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Abstract·

Let P be a determined or overdetermined elliptic differential operator of
order p with real analytic coefficients on an open set X eRn. Using Green's
functions for the Laplacian P- P we prove that the dual for the space 301(V)
of solutions to the system Pu = 0 in a domain 1J lE X with real analytic
boundary can be represented as the space 301(1J) of solutions on neighbor­
hoods of the closure of 1), provided the domain 1) possesses some convexity
property with respect to the operator P.
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The aim of this paper is to give representations of the strong dual of the space
of solutions of a linear elliptic system Pu = 0 of partial differential equations on
an open subset of Rn. We consider both determined and overdetermined elliptic
systems.

Let U be an open subset of the domain X c IRn where the operator P is defined.
Denote by 801(U, P) the vector space of all smooth solutions to the equation Pu = 0
on U, with the usual Frechet-Schwartz topology. We will write it simply 801(U)
when no confusion can arise.

Denote by 801(U)' the dual space of 801(U), i.e., the space of all continuous linear
functionals on 801(U). We tacitly assurne tha~ this dual space 80l(U)' is endowed
with the strong topology, i.e., the topology of uniform convergence on every bounded
subset of sol (U).

Any successful characterization of the dual space 80/(U)' results in the analysis
of solutions to Pu = 0 (Golubev series, etc., see Havin [3), Tarkhanov [14)).

There are a few classical examples of representation of this dual space, such as
Grothendieck duality and Poincare duality (see for instance Tarkhanov [15, eh.5)).
The Grothendieck duality is of analytical nature; it has been of particular interest
in complex analysis. On the other hand, the Poincare duality can be stated in an
abstract framework.
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For determined elliptic operators of the type p. P we obtain in Section 3 an
analogue of the duality result of Grothendieek {2] (cf. Mantovani and Spagnolo {6]).
Note that the system p.Pu = 0 is a straightforward generalization of the Laplace
equation. In this way we obtain what we shall eall generalized harmonie functions,
or simply harmonie /unctions when 00 eonfusion ean arise.

Dur main result for general elliptic systems is concerned with the ease where
the coefficients of P are real analytic and U is a relatively compact subdomain of X
with real analytic boundary. In this ease we prove the following theorem.

Theorem A. Let the eoefficients 0/ the operator P be real analytie on X and
V (§ X be a domain with real analytie boundary. Suppose that, given any neigh­
borhood U 0/ V J there is a neighborhood U' c U 0/ V sueh that sol(U' ) is dense in
sol(V). Then

I top. -
sol(V) ~ sol(V).

In fact, in Sections 6, 7 below, we will formulate and prove a stronger statement
with weaker assumptions on analyticity. Moreover, in these sections we provide also
an explicit formula for the pairing.

In fact, there is a trasparent heuristic explanation of this duality. Given any
solution v E sol(V), the Petrovskii Theorem shows that v is real analytic in a
neighborhood of V. On the other hand, eaeh u E sol(V) is real analytic in V, and
so u is a hyperfunetion there. As the sheaf of hyperfunetions is fiabby, u ean be
extended to a hyperfunction in X with a support in the closure of V. Thus, v can
be paired with every u E sol(V).

By Runge Theorem, the approximation assumption of Theorem A holds for
every determined elliptic operator with real analytie coefficients or in tbe case where
P is an elliptie operator witb constant eoefficients and V is eonvex.

The approximation condition on the eouple P and V in this theorem is to
some extent an analogue of the so-ealled approximation property introduced by
Grothendieck [2]. In several complex variables a elose eoneept is known as Runge
property (cf. Hörmander [4]).

For the space of holomorphie funetions in simply connected domains in C and in
(p, q)-cireular domains in C 2 a similar result was obtained by Aizenberg and Gindikin
[1]. For the spaces of harmonie and holomorphic functions a similar result was
recently obtained by Stout [12]. However they eonstrueted isomorphisms different
from ours. The advantage of our approach is the fact that it highlights the elose
conneetion between the duality of Theorem A and the Grothendieek duality (see
Seetion 3).

1 Preliminaries

Assurne that X is an open set in Rn, and E = X X Ck , F = X X Cl are (trivial)
veetor bundles over X. Sections of E and F of a dass ~ on an open set U C X ean
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be interpreted as columns of complex valued functions from C!(U), that is, C!(Elu) ~
[lt(U))\ and similarly for F.

Throughout the paper we will usually write the letters u, v for sections of E,
and f, 9 for sections of F.

A differential operator P of order p ~ 1 and type E -+ F can be written in
the form P(x, D) = Llol:5p Po(x)DO, with suitable (l x k)-matrices Po(x) of smooth
functions on X.

The principal symboll1(P) of P is a function on the cotangent bundle of X with
values in the space of bundle morphisms E -+ F. Given any (x, c) E X x R'\ we
have cr(P)(x, e) = Llol=p Po(x )eo. .

We say that P is elliptic if tbe mapping cr(P)(x,~) : Ck -+ C' is injective for
every x E X and e E !Rn \ {O}. Hence it follows that 1 2:: k; we say that P is
determined elliptic if I = k, and overdelermined elliptic if I > k.

Every elliptic operator is hypoelliptic, Le. all distribution sections satisfying
Pu = 0 on an open set U of X are infinitely differentiable there. If U is an open
subset of X, then we denote by 501( U, P) the vector space of all Coo solutions to the
equation Pf = 0 on U. We will write it simply 50/(U) when no confusion cau arise.

We endow the space 50/(U) with the topology of uniform convergence on com­
pact subsets of U. This topology is generated by the family of seminorms

IluIIC(EIKl = sup lu(x)l,
rEK

where K runs over all compact subsets of U.

Lemma 1.1 If U C X is open, then the topology in 801(U) eoineide5 with that
indueed by C~(Elu). In partieu/ar, 501(U) is a Freehet-Sehwartz spaee.

Proof. By apriori estimates for solutions of elliptic equations, if K' and K"
are compact subsets of U and K' is a subset of the interior of K", then

for all u E 80/(U) l (1.1 )

with ca constant depending only on K', K" and j. Hence it follows that the original
topology on 501(U) coincides with that induced by Cl~~(Elu). To finish the proof
we use the fact that C;:(Elu) is a Frechet-Schwartz space.

o
Throughout this paper we assume that the operator P possesses the following

Unique Continuation Property:

(U)6 given any domain V c X, ij u E so/(V) vanishes
on a non-empty open subset ofV, then u =0 on V.

Here and in the sequel, by a domain is meant any open connected subset of
Rn. This property holds, for instance, if the coefficients of the operator P are real
analytic.
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It is natural to consider solutions to tbe system Pu = 0 on open sets. However,
some problems require to consider solutions on sets er C X wbich are not open. Here
we are interested not simply in restrictions of solutions to the given set, but also in
tbe loeal solutions of the system Pu = 0 on (7, that is, solutions of the system in
some (open) neighborhoods of (1.

