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Automorphism of Enriques surfaces which act

trivially on the cohomology groups

*
By Shigeru MUKAI and Yukihiko NAMIKAWA )

Let S be a smooth surface over the complex number field

C. An automorphism ¢® of S 1is cohomologically trivial (resp.

numerically trivial) if the induced automorphism ¢* of the

cohomology ring H*(S,Z)‘(resp. H*(S,Q)) is trivial. We denote
by AO(S) (resp. A(S)) the quotient of the group of cohomol-
ogically (resp. numerically) trivial automorphisms of S by
its connected component. It is known that A(S) is a finite
group if S is Kidhler, (4], [3]. A(S) is even trivial, for
example, in the case of rational surfaces, abelian surfaces and
K3 surfaces, [9], [5]. In this article, we shall study A(S)
for an Enriques surface S. 1In this case, it is no more true

that AO(S) is always trivial. So far two examples are known.

Example 1. (Liebermann, cf. [9]) Let A be the product

of two elliptic curves - El and Ez and a a 2-torsion point of

A not lying on El nor Ez. Let or (resp. °K) be the invo-

lution of the Kummer surface g of A induced by the endomor-
phism (-131, lEz
SRk is a fixed point free involution of % and the quotient

) (resp. the translation by a). Then ¢ =

*) Both authors were partially supported by SFB 40 Theo-
retische Mathematik at Bonn.



[ g/e is an Enriques surface. The involution o of S

induced by o is cohomologically trivial (see Proposition

R
4.8 for the proof).

Example 2. (Barth-Peters [l]) Let E be an elliptic

curve of bidegree (2.2) in IPl x Pl which passes through
the 4 points (%1, tl1). There is the unique involution ¢ =

1 1l

(ml, mz) of P~ x P such that @(E) = E and ¢(zl, =1)

= (Fl, #1l). Let § be the minimal resolution of the double

cover of :Pl XIPI whose branch locus is the union of E

and 4 lines X = *1 and
Y=1
Y = 1. We denote by Or
the involution of § induced E
by the covering involution.
Y=-]-
There are two involutions of &

X=-1 X=1
which covers ¢. One of them, which we denote by ¢, has no

fixed points and the quotient S = g/e is an Enriques surface.
S has 10 smooth rational curves, 8 of which come from 4 Dy~
singularities of the double cover and 2 of which come from

the 4 lines in the branch locus. S has two elliptic fibrat-
ion induced by two Pl-bundle structures of 1Pl x ]Pl. As we
Wwill see in Proposition 4.5, these 10 rational curves and the
reduced parts of the multiple fibres of the two elliptic fibrat-
ions generate the cohomology group HZ(S, Z). It will be
clear that the involution g of S induced by o fixes

R
all these curves. Hence ¢ is a cohomologically trivial

involution.



Once Ueno claimed that A(S) 1is always trivial [1l] but
his proof contained a mistake, which was pointed out by Peters.
The first example of a numerically trivial involution was
constructed by Liebermann. We note that our Example 2 is

described in a slightly different way from (1].

Main Theorem 0.1. AO(S) is trivial or a group of order
2 for every Enriques surface S. Moreover, every pairof an
Enriques surface S and a cohomologically trivial involution
0 of S 1is obtained in the way of Example 1 or Example 2.

Both families of Enriques surfaces in Example 1 and
Example 2 form two disjoint 3 dimensional subvarieties in the
period space of Enriques surfaces.

For almost all Enriques surfaces S, A(S) coincides with
AO(S) but A(S) ts a cyclic grouplof order 4 for special

Enriques surfaces S in Example 2.

Example 3. Let E and ¢ = (wl,wz) be as in Example 2.
E 1is defined by a ¢-invariant bihomogeneous polynomial P of
bidegree (2,2). Assume that P is anti-invariant by ®,, Or
equivalently by cpz'.-Then there is an automorphism o of §

R
such that pg = Op- The automorphism p of S induced by
Pr has order 4. Moreover, p is numerically trivial. For
Pr fixes 10 rational curves on S described in Example 2 and
the classes of these 10 rational curves generate HZ(S,Q) .

