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1 Introduction

Let {¢;} denote an orthonormal basis of L?-eigenfunctions of the Laplacian on

PSL(2,Z)\H and R (s) the corresponding Rankin-Selberg zeta function. In [1] Iwaniec
stated a "mean Lindel6f” conjecture for these zeta functions which was recently proven
by Luo and Sarnak in [3] if ¢>l.is assumed a Hecke eigenform. Indeed they consider the
second symmetric power L—function to which they can relate the Rankin—Selberg zeta
function because of the multiplicative properties of the Fourier coeflicients of a Hecke
eigenform. Also they use bounds of Iwaniec and Hoffstein—Lockhart for the first Fourier
coefficient as well as the large sieve inequality due to Deshoulliers and Iwaniec.

In the present paper we want to give a proof for Iwaniec’s conjecture in the half-
integral case, see the theorem below. This proof carries over to the zero weight case.
It differs from that given by Luo and Sarnak in that it does not need multiplicative
properties of the Fourier coeflicients. We do not consider the symmetric square L-
function, also no bounds for the first Fourier coeflicients are needed. Instead of a large
sieve inequality we utilize a spectral mean square theorem which we proved in [6]. For
the weight zero case such a theorem was proved by Kuznecov [2].

A difficulty arising for nonvanishing weight is the fact that one has to treat two
Rankin—-Selberg zeta functions, corresponding to the Fourier coefficients at the nonneg-
ative and negative indices respectively. In [4] we have given an analytic continuation
for both zeta functions together with a functional equation. In the present paper we
give a more elaborate version, see lemma 3.1, of the factors occuring in the functional
equation. This we need for the proof of the theorem.

We do this elaboration for arbitrary real weight since there is no need to restrict to
half integral weight here.

2 Definitions

Let Z be a unitary m-dimensional multipliersystem of weight r for I' := SL(2,Z) and

fi, ceny f; be an orthonormal set of eigenvectors of =({ (1) ' i } with eigenvalues €2,
0<a;<1,7=1,...,m. A real analytic automorphic form for I' with respect to Zis a



function F(z) on the upper halfplane H = {z € C|{Im(z) > 0} with values in C™ which
satisfies
i) F(Mz) =E(M)erostcstd p(z), M = ( Z" Z ) er
i) —A.F = AF,
where A, = y? (% + %) — i'ry% is the so-called Laplace-Beltrami operator,

iii) F(z) = O(y°) for y — oo with some constant ¢ > 0.

Automorphic forms as just defined are eigenfunctions of an elliptic differential oper-
ator and hence are real analytic functions. In the sequel we shall especially be interested
in the subspace of cusp forms, i.e. forms, that are of exponential decay at infinity. There
is the usual Hilbert space L*(I'\'H,r,Z) with the scalar product

= dzdy
(F.6)= [ F(:)G(:)7
where Dr is a fundamental domain for I'. Let L3(I'\'H,r,Z) denote the corresponding
subspace of cusp forms and let {u,} be an orthonormal basis of this space.
For simplicity we consider only cusp forms with eigenvalue > 1/4.
It is then convenient to write the eigenvalue of u, in the form

11
)\k = (E —|-Ztk)(§ — 1tk)

)

with ;. > 0. Since
{11
u(z +1) = ﬂ(( 01 ))u,,(z)

we can expand u, in a Fourier series
m
w(z) = 3 i(2)f;,
=1

with ‘
Y(2) = > Pi k(M) Wegnn)z it (470 |y) €™,

n = ajmeodl,
n#(0
The Rankin-Selberg zeta funclions belonging to u, are given by the Dirichlet series

m 2
PirlT
Rep(s)y=3_ X Il_;[(%‘
=1 p= ajmod]l,
+n >0
In [4] we showed, that it is sufficient to restrict to r €[—1,1), since all possible Rankin-

Selberg zeta functions already occur for these weights. We introduce the the Mellin
transform

My it(s) = /000 Wf,“(y)y'_zdy, x real, Re(s) > |2Re(t)],

where W, is the exponentially decreasing Whittakerfunction. We write for short
M x(s) instead of My, /3. (3).



