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Abstract-

Let P be a determined or overdetermined elliptic differential operator of
order p with real analytic coefficients on an open set X C R". Using Green’s
functions for the Laplacian P* P we prove that the dual for the space sol(D)
of solutions to the system Pu = 0 in a domain D @ X with real analytic
boundary can be represented as the space sol(D) of solutions on neighbor-
hoods of the closure of D, provided the domain D possesses some convexity
property with respect to the operator P.
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Introduction

The aim of this paper is to give representations of the strong dual of the space
of solutions of a linear elliptic system Pu = 0 of partial differential equations on
an open subset of R". We consider both determined and overdetermined elliptic
systems.

Let U be an open subset of the domain X C R" where the operator P is defined.
Denote by sol(U, P) the vector space of all smooth solutions to the equation Pu = 0
on U, with the usual Fréchet-Schwartz topology. We will write it simply sol(U)
when no confusion can arise.

Denote by sol(U)' the dual space of sol{U), i.e., the space of all continuous linear
functionals on sol(U/). We tacitly assume that this dual space sol(U)’ is endowed
with the strong topology, i.e., the topology of uniform convergence on every bounded
subset of sol(U).

Any successful characterization of the dual space sol(U) results in the analysis
of solutions to Pu = 0 (Golubev series, etc., see Havin [3], Tarkhanov [14}).

There are a few classical examples of representation of this dual space, such as
Grothendieck duality and Poincaré duality (see for instance Tarkhanov [15, Ch.5]).
The Grothendieck duality is of analytical nature; it has been of particular interest
in complex analysis. On the other hand, the Poincaré duality can be stated in an
abstract framework.
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For determined elliptic operators of the type P*P we obtain in Section 3 an
analogue of the duality result of Grothendieck [2] (cf. Mantovani and Spagnolo [6]).
Note that the system P*Pu = 0 is a straightforward generalization of the Laplace
equation. In this way we obtain what we shall call generalized harmonic functions,
or simply harmonic functions when no confusion can arise.

Our main result for general elliptic systems is concerned with the case where
the coefficients of P are real analytic and U is a relatively compact subdomain of X
with real analytic boundary. In this case we prove the following theorem.

Theorem A. Let the coefficients of the operator P be real analytic on X and
D € X be a domain with real analytic boundary. Suppose that, given any neigh-
borhood U of D, there is a neighborhood U' C U of D such that sol(U'} is dense in
sol(D). Then

IR§

s0l(D) = sol(D).

In fact, in Sections 6, 7 below, we will formulate and prove a stronger statement
with weaker assumptions on analyticity. Moreover, in these sections we provide also
an explicit formula for the pairing.

In fact, there is a trasparent heuristic explanation of this duality. Given any
solution v € sol(D), the Petrovskii Theorem shows that v is real analytic in a
neighborhood of D. On the other hand, each u € sol(D) is real analytic in D, and
so u is a hyperfunction there. As the sheaf of hyperfunctions is flabby, u can be
extended to a hyperfunction in X with a support in the closure of D. Thus, v can
be paired with every u € sol(D).

By Runge Theorem, the approximation assumption of Theorem A holds for
every determined elliptic operator with real analytic coefficients or in the case where
P is an elliptic operator with constant coeflicients and D is convex.

The approximation condition on the couple P and D in this theorem is to
some extent an analogue of the so-called approzimation property introduced by
Grothendieck [2]. In several complex variables a close concept is known as Runge
property (cf. Hérmander [4)).

For the space of holomorphic functions in simply connected domains in C and in
(p, q)-circular domains in C? a similar result was obtained by Aizenberg and Gindikin
[1]. For the spaces of harmonic and holomorphic functions a similar result was
recently obtained by Stout [12]. However they constructed isomorphisms different
from ours. The advantage of our approach is the fact that it highlights the close
connection between the duality of Theorem A and the Grothendieck duality (see
Section 3).

1 Preliminaries

Assume that X is an open set in R", and E = X x C*, F = X x C' are (trivial)
vector bundles over X. Sections of E and F of a class € on an open set U C X can
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be interpreted as columns of complex valued functions from €(U), that is, €(E|y) =
[€(U)}*, and similarly for F.

Throughout the paper we will usually write the letters u, v for sections of E,
and f, g for sections of F.

A differential operator P of order p > 1 and type £ — F' can be written in
the form P(z, D) = Tja|<p Palz)D*, with suitable (! x k)-matrices P,(z) of smooth
functions on X.

The principal symbol o(P) of P is a function on the cotangent bundle of X with
values in the space of bundle morphisms £ — F. Given any (z,£) € X x R", we
have O'(P)(.'B,f) = Z|a|=p Pﬂl(x){a' )

We say that P is elliptic if the mapping o(P)(z,€) : C¥ — C! is injective for
every ¢ € X and £ € R\ {0}. Hence it follows that I > k; we say that P is
determined elliptic if [ = k, and overdetermined elliptic if I > k.

Every elliptic operator is hypoelliptic, i.e. all distribution sections satisfying
Pu = 0 on an open set U of X are infinitely differentiable there. If U is an open
subset of X, then we denote by sol(U, P) the vector space of all C* solutions to the
equation Pf = 0 on U. We will write it simply sol(U) when no confusion can arise.

We endow the space sol(U) with the topology of uniform convergence on com-
pact subsets of U. This topology is generated by the family of seminorms

lullcEx) = sup [u{z)],
reK

where K runs over all compact subsets of U.

Lemma 1.1 IfU C X is open, then the topology in sol(U)} coincides with that
induced by C{S.(E|y). In particular, sol(U) is a Fréchet-Schwartz space.

Proof. By a priori estimates for solutions of elliptic equations, if K’ and K"
are compact subsets of U and K’ is a subset of the interior of K", then

|St|1£_||D°u||C(E|K,) <cllulleE)en  for all u € sol(U), (1.1)

with ¢ a constant depending only on K’, K” and j. Hence it follows that the original
topology on sol(U) coincides with that induced by Ci2(E|y). To finish the proof
we use the fact that CZ2(FE|v) is a Fréchet-Schwartz space.
a
Throughout this paper we assume that the operator P possesses the following
Unique Continuation Property:

(U)s given any domain D C X, if u € sol(D) vanishes
on a non-emply open subset of D, then u =0 on D.

Here and in the sequel, by a domain is meant any open connected subset of
R™. This property holds, for instance, if the coefficients of the operator P are real
analytic.
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It is natural to consider solutions to the system Pu = 0 on open sets. However,
some problems require to consider solutions on sets ¢ C X which are not open. Here
we are interested not simply in restrictions of solutions to the given set, but also in
the local solutions of the system Pu = 0 on o, that is, solutions of the system in
some (open) neighborhoods of o.

