Restriction of Holomorphic Cohomology
of a Shimura Variety to a Smaller
Shimura Variety

L. Clozel* and T.N. Venkataramana

* Max-Planck-Institut
Université de Paris-Sud fiir Mathematik
Mathematiques Gottfried-Claren-Str. 26
Bit 425, Orsay-Cedex 53225 Bonn

France Germany

MPI 96-44






Restriction of Holomorphic Cohomology of
a Shimura Variety to a Smaller Shimura,
Variety

L. Clozel*and T.N. Venkataramana

1. Introduction

Suppose S = S(I') = I'\ X is a Shimure variety obtained as the quotient
of a Hermitian symmetric space X = G(R)/Ko - G is a semisimple group
over Q , K C G(R) a maximal compact subgroup - by an arithmetic
subgroup I of G(Q).

Suppose that H is a semisimple Q -subgroup of G such that ¥ =
H(R)/Ky is also Hermitian symmetric, with Ky = Ko N A a maximal
compact subgroup of H(R) and such that the natural inclusion i of Y in X
is holomorphic.

For every covering S(I') = S(I') with [V C T of finite index the resulting
map ¢ = (") : "N H\Y — ["\X is , as is well known , a morphism of
varieties.

Let C be a correspondence on S which is of the form 2z — ¢(z) on the

universal covering X of S with g € G(Q). We therefore get a finite covering
C : S(I') » S(T) for some I".

In this article , we are concerned with the following question . Let w be
a cohomology class on S whose restriction (i.e. pullback via the composite

of C with 1) to [N H\Y is zero for all the correspondences C defined above
- we will say then that w vanishes stably along H . Then is w itself zero ?
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This question is hard to answer for an arbitrary class w , but we can give a
criterion purely in terms of the linear algebra of G and H, for holomorphic
forms on S (which are cuspidal if S is not compact). One of the reasons for
the holomorphic case being easier is that the restriction of a holomorphic
form to a subvariety is indeed holomorphic whereas even if w is a harmonic
form on § , its restriction to [ N H\Y need not be harmonic in general .



As in [Clo 1] and [Clo 2], we make use of the explicit description - as
formulated in [V-Z] - of (g,K)-modules with non-zero cohomology . Indeed,
the papers [Clo 1] and [Clo 2] deal with the question of vanishing or not,
of cup-products of two holomorphic forms on S , which may be interpreted
as the question of the vanishing of the restriction to the diagonal of the
tensor-product of these two forms.

The question of the stable vanishing of w along H (at least in the co-
compact case ; when S is not compact, one must restrict oneself to cuspidal
cohomology } has a simple description in terms of the Parthasarathy-Vogan-
Zuckerman theory : suppose that the infinity type of w is A4, associated to
the #-stable parabolic subalgebra q of the Lie-algebra g = LieG(R)® C. Let
p* be the holomorphic tangent space of X = G(R)/Ky, u be the unipotent
radical of q , u™ its intersection with p* and R the dimension of u%*. Then,
w is stably non-zero along H if and only if the R-th exterior power of u* (
a line ) lies in the smallest subspace of the R-th exterior power of p* which
contains the R-th exterior power of p* N A (here, h = LieH(R)® C) , and is
stable under the adjoint action of K, . We prove this in section 2 , first in
the compact case ; the non-compact case is dealt with similarly (for cuspi-
dal holomorphic cohomology ) and we will briefly indicate the modifications
necessary .

We then use this criterion in the case of the classical hermitian symmetric
domains and some naturally embedded sub- hermitian domains. The results
are set out in section 3 .

The conjectures of Langlands , Arthur and Kottwitz on the Zeta functions
of Shimura varieties impose strong restrictions on the Galois representations
occurring in the etale (intersection ) cohomology of the Borel-Bailey-Satake
Compactification of S. By working out the predictions of these conjectures
in the special cases of U(gh) (¢ < h, g > 2 and h # 2 ) and GSp(g)
(g =2 2 ) we will see in section 4 , that the action of the Galois group on the
cohomology degree g , of the Shimura varieties corresponding to these two
groups is potentially Abelian .

As an application of the calculations of section 3 , we show in section 5
, that given a holomorphic g-form on a Siegel-modular variety (the Shimura
variety associated to the group GSp(g), with g > 2) , its restriction to some
product of g modular curves is non-zero. This is shown to imply that the



Mumford-Tate group of the compactly supported cohomology in degree g of
the Siegel-modular variety is Abelian (this was implicitly proved in a paper of
Weissauer in the case g = 2 ), thereby confirming the heuristics of section 4 .
As a consequence , we find that the action of the Galois-group on the (image
of the compactly supported cohomology in degree g in the ) etale intersection
cohomology of the associated (Borel-Bailey -Satake ) compactification of the
Siegel-modular variety is potentially Abelian .

As another application , we show that the Mumford-Tate group of the
(compactly supported ) cohomology in degree g , of some Shimura varieties
attached to U(g,h) (2 < g < h and (g,h) # (2,2)) is also Abelian , by
restricting the cohomology to an appropriate product of curves . Analogously
, we show that the action of the Galois-group on the (image of the compactly
supported cohomology in the ) etale cohomology in degree g of the associated
compactification of this Shimura variety is potentially Abelian .

The second named author would like heartily to thank the first for pa-
tiently explaining many of the ideas referred to above , especially the theory
of Parthasarathy , Vogan and Zuckerman and the conjectures on the Zeta
functions of Shimura varieties . He would also like to thank the Universite de
Paris-Sud , Orsay?? jor its hospitality while part of this work was done and
the Institut Universitaire de France and the Commission on Developement
and Exchanges of the International Mathematical Union for providing travel
support to enable him to visit Paris .

The first named author wants to record here that the results contained in
[Clo 1] concerning the vanishing of cup-products of holomorphic forms had
been proved by Parthasarathy [Par 1] . Thus the new content of [Clo 1] is

the non-vanishing of certain cup-products . An earlier result (for U(n,1)) can
be found in Shimura [Sh 1] .
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2. — General criteria

2.1. — Let G be a connected semi-simple group defined over ¥; by abuse of notation
we will also denote by G the group G(R). Let K C G be a maximal compact subgroup.
We assume that the symmetric space X = G/K is of Hermitian type. There is then an
element ¢ belonging to the center of X such that Ad(c) induces, on the tangent space po
of X at its base point 0 = K, multiplication by i = /—1. Let

(2.1) g=toptap

be the associated decomposition of g : thus pt = {X € p : Ad(c)X = iX} is the
holomorphic tangent space.

Now let H C G be a connected reductive subgroup over Q.

We will assumne

(2.2) HnN K is a maximal compact subgroup of H.

Then the restriction to H of a Cartan involution & of G is a Cartan involution of
H = H(R). We have a corresponding decomposition

(2.3) h=28yDpu
with py = pNh. We further assume
(2.4) pn is stable by Ad(c).

Then Ad(c) defines a Kpy—invariant complex structure on pgo. The space Xy =
H/H N K is Hermitian symmetric. We have a triangular decomposition

(2.5) b=ty Opf; Opy

compatible with (2.1); finally, the embedding Xy — X is holomorphic.

Now we assume that ' C G(Q) is a neat congruence subgroup. Precisely, we
suppose that I’ = G(Q) N Ky, K; C G(A;) being a compact-open subgroup such that
G(Q) N (K x gKsg~!') = {1} for any g € G(Aj). We consider the Shimura varicty
S(T') =T\X : it is one of the connected components of S(Ky) = G(Q\G(A)/K - Ky =
GQ\X x G(A7)/K;.

Now assume K }{ C H(A;) is compact-open. If K f-’ C Ky there is a natural map
S(K f ) —;—» S(K‘f). By our assumption on Ky, j is finite and unramified. We recall the

following fact due to Deligne [Del, Prop. 1.15] :

LEMMA 2.1. — Given Kf" C H(Ay), there exists a compact open subgroup K} C
G(Ay), with Kf' C K}, such that the natural map j' : S(KH) — S(K}) is injective.



In particular, if we take K}{ = K;NH(Ay) we get a natural map j : S(Kf’) — S(Ky);
Jj is finite and if we replace Ky by a sufficiently small subgroup K } we get a diagram

S(K{) — S(K})

J

(2.6) ~. |-

j
S(Ky)

where = is the natural projection and j’ is injective. By restriction to the connected
component TNH\H/Ky we get a map j: TNH\ Xy — I'\X with analogous properties.

Now assume g € G(Q). Fix K}' C H(As) and consider the map j, : H(A) —
G(A) given by j,(h) = gh. It is easy to check that j, yields an injective map
HQ\H(A)/K{ — GQ\G(A)/KY; assuming K = K;n H(A) C Ky (where K
is compact-open in G(Ay)) we then obtain a natural map j, : S(K f’ ) — S(K) with
our previous notation; this map is unramified and finite. On the connected component
of S(Kf") given by the orbit of 0 under H(R), j, is the natural map (HNg~'Tg)\ Xy —
[\ X¢. In this manner we obtain a family, parametrized by ¢ € G(Q), of complex
subvarieties of I'\ X, the images of the j,.

In the remainder of this section we assume that G is anisotropic over Q; S(I') is then
compact. For r > 0, let H"%(S(T)) be the holomorphic subspace of H"(S(T),C) for the
Hodge decomposition. Following Oda [Oda] we will study the restriction map

2.7) HOSM) — ] H(Su(s))
9€G(Q)

where Sy (g) = (HNg~!'I'g)\ Xy, and the restriction map is deduced from the family of
maps (jg). We want to obtain sufficient conditions for the injectivity of (2.7). We will
denote by R, : H"%(S(T)) — H™%(Sk(g)) the component of (2.7) associated to jg.

PROPOSITION 2.2. — Assume that A™p* is spanned over K by A"p};. Then (2.7) is
injective.

Proof : suppose w € H"%(S(T)) verifies Resw = 0.

Identify p* to the holomorphic tangent space at the base point o of S(T'); if A € A™p*
than g - A is the translate of A by g in the holomorphic tangent space at g - 0. Then
wg.o{g-A) = 0 for all g € G(Q) and A € A"p}; by our assumption. Therefore this is
true for all g € G. If k € K we than have wgk.o(gk - A) = wg.o(gk - A) = 0. Therefore
wg.o{gA) =0 for any A € A"p*, g € G. This implies that w = 0.
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2.2, — We now give a more precise version of Proposition 2.2 using representation
theory. If the representation-theoretic type of the form w is fixed, we will obtain
a necessary and sufficient condition for the vanishing of Resw. We still assume &
anisotropic.

According to Parthasarathy, Kumaresan and Vogan-Zuckerman, the holomorphic
cohomology of S(I') can be described as follows. Let t C ¥ be a Cartan subalgebra.
We consider #-stable parabolic subalgebras q C g [Vo-Z, §2] : q = [® u, where [ is the
centralizer of an element X € itg and u is the span of the positive roots of X in g. Then
q is stable by 8, whence a decomposition u = (uN k) ® (uNp). We assume that unp C pt.
Let 7 = dim(un p*). We write ut = unp+.

Associated to q, there is a well-defined irreducible (g, K')-module A, characterized
by the following properties. We assume that a choice of positive roots for (¢, t) has been
made, compatibly with u. Let e(q) be a generator of the line A"ut C A”p. Then e(q)
is the highest vector of an irreducible representation V(q) of K contained in A"p,.. The
representation A, is then uniquely characterized by

(2.8) Aq is unitary, with the same infinitesimal character as the trivial
representation

(2.9) Homg (V(q), Aq) # 0.

Moreover, V(q) occurs with multiplicity 1 in Aq and A"p* and
(2.10) H™%q,K; Ay) = Homg (A7p*, A;) = C.

Cohomology classes (of type (r,0) and) of type A, are then obtained as follows.
Suppose ¢ : A — C®(I'\G) is an intertwining map. We then get a natural map
H™(g,K;Ay) —— H"%g,K;C>*(I'\G)) = H"%(S(T)), the equality being Mat-

sushima’s isomorpﬂism. Explicitly, ¢, is obtained as follows : fix a non—zero K-map
w : A"pt — Ag, which necessarily factorizes through the V(q)-component. Define
wp € H™(S(T)) by wy(g - A) = p(w(N))(g) (A € p* = To(X), g € G). Then w, = puw,
where w is considered as an element of H"%(g, K; Aq). The Aq—component of H™%(S(T))
is the sum, over a basis {¢} of Homg g (Aq, C®(7\G)), of the forms w,.

Write

(2.11) APt = V' @ V(q)

V' being the orthogonal complement of V(q) for any invariant scalar product; equiva-
lently, V’ is the sum of the K-submodules of A™p* non-equivalent to V(q).

PRroposITION 2.3. — The following conditions are equivalent :
(i) Res(w) =0 for any w € H™(S(7)) of type A,.
(i) Apf; C V! =V(q)*
(ii) A"p}; is orthogonal to the K-span of e(q).



, Proof : suppose w, is associated to ¢ : Aq — C>(T'\G). Then (i) says that
wel(g - A) = pw(A))(g) = 0 for any g € G(Q), A € A"p};. Then this is true for any
g € G, so p(w())) = 0, whence w(A) = 0 by injectivity. Since Aq and A"p}; have a
unique component of type V(q) and w is a K—-map, we may view w : A"pt — A(q) as the
projection mq onto the second component in (2.11). Our assumption (i) then means that
mq(ATp};) = {0}, which is (ii). Since V(q) is spanned over K by e(q) this is equivalent
to (iii).

The following formulation will be useful :

COROLLARY 2.4. — The following are equivalent :
(i) Res(w) =0 for any w € H™O(S(T)) of type Aq.
(i) The K-span of A"p}; in A"pt does not contain e(q).

Proof : this follows from condition (iii) above and the fact that V(gq) occurs with
multiplicity 1.

We will denote by E(G, H,r) the K~span of A"p}; in A"py. By Corollary 2.4, the
restriction problem is then reduced to :

PROBLEM 2.5. — Describe the @-stable (holomorphic) q (with dimut = r) such that
e(q) € E(G,H,r).

We end this section with a useful, negative criterion. Let Ty € Ky be a maximal
torus. We may assume, up to conjugacy, that Ty C T where T' C K is a maximal torus
whose Lie algebra is tg as above.

Let Ty ¢ be the complexification of Ty . Suppose we are given a one —parameter torus
M C Ty c. Fix an isomorphism M = G,,. Then M acts on H by conjugation, and on
ATp* via M — K¢ and the adjoint action.

PROPOSITION 2.6. — If there exists a 1-dimensional torus M C Thc that centralizes
H but acts by strictly positive weights on V(q), then E(G,H,r) NV (q) = {0}.

Proof : with the notations introduced before Proposition 2.3, we have
Homp (A7p};, V(a)) = {0} by assumption, whence Homg (A"p};, V(q)) = {0} and
ATpf; c V'’ qed.

