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Smoothing Fano 3-folds

Yoshinori Namikawa,

Introduction

Let X be a Moishezon 3-fold with only Gorenstein terminal singularities. Then we call
X a generalized Fano 3-fold if there is a small birational proper morphism 7 from X
to a Fano 3-fold ¥ with Gorenstein terminal singularities (i.e. —K'y is ample, and the
exceptional locus of 7 is a curve.).

One of main results proved in the paper is the following.

Theorem 11. Let X be a generalized Fano 3-fold with Gorenstein terminal

singularities. Then X can be deformed to « smooth generalized Fano 3-fold.

In particular, any Fano 3-fold with Gorenstein terminal singularities is smoothable
by a flat deformation, and as a consequence, such a 3-fold is a degeneration of the 3-folds
classified by Iskovskih [Is 1, 2] and Mori-Mukai [M-M}. To obtain the result, we do not
use the classification of Fano 3-folds, but use the deformation theory developed in [Na
2]. We note that, as a corollary of the classification, similar results to Theorem 11 are
obtained by Mukai [Mu] and Sano [Sa]. The present work is also motivated by those of
Burns-Wahl {B-W] and Friedman [Fr], in which deformations of surfaces with rational
double points, and of 3-folds with ordinary double points are studied respectively. For
example, it 1s an advantage of owr method that we can estimate the number of singular

points on X in the following sense:

Theorem 13. Assume thal a smooth Fano 3-fold Z is degeneraled to a Fano

3-fold X with Gorenstein terminal singularities by a flat deformation. Then we have
21 = (1/2)e(Z) 2 Epesing(xyt( X, p) + #{ ordinary double points on X }.

Here the invariant u is defined for an isolated rational singularity V' as follows.
Let v : V — V be a resolution of V. Then the dimension of the C-vector space
Coker|(1/2mi)dlog : H‘(V,O;,)@ZC — H'(17,Q{.,)] is independent of the choice of
the resolution by [Na 1, §5]. We denote this number by (V). For an ordinary double
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point of dimension 3, this invariant vanishes. However, it is positive for other Gorenstein
terminal singularities by [Na-St, Theorem(2.2)]. Thus, Theorem 13 gives an estimate
of the number of singular points on X. Note also that, since smooth Fano 3-folds form
a bounded family, their Euler numbers are bounded, and hence, Theorem 13 gives a
universal bound of the number of singular points for all Fano 3-folds.

We shall briefly sketch the proofs of the results. Theorem 11 is obtained as follows.
Let o : Ezt'(Q),0x) — HYX,E2t' (), Ox)) be the natural homomorphism from
the space of 1-st order global deformations of a generalized Fano 3-fold X to the space of
1-st order local deformations of X. When X has only ordinary double points, « is proved
to be surjective (cf. Proposition 4), which is a slight generalization of (4.1) from {Fy]. In
particular, X is smoothable by a flat deformation in such a case because any 1-st order
deformation of X is unobstructed {(cf. Proposition 3). However, in general, o is not sur-
jective for a gereralized Fano 3-fold with Gorenstein terminal singularities (Example 5).
Thus, in a general case, we consider the deformation of a pair (X, D) of a generalized
Fano 3-fold X with Gorenstein terminal singularities and an anti-canonical divisor D
instead of X itself. By Shokurov [Sh] and Reid [Re], a general anti-canonical divisor of
a I'ano 3-fold with Gorenstein terminal singularities admits only rational double points.
Thus, the same thing holds for (X, D). Moreover, by Alexeev [Al], (X, D) has only log
canonical singularities. By using these, we shall investigate the map ay,, : Ext!(Q% (log
D),0x) — HOX, Ext'(Q) (log D),0x)). This map is not surjective. But the defor-
mation theory of (X, D) has a deep connection with Hodge theory in the case where X
is a I'ano 3-fold. This point of view originte from our previous paper [Na-St]. Here the
invariant g defined above has an important role. We finally obtained Proposition 10;
it says, in some sense, that there is a good direction n € Ext' (2% (log D), Ox) which
makes the singularity of (X, 1) mild. By a succession of small deformations along these
7, (X, D) eventually becomes a pair of a smooth generalized Fano 3-fold and a smooth
K3 surface, or otherwise, X' becomes a generalized Fano 3-fold with only ordinary double
points. In the first case, we have finished, and in the second case, we only have to apply
Proposition 4.

