_{H^{\prime}}=q\left(r_{2}, s_{2}\right) \oplus q\left(r_{1}, s_{1}\right)$.

Let $\pi_{q}: \wedge^{R} p^{+} \rightarrow V(q)$ denote the K-equivariant projection map. Then our assumption ensures that $A(G, H, R) \supset V(q)$ ensures that there exists q_{H} as in the preceding paragraph such that $v_{H}=\pi_{q}\left(e\left(q_{H}\right)\right) \neq 0$. As π_{q} is K-equivariant, we also have $v_{H^{\prime}}=\pi_{q}\left(e\left(q_{H^{\prime}}\right)\right) \neq 0$. Since K acts irreducibly on $\mathrm{V}(\mathrm{q}), \mathrm{e}(\mathrm{q})$ is (upto scalar multiples) the unique vector in $\mathrm{V}(\mathrm{q})$ which is invariant under the nilradical n of b (the Borel-subalgebra of k). Let $u(n)$ be the universal enveloping algebra of n.

Denote by n_{H} and $n_{H^{\prime}}$ the intersections of n with h and h^{\prime} respectively . Let m be the subalgebra of n which is the span of the vectors $E_{a, b}$ with $1 \leq a \leq p_{1}$ and $1+p_{1} \leq b \leq p$ and the vectors $E_{c+p, d+p}$ with $1 \leq c \leq q_{1}$ and $1+q_{1} \leq d \leq q$. Similarly let m^{\prime} be the subalgebra of n which is the span of the vectors $E_{a, b}$ with $1 \leq a \leq p_{2}$ and $1+p_{2} \leq b \leq p$ and the vectors $E_{c+p, d+p}$ with $1 \leq c \leq q_{2}$ and $1+q_{2} \leq d \leq q$. We have $n=m \oplus n_{H}$ and $n=m^{\prime} \oplus n_{H^{\prime}}$. By the Poincare-Birkhoff-Witt Theorem we get

$$
\begin{equation*}
u(n)=u(m) \otimes u\left(n_{H}\right) \text { and } u(n)=u\left(m^{\prime}\right) \otimes u\left(n_{H^{\prime}}\right) \tag{3.6}
\end{equation*}
$$

There exist elements α and β in $u(n)$ such that

$$
\begin{equation*}
\alpha\left(v_{H}\right)=e(q) \tag{3.7}
\end{equation*}
$$

and

$$
\text { (3.8) } \quad \beta\left(v_{H^{\prime}}\right)=e(q)
$$

As $\mathrm{e}(\mathrm{q}), v_{H}$ and $v_{H^{\prime}}$ are all eigenvectors for the action of T , we may assume that so are α and β. Furthermore, as v_{H} and $v_{H^{\prime}}$ are annihilated by n_{H} and $n_{H^{\prime}}$ respectively, we may assume from (3.6) that $\alpha \in u(m)$ and $\beta \in u\left(m^{\prime}\right)$.

We now compare the T -weights of both sides of the equation (3.7). Recall from (A.2) that the weight of $e(q)(q=q(r, s))$ is

$$
q\left(x_{1}+\ldots+x_{r}\right)+s\left(x_{r+1}+\ldots+x_{p}\right)-p\left(y_{1}+\ldots+y_{s}\right)-r\left(y_{s+1}+\ldots+y_{q}\right)
$$

The weight of α is of the form

$$
\sum_{a \leq p_{1}<b} m_{a b}\left(x_{a}-x_{b}\right)+\sum_{c \leq q_{1}<d} n_{c d}\left(y_{d}-y_{c}\right)
$$

where $m_{a b}, n_{c d}$ are non-negative integers.
The weight of $e\left(q_{H}\right)$ is (since $q_{H}=q\left(r_{1}, s_{1}\right) \oplus q\left(r_{2}, s_{2}\right)$) the sum of

$$
\begin{aligned}
& q_{1}\left(x_{1}+\ldots+x_{r_{1}}\right)+s_{1}\left(x_{r_{1}+1}+\ldots+x_{p_{1}}\right) \\
& -p_{1}\left(y_{1}+\ldots+y_{s_{1}}\right)-r_{1}\left(y_{s_{1}+1}+\ldots+y_{q_{1}}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
& q_{2}\left(x_{p_{1}+1}+\ldots+x_{p_{1}+r_{2}}\right)+s_{2}\left(x_{p_{1}+r_{2}+1}+\ldots+x_{p}\right) \\
& -p_{2}\left(y_{q_{1}+1}+\ldots+y_{q_{1}+s_{2}}\right)-r_{2}\left(y_{q_{1}+s_{2}+1}+\ldots+y_{q}\right)
\end{aligned}
$$

(Observe that if $\mathrm{r}=\mathrm{p}$ then $\operatorname{dim}\left(u \cap p^{+}(=r q+s(p-r))=p q\right.$, and therefore s can be assumed to be arbitrary .In the following, we use, in order that all the statements make uniform sense also for the case $r=p$, the convention that if $\mathrm{r}=\mathrm{p}$ then $\mathrm{s}=\mathrm{q}$). Comparing the coefficients of x_{p} on both sides of (3.7), we obtain $s=s_{2}-\sum_{a \leq p_{1}} m_{a p}$, which shows that $s \leq s_{2} \leq q_{2}$. By symmetry, from (3.8)) we get $s \leq s_{1} \leq q_{1}$.

Comparing the coefficients of y_{q} on both sides of (3.7), we obtain

$$
-r=-r_{2}+\sum_{c \leq q_{1}} n_{c q},
$$

which shows that $r \leq r_{2} \leq p_{2}$. By symmetry, from (3.8) we get $r \leq r_{1} \leq p_{1}$

We now need only show that rs $=0$. We divide the proof into several cases. Observe that $R=q r+(p-r) s=R_{1}+R_{2}$.

Case 1. $r=p_{1}=p_{2}(<p)$. Then $s_{1}=q_{1}$ and $s_{2}=q_{2}$. The the formula for R shows that $R=q r+(p-r) s=p_{1} q_{1}+p_{2} q_{2}=r q_{1}+r q_{2}=r q$. Therefore ($\mathrm{p}-\mathrm{r}$) $\mathrm{s}=0$, and $\mathrm{s}=0$.
Case 2. $r<p_{1}, r=p_{2}$. Then comparing $x_{p_{1}}$-coefficients in (3.7) we get $s_{1} \leq s$, and so, $s=s_{1}$. Then $R=r q+(p-r) s=r_{1} q_{1}+\left(p_{1}-r_{1}\right) s+r q_{2}$, and $r q_{1}+p_{1} s-\left(p_{1}-r_{1}\right) s=r_{1} q_{1}=r q_{1}+r_{1} s$. If $s<q_{1}$, we similarly get, $r=r_{1}$ and the last equation in the previous sentence shows that $r s=0$. If $s=q_{1}$, then the same equation shows that $\mathrm{r}=0$.
Case 3. $r=p_{1}<p_{2}$. The proof is similar to that in Case 2.
Case 4. $r<p_{1}$ and $r<p_{2}$. Replacing r by s , and eliminating the above 3 cases for s, we may assume that $s<q_{1}$ and $s<q_{2}$. Comparing $x_{p_{1}}$ - coefficients in (I), we get $s=s_{1}$ and similarly $s=s_{2}$. Similarly, we get $r=r_{1}=r_{2}$. Then, we have the equation $R=r q+(p-r) s=r q_{1}+\left(p_{1}-\right.$ $r) s+r q_{2}+\left(p_{2}-r\right) s$ i.e. $r s=0$.

The proposition is now proved in all cases.
Notation: We now assume that $G^{n c}$ is $\mathrm{U}(\mathrm{p}, \mathrm{p})$ and that $H^{n c}$ is the subgroup $G S p_{p}$ given by

$$
\left\{g=\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right) \in U(p, p):{ }^{t} g\left(\begin{array}{cc}
0 & 1_{p} \\
-1_{p} & 0
\end{array}\right) g=\left(\begin{array}{cc}
0 & 1_{p} \\
-1_{p} & 0
\end{array}\right)\right\}
$$

Then $K \cap H^{n c}=U(p)$ is embedded in K by the map

$$
g \rightarrow\left(\begin{array}{cc}
g & 0 \\
0 & { }^{t} g^{-1}
\end{array}\right)
$$

and the action of $\mathrm{U}(\mathrm{p})$ on $p^{+}=\mathrm{C}^{p} \otimes\left(\mathrm{C}^{p}\right)^{*}$ is isomorphic to the representation $\rho \otimes \rho$ where ρ is the standard representation of $U(p)$ on C^{p}. Under the embedding of $H^{n c}$ in $G^{n c}, p^{+} \cap h$ gets identified with

$$
\operatorname{Sym}^{2}(\rho)=\operatorname{Sym}^{2}\left(\mathbf{C}^{p}\right) \subset \mathbf{C}^{p} \otimes \mathbf{C}^{p}
$$

(3.A.9) Proposition : $G^{n c}=U(p, p)$. Let $H^{n c}=G S p_{p}$ is embedded in $U(p, p)$ as above. Let q be a θ-stable parabolic subalgebra of g such that it contributes to holomorphic cohomology in degree R. Then

$$
A(G, H, R) \supset V(q)
$$

if and only if $R=p$ or $R=2 p-1$.
Proof : We observe that in the notation of (A.7), we have

$$
H^{\prime n c}=S U(1,1)^{p} \subset H^{n c}=S p_{p} \subset G^{n c}=S U(p, p)
$$

We have seen, from (3.A.7), that $A\left(G, H^{\prime}, p\right) \supset V(q)$. Therefore (3.A.9) follows when $R=p$.

Suppose now, that $\mathrm{R}=2 \mathrm{p}-1$. Then $\mathrm{q}=\mathrm{q}(\mathrm{r}, \mathrm{s})$ with $\mathrm{r}=\mathrm{s}=1$. Moreover, $q_{H}=q_{H}(k)$ with $\mathrm{k}=2$. Now, $\wedge^{R}\left(u \cap p^{+}\right)$is the line generated by $e(q)=$ $\wedge_{j=1}^{p}\left(e_{1} \otimes f_{j}^{*}\right) \wedge_{k=2}^{p}\left(e_{k} \otimes f_{1}^{*}\right)$ and $\wedge^{R}\left(u\left(q_{H} \cap p_{H}^{+}\right)\right)$is the line generated by the vector

$$
e\left(q_{H}\right)=\wedge_{j=1}^{p}\left(e_{1} f_{j}^{*}+e_{j} f_{1}^{*}\right) \wedge_{k=1}^{p}\left(e_{2} f_{j}^{*}+e_{j} f_{2}^{*}\right)
$$

Let $t_{1}, \ldots t_{p}$ be variables and $g \in G L_{p} \times 1_{p} \subset K$ be the element which sends the basis $e_{1}, e_{2}, \ldots, e_{p}$ into the vectors $t_{1} e_{1}, t_{2} e_{2}, \ldots, t_{p} e_{p}$. The g -translate of the vector $e\left(q_{H}\right)$ is a polynomial P in the $t_{i}^{\prime} s$ with values in
$A(G, H, 2 p-1)$ whence the coefficient of the monomial $t_{1}^{p} t_{2} \ldots t_{p}$ of P is in $A(G, H, 2 p-1)$. This coefficient is precisely

$$
\begin{equation*}
\wedge_{j=1}^{p}\left(e_{1} \otimes f_{j}^{*}\right) \wedge_{k=2}^{p}\left(e_{k} \otimes f_{2}^{*}\right) \tag{3.9}
\end{equation*}
$$

Let $h \in 1_{p} \times G L_{p} \subset K$ be the element which takes the basis $f_{1}^{*}, f_{2}^{*}, \ldots, f_{p}^{*}$ into the vectors $f_{2}^{*}, f_{1}^{*}, \ldots, f_{p}^{*}$. The h-translate of the vector (3.9) is nothing but -e(q), and so $e(q) \in A(G, H, 2 p-1)$ and $V(q) \subset A(G, H, 2 p-1)$.

We will now prove that if $V(q) \subset A(G, H, R)$, then $r \leq 1, s \leq 1$. This shows that $R=p r+(p-r) s=p$ or $2 p-1$.

Let \mathbf{n} be the nil-radical of \mathbf{b}-the Borel-subalgebra as in (A.2). Let $n_{H}=$ $n \cap k_{H}, n_{1}=\left(g l_{p} \times 0\right) \cap n$ and $n_{2}=\left(0 \times g l_{p}\right) \cap n$. If 1 is a Lie-algebra then let $\mathrm{u}(\mathrm{l})$ be its universal enveloping algebra. Now both n_{1} and n_{2} are ideals in \mathbf{n} and $n_{1} \oplus n_{H}=n_{2} \oplus n_{H}=n_{H}$. Therefore, by the Poincare-Birkhoff-Witt theorem, we have

$$
\text { (3.10) } u(n)=u\left(n_{1}\right) \otimes u\left(n_{H}\right)=u\left(n_{2}\right) \otimes u\left(n_{H}\right) .
$$

Let $\pi_{q}: \wedge^{R} p^{+} \rightarrow V(q)$ denote the K-equivariant projection map. By assumption, $A(G, H, R) \supset V(q)$. Therefore there exists a θ-stable parabolic subalgebra q_{H} which gives holomorphic cohomology in degree R such that $v_{H}=\pi_{q}\left(e\left(q_{H}\right)\right) \neq 0$. As $\mathrm{V}(\mathrm{q})$ is irreducible (and $\mathrm{e}(\mathrm{q})$ is the unique vector in $V(q)$ which is invariant under $n)$, there exists an element $\alpha \in u(n)$ such that $e(q)=\alpha\left(v_{H}\right)$.

Now, elements of n_{H} kill any vector of type $e\left(q_{H}\right)$ and hence kill v_{H}. We assume as we may by (3.10), that

$$
\text { (3.11) } e(q)=\alpha\left(v_{H}\right)=\beta\left(v_{H}\right)=\delta\left(v_{H}\right)
$$

with $\beta \in u\left(n_{1}\right)$ and $\delta \in u\left(n_{2}\right)$. The T-weight of $\mathrm{e}(\mathrm{q})$ is
$\mu=q\left(x_{1}+\ldots+x_{r}\right)+s\left(x_{r+1}+\ldots+x_{p}\right)-p\left(y_{1}+\ldots+y_{s}\right)-r\left(y_{s+1}+\ldots+y_{q}\right)$.
Suppose that $r \geq 2$. Let $g \in T$ be of the form $g=(t, 1, \ldots, 1)$. The g -translate of both sides of the equation $e(q)=\delta\left(v_{H}\right)$ are polynomials in t and $g . e(q)=t^{p} e(q)$. Now, g commutes with δ. Moreover,

$$
v_{H}=\pi_{q}\left(\wedge_{j=1}^{p}\left(e_{1} f_{j}^{*}+e_{j} f_{1}^{*}\right) \wedge_{j=2}^{p}\left(e_{2} f_{j}^{*}+e_{j} f_{2}^{*}\right) \wedge \ldots \wedge_{j=k}^{p}\left(e_{k} f_{j}^{*}+e_{j} f_{k}^{*}\right)\right)
$$

The t^{p}-th coefficient of $g . v_{H}$ is precisely

$$
v_{H}^{\prime}=\pi_{q}\left(\wedge_{j=1}^{p}\left(e_{1} f_{j}^{*}\right) \wedge_{j=2}^{p}\left(e_{2} f_{j}^{*}+e_{j} f_{2}^{*}\right) \wedge \ldots \wedge_{j=k}^{p}\left(e_{k} f_{j}^{*}+e_{j} f_{k}^{*}\right)\right) .
$$

Therefore $e(q)=\delta\left(v_{H}^{\prime}\right)$.
Now let $g^{\prime} \in T$ be of the form $g^{\prime}=(1, t, 1, \ldots, 1)$ The g^{\prime}-translates of both sides of the equation $e(q)=\delta\left(v_{H}^{\prime}\right)$ are polynomials in t and $g^{\prime} . e(q)=t^{p} e(q)$, because $r \geq 2$. Now, g^{\prime} commutes with δ. Moreover,

$$
g^{\prime}\left(v_{H}^{\prime}\right)=\pi_{q}\left(\wedge_{j=1}^{p}\left(e_{1} f_{j}^{*}\right) \wedge_{j=2}^{p}\left(t e_{2} f_{j}^{*}+e_{j} f_{2}^{*}\right) \wedge \ldots \wedge_{j=k}^{p}\left(e_{k} f_{j}^{*}+e_{j} f_{k}^{*}\right)\right)
$$

which is a polynomial in t of degree $\leq p-1$, which contradicts the equation

$$
t^{p} e(q)=\delta\left(g^{\prime}\left(v_{H}^{\prime}\right)\right)
$$

Therefore, the assumption that $r \geq 2$ is false and $r \leq 1$. Similarly $s \leq 1$. The proof is complete.