We now include another criterion that is easier to check in some cases. Let E(G, H,r)
be as before. Given a f-stable parabolic subalgebra q;; of h such that p7; Nu(gy) = {0}

(a holomorphic f-stable parabolic subalgebra) and r = dim(pf; N u(qn)), let Ve(qn)
denote the K-span of the line A"(p}; Nu(qu)) in A™(p}). Let

(2.12) A(G,H,r) = Ve(an) C E(G, H,7)

where the sum runs over all holomorphic #-stable parabolic subalgebras qj relative to
our choice of T'.



PRoPOSITION 2.7. — The following conditions are equivalent :
(i) Res(w) =0 for any w € H"(S(T)) of type Aq.
(i) A(G,H,r)c V' =V(q)*.

Proof : (i) = (ii) by Proposition 2.3. Conversely, if Resw # 0, we may, as in the
proof of Proposition 2.3, replace w — seen, say, as a form on X - by a G(Q) translate w’
such that w) does not vanish on A"p};. Then the form ' restricts to a non-vanishing
holomorphic form on a quotient of H, with must be a sum of forms of type A(qgy) in the
notation of the paragraph following (2.10), applied to H. Thus < w’, eq,,) > 0 for some
f-stable, holomorphic parabolic qy. This implis that «’ does not vanish on A(G, H,r)
and therefore A(G, H,r) D V(q). Thus (ii) => (i).

2.3. — Generalizations

The results of § 2.2 generalize quite naturally in two directions : (a) non—trivial systems
of coefficients; (b) non-anisotropic groups.
Part (a) is obvious : suppose F is a finite~dimensional representation of G (); C, E

defines a local system £ on S(I') and on all the varieties considered in the previous
arguments. Suppose for simplicity E irreducible. Since € is locally trivial, H*(S(I'), £)
again has a Hodge decomposition and H™°(S(T),€) can be decomposed according to
certain representations Aq(E) associated to certain §-stable parabolic subalgebras [Vo—
Z). The results in § 2.2 then remain true.

In the sequel we will generally neglect coefficient systems, which are irrelevant to our
problem.

Consider now the case when G is isotropic over Q. Then H*(S(I'),C) is no longer
endowed with a Hodge decomposition. The subspace Hg\,, (S(T'), C) of classes represented
by cusp forms, however, inherits of Hodge decomposition (cf. Borel [Bo3], as well as [Bo—
Wa, § I14]). Ifw € H;',f;p(S(I‘)), we Imay again restrict w, via the maps j,, to Sg(g). The
restriction is obviously a holomorphic r-form on this arithmetic quotient. Moreover :

PROPOSITION 2.8. — Ifw € HL),(S(T)), jw € HLS o (SH(g)).

cusp cusp

Proof : we extend an argument in [Cl1].

Since Hodge theory applies to cuspidal cohomology, we may view w as a holomorphic
form on S(I'). Let n = jjw seen as a holomorphic form. Then On = 0, and therefore
7 is annihilated by the Hodge Laplacian : in terms of the automorphic functions that
are coefficients of 7, this translates into the vanishing of the Casimir operator. A finite-
dimensionality argument in [Cl1, p. 80] then shows that 7 is annihilated by an ideal of
finite codimension in the center 3 of the enveloping algebra for H, if we can show that
7 (or its coefficients) are square-integrable. We will in fact show :

LEMMA 2.9. — 7 1s rapidly decreasing on HN g~ Tg\H.

Then, by the preceding argument, 7 is an automorphic form of rapid decrease. By
Lemma 5.3 in [Cl1], 7 is a cusp form, and Lemma 2.8 is proved.



, Proof of Lemma 2.9 : if G is the set of R—points of a semi-simple Q-group and f
a function on G, left-invariant by an arithmetic subgroup I' and K-finite on the right
(K ¢ G maximal compact), the following conditions are equivalent :

(2.13)  f is rapidly decreasing in Siegel domains
in the usual sense ([Bo-Ja, (1.6)]) and

(2.14) If(z)| = 0(Jz| =) forall N>0,

z ranging over a Siegel domain &.

In (2.14), || || is any norm on G, in the sense of [Bo-Ja]; for the equivalence see
Moeglin-Waldspurger [Mo-Wa, p. 20].

Since w is cuspidal, its coefficients verify (2.13) and therefore (2.14). A norm on G
restricts to one on H. We now need only check that the coefficients of 7 — i.e., the
restrictions of the coefficients of w — verify (2.14), but now on a Siegel domain Gy for
H. '

Fix a minimal parabolic Q-subgroup Py of H, and let Uy be its unipotent radical.
Let Ty be a maximal Q-split torus in Py and consider By = Uy x Ty C Py. Then
By is a “split solvable group” in the sense of [Bol]. We may similarly define P, T, U
for G, and Bg = U x T. By a theorem of Borel and Tits [Bo2, Vol. III, p. 533|, there
exists g € G(Q) such that g Byy g~! C Be. Thus we may assume that By C Bg. Then
Uy C U, and we may assume (upon conjugation by an element of U) that Ty C T. Let
@+ be the set of roots of T in U, ®}; the set of roots of Ty in Uy.

Let M be the centralizer of T in P (or G). Then M = MT where M? is anisotropic
and therefore MONT is finite. We similarly define M7). Let A be the connected component
of 1 in T(R), Qu € U(R) and Qp C M?(R) be compact subsets, and for ¢ > 0 define

(2.15) Ai={a€A:a">t Vae ?}.

Fix maximal compact subgroups Ky and K of H and G with Ky C Kg. A Siegel
domain G4 of G is then a set

(2.16) Se=0W O A K.
Similarly a Siegel domain Gy of H can be written
(2.17) S = Qu, My, AnKn

where Ay, is of course defined by ®y;.
Suppose now Q¢ is a compact subset of G. We first prove that

(2.18) If(x)| =0(|z|~" VYN >0 for z ranging in SgQq¢,
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, f being a cusp form. Indeed, if z = gw, g € &g, w € Qg, write g = nmak according
to (2.16) and h = kw. By the Iwasawa decomposition, h = ngagkq, no € U(R), ag € A,
ko € K. Clearly ag is constrained to lie in a fixed compact subset of A. Now

T = nmah = nmangacko = n(™*no)maagko

where v := uvu~!. Let }; C U(R) be a compact subset such that U(R) = (CNU(R))Q;.
Then n(™%ng) € (' NU(R))u for u € Q, whence f(x) = f(umaagko). Now we may
replace Qu by Q ; m € Qu, ao is bounded, and the growth property of f on KyQu A K
implies (2.18).

We now note that if o € G(Q) is fixed, (2.18) remains true for z ranging in cG¢g¢
since the left-translate of f is a cusp form. The corresponding estimates are uniform in
o if o belongs to a finite set. Therefore Lemma 2.9 will follow if we can prove :

LEMMA 2.10. — Let Sy be a Siegel domain (2.17), and W = Ng(T)/Za(T) be the
(Q)-Weyl group of (G,T). Then there erists a compact subset Q¢ of G and a Siegel
domain G¢ such that

(2.20) Suc || o6e
oeW

Indeed, the coefficients f of n then satisfy, by (2.18), the estimate (2.14) on Gy,
whence Lemma 2.9.
Proof of Lemma 2.10 : let £ C ®}; be a fixed subset. Then Qy,, is contained in a
product QEQ5 where QO C Ut = [[ Un,e and Q5 C Ug = [] Uy are compact. If
o€l ag¢®
a € Ay let £(a) = {@ € ®}; : a® < 1}. Let Sy be a Siegel domain (2.17). Then &y is
contained in the union over all £ of the subsets

(2.21) | |es9tQm, akn

where a € Ay, verifies the condition £(a) = L. The eigenvalues of X ~— a~!'Xa in
Lie(Ust) are given by ™ (a € £(a)) and are therefore bounded by t~!. Thus a~!Qfa is
contained in a fixed, compact set, that we now denote by Qt. Then (2.21) is contained
in

(2.22) |_| QE aQ§ Qpm, K

Now fix a, and choose o0 € W such that

a'"—-"aaa-leAl={a€A:aﬁ21Vﬁ€¢$}.
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If x belongs to a root subgroup of Ug, z is (strictly) dilated by Ad(a) and ozo™ lis
therefore dilated by Ad(a'). This implies that ozo~! € Ug. Now

(2.23) o(Qza) = (6Q50Va'o C O Ao

where Q € Ug is compact. Finally, we see that Sy is contained in
L o1Qf A1oQEQpmp Kn. This is an expression (2.20), whence the lemma.
o,

In conclusion we note that all the arguments in § 2.2 extend to cusp forms in the
non-compact case. The differential criteria given there permit one to test when the
restriction Res(w) of a holomorphic cusp form (as a differential form) is non-trivial.
If the restriction does not vanish, the associated cohomology class is non—vanishing by
results of Borel [Bo3).



3 . Computations in the case of the Classical Hermitian domains

In this section we consider the hermitian symmetric domains of type A,B
C and D. The subsections on groups of type A will be denoted (3 .A . *) and
so on . We refer to [Clo 2] for the explicit description of these domains .

In the following My, x»(C) denotes the space of matrices with m-rows and
n-columns and with complex entries. E;; € Myxn(C) is the matrix whose
entry in the i-th row and j-th column is one and the other entries are zero.
The group of non-singular px p matrices (resp. of determinant one is denoted
GL, (resp. SL,) . The group of p x p unitary matrices (resp. of determinant
1) is denoted U(p) (resp. SU(p)). Similarly the group of p x p real orthogonal
matrices (resp. of determinant 1) is denoted O(p) (resp. SO(p)).

If E is a representation of a group then denote by E* its contragredient
If e;, €2, . . . em 18 a basis of E then its dual basis in E£* is denoted
e}, €, . ..en. The r-th exterior (resp. symmetric ) power of E is denoted

AT(E) (resp. sym’(E)).

We assume from now on, that the reductive group G is almost Q-simple
, i.e., has no connected non-central normal subgroups defined over Q. It
follows, as is well known , that all the simple factors of the complex Lie
algebra g (mod centre ) are isomorphic. We assume furthermore that the
group G(R) of real points is the product of a compact group and a real
almost simple non-compact group ; denote the latter by G™°.

(3.A.1).Notation : Let G* = U(p,q) where p and q are positive integers
with p < ¢. Thus the real rank of G is p. Now ,
(¢ )}
0 -1,

o0 o= o= (48 a(k )

where A € Mpup(C), B € Myxq(C), C € Myxp(C), D € M,xy(C). Let

K= {g: (81 g) € G*; AelU(p), De U(q)}.

The complexification K¢ of K is the group

K= {g = (‘3 103) € G(C); AeGL,, De GLq}.
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The Cartan involution 8 is given by z — —'T. Let

C = {g eEKc; g= (3 g) with A, D scalar matrz'ces}

and

T = {g e Kc; g= (13 10)) with A, D diagonal matrices}.

Elements of T or of its Lie algebra are denoted (z1,....zp; ¥1,-...,45). Now
the Lie algebra of G(C) is obviously M(,1q)x(p+q) and we will view its elements
in block form as in (1). Let

pt = {(g g) with BeM,,xq},

and

b = { (g g) with cqux,,}.

Let CP (resp. C? ) be the standard representation of U(p) (resp. of U(q)).
Then, as a representation of K¢, pt = CP @ (C?)* .

Let e, . .. e, and fy, . .. f, be the standard bases of C? and C?
respectively. Fix the Borel-subalgebra by of k to be the one which is upper
triangular on C? and lower triangular on C9 with respect to these bases .

The roots of T occurring in p* are the linear forms z; — y; with1 <1< p
and 1 <57 <q.

(3.A.2) Proposition: Assume that G™ =U(1,q) and that H is an arbi-
trary subgroup as in section (1.1). Let A, , and u=u(q) be as in section (1.1)
such that A, has holomorphic cohomology in degree R with dim(h N p*t) >
R (= dim(unp*)). Then,

E(G,H,R) D> V(q).

Proof: As a representation of K¢
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APRpt = AR(C @ (CT))
is irreducible. The proposition now follows from (2.2).

We now classify all the §-stable parabolic subalgebras q of g which have
holomorphic cohomology. As in (2.2) assume that q=q(x). Then , by (2.2)
we have uNp~ = 0. Let x=(ay,..., ap ; b1,..., by) be such that its eigenvalues
on the Borel subalgebra by are > 0. Therefore

a1 2... 2a, and by =2 ... 2 by.

Now p* has the E; ,; as a basis with 1 <7 <pand 1< j < q. Moreover
uNp* has the E;,.; as a basis where i and j are such that a; — b; is strictly
positive. Let » < p and s < ¢ be defined by the conditions

($)rp: @ 2...28 > Gp1= ...=ap=

= qu...=b,+]>b32... Zbl

Thus q=q(x) with x satisfying (x),,, for some r and s exhaust the list of
all the paraboloic subalgebras with holomorphic cohomology.

The roots of T occurring in u N p* are of the form x; — y; with (a) ¢ < r
and j arbitrary ,or (b) 1 > r+ 1 and j < s. Let p = 2p(u N pt). Then,

,u=zr:zq:(:c,-—yj) + Xp: Z’:(ms-yj)-

i=1 j=1 i=r+1 j=1

Thus,

p= (g=s)(z1+. . +z.)+ s(zi+. . +zp)— (p—r) w1+ . +ys)— r(y1+. . +yq)-
Consider the representation of K¢
(3.2) ®"(APCP)® Sym ™ *(A"CP) @ SymP~"(A°C?)* @ (AI(CT)") .
We note that g is the weight associated to the vector
e= @'(e1A.. Nep) @ (er A . Ae )@ (ff AL AF® (fi AL A SY).
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Also note that e is obviously a highest weight vector in this representation
space , therefore under K¢ it generates an irreducible submodule . This
module is isomorphic to A, .

For future reference we note that

dim(unpt) = rq+ (s)(p—r) = Rt =R

Let @ < pand b < q. Let E° be the C-span of e;,. . . ,e, and let F? be
the C-span of fy,. .., fs . Then the restriction of the hermitian form

(5 2,)
0 -1,

to the subspace E* @ F* of CP @ C7 is non-degenerate . Thus we get an
embedding of U(a,bd) in U(p, q).

From now on , we assume (as we may , thanks to Proposition (3.A.2))
that g>2p>2.

(3.A.4) Proposition: Let G* = U(p,q) with p, ¢ > 2. Let H*=U(a,b)
with a < p and b < q embedded in U(p,q) as above . Let q be a proper 8-

stable parabolic subalgebra which contributes to holomorphic cohomology in
degree R . Then

E(G,H,R)NV(q) =0.

Proof: Let £ : G,, — T be defined, for t € G,, , by

)= (1,...,t7h)

Then the image of ¢ centralises H. To prove the proposition we will use the
criterion of Proposition (2.6). We therefore compute the weights of £(t) on
the tensor space (3.2) above . We see that the weights of £(¢) are of the form
tN where N = (p—r)x A + r, with 0 < A . Therefore N is strictly
positive unless A is 0 and r is zero. If r is not zero, then by Proposition (2.6)
E(G,H . R)NnV(q)=10.