Next consider Theorem 13. By Riemann-Roch theorem, the left hand side of the
inequality is dimcH'(Z; ©z(—log D)). Note that dimcLat! (2} (log D), Ox)) =

dimcH'(Z,0z(—log D)) (cf.Lemma12). Thus, we have to show that dimcDef(X, D) >
Eoesing(x)(X, p) + #{ ordinary double points on X }, where Def(X, D) denotes the
Kuranishi space of the pair (X, D), and it is a smooth analytic space by virtue of Propo-

sition 3. For simplicity of the argument, we consider the following two cases:

(1) X has only ordinary double points;

1
(2) all singularities of X differ from an ordinary double point.
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In the case (1), the inequality follows from Proposition 4, which states that the
homomorphism a must be surjective, and from the surjectivity of the natural homo-
morphism Ezt'(Q) (log D),Ox) — Ezt'(Q),Ox). In the case (2), we can show that
dimgIm(aiag) 2 Spesing(xyt( X, p) by looking at Lemma 8 carefully, which implies the
inequality above,

When X has both ordinary double points and non-ordinary double points, the argu-
ment will be a little bit difficult, and we must use Theorem 11. We shall discuss it in

the final part of the paper.

§1.

Let (X, D) be a pair of a normal complex space X with dim X > 3 and its Cartier
divisor D. Assume that both X and D have only isolated complete intersection singu-
larities. Set Sing(X)U Sing(D) = {p1, ..., pa} and let U; be an Stein open neighborhood
of p; in X. Let Q) (log D) be the sheaf of logarithmic differential forms and let O y(—log
D) be its dual sheaf. Note that Q% (log D) is, in general, not a locally free sheaf at p;.

Lemma 1.
(1) Ho(U;, Ext (Q (log D)) = HY (Ui — pi, Ox(—log D));

(2) Ext' (2% (log D),0Ox) = HY(X — {p1,....,pn}, Ox(—log D)).

Proof. (1): Let D; = DN U; and let U; = U; — p;. Il D; = @, then the result follows
from [Sch]. If D; # @, then we consider the exact sequence:

0— Qtljl — Qbi(log D,) — OD.’ — 0.

Since Ext'(Op,, Ox) = H(D;, Op.(1;)), we have the lollowing exact commutative

diagram:
HO(Us, Oy,) = HO(D;, Op,(Di)) = Ext'(Q.(log D)), Ouy,) = Ext'(Qy,.,Oy;) = 0
L o 1 g " 1l a3 1 ay
HO(U;, ©y,) = H(Di, Opi(D:)) = Ext'(Q (log D)), Og,) = Ext'(Q},,0g,) = 0.
Since Oy, = Hom(Qy;.,Ou,) is a reflexive sheal, o, is an isomorphism. a5 is also

an isomorphism by the same reason. «y is an isomorphism by [Sch]. Hence a3 is an

isomorphism, which implies (1).



(2): By (1) we have HO(X, Ext' (% (log D), Ox) = @ H'(U; — pi, Ox(—log D)) =
@ H:(X,0x(—log D)). Consider the commutative diagram of the “local to global
pi

spectral sequence” and the “exact sequence of local cohomology”:

0 = HY (Ox(—log D)) = Ext'(Q%(log D),Ox) = H(Ext' (0 (log D), Ox))
‘ — H*(®x(=log D))

| ! o I

0— H'(Ox(—log D)) = H'(X — {p1,...,Pa}; Ox(log D)) = @ H.(Ox(—log D})
= *(Ox(—log D)).

By this diagram, we obtain (2).

Let (X, D) be a generalized [Fano 3-fold with Gorenstein terminal singularities and
its general anti-canonical divisor. By definition, there is a small birational morphism
m: X — Y, where YV is a Fano-3-fold with Gorenstein terminal singularities. Since
D is the pull-back of an anti-canonical divisor D of ¥ by m, and since D admits only
rational double points by Shokurov [Sh] or Reid [Re], D also admits only rational double
points. Indeed, let v : D —s D be the normalization of D, and let ¢ : D — D be
a resolution. Define h to be the birational morphism from D to D. Assume that v is
not an isomorphism. Disa Cohen-Macauley surface hecause D is a normal surface.
Let wp be its dualizing sheaf. Then wp = v*(wp) @ Ip, where I is the conductor
ideal, which does not coincide with Op by the assumption. It can be checked that D
has only rational singularities. Hence, we have ¢.wp = wp. This implies that A.wp =
wp ® I for some ideal I # Op. On the other hand, h.wp = wp because D has only
rational singularities. Thus, D is a normal surface with trivial dualizing sheaf. Now, it
is casily checked that D admits only rational double points. Moreover, by Alexeev [Al],
(Y, D) has only log canonical singularities (cf. [KMM]), and hence (X, D) also has only
canonical singularities; there is a resolution of singularities [ : X —+ X such that the
union of the exceptional locus and f~!'(D) is a divisor with normal crossings, and that
Ky + D= [*(Kx + D)+ Eb; F; with the coefficients b; > —1, where F; are [-exceptional
divisors and D is the proper transform of D by f.