We will now fix our attention on $G^{n c .}=U(p, q), p \leq q$, but, will consider θ-stable proper parabolic subalgebras $\mathrm{q}=\mathrm{q}(\mathrm{x})$ such that $u \cap p^{-}$is not necessarily zero. That is, we assume as before, that $a_{1} \geq \ldots \geq a_{p}$ and $b_{1} \geq, \ldots \geq b_{q}$ but not necessarily, that $a_{i}-b_{j} \geq 0$. Suppose $\pi=A_{q}$ is such that $H^{p}\left(g, K_{\infty}, \pi\right) \neq 0$. Note that p is the real rank of G .
(3.A.10)Proposition : With the notation above we have

$$
H^{p}\left(g, K_{\infty}, \pi\right)=H^{p, 0}\left(g, K_{\infty}, \pi\right) \oplus H^{0, p}\left(g, K_{\infty}, \pi\right)
$$

unless $p=q=2$.
proof : We write the Hodge decomposition for the cohomology of π (we refer to [VZ], section (6) for the necessary facts) :

$$
H^{p}\left(g, K_{\infty}, \pi\right)=\oplus H^{R^{+}+l, R^{-}+l}\left(g, K_{\infty}, \pi\right)
$$

where the sum is over all $l \geq 0$ with

$$
\text { (3.12) } R^{+}+l+R^{-}+l=p
$$

and $R^{+}=\operatorname{dim}\left(u \cap p^{+}\right), R^{-}=\operatorname{dim}\left(u \cap p^{-}\right)$. We may assume that $p \geq 2$. Since $l \geq 0$ this means that $R^{+}+R^{-} \leq p$. Define the integers $r, r_{2} \leq p$, $s \leq q$ by the inequalities

$$
\begin{gathered}
a_{1}=\ldots=a_{r}=b_{1}=\ldots b_{s}> \\
>a_{r+1} \geq \ldots \geq a_{r_{2}} \geq b_{s+1} \geq \ldots \geq b_{q}
\end{gathered}
$$

Now, either r or s is ≥ 1.
We may assume that either $s \neq q$ or $r \neq p$.
The roots of t lying in $u \cap p^{+}$include the roots

$$
\begin{aligned}
& x_{1}-y_{s+1}, \ldots x_{1}-y_{q} \\
& \ldots \cdots \cdots \cdots \\
& x_{r}-y_{s+1}, \ldots x_{r}-y_{q}
\end{aligned}
$$

whence

$$
\text { (3.13) } \quad R^{+} \geq(q-s) r .
$$

If $\mathrm{s}=0$ then $r \geq 1$ and since $q \geq p$,(3.12) and (3.13) show that $R^{-}=0=l$ and therefore, in the Hodge decomposition for π above, only the ($p, 0$) term survives and the proposition follows. We may thus assume that $s \geq 1$.

The roots of t occurring in $u \cap p^{-}$include the roots

$$
\begin{aligned}
& y_{1}-x_{r+1}, \ldots y_{1}-x_{p} \\
& \ldots \ldots \ldots \ldots \\
& y_{s}-x_{r+1}, \ldots y_{s}-x_{p}
\end{aligned}
$$

whence

$$
\begin{equation*}
R^{-} \geq s(p-r) \geq p-r \tag{3.14}
\end{equation*}
$$

If $\mathrm{r}=0$ then (3.14) and (3.12) show that $R^{-}=p$ and $l=0=R^{+}$and so, in the Hodge decomposition for π above, only the ($0, \mathrm{p}$) term survives and the proposition follows. We may thus assume that $r \geq 1$.

If $\mathrm{s}=\mathrm{q}$ then $r \neq p$ as we saw before and (3.14) shows that $R^{-} \geq q$ and by (3.12) it follows that $l=0=R^{+}$and again the proposition follows. So we may assume that $s \neq q$. Similarly we may assume that $r \neq p$. Now (3.13), (3.14) and (3.12) show that

$$
p \geq R^{+}+R^{-} \geq(q-s) r+s(p-r)
$$

i.e.

$$
\begin{equation*}
0 \geq(q-s-1) r+(s-1)(p-r) \tag{3.15}
\end{equation*}
$$

Since we may assume that $1 \leq s \leq q-1$ and $1 \leq r \leq p-1$, (3.15) shows that $\mathrm{s}=\mathrm{q}-1$ and $\mathrm{s}=1$, i.e., $\mathrm{q}=2$;and by assumption $p \geq 2$. But $p \leq q$ so it follows that $p=q=2$; the proposition is completely proved.
(3.BD.1) Notation : We now assume that $G^{n c}$ is locally isomorphic to $\mathrm{O}(2, \mathrm{p})$. Let $K_{\infty}=O(2) \times O(p)$ and K_{C} its complexification. The natural representation \mathbf{C}^{2} of the group $\mathbf{G}_{m}=S O(2, \mathbf{C})$ is a sum of two lines \mathbf{C}^{+}and \mathbf{C}^{-}on which $t \in \mathbf{G}_{m}$ acts by t and t^{-1} respectively. Let C^{p} be the natural representation of $\mathrm{SO}(\mathrm{p})$. We assume that H in G satisfies (2.1) and is so that $H^{n c}=S O(2, k) \subset S O(2, p)$ is the subgroup which leaves the vectors $f_{k+1},$. . ., f_{p} fixed.
(3.BD.2) Proposition : Let G be an algebraic \mathbf{Q} group such that modulo centre, $G^{n c}$ is locally isomorphic to $S O(2, p)$ and let H be an algebraic \mathbf{Q} subgroup of G so that $H^{n c}=S O(2, k)$ is embedded in $S O(2, p)$ as above. Let Γ be an arithmetic subgroup of G. If $m \leq k\left(=\operatorname{dim}\left(h \cap p^{+}\right)\right)$then every cuspidal holomorphic m-form on the Shimura variety $S=S(\Gamma)$ is stably non-zero along H.
Proof : We will show that if $m \leq k$, then

$$
\text { (3.16) } E(G, H, m)=\wedge^{m} p^{+}
$$

Then the proposition follows from Proposition (2.2) . Now,

$$
h \cap p^{+}=\mathbf{C}^{+} \otimes\left(\mathbf{C} f_{1} \oplus \ldots \mathbf{C} f_{k}\right)
$$

Therefore, $\mathrm{E}(\mathrm{G}, \mathrm{H}, \mathrm{m})$ is the K_{C}-span of $f_{i_{1}} \wedge \ldots \wedge f_{i_{m}}$ (with $\left.i_{\mu} \leq k\right)$ and $\wedge^{m} p^{+}$is the K_{C}-span of $f_{j_{1}} \wedge \ldots \wedge f_{j_{m}}$ (with $j_{\nu} \leq p$). Obviously there is a matrix in $\mathrm{SO}(\mathrm{p})$ (in fact, a permutation matrix), which takes f_{1}, \ldots, f_{m} into $f_{j_{1}}, \ldots, f_{j_{m}}$. This proves (3.16).
(3.BD.3) Proposition : Let $m \geq 5, G^{n c}=S O(2, m)$ and q a θ-stable parabolic subalgebra of g such that $H^{2}\left(g, K, A_{\mathbf{q}}\right) \neq 0$. Then

$$
H^{2}\left(g, K, A_{\mathbf{q}}\right)=H^{1,1}\left(g, K, A_{\mathbf{q}}\right)
$$

Proof : By [VZ], section 6, the Hodge types of a cohomological representation are of the form ($\left.R^{+}+p, R^{-}+p\right)$. We will refer to the (R^{+}, R^{-}) Hodge-component as the primitive cohomology. If $R^{+}+R^{-}+2 p=2$, then, we have the following three cases .
(i) the primitive cohomology in degree 0 , and $\mathrm{q}=\mathrm{g}$,
(ii)the primitive cohomology is in degree 2 of type (1,1),
(iii) the primitive cohomology is of type $(2,0)$ or $(0,2)$. The dimensions of the holomorphic cohomology are listed in [Clo 2], and are of the form (if m is even) $l-1$ or $l+k-1(k \geq 0)$ where $l \geq 4$ is the absolute rank; hence the primitive cohomology can never be of type $(2,0)$ or $(0,2)$. the case when m is odd can be similarly handled. This completes the proof.
(3.C.1) Notation: Let G be a Q-group such that $G^{n c}=G S p$. We have seen in section (3.A.4) that $p^{+}=\operatorname{Sym}^{2}\left(\mathbf{C}^{g}\right)$. Similarly, it can be shown that $p^{-}=\operatorname{Sym}^{2}\left(\left(\mathbf{C}^{g}\right)^{*}\right)$. Let T denote the subgroup of diagonal elements of G.

Let $\mathrm{q}=\mathrm{q}(\mathrm{x})$ be a θ-stable parabolic subalgebra with holomorphic cohomology. We may then assume that the diagonal matrix x is of the form $\mathrm{x}=$ $\left(a_{1}, \ldots, a_{g},-a_{1}, \ldots,-a_{g}\right)$ with $a_{1} \geq \ldots \geq a_{g}$ and $a_{i}+a_{j} \geq 0$. Then

$$
u \cap p^{+}=\oplus \mathbf{C}\left(e_{i} \otimes f_{j}^{*}+e_{j} \otimes f_{i}^{*}\right)
$$

where the sum is over all i and j such that $x_{i}+x_{j}$ is strictly positive. Let k be defined by the inequalities

$$
a_{1} \geq \ldots \geq a_{k}>0=a_{k+1}=\ldots=a_{g} .
$$

Then, the roots of occurring in $u \cap p^{+}$are

$$
2 x_{1}, x_{1}+x_{2}, \ldots x_{1}+x_{g}
$$

$$
\begin{aligned}
& 2 x_{2}, \ldots x_{2}+x_{g} \\
& \quad 2 x_{k}, \ldots x_{k}+x_{g} .
\end{aligned}
$$

Moreover,

$$
\begin{gathered}
R=R^{+}=\operatorname{dim}\left(u \cap p^{+}\right)=k(k+1) / 2+k(g-k), \\
\mu\left(u \cap p^{+}\right)=(g+1)\left(x_{1}+x_{2}+\ldots+x_{k}\right)+k\left(x_{k+1}+\ldots+x_{g}\right) \\
=k\left(x_{1}+\ldots+x_{g}\right)+(g-k+1)\left(x_{1}+\ldots+x_{k}\right),
\end{gathered}
$$

and the K_{C}-span of $\wedge^{R}\left(u \cap p^{+}\right)$in $\wedge^{R} p^{+}$is (irreducible and) isomorphic to a subrepresentation of

$$
V_{k, g}=\left(\wedge^{g} \mathbf{C}^{g}\right)^{k} \otimes S y m^{g-k+1}\left(\wedge^{k} \mathbf{C}^{g}\right)
$$

Consider a Q-subgroup H of G such that $H^{n c}$ is the subgroup of $G^{n c}$ which takes the span of $e_{1}, \ldots, e_{h} ; f_{1}, \ldots, f_{h}$ into itself and acts trivially on the basis elements $e_{h+1}, \ldots, e_{g} ; f_{h+1}, \ldots, f_{g}$. Here, $1 \leq h \leq g-1$. Let $M=\mathrm{G}_{m} \subset T_{\mathbf{C}}$ be the subgroup which acts trivially on the basis elements $e_{1}, \ldots, e_{g-1} ; f_{1}, \ldots, f_{g-1}$, and acts by t (resp. t^{-1}) on e_{g} (resp. f_{g}) for all $t \in \mathbf{G}_{m}$.
(3.C.2) Proposition : Let H be a \mathbf{Q}-subgroup of G as above so that $H^{n c}=$ $G S p_{h}$ with $1 \leq h \leq g-1$. Then, every cuspidal holomorphic R-form on the Shimura variety S vanishes along H.
Proof: We assume, as we may, that the holomorphic R-form ω is of type A_{q} with q as in (3.A.1) and that $1 \leq R \leq \operatorname{dim}\left(p^{+} \cap h\right)$. We use the criterion of Proposition (2.6), with M as defined above. The weights of M occurring in $V_{k, g}$ are, by inspection, of the form $t^{k} \times t^{B}=t^{k+B},, k+B \geq 1$, whereas M centralises (all of H , and in particular) $p^{+} \cap h$. Therefore the proposition follows by Proposition (2.6).
(3.C.3) Notation : Let V_{i} be the span of e_{i} and f_{i} for each i. Let Ω be the symplectic form on the sum of all the V_{i} 's which is preserved by G. Its restriction Ω_{i} to V_{i} is non-degenerate . Thus we get an embedding of $H^{n c}=S p\left(\Omega_{1}\right) \times \ldots \times S p\left(\Omega_{g}\right) \subset G^{n c}=G S P_{g}$.
(3.C.4) Proposition : Let G and H be Q -groups so that $H^{\text {nc }}$ is imbedded in $G^{\text {nc }}=G S p_{g}$ as in (3.C.3). Then, a cuspidal holomorphic g-form on the Shimura variety S (associated to a congruence subgroup of G) is stably non-zero along H.

Proof : Suppose first that R=g. Assume, as one may, that the holomorphic g -form is of type A_{q} associated to a parabolic q, with holomorphic cohomology. Then (3.C.1) shows that g is of the form $k(k+1) / 2+k(g-k)$, with $1 \leq k \leq g$. Solving this, we see that $\mathrm{k}=1$.

Now $\mu\left(u \cap p^{+}\right)$is the $K_{\mathrm{C}^{-} \text {-span }}$ of the vector $e_{1}^{2} \wedge e_{1} e_{2} \wedge \ldots \wedge e_{1} e_{g}$ in $\wedge^{g}\left(\operatorname{sym}^{2}\left(\mathbf{C}^{g}\right)\right)$. To prove the proposition, it is enough to show, by Corollary (2.4) , that $e_{1}^{2} \wedge e_{1} e_{2} \wedge \ldots \wedge e_{1} e_{g}$ belongs to $\mathrm{E}(\mathrm{G}, \mathrm{H}, \mathrm{g})$.

Now, the element $e_{1}^{2} \wedge e_{2}^{2} \wedge . . \wedge e_{g}^{2}$ belongs to $\wedge^{g}\left(h \cap p^{+}\right)$. Let t_{2}, \ldots, t_{g} be variables. The unipotent matrix which sends the basis $e_{1}, e_{2}, \ldots, e_{g}$ to the elements $e_{1}, e_{2}+t_{2} e_{1}, \ldots, e_{g}+t_{g} e_{1}$ lies in $K_{\mathrm{C}}=G L\left(\mathbf{C}^{g}\right)$ and so

$$
e_{1}^{2} \wedge\left(e_{2}+t_{2} e_{1}\right)^{2} \wedge \ldots \wedge\left(e_{g}+t_{g} e_{1}\right)^{2}
$$

may be viewed as an $\mathrm{E}(\mathrm{G}, \mathrm{H}, \mathrm{g})$-valued polynomial in the t's . Therefore all its coefficients lie in $\mathrm{E}(\mathrm{G}, \mathrm{H}, \mathrm{g})$ and in particular, the coefficient of $t_{2} \times \ldots \times t_{g}$, which is precisely $e_{1}^{2} \wedge e_{1} e_{2} \wedge \ldots \wedge e_{1} e_{g}$, lies in $\mathrm{E}(\mathrm{G}, \mathrm{H}, \mathrm{g})$. The proof is over.
(3.C.5) Notation : More generally, we may consider subgroups which are products of lower dimensional symplectic groups. To be precise, let $P_{\mathrm{i}}, 1 \leq$ $i \leq m$ be a partition of the set whose elements are $1,2, \ldots$, g . Let E_{i} (resp. F_{i}) be the span of the vectors e_{μ} (resp. f_{μ}) with $\mu \in P_{i}$. The restriction Ω_{i} of the form Ω to the direct sum V_{i} of E_{i} and F_{i} is clearly non-degenerate . Let $H^{n c}$ be the product $\Pi_{i=1}^{m} S p\left(\Omega_{i}\right)$.
(3.C.6) Proposition : Let G and H be \mathbf{Q}-groups so that H is imbedded in $G=G S p_{g}$ as in (3.C.5). Then, a cuspidal holomorphic R-form on the Shimura variety S associated to a congruence subgroup of G, is stably nonzero along H if and only if $R=g$.

Proof : Suppose that $\mathrm{R}=\mathrm{g}$ and ω is a holomorphic g -form on S . Then, by replacing H by the smaller group $H^{\prime}=S p_{1}^{g}$ as in (3.A.4), we see that ω is stably non-zero along H^{\prime} and hence along H .

Assume now that ω is a holomorphic R -form of type A_{q} which is stably non-zero along H . We will show that $\mathrm{R}=\mathrm{g}$. We assume, as we may, by
replacing $E_{i}(i \geq 2)$ (resp $F_{i}(i \geq 2)$) by their direct sum $\mathrm{E}^{\prime}\left(\right.$ resp. $\left.\mathrm{F}^{\prime}\right)$ and replacing H by the possibly larger group $S p\left(E_{1} \oplus F_{1}\right) \times S p\left(E^{\prime} \oplus F^{\prime}\right)$, that $\mathrm{m}=2$ and $H=S p_{a} \times S p_{b}$ with $a+b=g$.

