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A mean value estimate for Rankin-Selberg Zeta
functions

Roland Matthes

1 Introduction

Let {tPi} denote an orthonormal basis of L 2-eigenfunctions of the Laplacian on
PSL(2, Z)\H and Rj (8) the eorresponding Rankin~Selbergzeta function. In [1] Iwaniec
stated a "mean Lindelöf" conjecture for these zeta functions which was recently proven
by LUD and Sarnak in [3] if tP~,is assumed a Heeke eigenform. Indeed they consider the
second symmetrie power L-function to whieh they can relate the Rankin-Selberg zeta
function because of the multiplicative properties of the Fourier coefficients of a Hecke
eigenform. Also they use bounds of Iwaniec and Hoffstein-Loekhart for the first Fourier
coefficient as well as the large sieve inequality due to Deshoulliers aod Iwaniec.

In the present paper we want to give a proof for Iwaniee's conjecture in the half­
integral case, see the theorem below. This proof earries over to the zero weight case.
It differs from that given by Luo and Sarnak in that it does not need multiplicative
properties of the Fourier eoeffieients. We do not consider the symmetrie square L­
funetion, also no bounds for the first Fourier eoefficients are needed. Instead of a large
sieve inequality we utilize a spectral mean square theorem which we proved in [6]. For
the weight zero ease such a theorenl was proved by Kuznecov [2].

A difficulty arising for nonvanishing weight is the fact that one has to treat two
Rankin-Selberg zeta functions, corresponding to the Fourier coefficients at the nonneg­
ative and negative indices respectively. In [4] we have given an analytic continuation
for both zeta functions together with a functional equation. In the present paper we
gjve a more elaborate version, see lemma 3.1, of the factors occuring in the functional
equation. This we need for the proof of the theorem.

We do this elaboration for arbitrary real weight since there is no need to restriet to
half integral weight here.

2 Definitions

Let =: be a unitary rn-dimensional rnultipliersystem of weight r for r := SL(2, Z) and

f" ... ,I:" be an orthonormal set of eigenvectors of 3( ( ~ . ~ ) with eigenvalues e2~iaj,
o::; (Xj < 1, j = 1, ... ,m. Areal analytic automorphic fornl for r with respect to =: is a
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functian F( z) on the upper halfplane 7i = {z E Cllm( z) > O} with values in C T11 which
satisfies

i) F(Mz) = c(M)eir org(oz+d) F(z), M = (: ~) E r

ü) -ß"F = AF,
where ß r = y2 (::'J + ::r) - iry :z is the so-called Laplace-Beltrami operator,

üi) F( z) = V(yC) for y -)0 00 with some constant c > O.

Automorphic farms as just defined are eigenfunctions of an elliptic differential oper­
ator and henee are real analytie funetions. In the sequel we shall especially be interested
in the subspaee of eusp farms, i.e. fornls, that are of exponential deeay at infinity. There
is the usual Hilbert space L 2(r\1t, r, 3) with the scalar produet

j - dxdy
(F,G) = F(z)G(Z)-2'

Dr Y
where Dr is a fundamental domain for r. Let L~(r\1t,r, 3) denote the corresponding
subspace of cusp forms and let {Uk} be an orthonormal basis of trus spaee.

For simplicity we consider only eusp forms with eigenvalue 2:: 1/4.
It is then convenient to write the eigenvalue of Uk in the form

1 . 1 .
Ak = (2" +ttJe )(2 - ttk)

with tJe 2:: O. Since

~k(Z+ 1) = c( (~ ~) )Uk(z)

we ean expand Uk in a Fourier series
m

Uk(Z) = E'ljJj(z)1;,
j=l

with

n == O'jffiocll,
n#O

The Rankin-Selberg zeta functiona belonging to Uk are given by the Dirichlet series
T11

R±,Ic(S) = E E
i=l clln == O'jmo I

±n > 0

!pi,k(n)1 2

lnl",-l .

for short

MK,it( s) = fooo W;,it(y )y.-2dy, K, real, Re( s) > 12Re(it) I,
where WK,it is the exponentially decreasing Whittakerfunction. We write
M±,k(S) instead of M±7'/2,it,,(S).