In the remainings, (X, D) is assumed to have the above properties.

Proposition 2 In the above siluation, the natural homomorphism Pic(X) —
Pic(D) is an injection.

Proof.  We shall first prove that (X, D) satisfies the Lefschetz condition Lef(X, D)

(cf. [Gro], [Ha]). By the argument of [Ha, Proposition(1.1), p.165] it suflices to show
that for any coherent sheaf F' on X = D, H{(X — D,F) = 0 for ¢ > 1. This can be



checked by using Leray spectral sequence because Y — [ is an affine variety by definition,
and 7 is a small partial resolution of ¥ with only isolated sinularities. We next note
that any Zariski open set U of X containing D intersects every effective divisor of Y.
Thus, the complement X — U is of codimension 2 in X. Let L be a line bundle on X.
Denote by X the formal completion of X along D and denote by L the restriction of
L to X. Since Lef(X, D) holds, there is a Zariski open subset U/ of W containing D
such that HO(U, L) = HO(};’, iJ) Assume that L is trivial line bundle. If we take the U
sufficiently small, then there is a nowhere vanishing section s € H°(U, L). This implies
that L]y & Oy. Since Pic(X) = Pic(U), we have shown that Pie(X) — Pic(X) is an
injection. Since Op(D) is a nel and big line bundle, we have H'(D,Op(—nD)) = 0 for
all n > 0 by Kawamata-Viehweg vanishing theorem. By using this, it is easily checked

~

that the natural homomorphism Pic(X) — Pic(D) is an injection. Q.E.D.
Proposition 3.

E$t2(Qf\', O,\) = E.’Lf:')(Qk ([Og D), OA) = O

In particular, the deformations of X and (X, D) are unobstructed.

Proof.  Since Ext*(Op,Ox) = 0, there is an injection from Ezt*(Q4 (log D), Oy)
to Ezt*(f1},Ox). Hence, it is enough to show that Ezt3(Q},Ox) = 0. By the Serre
duality, Ezt?(Qy,Ox) = HY(X, 0 ® Kx). By the exact sequence

0 =@y — QL — Qklp — 0

we have an exact sequence

HOQL p) = HY(Q, @ Ky) — HY QL) S HY(QL

D)

It is easily checked that H°(2%|p) = 0. We shall claim that 8 is an injection. Since
D has only rational double points, and since H'(D,Op) = 0, the map (1/2r¢)dlog :
H'(D,05)®zC — H'(D,QL) is an injection by the Hodge theory of V-manifolds,
where (1}, is a double dual of Q). Thus, the homomorphism H'(D,0})®2C —

H'Y(D, QL) is also an injection. Consider the commutative diagram



HY(X,9%) -5 HY(D, Q)
(1/2m7)dlog T 1 (1/2m2)dlog
H'(X,0%)®C = HY(D,05)®C

By Proposition 2, k is an injection. By the same argument as [Nal, (2.2)], the vertical
map on the left-hand side is an isomorphism. Therefore, 7 is an injection by the above
diagram. The map j is factored through H'(D, QY |p). Hence 8 is an injection. Q.E.D.

Consider the “local to global” spectral sequence of Ext:
0= HY(X,0x) = Eat'(Q4,0x) = HO(X,T}) —» HYHX,0y),

where Oy := Hom(2},Ox), and T} := Ext' (N}, Ox). Since a may be regarded as
the homomorphism from the space of 1:st order global deformations of X to the space of
1-st order local deformations of X, X is smoothable by a flat deformation by Proposition

3 if o 1s a surjection.

Proposition 4. Let X be a generalized Fano 3-fold with only ordinary double
points. Then we have H*(X,0x) = 0. In particular, X is smoothable by a flat defor-

maltion.