Let b be the Borel-subalgebra of upper-triangular matrices in $k=g l_{g}$, n the nil-radical of b and $n_{H}=n \cap k_{H}$. Let $m=m_{a b}$ be the span of the matrices $E_{i j}$ with $1 \leq i \leq a \leq j \leq g$. Then $n=n_{H} \oplus m$.

Then m is an ideal in n and by the Poincare-Birkhoff-Witt Theorem we have

$$
\begin{equation*}
u(n)=u(m) \otimes u\left(n_{H}\right) \tag{3.17}
\end{equation*}
$$

and there exists a θ stable parabolic $q_{H} \subset h$ (which is holomorphic in degree R) and an $\alpha \in u(n)$ such that

$$
\begin{equation*}
e(q)=\alpha \pi_{q}\left(e\left(q_{H}\right)\right) \tag{3.18}
\end{equation*}
$$

We assume, as we may by (3.17), that $\alpha \in u(m)$ and that it is an eigenvector for T . We may write $q_{H}=q_{1} \oplus q_{2}$ with $q_{1} \subset s p_{a}$ and $q_{2} \subset s p_{b}$ such that $\operatorname{dim} u_{i}^{+}=R_{i}$ for $\mathrm{i}=1,2$ and $u_{i}^{-}=0$. Let v_{H} denote the image of $e\left(q_{H}\right)$ under the map π_{q}.

The weight of $e(q)$ under T is given by
(3.19) $(g+1) x_{1}+\ldots+(g+1) x_{k}+k\left(x_{k+1}+\ldots+k x_{g}\right)$.

The weight of α is of the form

$$
\begin{equation*}
\sum_{i \leq a<j} m_{i j}\left(x_{i}-x_{j}\right) \tag{3.20}
\end{equation*}
$$

where $m_{i j}$ are non-negative integers.
The weight of v_{H} is, (for suitable numbers $r \leq a$ and $s \leq b$) of the form
(3.21) $(a+1) x_{1}+\ldots+(a+1) x_{r}+r\left(x_{r+1}+\ldots+r x_{a}\right)$.

$$
+(b+1) x_{a+1}+\ldots+(b+1) x_{a+s}+s\left(x_{a+s+1}+\ldots+s x_{g}\right) .
$$

Denote by $\mathrm{V}(\mathrm{k}, \mathrm{g})$ the representation $\mathrm{V}(\mathrm{q})$. Then as $K_{H}=G L_{a} \times G L_{b^{-}}$ modules, the inclusion of $V\left(q_{H}\right)$ in $\mathrm{V}(\mathrm{q})$ as above implies the inclusion of $V(r, a) \otimes V(s, b)$ in $V(\mathrm{k}, \mathrm{g})$.

Consider the permutation matrix $w_{0} \in G L_{g}=K$ which takes the basis $e_{1}, \ldots, e_{b} ; e_{b+1}, e_{b+2}, \ldots, e_{g}$ into the vectors $e_{a+1}, \ldots, e_{g} ; e_{1}, e_{2}, \ldots, e_{a}$. Conjugation by w_{0} takes $H=S p_{a} \times S p_{b}$ into the group $H^{\prime}=S p_{b} \times S p_{a}$ and the w_{0}-translate of v_{H} is a vector $v_{H^{\prime}}$ which corresponds to the heighest weight vector for $K_{H^{\prime}}$ and gives a $K_{H^{\prime}}=w_{0} K_{H} w_{0}^{-1}$-equivariant inclusion of $V(s, b) \otimes V(r, a)$ in $V(\mathrm{k}, \mathrm{g})$.

As before, we get an element $\beta \in u\left(m_{b a}\right)$ where $m^{\prime}=m_{b a}$ is defined as the span of $E_{i j}$ with $i \leq b$ and $j>a$ such that

$$
\text { (3.22) } \quad e(q)=\beta\left(v_{H^{\prime}}\right)
$$

We now prove that $\mathrm{R}=\mathrm{g}$ by considering several cases.
Case 1: $r<a$ and $s<b$. Compare the coefficient of x_{g} on both sides of (3.18). We get $s-\sum m_{i g}=k$ and hence $k<g$ and $s \geq k$. Similarly, we get from (3.22) that $a>r \geq k$. Comparing the weights of x_{a} in (3.18) we get $r+\sum m_{a j}=k$ and $r \leq k$. Similarly,$s \leq k$. Therefore $\mathrm{r}=\mathrm{s}=\mathrm{k}$. Then
$R=g k-k(k-1) / 2=a r-r(r-1) / 2+b s-s(s-1) / 2=(a+b) k-k(k-1)$
i.e., $k(k-1) / 2=0$ and $\mathrm{k}=1$.

Case 2: $r=a$ and $s<b$. If $a>k$ compare x_{a} coefficients in (3.18) and get $a+1 \leq k$-a contradiction. Therefore $a \leq k$. Compare x_{g} coefficients in (3.18) and get $s \geq k$. Thus $b>k$. Now compare the coefficient of x_{g} (resp. of x_{b}) in (3.22) and get $a+1 \geq k$ (resp. $s \leq k$). Thus $s=k$ and $a+1=k$ and

$$
R=g k-k(k-1) / 2=b s-s(s-1) / 2+a(a+1) / 2=b k
$$

and we get $(k-1) k=a k=k(k-1) / 2$ and so, $\mathrm{k}=1$.
Case 3: $a<r$ and $s=b$. By symmetry, we get $\mathrm{k}=1$, exactly as in Case 2.

Case 4: $r=a$ and $s=b$. If $a>k$ compare the coefficients of x_{a} in (1) and get $a+1 \leq k$ a contradiction. Hence $a \leq k$ and similarly $b \leq k$. Compare x_{g} coefficients in (3.18) and get $b+1 \geq k$. Similarly $a+1 \geq k$. If $a=k$ then

$$
k(k+1) / 2+b k=g k-k(k-1) / 2=R=k(k+1) / 2+b(b+1) / 2
$$

i.e., $(b+1) / 2=k \geq b$ and $b \leq 1$; so $\mathrm{b}=1$ and $\mathrm{k}=1$. Similarly if $b=k$ we get $a=1$ and $k=1$.

If $a+1=b+1=k$ then $R=k(k-1)=2(k-1) k-k(k-1) / 2$ which again shows that $\mathrm{k}=1$.

The proof is complete.
(3.C.7) Notation : In this section we will consider θ-stable parabolic subalgebras q which contribute to cohomology but not necessarily to holomorphic cohomology. Let $\mathrm{q}=\mathrm{q}(\mathrm{x})$ be associated with the diagonal matrix x with entries $\left(a_{1}, \ldots, a_{g}\right)$ where, this time, we do not necessarily have $u \cap p^{+}$ $=0$. We may still assume that the a's are in decreasing order. Let $r \leq s$ be defined by the inequalities

$$
a_{1} \geq \ldots \geq a_{r}>0=a_{r+1}=\ldots=a_{s}>a_{s+1} \geq \ldots \geq a_{g} .
$$

Then, the roots of t occurring in $u \cap p^{+}$contain the roots $x_{i}+x_{j}$ with $i \leq r$ and $j \leq s$. Therefore

$$
\begin{equation*}
R^{+} \geq(s(s+1) / 2)-(s-r)(s-r+1) / 2 \tag{3.23}
\end{equation*}
$$

Similarly, the roots of t occurring in $u \cap p^{-}$contain the roots $-\left(x_{l}+x_{m}\right)$ with $r+1 \leq l \leq g$ and $s+1 \leq m \leq g$. Therefore

$$
\begin{equation*}
R^{-} \geq((g-r)(g-r+1) / 2)-(s-r)(s-r+1) / 2 \tag{3.24}
\end{equation*}
$$

We are interested in those A_{q} 's which have cohomology of degree g. By [VZ] Section 6 , it follows that

$$
\begin{equation*}
g=R^{+}+l+R^{-}+l \text { with } l \geq 0 . \tag{3.25}
\end{equation*}
$$

(3.C.8) Proposition : Let q be a θ-stable proper parabolic subalgebra of g such that the cohomological representation A_{q} has cohomology in degree $g)$. Then, the cohomology in degree g of A_{q} is either holomorphic or antiholomorphic, unless $g=2$.

Proof : If $\mathrm{r}=0$ then all roots are non-positive on x and so A_{q} has anti-holomorphic cohomology in degree g and by (3.25), has no mixed or holomorphic cohomology of degree g . If $\mathrm{s}=\mathrm{g}$, then again all roots are nonnegative on x and all the cohomology of A_{q} in degree g is holomorphic. We may thus assume that $r=u+1$ and $g=s+v+1$ with $u, v \geq 0$. Put $\mathrm{s}=a+\mathrm{r}$ with $a \geq 0$.

In (3.23) , (3.24) and (3.25) we write all inequalities in terms of a, u, v and l and obtain, after simplification,

$$
(u(u+1)) / 2+(v(v+1) / 2)+a(u+v+1)+l \leq 0 .
$$

This can happen if and only if u, v, a and l are all zero, i.e., $r=s=1$ and $g=2$. This proves the proposition.
(3.D.1) Notation : In this section $G^{n c}=S O^{*}(2 n)$ with $n \geq 4$. Thus,

$$
G^{n c}=\left\{\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right)=g \in S U(n, n) ;{ }^{t} g\left(\begin{array}{cc}
0 & 1_{n} \\
1_{n} & 0
\end{array}\right) g=\left(\begin{array}{cc}
0 & 1_{n} \\
1_{n} & 0
\end{array}\right)\right\} .
$$

Moreover ,

$$
K_{\infty}=\left\{\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right)=g \in G^{n c} ; B=C=0\left(\text { and } D={ }^{t} A^{-1}\right)\right\} .
$$

is a maximal compact subgroup of $G^{n c}$. The Lie-algebra $\operatorname{so}{ }^{*}(2 n)$ of $G^{n c}$ is stable under the Cartan-involution $X \rightarrow-^{t} \bar{X}$ of the Lie-algebra of $\mathrm{U}(\mathrm{n}, \mathrm{n})$. Furthermore, the intersection T of $G^{\text {nc }}$ with the diagonal matrices in $\mathrm{U}(\mathrm{n}, \mathrm{n})$ is a θ-stable Cartan-subgroup of $S O^{*}(2 n)$. We also have

$$
\begin{aligned}
& p^{+}=\left\{\left(\begin{array}{ll}
0 & B \\
0 & 0
\end{array}\right) ; B=^{t} B\right\}, \\
& p^{-}=\left\{\left(\begin{array}{ll}
0 & 0 \\
C & 0
\end{array}\right) ; C==^{t} C\right\} .
\end{aligned}
$$

As a representation of $K_{\mathrm{C}}=G L_{n}=G L\left(\mathbf{C}^{n}\right), p^{+}=\wedge^{2}\left(\mathbf{C}^{n}\right)$. Fix $X \in i \operatorname{Lie}(T)$,

$$
X=\left(a_{1}, \ldots, a_{n},-a_{1}, \ldots,-a_{n}\right)
$$

with $a_{1} \geq a_{2} \geq \ldots \geq a_{n}$.
We determine the parabolic θ-stable subalgebras q which contribute to holomorphic cohomology. As $u \cap p^{-}=0$, we must have $a_{i}+a_{j} \geq 0$ (for all i, j with $i \neq j$). Thus ,

$$
a_{1} \geq a_{2} \geq \ldots \geq a_{n-1} \geq+a_{n},-a_{n}
$$

If $a_{n-1}+a_{n}>0$, then $a_{i}+a_{j}>0$ for all i and j and therefore $q=p^{+}+k$. We assume then that $a_{n-1}+a_{n}=0\left(\geq 2 a_{n}\right)$.

Case 1: $a_{n}=0$. Let $k(\leq n-1)$ be defined by the inequalities

$$
a_{1} \geq \ldots \geq a_{k}>0=a_{k+1}=\ldots=a_{n-1}=a_{n}
$$

Then the roots in p^{+}which are positive on X are

$$
\begin{gathered}
x_{1}+x_{2}, x_{1}+x_{3}, \ldots, x_{1}+x_{n} \\
\ldots \ldots \ldots \cdots \cdots \cdots \cdots \cdots \\
x_{k}+x_{k+1}, x_{k}+x_{k+2}, \ldots, x_{k}+x_{n} .
\end{gathered}
$$

Then $\mu(q)=(n-1)\left(x_{1}+\ldots+x_{k}\right)+k\left(x_{1}+\ldots+x_{n}\right)$ and so, the representation $\mathrm{V}(\mathrm{q})$-which we denote by $W_{k, n}$ in order to keep track of k may be thought of as a subrepresentation of

$$
\left(\wedge^{n} \mathbf{C}^{n}\right)^{k} \otimes S y m^{n-1-k}\left(\wedge^{k} \mathbf{C}^{n}\right)
$$

Case 2: $a_{n}<0$. Let $k \leq n-2$ be defined by the inequalities

$$
a_{1} \geq \ldots \geq a_{k}>a_{k+1}=\ldots=a_{n-1}=-a_{n}>0 .
$$

The roots in p^{+}which are positive on X are :

$$
x_{1}+x_{2}, x_{1}+x_{3}, \ldots, x_{1}+x_{n}
$$

$$
x_{k}+x_{k+1}, x_{k}+x_{k+2}, \ldots, x_{k}+x_{n}
$$

and

$$
\begin{gathered}
x_{k+1}+x_{k+2}, x_{k+1}+x_{k+3}, \ldots, x_{k+1}+x_{n-1} \\
\cdots \cdots \cdots \cdots \cdots \cdots \\
x_{n-2}+x_{n-1} .
\end{gathered}
$$

Consequently

$$
\mu(q)=(n-1)\left(x_{1}+\ldots+x_{k}\right)+(n-2)\left(x_{k+1}+\ldots+x_{n-1}\right)+k x_{n}
$$

and so, the representation $\mathrm{V}(\mathrm{q})$-which we denote by $V_{k, n}$ - may be thought of as a subrepresentation of

$$
\left(\wedge^{n} \mathbf{C}^{n}\right)^{k} \otimes S y m^{n-2-k}\left(\wedge^{k} \mathrm{C}^{n}\right) \otimes\left(\wedge^{k} \mathrm{C}^{n}\right)
$$

We now consider restriction from $\mathrm{U}(\mathrm{n}, \mathrm{n})$ to $S O^{*}(2 n)$.
(3.D.2) Proposition : Let G be a \mathbf{Q}-group, H a \mathbf{Q}-subgroup such that $G^{\text {nc }}=U(n, n) \supset H^{n c}=S O^{*}(2 n)$ embedded as in (3.D.1). Then every holomorphic cuspidal form on $\Gamma \backslash G / K(\Gamma$ is an arithmetic subgroup of $G(\mathbf{Q})$) vanishes along H.

Proof: We will check that for every $r, s \geq 0 r+s>0(q=q(r, s)$ is defined as in (3.A.3), and $V_{r, s}(q)=V(q(r, s))$)

$$
A(G, H, R) \cap V_{r, s}(q)=0 .
$$

Then, the proposition follows from (2.7) .
We assume that $r \geq 1$. Let b be the Borel-subalgebra of $k_{\mathbf{C}}=u(n)_{\mathbf{C}} \oplus$ $u(n)_{\mathbf{C}} \subset g_{\mathbf{C}}$, where the first factor is the space of upper-triangular matrices and the second is the space of lower triangular matrices. Then $b_{H}=b \cap h$ is a Borel-subalgebra of k_{H}. Now $k_{2}=0 \oplus u(n)_{\mathbf{C}}$ is an ideal in k_{C} and therefore $b \cap k_{2}=b_{2}$ is an ideal in b . Thus, by the Poincare-Birkhoff-Witt Theorem, we see that

$$
\begin{equation*}
u(b)=u\left(b_{2}\right) \otimes u\left(b_{H}\right) \tag{3.26}
\end{equation*}
$$

Suppose $V\left(q_{H}\right)=V_{k, n}$ or $V\left(q_{H}\right)=W_{k, n}$ occurs as a sub-representation of the K_{H}-module $\mathrm{V}(\mathrm{q})$. Write

$$
\begin{gathered}
R=\operatorname{dim}\left(u(q) \cap p^{+}\right)=\operatorname{dim}\left(u\left(q_{H}\right) \cap p_{H}^{+}\right) \\
v_{H}=\wedge^{R}\left(p_{H}^{+} \cap u\left(q_{H}\right)\right), \quad v_{G}=\wedge^{R}\left(p^{+} \cap u(q)\right)
\end{gathered}
$$

As v_{G} is the unique highest weight vector in $\mathrm{V}(\mathrm{q})$, there exists a $\alpha \in u(b)$ such that

$$
\text { (3.27) } \quad v_{G}=\alpha\left(v_{H}\right)
$$

Using (3.26) and the fact that v_{H} is a highest weight vector for $u\left(b_{H}\right)$, we may assume that $\alpha \in u\left(b_{2}\right)$. Now $K \subset U(n, n)$ acts on $\mathbf{C}^{n} \oplus \mathbf{C}^{n}$. In the notation of (3.A.1),

$$
\begin{aligned}
& \left.v_{G}=\left(e_{1} f_{1}^{*} \wedge \ldots \wedge e_{1} f_{n}^{*}\right)\right) \wedge \ldots \wedge\left(e_{r} f_{1}^{*} \wedge \ldots \wedge e_{r} f_{n}^{*}\right) \wedge \\
& \wedge\left(\left(e_{r+1} f_{1}^{*} \wedge \ldots \wedge e_{r+1} f_{s}^{*}\right)\right) \wedge \ldots \wedge\left(e_{n} f_{1}^{*} \wedge \ldots \wedge e_{n} f_{s}^{*}\right)
\end{aligned}
$$

Now α is in the tensor space generated by f_{j} and f_{j}^{*} and

$$
v_{H}=\left(e_{1} f_{2}^{*}-e_{2} f_{1}^{*}\right) \wedge \ldots \wedge\left(e_{1} f_{n}^{*}-e_{n} f_{1}^{*}\right) \wedge(e t c)
$$

the other terms (marked etc) in v_{H} do not involve e_{1}. The e_{1}-degrees of v_{G}, α and v_{H} are respectively n (because $r \geq 1$), $0, \mathrm{n}-1$, which makes the equation (3.27) impossible. Therefore $r=0$. Similarly $s=0$. This completes the proof.
(3.D.3) Notation : We now choose $G^{n c}=S O^{*}(2 n)$ and for $m \leq n-1$ consider $H^{n c}=S O^{*}(2 m)$ embedded as the subgroup of $G^{n c} \subset G L_{2 n}$ of elements g such that $g_{i j}=\delta_{i j}$ for $i \leq n-m$ or $j>n+m$.
(3.D.4) Proposition : Let G and H be \mathbf{Q}-groups such that $G^{n c}=$ $S O^{*}(2 n) \supset H^{n c}=S O^{*}(2 m)$ embedded as above . Then, every cuspidal holomorphic form on $\Gamma \backslash G / K(\Gamma \subset G(\mathbf{Q})$ an arithmetic subgroup) vanishes along H.