But p is not cohomologically trivial: Let f : S -+ JPl be

an elliptic fibration induced by a IPl-bundle structure of



El x Pl. f has two multiple fibres and the reduced parts

of them are not cohomologous. It is easy to see that p
interchange the two multiple fibres. Hence o 1is not cohomol-

ogically trivial.
Our second result is the following:

Theorem 0.2. A(S) 1is a cyclic group of order 4 generated
by p for every Enriques surface S in Example 3. A(S)

coincides with AO(S) for all other Enriques surfaces S.

Notation. For an Enriques surface S, we denote the
universal covering by =« : ¥ + s and the covering involution
by €. Let €* be the isometry of Hz(g. Z) induced by €.
We denote the (+1) (resp. (-1)) eigenspace of e* by M
(resp. N). Ho(g,nz) is a subspace of N e C and N has
a natural polarized Hodge structure induced by that on Hz(g,ﬂ)
Hence an Enriques surface S determines a point of D/T, D
being a bounded symmetric domain of type IV and dimension 10
and T = O(N) a discrete subgroup, which we call the period
of the Enriques surface 8. For details on this subject we
refer the reader to [6]. In this article, Eg is an even

unimodular negative definite lattice of rank 8. U denotes a

0 1
1 0

denote by L(a) the lattice obtained by multiplying the form

hyperbolic lattice ( ) of rank 2, If L is a lattice, we

with the integer a. For an R-module M, we denote the dual

Homp (M,R) Dby M.



§1. Preliminary

We first prove the following:

Proposition l.1. For every Enriques surface S, the
group A(S) of numerically trivial automorphisms of S is
a cyclic group of finite order.

For the proof we begin with the following two lemmas.

Lemma 1.2. Let T be an automorphism of §. If some

power of T is equal to ¢, then Tt itself is equal to «.

Proof. Since ¢ has no fixed podints, neither does .
Hence the order of 1t divides X(Og) = 2. Therefore Tt |is

an involution and equal to «¢. qg.e.d.

Let A(g) be the group of automorphisms of the K3.surface
' g which act trivially on the sublattice M of Hz(s, Z) and
G the éubgroup of A(g) consisting of automorphisms which
act trivially on both M and Ho(s,Qz). Every automorphism

in A(g) commutes with € and induces a numerically trivial

automorphism of S. Hence we have the exact sequence
(1.3) 1+ <e> » A(S) +~ A(S) - 1.

The following is our first step to the classification of

A(s).
Lemma 1.4. G 1is trivial or a group of order 2.

Proof. For a group H of automorphisms of g, we denote

by SH the orthogonal complement to the lattice of H -



invariants in 32 (’5‘;‘, Z). By definition, S
Hl,l

G is contained in

(g) and orthogonal to M. Hence the rank of §
1,1

G 18 at

-rkM = 10. If Tt belongs to G, then S<T> is a

most h

sublattice of S and hence rank S<T < 10. It follows from

G >

[8] that tz = jd for every T ¢ G. Hence G is a 2 elemen-
tary abelian group. Since rank SG s 10, again by (8], G 1is

at most a group of order 2. g.e.d.

Proof of Proposition 1.1: The quotient A(g)/G is a
subgroup of €* and hence a cyclic group. Therefore A(g)
is an abelian group by Lemma 1.4. If the order A(S) is odd,
then both A(¥) and A(S) are cyclic. If the order of A(S)
;s even, then the order of A(Y) is divisible by 4 and A
is not cyclic by Lemma 1.2. Hence G 1is not trivial and the

exact sequence
1L+G+ A% +A()/6+1

splits. By Lemma 1.2, <e¢> is a direct summand of A ().
Hence by the exact sequence (1.3), A(S) 1is a cyclic group.

g.e.d.

A numerically trivial automorphism of S induces a Hodge
isometry of N, or an automorphism of poclarized Hodge structure
of N. Next we determine when a Hodge isometry of N is
induced by a numerically trivial automorphism of S.

By definition, every T¢ A(g) acts trivially on M.
Hence Tt induces an isometry of N which acts trivially

N

on the descriminant form (Ag,qy) of N. T, is an automorphis

N



of the polarized Hodge structure on N and we have the sequence

N
Hodge str.

Proposition 1.6. The exact sequence (1.5) is exact.