U (7 is a closed subset of X, then sol(0') stands for the space of (equivalence
classes of) loeal solutions to Pu = 0 on (7. Two such solutions are equivalent if there
is a neighborhood of 0' where they are equal. In sol((7), a sequence {u v } is said to
converge if there exists a neighborhood .N of er such that all the solutions are defined
at least in .N and converge uniformlyon compact subsets of .N.

AIternatively, sol«(7) can be described as the inductive limit of the spaces
sol(Uv), where {Uv} is any decreasing sequence of open sets containing 0' such
that each neighborhood of (7 contains some Uv and such that each connected COffi­

ponent of each Uv intersects (7. (This latter condition guarantees that the maps
sol(Uv ) -+ sol(0') are injective. Then the space sol(0') is necessarily a Hausdorff
space. )

Lemma 1.2 Let the operator P possess the Unique Continuation Property (U) •.
Then the space sol( er) is separated, a subset is bounded if and only if it is contained
and bounded in some sol(Uv ), and each closed bounded set is compact.

Proof. This follows by the same method as in Köthe [5, p.379].
o

2 Green's function

Denote by E* = X X (Ck
)' the conjugate bundle of E, and similarly for P. For the

operator P, we define the transpose P' as usual, so that P' is a differential operator
of type P* -+ E* and order p on X.

Fix the standard Hermitian structure in the fibers Ex = Ck (x E X) of E:
(u, v)x = L:~=1 UjVj for u, v E Ck

• This gives the conjugate linear bundle isomor­
phism *E: E -+ E* by (*EV, u)x = (u, v)x for u, v E Ex.

Using matrix operation conventions, we have (*EV, u)x = v*u for u E Ck, where
v* is the conjugate matrix: we have *EV = v* under this identification.

The operator *E also acts on sections of E via (*EU )(x) = *E ( U ( x)) for all
x E X. Thus, for a dass \! of sections of E we have *E: ~(E) -+ ~(E*).

The operator *E is similar to Hodge's star operator on differential forms. We
write simply * when no confusion can arise.

We are now in a position to endow the spaces C:mp(E) and C:mp(P) , consisting
of infinitely differentiable sections with compact supports of E and P respectively,
with (L2

_) pre-Hilbert structures by (u, v)x = Ix (*V, u}x dx.
Under these structures, the operator P has a formal adjoint operator which is

denoted by P*. This is the differential operator of type F -+ E and order p on X
given by P*g (x) = Llol:5p Da(Po(x)* g(x)) for 9 E C~mp(F).
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(2.1 )

The relation between the transposed operator and its (formal) adjoint becomes
clear by using the bundle isomorphism *. Namely, p. = *E1 P'*F (see Tarkhanov
[14, 4.1.4] for more details).

The operator ß = p. P is usua.lly referred to as the genera.lized Laplacian
associated to P. It is easy to see that ß is an elliptic differential operator of type
E -+ E and order 2p on X.

Throughout the paper we shall even assume that the operator ß possesses the
Unique Continuation Property (U)ao Obviously, this implies that P does so.

If P is the gradient operator in Rn, then ß = p. P is the usual Laplace operator
up to a -1 factor. On the other hand, if P is the Cauchy-Riemann operator in Cn

,

then ß = p.P coincides with the usual Laplace operator on IR2n ~ Cn up to a -i
factor.

In the general case, the solutions of the system ßu = 0 are also said to be
generalized harmonie /unctions.

Let 0 @ X be a domain with Coo boundary. Denote by n(x) the unit outward
normal vector to the boundary surface 80 at a point x. The system of boundary
operators {(8/8n )j }j=o,1,...,p-l is known to be a Dirichlet system of order p - 1 on
80.

We formulate the Dirichlet problem for the generalized Laplacian ß in the
following way.

Problem 2.1 Given a section f 0/ E over 0, find a seetion u 0/ E over 0 such
that .ßu = f in 0 and (8/8n)ju = 0 on 80 for j = 0,1, 0 •• ,p - 1.

As in the classical case, Problem 2.1 is verified to be an elliptic boundary value
problem. Moreover, it is formally selfadjoint and possesses at most one solution in
reasonable function spaces for u. So, this problem may be treated by standard tools
in the scale {Ha (EI0) }"eil of Sobolev spaces on 0 (see Roit berg [10]).

From this treatment, we briefly sketch the relevant material on Green's function.
For more details we refer the reader to Roitberg [10] and Tarkhanov [14, 9.3.8].

It turns out that the inverse of the operator corresponding to Problem 2.1 is
integral. Namely, there exists a unique kernel 9(x, y) on 0 x 0 such that, for each
data f E H,,-2p ( Elo), the function

u(x) = !c/i(x,y)!(y)dy (x E 0)

belangs to H"(Elo) and satisfies ßu = f in 0 and (8/8n)ju = 0 on 80 for j =
0, 1, .. 0 ,P - 1. Such a kernel 9(x, y) is said to be the Green's function for Problem
2.1.

We williater give a precise meaning to the integrals in (2.1); specifying to which
spaces the Green 's function belongs.

The Green '5 function 9(', y) is alternatively defined as the solution to the Dirich­
let problem with the data f = 8", the Dirac delta-function supported at y E O. This
data is easily verified to belong to all Sobolev spaces Ha(o) with s < -~.
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Theorem 2.2 The kernel Q is a coo section 01 the bundle E ® E*loxo away
Irom the diagonal 01 0 X O.

Prooe. See Roitberg [10, 7.4].
o

A discussion of the singularity of Q(x, y) at the diagonal {(x, x): x E O} can
be found in Roitberg (10, Th.7.4.3]. For our purposes, it suffices to know that the
mapping (2.1), when restricted to 1 E C:mp(Elo), is a pseudodifferential operator
of type E]o ~ Elo and order -2p. Thus, if f is sufficiently sm~oth, the integral in
(2.1) is actually a usual Lebesgue integral.

Green's formula enables us to prove that the Green's function is a solution of the
adjoint boundary value problem in the y variable. To explain this more accurately,
denote by Ik the identity (k x k)-matrix.

Theorem 2.3 Given any x E 0, we have:

{
.6.'(y, D)Q(x, y) = Or(y) Ik lor y E 0,
(8/8n(y))JQ(x, y) = 0 for y E 80

Proof. See Tarkhanov (14, Th.9.3.24].

(j = 0, 1, ... ,p - 1).
(2.2)

o
We are now in a position to state the symmetry of Green's function in the

variables x and y. This symmetry could be expected from the fact that the Dirichlet
problem is (formally) selfadjoint.

Corollary 2.4 The matrix Q(x,y) is Hermitian, i.e., Q(x,yt = Q(y,x) for all
x,y E O.

Prooe. Indeed, since the solution to Problem 2.1 is unique, it follows from
Theorem 2.3 that

9(y,x) = *r9(x,y) *;1
= Q(x,y)*,

a.s desired.
o

3 Grothendieek duality for harmonie functions

In the sequel, we shall denote by (9 a fixed relatively compact domain in X with
coo boundary 80, as in Section 2.