Proof : Let

$$
S=\left\{\theta(t) \in T_{\mathrm{C}}: \theta(t)\left(e_{1}\right)=t e_{1}, \theta(t) f_{n}=t^{-1} f_{n} \text { and } \theta(t)(v)=v\right\}
$$

where v is in the span of e_{i} with $i \neq 1$ and f_{j} with $j \neq n$.
Thus S is a G_{m} and centralises H . Its weights on $V_{k, n}$ and $W_{k, n}$ are of the form t^{k+m} where m is non-negative. By (2.6) our proposition follows .

4. Review of a conjecture on the Zeta-functions of Shimura Varieties

(4.1) Notation : To each non-archimedean local field F_{v} we associate the group $W_{F_{v}} \times S U(2, \mathbf{R})$ which we call the Langlands group $\mathcal{L}_{F_{v}}$ of the local field F_{v}. If F_{v} is archimedean, the Langlands group is taken to be the Weil group of F_{y}. Given a reductive algebraic group G over F_{v}, the semi-direct product ${ }^{L} G=\hat{G} \times W_{F_{\mathrm{v}}}$ is the Langlands dual. We recall the

Local Langlands Conjecture . There is a partition of the set $\Pi\left(G\left(F_{v}\right)\right)$ of equivalence classes of irreducible admissible representations of $G\left(F_{v}\right)$ into finite subsets, called L-packets, such that there is a natural bijection between L-packets $\Pi=\Pi\left(\phi^{\prime}\right)$ and the set of \hat{G}-conjugacy classes of continuous homomorphisms ϕ^{\prime} (with image of each element being semi-simple) of $\mathcal{L}_{F_{v}}$ into ${ }^{L} G(\mathbf{C})$ which is compatible with the natural maps to $W_{F_{v}}$.

We assume the existence of the Langlands group \mathcal{L}_{F}, associated to a number-field \mathbf{F}. This is a conjectural extension of the Weil group W_{F} by a compact group. This group is supposed to satisfy, among others, the following conditions .

The isomorphism classes of continuous n-dimensional representations ϕ^{\prime} of the Langlands group are in natural bijection with the set of equivalence classes of cuspidal representations π of $G L_{n}\left(\mathbf{A}_{F}\right)$. In particular, the Abelianisations of the Weil group and the Langlands group are the same.

Given now a number field F and a place v of F , there exists a special conjugacy class of embeddings $i_{v}: \mathcal{L}_{F_{v}} \rightarrow \mathcal{L}_{F}$. Let ϕ be an irreducible representation of \mathcal{L}_{F}. Its restriction ϕ_{v} to $\mathcal{L}_{F_{v}}$ has a local factor $L\left(s, \phi_{v}\right)$ as in [Tate (Corvallis)] and the bijection between ϕ and π is such that the corresponding local factors $L\left(s, \phi_{v}\right)$ and $L\left(s, \pi_{v}\right)$ are the same for almost all the places.

A Langlands Parameter is a continuous homomorphism

$$
\phi^{\prime}: \mathcal{L}_{F} \rightarrow^{L} G
$$

such that the image of every element is semi-simple and such that ϕ^{\prime} commutes with the projections to W_{F}. An Arthur Parameter is a continuous homomorphism

$$
\phi: \mathcal{L}_{F} \times S L_{2}(\mathbf{C}) \rightarrow^{L} G
$$

such that the restriction to $S L_{2}(\mathbf{C})$ is holomorphic, the restriction to \mathcal{L}_{F} is a Langlands Parameter, and the image of \mathcal{L}_{F} is bounded modulo the center of \hat{G}. Given an Arthur parameter ϕ, define the Langlands parameter

$$
\phi^{\prime}(w):=\phi\left(w,\left(\begin{array}{cc}
|w|^{1 / 2} & 0 \\
0 & |w|^{-1 / 2}
\end{array}\right)\right.
$$

where $|w|: \mathcal{L}_{F} \rightarrow \mathbf{R}_{+}^{*}$ is the pullback of the absolute-value map of W_{F}.
Fix a place v; the restriction ϕ_{v} of ϕ to $\mathcal{L}_{F_{v}} \times S L(2, \mathrm{C})$ is conjectured to correspond to an Arthur- packet $\Pi\left(\phi_{v}\right)$ which contains the L-packet $\Pi\left(\phi_{v}^{\prime}\right)$ corresponding to ϕ_{v}^{\prime}. For almost all finite $v, \Pi\left(\phi_{v}\right)$ should contain a unique unramified representation π_{v}^{0}. Define the global A-packet $\Pi(\phi)=\otimes \Pi\left(\phi_{v}\right)$ which is the set of restricted tensor products $\otimes \pi_{v}$ where $\pi_{v} \in \Pi\left(\phi_{v}\right)$ for all v and $\pi_{v}=\pi_{v}^{0}$ for almost all v.

If F is a local field, the Arthur parameter $\phi_{G, \text { triv }}$ of the trivial representation of G is given as follows.

$$
\phi_{G, t r i v}: W_{F} \times S L_{2}(\mathbf{C}) \rightarrow^{L} G
$$

is trivial on the Weil group of F and is a map which is non-trivial on $S L_{2}(\mathbf{C})$ and takes the upper triangular unipotent group in $S L_{2}(\mathrm{C})$ to the one parameter subgroup generated by a regular unipotent element in ${ }^{L} G$.

Suppose now, that the local field is \mathbf{R} and that G is as in (2.1). An Arthur parameter

$$
\phi: W_{\mathbf{R}} \times S L_{2}(\mathbf{C}) \rightarrow^{L} G
$$

is called cohomological if the associated Arthur-packet consists of cohomological representations. Write $W_{\mathbf{R}}=\mathbf{C}^{*} \cup \mathbf{C}^{*} \sigma_{\infty}$. Upto equivalence, the cohomological Arthur-parameters are indexed by parabolic subgroups P (containing a fixed Borel Subgroup B), whose Lie algebra is of the form $\mathrm{q}(\mathrm{x})$ and contains b_{0} (as defined in(2.1)). Let T denote the maximal torus in K and (hence in G) whose Lie algebra is the centraliser of x . Let M be the Levi-part of P which contains T . Let \hat{M} denote the dual group of M which embeds naturally into \hat{G}.

Let δ_{M} denote half the sum of positive roots of of T occurring in M. Put $\hat{\delta}_{P}=\delta_{G}-\delta_{M}$. We may think of $\hat{\delta}_{P}$ as a weight of T or as a co-weight of \hat{T}. Now, there exists an element of the Weyl group of T in G (or in M) such that conjugation by it acts as the inverse on T because T is anisotropic. Let
w_{M} be an element of the Weyl group of \hat{T} in \hat{M} which does the same for \hat{T}. We now describe the Arthur Parameter corresponding to P by the formulae (see [Art 1])

$$
\begin{gathered}
\xi_{P}(z)=(z / \bar{z})^{\delta_{P}} \\
\xi_{P}\left(\sigma_{\infty}\right)=w_{G} w_{M}^{-1} \times \sigma_{\infty} \\
\phi_{P}=\xi_{P} \circ \phi_{M, t r i v} .
\end{gathered}
$$

We return to the notation of (2.1). Let L_{d}^{2} denote the discrete part of the right-regular representation of $G(\mathbf{A})$ on the space $L^{2}(\omega)$ of functions on the quotient $G(\mathbf{Q}) Z(\mathbf{A}) \backslash G(\mathbf{A})$ which are square-integrable modulo the centre of $G(\mathbf{A})$ and which transform according to a fixed unitary character ω under $Z(\mathbf{A})$. It is well known that $L_{d}^{2}(\omega)$ is a direct sum of irreducible representations π, of $G(\mathbf{A})$, each occurring with a finite multiplicity which we denote by $m(\pi)$. We will call these π discrete representations. Of course, if $G(\mathbf{Q}) Z(\mathbf{A}) \backslash G(\mathbf{A})$ is compact, then $L_{d}^{2}(\omega)$ is equal to $L^{2}(\omega)$.

Arthur conjectures that there exists a partition of the set \mathcal{E} of (equivalence classes) of discrete representations, into subsets $\mathcal{E} \cap(\Pi)$, where Π is a global A-packet corresponding to an A-parameter ϕ as above. The A-parameter satisfies some additional properties in this case ;for a discussion of these, we refer the reader to [B1-Ro],section (3.4) .

We assume from now on, that G is as in (2.1) . More precisely, we assume as in [De 1], that we have a an algebraic group G defined over \mathbf{Q} and a homomorphism $h: R_{\mathbf{C} / \mathbf{R}}\left(G_{m}\right) \rightarrow G$ defined over \mathbf{R} which satisfies the axioms of [De 1]. We will assume that the image of the restriction μ of h to the "first" factor G_{m} (in the identification of the complex points of the group $R_{\mathbf{C} / \mathbf{R}}$ as a product of two copies of G_{m}) lies in a maximal torus T of G which is defined over \mathbf{Q}. Let Γ_{μ} denote the subgroup of the Galois-group of \mathbf{Q} which fixes the conjugacy class of μ. This is an open subgroup of finite index and corresponds to a finite extension E (called the reflex field of (G, h))

Let K_{f} be an open compact subgroup of $G\left(\mathbf{A}_{f}\right)$. Form the quotient $S=$ $S\left(K_{f}\right)=G\left(\mathbf{Q} Z(\mathbf{A}) \backslash G(\mathbf{A}) / K_{f}\right.$. Each of its connected components is of the form $S=S(\Gamma)$ for some arithmetic subgroup Γ of $G(\mathbf{Q})$. Let $\widehat{S\left(K_{f}^{\prime}\right)}$ denote
the Bailey-Borel-Satake compactification of S. This is a projective variety, which is not smooth in general, and is defined over the reflex field E . By Zucker's conjecture (Theorem of Looienga, Saper-Stern), the intersectioncohomology $I H^{*}\left(S\left(K_{f}\right)\right)$ with middle perversity, of $S\left(K_{f}\right)$, is naturally isomorphic to the L^{2}-cohomology $H_{2}^{*}\left(S\left(K_{f}\right)\right)$ of the space $S\left(K_{f}\right)$. By the Matshushima formula, we then have

$$
I H^{*}\left(\widehat{S\left(K_{f}\right)}, \mathbf{C}\right)=\oplus m(\pi) H^{*}\left(g, K, \pi_{\infty}\right) \otimes \pi_{f}^{K_{f}}
$$

where π runs through the discrete representations, $\pi_{f}^{K \prime}$ denotes the space of vectors in π_{f} which are fixed under K_{f}.

The intersection cohomology $I H^{i}$ is defined over \mathbf{Q} and it has \mathbf{Q}_{l} analogues in etale cohomology, and these satisfy the Weil (purity) conjectures ([Bei-Ber-De]). The etale cohomology comes equipped with an action of the Galois-group Γ_{E} of the number-field E over which all these $S \widehat{\left(K_{j}\right)}$ are defined

Consider the direct limit, as the open subgroups K_{f} of the group $G\left(\mathbf{A}_{f}\right)$ become smaller and smaller, of the i-th $L_{d^{-}}^{2}$ cohomology groups of the Shimura varieties $\mathrm{Sh}\left(\mathrm{G}, K_{f}\right)$ with coefficients in \bar{Q}_{l}. This limit admits an action by the group $G\left(\mathbf{A}_{f}\right)$, and decomposes as a direct sum of irreducible representations π_{f} (with finite multiplicity) under it:

$$
\lim H_{2}^{\dot{i}}\left(S\left(K_{f}\right), \mathbf{Q}_{1}\right)=\oplus H^{i}\left(\pi_{f}\right) \otimes \pi_{f},
$$

and $H^{i}\left(\pi_{f}\right)$ is finite dimensional. Moreover, the representations are defined over a finite extension of \mathbf{Q}_{l} and hence so is the space $H^{i}\left(\pi_{f}\right)$. The action of Γ_{E} commutes with the action of $G\left(\mathbf{A}_{f}\right)$ on this direct limit and therefore we get a representation $\rho^{i}\left(\pi_{f}\right)$ of Γ_{E} on $H^{i}\left(\pi_{f}\right)$. Let ϕ be the Arthur parameter corresponding to a representation π whose finite part is π_{f} and whose infinite part is cohomological.

We return to the homomorphism μ which gives dually, a homomorphism $\hat{\mu}$ of \hat{T} into \mathbf{G}_{m}.. After a conjugation by an element of the Weyl-group of \hat{G}, \hat{T} this yields a representation (r, V) of the semi-direct product $\hat{G} \times W_{E}$. If ϕ is as in the above paragraph, we may form the representation $r \circ \phi_{E}$ of $\mathcal{L}_{E} \times S L_{2}(\mathrm{C})$, where ϕ_{E} is the restriction to $\mathcal{L}_{E} \times S L_{2}(\mathrm{C})$ of ϕ.

Denote (by an abuse of notation) by \mathbf{G}_{m} the group of diagonal matrices in $S L_{2}$. Restrict $r \circ \phi$ to \mathbf{G}_{m}. For each integer i, denote by V^{i} the subspace
of V on which $t \in \mathrm{G}_{m}$ acts by the character t^{i-d} where d is the dimension of the Shimura variety. We note that the image of \mathcal{L}_{E} commutes with that of \mathbf{G}_{m} and so, the image of \mathcal{L}_{E} under the representation $r \circ \phi_{E}^{\prime}$ (ϕ_{E}^{\prime} is as in (4.1)) also commutes with G_{m}. Therefore V^{i} is left stable by the image of \mathcal{L}_{E} under $r \circ \phi_{E}^{\prime}$. We denote this representation of \mathcal{L}_{E} also by V^{i}.
(4.2) Conjecture on the Zeta-Function of $S h\left(G, K_{f}\right)$: The representation $\rho^{i}\left(\pi_{f}\right)$ is a subrepresentation of $\theta^{d} \otimes V^{i}$. Here d is the complex dimension of the Shimura variety and θ^{d} is the d-th power of the cyclotomic character .
(We note that $\rho^{i}\left(\pi_{f}\right)$ is a representation of Γ_{E} and therefore of \mathcal{L}_{E}). For a much more precise statement of the conjecture see (5.2) of [Bl-Ro].