Proof. Let t be an automorphism of the polarized Hodge
structure on N which acts trivially on AN. By [7], there
exists an isometry T of HZ(S,Z) which is identity on M
and equal to t on N. It suffices to show that the isometry
T 1is induced by an automorphism of 3. By virtue of the
Torelli theorem for K3 surfaces it suffices to show the

following:

Claim: T(a) is effective for every class a of smooth

rational curve on S.

Let MT be the lattice of T-invariants of Hz(g, Z) and

NT " the  orthogonal complement of. M Then the difference

T

B=a~-T(e) of a and T(a) belongs to N Since N is

T T
contained in N, e€(B) 1is equal to -8, If B = 0, then there
is nothing to prove. So we may assume that B8 # 0. Since ¢
is an automorphism of S, £ is not effective.

Therefore, -T(a) is not effective. Since (T(a)z) = (uz) =

-2, T(a) is effective by the Riemann Roch theorem.

q.e.d.



§2. Classification of the numerically trivial involutions.

In this section, we shall prove that the moduli of Enriques
surfaces with numerically trivial involutions has exactly two
components of dimension 3.

For an involution ¢ of an Enriques surface S, there are
two involutions of g which are liftings of ¢ (Lemma 1.2).
One acts trivially on Ho(ﬂg) and another not, which we denote

K
Z) with respect to the action of ¢

by © and GR' respectively. The (+1) eigenspace of Bz (g,

K (resp. aR) is denoted

by * M, (resp. Mj) and (-1) eigenspace by N (resp. N_).
NK (resp. NR) is the orthogonal complement to “'K (resp. MR) int!
K3 lattice Hz (g, Z) and vice versa. If 0 is numerically

"
trivial, then HZ(S, Z) contains M 1L N, L N as a sublattice

K R

of finite index and the involutions ¢, °K and °R act on

it as follows:

M NK NR
€ 1l -1 -1
Ox 1 -1 1
o 1 1l -1

Ho (Qg) is a subspace of Np o C. N is a primitive sublattice

of N = M and orthogonal to the period.

Lemma 2.1. The lattice Ng is isomorphic to EB(Z).

Proof. Ne is the orthogonal complement S <g.> t° the
K

lattice of cx-invariants in Hz(g, Z). o is an involution

K



of g and acts trivially on HO(QZ). By (8], the moduli of
pairs of a K3 surface X and such an involution 1t of X
is connected. Hence it suffices to show that S<T> = E8(2)
for an example of such an involution <t. For that purpose,

we use the K3 surf;ce constructed in Shioda-Inose {10]. They
constructed an elliptic K3 surface £ : X + Iﬁ' with two sin-
gular fibres of type II*. £ has an involution <t and =
interchénges the two singular fibres. Tt acts trivially on
Ho(ﬂz) and the resolution of the quotient X/t 1is the Kummer
surface of the product of two elliptic'curves. Hz(x; Z)

contains a sublattice K isomorphic to Eg ¢ E coming from

8
the two singular fibres of type II*. <t is trivial on the
orthogonal complement to K in Hz(x, Z). Hence S<.r> is
isomorphic to EB(Z). q.e.d.

Conversely, we have the following:

Proposition 2.2. If N0 is a primitive sublattice of

N isomorphic to E8(2) and orthogonal to HO(Qé), then there
is a numerically trivial involution ¢ such that NK with
respect to ¢ coincides with NO. In particular, an Enriques

surface S has a numerically trivial involution if and only
if the lattice N contains Ea(Z) as a primitive sublattice

orthogonal to Ho(Qz).
S

Proof. Since N, is a 2-elementary lattice, there is
an isometry t of N which is -1 on No and 1 on the ortho-

gonal complement to No in N. It will be obvious that ¢t



is an isomorphism of the Hodge structure on N and acts triv-
ially on the discriminant form of N. Therefore, our prop-

osition follows from Proposition 1l.6. q.e.d.

. i
Next we study the lattice NR = MR

AN
. P v
Lemma 2.3. The discriminant group AMR = MR/MR of MR

is a 2-elementary abelian group and the discriminant form

qMR is even, i.e., .qMR(a) is an integer for every a ¢ AMR

Proof. The lattice M‘R contains M L NK as a sublattice

of finite index. Hence it suffices to prove our assertion for
M and Ng- The lattice M is isomorphic to LS(Z) via the
map w*, where I‘S is the torsion free part of HZ(S, z).