In [4) we showed, that it is sufficient to restriet to T E[-1, 1), since all possible Rankin­
Selberg zeta functions already occur for these weights. We introduce the the Mellin
traI?-sform
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3 Analytic properties of the Rankin-Selberg Zeta
functions

In [4J we proved several analytic properties of the Rankill-Selberg zeta functions which
we are going to state in this section. In the sequel always write 8 = U + iT. Then we
have shown in [4]

Proposition 3.1 i) The ab"ci"sa" 0/ convergence 0/ R±,k(8) are 1. Moreover we can
continue R±,k = (213 )R±,k(13) a" meromorphic functions over the whole complez
plane with the only pole at 8 = 1. Denote the re"idue" at 8 = 1 by b±,It. Then

b _ 3(M=F,k(2)±rM =F,k(1)
±,k - 1I"r(l + 2itk)r(1 - 2itk)·

ii) We write

R*(s) = ( R~,k(.9) )
k R~,1t(8)

and have a functional equation

with

where

and 8(x,y) = 1 i! z = y and -1 else.

Concerning the Mellin transfonll M .II:,it ( s) we reInark that for weight zero t his is a r­
factor which it falls to be for generic weight. Nevertheless we could prove in [4] the
following recurrence relation

From this follows, that M rt ,it(8) is a Ineromorphic function with simple poles at most
at s = 0, -1, ... and s = ±2it, -1 ± 2it, .. ..

A growth estimate for eh was given in [5]. We have uniformly in (0 <)8 :s: er :s: 1 - 8

i) ifr:S1+tk
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ü) if ITI > 1 + tk

We are now able to give the explicit form of the transformation matrix C k ( s).

Lenlma 3.1

11"6b~ k sin 211"S
8e (8) - - '±±,k - 18· 2 • ( 2"t ). ( 2"t) ,SIn 11"s SIn 11" s - t k SIn 1r 8 + t k

Proof. We put

\

It follows immediately from the recurrence relation that Czy,k(8) = Cuz,k( -8). Further
By equation (2) we obtain

SC:!:y,1e( s) = 8Mz ,1e(1 + s )M lI ,1e(l - s) + b(x, y )Mz,k(8)
. ((8 - 1)My,k(2 - s) - yr(2s - l)M y,k(l - s)). (3)

Replace s by 1 - s. Trus yields

(1 - s)c:!:y,1e(l - s) (1 - S)M:!:,k(2 - S)My,k(S) + 6(x,y)M:!:,k(1 - s)

. (( -s)My,k(l + s) + yr(2s -l)My,k(s))

- -6(x,y)sM:!:,1e(1 - s)My,k(l + s) - (s -1)Mz ,Ie(2 - s)M y,Je((4)
+yr(2s -1)6(x,y)Mz,Ie(1- S)My,k(S)

= -6(x,y)scy:!:,k(S)

since y6(x, y) = x. Especially c+_.k(1/2) = -c_+,k(1/2) and

(s -l)czy,k(s -1)) = 6(x,y)sc:!:y,1e(s).

Notice further that SCzy,k(S) has siluple poles at s = 0 and s = ±2itk. From these
properties together with the growth estimate we find that T±,Je(s) is an entire function
with T±,k(S +1) = T±,k(S) and T±,Ie(s) -«::k T

2e3,..'T. Therefore T±,k(S) is a trigonometrie
polynomial

T () ± 2,..ü + ± + ± 2'l1'ü± ,Je S = a -1 e ao a1 e .