If o is a closed subset of X, then sol(¢) stands for the space of (equivalence
classes of) local solutions to Pu = 0 on o. Two such solutions are equivalent if there
is a neighborhood of o where they are equal. In sol(o), a sequence {u,} is said to
converge if there exists a neighborhood A of o such that all the solutions are defined
at least in A and converge uniformly on compact subsets of N.

Alternatively, sol(o) can be described as the inductive limit of the spaces
sol(U,), where {U,} is any decreasing sequence of open sets containing o such
that each neighborhood of & contains some U, and such that each connected com-
ponent of each U, intersects o. (This latter condition guarantees that the maps
sol(U,) — sol(o) are injective. Then the space sol(c) is necessarily a Hausdorff
space.)

Lemma 1.2 Let the operator P possess the Unique Continuation Property (U),.
Then the space sol{c) is separated, a subset is bounded if and only if it is contained
and bounded in some sol(U,), and each closed bounded set is compact.

Proof. This follows by the same method as in Kéthe [5, p.379].

2 Green’s function

Denote by E* = X x (C*)’ the conjugate bundle of E, and similarly for F. For the
operator P, we define the transpose P’ as usual, so that P’ is a differential operator
of type F* — E* and order p on X.

Fix the standard Hermitian structure in the fibers E, = C* (z € X) of E:
(u,v) = ¥, u;T; for u,v € C*. This gives the conjugate linear bundle isomor-
phism xg : E — E* by (xgv,u), = (u,v), for u,v € E,.

Using matrix operation conventions, we have (xgv,u), = v*u for u € C*¥, where
v* is the conjugate matrix: we have *gv = v* under this identification.

The operator *g also acts on sections of E via (xgu)(z) = *g(u(z)) for all
z € X. Thus, for a class € of sections of E we have xg : €(E) — €(E*).

The operator xg is similar to Hodge’s star operator on differential forms. We
write simply * when no confusion can arise.

We are now in a position to endow the spaces Cg, (E) and CZ, (F), consisting
of infinitely differentiable sections with compact supports of £ and F respectively,
with (L?=) pre-Hilbert structures by (u,v)x = [y (*v,u), dz.

Under these structures, the operator P has a formal adjoint operator which is
denoted by P*. This is the differential operator of type F' — E and order p on X

given by P*g(z) = Llal<r D(P,(z)* g(z)) for g € Conmpl F)-
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The relation between the transposed operator and its (formal) adjoint becomes
clear by using the bundle isomorphism *. Namely, P* = xz' P'xp (see Tarkhanov
[14, 4.1.4] for more details).

The operator A = P*P is usually referred to as the generalized Laplacian
associated to P. It is easy to see that A is an elliptic differential operator of type
E — E and order 2p on X.

Throughout the paper we shall even assume that the operator A possesses the
Unique Continuation Property (U),. Obviously, this implies that P does so.

If P is the gradient operator in R", then A = P* P is the usual Laplace operator
up to a —1 factor. On the other hand, if P is the Cauchy-Riemann operator in C*,
then A = P*P coincides with the usual Laplace operator on R** = C" up to a —3
factor.

In the general case, the solutions of the system Au = 0 are also said to be
generalized harmonic functions.

Let O € X be a domain with C* boundary. Denote by n(z) the unit outward
normal vector to the boundary surface @O at a point z. The system of boundary
operators {(0/0n)'},_o, ., is known to be a Dirichlet system of order p — 1 on
00

We formulate the Dirichlet problem for the generalized Laplacian A in the
following way.

Problem 2.1 Given a section f of E over O, find a section u of E over O such
that Au = f in O and (8/0n)Yu =0 on 8O for j =0,1,...,p—1.

As in the classical case, Problem 2.1 is verified to be an elliptic boundary value
problem. Moreover, it is formally selfadjoint and possesses at most one solution in
reasonable function spaces for u. So, this problem may be treated by standard tools
in the scale { H*(E|o)},cp of Sobolev spaces on O (see Roitberg [10]).

From this treatment, we briefly sketch the relevant material on Green’s function.
For more details we refer the reader to Roitberg [10] and Tarkhanov [14, 9.3.8].

It turns out that the inverse of the operator corresponding to Problem 2.1 is

integral. Namely, there exists a unique kernel G(z,y) on O x O such that, for each
data f € H*"??(E|p), the function

uz) = [ 6wy (=€) (21)

belongs to H*(E|o) and satisfies Au = f in O and (8/0n)u = 0 on O for j =
0,1,...,p— 1. Such a kernel G(z,y) is said to be the Green’s function for Problem
2.1.

We will later give a precise meaning to the integrals in (2.1), specifying to which
spaces the Green’s function belongs.

The Green'’s function G(-, y) is alternatively defined as the solution to the Dirich-
let problem with the data f = §,, the Dirac delta-function supported at y € O. This
data is easily verified to belong to all Sobolev spaces H*(O) with s < —2.
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Theorem 2.2 The kernel G is a C* section of the bundle £ ® E*|5,5 away
from the diagonal of O x O.

Proof. See Roitberg [10, 7.4].
O

A discussion of the singularity of G(z,y) at the diagonal {(z,z): z € O} can
be found in Roitberg (10, Th.7.4.3]. For our purposes, it suffices to know that the
mapping (2.1), when restricted to f € CZ, (Elo), is a pseudodifferential operator
of type E|o — E|o and order —2p. Thus, if f is sufficiently smooth, the integral in
(2.1) is actually a usual Lebesgue integral.

Green’s formula enables us to prove that the Green’s function is a solution of the
adjoint boundary value problem in the y variable. To explain this more accurately,
denote by I the identity (k x k)-matrix.

Theorem 2.3 Given any ¢ € O, we have:

A’(yv D)g(ﬂ?, y) = 6:(.'/) Ik fOT Yy € 0) (2 2)
(0/0n(y))G(z,y) =0  for y€dO (j=0,1,...,p—1). '
Proof. See Tarkhanov [14, Th.9.3.24].
a

We are now in a position to state the symmetry of Green’s function in the
variables z and y. This symmetry could be expected from the fact that the Dirichlet
problem is (formally) selfadjoint.

Corollary 2.4 The matriz G(z,y) is Hermitian, i.e., G(z,y)" = G(y, ) for all
z,y € O.

Proof. Indeed, since the solution to Problem 2.1 is unique, it follows from
Theorem 2.3 that

Gy,z) = *G(z,y)x)’
= G(z,y)",

as desired.

3 Grothendieck duality for harmonic functions

In the sequel, we shall denote by O a fixed relatively compact domain in X with
C* boundary 90, as in Section 2.