The discriminant group of M is canonically isomorphic to
1:.3/21.s and the discriminant form is equivalent to the quadratic

form gq, gq(a) = %(az) mod 2, on LS/ZI.S. Since L is an even

S
lattice, the quadratic form gq is even. In the same way, we

have, by Lemma 2.1, that the discriminant group of NK is

2-elementary and that the discriminant form is even.

g.e.d.

The signatures of Hz (g, Z), M and NK are equal to (3,19

(1,9) and (0,8), respectively. Hence the signature of N, is equal

R
to (2,2). Since NR is the orthogonal complement to MR’

we have by Lemma 2.3, that the discriminant group of N is

2-elementary and the discriminant form is even.



Lemma 2.4. The discriminant group AN of NR is
R
isomorphic to (Z/Z".";..')"2 or (Z/ZZ)“.
Proof. Let n be the rank of AN over tz. Since
R

Np has rank 4, n is at most 4. Since M and Ng have

different discriminant groups, Mo is not unimodular. Hence
neither is NR. Therefore, we have n # 0. Since A.NR has
an even quadratic form, n must be even. Hence we have our

lemma. g.e.d.

These data for NR are sufficient to determine NR as

a lattice. 1In fact, by [7] we have

Proposition 2.5. The lattice NR is isomorphic to

U 1 U0U(2) or U(2) L U(2).

More generally, the above argument shows that if N con-
tains a lattice T isomorphic to E8(2) as a primitive
sublattice, then the orthogonal complement T' ¢to T in N
is isomorphic to U 1 U(2) or U(2) L U(2). 1In the case
T'= U L U(2), N is isomorphic to the orthogonal sum of T
and T'. 1In the case T' = U(2) 1 U(2). these exist a ¢ A

T
and a' ¢ AT. such that q,r(a) = qT.(a') #0 and N coin-

cides with
T+ T +2Z(a,a') < (T T') o @,

where a (resp. a') is a vector of T ' < T e Q (resp. '

T' © @) which represents the class a (resp. a').

11



Proposition 2.6. Let Tl and T2 be a primitive sub-
lattice of N isomorphic to 28(2). If their orthogonal com-
plements '1‘]'_ and Ti are isomorphic to each other, then there
and T,

exists an isometry of N which maps T 1 onto T,

1
and Té, respectively.

Proof. In the case Ti = Té = U L U(2), our assertion is
. . - ' | |
obvious since N = Tl.LTl x Tz L Tz. In the case Tl = T2 =

' =
U((2) + U(2), take a, € AT. and a; € A so that N Ti +

T!

i i

Ti +Z(ai,a1!.), i=1, 2, as above. Since Ti and ‘1‘]!. are
2-elementary lattices, there exist isometries ¢ : Tl -+ Tz
and o' : Ti - Té and the isometries of the discriminant grou
induced by ¢® and ¢' map ay and ai to a, and ai

respectively, [7]. By [7], the isometry (o@,9') : T, 1. T ~

1 1l
T, L T, can be extended to an isometry ¢ of N. It is

obvious that ¢ satisfies our requirement. g.e.d.

Let P be ghe subset of period domain consisting of the
periods of Enriques surfaces such that N contains 38(2) as
a primitive sublattice orthogonal to Ho(ﬂé). P 1is the dis-
joint union of Py and P2 for which the orthogonal comple-
ments to the Eg(2) in N are isomorphic to U & U(2) and u(2)
L U(2), respectively. It is easy to see that both Py and
P, are closed subsets of dimension 3 of the period domain.

By the proposition we have the following:

Corollary 2.7. Both Pl and P2 are irreducible.
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§3. Classification of the numerically trivial automorphisms

of higher order.

(3.1) In this section we classify the numerically trivial
automorphisms of Enriques surfaces of order greater than 2.
In fact we prove that there exists only one such automorphism

(unique up to deformation, which is of order 4.)

(3.2) Let g be a numerically trivial automorphism of
an Enriques surface S. Denote by 3 a lifting of g to
the automorphism of the covering K3 surface & and by p = §*
the induced isometry on the K3 lattice L = Hz(g, Z). Note
that 3 (hence p) has the same order as g by Lemma (1.2).

A) Automorphism of order 4.

(3.3) Now let us assume that g is of order 4 (hence so
is »p).