4



Since T±,k(O) = 0 we find a.t = O. Further

~~.q2C±±,k(S) = Y~S2(S2 +4t~)M±,k(S)M±,Je(-s)

_ (1rr(l + 2itle)r(1 - 2itk )b±,k) 2

12tlc

From this we obtain, since r(l + z)r(l - z) = 1rz/ sin 7fZ

lim T±.k(S) = _ 7f5btk
.8-0 sin 1rS 9

and thus
7r

6 b2

a± = i ±,k
-1 36

Now put

Then with the arguments as above

P (s) = b± e-2ri• + b± + b± e2ri.8.±,k -1 0-1

Since P±,Ic(S) = P=f,Ic( -s) we obtain b~1 = b1, bt = b=1' bo= bt := bo.
Now the asymptotic behaviouf for r --t ±oo which ean be obtained via Stirlings

formula

and

M .()- r(s-~+K-it)r(S-~+K+it)( 0(11-1.))
tt,1t S - r(s) 1 + r"J t

valid for 0 < 0' ::; 1000 and Irl ~ 1 + t which we showed in [5] gives

b+ 2 r1l" b+ 4 -r1l"
-1 = 7re , 1 = 7re

hence

Observe that

Trus gives
7r

6 b+ Jeb- Je
bo + 87f eos 7fT = "

9
and the proof of the lemma is complete. 0

The last thing we need is a growth estimate for the Rankin Selberg zeta function.
Trus is given as
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Proposition 3.2

R~,k(s) <t:.~ Ir1-2u+2+2e(1 + tk)-u+l+e S±,k(l + €),

for 0 < 0' < 1 where

S±,k(l +€) := max (%,k(l + €), (1 + th)=f1R=f,h(l + e)) .
The implied con$tant$ do not depend on k.

4 The Theta case

Now we leave the general ease and foeus our attention to the spaee L2(r\H, i, V) of
real analytie automorphie forms of half integral weight with values in Ca, where V is
the multiplier system eoming from the holomorphic 0-funetion

0(z) = (t9 2(z), 19a(z), 19 4 (z))t

with the three classieal theta series

'l?2(Z) = L e..n(n+~)2z
nEZ

It is at onee seen, that

1?3(Z) = L e'lrin
2

z ,'l?4(Z) = 'l93(z + 1)
nEZ

Put a1 = 0,a2 = ~,aa =~, then V(U} has eigenvalues e(at},e(a2),e(ag), the eorre­
sponding orthonormal set of eigenveetors is given by

For the eorresponding Rankill-Selberg zeta funetions we want to prove the following
mean value estimate
Theorem 4.1

R* (1 + iv)L +,k '2 ~e (vT)3/2+e,
tk<T ch7T"tJe

R* (1 +iv)L -,Je '2 ~e v1+eT5/2+e.
tk<T eh7T"tk

Remark. Gf course one would suppose that for R+,k one should also abtain in v­
aspect v1+e hut unfortunately aUf results for R+ are (relatively) worse than those for R_.
Indeed a better result ean be obtained when using a middling over n in the asymptotic
formula oI proposition 5.1 below. Hut sinee our main interest was in the k-aspeet we
didn 't go further into this.
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5 Proof of theorem

Instead of a large sieve inequality CL la Iwaniec and Deshoulliers, which is used by Luo
and Sarnak in [3] we shall use the following two propositions. For a proof, see [6] and
[7]. .

Proposition 5.1 For T > 2 and j = 1,2,3

valid for any c > o.

Proposition 5.2 Let T > 2, 1 > -3/2. Then for any ßmall c, b > 0 we have

R± k(l + 6) T2=Ft+'Y+~L ' tZ ~~ 2 •
O<t <T ch1Tt1e 6.1:_

(5)

Throughout this section we write w = u + iv. Introduce for v E N an(f x :> 0 the
notation bf Jyzf(t) := foz f; ..-1 ••• I~l j(t)dtdt1 ••• dtv- 1 (it is understood that I1 z = Ie:), ,
and for 0 < u < 1 and cER the Perron Integral

1 J 1 t· 1 1 x·+
Y

J±,1e(V,x,c,w) = -. -R±,1e(s+w)ds = -2' ( ) ( )R±,1e(s+w)ds.
27r'L V,ll: (c) oS 7rl (c) oS S + 1 ... oS + V