Inspired by the work of Grothendieck (2] who used solution to .6.v = 0 at infinity,
we shall consider the manifold with boundary 8 = 0 u 80 a.s the compactification
of O.
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We use 6 instead of 0 to conceptua1ly distinguish this manifold with boundary
from the elosed subset 0 of X.

The topology of 0 is given by the following neighborhoods bases:

• If x E 0, then we take the usual basis of neighborhoods of x (for example, the
family {B n O}, where B runs over aB balls in X centered at x) .

• If x E 80, then the basis of neighborhoocls of x is defined to be the family
{B n (0 U 80)}, where B runs over a1l balls in X centered at x.

We shall say that an open set U in 0 is a neighborhood of infinity if U contains
the part 80 at infinity of O.

We shall also need the concept of a solution to ßu = 0 in a neighborhood
B n (0 U 80) of a point x E 80.

By this, we mean any solution to ßu = 0 on the B n 0, (finite part) which
is Coo up to the B n 80 (infinite part) and satisfies (8j8n)iu = 0 on B n 80 for
j = 0,1, ... ,p - 1.

Given an open set U C 0, denote by 801(V, ß) the set of all solutions to ßu = 0
on V.

Lemma 3.1 Let U be a neighborhood 0/ infinity in (). Then 801( V, ß) is a closed
subspace 0/ sol(U n 0, ß).

Proof. Pick a sequence {u..,} in sol(U, ß) converging to a solution U oo in 801(Vn
0, ß). We sha1l have established the lemma if we prove that Uoo is Coo up to the
boundary of 0 and (8jBn)i uoo = 0 on 80 for j = 0,1, ... ,p - 1.

To this end, let V' be a sufficiently thin open band elose to the boundary in 0,
so that 80 c BU' and U' cE U. We can certainly assume that the boundary of V' is
of elass COO.

By the above, the Dirichlet problem for the Laplacian in V' is coercive. Hence
for any integer s ;::: p there is a constant c such that

(3.1 )

whenever u E Ha(Elu') n 801(U',ß).
Let us apply this estimate to a solution u E sol(V, ß). Since the normal deriva­

tives of u up to order p - 1 vanish on the part ao of the boundary of V', we can
assert that the norm of u in Ha(Elu') is dominated by Sobolev norms of the normal
derivatives of u up to order p - 1 on the remaining part of the boundary of V'.
What is especially important here is that this remaining part au' \ 80 is a subset
in V n O. Hence combining the Sobolev Embedding Theorem with interior apriori
estimates (1.1) yields

for a11 u E 801(U, ß), (3.2)
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with K a compact subset of uno, whose interior eontains 8U'\80, and ca eonstant
depending only on 0', K and j.

We can now return to the sequence {u&-,}. It follows from (3.2) that, given any
multi-index a, the sequence of derivatives {DOu,,} is a Cauchy sequence in C(Elu')'
Therefore {u,,} eonverges to a section u E COO(Elu') uniformlyon U' and together
with alt derivatives.

Obviously, uoo = u in U'. This shows at onee that U oo is Coo up to the boundary
of 0 and (8/8n)i uoo = 0 on 80 for j = 0,1, ... ,p - 1, as desired.

o
In the ease where U is an open subset of<5 eontaining 80 we endow 80/(U, ß)

with the topology indueed by 80/(U n 0, ß). Then Lemmas 1.1 and 3.1 show that
80/(U, ß) is a Fn~chet-Schwartz spaee. (For the moment we shall say nothing about
a topology on 80/(U, ß) in the general case.)

We now invoke the construction of the inductive limit of a sequenee of Frechet
spaces in order to define the space 80/(u, ß) also for those elosed sets u in 6 which
are "approximable" by open subsets of <5 containing 80. These are nothing but the
elose subsets of 6 containing the "infinitely far" surface 80.

Next we fix a Green operator Gp for the differential operator P. By definition,
Gp is abidifferentialoperator of type (F*, E) ~ i\n-1T*(X) (where i\n-1T*(X) is
the bundle of exterior differential forms of degree-(n - 1) on X) and order p - 1,
such that dGp(*g, u) = ((Pu, g)x - (u, P*g)x) dx pointwise on X, for all smooth
sections 9 of Fand u of E.

We immediately obtain:

Lemma 3.2 A Green operator for the Laplacian ß is given by

(3.3)

Having disposed of these preliminary steps, we fix now an open subset U of 0
and turn to describing the dual space for 80/(U, ß).

Given any solution v E 80/(6 \ U, ß), we define a linear functional :Fv on
80/(U, ß) as folIows.

There is an open set Nv lE U with piecewise smooth boundary such that v is
still defined and satisfies ßv = 0 in a neighborhood of 0 \ Nt). Put

(u E 80/(U, ß)). (3.4)

It follows from Stokes' formula that the value (Fv , u) is independent ~f the
particular choice of Nv with the properties previously mentioned.

Lemma 3.3 The functional :Fv defined by {3.4} is a continuous linear functional
on the space so/(U, ß).
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Proof. Use estimate (1.1) with K' = 8Nv and j = 2p - 1.

Section 3

o
The following result is related to the work of Grothendieck [2] where the concept

of solution to ßv = 0 regular at the point of infinity of the one-point compactification
of 0 was used.

Theorem 3.4 Let the operator p. P possess the Unique Continuation Property
(U). on X. Then for each open set U CO, the correspondence v 1-+ :Fv induces a
topological isomorphism

top. .-.
sol(U,ß)' ~ sol(O\U,ß).

Praof. Pick a continuous linear functional :F on sol(U, ß). Since 801(U, ß) is a
subspace of C'oc(Elu), the space of continuous sections of E Qver U, this functional
can be extended, by the Hahn-Banach Theorem, to an E*-valued measure m with
compact support in U. Set I< = 8uppm.

Let N @ U be any open set with piecewise smooth boundary such that K c N.
For each solution u E 801(U, ß), we have, by Green's formula,

u(x) = - f Ga(Q(x,y),u(y))iaN
(x E N).

(Here Q(x, y) is the Green's function of the Dirichlet problem for the Laplacian in
0, as in Section 2.) Therefore

(:F, u) = fu (dm, u)x

= f G~(*V, u),
ioN

where v(y) = - *;1 fu(dm, Q(., Y))r'
Now we look more closely at the properties of this function v called the "Fan­

tappie indicatrix'" of:F. Since jj.'(y, D)Q(x, y) = br(y) Ik, we deduce that ßv = 0
away from K.

Moreover, Theorems 2.2 and 2.3 show that v is Cco up to the boundary of 0
and satisfies (8j8n)iv = 0 on 80 for j = 0,1, ... ,p - 1.

From what has already been proved, it follows that v E 801(0 \ U, Ll) and
:F = :Fvo Dur next claim is that such avis unique.