Inspired by the work of Grothendieck [2] who used solution to Av = 0 at infinity,
we shall consider the manifold with boundary O = O U 9O as the compactification
of O.
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We use O instead of @ to conceptually distinguish this manifold with boundary
from the closed subset O of X.
The topology of O is given by the following neighborhoods bases:

o If z € O, then we take the usual basis of neighborhoods of z (for example, the
family {B N O}, where B runs over all balls in X centered at z).

o If z € 3O, then the basis of neighborhoods of z is defined to be the family
{BnN (O UOJBO)}, where B runs over all balls in X centered at z.

We shall say that an open set U in © is a neighborhood of infinity if U contains
the part O at infinity of O.

We shall also need the concept of a solution to Au = 0 in a neighborhood
BN (OUQ0O) of a point z € §0.

By this, we mean any solution to Au = 0 on the B N O (finite part) which
is C* up to the BN A0 (infinite part) and satisfies (3/0n)u = 0 on BN JO for
7=0,1,...,p— 1.

Given an open set U C ®, denote by sol(U, A) the set of all solutions to Au = 0
on U.

Lemma 3.1 Let U be a neighborhood of infinity in O. Then sol(U,A) is a closed
subspace of sol(U N O, A).

Proof. Pick a sequence {u,} in sol(U, A) converging to a solution us, in sol(UN
O, A). We shall have established the lemma if we prove that us is € up to the
boundary of @ and (8/8n) u, = 0 on 8O for j =0,1,...,p— 1.

To this end, let U’ be a sufficiently thin open band close to the boundary in O,
so that 30 C 90U’ and U’ @ U. We can certainly assume that the boundary of U’ is
of class C*.

By the above, the Dirichlet problem for the Laplacian in U’ is coercive. Hence
for any integer s > p there is a constant ¢ such that

p-1 . 3
el s (E1y < € (Z ”(3/3”)’“||2=-f-5(s|8,,,)) (3.1)

=0

whenever u € H*( E|y:) N sol(U’, A).

Let us apply this estimate to a solution u € sol(U, A). Since the normal deriva-
tives of u up to order p — 1 vanish on the part 30 of the boundary of U’, we can
assert that the norm of u in H*(E|y) is dominated by Sobolev norms of the normal
derivatives of u up to order p — 1 on the remaining part of the boundary of U’.
What is especially important here is that this remaining part dU’ \ 90O is a subset
in U N O. Hence combining the Sobolev Embedding Theorem with interior a priori
estimates (1.1) yields

sup || D%ulloel) < ¢ llullog)  for all u € sol(U, A), (3.2)

lal<
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with K a compact subset of /N, whose interior contains QU’\ 00, and c a constant
depending only on O, K and j. ‘

We can now return to the sequence {u,}. It follows from (3.2) that, given any
multi-index a, the sequence of derivatives { D*u, } is a Cauchy sequence in C(E|g).
Therefore {u,} converges to a section u € C*(E|g) uniformly on U7 and together
with all derivatives.

Obviously, uo, = u in U’. This shows at once that u., is C* up to the boundary
of @ and (8/8n) ue =0 0n 8O for j =0,1,...,p— 1, as desired.

O

In the case where U is an open subset of © containing 8® we endow sol(U, A)
with the topology induced by sol(U N O, A). Then Lemmas 1.1 and 3.1 show that
sol(U, A) is a Fréchet-Schwartz space. (For the moment we shall say nothing about
a topology on sol(U, A) in the general case.)

We now invoke the construction of the inductive limit of a sequence of Fréchet
spaces in order to define the space sol(c, A) also for those closed sets o in @ which
are “approximable” by open subsets of @ containing 0. These are nothing but the
close subsets of O containing the “infinitely far” surface 8O.

Next we fix a Green operator Gp for the differential operator P. By definition,
Gp is a bidifferential operator of type (F*, E) — A" !T*(X) (where A" 1T*(X) is
the bundle of exterior differential forms of degree-(n ~ 1) on X) and order p — 1,
such that dGp(*g,u) = ((Pu,g); — (u, P*g);) dz pointwise on X, for all smooth
sections ¢ of F and u of F. '

We immediately obtain:

Lemma 3.2 A Green operator for the Laplacian A ts given by
Ga(xv,u) = Gp(*Pv,u) — Gp(*Pu,v). (3.3)

Having disposed of these preliminary steps, we fix now an open subset U of O
and turn to describing the dual space for sol(U, A).

Given any solution v € sol(® \ U,A), we define a linear functional ¥, on
sol(U, A) as follows.

There is an open set A, € U with piecewise smooth boundary such that v is
still defined and satisfies Av = 0 in a neighborhood of O \ N,. Put

(Foyu) = ] Galxv,u)  (u € sol(U, A)). (3.4)

v

It follows from Stokes’ formula that the value (F,,u) is independent of the
particular choice of A, with the properties previously mentioned.

Lemma 3.3 The functional F, defined by (3.4) is a continuous linear functional
on the space sol(U, A).
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Proof. Use estimate (1.1) with K’ = A, and j = 2p — 1.
a
The following result is related to the work of Grothendieck [2] where the concept
of solution to Av = 0 regular at the point of infinity of the one-point compactification
of O was used.

Theorem 3.4 Let the operator P*P possess the Unique Continuation Property
(U)s on X. Then for each open set U C O, the correspondence v — F, induces a
topological isomorphism

top

sol(U,A) = sol(O\ U, A).

Proof. Pick a continuous linear functional F on sol(U, A). Since sol(U,A) is a
subspace of Clc(E|v), the space of continuous sections of E over U, this functional
can be extended, by the Hahn-Banach Theorem, to an E*-valued measure m with
compact support in U. Set K = suppm. v

Let A/ @ U be any open set with piecewise smooth boundary such that K C N.
For each solution u € sol(U, A), we have, by Green’s formula,

u@) =~ [ Ga(@(a,)uy) (zeN).

(Here G(z,y) is the Green’s function of the Dirichlet problem for the Laplacian in
O, as in Section 2.) Therefore

(Fou) = /U (dm, u),
= /E;MG,_\;(W,u),

where v(y) = — 7" fy (dm, G(-,y))s.

Now we look more closely at the properties of this function v called the “Fan-
tappié indicatrix” of F. Since A'(y, D)G(z,y) = é-(y) Ik, we deduce that Av =0
away from K.

Moreover, Theorems 2.2 and 2.3 show that v is C*® up to the boundary of O
and satisfies (8/0n)’v =0o0n 0 for j =0,1,...,p— 1.

From what has already been proved, it follows that v € sol(@ \ U,A) and
F = F,. Our next claim is that such a v is unique.