By Perrons formula we obtain for any c + u > 1 and x > 0 such, that x / d t=. O:jffiodl
for any positive integer d ::; z

where B±,1e(z) = LO<d~z b(d)d-W A±,k(X/d,w), with b(d) = 1, if dis a square and 0 else
and

A±,1e(x,w) := L L !pj,1e(n)!2nl-W.

j=l ± clln == Q"jffiO ,

O<n~~

To see this one should observe, that for (J' > 1 we can write

3

R~,1e(S) = L
j=l

with ej,k(n,s) = LtPln (1 + O:j~)-·lpj,k(~)12 (~ + O:j). Remark, that ej,1e(n,s)n-" is

also meaningfull for n = 0 and gives IPj,k(O)1 2«2s)(aj)1-•.
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From proposition 3.2 we find that J±,h(V, x, d, w) is defined for d > 1/2 - u - v /4.
Dur central identity is

J±,h(V -l,x,c + 1,w -1) + (w -l)J±,h(v,z,c,w)
xl.'

= -J±,Jc(v - l,z,d + l,w -1) - (w - l)J±,Jc(v,x,d,w) + (w -l)R±,Jc(w)-, (6)
V.

for same 0 > d > 1/2 - u - v/4 whieh follows simply by the Cauehy residue theorem.
observe that

J±,h(V -l,z,c + 1,w -1) + (w -l)J±.h(v,z,c,w)

1 1 x·+v
-

1

-. R* Jc(s +w - l)ds
211"2 (c+l)s(s+1) ... (s+v-1) ±,

w -11 z·+V+--. R~ Ie(S + w)ds
27rt (c)s(s+l) ... (s+v) ,

1 x·+V-.1 ( ) ( )(s+(w-l))R~.Ie(s+w)ds27rt (c) s S + 1 ... s + v

and henee there is no pole eonling from s = 1 - w corresponding to the pole at z = 1 of
R± Jc(z).,

We prove the following

Lemlna 5.1 For T > 2 and 0 < u < 1 we have

L J±,Jc(v-l,z,c + l,w -1) + (w -l)J±,Ie(v,x,c,w)

tA; <T ch7rtJc

~e (Tz t xl.' (T2=f1 / 2 + T1=fl/2 Z 1-u + T1/ 4:':'1/4x3/2-U) .

Proof. Let Z (s) = L:n>O a(n )n-. denote a Dirichlet series eonvergent for u > 1 and
S(t,w) its partial sums

S(t, w)· L a(n)n-w, 0 < u < 1,
n<t

where as usual the summand with n = t has to be multiplied by i. Ta begin with, one
easily eomputes that

1 z·
-Z(s+w-l)

(c+l) s I x· 1 x·+ 1

Z -Z(s + w)ds - ( ) Z(s +w)ds
(c) S (c) S S + 1

xS(x,w) - /OZ S(t,w)dt = /OZ tdtS(t,w).

If we use this with Z(s) = R;±,k(S) we obtain the Stieltjes integral

L J±,Ie(v-l,z,c+l,w-l) =/ trd,.BT(r,w)
t.<T eh1Ttle V-l,z}O
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with

From proposition 5.1 we diseover that

BT(r,w) = L L d- 2wA±,k(;jr,W)
tk<TO<cf2$.r Ch1Ttk

- T2~1/2 L L n -w + Oe (Tx t (Tl~1/2rl-U + TI/4~1/4r3/2-U) )

O<c:P<r n$.r/cP

T 2=f1/ 2 L 10r e-wd~ + CJe(Tzt (T2=f1 / 2 +T 1=f1/2r l-u + TI/4=fl/4r3/2-U))
O<cP<r 0

T 2=f1 / 2_ L r 1- w + CJe (Tx t (T2=f1/ 2+ T 1=f1/2r 1-u + T1/4=f1/4r3/2-U)) .
1 w O<cP<r

Therefore

L J±,h(V -l,x,c + 1,w -1)

tk<T eh1Tth

On the other hand

J_-I,z (~2~"~ 10' o<~<r r d.r"-
w

)

+ (Je (Tx t Xli (T2=f1 / 2 + T1=f1/2XI-u + T1/4=f1/4x3/2-U) )

J (T2
TI/2 in' L r"-w dr)

li-I ,oe 0 O<cP<r

+ Oe (Txt Xli (T2"TI/2 +T1=fl/2Xl-u +TI/4"TI/4x3/2-U) ) .