Similarly, by looking at the embedding

g)y=0Q,..,L,§1,..,1)
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(where t occurs as the p-th coordinate) whose image also centralises H , we
see that, unless s is zero , E(G, H, R)NV(q) = 0. This completes the proof.

(3.A.5) Proposition: Let G™ = U(p, q) with p, ¢ 2 2. Let H*=U(p,b)
with b < ¢ be embedded in Ufp,q) as above . Let ¢ = q(z)= q(r,s) be a

proper 8- stable parabolic subalgebra where z satisfies ()., with dimut =
R < dimp}; . Then

E(G,H,R) D V(q) if and only if r=0.

Proof: Consider again, the map £ defined in the proof of Proposition
(3.A.3). Its image still centralises our new H™. As in the proof of (3.A.3) we
see that the eigenvalues of £(¢) are of the form ¢V where N = (p—r)A + r
with 0 < A.

If r # 0 then N is strictly positive and by Proposition (2.6), E(G, H, R)N
V(g)=0.

If r=0, then Rt = sp < dim(p* Nh) =pb. and V = V(q) is the
K¢-stable subspace generated by the vector

eg= N;e&®f (i<j, s+1<3<4q).
Now pf; = CP @ (F*)* is the span of the vectors
e&®fi, (1<i<p, 1<5<b) (b=s)
and therefore , AP*p}; contains the wedge of the vectors
ei®fja (133"_:?, ]-SJSS)

which is precisely e, .
(3.A.6) Proposition : Let H* = U(a,q) be embedded in G™ = U(p,q) as
before. Let g=q(z) be a O-stable parabolic subalgebra associated to z satisfying
(x)rs and R* = R < dimp}; . Then
E(G,H,R)DV(q)if andonlyif s=0 .

Proof: The proof is entirely similar to that of (3.A.3) and will be omitted.



Notation: Let p < ¢, and G™ = U(p,q) . Let H™ be the subgroup of
G™¢ which fixes pointwise the C-span of fp41, . .., f; and leaves stable the
C-span of ¢; and f; for each 1 with 1 <7 < p. Thus H™ = U(1,1)? . We
recall that the real rank of G™ is p .

(3.A.7) Proposition : Let q be a §-stable parabolic subalgebra of the Lie
algebra g such that dim(uNp*) = p . Let U(1,1)? be embedded in Ufp,q)
as above . Then ,

E(G,H,p) D V(q).

Proof : In the notation of (3.A.3) q =q(p,0) or q(0,p) (if p=q) . For
definiteness , assume that g=q(p,0) . Then u N p* is the span of the vectors
aa®ff, ea®fr, . ..,e,@ fI , and V(q) is the K-span of the vector

(33) eq=ea®fiN ea@fiN ... ANey® f] .

Now , E(G,H,p) is the K-span of the vector

(34) a®fih @a@fiA ...Ae,® [
(the line through (**) is APpf ) .
Let t ,t3, ..., t, be variables . Now K¢ = GL, x GL, and there
exists an element g € 1 x GL, which sends the basis f;, ..., f; into the
vectors f3 +taf7, ..., f;+t.f7 . The g-translate of (3.4) is a polynomial in

ty ,t3, ..., t, with values in E(G,H,p) and the coefficient of the monomial
ty X... X1, is precisely the vector (3.3) ; this shows that V(q) C E(G, H,p)

More generally, we may split the hermitian space C? @ (C9)" into a direct
sum of hermitian subspaces and consider the restriction of the holomorphic
cohomology .

Notation : G = U(p,q) preserves the standard hermitian form

h(z,y) = 2 lzu " =3 1w
on the direct sum C? @ (C?)* . Write C? = @2, F; and C?* = @, F; .
Let p; = dim(E;) 2 1 and ¢; = dim(F;) > 1. Write P, = Tjc;p; and
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Qi = L;<i ¢; - Assume that F; (resp. F}) is the span of the vectors e, with
Pioi + 1< p < P (resp. f with Qi +1<v < Qy) .

Let H be the subgroup of &G which leaves stable the subspaces F; @ F; for
each i. We therefore have H = [[;U(p;,q:) , pi=pand Up; =p.

(3.A.8) Proposition : Let H = [[; U(p:, q) be embedded in G =U(p,q)
as in the preceding paragraph. Let q=q(r,s) be a 8-stable parabolic subalgebra
of the Lie-algebra g , which contributes to holomorphic cohomology . Then a
cuspidal holomorphic form on T'\X of type Aq is stably non-zero along H if
and only if either r=0 and s < ¢; for each i or s=0 and r < p; for each i .

Proof : (1) We first show that if r=0 and s < ¢; for all i, then A(G, H, R) D
V(q) where R is the dimension of u N p* . Observe that R=ps . Let P; and
@i be as in (3.A.7) . Then , we have Q;_1 +35 < Qi-1 + ¢ = @; . Denote by
h; the Lie algebra of H; = U(p;,q:) C U(p, q) and ¢; the f-stable parabolic
subalgebra of h; which contributes to holomorphic cohomology in degree p;s
. Let u} = g:Npf;, ; it is the span of the vectors e, ® f with P_y < p < P,
and @Qi-1 < p < Q-1+ < Q;. Now AP*(ul) is the line through the vector
&= Ne,® f)) where Py < p< Piand Qicy < v £Qioy +5 < Qs

Let (t, ; 1 €1 <m, Qioy £ v £ Qi1 + s) be variables and let
g € 1 x GL, C K¢ be the element which takes the basis (¢5 ; 1 <1 <
m, Qi1 £ v < Qi-1 + s) of (C)* into the vectors (¢ + tuqu-qs_; 1 <
i <m, Qisy £v < Qioy +5) . Then the vector A2 ¢ changes into the
A{G,H,R)-valued polynomial

ANy A (ex ®f + i ;—Qi)

(where Py < p< Pand Qicy < v < Qi1 +5 < Q; ). The coefficient of
the monomial [Ticicm [, < v<qi_i+s(tv) is the vector AL AL, (e, @ f})
with Pi.y < p < Pand 1 <v <s. This vector is precisely e, . Therefore
,€q € A(G,H,R) and V(q) C A(G,H,R) .

(2) The case of s = 0 and r < p; for each i can be handled similarly.
(3) We will prove that if A(G, H, R) D V(q) then

3.5) rs=0,r<p,s<¢q Vi
Observe that in the product H = U(p1,q1) X U(p2,¢2) X . . . X U(Pms Gem)
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the factors may be switched in any order by conjugating by an element k of
K (in fact k may be chosen to be a permutation matrix in K = GL, x GL,
) . The new group H' then has the property that A(G,H’,R) = A(G,H,R) .
To prove (3.5) , it is therefore enough to show that rs =0, r < p;, s < ¢
. By replacing H by the larger group U(pi,q1) X U(p — p1,9 — 1) , we may
assume -while proving (3.5)- that m=2 . We will then show that rs =0, r <
p,r<pands<q, s<qp.

Let H = U(p1,q1) *xU(p2, q2) and let gy be a #-stable parabolic subalgebra
of h which contributes to holmorphic cohomology in degree R . We write , in
the notation preceding the Proposition , C? = E; @ E; and (C?)* = F1 & F;
. Let w be the permutation matrix in GL, such that it takes the basis

€1, -~ €py 3 Cpi4ly - . Ep

into the elements

€pg+ly - - €py €1y ... Epy.

The conjugate of H by w is H' = U(pz, ¢2) X U(p1, ¢1) and the conjugate
gy of qg is also a 0-stable parabolic subalgebra of the Lie algebra h’ of
H’. In the notation of (A.2) , suppose gy = q(r1,$1) ® g(ra,s2) . Then
grr = q(r2,82) ® q(r1, 1) -

Let m, : Afp* = V(q) denote the K-equivariant projection map . Then
our assumption ensures that A(G, H, R) D V(q) ensures that there exists gp
as in the preceding paragraph such that vy = = (e(qn)) # 0. As m, is
K-equivariant , we also have vy = m,(e(gy)) # 0 . Since K acts irreducibly
on V(q) , e(q) is (upto scalar multiples) the unique vector in V(q) which is
invariant under the nilradical n of b (the Borel-subalgebra of k) . Let u(n)
be the universal enveloping algebra of n .

Denote by ny and ny the intersections of n with h and A’ respectively
. Let m be the subalgebra of n which is the span of the vectors E,; with
1<a<p and 1+ p <b<pand the vectors Egypatp with 1 < ¢ < ¢ and
1+ ¢ €£d < gq. Similarly let m’ be the subalgebra of n which is the span of
the vectors E,p with 1 < a < py and 1 +p; < b < p and the vectors Ecipdtp
withl<c<gandl+q¢p<d<qg. Wehaven=m®nygandn=m'@ngy
. By the Poincare-Birkhoff-Witt Theorem we get
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(3.6) wu(n)= u(m)@u(nyg) and u(n)= u(m’) @ u(ny).
There exist elements « and 8 in u(n) such that
(3.7)  a(vy) =e(q)
and

(3.8)  Blva) =e(q).

As e(q), vy and vy are all eigenvectors for the action of T , we may
assume that so are & and # . Furthermore , as vy and vy are annihilated
by ny and ny respectively , we may assume from (3.6) that « € u(m) and

B € u(m') .
We now compare the T-weights of both sides of the equation (3.7). Recall
from (A.2) that the weight of e(q) (g=q(r,s)) is

gzt . +a)+ s(@rt. . +3)— pyit. . +ys) = r(Yer +. - o)

The weight of a is of the form

Z Mab{Za — Tp) + Z Nea(Ya — Ye)

agpr <b c<qr <d
where mgs, N4 are non-negative integers.

The weight of e(qy) is (since gy = gq(r1,51) ® q(r2, s2) ) the sum of

ql($1+' ' +z"1)+ sl(xrl+l+' . +mP1)
—prltn+ .- +Yn) = il + .o +Yq)

and

@Tpit1 + o F Tpipn) + S2ATpgr oo+ 2Tp)
_P2(yq,+1 +.. + y91+az) - Tz(yq1+.,+1 +.. + yq)-
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(Observe that if r=p then dim(uNp*(= rq+s(p—7)) = pq, and therefore
s can be assumed to be arbitrary .In the following, we use, in order that all
the statements make uniform sense also for the case r=p , the convention
that if r=p then s=q). Comparing the coefficients of z, on both sides of
(3.7), we obtain s = s3 — Fucp, Map , Which shows that s < 53 < ¢, . By
symmetry , from (3.8)) weget s < s, < ¢q .

Comparing the coefficients of y, on both sides of (3.7), we obtain

r= —rt Yo,

cs<m

which shows that » < r, < p, . By symmetry , from (3.8) weget r <r; < p;

We now need only show that rs = 0 . We divide the proof into several
cases . Observethat R = ¢gr+(p—r)s = R+ R, .

Case 1. r=p, = po( < p) . Then s, = q1 and s; = ¢ . The the
formula for R shows that R = gr+(p—r)s = piqa+ 22 =rqi+rq2 =7q
. Therefore (p-r)s=0 , and s=0.

Case 2. r < p; ,7 = p; . Then comparing z,,-coefficients in (3.7) we get
si<s,andso,s=s, . Then R = rq+(p—r)s= riq1+(p1 —r1)s+rq,
and rq; + p1s— (p1 —m1)$ = riqn =rq; +ris. If s < qi, we similarly get ,
r = 7y and the last equation in the previous sentence shows that rs = 0. If
s = q , then the same equation shows that r = 0.

Case 3. r = p; < pz . The proof is similar to that in Case 2.

Case 4. r < py and r < p;. Replacing r by s, and eliminating the
above 3 cases for s , we may assume that s < ¢q; and s < ¢, . Comparing
z,,- coefficients in (I) , we get s = sy and similarly s = s,. Similarly, we get
r = ry = r. Then , we have the equation R = rq+(p—r)s= rq + (p1 —
r)s+7rq + (p2 —r)s i.e. rs=0.

The proposition is now proved in all cases.

Notation: We now assume that G™ is U(p,p) and that H"¢ is the subgroup
G'Sp, given by
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(o= (& B)evmnu(2, )= (8, )

Then K N H™ = U(p) is embedded in K by the map

0
g— (g tg—l)

and the action of U(p) on pt = CP®(CP)* is isomorphic to the representation
p ® p where p is the standard representation of U(p) on CP. Under the
embedding of H™ in G™, p* N h gets identified with

Sym?*(p) = Sym*(CP) C C* ® C*.

(3.A.9) Proposition : G™ = Ufp,p). Let H™ = GSp, is embedded in
U(p,p) as above. Let q be a f-stable parabolic subalgebra of g such that it
contributes to holomorphic cohomology in degree R . Then

A(G, H, ) D V(q)
if and only if R=p or R=2p-1.
Proof : We observe that in the notation of (A.7) , we have

H™ = SU(1,1° C H™ = Sp, C G™ = SU(p,p) -

We have seen, from (3.A.7) , that A(G, H',p) D V(q) . Therefore (3.A.9)
follows when R=p.

Suppose now, that R=2p-1 . Then q=q(r,s) with r=s=1. Moreover,
gy = qu(k) with k=2 . Now, A®(un p*) is the line generated by e(q) =
A_i(e1® f}) Ai=z (ex ® f7) and AR(u(gy Np})) is the line generated by the
vector

e(q) = Nz(eifj +eifl) Newr (eof] +6if7)

Let ¢;, . . .t, be variables and g € GL, x 1, C K be the element which
sends the basis e;,eq,. . . ,e, into the vectors {,ey,t2e;,. . . ,tpe, . The
g-translate of the vector e(qy) is a polynomial P in the tis with values in
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A(G, H,2p — 1) whence the coefficient of the monomial ¢} tz ...t,of Pisin
A(G,H,2p — 1) . This coefficient is precisely

(3.9) Alui (1@ f) Niza (£ ® J7).

Let h € 1, xGL, C K be the element which takes the basis f7, f5,..., f;
into the vectors f3, f7,. .., f; . The h-translate of the vector (3.9) is nothing
but -e(q) , and so e(q) € A(G,H,2p— 1) and V(q) C A(G, H,2p - 1) .

We will now prove that if V(q) C A(G,H,R) ,thenr <1 ,s<1. This
shows that R=pr+(p—r)s= por2p—1.

Let n be the nil-radical of b -the Borel-subalgebra as in (A.2). Let ny =
nNky,ny = (gl, x0)Nn and ny = (0 x gl)Nn . Iflis a Lie-algebra then let
u(l) be its universal enveloping algebra. Now both n; and n; are ideals in n
and ny ®ny = n,@®ny = ngy . Therefore, by the Poincare-Birkhoff-Witt
theorem , we have

(3.10) u(n) = u(n) @u(ng) = u{n2) @u(ng) .