We now collect together some consequences of the conjecture (4.2). Note that in the consequences below, the assumptions on the A-parameters need be verified only at the Archimedean places.
(1) Suppose that the centraliser of the image of $S L_{2}$ under the map ϕ_{∞} has Abelian Lie algebra. Then, for each $\pi \in \Pi(\phi)$ and for each i , the representation $\rho^{i}\left(\pi_{f}\right)$ is potentially Abelian, i.e., the image of an open subgroup of Γ_{E} under $\rho^{i}\left(\pi_{j}\right)$ is Abelian.
(2) Suppose that for some i , the space

$$
V^{i}=\left\{v \in V ; r \circ \phi\left(1,\left(\begin{array}{cc}
t & 0 \\
0 & t^{-1}
\end{array}\right)\right) v=t^{i-d} v\right\}
$$

is one-dimensional , where d is the complex dimension of the Shimura variety. Then the image of $\rho^{i}\left(\pi_{f}\right)$ is Abelian .
(4.3.A) Suppose that $G^{n c}=G U(p, q) p \leq q$. We now assume that $\mathrm{q}(\mathrm{x})$ is a θ-stable parabolic subalgebra as in (3.A) and that P is the subgroup of the complexification $G L(p+q, \mathrm{C})$ of $\mathrm{GU}(\mathrm{p}, \mathrm{q})$ with Lie-algebra $\mathrm{q}(\mathrm{x})$. Assume also that the representation A_{q} contributes to holomorphic cohomology in dimension p (=real rank of G). Then, by the calculations of (3.A.4), x may be taken to be the diagonal matrix with entries (a_{1}, a, \ldots, a), with $a_{1}>a$ and a occurs $p+q-1$ times. The semisimple part $M_{s s}$ of the Levi-subgroup of P containing T is the special linear group of the span W of $e_{2}, ., e_{p}$ and $f_{1}, \ldots f_{q}$. The homomorphism ξ_{P} defined above takes $S L_{2}$ into $M_{s s}$ and $S L_{2}$ acts irreducibly on W. Therefore, the centraliser of $S L_{2}$ in
$\hat{G}=G L_{p+q}$ is the diagonal subgroup, which act as scalars on W. Now the conclusion of (1) of (4.2) applies.
(4.3.C) Assume that $G^{n c}=G S p_{g}$. Let $\mathrm{q}(\mathrm{x})$ be a θ-stable parabolic subalgebra as in (3.C) and P the subgroup with Lie algebra $q(x)$ of the complexification of $G^{n c}$. Then, as we have seen, x may be assumed to be the diagonal $2 g \times 2 g$ matrix

$$
x=\left(a_{1}, 0, \ldots, 0,-a_{1}, 0, \ldots, 0\right)
$$

and the semisimple part of the Levi subgroup M of P containing T is $G S p_{g-1}$ which acts on the span of

$$
e_{2},, e_{g}, f_{2}, \ldots, f_{g}
$$

The homomorphism ξ takes $S L_{2}$ into the subgroup $\hat{M}=\operatorname{GSpin}(2 g-1)$ of $\hat{G}=\operatorname{GSpin}(2 g+1)$ and sends a nontrivial upper-triangular unipotent element of $S L_{2}$ into a regular unipotent element of \hat{M}.

We wish to show that the centraliser of the image of $S L_{2}$ in \hat{G} has Abelian Lie algebra. It is enough to prove that the centraliser (of the image of $S L_{2}$) in $\mathrm{SO}(2 \mathrm{~g}+1)$ under the composite with ξ, of the covering map p of $\operatorname{Spin}(2 \mathrm{~g}+1)$ into $\mathrm{SO}(2 \mathrm{~g}+1)$, has Abelian Lie-algebra. Now $p \circ \xi: S L_{2} \rightarrow G L_{2 g+1}$ is, as is easily shown, the direct sum of an irreducible representation of $S L_{2}$ of dimension $2 \mathrm{~g}-1$, together with the trivial 2-dimensional representation. Therefore, the connected component of identity of the centraliser in $\mathrm{SO}(2 \mathrm{~g}+1)$ of $S L_{2}$, is $S O(2) \times 1_{2 g-1}$ which is clearly Abelian. The conclusion of (1) of (4.2) applies.

Now assume that $(p, q) \geq(2,2)$ in the GU-case and that $g \geq 3$ in the GSp case. Then by (3.A.10) and (3.C.8) we know that when the degree r_{G} is equal to the rank (and except for the trivial representation), the only parameters corresponding to a cohomological representation at ∞ are of type (4.3.A) or (4.3.C). So , for the associated Shimura varieties, the Galois action on the r_{G}-th etale cohomology groups is semisimple and potentially Abelian. We will show in the next section, that these predictions are true.

5. - Arithmetic applications : the case of $S p(g)$

5.1. - We will now apply the results of $\S \S 1,3$ to the Galois representations occurring in the cohomology of the variety of moduli \mathcal{A}_{g} of Abelian varieties of dimension g.

Thus let $G=G S p(g) / \mathbb{Q}$ be the group of similitudes of the symplectic form on $\mathbb{Q}^{2 g}$ of matrix $\left(\begin{array}{cc}0 & -1 g \\ 1 g & 0\end{array}\right)$; let

$$
\begin{gather*}
h: \mathbb{C}^{\times} \longrightarrow G(\mathbb{R}) \\
z=x+i y \longmapsto\left(\begin{array}{cc}
x & y \\
-y & x
\end{array}\right) . \tag{5.1}
\end{gather*}
$$

If $K_{f} \subset G\left(\mathbb{A}_{f}\right)$, we have an associated variety $S\left(h, K_{f}\right)=S\left(K_{f}\right)$ over \mathbb{Q}, with \mathbb{C} points $S\left(K_{f}\right)(\mathbb{C})=G(\mathbb{Q}) \backslash G(\mathbb{A}) / K K_{f}, K=\mathbb{R}^{\times} U(g)$. For L a finite extension of \mathbb{Q}_{ℓ}, we are interested in the cohomology space $H_{\text {et }}^{g}\left(S\left(K_{f}\right) \times \overline{\mathbb{Q}}, L\right)$ and the action on it of $\mathrm{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$. Note that (except for cohomology contributed by the trivial representation, and therefore composed of Tate classes) this is the first degree where there should be non-zero cohomology.

Denote by $H_{!}^{g}\left(S\left(K_{f}\right)\right)$ the image in $H^{g}\left(S\left(K_{f}\right)\right)$ of the cohomology with compact supports H_{c}^{g}, in various cohomology theories.

Over $\mathbb{C}, H_{1}^{g}\left(S\left(K_{f}\right), \mathbb{C}\right)$ a priori carries a mixed Hodge structure according to Deligne [De3, De4]. Let $I H^{\bullet}$ denote intersection cohomology with midde perversity [Go-M]. The canonical map $H_{c}^{\bullet}\left(S\left(K_{f}\right)\right) \rightarrow I H^{\bullet}\left(S\left(K_{f}\right)\right)$ quotients through $H_{c}^{\bullet}\left(S\left(K_{f}\right)\right) \rightarrow H^{\bullet}\left(S\left(K_{f}\right)\right)$, as follows from Poincaré duality for intersection cohomology; in our case it is also a consequence of obvious properties of L^{2}-cohomology and of the Zucker conjecture stating then $H_{(2)}^{*}\left(S\left(K_{f}\right), \mathbb{C}\right) \cong I H^{\bullet}\left(S\left(K_{f}\right), \mathbb{C}\right)[$ Lo, Sa-St]. Thus we get a map :

$$
\begin{equation*}
H_{1}^{\bullet}\left(S\left(K_{f}\right)\right) \longrightarrow I H^{\bullet}\left(S\left(K_{f}\right)\right) \tag{5.2}
\end{equation*}
$$

of \mathbb{Q}-mixed Hodge structures. A simple result of Harder and one of us ([Ha]; $[\mathrm{Clo3}$: Prop. 3.18]) shows that this map is injective. It follows that $H_{1}^{i}\left(S\left(K_{f}\right), \mathbb{C}\right)$ carries a pure \mathbb{Q}-Hodge structure of weight i in all degrees (this injectivity property is particular to Shimura varieties and does not follow from the axiomatic properties of intersection cohomology).

Note that the purity of H_{1}^{i} can also be seen directly, as was pointed to us by L. Illusie and T. Saito. Indeed, $H^{i}\left(S\left(K_{f}\right)\right)$ has a weight filtration whose weights belong to the interval $[i, 2 i]$, since $S\left(K_{f}\right)$ is a quotient of a smooth variety with only finite quotient singularities. Analogously, the weights of $H^{2 d-i}$ are larger than $2 d-i$. By Poincaré duality, H_{c}^{i} has a weight filtration with weights $\leq i$. The consequence is that $H_{!}^{i}$ is a mixed Hodge structure with pure weight i, i.e., a pure Hodge structure of weight i.

When g is even, $H_{!}^{g}\left(S\left(K_{f}\right), \mathbb{C}\right)$ contains a "trivial" part. We describe this using representation theory. Let $L_{\text {dis }}^{2}\left(G(\mathbb{Q}) \backslash G(\mathbb{A}) / Z_{G}(\mathbb{R})\right)=\bigoplus \pi$, where π runs over a complete set of summands of the discrete part of $L^{2}\left(G(\mathbb{Q}) \backslash G(\mathbb{A}) / Z_{G}(\mathbb{R})\right.$) as a representation of
$G(\mathbb{f})$. Then, according to Borel and Casselman,

$$
H_{(2)}^{g}\left(S\left(K_{f}\right), \mathbb{C}\right)=\bigoplus_{\pi} H^{g}\left(\mathfrak{g}, K ; \pi_{\infty}\right) \otimes \pi_{f}^{K}
$$

where $g=\operatorname{Lie}(G \times \mathbb{R})$ and $K \subset G(\mathbb{R})$ is maximal compact. By strong approximation, $\pi_{\infty} \cong \mathbb{C}$ if, and only if, π is an Abelian character. The part of $H_{(2)}^{g}$ corresponding to these representations is composed of classes of type ($g / 2, g / 2$) in the Hodge decomposition. Moreover, it is the image in $H_{(2)}^{g}$ of a projector composed of Hecke correspondences, which may be defined over \mathbb{Q}. In particular, its intersection with $H_{!}^{g}$, if it is non-zero, is in any case a direct summand of $H_{!}^{g}$ for any of the cohomology theories we will consider ${ }^{(1)}$ We will denote by $\widetilde{H}_{1}^{g}\left(S\left(K_{f}\right)\right)$ the complementary subspace, both in complex and in ℓ-adic étale cohomology.

Lemma 5.1. - Assume $g \geq$ 3. Then $\tilde{H}_{+}^{g}\left(S\left(K_{f}\right), \mathbb{C}\right)$ is purely of Hodge type $((g, 0) ;(0, g))$.

Proof. This follows from Proposition 3C8.
We will prove two, obviously related, results :
Theorem 5.2. - The Mumford-Tate group of the Hodge structure ($\tilde{H}_{!}^{g}\left(S\left(K_{f}\right), \mathbb{Q}\right)$; $\left.\widetilde{H}_{!}^{g}\left(S\left(K_{f}\right), \mathbb{C}\right)=\tilde{H}_{!}^{g, 0} \oplus \widetilde{H}_{!}^{0, g}\right)$ is Abelian.

For the second result note that if ℓ is a prime, $\widetilde{H}_{1}^{g}\left(S\left(K_{f}\right), \mathbb{Q} \ell\right)$ carries a representation of $\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$. We will say that this representation is potentially Abelian if there exist finite extensions L of $\mathbb{Q} e$ and F of \mathbb{Q} such that the associated representation of $\mathrm{Gal}(\overline{\mathbb{Q}} / F)$ on $\tilde{H}_{!}^{g}\left(S\left(K_{f}\right), L\right)$ is an extension of Abelian characters.

ThEOREM 5.3. - The representation of $\mathrm{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$ on $\widetilde{H}_{!}^{g}\left(S\left(K_{f}\right), \mathbb{Q}_{\ell}\right)$ is potentially Abelian.

Before we proceed, we will state a conjecture which would allow one to give a proof of Theorem 5.3 analogous to the proof we will give for Theorem 5.2.

Conjecture 5.4. - For sufficiently large $\ell, \tilde{H}_{!}^{g}\left(S\left(K_{f}\right), \mathbb{Q}_{\ell}\right)$ is a Hodge-Tate representation of $\mathrm{Gal}\left(\overline{\mathbb{Q}_{\ell}} / \mathbb{Q}_{\ell}\right)$ with Hodge-Tate type $((g, 0) ;(0, g))$.
N.B. By this we mean that if $V=\widetilde{H}_{!}^{g}\left(S\left(K_{f}\right), \mathbb{Q}_{\ell}\right)$ and \mathbb{C}_{ℓ} is a completion of $\overline{\mathbb{Q}}_{\ell}$, the only irreducible summands of $V \otimes \mathbb{C}_{\ell}$ as a $\operatorname{Gal}\left(\mathbb{Q}_{\ell} / \mathbb{Q}_{\ell}\right)$-module are isomorphic to $\mathbb{C}_{\ell}(0)$ or $\mathbb{C}_{\ell}(-g)$.
(1) The part of $H_{(2)}^{g}$ contributed by the Abelian characters is composed of Chern classes on the different components on $S\left(K_{f}\right)$ (cf. e.g. Parthasarathy [Parl]). Probably the intersection with $H_{!}^{g}$ vanishes but this is irrelevant to us.
5.2. - Before we give the proof of Theorem 3.2: we make a few remarks an Hodge structures. First note that $\tilde{H}_{1}^{y}\left(S\left(K_{f}\right), \mathbb{Q}\right)$ carries a polarized Hodge structure (by the corresponding fact for intersection cohomology), so its Mumford-Tate group is reductive. In the sequel we will have to consider L-Hodge structures, $L \subset \mathbb{C}$ being a number field. If L is real, the usual theory applies. In particular the category of polarized Hodge structures is semi-simple.

We will have to consider parts of the cohomology of $S\left(K_{f}\right)$ and related varieties which are only defined over $C M$-fields L. A complex Hodge structure of weight w on a vector space H of finite dimension over L (L a $C M$-field embedded in \mathbb{C}) is simply a Hodge decomposition $H \bigotimes \underset{L}{\bigotimes}=\underset{p+q=w}{ } H^{p q}$. The usual notions apply; in particular we can define the Mumford-Tate group. If $L_{0} \subset L$ is the maximal totally real subfield, a Hodge structure H_{0} over L_{0} defines a complex Hodge structure over L by $H=H_{0} \bigotimes_{L_{0}} L$. Conversely, if H is a complex Hodge structure over L, let $\bar{H}=H \bigotimes_{\sigma: L \rightarrow L} L$ where σ is complex conjugation. Then $\bar{H} \otimes \mathbb{C} \cong H$, the isomorphism sending $H^{p q}$ to $\bar{H}^{q p}$. Then $H \oplus \bar{H}=H^{o} \bigotimes_{L_{0}} L, H^{o}$ being the Hodge structure "obtained by restriction of scalars" : $H^{\circ}=H$, seen as a L_{0}-vector space, and $H^{0} \bigotimes_{L_{0}} \mathbb{C}=(H \otimes \mathbb{C}) \oplus(\bar{H} \otimes \mathbb{C})$. Note that H^{0} is a true (real) Hodge structure.

Suppose X is a smooth variety, and $H=H^{w}(X, L)$. Then H carries a complex Hodge structure over L, which is obtained by extension of scalars from the (real) Hodge structure of $H_{0}=H^{w}\left(X, L_{0}\right)$. It follows that the Mumford-Tate group of H is reductive. Therefore H, as an L-Hodge structure, is semi-simple. The same applies to intersection cohomology, and to $\widetilde{H}_{1}^{g}\left(S\left(K_{j}\right)\right)$.

We now come to the proof of Theorem 3.2. Let

$$
\begin{equation*}
H=\left\{\left(x_{1}, \ldots, x_{g}\right) \in G L(2)^{g}: \operatorname{det} x_{1}=\operatorname{det} x_{2}=\cdots=\operatorname{det} x_{g}\right\} \tag{5.4}
\end{equation*}
$$

Thus H is a group over \mathbb{Z}, with a natural embedding into $G S p(g)$ coming from the identification of $G L(2)$ with the group of symplectic similitudes of the form $\left(1^{-1}\right)$. For each $x \in G(\mathbb{Q})$, we have a finite map :

$$
\begin{equation*}
j_{x}: S\left(H, K_{H}(x)\right) \longrightarrow S\left(G, K_{f}\right) \tag{5.5}
\end{equation*}
$$

Consider the corresponding maps

$$
\begin{equation*}
j_{x}^{*}: \tilde{H}_{!}^{g}\left(S\left(K_{f}\right), \mathbb{C}\right) \longrightarrow H_{!}^{g}\left(S\left(H, K_{H}(x)\right) ; \mathbb{C}\right) \tag{5.6}
\end{equation*}
$$

Lemma 5.5. - The map Res $=\prod_{x \in G(\mathbf{Q})} j_{x}^{*}$ is infective.

Proof. By the remarks at the beginning of $\S 5.1, H_{1}^{g}\left(S\left(H, K_{H}(x)\right) ; \mathbb{C}\right)$ carries a pure Hodge structure of weight g; the restriction map is, according to Deligne [De3], a map of mixed (i.e., pure) Hodge structures. Therefore it suffices to show that if $\alpha \in \widetilde{H}_{1}^{g}\left(S\left(K_{f}\right), \mathbb{C}\right)$ is of type $(g, 0)$ and $\operatorname{Res} \alpha=0$, then $\alpha=0$.