L (1- w)J±,h(V,X,C,w) = (1- w)J 1 t"+1 L R±,k(S +w) ds
tlc<T cl17rth 1I-1,:l' (c) s( S + 1) tk<T cll1rth

(1 - w)J (10' L L d- 2WA±,k(;j"W)dr)
lI,oe 0 tlc <T 0 <cP $.r eh1Tth

J (T2TI/21o' L r"-w dr) + Oe (Tx t Xli (T2"T1
/

2 +T1"Tl/2Xl-u +Tl/4"Tl/4X3/2-U)) .
1I-1,oe 0 O<cP<r

This eompletes the proof of the lemma.
When using the functional equation we obtain for l- u - i < d < -u

where
D+,h (n, z) = Cll,lt( z )ei,h(n, 1 - z) + C 12,h(z )ej,h (-n, 1 - z)

D_,k(n, z) = C 21 ,It(z)ei,h(n, 1 - z) + C 22,h(z)ej,h( -n, 1 - z)

9
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with Cij,h( S) the entries of the transformation Inatrix C k(s).
From lemma 3.1 we further obtain that

1
.+v

n'+W-1D±,k(n,s+w) ( ~ ( )ds
(d) S S + 1 ... S + V

// Ql-2d-2u v+d 2-4d-4u (ej'k(n, 1 - d - u) + Qk"lej,k( -n, 1 - d - u))
~ Je x v Id •n - -u

Hence for c > 0

J±,k(V, x, d, w)

For this we used the fact that we ean replace 1 - d - w in ej,k(±n,.) by 1 + c, without
making a considerable error.

Analogous considerations lead to

Now for the '-' ease we ean complete the proof of the theorem on ehoosing z = Q~,

u = 1/2, v = 2, N = 1/2 and d = -1/2 - c. Froln our central identity (6) we thus
obtain

hereby using proposition 5.2.
Unfortunately the '+'-case is more involved, since the O-term in proposition 5.1

is worse in this ease. The problem is that we cannot choose x = Q~ then. Henee we
proceed differently. Fix w = 1/2 +iv.

We split up the surn

into

L + L
t.t<lvl/2 Ivl/2~t.t<T

The first surn is easily estimated using the functional equation and Stirlings formula
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In [7] we showed that

wmch yields
R~,k(1./2 + iv) <t: thl!R~,k(1!2 + iv)]

since R*- k(l /2 + iv) = [1:"_ k(l /2 - iv)., ,
Using the above established mean value estimate for R~ k we therefore find by partial,

summation

For estimating the sum with 2tk < v we return to equations (7) and (8). We move the
integral in the surn over n to the line u = 1 (resp. to u = 2 for Jk (v-l, x, d+ 1, w -1)).
We thereby pass a pole in (7) at s = 0 giving as residue

From Stirlings {ormula and proposition 4.1 one discovers that

There is a pole of Dk(n, z) at z = 1. It is a first order pole since as we have
already shown Izczy,k(z)l has period 1 and has a simple ·pole at z = O. This gives for
J+,k(V, x, d, w) the contribution

x 1 - w +v

(1- w)(2 - w) ... (1 + v _ w) ResZ=l
Dk(n, z)

at .9 = 1 - wand for Jk(v - 1, x, d +1, w - 1) the contibution

at .9 = 2 - w. So it contributes 0 tor Jk(v - 1, x, d + 1, w - 1) + (w - l)Jk (v, X, d, w).
Now for the integral in (7) we obtain for E: > 0

The proof ean now be eompleted on ehoosing z = Q~/2, N = Qk by the same consider­
ations as inj the '-' ease.
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