Let m, : ARp* = V(q) denote the K-equivariant projection map. By
assumption , A(G, H, R) D V(q) . Therefore there exists a §-stable parabolic
subalgebra gy which gives holomorphic cohomology in degree R such that
vy = m(e(qu)) # 0 . As V(q) is irreducible (and e(q) is the unique vector
in V(q) which is invariant under n) , there exists an element o € u(n) such
that e(q) = a(vy) .

Now , elements of ng kill any vector of type e(qy) and hence kill vy .
We assume as we may by (3.10) , that

(3.11) e(q) = alve) = B(ve) = 6(vn)
with 3 € u(n;) and é € u(nz) . The T-weight of e(q) is

p=q@i+.. +2)+ s(Tept+. . +2) - plyi+. . Fys) = T(Ysrr +- - )

Suppose that 7 > 2. Let g € T be of the form ¢ = (¢,1, .. ,1) . The
g-translate of both sides of the equation e(q) = &(vy) are polynomials in ¢
and g.e(q) = tPe(q). Now, g commutes with §. Moreover ,
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Vg = 1T‘I(/\;?:l(“'::lfj. + le;) A§z2 (lej' + le2.) AL A?:k (ekf; + leI:) ) -

The tP-th coefficient of g.vy is precisely

vy = mo(Afar(enf]) Nicg (e2ff + eif5) A Ny (enff +eifi) )
Therefore e(q) = §(vy) .

Now let ¢’ € T be of the form ¢’ = (1,¢,1, ...,1) The ¢’-translates of both
sides of the equation e(q) = &(v}y) are polynomials in t and ¢’.e(q) = tPe(q)
, because r > 2 . Now, ¢’ commutes with §. Moreover ,

g (vy) = m(Na(enf]) N (Beaf] +eif5) Ao Nk (ef] +eif7) ) -

which is a polynomial in ¢ of degree < p—1 , which contradicts the equation

tPe(q) = 6(g'(vy)) -
Therefore, the assumption that » > 2 is false and » < 1. Similarly s < 1.
The proof is complete. :

We will now fix our attention on G™ = U(p,q) , p < ¢, but, will
consider §-stable proper parabolic subalgebras q=q(x) such that « N p~ is
not necessarily zero. That is, we assume as before, that ¢; > ... > a, and
by 2,... 2 b, but not necessarily, that a; —b; > 0. Suppose ™ = A, is such
that H?(g, Ko, ™) # 0. Note that p is the real rank of G.

(3.A.10)Proposition : With the notation above we have
Hp(g? Koo" Tr) = Hp'o(g7 If&’ Tr) @ HOlp(g’ [‘FDO’ Tr)

unless p = ¢ = 2.

proof : We write the Hodge decomposition for the cohomology of m ( we
refer to [VZ] , section (6) for the necessary facts) :

Hp(g: K, Tl') = EBHR++LR-+l(g: Ko, ﬂ')
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where the sum is over all [ > 0 with
(3.12) R*+ I+ R +1l=p

and RY = dim(uNp*), R~ = dim(uNp~). We may assume that p > 2 .
Since ! > 0 this means that ¥ + R~ < p. Define the integers r, r, < p,
s € ¢ by the inequalities

a=...=a=5b =...b, >

>ar+12...2a,.2?_b,+12.. qu
Now, eitherr or s is > 1.

We may assume that either s # ¢ or r # p.
The roots of t lying in u N p* include the roots

1 — Yatly -+ - T1 — Yq

................

whence
(3.13) R >(q—9)r .

If s=0 then r > 1 and since q > p, (3.12) and (3.13) show that R~ =0 = /
and therefore, in the Hodge decomposition for = above , only the (p,0) term
survives and the proposition follows. We may thus assume that s > 1.

The roots of t occurring in u N p~ include the roots

Y1 = Trg1y - - - Y1 = Zp

Yo — Trity -+ - Ys — Tp

whence
(314) R - >2s(p—r)>p-r.
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If r=0 then (3.14) and (3.12) show that R~ = p and { = 0 = R* and so,
in the Hodge decomposition for = above, only the (0,p) term survives and
the proposition follows. We may thus assume that » > 1.

If s=q then r # p as we saw before and (3.14) shows that R~ > ¢q and by
(3.12) it follows that { = 0 = R* and again the proposition follows. So we

may assume that s # ¢. Similarly we may assume that r # p. Now (3.13)
(3.14) and (3.12) show that :

P2 RT+R 2 (q~s)r+ s(p—1),

i.e.

(315) 02 (¢g—s—DUr+ (s=1)p—r).

Since we may assume that 1 < s <g—land 1 <r <p—1, (3.15) shows
that s=q-1 and s=1, i.e., q=2 ;and by assumption p 2> 2. But p < ¢ so it
follows that p = ¢ = 2 ; the proposition is completely proved.

(3.BD.1) Notation : We now assume that G™ is locally isomorphic to

0(2,p). Let Koo = O(2) x O(p) and K¢ its complexification. The natural

representation C? of the group G,, = S0(2, C) is a sum of two lines C* and

C~ on which t € G, acts by t and ¢! respectively. Let CP be the natural

representation of SO(p). We assume that H in G satisfies (2.1) and is so that

H™ = S0(2,k) C SO(2,p) is the subgroup which leaves the vectors fixy; , .
., fp fixed.

(3.BD.2) Proposition : Let G be an algebraic Q group such that modulo
centre, G™° is locally isomorphic to SO(2,p) and let H be an algebraic Q-
subgroup of G so that H™ = SO(2,k) is embedded in SO(2,p) as above. Let
I' be an arithmetic subgroup of G. If m < k(= dim(h N p*)) then every
cuspidal holomorphic m-form on the Shimura variety S = S(I') is stably
non-zero along H.

Proof : We will show that if m <k, then

(3.16) E(G,H,m) = A"p*.

Then the proposition follows from Proposition (2.2} . Now,
hnpt =C*Q(Cfi®..Cfi)
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Therefore, E(G,H,m) is the Kg-span of f;y A.. A fi,, (with i, < k) and
A™pt is the Kg-span of f;, A.. A f;. (with j, < p). Obviously there is a
matrix in SO(p) (in fact, a permutation matrix) , which takes f, , . . , f
into f;, , ... , fjm. This proves (3.16).

(3.BD.3) Proposition : Let m > 5, G = S0(2,m) and q a 8-stable
parabolic subalgebra of g such that H*(g, K, Aq) # 0 . Then

H*g,K,Aq) = H"Y(9,K,Aq) .

Proof : By [VZ], section 6, the Hodge types of a cohomological represen-
tation are of the form (R* + p, R~ + p) . We will refer to the (R*,R™)
Hodge-component as the primitive cohomology. If R + R~ + 2p = 2, then,
we have the following three cases .

(i) the primitive cohomology in degree 0, and q=g ,

(ii)the primitive cohomology is in degree 2 of type (1,1) ,

(iil) the primitive cohomology is of type (2,0) or (0,2) . The dimensions
of the holomorphic cohomology are listed in [Clo 2], and are of the form (if
miseven) [ —1lorl{+k—1 (k> 0) where ! > 4 is the absolute rank ; hence
the primitive cohomology can never be of type (2,0) or (0,2) . the case when
m is odd can be similarly handled . This completes the proof.

(3.C.1) Notation: Let G be a Q-group such that G™ = GSp,. We have
seen in section (3.A.4) that p* = Sym?*(C?) . Similarly , it can be shown

that p~ = Sym?((C?9)") . Let T denote the subgroup of diagonal elements
of G.

Let q=q(x) be a #-stable parabolic subalgebra with holomorphic coho-
mology. We may then assume that the diagonal matrix x is of the form x=
(a1, . . ., a4,—ay, ..., —ag) witha; > ... >a, and a; + a; > 0. Then

uNp™ = BC(&®f; + € ®f)

where the sum is over all i and j such that z; + z; is strictly positive. Let k
be defined by the inequalities

G 2... 2a>0= Qryl = . . = Qg.

Then, the roots of t occurring in uN p* are

2zy, Ty + z2, .. Ty + T4,
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2z, .. T2+ zg,
2Tk, . . Tk + x4

Moreover,

R=Rt =dim(unp*)= k(k+1)/2+ k(g - k),

punpt)= (g+D(zr+z2+. . +ai) + k(zi + .. +2g)

= kz,+ . +zy)+ (g—Fk+D(zi+ .. +zx),

and the Kc-span of Af(unp*) in ARp* is (irreducible and ) isomorphic to
a subrepresentation of

Vig = (AICO)E ® Symd=F+1(AFCo).

Consider a Q-subgroup H of G such that H™® is the subgroup of G™*
which takes the span of e;, .. ,es; f1, .., fr into itself and acts trivially
on the basis elements est1, . . ,€5; fat1, . ., fp. Here, 1 <h < g—1. Let
M = G,, C T¢c be the subgroup which acts trivially on the basis elements
€, - - 1,€9-1; f1, . ., fyg—1 , and acts by t (resp. ¢~!) on ¢, (resp. f,) for all
t € Gp.

(3.C.2) Proposition : Let H be a Q-subgroup of G as above so that H™ =
GSpr withl < h < g—1. Then, every cuspidal holomorphic R-form on the
Shimura variety S vanishes along H.

Proof : We assume , as we may , that the holomorphic R-form w is of type
A, with q as in (3.A.1) and that 1 < R < dim(p* Nh) . We use the criterion
of Proposition (2.6) , with M as defined above. The weights of M occurring
in V;, are , by inspection , of the form ¢* x t? = t*+¥ k4B > 1, whereas
M centralises (all of H , and in particular ) p* Nk . Therefore the proposition
follows by Proposition (2.6).

(3.C.3) Notation : Let V; be the span of e; and f; for each i. Let Q
be the symplectic form on the sum of all the V;’s which is preserved by G.

Its restriction §; to V; is non-degenerate . Thus we get an embedding of
H™ = Sp(fh) x.. x Sp(Q,) C G** =GSP, . '
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(3.C.4) Proposition : Let G and H be Q-groups so that H™ is imbedded
in G™ = GSp, as in (8.C.3). Then , a cuspidal holomorphic g-form on
the Shimura variety S (associated to a congruence subgroup of G ) is stably
non-zero along H .

Proof : Suppose first that R=g. Assume , as one may, that the holomorphic
g-form is of type A, associated to a parabolic q, with holomorphic cohomol-
ogy. Then (3.C.1) shows that g is of the form k(k+1)/2 + k(g-k) , with
1 € k £ g. Solving this , we see that k=1 .

Now g(u N p*) is the Kg-span of the vector el Aejea A. .. Aese, in
A9(sym*(C?)) . To prove the proposition , it is enough to show , by Corollary
(2.4) , that e? A ejea A .. A ere, belongs to E(G,H,g).

Now , the element e} Ae A. . A€ belongs to A?9(hNp*). Let ta, ..., i
be variables. The unipotent matrix which sends the basis e, ez, ..., e, to
the elements e, ey + taey, ..., e, + 1€ lies in K¢ = GL(C?) and so

A (e2+te)) AL . Aley +1,e,)

may be viewed as an E(G,H,g)-valued polynomial in the t’s . Therefore all
its coefficients lie in E(G,H,g) and in particular, the coefficient of t; x . . x ¢,
, which is precisely e2 Aejea A. . Aee,, lies in E(G,H,g). The proof is over.

(3.C.5) Notation : More generally, we may consider subgroups which are
products of lower dimensional symplectic groups. To be precise, let £ ,1 <
1 < m be a partition of the set whose elementsare 1 ,2,. . ., g. Let E; (resp.
F;) be the span of the vectors e, (resp. f, ) with u € P; . The restriction
); of the form £ to the direct sum V; of F; and F; is clearly non-degenerate
. Let H™ be the product II%, Sp(fk) .

(3.C.8) Proposition : Let G and H be Q-groups so that H is imbedded
in G = GSp, as in (8.C.5). Then , a cuspidal holomorphic R-form on the
Shimura variety S associated to a congruence subgroup of G , is stably non-
zero along H if and only if R=q .

Proof : Suppose that R=g and w is a holomorphic g-form on S. Then, by
replacing H by the smaller group H' = Spj] as in (3.A.4), we see that w is
stably non-zero along H' and hence along H.

Assume now that w is a holomorphic R-form of type A, which is stably
non-zero along H. We will show that R=g. We assume, as we may, by
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replacing E; (1 2 2) (resp F; (¢ 2 2) ) by their direct sum E’(resp. F’) and
replacing H by the possibly larger group Sp(E, @ Fi) x Sp(E' @ F') , that
m=2 and H = Sp, x Spy witha+b=g.

Let b be the Borel-subalgebra of upper-triangular matrices in k& = gl ,
n the nil-radical of b and ng = n N ky . Let m = m,, be the span of the
matrices E;; with1 €:<a<j3<g Thenn=ngdm.

Then m is an ideal in n and by the Poincare-Birkhoff-Witt Theorem we
have

(3.17)  u(n) =u(m) @ u(ng)

and there exists a 8 stable parabolic g4 C h (which is holomorphic in
degree R) and an a € u(n) such that

(3.18)  e(q) = am(e(qn))

We assume, as we may by (3.17) , that a« € u(m) and that it is an
eigenvector for T. We may write gy = q; @ q» with ¢, C sp, and ¢; C spy
such that dimuf = R; for i=1,2 and 4] = 0. Let vy denote the image of
e(gy) under the map =, .

The weight of e(q) under T is given by

(3.19) (g+ L)z + ... +(g+ Dzx + k(zpar + - .. +kzy).

The weight of « is of the form

(3.20) Yo mi(zi— x)

i€a < j

where m;; are non-negative integers.
The weight of vy 1s , (for suitable numbers r < a and s <) of the form

(3.21) (a+ L)z + ... +(a+ Dz, +r(zpgr + ... +72,) .

+(b+ Dzapr+ .- . +(0+1)2as + $(Tagot1 + - - . +5Ty4) .
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Denote by V(k,g) the representation V(q). Then as Ky = GL, X GLy-
modules, the inclusion of V{gy) in V(q) as above implies the inclusion of
V(r,a)® V(s,b) in V(k,g) .

Consider the permutation matrix we € GL, = K which takes the basis
€1, .+« ,€h} €hy1,€h42, - - -,y iNto the vectors e,qy, ... ,e5 5 €1,62, ... €0
. Conjugation by wg takes H = Sp, x Spy into the group H' = Spy X Spa
and the wy -translate of vy is a vector vy which corresponds to the heighest
weight vector for K+ and gives a K = woKpwy '-equivariant inclusion of

Vs, ) ® V(r,a) in V(k,g) .

As before, we get an element 5 € u(ms,) where m’ = my, is defined as
the span of Ej; with: <band ;7 > a such that

(3.22) e(q) = Blom) .
We now prove that R=g by considering several cases.