Since g2 = h is a numerically trivial involution of S,
it is one of two types in the previous section. Denoting by
g = p2 the induced isometry on the K3 lattice, we observe

that op preserves the tl-eigénspaces M N

or Ng with respect
to o because they—are generated by the eigenvectors corre-
sponding to the eigenvalues 1 or :i with respect to o
respectively. Moreover since ¢ is an involution on Mg, it
acts trivially on the discriminant M;/Mc = N;.'./NO.

From these observations combined with the next wellknown

lemma Proposition (3.5) follows, which is our first step.



Lemma (3.4). The group GL(n, Z)(2) = {M ¢ GL(n, 2Z);

M= ln (mod 2)} contains no element of order 4.
Proof. For M ¢ GL(n, Z) (2) one sees immediately that

2 4

M 21 (mod 4). Hence for M with M =1 its minimal poly-

2

nomial, a factor of x‘ - 1, cannot contain the factor X° + 1.

Proposition (3.5). Under the notations (3.2), (3.3)

N, cannot be 28(2)' nor u(2) + 0(2).

(3.6) Keeping the situation (3.2) and the notation (3.3)
we may now assume moreover that Na = NR = U 1 U(2) on which
P operates as pz = -1,

We write

o] SZel + Zfl

u(2) =Ze2 + Zfz

with <ek,ek> = <fk,f > =0 and <ek,fk> =k for k=1,2.

k
An elementary calculation shows that a matrix A ¢ O(U 1 U(2))

with A = =1 is in the form

a 0 =26 -28)
0 -a =2y ~-2a
a B8 d 0

ly 6 0 -d

/)

with the condition that either i) a + d =0, 8 = y = 0,

a2 - 208 =-1 or ii) a-d =10, a=6 =0, a® - 28y = -1.
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Clearly such matrices are contained in the image of two
embeddings of Iy = ((2, 5) ¢ sL(2,2): ¢' 20 mod 2)} into
O(U + U(2)) defined as

a 0 =2b o)

a b 0 d 0 2¢c
[ 3 ’

2c 4 -C 0 d 0
0 b 0 a |

(a 0 o0 -2b)

a b] 0 4 2¢ O
| e .

2c 4 0 b a 0

These two embeddings are conjugate to each other by the element

1 0o o0 o]
0o 1 o0 0
0 0 o0 1
o o 1 o

Therefore in order to classify A as above it suffices to classi
fy the elements of order 4 in I'o. (Recall that N = Ng + No
in this case, hence any isometry in O(U t U(2)) extends to

that in O(N).) But the latter is, up toconjugate and :l,

.

unique and written as



as one sees easily from the shape of a fundamental domain of

the action of PO on the upper half plane. Hence we may assum

that one of toJN is in the form
R
1 0 -2 o]
6 -1 0 =2
(*)A = o)
L

Oour conclusion in A) is

Proposition (3.7). Let p be the isometry induced from
a numerically trivial Enriques automorphism of order 4 (3.2).
Then up to Enrique involution (i.e. replacing ¢ by pé* Cif
necessary), pIMR = id and p|NR = tA;, as above with N =
U 1L U0(2).

For the proof we observe the following:

Lemma (3.8). Let p be an isometry of L which preserve

the subspaces M, NK' N, (hence also MR = N; = the primitive

R
hull of M . NK). If p acts trivially on M'/M, then it acts

s s v A\
trivially also on NK/NK and Mﬁ/MR.

Proof. By [7] Proposition 1.15.1 the mutually orthogonal

primitive embeddings of M and N into MR are determined

K
by an exact sequence



v v V.
o - NK/NK + M /M +> MR/MR + 0
u a u

4 5

m(2) w(2)  a(2)
(u(2) = U(Z)Y/U(Z)) which preserves the discriminant forms.
By the assumption the action of ¢ is compatible with this

exact sequence, from which the lemma follows tiivially.

(3.9) Proof of (3.7). We know already that = *A

ol
N 0

and the invariant subspace Mp of p 1is subject to the

inclusions

MCMpf:MR.
What we should prove is hence that either M = Mp or Mp = Mp,
or equivalently that plN. = t]1 (since p2

»
K R
By the above Lemma (3.8) p acts trivially on N;/NK. On

= 1).

the other hand, as we have seen in (2. 1), plN € O(Ng) = O(Eg)
K

and NI:/NK = (ZZ/ZZ)B. Hence p/NK is contained in Ker(O(Ea)

> GL(8,!2)), which is known to be (:1} (see [2], p.228 for

example) . . g.e.d.