3 Analytic properties of the Rankin—Selberg Zeta
functions

In [4] we proved several analytic properties of the Rankin—Selberg zeta functions which
we are going to state in this section. In the sequel always write s = ¢ + ¢7. Then we
have shown in [4]

Proposition 3.1 i) The abscissas of convergence of Ry r(s) are 1. Moreover we can
continue R, = ((2s)Ry(s) as meromorphic functions over the whole complez
plane with the only pole at s = 1. Denote the residues at s =1 by by . Then

_ 3(M:F,k(2)2|27'M:F,k(1)
(1 + 20t )T(1 ~ 2ity)

+.k

1) We write
R} (3))
R;(s) = Tk
x(3) (R_‘k(s)
and have a functional equation
Ri(s) = Cu(s)R}(1 — s)

with

B 445 D(1 — 5)T(2s — 1) sc_yi(8) sc__i(s)
Cils) = I2(s)(s — 2)T(s + 2it)L(s — 2ity) ( scipn(s) scy-i(s) ) ’

where
Caye(8) = Mzp(s + 1)Myu(l = ) + 8(z,y)(s* + 4 Map(s)Myp(—s) (1)
and §(z,y) =1 if z =y and —1 else.

Concerning the Mellin transform M, ;(s) we remark that for weight zero this is a I'-
factor which it fails to be for generic weight. Nevertheless we could prove in [4] the
following recurrence relation

(s 4+ DM ie(s +2) ~ 26(28 + V)M a(s + 1) = s(s® + 42 )M (). (2)

From this follows, that M, ;(s) is a meromorphic function with simple poles at most
at s =0,-1,... and s = +2:¢,~1 + 22¢,....
A growth estimate for C, was given in [5]. We have uniformlyin (0 <)§ <o <1-§

1) Hr<1+41,

. _ - v 1 14¢71
Cu(xo +17) € 872 (14 |7))"F7 (1 + )17 (1-|-t,, ( +1" )



i) if |7 > L+t

cusovin = ()

] ((1 + J\/e ) ( 1+ 1) 18*'(“1)
O ((1+tel) o ((1+4p).
(( + te)e ) (1+ m)
We are now able to give the explicit form of the transformation matrix Cy(s).
Lemma 3.1
7°b3 4 sin 27s

18sin® wssin w(s — ity ) sin w(s + 2ity)’

Sciﬂ:.k(s) = —

%b_l_.kb_‘k — 8w coswr + 8w cos 2rr(s F %)
sinwssin w(s — 2ty ) sin w(s + 2ity)

SC:[:;J,(S) =
Proof. We put
Ty r(s) = scezx(8)sin(m(s — 2ity)) sin(m(s + 2ity)) sin*(7s).

It follows immediately from the recurrence relation that c.,«(s) = cyze(—3). Further
By equation (2) we obtain

SCayr(s) = sMap(l + s)Mys(l — s) + 8(z,y)Mai(s)
(s = 1)Myp(2 — s} —yr(2s — )My k(1 — 3)). (3)

Replace s by 1 — s. This yields

(1 —8)eayu(l —38) = (1 —8)Myi(2 — s)Mi(s) + 8(z,y)Man(1 — )
((=8)Myk(1 + s) + yr(2s — 1)M,4(5))
= —8(z,y)sMop(l — s)Myp(L+ 5) ~ (s = 1)Mz k(2 — )My, ()
+yr(2s — 1)o(z, y) My k(1 — )M, 1(s)
= —§(z,y)sCyz(8)

since y&(z,y) = z. Especially ¢, _4(1/2) = —c_4£(1/2) and
(8 = Deayr(s — 1)) = 8z, y)sczyr(s).

Notice further that sc.,i(s) has simple poles at s = 0 and s = +2it,. From these
properties together with the growth estimate we find that T4 x(s) is an entire function
with Ty k(s + 1) = Thx(s) and T4 x(s) <k 72e*". Therefore T4 &(s) is a trigonometric
polynomial

T:I:.k( ) _ a:bleZﬂa + ao + a::ll: 21ru

4



Since Ty x(0) = 0 we find af = 0. Further
]‘i_rg sfersn(s) = lir% 83 (8? + MM ()M 1 (—5)
B («1‘(1 + 2i,)D(1 - 2itk)bi,,,)2

12t

From this we obtain, since I'(1 + 2)I'(1 — z) = 7z/sin 7z

T 562
lim %.k(s) _ Tk
s—0 sinTs 9
and thus 5y
+ LT0L k
a_, = 1T.
Now put

Py 1(s) = scagi(s)sin(m(s — 24ty )) sin(w(s + 2itx)) sin(ms).
Then with the arguments as above
Py i(s) = bE e ™ + b 4 bF .