Case 1: r < aand s < b. Compare the coeflicient of z, on both sides
of (3.18). We get s — y_m;, = k and hence k < g and s > k. Similarly, we
get from (3.22) that a > r > k. Comparing the weights of z, in (3.18) we
get r + 3 mg; = k and r < k. Similarly , s < k. Therefore r=s=k. Then

R = gk—k(k-1)/2 = ar—r(r—1)/24+bs—s(s—1)/2 = (a+b)k—k(k—-1)

i.e, k(k—-1)/2 =0 and k=1.

Case 2: r=aand s < b. Ifa > k compare z, coefficients in (3.18)
and get a+1 < k -a contradiction. Therefore a < k. Compare z, coeflicients
in (3.18) and get s > k. Thus & > k. Now compare the coeflicient of z,
(resp. of z3) in (3.22) and get a +1 > k (resp. s < k) . Thus s = k and
a+ 1=k and

R = gk—k(k-1)/2 =bs—s(s—1)/2+a(a+1)/2= bk

and we get (k — 1)k = ak = k(k —1)/2 and so, k=1.

Case 3: a < r and s = b. By symmetry , we get k=1 , exactly as in
Case 2.
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Case 4: r=aand s =b. If a > k compare the coefficients of z, in
(1) and get @ + 1 < k a contradiction . Hence a < k and similarly b < k.
Compare z, coefficients in (3.18) and get b+ 1 > k. Similarlya+1 > k. If
a = k then

k(k+1)/2+bk= gk—k(k—1)/2=R= k(k+1)/2 + b(b+1)/2

e, (b+1)/2=k>band b<1;s0b=1and k=1. Similarly if b = k we
geta=1and k=1.

Ifa+1=b+1=kthen R=k(k—1)=2(k—1)k—k(k—1)/2 which
again shows that k=1.

The proof is complete .

(3.C.7) Notation : In this section we will consider §-stable parabolic
subalgebras q which contribute to cohomology but not necessarily to holo-
morphic cohomology. Let q=q(x) be associated with the diagonal matrix x
with entries (a1, . . ,a,) where , this time, we do not necessarily have u N p*
=0 . We may still assume that the a’s are in decreasing order . Let r < s be
defined by the inequalities

a2...2a >0=an=... =0 >aq412... 2a,.

Then, the roots of t occurring in u N p* contain the roots z; + z; with
t £ rand 7 < s. Therefore

(3.23) Rt 2(s(s+1)/2)—(s=r)(s—r+1)/2

Similarly , the roots of t occurring in uNp~ contain the roots —(z;+ Tm)
withr4+1 <[ <gand s+ 1< m < g. Therefore

(3.24) R 2((g-r)lg—r+1)/2)=(s=r)(s—r+1)/2

We are interested in those A,'s which have cohomology of degree g. By
[VZ] Section 6 , it follows that

(3.25) g=RY+!+ R +1 with [ >0.
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(3.C.8) Proposition : Let q be a § -stable proper parabolic subalgebra of
g such that the cohomological representation A, has cohomology in degree
g). Then , the cohomology in degree g of A, is either holomorphic or anti-
holomorphic , unless g=2 .

Proof : If r=0 then all roots are non-positive on x and so A; has
anti-holomorphic cohomology in degree g and by (3.25) , has no mixed or
holomorphic cohomology of degree g. If s=g, then again all roots are non-
negative on x and all the cohomology of A, in degree g is holomorphic. We
may thus assume that r = u+1and g = s+ v+ 1 with w, v > 0. Put
s=a+r with a > 0.

In (3.23) , (3.24) and (3.25) we write all inequalities in terms of a,u,v and
[ and obtain , after simplification ,

(w(u+1))/2 + (v(v+1)/2) + a(u+v+1) + 1 L0.

This can happen if and only if u,v,a and [ are all zero, i.e.,r = s = 1 and
g = 2. This proves the proposition.

(3.D.1) Notation : In this section G** = SO*(2n) with n > 4. Thus,

G“°={(é g)= g € SU(n,n) ; ‘g(ﬂ 10")9 = (1(1 10,,)}.

Moreover ,

) A B ) _
Ko={(§ 5)=9€G*; B=C=0(and D = ‘a™}.

is a maximal compact subgroup of G™ . The Lie-algebra so*(2n) of G™° is
stable under the Cartan-involution X — —'X of the Lie-algebra of U(n,n) .
Furthermore , the intersection T of G™ with the diagonal matrices in U(n,n)
is a #-stable Cartan-subgroup of SO*(2n) . We also have

e {(3 8) o).
r={(8 9 0=c)
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As a representation of K¢ = GL, = GL(C") , p* = A¥C™) . Fix
X €iLie(T),
X=(al, ey Qpy —ayy o, —an)

witha; 2 a;2... 2a,.

We determine the parabolic §-stable subalgebras q which contribute to

holomorphic cohomology . As u N p~ = 0, we must have ¢; + a; > 0(for all
i,7 withi# 7). Thus,

;20,2 ... 2 Qpoy 2 +an, —ag.

Ifa,-1+a, > 0,thena;+a; > 0foralliandjand therefore ¢ = p*+k
. We assume then that a,_; + @, = 0(> 2a,) .
Case 1: a, =0 . Let k(< n —1) be defined by the inequalities

Gl>

.2a > 0=agp = ...=a1 =4y .

Then the roots in p* which are positive on X are

s+ 21+ T3y .., T+ Th

Tp+ Tppr, Tk + Thy2y oo o 3Tk + Tn .

Then p(qg) = (n—1)(z1+...4+zx) + k(z:1+ ... + z.) and so , the
representation V(q) -which we denote by W; ,, in order to keep track of k -
may be thought of as a subrepresentation of

(Ancn)k ® Symn—l—k(/\kcn) )
Case 2 : a, < 0 . Let £ <n — 2 be defined by the inequalities

Gl>

L 2ap > Akl = .. .= Qp) = —a4n > 0.
The roots in p* which are positive on X are :

$1+$2,I1+$3, e ,I'["'IL'“

.......................



$k+zk+13$k+wk+2j CECE g$k+$n ’

and
Th+1 + Tht+2, Tkt + Tht3y - -« 3 Tht1 T Tnoy

Tn2+ Tnot .

Consequently

pg= (n=D(zi+...4+2%) + =2 Teg1+ -« +Zay) + kzp

and so , the representation V(q) -which we denote by Vi, - may be thought
of as a subrepresentation of

(Ancn)k ® Symn—Q—k(Akcn) ® (Akcn) )
We now consider restriction from U(n,n) to SO*(2n) .

(3.D.2) Proposition : Let G be a Q-group , H a Q-subgroup such that
G" = U(n,n) D H™ = S50*(2n) embedded as in (3.D.1) . Then every
holomorphic cuspidal form on T\G/K (T is an arithmetic subgroup of G(Q)
) vanishes along H .

Proof : We will check that for everyr, s 20r+s > 0(qg= g(r,s)is
defined as in (3.A.3) , and V,,(q) = V(g(r,s)))

AG H,R)NV,.(q)= 0.

Then , the proposition follows from (2.7) .

We assume that » > 1 . Let b be the Borel-subalgebra of k¢ = u(n)c @
u(n)c C gc , where the first factor is the space of upper-triangular matrices
and the second is the space of lower triangular matrices . Then by = bNh
is a Borel-subalgebra of ky . Now k2 = 0 @ u(n)c is an ideal in k¢ and
therefore 6N k; = by is an ideal in b . Thus , by the Poincare-Birkhoff-Witt
Theorem , we see that

(3.26) u(b) = u(b;) @ u(by)

Suppose V(qy) = Vin or V(qgg) = Wi, occurs as a sub-representation
of the Kg-module V(q) . Write
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R = dim(u(q)Np*) = dim(u(qn) Np})
v = AYpf Nu(gn)), ve = AR(p* Nu(q)) .

As vg is the unique highest weight vector in V(q) , there exists a o € u(b)
such that

(3.27) vg = alvm).
Using (3.26) and the fact that vy is a highest weight vector for u(by) , we

may assume that a € u(by) . Now K C U(n,n) acts on C* @ C™ . In the
notation of (3.A.1),

ve= (exfiN... Aetfi)) Ao Alenfi Aot AerfiA

Alertrfi Ao Aert NN Aenft Ao Aenf))
Now « is in the tensor space generated by f; and f; and

VH = (Blff; —EQf;)/\. .. /\(E.’[f;;l ~—enf1")/\ (CtC)
the other terms (marked etc) in vy do not involve e; . The e;-degrees of
ve , « and vy are respectively n (because r > 1) , 0 , n-1 , which makes
the equation (3.27) impossible . Therefore » = 0 . Similarly s = 0 . This
completes the proof .

(3.D.3) Notation : We now choose G™ = S0*(2n) and form < n -1
consider H™ = S0*(2m) embedded as the subgroup of G™ C GLa, of
elements g such that g;; = é;; fort<n—morj > n+m.

(3.D.4) Proposition : Let G and H be Q-groups such that G™° =
S0*(2n) > H™ = S0*(2m) embedded as above . Then , every cuspidal
holomorphic form on T\G / K (T C G(Q) an arithmetic subgroup ) van-
ishes along H .

Proof : Let

S={0(t) e Tc : 8(t)(er) =ter, 0(t)fn=t""fu and O(t)(v) = v}

where v is in the span of ¢; with i # 1 and f; with 7 #n .
Thus S is a G» and centralises H . Its weights on Vi, and W}, are of
the form ¢¥*™ where m is non-negative . By (2.6) our proposition follows .
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4. Review of a conjecture on the Zeta-functions of Shimura
Varieties

(4.1) Notation : To each non-archimedean local field F, we associate the
group Wr, x SU(2,R) which we call the Langlands group Lg, of the local
field F,. If F, is archimedean , the Langlands group is taken to be the Weil
group of F,. Given a reductive algebraic group G over F,, the semi-direct
product £/G = G x Wk, is the Langlands dual . We recall the

Local Langlands Conjecture . There is a partition of the set I[I(G(F,))
of equivalence classes of irreducible admissible representations of G(F,) into
finite subsets , called L-packets , such that there is a natural bijection be-
tween L-packets IT = II(¢') and the set of (-conjugacy classes of continuous
homomorphisms ¢ (with image of each element being semi-simple ) of L,
into YG(C) which is compatible with the natural maps to Wp, .

We assume the existence of the Langlands group Lr , associated to a
number-field F. This is a conjectural extension of the Weil group Wr by
a compact group . This group is supposed to satisfy , among others , the
following conditions .

The isomorphism classes of continuous n-dimensional representations ¢
of the Langlands group are in natural bijection with the set of equivalence
classes of cuspidal representations m of GL,(Ap) . In particular , the Abelian-
isations of the Weil group and the Langlands group are the same .

Given now a number field F and a place v of F , there exists a special
conjugacy class of embeddings i, : Lp, = Lg . Let ¢ be an irreducible
representation of Lg . Its restriction ¢, to Lg, has a local factor L(s, ¢,)
as in [Tate (Corvallis )] and the bijection between ¢ and 7 is such that the
corresponding local factors L(s, ¢,) and L{s,w,) are the same for almost all
the places .

A Langlands Parameter is a continuous homomorphism
(ﬁ! : [:p —}L G

such that the image of every element is semi-simple and such that ¢ com-
mutes with the projections to Wr. An Arthur Parameter is a continuous
homomorphism

¢: L x SLy(C) =»- G
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such that the restriction to SLs(C) is holomorphic , the restriction to Lg is
a Langlands Parameter , and the image of Lr is bounded modulo the center
of G. Given an Arthur parameter ¢ , define the Langlands parameter

fw|

Sw) = glw, (M wl2)

where |w| : Lr — R is the pullback of the absolute-value map of Wpg.

Fix a place v ; the restriction ¢, of ¢ to Lg, x SL(2,C) is conjectured to
correspond to an Arthur- packet II(¢,) which contains the L-packet IT(¢,)
corresponding to é,. For almost all finite v, II(¢,) should contain a unique
unramified representation 72 . Define the global A-packet H{¢) = ®II(¢,)
which is the set of restricted tensor products @m, where 7, € II(¢,) for all v
and m, = 7?0 for almost all v.

If F is a local field , the Arthur parameter ¢¢g | ¢y of the irivial represen-
tation of G is given as follows.

$G , riv * Wp x SLy(C) = G

is trivial on the Weil group of F and is a map which is non-trivial on §L,(C)
and takes the upper triangular unipotent group in SL,(C) to the one pa-
rameter subgroup generated by a regular unipotent element in £G.

Suppose now, that the local field is R and that G is as in (2.1). An
Arthur parameter

¢ : Wr x SL,(C) =L G

is called cohomological if the associated Arthur-packet consists of coho-
mological representations. Write Wgp = C* U C*0,. Upto equivalence ,
the cohomological Arthur-parameters are indexed by parabolic subgroups P
(containing a fixed Borel Subgroup B ) , whose Lie algebra is of the form
q(x) and contains by (as defined in(2.1)). Let T denote the maximal torus in
K and (hence in G) whose Lie algebra is the centraliser of x . Let M be the
Levi-part of P which contains T . Let M denote the dual group of M which
embeds naturally into G.

Let éar denote half the sum of positive roots of of T occurring in M. Put
bp = g — 6. We may think of ép as a weight of T or as a co-weight of
T. Now, there exists an element of the Weyl group of T in G (or in M) such
that conjugation by it acts as the inverse on T because T is anisotropic. Let
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wps be an element of the Weyl group of T'in M which does the same for 7.
We now describe the Arthur Parameter corresponding to P by the formulae
(see [Art 1] )

tp(z) = (2/2)°

£p(0e) = Wewh X Ooo
dp = EPOoPur, triv.

We return to the notation of (2.1). Let L? denote the discrete part
of the right-regular representation of G(A) on the space L?(w) of functions
on the quotient G(Q)Z(A)\G(A) which are square-integrable modulo the
centre of G(A) and which transform according to a fixed unitary character
w under Z(A) . It is well known that L3(w) is a direct sum of irreducible
representations m , of G(A) , each occurring with a finite multiplicity which
we denote by m(r). We will call these 7 discrete representations . Of course,
if G(C;\Z(A)\G(A) is compact , then L3(w) is equal to L*(w) .

Arthur conjectures that there exists a partition of the set £ of (equivalence
classes ) of discrete representations , into subsets EN(II) , where II is a global
A-packet corresponding to an A-parameter ¢ as above. The A-parameter

satisfies some additional properties in this case ;for a discussion of these , we
refer the reader to [Bl-Ro ],section (3.4 ) .