By L^{2}-Hodge theory, α is represented by a form ω of type ($\left.g, 0\right)$ on $S\left(K_{f}\right) ; \omega$ is moreover square-integrable. The variety $S\left(H, K_{H}(x)\right)$ has a finite covering which is a product of modular curves C_{1}, \ldots, C_{g}. Thus we get a finite map factoring through j_{x} :

$$
\begin{equation*}
j: C_{1} \times \cdots \times C_{g} \longrightarrow S\left(K_{f}\right):=X \tag{5.7}
\end{equation*}
$$

Consider a smooth compactification \bar{X} of X. By a basic result of Freitag and Pommerening [$\mathrm{Fr}-\mathrm{Po}$], ω extends to a smooth differential form on \bar{X}. Let $C=C_{1} \times \cdots \times C_{g}$. Since j is finite, we obtain by normalization a compactification $\overline{\bar{C}}$ of C and a diagram

where \bar{j} is finite. By using the embedded resolution of singularities for $\overline{\bar{C}} \subset \bar{X}$ we obtain a new diagram (5.8) with \bar{X} and $\overline{\bar{C}}$ smooth. Then the extension $\bar{\omega}$ of ω to \bar{X} gives by restriction a form $(\bar{j})^{*} \bar{\omega}$ on $\overline{\bar{C}}$; on the interior C it coincides with $j^{*} \omega$.

Let $\bar{C}=\bar{C}_{1} \times \cdots \times \bar{C}_{g}$ be the obvious smooth compactification of C. By the birational invariance of genera $\Gamma\left(\bar{C}, \underline{\Omega}^{g}\right) \cong \dot{\Gamma}\left(\bar{C}, \underline{\Omega}^{g}\right)$. Thus $j^{*} \omega$ extends to a holomorphic form θ on \bar{C}. The cohomology class γ of θ is of type $(g, 0)$; it is in the image of the map $H_{c}^{g}(C) \rightarrow H^{g}(\bar{C})$; its restriction β to C is equal to $j^{*} \alpha$. Note that for each factor C_{i} of C - a modular curve - the map $H^{1}\left(\bar{C}_{i}\right) \rightarrow H^{1}\left(C_{i}\right)$ is injective. From the Kïnneth decomposition it follows that $H^{g, 0}(\bar{C}) \subset \otimes^{g} H^{1}\left(\bar{C}_{i}\right)$, and therefore that $H^{g, 0}(\bar{C}) \rightarrow H^{g}(C)$ is injective.

Suppose now that Res $\alpha=0$. Then $\beta=0$, whence $\gamma=0$, whence $\theta=0$ by Hodge theory on \bar{C}. This implies that $(\bar{j})^{*} \omega=0$ as a holomorphic form on $\overline{\bar{C}}$ or, equivalently, on C. Thus $j^{*} \omega=0$ as a holomorphic form on C. Then $j_{x}^{*} \omega=0$ for all x, and the arguments of § 2 show that $\omega=0$ as a form and, therefore, as a cohomology class. This proves Lemma 5.5.

In order to prove Theorem 3.2, it now suffices to consider the image of $\widetilde{H}_{!}^{g}\left(S\left(K_{f}\right)\right)$ in $H_{1}^{g}\left(C_{1} \times \cdots \times C_{g}\right)$. By the foregoing arguments this injects into $H_{(2)}^{g}\left(C_{1} \times \cdots \times C_{g}\right)$, which is the cohomology of the L^{2}-spectrum of $H_{1}(\mathbb{Q}) \backslash H_{1}(\mathbb{A})$, where $H_{1}=G L(2)^{g}$. Since we are only interested in classes of type $(g, 0)$ or $(0, g)$, the image is contained in
$H_{c 1 u s p}^{g}\left(C_{1} \times \cdots C_{g}\right)$, which is described over \mathbb{C}, in the manner of (5.3), as

$$
\begin{align*}
H_{\text {cusp }}^{g}\left(C_{1} \times \cdots C_{g}\right)= & \bigoplus_{\pi_{1}, \ldots, \pi_{g}} H^{1}\left(\pi_{1, \infty}\right) \otimes \cdots \otimes H^{1}\left(\pi_{g, \infty}\right) \otimes \tag{5.9}\\
& \otimes \pi_{1, f}^{K_{1}} \otimes \cdots \otimes \pi_{g, f}^{K_{g}}
\end{align*}
$$

where we have written $H^{1}\left(\pi_{\infty}\right)$ for (g, K)-cohomology and where $K_{1} \times \cdots K_{g}$ is a congruence subgroup of $H_{1}\left(\mathbb{A}_{f}\right)$. Note that $H_{c u s p}^{g}\left(C_{1} \times \cdots C_{g}\right) \subset H^{g}\left(\bar{C}_{1} \times \cdots \bar{C}_{g}\right)$ is a sub-Hodge structure, for example by the Drinfeld-Manin principle. Moreover the Hecke algebra acts irreducibly on $\pi_{1}^{K_{1}} \otimes \cdots \otimes \pi_{g}^{K_{g}}$. Constructing an associated projector (given by a linear combination over a $C M$-field of Hecke operators), we see that the image is a sum of complex Hodge structures over a sufficiently large $C M$ field L, of the type

$$
\begin{equation*}
N \subset M_{1} \otimes \cdots M_{g}=M \tag{5.10}
\end{equation*}
$$

$M_{i} \subset H_{c, u p}^{1}\left(C_{i}\right)$ being a 2 -dimensional complex Hodge structure over L; each M_{i} is of type $\{(1,0) ;(0,1)\}$, and N is purely of type $((g, 0) ;(0, g))$.

We will now give two proofs of Theorem 5.2, based on different arguments, which we feel have independent interest.

We will denote by G_{X} the Mumford-Tate group of a L-complex Hodge structure X, for L a sufficiently large $C M$-field. There is a natural homomorphism $\nu=\nu_{X}: \mathbb{G}_{m} \rightarrow G_{X}$ defined over L, as is G_{X}. The Mumford-Tate group is defined, a priori, as a subgroup of $G L(X) \times \mathbb{G}_{m}$, but the projection on the first component is an isomorphism, and we will when convenient consider G_{X} as a subgroup of $G L(X)$. (As a good reference for Mumford-Tate groups, see [DMOS, § I.3]).

By general principles G_{M} is the image, by the tensor product, of the group $G_{0}=$ $G_{M_{1} \oplus \cdots \oplus M_{g}} ;$ moreover the natural maps $G_{0} \rightarrow G_{M_{i}}$ are surjective. Since $G_{M_{i}} \subset G L(2) / L$ is reductive and $G_{M_{i}}$ contains the image of $\nu, G_{M_{i}}=G L(2)$ if it is not Abelian.

We first reduce to the case where all $G_{M_{i}}$ are isomorphic to $G L(2)$. Assume, for example, $G_{M_{1}}$ Abelian. Then $G_{M_{1}}$ acts by two characters on M_{1}; since their restriction to \mathbb{G}_{m} via ν are $x \longmapsto\left(x^{-1}, 1\right)$ they are not isomorphic. This implies that M_{1} splits into two L-Hodge structures. Then we see that $M_{2} \otimes \cdots \otimes M_{g}$ verifies analogous conditions, with the number of variables reduced.

We may now assume that $G_{M_{i}}=G L(2)$ for all i; we consider $G_{0} \subset G_{M_{1}} \times \cdots \times G_{M_{g}}=$ $G L(2)^{g}$. (We will now simply argue with the complex points of the Mumford-Tate groups). Consider its derived group $G_{0, \text { der }} \subset S L(2)^{g}$.

We will apply a variant of Goursat's lemma.
Lemma 5.6. - Suppose $A \subset S L(2)^{g}$ is a connected semi-simple subgroup such that the image of A by each projection is equal to $S L(2)$. Then A is, modulo permutation of $\{1, \ldots, g\}$, of the form

$$
\left\{\left(\varphi_{1}\left(x_{1}\right), \ldots, \varphi_{y_{1}}\left(x_{1}\right), \varphi_{y_{1}+1}\left(x_{2}\right), \ldots, \varphi_{g_{1}+g_{2}}\left(x_{2}\right), \ldots, \varphi_{g-g_{r+1}}\left(x_{r}\right), \ldots, \varphi_{g}\left(x_{r}\right)\right)\right\}
$$

where $\left(x_{j}\right) \in S L(2)^{r}$ and the φ_{i} are automorphisms of $S L(2)$.
Proof. Write $S L(2)^{g}=S L(2) \times S L(2)^{g-1}$ and let B be the image of A by the map $S L(2)^{g} \rightarrow S L(2)^{g-1}$. Then by induction B is of the form indicated. Up to automorphisms of the factors we may write

$$
\begin{equation*}
B=\left\{\left(x_{1}, \ldots, x_{1}, x_{2}, \ldots, \ldots, x_{r}, \ldots x_{r}\right)\right\} \cong S L(2)^{r} \tag{5.11}
\end{equation*}
$$

If $\operatorname{Ker}(A \rightarrow B)$ is finite it must be 1 since $S L(2)$ is simply connected. Thus $A \cong B$. The first projection applied to each $S L(2)$-factor of B must be trivial or the identity. Since the factors commute it is the identity for exactly one factor. The lemma follows.

Suppose then $\operatorname{Ker}(A \rightarrow B)=C$ infinite.
The map $C \rightarrow S L(2)$ given by the first projection is injective. Since C is clearly semisimple this map must be an isomorphism. Thus A is clearly semi-simple this map must be an isomorphism. Thus A contains $S L(2)$ embedded into $S l(2)^{r}$ in the first component. This implies that $A=C \times B$, q.e.d.

Write then

$$
\begin{equation*}
G_{0, d e r}=\left\{\varphi_{1}\left(x_{1}\right), \ldots, \varphi_{g_{1}}\left(x_{1}\right), \varphi_{g_{1}+1}\left(x_{2}\right), \ldots \varphi_{g_{1}+g_{2}}\left(x_{2}\right), \ldots, \varphi_{g-g_{r}+1}\left(x_{r}\right), \ldots, \varphi_{g}\left(x_{r}\right)\right\} \tag{5.12}
\end{equation*}
$$

where $g=g_{1}+\cdots+g_{r}, x_{i} \in S L(2)$ and the φ_{j} are automorphisms of $S L(2)$. In the tensor product representation, $G_{0, \text { der }}$ leaves $N \subset M$ invariant. We will denote by e_{i}, f_{i} the vectors of type (1,0), $(0,1)$ in each M_{i}.

Suppose first $g_{1}<g$. Then for $x \in S L(2)$,

$$
\left(\varphi_{1}(x), \ldots, \varphi_{g_{1}}(x), 1, \ldots\right)\left(\otimes e_{i}\right)=\varphi_{1}(x) e_{1} \otimes \cdots \otimes \varphi_{g_{1}}(x) e_{g_{1}} \otimes e_{g_{1}+1} \otimes \cdots \otimes e_{g}
$$

Since this must be a linear combination of $e=\otimes e_{i}$ and $f=\otimes f_{i}$, we must needs have $\varphi_{1}(x) e_{i} \in \mathbb{C} e_{i}$ for $i \leq g_{1}$. This is impossible.

Therefore $g_{1}=g$, and the same argument implies that $\varphi_{i}(x) e_{i} \in \mathbb{C} e_{i}$ for all i or $\varphi_{i}(x) \ell_{i} \in \mathbb{C} f_{i}$ for all i, which is again impossible.

The conclusion is that $G_{M_{i}}$ is abelian for all i, except if $g=1$. If we return to the reduction to the case $G_{M_{i}} \cong G L(2)$, we see that our argument is complete except if all $G_{M_{i}}$ but one are Abelian. However, in this case, M is a direct sum of 2^{g-1} summands of type $((1,0) \oplus(0,1)) \otimes T$ where T is of type (p, q) with $p+q \leq g-1$. Each of these summands is irreducible, and its intersection with N would necessarily be one-dimensional, which is impossible (for $g \geq 2$). This concludes the first proof of Theorem 5.2.

The second proof is based on the following lemma:
Lemma 5.7. - Let X, Y be \mathbb{Q}-Hodge structures whose Mumford-Tate group is reductive. Suppose X, Y are pure of weights a, b with $a, b>0$. Let $Z \subset X \otimes Y$ be a \mathbb{Q}-Hodge structure of type $\{(p, 0) ;(0, p)\}$ with $p=a+b$. Then
(i) The Mumford-Tate group G_{Z} is Abelian.
(ii) If X, Y are irreducible, $G X$ and G_{Y} are also Abelian.
(iii) X is of type $\{(a, 0) ;(0, a)\}$ and Y of type $\{(b, 0),(0, b)\}$.

We apply this lemma, arguing inductively, to an embedding $N \subset M_{1} \otimes \cdots M_{g}$ where N is an irreducible summand over \mathbb{Q} of $\tilde{H}_{!}^{g}\left(S\left(K_{f}\right)\right)$ and M_{i} are irreducible summand of $H^{1}\left(\bar{C}_{i}\right)$ over \mathbb{Q}. The conclusion is that G_{N}, and the $G_{M_{i}}$, are Abelian.

We now prove Lemma 5.7. We now denote by G_{X} the Mumford-Tate group of a \mathbb{Q} Hodge structure X; as above we view G_{X} as a subgroup of $G L(X)$. Let $G=G_{X \oplus Y}$: we then have natural surjection $G \rightarrow G_{X}, G \rightarrow G_{Y}$ and $G \rightarrow G_{2}$. Let $\mathfrak{g}_{X}, \mathfrak{g}_{Y}, \mathfrak{g}_{Z}$, $\mathfrak{g} X_{\oplus Y}=\mathfrak{g}$ denote the Lie algebras. Then $\mathfrak{g}_{Z} \subset \operatorname{End}(Z) \cong Z \otimes Z^{*}$. As such g_{Z} has a Hodge decomposition, of types $(0,0),(p,-p)$ and $(-p, p)$.

The Hodge type of $g x$ are of type ($i-k, j-\ell$) with $a=i+j=k+\ell$. If this is of type $(p,-p)$ we get $a+b=p=i-k \leq i \leq a$, an impossibility. Thus $\mathfrak{g}_{X}^{(-p, p)}=\mathfrak{g}_{X}^{(p,-p)}=\{0\}$ and the same is true for g_{Y}. Consequently $\mathfrak{g}^{(p,-p)}=\mathfrak{g}^{(-p, p)}=0$, whence $g_{Z}^{(p,-p)}=\mathfrak{g}_{Z}^{(-p, p)}$

Thus g_{Z} if of type $(0,0)$ which implies that G_{Z} commutes with $\nu\left(\mathbb{C}^{\times}\right)$. Now denote by M_{Z} the Mumford-Tate group of Z, seen as a subgroup of $G L(Z) \times \mathbb{G}_{m}$: then [, Prop. 3.4] M_{Z} is the smallest subgroup of $G L(Z) \times \mathbb{G}_{m}$, defined over \mathbb{Q}, and whose set of complex points contains $\mu\left(\mathbb{C}^{*}\right)$ where

$$
\begin{equation*}
\mu(z)=\left(\nu(z), z^{-1}\right) \quad\left(z \in \mathbb{C}^{\times}\right) \tag{5.13}
\end{equation*}
$$

Since $M_{Z} \subset G_{Z} \times \mathbb{C}^{\times}, M_{Z}$ commutes with μ; therefore $\mu\left(\mathbb{C}^{\times}\right)$is contained in the center of M_{Z} : this is a \mathbb{Q}-subgroup of M_{Z} verifying the defining condition of M_{Z}, and we conclude that M_{Z} is Abelian; so is G_{Z}. This proves (i).

As to (iii), note that if X, Y are irreducible, we may find a number field L and absolutely irreducible summand X_{1} and Y_{1} of $X \otimes L$ and $Y \otimes L$ such that X, Y are sums of conjugates of X_{1} and Y_{1} in the obvious sense. Extending scalars to L, we are reduced to the case when $Z \subset X \otimes Y$ and X, Y are absolutely irreducible. Since the Mumford-Tate group of Z is Abelian, we may then replace Z (perhaps after a further extension of scalars) by a one-dimensional sub-Hodge structure contained in $X \otimes Y$. We then have a morphism of Hodge structures over L :

$$
\begin{equation*}
X^{*} \otimes Z \longrightarrow Y \tag{5.14}
\end{equation*}
$$

which is an isomorphism by irreducibility. Moreover Z is now of type ($p, 0$) or ($0, p$) : assume the latter. If (i, j) is a type of X and (k, ℓ) a type of Y we now have

$$
\begin{equation*}
-i=k, \quad-j+p=\ell \tag{5.15}
\end{equation*}
$$

which implies $i=k=0$ and $j=a, \ell=\not p$. This, after an obvious argument of Galois descent, implies (iii); moreover the weight homomorphisms $\mathbb{G}_{m} \rightarrow G L(X)$ and $\mathbb{G}_{m} \rightarrow G L(Y)$ are now scalar, and the argument given in the proof of (i) implies (ii).