To this end, we let v E sol( c5 \ U, ß) satisfy

for all U E 801(U, 6.), (3.5)

where Nv @ U is an open set with piecewise smooth boundary, such that v is still
defined and satisfies ßv = 0 in a neighborhood of 0 \ Nv .
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We represent v in the complement of N'v by Green's formula. This is possible
because of (8/8n)jv = 0 on 80 for j = 0,1, ... ,p - 1. We get

v(y)=_*;l ( Ga(*V(x),Q(x,y)) foryEO\!\i:.
JaAf.

For any fixed y E 0 \ U, we have Q(., y) E 801(U, Ll), and so v(y) = 0 by
condition (3.5). Since the operator p.P possesses the Unique Continuation Property
(U)., v =0 if U c O. To complete the proof in the case where U is not contained in
0, we use the Runge Theorem for solutions of the equation Llu = 0 (cf. Tarkhanov
[14, 5.1.6]).

There exists an open set N' @ U with the following properties:

• N'v @ N, and

• the complement of N has no compact connected components in U.

(The second property can always be achieved by adding all compact connected
components of U \ N to N.)

Fix y E 0 \N'. Then each column of the matrix Q(., y) is in sol(N', Ll). Accord­
ing to the Runge Theorem, it can be approximated uniformlyon compact subsets of
o by solutions in sol( U, Ll). Let {u y } be a resulting sequence for Q(', y), so that the
columns of U v belong to sol(N, tJ.) and U v ------t Q(., y) uniformlyon compact subsets
of O.

Applying (1.1) we can assert that the derivatives up to order p - 1 of U y also
converge to the corresponding derivatives of Q(., y) uniformlyon compact subsets of
N. Therefore,

v(y) = - lim ( Ga(*v, uv )
v-oo Ja}/tl

= - lim 0
v-co

= o.

Thus, v = 0 in 0 \ N, i.e., v is the zero element of sol(6 \ U, tJ.).
We have proved that the correspondence ~ l-+ F v induces t.he isomorphism of

vector spaces

80/(8 \ u, Ll) .=. 801(U, ß)'.

We are now going to invoke an operator-theoretic argument to concIude that this
algebraic isomorphism is in fact a topological one.

To this end, we note that the spaces 801(0\U, Ll) and 801(U, ß)' are both spaces
of type DFS. (For 801(0 \ U, tJ.), see the proof of Theorem 1.5.5 in Morimoto [7,
p.13]. For 801(U, tJ.)', see Lemma 1.1 above.) As the Closed Graph Theorem is correct
for linear maps between spaces of type DFS (see Corollary A.6.4 in Morimoto [7,
p.254]), to see that v l-+ F v is a topological isomorphism, it suffices to show that it is
continuous. This latter conclusion, however, is obvious from the way the inductive
limit topology is defined, and the construction of F v • This completes the proof.

o
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One may conjecture that Theorem 3.4 is still true for arbitraryopen sets U in
O. But we have not been able to do this.

4 A corollary

In this section we derive the following consequence of Theorem 3.4.

Corollary 4.1 Let V <S 0 be a domain with real analytic boundary. Assume
that the operator ß satisfies the Unique Continuation Property (U). on X and its
coefficients are real analytic in a neighborhood 01 the boundary 0/ D. Then it lollows
that

,t~. _
sol(V, ß) = sol(V, ß). (4.1)

Before proving this corollary, we briefly discuss a result of Morrey and Nirenberg
[8] to be used in the proof.

Theorem 4.2 Let ß be a detennined strongly elliptic differential operator 01
order 2p with real analytic coefficients on X. Assume that u is a solution to ßu = 0
in a domain V C x. 11 u vanlshes up to order p-1 on an open real analytic portion
S 01 the boundary 0/ V, then /or each point Xo E S there is a neighborhood N(xo)
on X depending only on the operator ß and the domain near Xo, such that u may be
extended as a solution 0/ ßu = 0 Irom N(xo) nV to the whole neighborhood N(xo).

Proof. See Morrey and Nirenberg [8].
o

The important point to note here is that the neighborhood N(xo) in Theorem
4.2 is independent of the particular solution u.

In fact, Morrey and Nirenberg [8} proved the existence of N(xo) by showing
that there is areal r > 0 such that, for any u E sol(V, ß) vanishing up to order
p - 1 on S, the Taylor series of u at Xo converges in the ball B(xo, r). Thus, the
solution u holomorphically extends to a neighborhood Nxo of Xo in Cn

).

We are going to apply this corollary in the case where ß = P* P is the general­
ized Laplacian. To this end, we have to verify that the Laplacian is strongly elliptic
(this notion becomes clear below).

Lemma 4.3 I/ P is an elliptic differential operator 01 order p, then the operator
ß = P* P is strongly elliptic 0/ order 2p.

Proof. What is to be proved is that, given any non-zero vector zECk, we
have

Re v·u(ß)(x, ~)v f 0 for all (x,~) E X X (!Rn \ {O}).
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Suppose the lemma were false. Then there is a non-zero vector zECk such
that Re v·q(ß)(x, ~)v = 0 for sorne (x,~) E X x (IRn \ {O}) However,

Re v·u(ß)(x,~)v - Re (q(P)(x,()vt(u(P)(x,())

_ lu(P)(x,()vI 2
,

and so v = 0 because u(P)( x, {) : Ck -+ C' is injective. This contradicts our
assumption.

o
We also need a slightly modified version of Theorem 4.2, aversion which relates

to inhomogeneous elliptic boundary value problems.

Lemma 4.4 We keep the assumptions 0/ Theorem ..f.2. Let {Bi} j;;:;o 1•... ,1'-1 be a
Dirichlet system 0/ order p - 1 with real analytic coefficients on S. TI the Dirichlet
data Uj = Bjuls (j = 0,1, ... , p - 1) 01 a solution u to ßu = 0 in V are real
analytic on S, then lor each point Xo E S there exists a neighborhood N(xo) on X
depending only on ß, lhe domain V near xo and {Uj}, such that U may be exlended
to a solution 0/ ßu = 0 on N(xo) ..

Proof. For j = p, p + 1, ... , 2p - 1, set Bi = (a/ an)j, the j th derivative along
the unit outward normal vector to S. This completes {Bi }j;;:;O.I •...•1'-l to a Dirichlet
system of order 2p - 1 with real coefficients on S.

By the Cauchy-Kovalevskaya Theorem, there is a unique solution u' to the
Cauchy problem

ln N",
on S
on S

(j = 0, 1, ... ,p - 1),
(j = p, p + 1, ... , 2p - 1),

(4.2)

defined on some neighborhood .AI of S in X. (We observe at onee that u' is real
analytic in N.)

Let .AI:ro be the neighborhood of xo which is guaranteed by Theorem 4.2. We
can certainly assurne that u' is defined in .AI:ro, for if not, we replaee .AI:ro by .AI:ro nN.