(3.10) The pefiods of Enriques surfaces having the
automorphism as above is easy to discribe. We have a (unique)
primitive embedding of No into the K3 lattice L (and in N).
Then the period w should be in the ti-eigenspaces Nle(ti)
which have dimension 2.

If thespace Cw ® Cw is not rational (i.e. not defined over
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@), then the transcendental lattice Tg of E is Np- In this
case T§ (in N) = E8(2) does not contain -2 vectors, hence all
such vectors come from the periods of Enriques surfaces.

If the space Cw ® €u is rational, then Tg § Ny and
rank Tg = 2. The vector w is realized as the period of an
Enriques surface if and only if the orthogonal complement of

Tg in N does not contain a vector of length -2,
B) Automorphism of order 8.
Our goal of this paragraph is to prove

Proposition (3.11). There exists no numerically trivial

automorphism of an Enriques surface of order 8.

(3.12) We shall prove this by contradiction. Suppose
that there exists such an automorphism g. We use the notation
in (3.2).

By the assumption g2 in a numerically trivial automor-
phism of order 4, as (3.7). By the same reason as before in

(3.3) P preserves N

R
Consider B = p|y e O(U L U(2)). We decompose B into
B, B ®
according to the decomposition U o U(2) (3.6).
\B3 By |

By Lemma (3.8) the numerical triviality of o (i.e. p|M

= id) implies that plN = t1 (3.9) and B acts trivially
K

on N;/NR, i.e. 84 21 (mod 2).

Note that p preserves a sequence of subgroups of (U @

U(2)) & @:



1 . 1
E(U ® 0(2)) > Nﬁ(— g e 5U(2)) > NR

where %M =M © (%m for a Z-module M, hence in particular
Z
B, 20 (mod 2).

Moreover BZ = A, by (3.7), hence B2 =1 (mod 2).

- N

Summing up, we have obtained

B, B,
Facts. B = B B (mod 2) 1is in the form
3 4
. =4, 0 01
i) B1 = (0 1) or (1 0) (mod 2),
ii) 52 =0 {(med 2),
. - ,10
i) 34 = (0 l) (mod 2).

Now consider the equality

[
2 Bl+3233 Ble+BZB4
B3Bl+B4B3 3332+B4

in particular

1= B3Bl + B4B3.

Taking the reduction modulo 2, we have

[
(1]

B,B, + B

381 3 (mod 2)

33(Bl+l),

hence Bl+l (mod 2) is invertible, which contradicts to the

S 01
fact that Bl H (o l) or (l 0

The proof of Proposition (3.11) is now complete.

) (mod 2).



Remark (3.13). The group O(U . U(2)) itself contains

elements of order 8 such as

0 1 0 o0
1 0 -2 0
o 1 0 1|
0 0 1 0

hence the use of Lemma (3.8) is inevitable.
C) Automorphism of odd order.

Proposition (3.14). There exists no numerically trivial
automorphism of an Enriques surface of odd order other than the

identity.

Proof. Suppose that there is such an automorphism g.

We keep the notation in (3.2). Consider the restriction Py

of p to N = Eg(2) 1 U(2) 1 U.
First note that it preserves the following inclusions of

subgroups of N_. (cf. (3.12)):

a
Le (2) eu(2) ou) > XE.(2) » U(2)) o U > N
2 (Eg 7 (Eg '
i

v

N

hence it induces isomorphisms of finite groups

51 € GL(N'/N),

- 1
Py € GL(EU/U)

and the characteristic polynomial of is subject to

PN
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a relation

det(tl - pyimod 2 = det(tl - p )det(tl - o).

P2

Since p is the identity on M, it acts trivially on the

discriminant form, namely = 1.

El
On the other hand, using a basis <e,f> of U with
<e,e> = <£,f5> = 0, and «<e,f> = 1, we have GL(%U/U)
GL(2,E,). If Eé has an odd order, it is therefore either
(i é) or (g i). But if Eé = (i é), then pN(e) = ae+bf+x
with a b 1 (mod 2) and x ¢ E8(2) L U(2), which is

impossible because

0 = <e,e> = <pN(e).pN(e)>

= 2ab + <x,x>

=2 (mod 4).
. - 01 -
By the similar reason Py # (l l), hence Py, = 1.