To this end, we let v € sol(& \ U, A) satisfy
/aM Ga(*v,u) =0 for all u € sol(U, A), (3.5)

where M, @ U is an open set with piecewise smooth boundary, such that v is still
defined and satisfies Av = 0 in a neighborhood of O \ N,.
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We represent v in the complement of A, by Green’s formula. This is possible
because of (8/8n)’v =0 on 8O for j =0,1,...,p— 1. We get

w@) = - [ Gal(@),6(@y) foryeO\F.

For any fixed y € O\ U, we have G(:,y) € sol(U,A), and so v(y) = 0 by
condition (3.5). Since the operator P* P possesses the Unique Continuation Property
(U)s, v=0if U C O. To complete the proof in the case where U is not contained in
O, we use the Runge Theorem for solutions of the equation Au = 0 (cf. Tarkhanov
[14, 5.1.6]).

There exists an open set A” @ U with the following properties:

o N, E@WN, and
o the complement of A has no compact connected components in U.

(The second property can always be achieved by adding all compact connected
components of U \ N to A.)

Fix y € O\WN. Then each column of the matrix G(-,y) is in sol(N, A). Accord-
ing to the Runge Theorem, it can be approximated uniformly on compact subsets of
O by solutions in sol(U,A). Let {u,} be a resulting sequence for G(-,y), so that the
columns of u, belong to sol(N,A) and u, — G(-,y) uniformly on compact subsets
of O.

Applying (1.1) we can assert that the derivatives up to order p — 1 of u, also
converge to the corresponding derivatives of G(-,y) uniformly on compact subsets of
N. Therefore,

v(y) = - lim 3M,GA(*U’UU)

= - yllrglo 0

= 0.

Thus, v = 0in O\ N, i.e., v is the zero element of sol(@ \ U, A).
We have proved that the correspondence v — F, induces the isomorphism of
vector spaces

sol(B\U,A) S sol(U, A

We are now going to invoke an operator-theoretic argument to conclude that this
algebraic isomorphism is in fact a topological one.
To this end, we note that the spaces soI(@\U, A) and sol(U, A) are both spaces
of type DFS. (For sol(® \ U,A), see the proof of Theorem 1.5.5 in Morimoto [7,
p.13]. For sol(U, AY, see Lemma 1.1 above.) Asthe Closed Graph Theoremis correct
for linear maps between spaces of type DFS (see Corollary A.6.4 in Morimoto [7,
p-254]), to see that v — F, is a topological isomorphism, it suffices to show that it is
continuous. This latter conclusion, however, is obvious from the way the inductive
limit topology is defined, and the construction of F,. This completes the proof.
O
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One may conjecture that Theorem 3.4 is still true for arbitrary open sets U in
O. But we have not been able to do this.

4 A corollary

In this section we derive the following consequence of Theorem 3.4.

Corollary 4.1 Let D € O be a domain with real analytic boundary. Assume
that the operator A satisfies the Unique Continuation Property (U), on X and its
coefficients are real analytic in a neighborhood of the boundary of D. Then it follows
that

to

sol(D,A) = s0l(D, A). (4.1)

Before proving this corollary, we briefly discuss a result of Morrey and Nirenberg
[8] to be used in the proof.

Theorem 4.2 Let A be a determined strongly elliptic differential operator of
order 2p with real analytic coefficients on X. Assume that u is a solution to Au =10
in a domain D C X. If u vanishes up to order p—1 on an open real analytic portion
S of the boundary of D, then for each point To € S there is a neighborhood N(z,)
on X depending only on the operator A and the domain near zo, such that u may be
extended as a solution of Au =0 from N(zo) D to the whole neighborhood N (zo).

Proof. See Morrey and Nirenberg [8].

O

The important point to note here is that the neighborhood AN (zp) in Theorem
4.2 is independent of the particular solution wu.

In fact, Morrey and Nirenberg [8] proved the existence of A'{zo) by showing
that there is a real r > 0 such that, for any u € sol(D,A) vanishing up to order
p— 1 on S, the Taylor series of u at zo converges in the ball B(zo,r). Thus, the
solution u holomorphically extends to a neighborhood ﬁzo of zo in C").

We are going to apply this corollary in the case where A = P*P is the general-
ized Laplacian. To this end, we have to verify that the Laplacian is strongly elliptic
(this notion becomes clear below).

Lemma 4.3 If P is an elliptic differential operator of order p, then the operator
A = P*P is strongly elliptic of order 2p.

Proof. What is to be proved is that, given any non-zero vector z € C¥, we
have

Re v'o(A)(z,6)v #£0 for all {(z,£) € X x (R™\ {0}).
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Suppose the lemma were false. Then there is a non-zero vector z € C* such
that Re v*o(A)(z,€&)v = 0 for some (z,£) € X x (R"\ {0}) However,

Re v'o(A)(z,€)v = Re (a(P)(z,8)v)"(o(P)(z,¢))
= IU(P)(.‘L‘,ﬁ)UIZ,

and so v = 0 because o(P)(z,£) : C* — C' is injective. This contradicts our
assumption.
a
We also need a slightly modified version of Theorem 4.2, a version which relates
to inhomogeneous elliptic boundary value problems.

Lemma 4.4 We keep the assumptions of Theorem {.2. Let {B;}, o, ., bea
Dirichlet system of order p— 1 with real analytic coefficients on S. If the Dirichlet
data u; = Bjuls (7 = 0,1,...,p — 1) of a solution u to Au = 0 in D are real
analytic on S, then for each point to € S there exists a neighborhood N(zo) on X
depending only on A, the domain D near zo and {u;}, such that u may be extended
to a solution of Au=0 on N(z¢).

Proof. For j =p,p+1,...,2p— 1, set B; = (8/0n)’, the j th derivative along
the unit outward normal vector to S. This completes { B;} ,—1 to a Dirichlet
system of order 2p — 1 with real coeflicients on S.

By the Cauchy-Kovalevskaya Theorem, there is a unique solution ' to the
Cauchy problem

{Au'=0 in N,

§=0,1,...,

Biv=u; on § (7=0,1,...,p—1), (4.2)
Biv=0 on § (j=pp+1,...,2p-1),

defined on some neighborhood A of S in X. (We observe at once that v’ is real
analytic in N.)

Let A, be the neighborhood of z, which is guaranteed by Theorem 4.2. We
can certainly assume that u’ is defined in A, for if not, we replace A, by N, NN.

By (4.2), the difference u” = u — u’ satisfies the equation Au” =0 in DNN
and vanishes up to order p— 1 on S.

Repeated application of Theorem 4.2 enables us to assert that there is a neigh-
borhood of zp on X depending only on A and the domain DN AN near zy, such that
u” may be extended to a solution of Au"” = 0 in this neighborhood. To shorten no-
tation, we continue to write Nz, for this new neighborhood. Obviously, u = v’ + u”
extends to Nz, and the lemma follows.

a

We are now able to prove Corollary 4.1.