By (4.2), the difference u" = u - u' satisfies the equation ßu" = 0 in V n.AI
and vanishes up to order p - 1 on S.

Repeated applieation of Theorem 4.2 enables us to assert that there is a neigh­
borhood of Xo on X depending only on ß and the domain V nN near xo, such that
u" may be extended to a solution of ßu" = 0 in this neighborhood. To shorten no­
tation, we eontinue to write .AI:ro for this new neighhorhood. Obviously, u = u' + u"
extends to Nxo , and the lemma follows.

o
We are now ahle to prove Corollary 4.1.
Proof. Hy Theorem 3.4, we shall have estahlished the eorollary if we prove

that
..... top. , _

80/(0 \ V, ß) ~ sol(V, ß). (4.3)
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To this end, define a mapping E: sol(V,6.) --+ 801(0 \ V, 6.) in the following
way (cf. Tarkhanov [14, 10.2.3]).

Given any u E sol(V,6.), there exists a unique solution v to the Dirichlet
problem

{

6.v = 0
(8j8n)~v = (8j8n)iu
(8/8n)'v = 0

In 0 \ V,
on ErD (j = 0, 1, , p - 1),
on 80 (j = 0, 1, ,p - 1).

(4.4)

By the regularity of solutions to the Dirichlet problem, v is Coo up to the
boundary of 0 \ V and so v E so/(() \ V).

Let us denote by n the neighborhood of 8D where the coefficients of P* P are
real analytic. By the Petrovskii Theorem there is a neighborhood n' of 8D where u
is real analytic. Since the Dirichlet data {(8 j qn)iu }i=O.l, ... ,p-l are real analytie on
the real analytic open portion 8V of the boundary of n' \ V and 8V is compact,
Lemma 4.4 shows that there is a neighborhood Nu of <5 \ V such that v extends as
a solution of 6.v = 0 to Nv • Moreover,.Nu depends only on 6., the domain n' \ V
near 8V and u.

For our case, we ean derive a little bit more of information on Nv than that
given by Lemma 4.4. Namely,.Nu depends on the domain n' UD:::> Nu :::> V of u

rather than on u. Indeed, the difference v - u satisfies 6.(v - u) = 0 in the open
set .Nu \ V and vanishes up to order p - 1 on the real analytic portion av of its
boundary. Hy Theorem 4.2, there is a neighborhood N of Nu \ V depending only
on 6. and Nu \ V near 8V, such that v - u extends to a solution on N. Then
v = u + (v - u) also extends to.N, and so we can add.N to N v.

It follows that v E so/(O\ V,6.). We set E(u) = v, thus obtaining the mapping
E: sol(V,~) --+ sol(<5 \ V, 6.).

Since the solution of the Dirichlet problem in V is unique, the mapping E is
injective. On the other hand, since this problem is solvable for all Dirichlet data., the
mapping E is surjective. In other words, E is an isomorphism of the vector spaces

so/(V,~) -=. sol(O \ V, ~).
We now argue as at the end of the proof of Theorem 3.4 to conclude that this

algebraic isomorphism is in fact a topological one. Since sol(V,~) and so/(0\ 'D,~)
are both spaces of type DFS, we are reduced to proving that E is continuous.

Ta do this, pick a sequence {u~} in sol(V, ~) converging to zero. By the
definition of induetive limit topology, there is a neighborhood N{uJ'} of V such that
each u~ is defined in N{uJ'} and U ll --+ 0 uniformlyon compact subsets of N{uJ'}'

Set Vv = E( u~). From what has already been proved it follows that there is a
neighborhood N{vJ'} of <5 \ V such that all the v~ are defined in .N{vJ'}'

As the Dirichlet problem in 6 \ V is well-posed, we can assert that V~ --+ 0
uniformlyon <5 \ V. The same holds also for the derivatives of {v lI }. We have
however to show that v~ --+ 0 uniformlyon some neighborhood of 6 \ v.

For this purpose, we find an r > 0 and a finite number of points XI, . .• ,XJ on
fYD such that

• the balls {B(xi,r)}i=l .... ,J cover aVj and
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• for any 11 and j, the Taylor series of V ll at x j converges in the ball B(x j, r).

(That such rand {Xi} exist, follows from the comment on Theorem 4.2.)
o

Let N' = (0 \ V) U (Uf=lB(xj, i)). This is a neighborhood of <5 \ V, and we
bave

J

sup Ivv(x)1 ~ sup IVv(x)1 + E sup Ivll (x)l. (4.5)
xEN 2:EO\D j=l 2:EB(rj.~)

As mentioned, sUPrEO\D Ivll (x)I--+ 0 when 11 --+ 00. It remains to estimate eacb

term SUP2:EB(2:j,i) Ivll ( x)1·
Since the Taylor series of V v at Xj converges in tbe ball of radius r, we obtain

by the Cauchy-Hadamard /ormula

Therefore

I_D_a_v~....../_XJ,--) I~ const(v) U)"'I

sup Ivll (x)1 =
xEB(xj.~ )

for all a E Z+.

We may now invoke the Theorem on Dominated Convergence to conclude that

= 0,

the last equality being a consequence of the fact that the derivatives of {vv} converge
to zero uniformlyon ErD.

Thus, (4.5) shows that the sequence {vv} converges to zero uniformlyon N. It
follows that {v ll } converges to zero in the topology of 80/(<5 \ V, .6.), and so & is
continuous. This completes the proof.

o
An advantage in describing duality by (4.1) is the fact that it also provides an

explicit formula for the pairing.

Corollary 4.5 Under the hypothesis 0/ Corollary r1, let :Fv be defined by (9.4).
Then the correspondence v ........ :Fe(v) induces the topological isomorphism (4.1).

Proof. This follows from Theorem 3.4 and the proof of Corollary 4.1.
o
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5 Miscellaneous

As follows, the analyticity of the boundary of V is essential to the validity of Corol­
lary 4.5 (cf. Stout [12]).

Example 5.1 Ir P is the Cauchy operator in X = lR2, then p.P is the usual
Lapla.ce operator ß in ]R2 up to the factor -~. Assurne that V is a bounded domain
in]R2 with conneeted boundary ErD of dass C'2. Aeeording to the Riemann Theorem,
V is holomorphically equivalent to the unit ball B(O, 1) in lR'2, Le., there exists a
conformal mapping m : V --Jo B(O,l). Moreover, it ia known that m is of dass Cl
up to the boundary of V) and m' i- 0 on V. We denote by X

O the point of V such
that m(xO

) = O. Let" = B(xO
, R), where R a positive number, and V (§ B(xO

, R).
For u(x) = log I;:y:) I, an easy veri fication shows that t"(u) (x) = log Ix~xo I belongs

to 801(" \ V, ß). Clearly, u is real analytic near the closure of V if aod only if m(x)
iso Thus, if the boundary of V is not real analytic, then u ean fail to be real analytic
near the closure of V.

o
However, Theorem A IS still true for certain domains V with non-analytic

boundary.