Proof. Let f:Y — X be a small resolution of X. By definition, the ex-
ceptional locus of [ over a singular point is a smooth rational curve ¢ with Ng/z =

Opi(—=1) @ Opi1(—1). Then we have an exact sequence:
HYZ,02) = HY(X,R'f.Oz) > H*}(X,0x) = H*(Z,03)
It is easily checked that H°(X, R'f.0z) = 0 (cf. [Fr2, §2.]). We shall show that

H*Z,0z) = 0. By the Serre duality H*(Z,0z)" = H(Z,2,QKz). Let D' be the

proper transform of D by f. Consider the exact sequence
0 — @Kz — Qy(log D)@ Kz — Kz|p — 0.

Since HY(D', Kz|p') = 0, it is sufficient to show that H'(Q%(log D')(—D')) = 0. In

order to do that, we consider the exact sequence

0 — QL (log D')(=D') — QY — QL, — 0.
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Since there is an injection 2}, — QL,, and since HO(D’,Q}D,) = 0, we have
HO(D', Q%) = 0. The homomorphism H'(Z,Q}) — H'(D,Q}) is an injection. In
fact, by Proposition 2 and Hodge theory, we have an injection H1(Z, Q%) — H'(D,QL).
Since this homomorphism factors through H'(D,Q}), the injectivity is proved. Q.E.D.

Example 5. This is an example where the map o : Eat' (2, 0x) — H°(X;T})
is not a surjection for a. Fano 3-fold with Gorenstein terminal singularities. In particular,
H*(X;0x) #0.

Let S=P'x Pland L = p,"Op:i(—=1) ® p2"Op1(—1). We denote by z, y, and z the

natural inclusions

L% Os & L®? @ o3
L8 — OsP L L®®
OS — Os @ L®2 65 L®3,

respectively. Take sections « € H(S; L&) and b € H°(S; L®~%). Then we have an
elliptic 3-fold W C Ps(Os @ LO2 @ L®?) defined by the equation y?z = 2% + azz? + b2>.
The elliptic 3-fold 7 : W — S has a section ¥ = {& = y = 0}. W is smooth along
E. One has Ngjyw = pi"Opi(=1) @ pe"Op:(—1). We obtain a 3-fold X' by contracting
¥ C W to a point. It can be checked that the deformation of W is unobstructed and that
any deformation of W is realized as an elliptic 3-fold in Ps(Os @ L®? @ L®?) described
above.

We now take ¢ = 0 and b = pje @ p3, where ¢ and ¥ are general elements of
H°(P'; Op1(6)). The divisor div(b) defined by b = 0 has 36 singular points. Then W
has just 36 singular points p;(1 < 7 < 36) which are all analytically isomorphic to the
singularity A; o = {(z,y,t,5) € C*;y? = 2®+12+s?}. Hence X has 36 singular points p;
as the image of p; and one ordinary double point ¢ as the image of £. There is an injection
e+ Bxt'(Qy, Ow) — Eat'(Q), Ox) corresponding to the birational contraction g :

W — X, and dimcCoker(p.) < 1. In fact, we have an exact commutative diagram
0= HY(X — {p1,..., P36}, Ox) = Ext'(Qy, Ow) = HY X, R'n.Ow) =0
n ! }
0— HY(X = {p1,...., Pss}, Ox) = Ext'(Q,O0x) = HX(X,Tx)(= C)

In order to investigate the homomorphism o, we consider the following commutative

diagram.



ExlM(Q)y, Ow) =5 HO(W,T},)

fra 4 A7
Ext'(Q,Ox) — HY(X,Ty)

Note that the vertical map on the right-hand side is an injection. We shall show that
dimcCoker(&) > 11. If this is proved, then one can see that dimcCoker(a) > 10 by
the diagram above. Let (7o, 7%, S0, S1) be a homogenous coordinates of P! x P'. Let
C! x C! be the affine space defined by 75 # 0 and Sy # 0. Set ¢ = T1/Tp and s = 51/ Sp.
Wemay assume that p; € 771(C! x C') — £ for all i. Wy :=n7'(C! x C!) — £ is the
hypersurface of C? x C' x C! defined by the equation y? = 23+ (¢, s). By definition we
have b(t, s) = [Ti<cics(t — @i)[Ti<j<6(s — B;) with some oy, §; € C. Let py; = (0,0, o, 5;).
These are nothing but the 36 singular points on W. The semi-universal deformation of