Proof. By Theorem 3.4, we shall have established the corollary if we prove
that

sol(®\ D,A) Z sol(D, A). (4.3)
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To this end, define a mapping € : sol(D,A) — sol(O \ D, A) in the following
way (cf. Tarkhanov [14, 10.2.3]).

Given any u € sol(D,A), there exists a unique solution v to the Dirichlet
problem

Av=0 in O\D,
(8/8n)v = (8/0n)Yu on 8D (j=0,1,...,p=1), (4.9)
(8/0n)v =0 on 80 (j=0,1,...,p—1).

By the regularity of solutions to the Dirichlet problem, v is C* up to the
boundary of @\ D and so v € sol(O \ D).

Let us denote by € the neighborhood of D where the coefficients of P*P are
real analytic. By the Petrovskii Theorem there is a neighborhood ' of 8D where u
is real analytic. Since the Dirichlet data {(8/0n)u},_o, ,_, are real analytic on
the real analytic open portion 8D of the boundary of ' \ D and 8D is compact,
Lemma 4.4 shows that there is a neighborhood A, of O\ D such that v extends as
a solution of Av = 0 to A,. Moreover, N, depends only on A, the domain Q' \ D
near D and u.

For our case, we can derive a little bit more of information on A, than that
given by Lemma 4.4. Namely, A, depends on the domain Q' U D D> N, D D of u
rather than on u. Indeed, the difference v — u satisfies A(v — u) = 0 in the open
set N, \ D and vanishes up to order p — 1 on the real analytic portion 9D of its
boundary. By Theorem 4.2, there is a neighborhood A of A, \ D depending only
on A and A, \ D near 3D, such that v — u extends to a solution on A". Then
v = u + (v — u) also extends to A, and so we can add N to N,.

It follows that v € sol(@\D, A). We set £(u) = v, thus obtaining the mapping
£: sol(D,A) — sol(O\ D, A).

Since the solution of the Dirichlet problem in D is unique, the mapping £ is
injective. On the other hand, since this problem is solvable for all Dirichlet data, the
mapping £ is surjective. In other words, £ is an isomorphism of the vector spaces
s0l(D,A) S sol(O\ D, A).

We now argue as at the end of the proof of Theorem 3.4 to conclude that this
algebraic isomorphism is in fact a topological one. Since sol(D,A) and sol(G\ D, A)
are both spaces of type DFS, we are reduced to proving that £ is continuous.

To do this, pick a sequence {u,} in sol(D,A) converging to zero. By the
definition of inductive limit topology, there is a neighborhood N,,} of D such that
each u, is defined in My,,} and u, — 0 uniformly on compact subsets of NVq,,}.

Set v, = £(u,). From what has already been proved it follows that there is a
neighborhood N,,} of O \ D such that all the v, are defined in N,,;-

As the Dirichlet problem in o \ D is well-posed, we can assert that v, — 0
uniformly on O \ D. The same holds also for the derivatives of {v,}. We have
however to show that v, — 0 uniformly on some neighborhood of & \ D.

For this purpose, we find an r > 0 and a finite number of points z,,...,z; on

JD such that
e the balls { B(z;,7)},_, _; cover dD; and
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e for any v and j, the Taylor series of v, at z; converges in the ball B(z;,r).

(That such r and {z;} exist, follows from the comment on Theorem 4.2.)
0O

Let N = (@\5) U (U:,-'=IB(J:_,-, -;-)) This is a neighborhood of @ \ D, and we
have
suplo(@)] < sup )|+ sup (@) (4.5)
TEN rEa\D Y j=1z€B(z;,%)
As mentioned, sup 2eB\D |v.(z)] = 0 when v — oo. It remains to estimate each
term sup,¢p(s,, 'f) [v, ().
Since the Taylor series of v, at z; converges in the ball of radius r, we obtain
by the Cauchy-Hadamard formula

D> v . 1 ler|
D7 (2) < const(v) (—) foralla € Z,.
al T
Therefore
D°v, (z;
sup_fufe)l = sup |9 2 (g
z€B(z;.5) z€B(z;,5) o a:
Dov, (z;)

IA

)"

< const(v) Y (E)Ial'

o

2

a

a!

We may now invoke the Theorem on Dominated Convergence to conclude that

> (252 )"

2€B(z;,5) s al
= 0,
the last equality being a consequence of the fact that the derivatives of {v,} converge
to zero uniformly on 3D.
Thus, (4.5) shows that the sequence {v,} converges to zero uniformly on N. It
follows that {v,} converges to zero in the topology of sol(@ \ D,A), and so £ is
continuous. This completes the proof.

IA

lim sup |v.(z)|

V=00

a
An advantage in describing duality by (4. 1) is the fact that it also provides an
explicit formula for the pairing.

Corollary 4.5 Under the hypothesis of Corollary 4.1, let F, be defined by (8.4).
Then the correspondence v — Fg(,) induces the topological isomorphism (4.1).

Proof. This follows from Theorem 3.4 and the proof of Corollary 4.1.
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5 Miscellaneous

As follows, the analyticity of the boundary of D is essential to the validity of Corol-
lary 4.5 (cf. Stout [12]).

Example 5.1 If P is the Cauchy operator in X = R?, then P*P is the usual
Laplace operator A in R? up to the factor —3. Assume that D is a bounded domain
in R? with connected boundary 8D of class C?. According to the Riemann Theorem,
D is holomorphically equivalent to the unit ball B(0,1) in R?, i.e., there exists a
conformal mapping m : D — B(0,1). Moreover, it is known that m is of class C*!
up to the boundary of D) and m’ # 0 on D. We denote by x° the point of D such
that m(z°) = 0. Let O = B(z% R), where R a positive number, and D € B(z° R).
For u(z) = log |7§ﬁi—) , an easy verification shows that £(u) (z) = log ]%l belongs
to s0l(O\ D, A). Clearly, u is real analytic near the closure of D if and only if m(z)
is. Thus, if the boundary of D is not real analytic, then u can fail to be real analytic
near the closure of D.

O

However, Theorem A is still true for certain domains D with non-analytic
boundary.