Example 5.2 Under the hypothesis of Example 5.1, the mapping m : V --Jo

B(O, 1) induces a topological isomorpbism of sol(V, ß) -=. 801(B(0, 1), ß). Arguing
in a similar way, we see that the complement of V is holomorphically equivalent
to the complement of the closed unit ball in IR '2 . And the corresponding conformal

......... - ~ .........
mapping induces a topological isomorphism of sol(JR'2 \ V, ß) ~ 801(lR2 \ B(O, 1), ß).
Using the Grothendieck duality and the reflexivity of the spaces so/(B(O, 1), ß) aod

_ _ top.

80/(lR.2 \ B(O, 1), ß), we conclude that 80/(IR'2 \ B(O,I), 6) '" 80/(B(0, 1),6). Hence
top. __

801(V, ß) '" sol(R2 \ V, 6). Finally, because of the Grothendieck duality, we have

sol(V, ß)'
top. _

~ sol(lR.2 \ V, 6)'
top.

~ sol(V, Ll).

What is still lacking is an explicit description of this duality (cf. Aizenberg and
Gindikin [1]).

o

6 Duality für solutions of Pu = 0

For a domain V (§ 0 with real analytic boundary, pairing corresponding to tbe
duality (5.1) is explicitly defined as follows.
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Let v E sol(V, ß). Denote by E( v) the unique solution to the Dirichlet problem
for the Lapla.cian in 0 \ V, wi th Dirichlet data {(a/an)jv }j=O.I •...•p-1 on &V and zero
Dirichlet data on ao (cf. (4.4)). There exists an open set Ne(v) @ V with piecewise
smooth boundary, such that E(v) still satisfies ß E(v) = 0 in a neighborhood of
o \ Ne(v). Set

(u E sol(V, ß)). (6.1 )

Then the correspondence v 1-+ :Ft(v) induces, by Corollary 4.5, the topological
- ew

isomorphism so/(V, ß) -=. sol(V, ß)'.
Since ß = p. P, we have

sol(V, P) <.....+ sol(V, ~),
sol(V, P) <.....+ sol(V, ß)

(and both subspaces are closed).
Moreover, equality (3.3) shows that the restrietion of functional (6.1) to the

subspace sol(V, P) is given by

(u E sol(V, P)). (6.2)

Again it follows from Stokes' lormula that the value (:Ft:(v) , u) is independent of
the particular choice of Nv with the properties previously mentioned. By the above,
Ft:(v) is a continuous linear functional on the space sol(V, P).

Of course, it is no longer true that to different solutions VI and V2 in sol(V,~)

there correspond different functionals Ft:(vd and .rS(V2) on sol(V, P) by (6.2). How­
ever, this still holds if we vary v within sol(V, P) only.

Lemma 6.1 TI v E sol(V, P) satisjies

f Gp(*P E(v), u) = 0 for all u E sol(V, P),
JaJlt:(W)

then v = o.
Proof. Take u = v in (6.3). By Stokes' formula,

0 - in Gp(*P e(v), v)
8J1t:(t!)

= in Gp(*P E(v), v)
81>

= in Gp(*P E(v), E(v)),
aD

(6.3)

the last equality being a consequence of the fact that v = E(v) up to order p - 1 on
av. As E(v) vanishes up to order p - 1 on ao and ~E(v) = 0 in 0 \ V, we obtain
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by the defini tion of Green operators

o = - f Gp(*PE(v),E(v))
18(o\v)

= - f IP E(v) fl dx.
}O\V

Hence it follows that P E(v) = 0 in 0 \ V.
Consider the seetion

_ {v In V,
v= E(v) in O\V.

Section 7

It is of dass C~~l(Elo) and satisfies Pi) = 0 away from the hypersurface 80.
A familiar argument on removable singularities (see for instance Tarkhanov [13,
Theorem 3.2]) shows that v is actually a solution to Pi) = 0 on the whole domain
O.

Since i) vanishes up to order p - 1 on 80, it follows that i) = 0 in O. Hence
v = 0 in V, as desired.

D
Thus, the correspondence v ~ Ft(vb provides us with an injective mapping

sol(V, P) --t sol(V, P)'. One may ask whether this mapping is surjective. We prove
that this is the case if and only if the domain V possesses a convexity property with
respect to the operator P.

Theorem 6.2 Let V @ 0 be a domain with real analytic boundary. Assume
that the operator p.P possesses the Unique Continuation Property (U)" and hus.
real analytic coefficients in a neighborhood 0/ aD. Ij, given any neighborhood V 0/
V, there is a neighborhood V' C V o/V such that so/(V') is dense in sol(V) then the
correspondence v ~ f!(v), when restrieted to v E sol(V, P), induces the topological
isomorphism

, t~. _
sol(V, P) = sol(V, P).

This result sharpens Theorem A announced in Introduction.

7 Proof of the maiD theorem

The main step in the proof consists of verifying the surjectivity of the mapping
v ~ f!(v)'

Let f be a continuous linear functional on so/(V, P). Since sol(V, P) is a sub-
space of C1oc(EI'D), this functional can be extended, by the Hahn-Banach Theorem,
to an E*-valued measure m with compact support in V. We set K = supp m.

As in the previous section, we denote by n the neighborhood of ßD where the
coefficients of P* P are real analytic. Fix an open set N ~ V with piecewise smooth
boundary, such that !( C N and aN c n. We first argue formally.



Proof 19

Sketch of the proof of surjectivity. For any u E sol(V, P), we have by
Green 's formula

u(x) = - { Gp(*P *-1 Q(x, .), u)
Jall

- -Lr Gp(*P [ ([-1(*-lg(x,.))) ,u)

xEN,

and so

whenever x E N.
Suppose that outside of a larger open set N' @ V with piesewise smooth

boundary K(x,·) = &-1 *-1 Q(x,.) can be decomposed into the surn K(x,') =
K1(x,·) + K'J(x, '), where K1(x,·) E solCD, P) is sufficiently srnooth in x E N, and
K'l(x,·) is orthogonal to u under the pairing JEU'" Gp(*P &(l('l(x, .)), u).

Then

(:F,u) = { Gp(*P&(v),u)
JaN'

with v(y) = -(dm, K 1 (·,Y))Ji.
Hence it follows that v E sol(V, P) and :Fe(v) = :F, as desired.

o
We now proceed to give a rigorous proof. By Theorem 2.3, the columns of the

Green's function *;IQ(X,y) belongs to sol(O\N,6.) in the variable y, for each fixed
x E N. In the following we will apply different operators and notations to matrices,
understanding that they hold for each of their columns.

Given any fixed x E N, let K(x,·) = &-1 (*-IQ(x, .)), Le., K(x, y) be the unique
solution to the following Dirichlet problem:

{
6.(y, D)K(x, y) = 0 for y E V,

(8/8n(y))iK(x,y) = (8/8n(y))i (*;lQ(x,y)) for y E fJD (j = 0,1, .. . ,p-l).