Therefore we have
- 12
det(tl - pN) = (t - 1) (mod 2),

hence the minimal polymonial of o has also similar reduction

N
modulo 2 (i.e. it decomposes into linear terms), which cannot
occur for the cyclotomic polynomial for the odd order.

Thus we have contradiction and the proof of (3.14) is

complete.
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§4., Cohomologically trivial involutions

In this section, we shall compute the lattice NR for

the numerically trivial involutions of Example 1 and Example 2
and show that those involutions are, in fact, cohomologically
trivial.

Let the situation be as in Example 2. Blow up Iml x Pl

at the 4 points (:1,:1l) and let F_

-p -

be the exceptional cun
over (tl,:l). Blow up again at the 12 intersection points of

F, ., and the strict transforms of E and the 4 lines X = :l

-y -

and Y = :l. We denote the blown up rational surface by R.

R has the following configuration of curves on it:

(4.1)

-
- -
- -

I3
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-

where F', _, E', X, and Y, are the strict transforms of
- t t
F, .+ E and the 4 lines X = t1 and Y = fl1, respectively.
x, ¢
12 dotted lines are the exceptional curves of the second blowing

up. The divisor D = X +X +Y +Y_ + LF',6 ,+E' belongs to the

-y -

linear system |-2K.|. The K3 surface § is the double cover

N A" N
of R whose branch locus is D. We denote by X Yoo Fyupy

and ¥ the reduced parts of the inverse images of X,, Y,,

F;,i and E', respectively; All are smooth rational curves on
§. The inverse images of the 12 exceptional curves on R are
alsc smooth rational curves on §&. Hence § has 20 smooth
rational curves. The dual graph of their configuration is as

follows:

(4.2) 'SR e X

e
Ly Vo4

" .
The covering involution OR of S/R fixes these 20 rational

curves. Hence their cohomology classes are contained in Mp-
Proposition 4.3. These 20 rational curves generate MR

and |det MRI= 4.
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Proof. Removing Q; and Y_ from the diagram (4.2),
. : . . v .

we obtain the disjoint union of two Dg diagrams. The two
N
Da's and §+ generate a lattice M" isomorphic to DB 1 Dy

N, N
1 U. Y_ does not belong to M" but 2Y_ does. Hence the
lattice M' generated by the 20 rational curves has |det M'|
= |det M"|/4 =4. Since det M.=4 or 8 by Proposition 2.5, M'
coincides with and det M_ = 4.

MR ’ “R g.e.d.

Let € be the fixed point free involution of ¥ such
that S = §/e. € acts on the graph (4.2) by 180° rotation.
Hence the Enriques surface S has the 10 rational curves with

the following dual graph:

i

(4.4)

|
&

=l

where X,Y and Ft are the images of i+,Q+ and ?+,:'
Obviously the involution ¢ of S induced by op fixes

these 10 rational curves.
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Proposition 4.5. ¢ is cohomologically trivial.

Proof. The 10 rational curves in the diagram (4.4)

generate a rank 10 lattice E' with |det E'| = 4. Let £ : S

- ]Pl be the elliptic fibration of S induced by a IPl -bundle

structure of )Pl x ]Pl. Let Gl

of the two multiple fibres of £f. The class of G

and G, be the reduced parts

1 does not
belong to the lattice E' but the twice of it does. Hence the
10 rational curves and G, generate the Enriques lattice
HZ(S,ZZ) /torsion. Since the difference of G, and G, is a
canonical divisor, the 10 rational curves and two elliptic curves
G, and G, generate the cohomology group HZ(S,Z). .Since

¢ fixes G1 and Gy, too, o is cohomologically trivial.

qg.e.d.

Next we consider Example 1. 1In this case, the surface

¥ is a Kupmer surface. If the two elliptic curves E, and

E2 are not isogenous, then the lattice N coincides with

R

the transcendental lattice of 3. By [5], N is isomorphic to

R
N'(2) for an even unimodular lattice N'. Therefore, by

Proposition 2.5, we have

Proposition 4.6. The lattice No is isomorphic to
U(2) 1L U(2) for every Enriques surface S and numerically
trivial involution ¢ in Example 1.