Proof of Theorem 5.3

We now consider the restriction maps

$$
j^{*}:\left(H_{!}^{g}\left(S\left(K_{f}\right), \mathbb{Q}_{\ell}\right) \longrightarrow H_{!}^{g}\left(C_{1} \times \cdots \times C_{g}, \mathbb{Q}_{\ell}\right)\right.
$$

in étale cohomology. These maps can be defined over number fields, and therefore commute with the natural action of $\operatorname{Gal}(\overline{\mathbb{Q}} / F)$ for some sufficiently large number field F. The previous proof shows that the image is contained in the subspace of $H_{l}^{g}\left(C_{1} \times \cdots \times C_{g}, q l\right)$ contributed by modular forms yielding Hodge structures of $C M$ type. The associated Galois representation then arise from factors of the Jacobians of the curves C_{i} that are of $C M$ type. According to Shimura-Taniyama and Weil the associated Galois representations are potentially Abelian ([Bor], [Pi]; cf. Serre [Se2]).
5.3. - We end this paragraph with a few remarks. First we note that the argument in the proof of Theorem 5.12 could be applied directly to the Galois representations hence proving Theorem 5.3 - if one could use Hodge-Tate theory. This would however require information on the Hodge-Tate nature of $\widetilde{H}_{!}^{g}\left(S\left(K_{f}\right), \mathbb{Q}_{\ell}\right)$, i.e., Conjecture 5.4. In turn this conjecture would follow if a suitable comparison theorem between ℓ-adic and De Rham cohomology applied to \widetilde{H}_{1}^{g}, since De Rham cohomology is computed (over \mathbb{C}) by Lemma 5.1. However, the theory of Hodge-Tate for open varieties does not seem to be sufficiently developed for this proof.

For $g=2$, Weissauer [Weis] has been able to prove Theorem 5.3 directly; Theorem 5.2 is implicit in his paper ${ }^{1}$. We could have obtained Theorem 5.3, in the even case (g even), by reduction to his result, using the analogue of Lemma 5.5 to restrict classes in $\widetilde{H}_{!}^{g}$ to products of Siegel threefolds, to which his results apply. It is then also possible to treat the case that g is odd, but at the cost of complications. Our present proof is more direct. Finally, it is also possible to treat the case of coefficient systems : we leave this to the interested reader.

We also note that the previous proof implies that classes in $\tilde{H}_{!}^{g}\left(S\left(K_{f}\right)\right)$ restrict to cuspidal cohomology classes on products of modular curves. On the other hand, there is no a priori reason for such classes on $S\left(K_{f}\right)$ to be cuspidal (they are only squareintegrable). In fact, Weissauer [Weis] shows the existence, for $g=2$, of non-cuspidal holomorphic classes.

We note that this phenomenon is more general. Suppose F_{1}, \ldots, F_{r} are totally real fields of degrees g_{1}, \ldots, g_{r} over \mathbb{Q}, with $g_{1}+\cdots+g_{r}=g$. Let $G_{i}=\operatorname{Res}_{F_{i} / \mathbf{Q}} G L(2)$. Then G_{i} has a natural homomorphism "norm of determinant" $\nu_{i}: G_{i} \rightarrow \mathbb{G}_{m}$ over \mathbb{Q}. Let H be the group

$$
\begin{equation*}
H=\left\{\left(x_{1}, \ldots, x_{g}\right): x_{i} \in G_{i}, \nu_{i}(x)=\cdots=\nu_{r}\left(x_{r}\right)\right\} . \tag{5.16}
\end{equation*}
$$

Then there is a natural map $H \rightarrow G$. A corollary of the previous arguments is :

[^1]Proposition 5.8. - $(g \geq 3)$ A cluss $\omega \in \widetilde{H}_{1}^{g}\left(S\left(K_{f}\right)\right)$ restricts to a cuspidal class in $H_{!}^{g}\left(S\left(H, K_{H}(x)\right)\right)$ for any map $j_{x}: S\left(H, K_{H}(x)\right) \rightarrow S\left(K_{f}\right)$.

Proof. We may assume ω of type $(g, 0)$. The arguments of § 5.2 then show that the restriction of ω yields a class of type ($g, 0$), in the image of H_{c}^{g}, in the g-th cohomology of a product $C_{1} \times \cdots \times C_{r}$ of Shimura varieties associated to G_{i}. But according to Harder [Ha2] all such classes are cuspidal. More precisely, if $C=C_{1} \times \cdots C_{r}$, Harder shows [Ha2, p. 65] that

$$
\begin{equation*}
H_{1}^{g}(C)=H_{\mathrm{cusp}}^{g}(C) \oplus H_{!, r e s}^{g}(C), \tag{5.17}
\end{equation*}
$$

the second factor coming from Eisenstein series associated to Grössencharakterer of the F_{i}. The F_{i} being totally real all such classes are Tate classes.

If $r=1$, and we therefore consider an embedding $G L(2, F) \rightarrow G S p(g)$ with $[F: \mathbb{Q}]=g$, it is an exercise on Siegel domains to check directly Proposition 5.8 from the growth estimates on ω coming from its square-integrability (use Lemmas I.4.1 and I.4.11 of Moeglin-Waldspurger [Mo-We]. For $r>1$ we have not tried to give a direct proof; for cuspidal classes of course the result follows from Proposition 2.8.

6. - The case of unitary or orthogonal groups

6.1. - In this section we consider a group of unitary similitudes $G=G U(Q)$ associated to a quadratic imaginary extension F of \mathbb{Q} and an Hermitian form Q on $F^{n}=V$. Write $V=V_{h} \oplus V_{a}$, where V_{h} is a sum of hyperbolic planes and $Q_{a}=Q \mid V_{a}$ is anisotropic. Let $2 p=\operatorname{dim} V_{h}, m=\operatorname{dim} V_{a}$. As is well-known, $Q_{a} \otimes \mathbb{R}$ is definite if $m \neq 2$. The group $G(\mathbb{R})$ then has signature ($p+m, p$). If $m=2$ and $Q_{a} \otimes \mathbb{R}$ is indefinite, $G(\mathbb{R})$ has signature $(p+1, p+1)$.

In the first case Q can be written in a basis of V with the matrix

$$
J=\left(\begin{array}{cc|ccc}
& -1_{p} & & & 0 \\
1_{p} & & & & \\
\hline & & \iota \xi_{1} & & \\
& & \ddots & \\
0 & & & \iota \xi_{m}
\end{array}\right)
$$

with $\xi_{i} \in \mathbb{Q}^{\times}, \xi_{i}<0$ and $\iota \in F$ an element such that $\tau=-\iota$. (We assume $\iota^{-1} Q_{a} \otimes \mathbb{R}$ negative). The group G contains the subgroup H of $G S p(r) \times G U\left(Q_{a}\right)$ defined by the equality of the ratios of similitude. Consider $h: \mathbb{C}^{\times} \rightarrow G(\mathbb{R})$

$$
Z=x+i y \longmapsto\left(\begin{array}{cc|ccc}
x & y & 0 & & \\
-y & x & & & \\
\hline & & z & & \\
& 0 & & \ddots & \\
& & & z
\end{array}\right)
$$

Then h factors through $H(\mathbb{R}) \subset G(\mathbb{R})$. The centralizer K_{∞} of h in $G(\mathbb{R})$ is isomorphic to the subgroup $G(U(p) \times U(p+m))$. of $G U(p) \times G U(p+m)$ defined by the equality of the similitude ratios, if $m \neq 0$. (If $m=0$ this is a subgroup of index 2 of K_{∞}).

In the second case, we take h given (for an appropriate basis of V_{a}) by

$$
Z \longmapsto\left(\begin{array}{cc|cc}
x & y & & \\
-y & x & & \\
\hline & & z & \\
& & & \bar{z}
\end{array}\right)
$$

The centralizer of h then has a subgroup of index 2 isomorphic to $G(U(p+1) \times U(p+1))$.
The parameter h defines a family of Shimura varieties $S\left(h, K_{f}\right)=S\left(K_{f}\right)\left(K_{f} \subset\right.$ $G\left(\mathbb{A}_{f}\right)$), defined over a reflex field E. We will not explicitate the field E; we recall only that for $m=0$ (even quasi-split case) it is equal to \mathbb{Q}; for $m=1$ (odd quasi-split case) it is equal to F.

Let $q=p+m$. Thus $p \leq q$. We will assume $p \geq 2$ and $q>2$. Define $H_{i}^{*}\left(S\left(K_{f}\right)\right)$ as in § 5.1. Thus $H_{!}^{i}\left(S\left(K_{f}\right), \mathbb{C}\right)$ carries a pure Hodge structure of weight i. Since it injects into $I H^{i}\left(S\left(K_{f}\right), \mathbb{C}\right)$, we can apply the arguments of the previous paragraph :

Lemma 6.1. - Let $\widetilde{H}_{!}^{p}\left(S\left(K_{f}\right), \mathbb{C}\right)$ denote the complement in $H_{!}^{g}\left(S\left(K_{f}\right), \mathbb{C}\right)$ of the (possible) contribution of the trivial representation. Then $\widetilde{H}_{!}^{p}\left(S\left(K_{f}\right), \mathbb{C}\right)$ is purely of Hodge type $((p, 0) ;(0, p))$.

Proof. This follows from Proposition 3.A. 6 by the arguments given in § 5.1.
Our purpose in this section is to prove:
ThEOREM 6.2. - Assume $p \geq 2, q>2$. Then the representation of $\operatorname{Gal}(\bar{E} / E)$ on $\tilde{H}_{!}^{p}\left(S\left(K_{f}\right), \mathbb{Q}_{\ell}\right)$ is potentially Abelian.

Theorem 6.3. - $(p \geq 2, q>2)$. The Hodge structure on $\widetilde{H}_{1}^{p}\left(S\left(K_{f}\right), \mathbb{C}\right)$ has Abelian Mumford-Tate group.

We will prove these theorems by reduction to the case of the group $G S p(p)$. Until the end of this section, we assume $m \neq 2$. Let $H \subset G$ be the \mathbb{Q}-subgroup described above. Then H has a natural morphism toward $M=G S p(g) / \mathbb{Q}$, whose kernel is \mathbb{R} anisotropic. There is a family of associated morphisms $S\left(H, K_{f}{ }^{H}\right) \rightarrow S\left(M, K_{f}{ }^{M}\right)$ (with obvious notations) which are finite coverings defined over number fields. Therefore the assertions of Theorem 5.2 and 5.3 are true for $H-$ using the results of Weissauer [Weis] and Blasius-Rogawski $[\mathrm{Bl}-\mathrm{Ro}]$ if $p=2$, and $\S 5$ for $p>2$.

For $x \in G(\mathbb{Q})$, consider as usual

$$
\begin{equation*}
j_{x}: S\left(H, K_{H}(x)\right) \longrightarrow S\left(G, K_{f}\right)=S\left(K_{f}\right) \tag{6.1}
\end{equation*}
$$

and its effect on $\widetilde{H}_{!}^{g}\left(S\left(K_{f}\right), \mathbb{C}\right)$. We must prove :
Lemma 6.4. - The map Res $=\prod_{x \in G(\mathbb{Q})} j_{x}^{*}$ is injective.
Proof. As in $\S 5$ we mūst show that if $\alpha \in \widetilde{H}_{!}^{p}\left(S\left(K_{f}\right), \mathbb{C}\right)$ is of type $(p, 0)$ and Res $\alpha=0$, then $\alpha=0$. Let ω an L^{2}, holomorphic, representative of α. Fix $j=j_{x}$, and $\operatorname{let} \beta=j^{*} \alpha$, and $\eta=j^{*} \omega$, a form of type ($p, 0$) on $S\left(K_{f}{ }^{H}\right)$ where $K_{f}{ }^{H}=K_{H}(x)$. As noticed above $S\left(K_{f}{ }^{H}\right)$ is a finite cover of a Shimura variety for $G S p(p)$; since $\mathrm{p} \geq 2$ the congruence property holds for $G S p(p)$ and therefore it is (over \mathbb{C} at least) a Shimura variety of $G S p(p)$. We can therefore apply the geometric arguments of $\S 5$.

Set $X=S\left(K_{f}{ }^{H}\right)$ and let \bar{X} be a smooth compactification of X. Then η extends to a smooth differential form $\bar{\eta}$ on \bar{X}. We would like to show that η (or $\bar{\eta}$) vanishes if the cohomology class β vanishes; β is the cohomology class associated to η.

Since the map $H^{r}(\bar{X}) \rightarrow H^{p}(X)$ has no reason to be injective even on classes of type ($p, 0$), we cannot argue directly on \bar{X}.

Consider however the natural morphism $S L(2)^{p} \rightarrow H$. The effect on Shimura varieties (over \mathbb{C} ! these do not correspond to natural maps of moduli problems) give maps

$$
j_{1}: C_{1} \times \cdots \times C_{p} \longrightarrow X
$$

We can now consider $j_{1}^{*} \eta=\theta$, a form on $C_{1} \times \cdots \times C_{p}$, and the associated cohomology class $\gamma=j_{1}^{*} \beta$. The argument in $\S 5.2$ shows that θ extends to a form $\bar{\theta}$ on $\bar{C}_{1} \times \cdots \times \bar{C}_{p}$,
of type ($p, 0$). Since $\gamma=0, \bar{\theta}=0$ (again, see $\S 5.2$, proof of Lemma 5.5) whence $\eta=0$. By (the proof of) Proposition 3.A.5 and Proposition 3.C.4, the assumption that $\theta=0$ for all j and j_{1} implies that η, and then ω, vanish. Therefore $\alpha=0$, q.e.d.

Proof of Theorems 5.2 and 6.3. They now follow from Lemma 6.4 and the fact that the analogous theorems hold for H.

We now simply sketch the proof when $m=2$ and $Q_{a} \otimes \mathbb{R}$ is indefinite. In this case we must consider a group H which is a subgroup of $G S p(r) \times G U\left(Q_{a}\right)$, the group $G U\left(Q_{a}\right)$ being of type (1,1) at infinity.

We first show that the restriction map from $\tilde{H}_{!}^{p}\left(S\left(K_{f}\right), \mathbb{C}\right)$ to $\prod_{x} H_{1}^{g}\left(S\left(H, K_{H}(x)\right), \mathbb{C}\right)$ is injective, with the usual notations. This is a geometric problem, so we can as well consider $S p(r) \times S U\left(Q_{a}\right) \subset G$. We are led to consider holomorphic p-forms on varieties $X_{1} \times C$, where X_{1} is a Shimura variety for $S p(r)$ and C a Shimura curve coming from $S U\left(Q_{a}\right)$.

Lemma 6.5. - If X_{1} is a quasi-projective variety, and C a projective variety, over \mathbb{C}, then

$$
\begin{equation*}
H^{0}\left(X_{1} \times C, \underline{\Omega}^{p}\right)=\bigoplus_{p_{1}+p_{2}=p} H^{0}\left(X_{1}, \underline{\Omega}^{p_{1}}\right) \otimes H^{0}\left(C, \underline{\Omega}^{p_{2}}\right) \tag{6.2}
\end{equation*}
$$

This is clear. We may apply this to $X_{1} \times C$ and to $\bar{X}_{1} \times C$ where \bar{X}_{1} is a smooth compactification of X_{1}. Using the result of Freitag-Pommerenke as an $\S 5.2$, we then deduce that restriction is injective if it is so infinitesimally. For this we need :

Lemma 6.6. - Let G_{1} be unitary a group of type $(r+1, r+1)$ at infinity, and $H_{1} \subset G_{1} / \mathbb{Q}$ a subgroup of type $U(r, r) \times U(1,1)$ at infinity. If ω is a holomorphic ($r+1$)form on a Shimura variety for G_{1} then ω does not vanish stably along H_{1}. Moreover its restrictions are of type $((r, 0) ;(1,0))$ on the factors associated to $U(r, r) \times U(1,1)$.

This follows from Proposition 3.A.8, except for the type of the restriction. For clarity we retrace the proof, using the notations of § 3A. It suffices to show that the vector $v=e_{1} \otimes f_{1} \wedge \cdots \wedge e_{1} \otimes f_{r+1}$ is in the $\mathbb{C} K-$ span of $w=e_{1} \otimes f_{1} \wedge \cdots \wedge e_{1} \otimes f_{r} \wedge e_{r+1} \otimes f_{r+1}$, K being $U(r+1) \times U(r+1)$ acting in the obvious manner on $\mathbb{C}^{r+1} \otimes \mathbb{C}^{r+1}$. We consider a linear transformation $e_{r+1} \longmapsto e_{1}+t e_{r+1}, e_{i} \longmapsto e_{i}(i \leq r)$. The constant term of the vector $w(t)$ obtained from w is then equal to v, q.e.d. Further, the first degrees where $U(r, r)$ can have holomorphic cohomology are $r, 2 r-1$. If $r>2$ the last assertion follows; for $r=1$ it is obvious. Assume $r=2$: thus $K=U(3) \times U(3), v=e_{1} \otimes f_{1} \wedge e_{1} \otimes f_{2} \wedge e_{1} \otimes f_{3}$. The space $\Lambda^{3} \mathfrak{p}_{H_{1}}^{+}$is spanned by the four vectors obtained from $e_{1} \otimes f_{1} \wedge e_{2} \otimes f_{1} \wedge e_{2} \otimes f_{2}$ by permutations of the indices in $\{1,2\}$. On the other hand, $K \cdot v$ is the 3 -dimensional space spanned by $v, e_{2} \otimes f_{1} \wedge e_{2} \otimes f_{2} \wedge e_{2} \otimes f_{3}$ and $e_{3} \otimes f_{1} \wedge e_{3} \otimes f_{2} \wedge e_{2} \otimes f_{3}$. For the natural scalar product, one checks easily that $K \cdot v$ is orthogonal to $\Lambda^{3} \mathfrak{p}_{H_{1}}^{+}$. Thus v is not in the $\mathbb{C} K$-span of $\Lambda^{3} \mathfrak{p}_{H_{1}}^{+}$. This completes the proof.