Since N c V, it follows from Lemma 4.4 that there is a neighborhood U @ 11UD
of V independent of x E N, such that K(x,·) belongs to sol(U, 6.). (We use here
the fact that Green 's function is real analytic away {rom the diagonal in 0 x 0.)

Moreover, K(x,.) is real analytic in x E N n n because of the Poisson fonnula
for solutions of the Dirichlet problem (cf. Tarkhanov [14, (9.3.12)].

As mentioned, sol(U, P) is a closed subspace of sol(U, .6.). Our next goal is to
extract a summand from [«(x,·) which corresponds to this subspace, so that the
rest is orthogonal to sol(V, P) in a suitable sense. To this end, we invoke Hilbert
space techniques.

We first recall a result of Nacinovich and Shlapunov [9].

Lemma 7.1 The Hennitian form

h(u,v) = f (Pu,Pv)x dx + f (P&(u),P&(v))rdx (u,v E HP(Elv)), (7.1)Jv JO\V
defines a sealar produet on HP( Elv), and the topologies indueed in HP( EID) by

h(., .) and by the standard sealar product are equivalent.
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Proof. See ibid as weil as in Tarkhanov [14, 10.2.3].
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o
An easy calculation shows that if moreover v is sufficiently smooth up to the

boundary of V (it suffices v E H 2
p(EIv)) and u satisfies Pu = 0 in V, then

h(u,v) = - ( Gp(*Pt"(v),t"(u)).
laD

(7.2)

Hy assumption, there is a neighborhood V' <s V of V such that 801(V'P) is
dense in 801(V, P). We can certa.inly assurne that HP(E1u') n 801(V', P) is dense in
801(V, P), for if not, we replace V' by a smaller neighborhood.

Denote by H'l the closure of HP(El u') n 801(V', P) in HP(Elv); we endow H2

with sca/ar product (7.1). .
The following result is a particular case of a general theorem of Shlapunov and

Tarkhanov [11] (see also [14, 12.1.2]).

Lemma 7.2 There exists an orthonormal basis {e y } in HP(Elu') n 8ol(V',P)
8uch that the restriciion 0/ {e y } to V is an orthogonal basis in H2 •

Prüof. Consider the mapping R: HP(Elu' ) n 80/(V'; P) -. H2 given by
restricting sections over V' to V. (It will cause no confusion if we use the same
symbol for a section u E HP(Elul) n so/(U', P) and its restrietion Ru to V.)

By the Unique Continuation Property (V)$' R is injective. Moreover, by Stiltjes­
Vita/i Theorem R is compact. It follows that R* R is a cornpact selfadjoint operator
of zero null-space in the Hilbert space HP(Elu') n 50/(U', P). (Here R* stands for
the adjoint of R in the sense of Hilbert spaces.)

Let {e y } be a complete orthonormal system of eigenfunctions of the operator
R* R in HP(Elu') n 801(U', P) corresponding to eigenvalues {A y }. Since HP(Elu' ) n
801(U', P) is dense in H2 , we can assert that

• {e y } is an orthonormal basis in HP(Elu' ) n 80/(V', P); and

• the system {Re y } is a basis in H2 orthogonal with respect to tbe scalar product
h(., .).

Thus, the system {e y } possesses the desired properties, and the lemma follows.
o

Note that the Fourier coefficients of a section u E HP(Elu') n 801(U', P) with
respect to the system {e y } are given by

(u,ev)HP(Elu') - L(u,R'R ev)HP(Elu')

1
= A

y

h(Ru, Re v )

1
A

v
h(u, ev ), (7.3)
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where A~ = h(e~, e~).

Dur next objective is to treat the "projection" of the kernel K(x,') on the space
HP(Elu') n soI(U', P). To do this, we need the following technicallemma.

Lemma 7.3 Let {e~} be an orthonormaI system in a separable Hilbert space H,
and K(x) be a continuous /unction on a topological space T with values in H. Then
the Fourier senes EII(K(x), ell)Hell converges in the norm 0/ H uni/ormly in x on
compact subsels 0/ T.

Proof. Denote by H1 the closure of the linear span of {e v } in H. Pick a
complete orthonormal system {blJ} in the orthogonal complement of H1 in H. Then
{e v } U {b~} is an orthonormal basis in H.

Given any x E T, decompose I«x) into the Fourier series with respect to this
basis. Namely,

00 00

K(x) = E(I«x), ell)Hev + E(K(x), b~)Hbw
v=1 ~=1

Hence it follows that

00 00

= E I(K(x),e v )Hj2 + E I(K(x),b~)HI2,
v=N+l ~=N+l

and so

for all v = 1, 2, ....
Since the Fourier series converges in the norm !l, for every XO E T and € > 0

there is a number N° depending on XO and c, such that

Moreover, from the continuity of K(x) at XO we deduce that the set

is an open neighborhood of xO.
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L I(K(x),ev)HI~ <
v=N+l
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Applying (7.4) yields

00

L I(K(x), e1.' )H1 2

v=NO+l

< e2
,

Seetion 7

for all N ~ N° ancl x E .N(XO). Therefore, the series 2:1.'(K(x), e1.')Hev converges in
the norm of H uniformly in x E N(xO).

As each compact subset of T ean be eovered by a finite number of such neigh­
borhoods, the lemma follows.

o
By the above, K (x, .) is a eontinuous funetion of x E N' wi t h values in the

Hilbert space HP(Elu') n sol(U', ß). Lemma 7.3 tbus shows that the series

00

K 1(x,.) = L(K(x, .), ev)HP(Elu/)e1.'
1.'=1

(7.5)

converges in HP(Elu') nso/(U',ß) uniformly in x on compact subsets of N. As the
same holds for the derivatives of K(x,.) with respeet to the x variables, we eondude
that K.(x,·} is of dass Coo in x E N.

We now apply the operator & to both sides of equality (7.5). Since &determines
a topological isomorphism of so/CD, ß) ~ sol(O\V, ß), there is an open set N' € V
with piesewise smooth boundary, such that every &( €1.') extends to a solution of
ßv = 0 in a neighborhood of 0 \ N', and the series

00

&(!<I(X,.)) = L (K(x, .), eV)HP(Elul) &(e1.' )
1.'=1

converges in so/(O \N',ß}. (Hy eonstruction, N' is larger than N, since otherwise
we obtain a gain in analyticity.)

Lemma 7.4 For each u E sol(V, P), it follows that

u(x) = - { Gp(*P &(I<.(x, .)), u), x E N. (7.6)
Ja}!1

Proof. Pick a system {btl } in HP( EIl») n sol(V, ß) such that {e 1.' } U {btl } is a
basis in this space orthogonal with respect to scalar product (7.1).