Example 5.2 Under the hypothesis of Example 5.1, the mapping m : D —
B(0,1) induces a topological isomorphism of sol(D, A) = sol(B(0,1),A). Arguing
in a similar way, we see that the complement of D is holomorphically equivalent
to the complement of the closed unit ball in R?. And the corresponding conformal
mapping induces a topological isomorphism of sol(R?*\ D, A) 5 sol(R2\ B(0, 1), A).
Using the Grothendieck duality and the reflexivity of the spaces sol(B(0,1),A) and

— — — top.
sol(R?\ B(0,1),A), we conclude that sol(R?\ B(0,1),A) = sol(B(0,1),A). Hence
top. —
sol(D, A) < sol(R?\ D, A). Finally, because of the Grothendieck duality, we have

IRE

sol(D, AY sol(R?\ D, AY’

-

IR

sol(D, A).
What is still lacking is an explicit description of this duality (cf. Aizenberg and

Gindikin [1]).
O

6 Duality for solutions of Pu =20

For a domain D € O with real analytic boundary, pairing corresponding to the
duality (5.1) is explicitly defined as follows.



Duality for solutions of Pu = 0 17

Let v € sol(D, A). Denote by £(v) the unique solution to the Dirichlet problem
for the Laplacian in @\ D, with Dirichlet data {(('3/(31&)%}j=mMp_I on @D and zero
Dirichlet data on 9O (cf. (4.4)). There exists an open set Ng(,y € D with piecewise
smooth boundary, such that £(v) still satisfies A E(v) = 0 in a neighborhood of
O \Ng(,,). Set

(Feu) = [, GabE@hu)  (u € sol(D, A). (61)

Then the correspondence v — Fg(,) induces, by Corollary 4.5, the topological
isomorphism sol(D, A) 2 sol(D, A).
Since A = P*P, we have

(and both subspaces are closed).
Moreover, equality (3.3) shows that the restriction of functional (6.1) to the
subspace sol(D, P) is given by

(Feu) = [, Gr(+PEE))  (u € sol(D, P)). (6.2)

Again it follows from Stokes’ formula that the value (Fg(.), u) is independent of
the particular choice of AV, with the properties previously mentioned. By the above,
Fe(v) is a continuous linear functional on the space sol(D, P).

Of course, it is no longer true that to different solutions v; and v; in sol(D, A)
there correspond different functionals F¢(,,) and Feg(y,) on sol(D, P) by (6.2). How-
ever, this still holds if we vary v within sol(D, P) only.

Lemma 6.1 If v € sol(D, P) satisfies
/ Gp(*xPE@),u) =0  for all u € sol(D, P), (6.3)
ONe(w)

then v = 0.

Proof. Take u = v in (6.3). By Stokes’ formula,
0 = [ GrxPO(),
Ko p(xP 6(v),v)

= LDGp&PS@Lv)

LDGP@Pg@Lg@n,

the last equality being a consequence of the fact that v = £(v) up to order p—1 on
dD. As E(v) vanishes up to order p — 1 on 80 and AE(v) =0 in O \ D, we obtain
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by the definition of Green operators

0 = — a(o\D)GP(*PE(v)’g(v))

_ 2
fo\v |P E(v)? dz.

Hence it follows that P £(v) = 0in O\ D.

Consider the section

il

- _Jv in D,
"“{ £(v) in O\D.
It is of class Cf;:l(E|o) and satisfies PO = 0 away from the hypersurface 90.
A familiar argument on removable singularities (see for instance Tarkhanov [13,
Theorem 3.2]) shows that ¥ is actually a solution to P% = 0 on the whole domain
0.

Since ¢ vanishes up to order p — 1 on 00, it follows that ¥ = 0 in O. Hence
v =0 in D, as desired.

: O

Thus, the correspondence v +— Fg(,), provides us with an injective mapping
sol(D, P) — sol(D, P)'. One may ask whether this mapping is surjective. We prove
that this is the case if and only if the domain D possesses a convexity property with
respect to the operator P.

Theorem 6.2 Let D @ O be a domain with real analytic boundary. Assume
that the operator P*P possesses the Unique Continuation Property (U), and has
real analytic coefficients in a neighborhood of D. If, given any neighborhood U of
D, there is a neighborhood U' C U of D such that sol(U’) is dense in sol(D) then the
correspondence v v Fe(,), when restricted to v € sol(D, P), induces the topological
isomorphism

top. —
sol(D, PY = sol(D, P).

This result sharpens Theorem A announced in Introduction.

7 Proof of the main theorem

The main step in the proof consists of verifying the surjectivity of the mapping
v .7:5(,,.).

Let F be a continuous linear functional on sol(D, P). Since sol(D, P) is a sub-
space of Cl,.(F|p), this functional can be extended, by the Hahn-Banach Theorem,
to an F*-valued measure m with compact support in D. We set K = suppm.

As in the previous section, we denote by Q the neighborhood of 8D where the
coefficients of P*P are real analytic. Fix an open set A' € D with piecewise smooth
boundary, such that K C A and N C Q. We first argue formally.



Proof 19

Sketch of the proof of surjectivity. For any u € sol(D, P), we have by
Green’s formula

u(:l:) = _/aMGP(*P*-l Q(z,-),u)
= - [ GrePE(£7(7'G(2, ) w)

whenever z € N.

Suppose that outside of a larger open set N/ @ D with piesewise smooth
boundary K(z,-) = £~ ! x~! G(z,-) can be decomposed into the sum K(z,-) =
Ki(z,-) + Ka(z,-), where K,(z,-) € sol(D, P) is sufficiently smooth in z € N, and
Kq(z,-) is orthogonal to u under the pairing [, Gp(*P E(K3(z,")), u).

Then

u@)=- [ GrPEKi(,)w), zEN,

and so

(Fou) = [ Gr(xPEW),w)

with v(y) = _(dm! Kl('a y))ﬁf‘ .

Hence it follows that v € sol(D, P) and Fg(,) = F, as desired.

O

We now proceed to give a rigorous proof. By Theorem 2.3, the columns of the
Green’s function %7 'G(z,y) belongs to sol(O\ N, A) in the variable y, for each fixed
z € N. In the following we will apply different operators and notations to matrices,
understanding that they hold for each of their columns.

Given any fixedz € N, let K(z,-) = £ (x~'G(z, ), i.e., K(z,y) be the unique
solution to the following Dirichlet problem:

{ A(y,D)K(x,y)zO ' fOT ye-i)-v
(8/0n(y)Y K(z,y) = (8/0n(y)y (+;'(z,y)) for y€ 8D (j=0,1,...,p—1).

Since N C D, it follows from Lemma 4.4 that there is a neighborhood U &€ QUD
of D independent of z € N, such that K(z,-) belongs to sol(U,A). (We use here
the fact that Green’s function is real analytic away from the diagonal in 2 x (2.)

Moreover, K(z,-) is real analytic in € N'NQ because of the Poisson formula
for solutions of the Dirichlet problem (cf. Tarkhanov [14, (9.3.12)].

As mentioned, sol(U, P) is a closed subspace of sol(U,A). Our next goal is to
extract a summand from K(z,-) which corresponds to this subspace, so that the
rest is orthogonal to sol(D, P) in a suitable sense. To this end, we invoke Hilbert
space techniques.