The injectivity of restriction now follows from Lemmas 6.5 and 6.6.
We now finish the proof of Theorem 6.3. We have obtained an injective map of $\tilde{H}_{1}^{p}\left(S\left(K_{f}\right), \mathbb{C}\right)$ into a product of spaces of the form $H_{!}^{p}\left(S\left(H, K_{H}\right), \mathbb{C}\right) ; H$ is a subgroup of $G S p(r) \times G U\left(Q_{a}\right)=H^{\prime}$ and $S\left(H, K_{H}\right)$ is covered by a product of varieties $X_{1} \times C$ associated to the two factors; finally we have an injection of $\widetilde{H}_{!}^{p}\left(S\left(K_{f}\right), \mathbb{C}\right)$ into a product of spaces of the form $H_{1}^{g}\left(X_{1} \times C\right)$, whose image falls in $H_{!}^{r, 0}\left(X_{1}\right) \otimes H^{1,0}(C)$ by Lemma 6.6. Since $H_{!}^{r}\left(X_{1}\right)$ and $H^{1}(C)$ are pure Hodge structures of weights. r and 1 respectively, Lemma 5.7 (i) implies that the Mumford-Tate group of (each absolutely irreducible factor of) $H_{!}^{g}\left(S\left(K_{f}\right), \mathbb{C}\right)$ is Abelian. Moreover, Theorem 6.1 now follows as in $\S 5$, since by Lemma 5.7 all irreducible Hodge sub-structures $Z \subset H_{!}^{r}\left(X_{1}\right), T \subset H^{1}(C)$ such that $\operatorname{Im}\left(H_{1}^{P}\left(S\left(K_{f}\right), \mathbb{C}\right)\right.$ meets $Z \otimes T$ are Abelian : this implies that the associated Galois representations are potentially Abelian by the results recalled in § 5. (N.B. : since $r>1$, it follows from § 5 that the Galois representations on $H_{1}^{r}\left(X_{1}\right)$ are Abelian : note however that we do need a further argument (Lemma 5.7) to control the contributions of $H^{1}(C)$, since the whole space $H^{1}(C)$ is not Abelian.
6.2. - We now consider the case of a unitary group G over \mathbb{Q} of type $(2,2)$ at the infinite prime.

Assume first that G is quasi-split : it contains a copy H of $S p(2)$ as in § 6.1. Let $\beta=\operatorname{Lie} G(\mathbb{R})$.

Lemma 6.7. - There are 6 Vogan-Zurkerman modules A_{ϕ} such that $H^{2}\left(\phi, K_{\infty} ; A_{\phi}\right) \neq 0$: the trivial representation, two modules whose H^{2} is primitive of type $(2,0)$ or $(0,2)$, and one module having primitive cohomology of type $(1,1)$.

The proof is easy. Write $\phi=\phi^{\prime}(x)$ with $x=\left(a_{1}, a_{2}, b_{1}, b_{2}\right)$ as in § 3A. We get two distinct types of holomorphic A_{ϕ} 's associated to (a, a, a, b_{2}) with $a>b_{2}$, and (a_{1}, b, b, b) with $a_{1}>b$. Analogously, there are two types of antiholomorphic modules. Finally, $x=\left(a_{1}, a_{2}, a_{1}, a_{2}\right)$ yields a module of type (1,1), unique up to isomorphism. Denote by A_{1}, A_{2} the holomorphic representations associated to (a, a, a, b_{2}) and (a_{1}, b, b, b) respectively.

Now the space $\tilde{H}^{2}\left(S\left(K_{f}\right), \mathbb{C}\right)$ carries a Hodge structure of type $\{(2,0),(0,2),(1,1)\}$. Consider the restriction maps to the spaces $\left.S\left(H, K_{H}\right), \mathbb{C}\right)$ with the notations of $\S 6.1$. We get a map $\tilde{H}^{2}\left(S\left(K_{f}\right), \mathbb{C}\right) \xrightarrow{\text { Res }} \prod_{x} \tilde{H}^{2}\left(S\left(H, K_{H}(x)\right), \mathbb{C}\right)$. The spaces on the right are again pure Hodge structures, and it follows from the results of Weissauer [Weis] and Blasius-Rogawski that each of these Hodge structures is, over \mathbb{Q}, the direct sum of its part of type $\{(2,0),(0,2)\}$ and of its part of type $(1,1)$: these components are separated by Hecke operators.

We may then consider the restriction map Res, composed with projection on the $(2,0),(0,2)$ part. Its kernel contains (over $\mathbb{C}) \widetilde{H}^{2}\left(S\left(K_{f}\right), \mathbb{C}\right)^{11}$ and is a \mathbb{Q}-Hodge structure. Moreover (over \mathbb{C}) Res is injective, by Proposition 3.A.9, on $\widetilde{H}^{2}\left(S\left(K_{f}\right), \mathbb{C}\right)^{(2,0)+(0,2)}$. Consequently $\widetilde{H}^{2}\left(S\left(K_{f}\right), \mathbb{C}\right)^{11}$ splits as a Hodge structure over \mathbb{Q}. Moreover the previous
arguments imply that the part of type $\{(2,0),(0,2)\}$ of \widetilde{H}^{2} is Abelian, since this is known for $S p(2)$. We have proved :

Theorem 6.8. - Suppose G is a quasi-split unitary group of (absolute) rank 4 over \mathbb{Q} : thus $G(\mathbb{R}) \cong U(2,2)$. Then $\widetilde{H}^{2}\left(S\left(K_{f}\right), \mathbb{C}\right)$ is a direct sum, as a Hodge structure :

$$
\widetilde{H}^{2}=\widetilde{H}^{11} \oplus \tilde{H}^{(2,0)+(0,2)}
$$

over ©. Both Hodge structures are Abelian. The corresponding results hold for the Galois representations.

In fact, \widetilde{H}^{11} is a Hodge structure of type (1,1), thus associated to a scalar representation of \mathbb{G}_{m} : it splits into 1-dimensional subspaces over \mathbb{Q}. Note that moreover, because of the Lefschetz $(1-1)$-theorem, all rational classes in \widetilde{H}^{11} should be represented by cycles : this would follow if one could show that their images in the cohomology of a suitable smooth compactification of $S\left(K_{f}\right)$ do not vanish. We have not pursued this problem.

We now consider the anisotropic case. By taking a 3-dimensional subspace of the 4dimensional Hermitian space, we obtain an embedding $H \hookrightarrow G$, where H is a unitary group of type (2,1) at infinity. Upon restriction to (varieties associated to) H, the classes of type A_{1} vanish while restriction is injective for classes of type A_{2} (Propositions 3A5, 3A6).

The consequence is that classes of type A_{1} or A_{2} belong to different Hodge structures (over \mathbb{Q}). If one could show that classes associated to the representation of type $(1,1)$ lie in a disjoint Hodge structure, the argument shetched above would again show that they are Tate classes. This will require further work on the trace formula.

6.3. - Orthogonal groups.

Suppose G is a group over \mathbb{Q} such that $G(\mathbb{R})$ is isogenous to $S O(2, m)$. We will assume $m \geq 5$. For $K \subset G\left(\mathbb{A}_{f}\right)$ compact-open, we consider the intersection cohomology space $I H^{2}\left(S_{K}(\mathbb{C}), \mathbb{C}\right)$.

Lemma 6.9. - IH ${ }^{2}\left(S_{K}(\mathbb{C}), \mathbb{C}\right)$ is purely of type $(1,1)$.
This is Proposition 3BD3.
Suppose now G anisotropic over \mathbb{Q}.
Theorem 6.10. - (G anisotropic over $\mathbb{Q}, G(\mathbb{R})$ isogenous to $S O(2, m)$)
(i) $H^{2}\left(S_{K}, \mathbb{C}\right)$ is purely of type $(1,1)$, and consequently spanned by algebraic classes
(ii) If E is a field of definition for S_{K}, the action of $\operatorname{Gal}\left(\bar{E} / E^{\prime}\right)$ on $H^{2}\left(S_{K}, \mathbb{Q}_{\ell}\right)$ is, for an finite extension E^{\prime} of E, an extension of 1 -dimensional representations isomorphic to the Tate character.

This is clear : (i) follows from the Lemma. By the Lefschetz (1-1)-theorem, $H^{2}\left(S_{K}, \mathbb{C}\right)$ is spanned by the classes of cycles, which may be defined over a finite extension E^{\prime}. Then (ii) follows.

7. - Summation

An infernal conjecture about the cohomology of Shimura varieties is the following we limit ourselves to varieties over \mathbb{Q}.

Problem 7.1. - Let G be a reductive group over \mathbb{Q}, with $G_{\text {der }} \times \overline{\mathbb{Q}}$ simple and $G(\mathbb{R})$ Hermitian of real rankr. Suppose the absolute rank of $G>1$. Then is $H^{r}\left(S_{K}\right)$ Abelian (bis a Hodge structure or a $^{\text {a Galois representation)? }}$

Here H^{r} should be interpreted as $I H^{r}$ (intersection cohomology), or $H_{!}^{r}$ according to our choices in this paper.

Numerous cases of this conjecture are known, the first mention of the problem being seemingly due to Oda [Oda] : see in particular Kumar-Ramakrishnan [KuR], BlasiusRogawski [Bl-Ro], Weissauer [Weis]. We now review what is known :

7A. - Unitary groups

For H^{1} the result is due to $[\mathrm{KuR}]$ and [$\left.\mathrm{Bl} 1-\mathrm{Ro}\right]$. For $r \geq 2$ and G a true unitary group (over \mathbb{Q}) it is proved here, except for non-split $U(2,2)$ (see § 6.1, 6.2). This leaves the case where G is a "fake" unitary group, associated to a Hermitian space over a simple central algebra D with an involution of the second kind. If D is a division algebra (and with a few restrictions) the result follows from Theorem 3.3 of [Clo4] and its proof when $G=U(D)$ - the unitary group associated to a 1-dimensional Hermitian module over D.

7B. - Orthogonal groups

The simplest result is Theorem 6.10. It, would extend, correctly rephrased, to isotropic groups and H_{t}^{2} if one could show that these classes extend injectively to a suitable smooth compactification.

7.C. - Symplectic groups

Here the result is given by Theorems 5.2 and 5.3 . We have not treated the case of anisotropic groups (associated to quaternionian forms, see Deligne [Del]) since we consider only groups over \mathbb{Q}; however the method of $\S 5$ extends to these cases, at least for $g>2$ (where one can use Lemma 5.1).

References

[A] J. Arthur. - Unipotent Automorphic Representations : Conjectures, in Orbites Unipotentes et Représentations, II, Astérisque 171/172, 1989, 13-79.
[Bl-Ro] D. Blasius and J. Rogawski. - Zeta Functions of Shimura Varieties, in Motives, Proc. Symp. in Pure Math. 55 (1994), Part. 2, 13-79.
[Bol] A. Borel. - Linear Algebraic Groups, Graduate Texts in Math. 126, Springer, New York 1991.
[Bo2] A. Borel. - Collecter Works, Springer, 1985.
[Bo3] A. Borel. - Regularization theorems in Lie Algebra Cohomology, Applications, Duke Math. J. 50 (1983), 605-623.
[Bo-Ja] A. Borel and H. Jacquet. - Automorphic forms and Automorphic Representations, Proc. Symp. Pure Math. 33 (1979), I, 189-202.
[Bo-Wa] A. Borel and Wallach. - Continuous Cohomology, Discrete Subgroups,..., Graduate Texts in Math. 126, Springer, New York 1991.
[Bor] M.V. Borovoi. - On the action of the Galois group on rational cohomology classes of type (p, p) and Abelian varieties, (Russian), Mat. Sbornik 94 (1974), 649-652.
[Clol] L. Clozel. - Produits dans la Cohomologie..., J. Reine Angew. Math. 430 (1092), 69-83.
[Clo2] L. Clozel. - Produits dans la Cohomologie. .. II, J. Reine Angew. Math. 444 (1993), 1-15.
[Clo3] L. Clozel. - Motifs et Formes Automorphes, in Automorphic Forms, Shimura Varieties, L-functions, vol. 1, Acad. Press. NY, 1990.
[Clo4] L. Clozel. - On the Cohomology of Kottuitz's arithmetic varieties, Duke Math. J. 72 (1993), 757-795.
[Del] P. Deligne. - Travaıx de Shimura, Séminaire Bourbaki, 1970/1971, Exposé 389, SLN 244, New York 1971.
[De2] P. Deligne. - Variétés de Shimura, Interprétation modulaire, Proc. Symp. Pure Math. 33, vol. - 2 (1979), 247-290.
[De3] P. Deligne. - Théorie de Hodge II, Publ. IHES 40 (1972), 5-57.
[De4] P. Deligne. - Théorie de Hodye III, Publ. IHES 44 (1975), 6-77.
[DMOS] P. Deligne, J.-S. Milne, A. Ogus, K.-Y. Shih. - Hodge Cycles, Motives and Shimura varieties, Springer L.N. 900, Berlin 1982.
[Fr-Po] E. Freitag and K. Pommerening. - Reguläre differentialformen des Körpers der Siegelschen Modulformen, J. Reine Angew. Math. 331 (1982), 207-220.
[Go-M] M. Goresky and R. Mac Pherson. - Intersection homology II, Inv. Math. 71 (1983), 77-129.
[Hal] G. Harder. - Kohomologie des Arithmetische Gruppen, (in preparation).
[Ha2] G. Harder. - Eisenstein cohomology of arithmetic groups. The case $G L_{2}$, Inv. Math. 89 (1987), 37-118.
[Hari] Harish-Chandra. - Automorphic Forms on Semi-simple Lie Groups, Springer LN 62, 1968.
[KUR] V. Kumar-Murty and D. Ramakrishnan. - The Albanese of Unitary Shimura Varieties, in The Zeta Functions of Picard Modular Surfaces, Langlands-Ramakrishnan eds, Publ. CRM, Montréal 1992.
[Ku] S. Kumaresan. - The canonical k -types of irreducible (\mathfrak{g}, K)-modules with nonzero cohomology, Invent. Math. 59 (1980), 1-11.
[Lo] E. Looijenga. - L^{2}-cohomology of locally symmetric varieties, Comp. Math. 67 (1988), 3-20.
[Mo-Wa] C. Moeglin and J.-L. Waldspurger. - Décomposition spectrale et séries d'Eisenstein, Birkhäuser, Basel 1994.
[Oda] T. Oda. ${ }^{-}$A note on the Albanese of certain Unitary Shimura Varieties, J. Fac. Sci. Univ. Tokyo, Section 1A, Math. 28 (1981), 481-486.
[Parl] R. Parthasarathy. - Holomorphic forms on $\Gamma \backslash G / K$ and Chern closses, Topology 21 (1982), 152-175.
[Par2] R. Parthasarathy. - Criteria for the uniterisability of Some Highest Weight Moilules, Proc. Indian Acad. Sci. 89 (1980), 1-24.
[Pi] I.I. Piatetskil-Shapiro. - Relations between the Hodye and Tate conjectures for Abelian varieties (Russian), Mat. Sbornik 87 (1971), 610-620.
[Sa-St] L. Saper and M. Stern. - L^{2}-cohomology of arithmetic varieties, Ann. of Math. 132 (1990), 1-60.
[Sel] J.-P. Serre. - Abelian ℓ-adic representations, Benjamin, New York, 1968.
[Se2] J.-P. Serre. - Représentation ℓ-adiques, Algebraic Number Theory, Kyoto 1976, Japan Soc. for the Promotion of Science, 1977.
[Sh-Ta] G. Shimura and Y. Taniyama. - Complex Multiplication on Abelian Varieties,..., Publ. Math. Soc. Japan, 6, 1961.
[Vo-Z] D. Vogan and G. Zuckerman. - Unitary representations with cohomology, Compositio Math. 53 (1984), 51-90.
[W] A. Weil. - On Complex Multiplication ..., Proc. Int. Symp. Tokyo-Nikko, 1955, 9-22.
[Weis] R. Weissauer. - Differentialformen zu Untergruppen der Siegelsche Modulgruppen, J. reine Angew. Math. 391 (1988), 100-156.

[^0]: *Membre de l'institut Universitaire de France

[^1]: ${ }^{1}$ See also Blasius-Rogawski [Bl-Ro].