Since Pya(s) = Pri(—3) we obtain bt = by, bf = b7, by = b} := bo.
Now the asymptotic behaviour for ¥ — Zoo which can be obtained via Stirlings

formula
h! 271" s(logs— -
1(3):\/.-;808 D(1+0(s)), largs| <,
wnd T(s — L+ 5 —it)(s — L + 5 +it)
S— -4+ K—1 s§— -+ kK41t 1
Musls) = =05 (1+0(1741))

valid for 0 < o <1000 and |r| > 1 4+ ¢ which we showed in [5] gives
bt, = 2me™, b} = dwe”"

hence ”
Py(s) = bp + 87 cos 2n(s F 5)

Observe that

lim stcipa(s) = —lims2(s? + 48 Maa(6) My a(—9)
_ (wI‘(l + 2it,)T(1 — 2itk))2 bysb_s.
12t T
This gives
by + 8w cosmr = il}l‘)kb—_'k
and the proof of the lemma is complete. O

The last thing we need is a growth estimate for the Rankin Selberg zeta function.
This is given as



Proposition 3.2
dals) L [T 4 1) TS (1 A+ 6),
Jor 0 < o <1 where

Sin(l +€) := max (R:i: e(L+€),(1+4)F Rep(1 + s))

The implied constants do not depend on k.

4 The Theta case
1 V) of

Now we leave the general case and focus our attention to the space L*(I'\H, 3,
real analytic automorphic forms of half integral weight with values in C*, where V is
the multiplier system coming from the holomorphic @-function

0(z) = (92(2), F3(z), Va(2))"

with the three classical theta series

)= Y e () s | 9z = e 9,(2) = Pa(z + 1)

neZ neZ

It is at once seen, that

(o1 )= e%%)

= o o
o - O

Put a; = 0,7 = 3,03 = , then V(U) has eigenvalues e(ay),e(az),e(as), the corre-
sponding orthonorma.l et of eigenvectors is given by
FIEEN o I N I
1= 7= ’ 2 = T = ] 3 =
V2 V2 0
For the corresponding Rankin—Selberg zeta functions we want to prove the following

mean value estimate
Theorem 4.1

B (L +i
M <, (vT)3/2+‘,

2

faT chnt,

* 1 :
Z Rm,k(i + 1v) <, ples/zHe
e chmi,

Remark. Of course one would suppose that for R, one should also obtain in v-
aspect v'*¢ but unfortunately our results for R, are (relatively) worse than those for R_.
Indeed a better result can be obtained when using a middling over n in the asymptotic
formula of proposition 5.1 below. But since our main interest was in the k-aspect we
didn’t go further into this.



5 Proof of theorem

Instead of a large sieve inequality a la Iwaniec and Deshoulliers, which is used by Luo
and Sarnak in [3] we shall use the following two propositions. For a proof, see [6] and

7).

Proposition 5.1 For T > 2 and j =1,2,3

1
) lpes(ERDI? _ T2 (T F5+e|n| 14 4 73Tk n|5+°)
0<t<T chmt, 4|n| ¢ ’

valid for any € > 0.

Proposition 5.2 Let T > 2, v > —3/2. Then for any smalle, § > 0 we have

2

0, <T

R:I: k(l + 5) T2=F§+‘7+c
et S A . ——
chmi,, R < 62 (%)

Throughout this section we write w = u + tv. Introduce for v € N and z > 0 the
notation bf [, _f(t) := f5 5. J8 f(t)dtdt, ... dt,_y (it is understood that Ji.=1)
and for 0 < « < 1 and ¢ € R the Perron Integral

1
Ji,,.(u,z,c,w)z—,/ [ YRy, (stw)ds =

1 I = R (s+w)ds
2mi Sy (s +1)... (s +v) ¥

2m

By Perrons formula we obtain for any ¢+ u > 1 and z > 0 such, that z/d # a;modl
for any positive integer d < z

Ji,k(u,z,c,w)zf By ((t,w)

where By k() = Yocace H(d)d™V Ax k(2z/d,w), with b(d) =1, if d is a square and 0 else

and

App(z,w) = Z > lpir(n)Pnt .
=1 n = +tajmodl,
0<n<z

To see this one should observe, that for & > 1 we can write

3
ejk(m, )
Rius)=3 3. ==
=1 neN,,
n:l:aj>0

2\ —4 2 :
with e;x(n,8) = T}, (1 + aj%) |pj,k(%)| (3 + a;j). Remark, that ejr(n,s)n™* is
also meaningfull for n = 0 and gives |p;(0)%¢(2s)(e;)' .