We assume from now on , that G is as in (2.1) . More precisely , we
assume as in [De 1] , that we have a an algebraic group G defined over Q
and a homomorphism & : Rc/r(Gn) — G defined over R which satisfies
the axioms of [De 1] . We will assume that the image of the restriction y of
h to the "first” factor G,; (in the identification of the complex points of the
group Rc/r as a product of two copies of G, ) lies in a maximal torus T of
G which is defined over Q . Let ', denote the subgroup of the Galois-group
of Q which fixes the conjugacy class of . This is an open subgroup of finite
index and corresponds to a finite extension E (called the reflex field of (G,h))

Let Ky be an open compact subgroup of G(A ;) . Form the quotient S =
S(K;) = G(QZ(A)\G(A)/K; . Each of its connected components is of the

——

form S = S(I') for some arithmetic subgroup ' of G(Q) . Let S(K/) denote
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the Bailey-Borel-Satake compactification of S . This is a projective variety,
which is not smooth in general, and is defined over the reflex field E . By
Zucker’s conjecture Q heorem of Looienga, Saper-Stern ) , the intersection-
cohomology TH*(S(K;)) with middle perversity , of S(’-I\\’f) , is naturally
isomorphic to the L? -cohomology H3{S(K;)) of the space S(K) . By the
Matshushima formula , we then have

[H*(S(K;),C) = em(r)H" (g, K, 7o) © 7} !

where 7 runs through the discrete representations , wf’ denotes the space of
vectors in 7y which are fixed under K .

The intersection cohomology IH * is defined over Q and it has Q; ana-
logues in etale cohomology , and these satisfy the Weil (purity ) conjectures
([Bei-Ber-De}) . The etale cohomology comes equipped with an action of the

—

Galois-group ['g of the number-field E over which all these S(K) are defined

Consider the direct limit, as the open subgroups K of the group G(Ajy)
become smaller and smaller , of the i-th L3- cohomology groups of the
Shimura varieties Sh (G, K;) with coefficients in @,. This limit admits an
action by the group G(A;) , and decomposes as a direct sum of irreducible
representations 7; (with finite multiplicity } under it:

lim Hy(S(K;), Q) = ©H(m;) ®my,

and H*(m,) is finite dimensional . Moreover , the representations are defined
over a finite extension of Q; and hence so is the space H'(m;) . The action of
['r commutes with the action of G(Ay) on this direct limit and therefore we
get a representation p'(m/) of 'y on Hi(m;) . Let ¢ be the Arthur parameter
corresponding to a representation = whose finite part is m; and whose infinite
part is cohomological .

We return to the homomorphism g which gives dually , a homomorphism
ji of T into G, .. After a conjugation by an element of the Weyl-group of
G, T this yields a representation (r, V) of the semi-direct product G x Wg .
If ¢ is as in the above paragraph , we may form the representation r o ¢g of
Lg x SL2(C) , where ¢g is the restriction to Lg x SL2(C) of ¢ .

Denote (by an abuse of notation ) by G, the group of diagonal matrices
in SLy . Restrict ro¢ to G,, . For each integer i , denote by V' the subspace
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of V on which t € G,, acts by the character =% where d is the dimension
of the Shimura variety . We note that the image of £Lg commutes with that
of G,, and so , the image of Lg under the representation r o ¢ (¢ is as in
(4.1)) also commutes with G, . Therefore V* is left stable by the image of
Lg under 7 o ¢, . We denote this representation of Lg also by V' .

(4.2) Conjecture on the Zeta-Function of SA(G, K;) : The repre-
sentation p'(m;) is a subrepresentation of 6 @ Vi. Here d is the complex
dimension of the Shimura variety and 8¢ is the d-th power of the cyclotomic
character .

(We note that p'(7;) is a representation of ['r and therefore of Lg ). For
a much more precise statement of the conjecture see (5.2) of [Bl-Ro].

We now collect together some consequences of the conjecture (4.2) . Note
that in the consequences below , the assumptions on the A-parameters need
be verified only at the Archimedean places.

(1) Suppose that the centraliser of the image of SL, under the map ¢
has Abelian Lie algebra. Then, for each = € II(¢) and for each i , the
representation p‘(m;) is potentially Abelian , i.e., the image of an open
subgroup of ['g under p*(m;) is Abelian .

(2) Suppose that for some i , the space

Vi = {UEV; roqﬁ(l, ((t) t(_)l))vz ti-dv}

is one-dimensional , where d is the complex dimension of the Shimura
variety. Then the image of p*(m/) is Abelian .

(4.3.A) Suppose that G™ = GU(p,q) p < q. We now assume that q(x)
is a ¢ -stable parabolic subalgebra as in (3.A) and that P is the subgroup of
the complexification GL(p+g¢, C) of GU(p,q) with Lie-algebra q(x) . Assume
also that the representation A, contributes to holomorphic cohomology in
dimension p {=real rank of G). Then, by the calculations of (3.A.4), x may
be taken to be the diagonal matrix with entries (ay , @, ..., a ), with
a; > a and a occurs p+ ¢ — 1 times . The semisimple part M,, of the
Levi-subgroup of P containing T is the special linear group of the span W
of eg, ., e, and fi, .. f;. The homomorphism {p defined above takes 5L,
into M,, and SL, acts irreducibly on W. Therefore, the centraliser of SL, in
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G= G L,4q 1s the diagonal subgroup , which act as scalars on W . Now the
conclusion of (1) of (4.2) applies.

(4.3.C) Assume that G™ = GSp,. Let q(x) be a §-stable parabolic
subalgebra as in (3.C) and P the subgroup with Lie algebra q(x) of the
complexification of G™. Then, as we have seen, x may be assumed to be the
diagonal 2¢ x 2¢g matrix

z = (a,0,..,0,~ay,0,..,0)

and the semisimple part of the Levi subgroup M of P containing T is
G Spy~1 which acts on the span of

62,,eg,f2;--)fg-

The homomorphism { takes SL; into the subgroup M = GSpin(2g —1)
of G = GSpin(2g + 1) and sends a nontrivial upper-triangular unipotent
element of SL; into a regular unipotent element of M.

We wish to show that the centraliser of the image of SL, in G has Abelian
Lie algebra. It is enough to prove that the centraliser (of the image of SL;) in
SO(2g+1) under the composite with £ , of the covering map p of Spin(2g+1)
into SO(2g+1) , has Abelian Lie-algebra. Now pof : SLy; = GLggy 15, asis
easily shown, the direct sum of an irreducible representation of S L, of dimen-
sion 2g-1, together with the trivial 2-dimensional representation . Therefore,
the connected component of identity of the centraliser in SO(2g+1) of SL,,
is SO(2) x 124-1 which is clearly Abelian. The conclusion of (1) of (4.2)
applies.

Now assume that (p,q) > (2,2) in the GU-case and that ¢ > 3 in the
GSp case . Then by (3.A.10) and (3.C.8) we know that when the degree rg
is equal to the rank (and except for the trivial representation ) , the only
parameters corresponding to a cohomological representation at oo are of type
(4.3.A) or (4.3.C) . So, for the associated Shimura varieties, the Galois action
on the rg-th etale cohomology groups is semisimple and potentially Abelian.
We will show in the next section , that these predictions are true.

35



5. — Arithmetic applications : the case of Sp(y)

5.1. — We will now apply the results of §§ 1, 3 to the Galois representations occurring
in the cohomology of the variety of moduli Ay of Abelian varieties of dimension g.
Thus let G = GSp(g)/Q be the group of similitudes of the symplectic form on Q%9 of

matrix ( 0 —lg) ; let

g O
h:C* — G(R)
5.1
( ) z=$+iy|—>($ y).

If Xy C G(Ay), we have an associated variety S(h,K;) = S(Kj) over Q, with C-
points S(K;)(C) = GQ\G(A)/KKy, K = R*U(g). For L a finite extension of Qq,
we are interested in the cohomology space HZ(S(Ky) x Q,L) and the action on it of
Gal(Q/Q). Note that (except for cohomology contributed by the trivial representation,
and therefore composed of Tate classes) this is the first degree where there should be
non-zero cohomology.

Denote by HY(S(Ky)) the image in H9(S(Ky)) of the cohomology with compact
supports H?, in various cohomology theories.

Over C, HY (S(Xy),C) a priori carries a mixed Hodge structure according to Deligne
[De3, Ded]. Let TH*® denote intersection cohomology with midde perversity [Go-M]. The
canonical map H2(S(Ky)) — IH*(S(XKy)) quotients through H?(S(Ky)) — H*(S(Xy)),
as follows from Poincaré duality for intersection cohomology; in our case it is also a
consequence of obvious properties of L2~cohomology and of the Zucker conjecture stating
then H('Q)(S(K!),C) = [H*(S(Ky),C) [Lo, Sa~-St]. Thus we get a map :

(5.2) H(S(Kp)) — TH*(S(K )

of Q-mixed Hodge structures. A simple result of Harder and one of us ([Ha]; [Clo3 :
Prop. 3.18]) shows that this map is injective. It follows that H}(S(Ky),C) carries a
pure Q-Hodge structure of weight 4 in all degrees (this injectivity property is particular
to Shimura varieties and does not follow from the axiomatic properties of intersection
cohomology). )

'Note that the purity of H} can also be seen directly, as was pointed to us by L. Illusie
and T. Saito. Indeed, H*(S(X)) has a weight filtration whose weights belong to the
interval [z, 2i], since S(K) is a quotient of a smooth variety with only finite quotient
singularities. Analogously, the weights of H2?~% are larger than 2d — i. By Poincaré
duality, H} has a weight filtration with weights < 7. The consequence is that H} is a
mixed Hodge structure with pure weight i, i.e., a pure Hodge structure of weight i.

When g is even, H/(S({s),C) contains a “trivial” part. We describe this using rep-
resentation theory. Let L2, (G(Q)\G(A)/Zc(R)) = @ 7, where 7 runs over a complete

dis

set of summands of the discrete part of L2(G(Q)\G(A)/Zc(R)) as a representation of
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G’(P{). Then, according to Borel and Casselman,

H{)\ (5(Ky),C) = @Hg 8, Kimeo) @)

where g = Lie(G x R) and KX C G(R) is maximal compact. By strong approximation,
Teo = C if, and only if, 7 is an Abelian character. The part of H, ) corresponding to these

representations is composed of classes of type (g9/2, g/2) in the Hodge decomposition.
Moreover, it is the image in H (92) of a projector composed of Hecke correspondences, which

may be defined over Q. In particular, its intersection with HY, if it is non-zero, is in any
case a direct summand of HY for any of the cohomology theories we will consider{!) We

will denote by FI{’(S (Ky)) the complementary subspace, both in complex and in ¢-adic
étale cohomology.

LEMMA 5.1. — Assume ¢ > 3. Then fI!g(.S'(Kf),C) is purely of Hodge type
({g,0); (0,9)).

Proof. This follows from Proposition 3C8.

We will prove two, obviously related, results :

THEOREM 5.2. — The Mumford-Tate group of the Hodge structure (Hf(S(K;),Q);
H3(S(Ky),C) = H® @ H)?) is Abelian.

For the second result note that if £ is a prime, fi"? (S(X¢),Qq) carries a representation
of Gal(Q/Q). We will say that this representation is potentially Abelian if there exist
finite extensions L of @, and F of Q such that the associated representation of Gal{(Q/F)
on H 7 (S(Ky), L) is an extension of“Abelian characters.

THEOREM 5.3. — The representation of Gal(Q/Q) on H{(S(K;), Qi) is potentially
Abelian.

Before we proceed, we will state a conjecture which would allow one to give a proof
of Theorem 5.3 analogous to the proof we will give for Theorem 5.2.

CONJECTURE 5.4. — For sufficiently large ¢, H-"’(S(Kf) Q¢) is a Hodge-Tate repre-
sentation of Gal(Q¢/Q:) with Hodge-Tute type ((g,0); (0,9)).

N.B. By this we mean that if V = H!Q(S(KL), Q¢) and C; is a completion of @, the
only irreducible summands of V ® C; as a Gal{(Q,/Q¢)-module are isomorphic to C,(0)
or Ce(—y).

() The part of HY, @) contributed by the Abelian characters is composed of Chern classes

on the different components on S(Ky) (cf. e.g. Parthasarathy [Parl]). Probably the
intersection with H} vanishes but this is irrelevant to us.
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5.2. — Before we give the proof of Theorem 3.2, we make a few remarks an Hodge
structures. First note that Hy( (Ky),Q) carries a polarized Hodge structure (by the
corresponding fact for intersection cohomology), so its Mumford-Tate group is reductive.
In the sequel we will have to consider L-Hodge structures, L C C being a number field. If
L is real, the usual theory applies. In particular the category of polarized Hodge structures
is semi-simple.

We will have to consider parts of the cohomology of S(X;) and related varieties
which are only defined over CM-fields L. A complex Hodge structure of weight w on a
vector space H of finite dimension over L (L a CM-field embedded in C) is simply a

Hodge decomposition H@QQC = & HP. The usual notions apply; in particular we
L ptg=w
can define the Mumford-Tate group. If Lo C L is the maximal totally real subfield, a

Hodge structure Hy over Lo defines a complex Hodge structure over L by H = Hy @ L.

Lo

Conversely, if H is a complex Hodge structure over L, let H = H & L where o is
o:L—=L

complex conjugation. Then H @ C = H, the isomorphism sending HP to H . Then
Hao H = H°® L, H® being the Hodge structure “obtained by restriction of scalars” :
Lo

H° = H, seen as a Lo-vector space, and HO®C = (H ® C) ® (H ® C). Note that H°
Lo

is a true (real) Hodge structure.
Suppose X is a smooth variety, and H = HY(X, L). Then H carries a complex Hodge
structure over L, which is obtained by extension of scalars from the (real) Hodge structure
of Hy = H" (X, Ly). It follows that the Mumford-Tate group of H is reductive. Therefore
H, as an L-Hodge structure, is semi-simple. The same applies to intersection cohomology,
and to Hf (S(KJ)).
We now come to the proof of 'I‘heorem }2 Let / (;)” 2)

(5.4) = {(z1,...,24) € GL(2)9 cdetz; =detzy = =detzy}.

Thus H is a group over Z, with a natural embedding into GSp(g) coming from the
identification of GL(2) with the group of symplectic similitudes of the form (1 -1 )

For each z € G{Q), we have a finite map :
(5.5) Jz : S(H,Kn(z)) — S(G,Ky).
Consider the corresponding maps

(5.6) ju HI(S(K[),C) — HY(S(H, Ky (z)); C).

LEMMA 5.5. — The map Res= [] 7j: is injective.
r€G(Q)



Proof. By the remarks at the beginning of § 5.1, HY(S(H, K (z)); C) carries a pure
Hodge structure of weight g; the restriction map is, according to Deligne [Df:B], a map of
mixed (i.e., pure) Hodge structures. Therefore it suffices to show that if a € H} (S(K7),C)
is of type (g,0) and Resa =0, then o = 0.