For a fixed x E N, we decompose K(x,.) inta the Fourier series with respect to
this basis, Le.,

K(x, .)

(7.7)
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the second equality being a consequence of (7.3). (Note that the series on the right­
hand here converges in the norm of HP(Elv).)

As E is a topological isomorphisffi of

HP(Elv) n sol(V, ß) -+ HP(Elo\v) n 801(0 \ V, ß),

we may apply E to (7.7) termwise, thus obtaining

xEN,

the series converging in the norm of HP(Elo\v)'
Having disposed of this preliminary step, we can now return to representation

(7.6). Let u E 801(V, P). By assumption, there exists a sequence {Uj} in HP( Elu') n
801(U', P) converging to U together with all derivatives uniformlyon compact subsets
of V. Given any x E N, we have therefore by Green's formula

u(x) = _ f Gp(*p*-l Q(x,.),u)
iBN

_ -lim f Gp(*p*-lQ(X,'),Uj)
j-oo iaN

= - tim f Gp(*P *-1 Q(x,·), Uj),
j-oo laD

the second equality being a consequence of Lemma 1.1, and the third equality being
a consequence of Stokes' formula.

On the boundary of V, we have Uj = E(Uj) up to order p - 1. Therefore

U(x) = - .tim f Gp(*p*-l Q(x,·),E(uj))
)-00 iaD

.tim h(uj,K(x,·)),
)-00

which is due to (7.2).
On the other hand, since every Uj is in HP(Elu') n 801(U', P), we may write

00

Uj = L (Uj, eY)HP(Elu,) ey ,

y;;;;1

where the series converges in the norm of HP(Elu'). Combining this with (7.7) yields

h (Uj, K(x,.)) = h (Uj, K1(x,·)),

for the systems of sections {e y } and {b lL } are pairwise orthogonal with respect to
h(·, .).

Thus,

U(x) = Jim h (Uj, K(x, .))
)-00

- - .tim f Gp(*PE(!(I(x")),E(uj))
)-00 181>

- - f Gp(*P E (/(I(X,')), u),
laN'
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for x E N. This is precisely the assertion of the lemma.
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o
We are now in a position to finish the proof of Theorem 6.2.
ProoC oC Theorem 6.2. From Lemma 7.4 it follows that

(:F, u) = f Gp(*P &(v), u) for all u E sol(V, P),
Ja}!'

where v(y) = -(dm, Kt (·, y))}/.
One easily verifies that Pv = 0 in U'. Hence v E sol(V, P) and :FE(tJ) = :F,

which proves the surjectivity of the mapping v 1-+ :FE(tJ).

When combined with Lemma 6.1, trus shows that the correspondence v 1-+ :FE(tJ)

induces the isomorphism of vector spaces

sol(V, P) -=. sol(V, P)'.

We now argue as at the end of the proof of Theorem 3.4 to conclude that this
algebraic isomorphism is in fact a topological one.

For this purpose, we note that the spaces sol(V, P) and sol(V, P)' are hoth
spaces of type DFS. (For sol(V, P), see the proof of Theorem 1.5.5 in Morimoto
[7, p.13]. For sol(V, P)', see Lemma 1.1 above.) As the Closed Graph Theorem is
correct for linear maps hetween spaces of type DFS (see Corollary A.6.4 in Morimoto
[7, p.254]), to see that v 1-+ :FE(tJ) is a topological isomorphism, it suffices to show
that it is continuous.

The latter conclusion is however a consequence of the following two facts already
proved:

• the mapping v 1-+ :Fv of sol(c5 \V, ß) -+ sol(V, ß) is continuous (cL Theorem
3.4); and

• the mapping v 1-+ &(v) of sol(V, ß) -+ sol(6 \ V, ß) is continuous (cf. Corol­
lary 4.1).

This completes the prooL
o

Let us mention an important consequence of Theorem 6.2.

Corollary 7.5 Under the hypotheses of Theorem 6.~, it follows that

_ I t~.

sol(V, P) = sol(V, P).

Prooe. By Lemma 1.1, sol(V, P) is a Frechet-Schwartz space. Therefore, it is
a Montel space. That sol(V, P) is a Montel space implies that it is reflexive, i.e.,
under the natural pairing, we have

I top.

(sol(V, P)') ~ sol(V, P),

where hoth sol(V, P)' and (sol(V, P)')' are provided with the strong topology. Thus,
the desired statement follows immediately from Theorem 6.2.

o
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Assurne that V is a relatively compact subdomain of 0 with real analytic boundary.
We have proved that if, for a.ny neighborhood V of V, there exists a neighbor­

hood V' c V of V such that sol(V', P} is dense in sol(V, P}, then the correspondence
v ...... FE(v) induces the topological isomorphism of sol(V, P) onto the dual space to
sol(V, P).

We now that this condition is almost necessary.

Theorem 8.1 If the map v ...... FE(v) 0/ sol(V, P} ~ sol(V, P)' is surjective,
then sol(V, P) is dense in sol(V, P).

Proof. Let:F be a continuous linear functional on sol(V, P) vanishi!J.g on
sol(V, P). By the Hahn-Banach Theorem, our statement will be proved onee we
show that F _ O.

By assumption, there is avE sol(V, P) such that FE(v) = F. It follows that

(FE(v) , v) - (:F, v)
0,

and so an argument similar to that in the proof of Lemma 6.1 shows that v = 0 in
V. Hence F =0, as desired.

o

9 Duality in complex analysis

Aizenberg and Gindikin [1] obtained Theorem A, formulated in the Introduction, in
the case where P is the Cauchy·Riemann operator in Cn , and n = 1,2 (for simply
eonnected domains with real analytic boundary in C, and for the so-called (p, q)­
circular domains in C2

).

Stout [12] proved Theorem A for the Cauchy-Riemann operator in Cn (n ~ 1)
and for domains V possessing the following property:

• the Szegö kernel K(·, () of V has real analytic boundary values for each ( E V.

This condition is known to hold on some explicitly given domains. One supposes
it to hold on strictly pseudoconvex domains with real analytic boundary. But, as
far as Stout [12] has been able to determine, this result has not been written out
anywhere.

However, the approximation condition in Theorem A holds true for strictly
pseudoeonvex domains in Cn (cf. Hörmander [4]). Thus, our viewpoint sheds some
new light on the resuIt of Stout [12].
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Theorem 9.1 Let V € Cn (n ~ 2) be a strictly pseudoconvex domain with real
analytic boundary. Then the corrt:spondence v 1-+ Fe(v)J when restricted to v E
hol(V), induces the topological isomorphism

top. _
hol(V)' ~ hol(V).

Here we use hol for the spaces of holomorphic functions.
Proof. This follows immediately by combining Theorem .6.2 with the Runge

theorem as stated in Hörmander [4].
o

We note that, because the Cauchy-Riemann operator in C is determined elliptic,
Theorem 9.1 holds true for spaces of holomorphic functions in every bounded domain
in C with real analytic boundary.
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