From proposition 3.2 we find that Ji (v, z,d,w) is defined for d > 1/2 — v — v/4.
Our central identity is

Jiplv - 1lz,c+ 1w —1)+ (w—1)J1x(v,z,c,w)

v

= —Ji,k(V — l,as,d + 1,w — 1) - (w - 1)Ji.k(y7wrd:w) + (w - 1)R:l:,k(w)§i—1 (6)

for some 0 > d > 1/2 — u — v/4 which follows simply by the Cauchy residue theorem.
Observe that

Jer(v —1,z,c+1,w—1) + (w—1)Jex(v,z,c,w)

1 ms+v—1 . d
N %./(cﬂ) s(s+1)...(3+V—1)Ri'k(s+w—1) *
w—1 Tt
» d
+ 2m -[(c) 3(3+1)...(s—|—u)Ri'k(s+w) s

ms+y

1
%./;c)s(s-l—l)...(s-{—v)

(s 4 (w = 1)) R (s + w)ds

and hence there is no pole coming from s = 1 — w corresponding to the pole at z = 1 of

R;:,k(z ).
We prove the following

Lemma 5.1 ForT > 2 and 0 <u <1 we have

2

e <T

&, (Tz)=z" (Tz:Fl/z T L2V R T1/4;1/433;2_u) ‘

Jiw(v—1l,z,c+ L,w—1)+ (w— 1)Jir(v,z,c,w)
chri,

Proof. Let Z(3) = Y.,50a{n)n™* denote a Dirichlet series convergent for & > 1 and
S(t,w) its partial sums

Stw)=Y an)n™, 0<u <1,

n<t

where as usual the summand with » = ¢ has to be multiplied by % To begin with, one
easily computes that

[ Zaiu-1) = 2] ZTaerwpe- [ Fa(s s w)a
— S w — = Z —_— ) wlds — 8 w)as
(c+1) 8 (c) 8 (c) s(s +1)

= z8(z,w) — /1; S(t,w)dt = /0 td.S(¢t,w).
If we use this with Z(s) = R} ;(s) we obtain the Stieltjes integral

Jir(v—1,z,e+1,w—-1) t
> h AL

ty<T



with
Bi,k(r, w)

chni,

Br(r,w) = Z

ty<T

From proposition 5.1 we discover that

BT( Z Z d—zwA:tk(.p: )

tx<T 0<P<r chr,

= TF/2 Z Z nv 4+ 0, ((T:c)‘ (T1:F1/2T1-u+T1/’4:Fl/47_3/2—-u))
0<d3<r n<r/d?

—  T2¥F1/2 Z j £dE + O, ((Tz) (T2=Fl/2_i_T1:F1/2 J—u_l_T1/4q:1/4 3/2— u))

0<d?<r
T2¢1/2
— - Z v + 0o, ((Tz)e (TZZFI/Z T TIF/2,1-u + T1/4¢1/4T3/2—u)) )
W ocdper
Therefore

3 Jipv - 1L,ze+1L,w—1) / T?F1/2 gt T
chwi, v-1z \ 1 —w 0 oedcr

+ O. ((Tz)cmu (T22F1/2 + TVFY2p1-u T1/4¢1/4m3/2_u))

- /. (Tm/? j ’> 1wdr)

0<d?<r

+ O, ((T:c)‘a:" (Tzq:l/2 4 IF 21 T1/4$1/“z3/2*")) .

tp<T

On the other hand

. a1 R*
Z (1- w)Ji,k(VﬁE,C,w (1 - w) f j‘ t :t,k('s + w)d.s
v—1,a

ta<T chmt, () 8(s +1) 7 (T chnt,
B / f oy gwderlEn),
ty<T o<di<r C].l']’l'tl;¢
= / . (T2=F1/2/ Z 1- ‘“dr) + 0, ((Tm)c v (T2$1/2_§_T1;1/2 1—u+T1/4;1/4 3/2— u)) .
e 0<d3<r
This completes the proof of the lemma. .