By L2-Hodge theory, « is represented by a form w of type (g9,0) on S(K;); w is
moreover square—integrable. The variety S(H, Ky (z)) has a finite covering which is a
product of modular curves Cy,...,C,. Thus we get a finite map factoring through j; :

(5.7) jiCLx - xCy— S(Kj) =X

Consider a smooth compactification X of X. By a basic result of Freitag and Pommeren-
ing [Fr~Po), w extends to a smooth differential form on X. Let C' = Cy x - -+ x Cy. Since

j is finite, we obtain by normalization a compactification C of C and a diagram

_
2

(5.8)

QS all
e C—= |

———
J

where 7 is finite. By using the embedded resolution of singularities for C C X we obtain
a new diagram (5.8) with X and C smooth. Then the extension & of w to X glves by

restriction a form (3) @ on C; on the interior C it coincides with Jrw.
Let C = C; x -+ x C, be the obvious smooth compactification of C. By the birational

invariance of genera I'(C,Q9) = I‘(C §9). Thus j*w extends to a holomorphic form
6 on C. The cohomology class ¥ of 8 is of type (g,0); it is in the image of the
map HI(C) — H9(C); its restriction A to C is equal to j*a. Note that for each
factor C; of C - a modular curve - the map H'(C;) — H'(C;) is injective. From
the Kiinneth decomposition it follows that H90(C) ¢ @9H!(C;), and therefore that
H9%(C) — HI(C) is injective.

Suppose now that Resa = 0. Then 8 = 0, whence v = 0, whence § = 0 by Hodge
theory on C. This implies that (7)*w = 0 as a holomorphic form on C or, equivalently, on
C. Thus j*w = 0 as a holomorphic form on C. Then j;w = 0 for all z, and the arguments
of § 2 show that w = 0 as a form and, therefore, as a cohomology class. This proves
Lemma 5.5.

In order to prove Theorem 3.2, it now suffices to consider the image of I?,g (S(Ky))
in H{(Cy x -+ x Cy). By the foregoing arguments this injects into H{,)(C1 X --- x Cy),
which is the cohomology of the L?-spectrum of H;(Q)\H(A), where H; = GL(2)*.
Since we are only interested in classes of type (g,0) or (0, g), the image is contained in



Hg,,,(Cy x - --Cy), which is described over C, in the manner of (5.3), as

ngsp(cl X Cg) = @ Hl(”l,oo)@"'@Hl(Trg‘oo)®
(5.9) M1y g .
®ﬂ'f}®-~-®1r§}, -

where we have written H'(mo) for (g, K)-cohomology and where Ky x --- K, is a
congruence subgroup of Hi(Ay). Note that HE,,(C1 x ---Cy) C HYCyx---C,)isa
sub-Hodge structure, for example by the Drinfeld-Manin principle. Moreover the Hecke
algebra acts irreducibly on 11'{( 'Q® QD 11';( *. Constructing an associated projector (given
by a linear combination over a C'M-field of Hecke operators), we see that the image is a

sum of complex Hodge structures over a sufficiently large CM field L, of the type
(5.10) NCM®@ - --Myg=M

M;CH r}‘,,,H,,(C',-) being a 2-dimensional complex Hodge structure over L; each M; is of
type {(1,0); (0,1)}, and N is purely of type ((g,0); (0, 9)).

We will now give two proofs of Theorem 5.2, based on different arguments, which we
feel have independent interest.

We will denote by G x the Mumford-Tate group of a L—complex Hodge structure X,
for L a sufficiently large CM—field. There is a natural homomorphismv = vy : G,, = Gx
defined over L, as is Gx. The Mumford-Tate group is defined, a priori, as a subgroup
of GL(X) x G,n, but the projection on the first component is an isomorphism, and we
will when convenient consider Gx as a subgroup of GL(X). {(As a good reference for
Mumford-Tate groups, see [DMOS, § 1.3)).

By general principles Gy is the image, by the tensor product, of the group Gy =
Gum,@.-@M, ; moreover the natural maps Go — Gy, are surjective. Since Gy, C GL(2)/L
is reductive and G, contains the image of v, Ga, = GL(2) if it is not Abelian.

We first reduce to the case where all Gy, are isomorphic to GL(2). Assume, for
example, Gpr, Abelian. Then Gy, acts by two characters on M, ; since their restriction
to G, via v are z +— (71, 1) they are not isomorphic. This implies that M; splits into
two L-Hodge structures. Then we see that Ay ® .- ® M, verifies analogous conditions,
with the number of variables reduced.

We may now assume that Gy, = GL(2) for all i; we consider Go C Gp, X - x Gy, =
GL(2)9. (We will now simply argue with the complex points of the Mumford-Tate
groups). Consider its derived group Go, qer C SL(2)9.

We will apply a variant of Goursat’s lemma.

LEMMA 5.6. — Suppose A C SL(2)9 is a connected semi-simple subgroup such that
the image of A by each projection is equal to SL(2). Then A 1s, modulo permutation of
{1,...,9}, of the form

{(‘:91(-7-71): s 1‘10511(-7:1): ‘pyx-i-l(:v'l)) .- '!(loﬂl+92("c2)?‘ .- ?(pg-9r+l(I7)’ s "pg(mv‘))}



6

where (z;) € SL(2)" and the @; are automorphisms of SL(2).

Proof. Write SL(2)9 = SL(2) x SL(2)¢! and let B be the image of 4 by the map
SL(2)9 — SL(2)97!. Then by induction B is of the form indicated. Up to automorphisms
of the factors we may write

(511) B = {(.’171,...,:171, T2yenvyonn ,Ir,...Ir)} = SL(2)r

If Ker(A — B) is finite it must be 1 since SL(2) is simply connected. Thus A = B. The
first projection applied to each SL(2)-factor of B must be trivial or the identity. Since
the factors commute it is the identity for exactly one factor. The lemma follows.

Suppose then Ker(A — B) = C infinite.

The map C — SL(2) given by the first projection is injective. Since C is clearly semi-
simple this map must be an isomorphism. Thus A is clearly semi-simple this map must
be an isomorphism. Thus A contains SL(2) embedded into SI(2)" in the first component.
This implies that A = C x B, q.e.d.

Write then
(5.12)
GO,dcr = {‘Pl(xl)a ey P (xl)s (1991+1($2)1 e ‘pg]+g2 (mQ)a ey (p9-9r+l(xr)’ ey ‘Pg(xr)}

where ¢ = g1 + -+ + gr, i € SL(2) and the ¢; are automorphisms of SL(2). In the
tensor product representation, Go 4. leaves N C M invariant. We will denote by e;, f;
the vectors of type (1,0),(0,1) in each M;.

Suppose first g; < g. Then for x € SL(2),

(P1(z)y .. 00, (), 1, . ) (®es) = wi{z)er @+ @ @4, (T)eg, QeEp+1 Q- De,.

Since this must be a linear combination of e = ®e; and f = ®f;, we must needs have
w1(z)e; € Ce; for i < g;. This is impossible.

Therefore g; = g, and the same argument implies that ¢;(z)e; € Ce; for all i or
wi(z)¢; € Cf; for all 7, which is again impossible.

The conclusion is that Gy, is abelian for all 1, except if g = 1. If we return to the
reduction to the case Gy, = GL(2), we see-that our argument is complete except if all
G u, but one are Abelian. However, in this case, M is a direct sum of 29-! summands of
type ((1,0)®(0,1))®T where T is of type (p, ) with p+q < g—1. Each of these summands
is irreducible, and its intersection with N would necessarily be one-dimensional, which
is impossible (for ¢ > 2). This concludes the first proof of Theorem 5.2.

The second proof is based on the following lemma :

LEMMA 5.7. — Let X, Y be Q-Hodge structures whose Mumford-Tate group is
reductive. Suppose X, Y are pure of weights a, b with a,b > 0. Let Z C X QY be a
Q-Hodge structure of type {(p,0); (0,p)} with p=a+b. Then

(i) The Mumford-Tute group Gz is Abeliun.



(ii) If X, Y are irreducible, Gx und Gy are also Abelian.
(iii} X is of type {(«,0); (0,a)} and Y of type {(b,0}, (0,0)}.

We apply this lemma, arguing inductively, to an embedding N C M, ® --- M, where
N is an irreducible summand over Q of HY(S(Ky)) and M; are irreducible summands of
H(C;) over @. The conclusion is that Gn, and the Gy,, are Abelian.

We now prove Lemma 5.7. We now denote by Gx the Mumford-Tate group of a Q-
Hodge structure X ; as above we view G x as a subgroup of GL(X). Let G = Gxgy :
we then have natural surjections G — Gx, G — Gy and G — G4. Let gx, gy, 82,
gxey = 8 denote the Lie algebras. Then gz C End(Z) = Z ® Z*. As such gz has a
Hodge decomposition, of types (0,0), (p, —p) and (—p, p).

The Hodge type of gx are of type (i — k,j — #) with a =i+ j = k+ £. If this is of type

(p,—p) we get a+b=p=1i-k <i< a, an impossibility. Thus gg(_p’p) == ggf'-p) = {0}
and the same is true for gy. Consequently g~ = g(-7?) = 0, whence gi" ™™ = g(z'p'p):_ '

Thus gz if of type (0,0) which implies that Gz commutes with »(C*). Now denote™

by Mz the Mumford-Tate group of Z, seen as a subgroup of GL(Z) x G,, : then [,
Prop. 3.4] Mz is the smallest subgroup of GL(Z) x G,,, defined over Q, and whose set
of complex points contains p(C*) where

(5.13) C u@) =) (zeC¥).

Since Mz C Gz x C*, Mz commutes with j; therefore ;{(C*) is contained in the center
of Mz : this is a Q-subgroup of Mz verifying the defining condition of Mz, and we
conclude that Mz is Abelian; so is Gz. This proves (i).

As to (iii), note that if X, Y are irreducible, we may find a number field L and
absolutely irreducible summands Xy and Y] of X ® L and Y ® L such that X, Y are
sumns of conjugates of X; and Y; in the obvious sense. Extending scalars to L, we are
reduced to the case when Z C X ® Y and X, Y are absolutely irreducible. Since the
Mumford-Tate group of Z is Abelian, we may then replace Z (perhaps after a further
extension of scalars) by a one-dimensional sub-~Hodge structure contained in X @Y. We
then have a morphism of Hodge structures over L :

(5.14) X'®Z—Y

which is an isomorphism by irreducibility. Moreover Z is now of type (p,0) or (0,p) :
assume the latter. If (7, 7) is a type of X and (k, ) a type of Y we now have

(5.15) ~i=k, —j+p=¢
which implies i = kK = 0 and j = «a, £ = / This, after an obvious argument of

Galois descent, implies (iii); morcover the weight homomorphisms G,, - GL(X) and
Gm — GL(Y) are now scalar, and the argument given in the proof of (i) implies (ii).

/b



Proof of Theorem 5.3

We now consider the restriction maps
3° (HY(S(Ky), Qo) — HY(C1 x -+ x Cg, Qr)

in étale cohomology. These maps can be defined over number fields, and therefore
commute with the natural action of Gal(Q/F) for some sufficiently large number
field F. The previous proof shows that the image is contained in the subspace of
HY(Cy x --+ x Cy,4l) contributed by modular forms yielding Hodge structures of CM
type. The associated Galois representation then arise from factors of the Jacobians of the
curves C; that are of CM type. According to Shimura-Taniyama and Weil the associated
Galois representations are potentially Abelian ([Bor|, [Pi]; cf. Serre [Se2]).

5.3. — We end this paragraph with a few remarks. First we note that the argument
in the proof of Theorem 5.12 could be applied directly to the Galois representations -
hence proving Theorem 5.3 - if one could use Hodge-Tate theory. This would however
require information on the Hodge-Tate nature of Hf (S(Ky), Q¢), i.e., Conjecture 5.4. In
turn this conjecture would follow if a suitable comparison theorem between ¢-adic and
De Rham cohomology applied to HY, since De Rham cohomology is computed (over C)
by Lemma 5.1. However, the theory of Hodge-Tate for open varieties does not seem to
be sufficiently developed for this proof.

For g = 2, Weissauer [Weis] has been able to prove Theorem 5.3 directly ; Theorem 5.2
is implicit in his paper’. We could have obtained Theorem 5.3, in the even case (g even),
by reduction to his result, using the analogue of Lemma 5.5 to restrict classes in I},g to
products of Siegel threefolds, to which his results apply. It is then also possible to treat
the case that g is odd, but at the cost of complications. Our present proof is more direct.
Finally, it is also possible to treat the case of coefficient systems : we leave this to the
interested reader. ' 5

We also note that the previous proof implies that classes in H?(S(Xy)) restrict to
cuspidal cohomology classes on products of modular curves. On the other hand, there
is no a priori reason for such classes on S{Ky) to be cuspidal (they are only square—
integrable). In fact, Weissauer [Weis] shows the existence, for g§ = 2, of non—cuspidal
holomorphic classes.

We note that this phenomenon is more general. Suppose Fy,..., F, are totally real
fields of degrees g1, ..., 9- over Q, with g1 +---+ g, = g. Let G; = Resg, /o GL(2). Then
G; has a natural homomorphism “norm of determinant” v; : G; — G,, over Q. Let H
be the group

(5.16) H={(z1,...,24) : i € Gy, vi(z) = - =v.(zy)}.

Then there is a natural map H — G. A corollary of the previous arguments is :

! See also Blasius-Rogawski [Bl-Ro].

b,
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PRroPoOSITION 5.8. — (g > 3) A cluss w € f?!g(S(Kf)) restricts to a cuspidal class in
H(S(H,Ku(z))) for any mep jz : S(H, Ky(x)) — S(Ky).

Proof. We may assume w of type (g,0). The arguments of § 5.2 then show that the
restriction of w yields a class of type (g, 0), in the image of HY, in the g-th cohomology
of a product C| x - - - x C,. of Shimura varieties associated to G;. But according to Harder
[Ha2] all such classes are cuspidal. More precisely, if C = Cy x - - - C,, Harder shows [Ha2,
p. 65] that

(5.17) H{(C) = H§,\,(C) ® HY,..,(C),

the second factor coming from Eisenstein series associated to Gréssencharakterer of the
F;. The F; being totally real all such classes are Tate classes.

If r = 1, and we therefore consider an embedding GL(2,F) — GSp(g) with
[F : Q] = g, it is an exercise on Siegel domains to check directly Proposition 5.8 from
the growth estimates on w coming from its square-integrability (use Lemmas [.4.1 and
1.4.11 of Moeglin-Waldspurger [Mo-We]. For r > 1 we have not tried to give a direct
proof; for cuspidal classes of course the result follows from Proposition 2.8.



6. — The case of unitary or orthogonal groups

6.1. — In this section we consider a group of unitary similitudes G = GU(Q)
associated to a quadratic imaginary extension F of Q and an Hermitian form Q on
Fr =V, Write V =V, @& V,, where V}, is a sum of hyperbolic planes and @, = Q|v, is
anisotropic. Let 2p = dim Vj,, m = dim V,,. As is well-known, @, ® R is definite if m # 2.
The group G(R) then has signature (p + m,p). If m = 2 and Q, ® R is indefinite, G(R)
has signature (p+ 1, p + 1).