We first recall a result of Nacinovich and Shlapunov [9].

Lemma 7.1 The Hermitian form
—_ P
h(u,v) = /D (Pu, Pv).dz + fo H(PEW,PEW)adz (wv € HY(E])), (T.1)

defines a scalar product on HP(Elp), and the topologies induced in HP(E|p) by
h(-,-) and by the standard scalar product are equivalent.
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Proof. See ibid as well as in Tarkhanov [14, 10.2.3].
O

An easy calculation shows that if moreover v is sufficiently smooth up to the
boundary of D (it suffices v € H*(E|p)) and u satisfies Pu = 0 in D, then

hu,v) == [ Gr(xP E(v),E(w)). (7.2)

By assumption, there is a neighborhood U’ @ U of D such that sol(U'P) is
dense in sol(D, P). We can certainly assume that H?(Ey) N sol(U’, P) is dense in
sol(D, P), for if not, we replace U’ by a smaller neighborhood.

Denote by H; the closure of HP(E|y+) N sol(U’, P) in HP(E|p); we endow H,
with scalar product (7.1). ‘

The following result is a particular case of a general theorem of Shlapunov and

Tarkhanov [11] (see also [14, 12.1.2]).

Lemma 7.2 There ezists an orthonormal basis {e,} in H?(E|y:) N sol(U’, P)
such that the restriction of {e,} to D is an orthogonal basis in H,.

Proof. Consider the mapping R : HP?(E|y:) N sol(U’; P) — H; given by
restricting sections over U’ to D. (It will cause no confusion if we use the same
symbol for a section u € H?(E|y:) N sol(U’, P) and its restriction Ru to D.)

By the Unique Continuation Property (U),, R is injective. Moreover, by Stiltjes-
Vitali Theorem R is compact. It follows that R*R is a compact selfadjoint operator
of zero null-space in the Hilbert space H?(E|y+) N sol(U’, P). (Here R* stands for
the adjoint of R in the sense of Hilbert spaces.)

Let {e,} be a complete orthonormal system of eigenfunctions of the operator
R*R in H?(E|y/) N sol(U’, P) corresponding to eigenvalues {A,}. Since H?(E|y:) N
sol(U', P) is dense in H;, we can assert that

e {e,} is an orthonormal basis in H?(E|y:) N sol(U’, P); and

o the system { Re,} is a basis in H; orthogonal with respect to the scalar product

h(-, ).

Thus, the system {e,} possesses the desired properties, and the lemma follows.

0
Note that the Fourier coefficients of a section u € HP(E|y/) N sol(U’, P) with
respect to the system {e,} are given by

(u,e,,)yrp(E]U,) (1‘» R'R Bu)HP(Elu.)

h(Ru, Re,)

h(u,e,), (7.3)

rl-E- -



Proof 21

where A, = h(e,,e,).
Our next objective is to treat the “projection” of the kernel K(z,-) on the space
HP(E|y:) N sol(U', P). To do this, we need the following technical lemma.

Lemma 7.3 Let {e,} be an orthonormal system in a separable Hilbert space H,
and K(z) be a continuous function on a topological space T with values in H. Then
the Fourier series ¥,(K(z),e,)ye, converges in the norm of H uniformly in z on
compact subsets of T'.

Proof. Denote by H,; the closure of the linear span of {e,} in H. Pick a
complete orthonormal system {b,} in the orthogonal complement of H, in H. Then
{e,}U {b,} is an orthonormal basis in H.

Given any = € T, decompose K(z) into the Fourier series with respect to this
basis. Namely,

K(z) = i(f{(x),e,)yeu + i(K(z),bﬁ)Hb,,.

Hence it follows that

2

N N
K(z) - (Z(K(z),eu)neu + 2 (K@), mybﬂ)

v=1

H
= 3 (K@heul+ 3 (K@), b)al,
v=N+1 p=N41

and so

o N N z

; |(K(:l:),c,,)y|2 < K(‘T) - (Z(K(m))eV)Hev + Z(I(($)7bu)H6#) (7'4)

v=N+1 v=1 u=1 H

forall v =1,2,....

Since the Fourier series converges in the norm H, for every z° € T and ¢ > 0
there is a number N° depending on z° and ¢, such that

< &
H

NO NO
“K(mo) - (Z(K(Io)a e,) e, + Z(K(mo): bn)an)

r=1 u=1

Moreover, from the continuity of K(x) at z° we deduce that the set

N(a:o):{.rET:

<e}
H

v=1 p=1

NO ND
K(z) - (}:(m), e e + 3 (K(2), mm)

is an open neighborhood of z°.
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Applying (7.4) yields

o0 O

> K@ e)ul' £ 3 [(K(z),e)nl’

yv=N+1 y=NOC+1
< 52,

for all N > N° and z € N (z°%). Therefore, the series 3", (K(z),e,)ne, converges in
the norm of H uniformly in z € M (z°).
As each compact subset of T can be covered by a finite number of such neigh-
borhoods, the lemma follows.
a
By the above, K(z,-) is 2 continuous function of z € N with values in the
Hilbert space H?(E|ys) N sol(U’,A). Lemma 7.3 thus shows that the series

w -—

I\’l(I,') = Z(K(I,'),@,,)Hp(g|u,)6y (75)

v=1

converges in H?(E|y) N sol(U’, A) uniformly in z on compact subsets of V. As the
same holds for the derivatives of K(z,-) with respect to the = variables, we conclude
that K,(z,-) is of class C* in z € N.

We now apply the operator € to both sides of equality (7.5). Since £ determines
a topological isomorphism of sol(D, A) — sol(®\D, A), there is an open set N’ € D
with piesewise smooth boundary, such that every £(e,) extends to a solution of

Av =0 in a neighborhood of O \ A, and the series

o0

£ (I{l(mﬁ )) = Z (K(Ia ')v eU)Hp(E|U,) 5(6,,)

v=1

converges in sol(O \ V', A). (By construction, A" is larger than A, since otherwise
we obtain a gain in analyticity.)

Lemma 7.4 For each u € sol(D, P), it follows that

u(z) = — /3 | GrPE(K(2,),u), T EN. (7.6)

Proof. Pick a system {b,} in H?(E|p) N sol(D, A) such that {e,} U {b,} is a
basis in this space orthogonal with respect to scalar product (7.1).