The quotient Ei/(--lE ) is isomorphic to ]Pl and the

i
branch points are the images of 4 2-torsion points of E,.
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Then the rational surface R = 3/0R is isomorphic to the

1l 1

blow-up of P~ x P~ at the 16 points (':Elfiz), where x.

i
runs the 4 2-torsion points of E; and §i- is the image

of x, for i =1,2. We denote by F the exceptional
i Xy 1%, :

curve over (§i,§é). Let P, and Q  be the strict transform

. 1l 2
of ':El x Pt and P! x X,, respectively. Then the branch

locus of S§/R is the disjoint union of Px's and Q 's, where
1 2

Xy and X, are the 2-torsion points of Ey and Ey,

respectively. The involution fixes all these 24 rational

r

curves F ,P and Qx . The involution of R induced

Xy e X" Xy 2
by € sends F P and Q to F P ’
xl,xz' Xy Xs . xl+al,x2+a2 x1+a1

and Qx2+az' respectively. Hence the Enriques surface S has

12 rational curves and the dual graph of their configuration

is as follows:

Py

7N

(4.7) q, 3,

‘o)

where 56 and §i (resp. 3, and Q;) are the images of P,



27

and b2 are nonzero

and Pbl (resp. Q and Qb ) and bl

2

2 - torsion points of E and E2 other than a and a

1 1

9t
respectively.

Removing ?0 and ?l from the above diagram, we obtain
the disjoint union of two 34'5. These two 34'5 and ?O

generate a lattice E" isomorphic to Dy 1 Dy 1 U(2). The

4
class of Fl does not belong to E" but the twice of it does.
Hence the 12 rational curves in the graph(4.7) generate a

lattice E' with |det E'| = 16.

Proposition 4.8. The numerically trivial involution ¢

in Example 1 is cohomologically trivial.

,Proof. S has two elliptic fibrations fl and f2
induced by the two P’ -fibrations of P* x PL. Let A,
be the reduced part of a multiple fibre of fi' i=1,2. Then
the lattice generated by E', Al and A, is unimodular.
Hencé E', Al' A2 and the canonical class KS generate the
cohomology group HZ(ScZZ) . It is clear that the involution
¢ acts trivially on E' and fixes A, and A,. Hence o

is cohomologically trivial.

g.e.d.

§5. Proof of Main Theorem

In this section we shall prove that every numerically
trivial involution is cohomologically trivial and obtained

in the way of Example 1 or 2. Main Theorem 0.l. follows
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from this and the result in §3.
Let 0 be a numerically trivial involution of an Eurique
surface S. By Corollary 2.7, the pair (S,0) is a deformatio

of that of Example 1 or 2 according as N_ = U(2) . U(2) or

R

U 4 U(2). Hence, in the case N_ = U(2) + U(2), the branch

R
locus of §/R is the disjoint union of 8 smooth rational
curves and the rational surface R = §/°R has 16 exceptional
curves of the first kind. The configuration of these 24
rational curves is same as Example 1. Hence the surface obtai

from R by contracting 16 exceptional curves is isomorphic t

EJ' xjml

because it has two IP]' -fibrations. The image of
the branch locus of g/R is the union of 4 fibres of one
]Pl -fibration and 4 fibres of another JPl -fibration. Hence
the pair (S,0) is obtained in the way of Example l.

In the case NR = U . U(2), the pair (S,g) is a deformat:
of Example 2. The branch locus of §/R is the disjoint uniol
of an elliptic curve and 8 smooth rational curves. The ratid
surface R ha; 12 exceptional curves of the first kind and
the configuration of the elliptic curve and these 20 rational

curves is same as Example 2. Contract the 12 exceptional

curves. Then the configuration of the 21 curves becomes as

follows:
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elliptic
curve '

4 rational curves in the branch locus become exceptional
curves of the first kind and other 4 become (-2) rational
curves. Contract the 4 exceptional curves of the first kind.

Then we obtain a surface isomorphic to ]Pl x ]Pl . The image of

the branch locus in ]Pl x lP.l is same as Example 2. Hence
(S,0) is obtained in the way of Example 2, which completes

our proof of Main Theorem 0.1.
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