In the first case Q can be written in a basis of V with the matrix

[ -1, 0\

\ 0 t€m )
with & € Q%, & < 0 and ¢ € F an element such that 7 = —.. (We assume :71Q, ® R
negative). The group G contains the subgroup H of GSp(r) x GU(Q,) defined by the
equality of the ratios of similitude. Consider h : C* — G(R)

Ty 0
Z=c+1iyr—> z
0

Z
Then h factors through H(R) C G(R). The centralizer Ko, of h in G(R) is isomorphic
to the subgroup G(U(p) x U(p + m)).of GU(p) x GU(p + m) defined by the equality of
the similitude ratios, if m # 0. (If m = 0 this is a subgroup of index 2 of K).

In the second case, we take h given (for an appropriate basis of V) by

Ty

Z— vz

z

The centralizer of A then has a subgroup of index 2 isomorphic to G(U (p+1) x U(p+1)).

The parameter h defines a family of Shimura varieties S(h,K;) = S(K;) (K C
G(Ay)), defined over a reflex field £. We will not explicitate the field E; we recall only
that for m = 0 (even quasi-split case) it is equal to Q; for m = 1 (odd quasi-split case)
it is equal to F.

Let g = p+ m. Thus p < ¢q. We will assume p > 2 and q > 2. Define H?(S(Ky)) as
in § 5.1. Thus H{(S(Ky),C) carries a pure Hodge structure of weight i. Since it injects
into TH*(S(Ky),C), we can apply the arguments of the previous paragraph :




LEMMA 6.1. — Let I?{’(S(K;),C) denote the complement in H{(S(Ky),C) of the
(possible) contribution of the trivial representation. Then I?{’(S(K;),C) is purely of
Hodge type ((p,0); (0,p))- |

Proof. This follows from Proposition 3.A.6 by the arguments given in § 5.1.

Our purpose in this section is to prove :

THEOREM 6.2. — Assume p > 2, ¢ > 2. Then the representation of Gal(E/E) on
fI!p(S(Kf),@g) is potentially Abelian.

THEOREM 6.3. — (p > 2, ¢ > 2). The Hodge structure on I:’,”(S(K;),C) has Abelian
Mumford-Tate group.

We will prove these theorems by reduction to the case of the group GSp(p). Until
the end of this section, we assume m # 2. Let H C G be the Q-subgroup described
above. Then H has a natural morphism toward M = GSp(g) {i , whose kernel is R-
anisotropic. There is a family of associated morphisms S(H,K,;") — S(M, K fM ) (with
obvious notations) which are finite coverings defined over number ﬁelds Therefore the
assertions of Theorem 5.2 and 5.3 are true for H — using the results of Weissauer [Weis]
and Blasius-Rogawski [Bl-Ro} if p=2, and § 5 for p > 2.

For z € G(Q), consider as usual

(6.1) Jz : S(H,Ky(z)) — S(G,Ky) = S(Ky)

and its effect on I?,‘"(S(Kf),C). We must prove :
LemMMA 6.4. — The map Res = [], ¢ (q) Jz 1S injective.

Proof. As in §5 we must show that if o € I?{'(S(I{f), C) is of type (p,0) and Resa = 0,
then o = 0. Let w an L2, holomorphic, representative of a. Fix j = j;, and let § = j*a,
and 77 = j*w, a form of type (p,0) on S(KfH) where K = Ky (z). As noticed above
S(K fH ) is a finite cover of a Shimura variety for GSp{(p); since p> 2 the congruence
property holds for GSp(p) and therefore it is (over C at least) a Shimura variety of
GSp(p). We can therefore apply the geometric arguments of § 5.

Set X = S(K fH ) and let X be a smooth compactification of X. Then 7 extends to
a smooth differential form 7 on X. We would like to show that n (or 7) vanishes if the
cohomology class 3 vanishes; § is the cohomology class associated to 7.

Since the map H"(X) — HP(X) has no reason to be injective even on classes of type
(p,0), we cannot argue directly on X.

Consider however the natural morphism SL(2)? — H. The effect on Shimura varieties
(over C! these do not correspond to natural maps of moduli problems) give maps

§1:Cix - xCp— X

We can now consider jin =8, a form on Cy x --- x C), and the associated cohomology
class ¥ = ji 3. The argument in § 5.2 shows that 8 extends to a form § on Cy x -+ - x Cp,
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of type (p,0). Since v = 0, § = 0 (again, see § 5.2, proof of Lemma 5.5) whence n = 0.
By (the proof of} Proposition 3.A.5 and Proposition 3.C.4, the assumption that § = 0
for all 7 and 7, implies that 7, and then w, vanish. Therefore a = 0, q.e.d.

Proof of Theorems 5.2 and 6.3. They now follow from Lemma 6.4 and the fact that
the analogous theorems hold for H.

We now simply sketch the proof when m = 2 and Q. ® R is indefinite. In this case we
must consider a group H which is a subgroup of GSp(r) x GU(Q,), the group GU(Qa)
being of type (1,1) at infinity. 5

We first show that the restriction map from HT(S(K;),C) to [] HY (S(H, Ky (z)),C)

is injective, with the usual notations. This is a geometric problem, so we can as well
consider Sp(r) x SU(Q,) C G. We are led to consider holomorphic p-forms on varieties
X1 x C, where X is a Shimura variety for Sp(r) and C a Shimura curve coming from

SU(Qa)-

LEMMA 6.5. — If X, is a quasi-projective variety, and C a projective variety, over C,
then

(6.2) H(X, xC, Q)= @ H'(X.,0") e H(C,Q™

P1tm=p

This is clear. We may apply this to X; x C and to X; x C where X is a smooth
compactification of X,. Using the result of Freitag-Pommerenke as an § 5.2, we then
deduce that restriction is injective if it is so infinitesimally. For this we need :

LEMMA 6.6. — Let Gy be unitary a group of type (r + 1,r + 1) at infinity, and
H, C G1/Q a subgroup of type U(r,r)x U(1,1) at infinity. If w is a holomorphic (r+1)-
form on a Shimura variety for G| then w does not vanish stably along H,. Moreover its
restrictions are of type ((r,0); (1,0)) on the factors associated to U(r,r) x U(1,1).

This follows from Proposition 3.A.8, except for the type of the restriction. For clarity
we retrace the proof, using the notations of § 3A. It suffices to show that the vector
v=e1QfiNn - Ne1® fry1isinthe CK-spanofw =€ @ fiA---Ae1® frAerp1 @ fri1,
K being U(r + 1) x U(r + 1) acting in the obvious manner on C™*! @ C"*+!. We consider
a linear transformation e,4) — €1 + ter 41, €; — e; (i < r). The constant term of the
vector w(t) obtained from w is then equal to v, q.e.d. Further, the first degrees where
U(r,r) can have holomorphic cohomology are r, 2r — 1. If r > 2 the last assertion follows;
for r =1 it is obvious. Assumer = 2:thus K = U(3)xU(3),v =1 Qfine1® foAe1® fa.
The space 1'\3p§1 is spanned by the four vectors obtained frome; ® fiAes ®@ fiAe2 @ fo
by permutations of the indices in {1,2}. On the other hand, K - v is the 3-dimensional
space spanned by v, e2@ fiAea @ foAea ® faand ea ® f1 Aes® fo Aex ® f3. For the
natural scalar product, one checks easily that K - v is orthogonal to Aap}}!. Thus v is not
in the CK-span of A%p}; . This completes the proof.



The injectivity of restriction now follows from Lemmas 6.5 and 6.6.

_ We now finish the proof of Theorem 6.3. We have obtained an injective map of
HP(S(Ky),C) into a product of spaces of the form Hf(S(H, Ky),C); H is a subgroup
of GSp(r) x GU(Qs) = H' and S(H,Ky) is covered by a product of varieties X; x C
associated to the two factors; finally we have an injection of H{'(S(Ky),C) into a product
of spaces of the form H{ (X, x C), whose image falls in H!r'O(X1)®H1'°(C) by Lemma 6.6.
Since H[ (X)) and H!(C) are pure Hodge structures of weights.r and 1 respectively,
Lemma 5.7 (i) implies that the Mumford-Tate group of (each absolutely irreducible
factor of) HY(S(Ky),C) is Abelian. Moreover, Theorem 6.1 now follows as in §5, since
by Lemma 5.7 all irreducible Hodge sub-structures Z C Hy (X;), T C HY(C) such that
Im(HP(S(Ky),C) meets Z ® T are Abelian : this implies that the associated Galois
representations are potentially Abelian by the results recalled in § 5. (N.B. : since r > 1,
it follows from § 5 that the Galois representations on H{ (X1) are Abelian : note however
that we do need a further argument (Lemma 5.7) to control the contributions of H(C),
since the whole space H'{C) is not Abelian.

6.2. — We now consider the case of a unitary group G over Q of type (2,2) at the T
infinite prime. ) qar—
Assume first that G is quasi-split : it contains a copy H of Sp(2) as in § 6.1. Let ¢

= LieG(R).

g9
LEMMA 6.7. — There are 6 Vogan-Zurkerman modules Ag such that \44 e
HQ()ZS,KOO;A¢) # 0 : the trivial representation, two modules whose H? is primitive of \g_ / Lq_
type (2,0) or (0,2), and one module having primitive cohomology of type (1,1).

The proof is easy. Write 9! = 95(3:) with £ = (a1,a2,01,b2) as in § 3A. We get two % 14—
distinct types of holomorphic Ag's associated to (a,a, a,b) with a > by, and (ay,b,b,b) 4-4,
with a; > b. Analogously, there are two types of antiholomorphic modules. Finally,

z = (ay,aq,a1,a2) yields a module of type (1,1), unique up to isomorphism. Denote
by Ai, Az the holomorphic representations associated to (a,a,a,by) and (ai,b,b,b)
respectively.

Now the space H2(S(K;),C) carries a Hodge structure of type {(2,0),(0,2), (1,1)}.
Consider the restriction maps to the spaces S(H, Ky),C) with the notations of § 6.1.

~ Res ~
We get a map H*(S(Ky),C) —— [[H*(S(H,Kyx(z)),C). The spaces on the right

are again pure Hodge structures, and it follows from the results of Weissauer [Weis] and
Blasius—Rogawski that each of these Hodge structures is, over @, the direct sum of its
part of type {(2,0),(0,2)} and of its part of type (1,1) : these components are separated
by Hecke operators.

We may then consider the restriction map Res, composed with projection on the
(2,0), (0, 2) part. Its kernel contains (over C) H%(S(X;),C)!! and is a Q-Hodge structure.
Moreover (over C) Res is injective, by Proposition 3.A.9, on H2(S(Kj), C)(20+(0,2)
Consequently H2(S(K ), C)'! splits as a Hodge structure over Q. Moreover the previous
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argtlments imply that the part of type {(2,0), (0,2)} of H? is Abelian, since this is known
for Sp(2). We have proved :

THEOREM 6.8. — Suppose G is a quasi-split unitary group of (absolute) rank 4 over
Q : thus G(R) = U(2,2). Then H*(S(Ky),C) is a direct sum, as a Hodge structure :

I = B @ F20+02)

over Q. Both Hodge structures are Abelian. The corresponding results hold for the Galois
representations.

In fact, H1! is a Hodge structure of type (1, 1), thus associated to a scalar representa-
tion of G, : it splits into 1-dimensional subspaces over Q. Note that moreover, because of
the Lefschetz (1 —1)-theorem, all rational classes in A!! should be represented by cycles :
this would follow if one could show that their images in the cohomology of a suitable
smooth compactification of S(J{s) do not vanish. We have not pursued this problem.

We now consider the anisotropic case. By taking a 3-dimensional subspace of the 4~
dimensional Hermitian space, we obtain an embedding H — G, where H is a unitary
group of type (2, 1) at infinity. Upon restriction to (varieties associated to) H, the classes
of type A; vanish while restriction is injective for classes of type Ag (Propositions 3AS5,
3AS6).

The consequence is that classes of type A; or A, belong to different Hodge structures
(over Q). If one could show that classes associated to the representation of type (1,1) lie
in a disjoint Hodge structure, the argument. shetched above would again show that they
are Tate classes. This will require further work on the trace formula.

6.3. — Orthogonal groups.

Suppose G is a group over Q such that G(R) is isogenous to SO(2, m). We will assume
m 2> 5. For K C G(Ay) compact-epen, we consider the intersection cohomology space
ITH?(Sk(C),C).

LEMMA 6.9. — TH?(Sk(C),C) is purely of type (1,1).

This is Proposition 3BD3.

Suppose now G anisotropic over Q.

THEOREM 6.10. — (G anisotropic over Q, G(R) isogenous to SO(2,m))
(i) H*(Sk,C) is purely of type (1,1), and consequently spanned by algebraic
classes
(ii) If E is a field of definition for Sk, the action of Gal(E/E’) on H*(Sk, Q) is,
for an finite extension E' of E, an extension of 1-dimensional representations isomorphic
to the Tate character.

This is clear : (i) follows from the Lemma. By the Lefschetz (1—1)~theorem, H%(Sk, C)
is spanned by the classes of cycles, which may be defined over a finite extension £’. Then
(ii) follows.



7. — Summation

An infernal conjecture about the cohomology of Shimura varieties is the following —
we limit ourselves to varieties over Q.

PROBLEM 7.1. — Let G be a reductive group over Q, with Guer X Q simple and G(R)
Hermitian of real rank r. Suppose the absolute rank of G > 1. Then is H™(Sk) Abehan

/{6.9 a Hodge structure['o;(h Galois representation) ¢ /( 670 teniidl, Abelion  af)

Here H” should be interpreted as IH"™ (intersection cohomology), or H| according to
our choices in this paper.

Numerous cases of this conjecture are known, the first mention of the problem being
seemingly due to Oda [Oda] : see in particular Kumar-Ramakrishnan [KuR], Blasius-
Rogawski [Bl-Ro|, Weissauer [Weis]. We now review what is known :

7A. — Unitary groups

For H! the result is due to [KuR] and [BI-Ro]. For 7 > 2 and G a true unitary group
(over Q) it is proved here, except for non-split U(2,2) (see § 6.1, 6.2). This leaves the
case where G is a “fake” unitary group, associated to a Hermitian space over a simple
central algebra D with an involution of the second kind. If D is a division algebra (and
with a few restrictions) the result follows from Theorem 3.3 of {Clo4| and its proof when
G = U(D) - the unitary group associated to a 1-dimensional Hermitian module over D.

7B. — Orthogonal groups

The simplest result is Theorem 6.10. It would extend, correctly rephrased, to isotropic
groups and H? if one could show that these classes extend injectively to a suitable smooth
compactification. -

7.C. — Symplectic groups

Here the result is given by Theorems 5.2 and 5.3. We have not treated the case
of anisotropic groups (associated to quaternionian forms, see Deligne [Del]) since we
consider only groups over Q; however the method of § 5 extends to these cases, at least
for g > 2 (where one can use Lemma 5.1).
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