For a fixed z € M, we decompose K(z,-) into the Fourier series with respect to
this basis, i.e.,

K(:c,-) — ih )eu+iwb“

v=1 ep,eu) p=1 h(b,, e,)
c- h(K(=,),b,)

= z,'), e e, + b
uz=:1 HP{EE ) Zl h(bu,eu) g

Koo+ 5 A1)

b, 7.7
=1 h(bm eﬂ-) . ( )

Il
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the second equality being a consequence of (7.3). (Note that the series on the right-
hand here converges in the norm of H?(E|p).)
As £ is a topological isomorphism of

H?(E|p) N s0l(D, A) — H?(E|p\5) N s0l(O\ D, A),
we may apply € to (7.7) termwise, thus obtaining

*1G(z, ) = £(K(z,")) +E—W)‘:)b“)g(b,,), reN,

the series converging in the norm of H?(E|\5).

Having disposed of this preliminary step, we can now return to representation
(7.6). Let u € sol(D, P). By assumption, there exists a sequence {u;} in H?(E|y)N
sol(U', P) converging to u together with all derivatives uniformly on compact subsets
of D. Given any z € N, we have therefore by Green’s formula -

u@) = - [ Ge(xP+"G(s,),u)
= —lim jaMGp(*P*“ G(z,),u;)

J=0

= — lim '/'91) Gp(»P *1 Q(I,'),U:‘)s

J=00

the second equality being a consequence of Lemma 1.1, and the third equality being
a consequence of Stokes’ formula.
On the boundary of D, we have u; = £(u;) up to order p — 1. Therefore

u(g) = ~fim [ Gp(xP+7G(z,),£(x;))
= Jll’m h(u;,K(z,")),

which is due to (7.2).
On the other hand, since every u; is in HP(E'|U:) N sol(U’, P), we may write

e =]

u; = Z (ujs eV)Hp(E[U,) €y,

v=1

where the series converges in the norm of H?(E|y+). Combining this with (7.7) yields
h(u;, K(z,-)) = h(u;, Ki(z,)),

for the systems of sections {e,} and {b,} are pairwise orthogonal with respect to

R(-,-).

Thus,
u() = lim h(u;,K(z,")
j=—o00
= —Jim | Gp(xPE(Ki(z,)),E(x;)

= = [ CrPE (Ku(, ) ),
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for z € N. This is precisely the assertion of the lemma.

We are now in a position to finish the proof of Theorem 6.2.
Proof of Theorem 6.2. From Lemma 7.4 it follows that

(F,u) = /aw' Gp(xP E(v),u)  for all u € sol(D, P),

where v(y) = —(dm, Ki(-,y)\w B

One easily verifies that Pv = 0 in U'. Hence v € s0l(D, P) and Fg(,) = F,
which proves the surjectivity of the mapping v — Fg(y).

When combined with Lemma 6.1, this shows that the correspondence v = Fg(,)
induces the isomorphism of vector spaces

sol(D, P) S sol(D, PY'.

We now argue as at the end of the proof of Theorem 3.4 to conclude that this
algebraic isomorphism is in fact a topological one.

For this purpose, we note that the spaces sol(D, P) and sol('D P)’ are both
spaces of type DFS. (For sol(D, P), see the proof of Theorem 1.5.5 in Morimoto
(7, p.13]. For sol(D, P), see Lemma 1.1 above.} As the Closed Graph Theorem is
correct for linear maps between spaces of type DFS (see Corollary A.6.4 in Morimoto
(7, p.254]), to see that v = Fpg(,) is a topological isomorphism, it suffices to show
that it is continuous.

The latter conclusion is however a consequence of the following two facts already
proved:

e the mapping v — F, of sol(O\ D, A) — sol(D, A) is continuous (cf. Theorem
3.4); and

e the mapping v — £(v) of sol(D,A) — s0l(O \ D, A) is continuous (cf. Corol-
lary 4.1).

This completes the proof.

Let us mention an important consequence of Theorem 6.2.

Corollary 7.5 Under the hypotheses of Theorem 6.2, it follows that

— top.
s0l(D, P) = s0l(D, P).

Proof. By Lemma 1.1, sol(D, P) is a Fréchet-Schwartz space. Therefore, it is
a Montel space. That sol(D, P) is a Montel space implies that it is reflexive, i.e.,
under the natural pairing, we have

top.
(sol(D, P)) & sol(D, P),

where both sol(D, P)" and (sol(D, P)')’ are provided with the strong topology. Thus,
the desired statement follows immediately from Theorem 6.2.

0
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8 The converse theorem

Assume that D is a relatively compact subdomain of O with real analytic boundary.

We have proved that if, for any neighborhood U of D, there exists a neighbor-
hood U’ C U of D such that sol(U’, P) is dense in sol(D, P), then the correspondence
v — Fg(y) induces the topological isomorphism of s0l(D, P) onto the dual space to
sol(D, P).

We now that this condition is almost necessary.

Theorem 8.1 If the map v ~— F(,) of sol(D, P) — sol(D, P) is surjective,
then sol(D, P) is dense in sol(D, P).

Proof. Let F be a continuous linear functional on sol(D, P) vanishing on
sol(D, P). By the Hahn-Banach Theorem, our statement will be proved once we
show that F = 0.

By assumption, there is a v € sol(D, P) such that F¢(,) = F. It follows that

(}_5(0):”> = (fav)
= O’

and so an argument similar to that in the proof of Lemma 6.1 shows that v = 0 in
D. Hence F = 0, as desired. ‘

O

9 Duality in complex analysis

Aizenberg and Gindikin [1] obtained Theorem A, formulated in the Introduction, in
the case where P is the Cauchy-Riemann operator in C*, and n = 1,2 (for simply
connected domains with real analytic boundary in C, and for the so-called (p, q)-
circular domains in C?).

Stout [12] proved Theorem A for the Cauchy-Riemann operator in C* (n > 1)
and for domains D possessing the following property:

o the Szego kernel K (-, () of D has real analytic boundary values for each { € D.

This condition is known to hold on some explicitly given domains. One supposes
it to hold on strictly pseudoconver domains with real analytic boundary. But, as
far as Stout [12] has been able to determine, this result has not been written out
anywhere. '

However, the approrimation condition in Theorem A holds true for strictly
pseudoconvex domains in C* (cf. Hérmander (4]). Thus, our viewpoint sheds some
new light on the result of Stout [12].



26 Section 9
Theorem 9.1 Let D @ C*(n > 2} be a strictly pseudoconver domain with real
analytic boundary. Then the correspondence v — Fg(,), when restricted to v €

hol(D), induces the topological isomorphism

Here we use hol for the spaces of holomorphic functions.
Proof. This follows immediately by combining Theorem 6.2 with the Runge

theorem as stated in Hormander [4].
O

We note that, because the Cauchy-Riemann operator in C is determined elliptic,
Theorem 9.1 holds true for spaces of holomorphic functions in every bounded domain

in € with real analytic boundary.
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