When using the functional equation we obtain for } —u — % <d < —u

zl-i-v

G )™

1 stw—
Jr (v, z,d,w) Zz%n_'/(ld)n*' 'Dyr(n, s +w)

i=1n>0

where

Dy i(n,z) = Crp(2)ejn(n,1 — z) + Crap(z)eju{—m,1 — 2)
D_x(n,z) = Cyp(2)eju(n,1 — z) + Co2p(z)ejn(—mn,1 — 2)

9



with C;;(s) the entries of the transformation matrix Cy(s).
From lemma 3.1 we further obtain that

za-{—u
ds
s(s+1)...(s+v)
< Qi—2d—2uzv+dv2—4d—4u (e,-,;,(n, 1—-d~ u) + Qx:l e,-,k(——n, 1—d— "")) )

/(;) n'“”_lDi,k(n, s+ w)

nlmd—u

Hence fore > 0

zc+v
s(s+1)...(s+v)
+ 0, (Ql—2d—2umu+dv2—4d—4uNu+d+:S+lk(1 +- E)) .

3
1
Jip(vyz,dyw) = > N Eg/(d)n""‘”'lDi,k(n,s-l—w) ds (7)

J=10<n<N

For this we used the fact that we can replace 1 —d — w in e;,(+n,.) by 1 + ¢, without
making a considerable error.
Analogous considerations lead to

Jik(u—l z,d+1,w—1) (8)
Z > . f T Dy s(n,s +w — 1) 2 ds
i1 0cmen 2T /(@) e s(s+1)...(s+v—1)

+ Oc (Q}c —2d— 2u3v+dv2—4d—4uNu+d+e S+,k(1 + E)) )

Now for the ’-’ case we can complete the proof of the theorem on choosing z = Q%,
v=1/2,v =2, N =1/2 and d = —1/2 — . From our central identity (6) we thus

obtain

S_k(l+¢)

R:,k(w) 5/2+e 24-4e
E (w-D— < T to Z chmiy

chri, T

&, yitiersiate

hereby using proposition 5.2.

Unfortunately the ’4’-case is more involved, since the O—-term in proposition 5.1
is worse in this case. The problem is that we cannot choose z = Q? then. Hence we
proceed differently. Fix w = 1/2 + iv.

We split up the sum

Z(w—l +k(w)

et chri,

PN DY

te<lol/z  ol/2<ti<T

into

The first sum is easily estimated using the functional equation and Stirlings formula

by ib_
R;(1/2 +14v) < b22, (ez’""R"_ (172 +iv) + (sh‘/r'u-l— +1: ") R"_k(l/2—iv)).
. — .

10



In [7] we showed that
buk = kstf?e™ (1+ O(5))
which yields
(172 +iv) <R L (1/2 + iv))|

since B ,(1/2 +1v) = R'_‘k(l/2 —1v).
Using the above established mean value estimate for R , we therefore find by partial
summation

E R-'hk(w) <<e v1+4¢T3/2+e+ E Ri,k(w)
e <T k 2 <v Chﬂ-t"

For estimating the sum with 2¢, < v we return to equations (7) and (8). We move the
integral in the sum over n to the line o = 1 (resp. to ¢ = 2 for Jy(v—1,z,d+1,w —1)).
We thereby pass a pole in (7) at s = 0 giving as residue

zl/

;D+,k(n,w)n‘"_1.

From Stirlings formula and proposition 4.1 one discovers that

1
<<v3,/2N1/2 +N.

3 ' Dy p(n,w)n®-

]
2ty 2w vichmi,

There is a pole of Di(n,z) at = = 1. It is a first order pole since as we have
already shown |zegy,x(2)| has period 1 and has a simple pole at z = 0. This gives for
Jix(vyz,d,w) the contribution

;cl—w+u

1-w)2-—w)...(1+v—w)

Res,=1 Di(n, 2)

at s =1 — w and for Jy(v — 1,z,d + 1,w — 1) the contibution
zl—w-l—u

2-—w)...14+v—w)

Res,=1 Di(n, 2)

at s =2 —w. So it contributes 0 for J,(v — 1,z,d + 1,w — 1) + (w — 1)Ji(v, 2, d, w).
Now for the integral in (7) we obtain for € > 0

z.'+l-l

s(s+1)...(s+v)

zy-l-l o
fm”’“"Di.k(n,s +w) ds € =N Q 0778, 4(1 +e)

zvt! 3/2+e -3
<. TN Qk S_f_'k(l +€).

The proof can now be completed on choosing z = 2/2, N = @ by the same consider-

ations as in) the ’-’ case.

11
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