W at p;; is described as follows by using 2 parameters oy ; and 7 ;:
Y= 2 4 a4 bl ) + iy,

We then have an identification of H(W;T},) with 72 dimensional C-vector space
@ ;(Co;, ®Cs, ;). Thereis asurjection 3 : HO(S, L®=")@ H(S, L®~°) — Eaxt'(Qjy, Ow)
which sends (¢, d) € H°(S; L8~ @ H (S; L®7) to the element of Ext!(y, Ow) cor-

responding to the infinitesimal deformation of W given by
vtz = 2® + (ec)az? + (b + ed)2®
Then the following diagram commutes:
HO(S, L8~y @ HO(S, L8-%) Z5 Ext}(Q),, Ow)

) La
@e,j(ca;,j S, CT.-,J-) = HO(Wa Txlv)

Since dimc HO(S; L2~*) = 25, we infer that dimcCoker(a) > 11.

As the example shows in the above, we need a different method from Proposition 4.
to make a generalized Fano 3-fold smooth. Hence, we shall begin with recalling some
invariant of an isolated rational singularity. Let V' be the germ of an isolated rational

singularity and let V be the resolution. We then define

w(V) = dimcCoker[(1/2mi)dlog : H'(V, O’,‘f,)%d.‘.——) H\(V; Q)]
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#(V) is independent of the choice of resolutions by [Na 1, §5]. Moreover, we have the

following proposition.

Proposition 6.[Na-St, Theorem(2.2)] Lel V be a Gorenstein lerminal singularity
of dimension 3. Then p(V) =0 if and only if V' is a smooth point or an ordinary double
point.

Let (X, D) be a pair of a generalized Fano 3-fold X with Gorenstein terminal sin-
gularities and its general anti-canonical divisor D. We shall use the same notation as
above. Set U := X — {py,...,pn} and let U; be a contractible Stein open neighborhood of
pi. Let f: X — X be a resolution such that the union F of the f-exceptional divisors
and f~!'(D) is a divisor with normal crossing and such that f is an isomorphism over U.
Let 5 = f~'(p:) and let D be the proper transform of D by /.

Lemma 7 There is an injection
Oz (—log ) — Q% (log F).

Proof. It suffices to show that Ky + I is an effective divisor, which follows from

the fact that (X, D) has only log canonical singularities. Q.I2.D.

We shall investigate the homomorphism

Ol : Ext' (% (logD),Ox) — HO(X,Ext' (0 (log D), Ox)
in order to study the deformation of (X, D). Since H'(U; — pi,Ox(—log D)) =

H2(X;0x(—log D)), aiy is identified with the coboundary map of local cohomology:
HMU, ©x(~log D)) — @ H2(X, 0x(~log D))

Since ©x(—log D)|u & Q% (log D)|y and [‘1'3;(/\', Ox(—log D)) = H: (,X',f.ﬂ},(log

D)), we have a commutative diagram
(*%)
HY(f~1(U), Q4 (log F7)) — @ HE, (X, 0% (log F)) B3 1Y (X, 02 (log 7))

| T@n
H'(U,0x(—log D)) — @ HL(X,0x(—log D))

The top horizontal sequence of the diagram is an exact sequence of local cohomology
and the vertical homomorphisms are edge homomorphism of the Leray spectral sequence.

We note that the horizontal homomorphism at the bottom can be identified with a,,.
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Lemima 8.  Assume that p; € X is neither a smooth point nor an ordinary double

point. Then
i+ HE (X, Q% (log F)) — H*(X,0%(log F))
is not an injection. Moreover, dimcKer(y:) > p(U;).
Proof.  Let U; be a contractible Stein neighborhood of p; € X. Let V; = [~ (U;).
By taking the dual of +;, we have
¥ HY(X, Q% (log FY@ Oz (=F)) — H'(V;, Q. (log F)® Ov,(—F)).
We shall show that 47 is not a surjection. Since there is an exact sequence
0 — Q% (log F)(=F) — Q% — Ok — 0

where QIF is the quotient of L by its torsion part, one has an exact commutative
diagram
HY(X; QL (log F)(—F)) 25 H'Y(V;, 0, (~log F)(—F))
i)
HY(X, QL) 2 1 (v, )
1 ol
HY (P 0L) 25 HY(F,

=0

o

7);
where F; = F'N Vi, Assume that + is a surjection. Then we have an inequality
(#) dimcCoker(B)) < dimcCoker(o o )
On the other hand, consider the following commutative diagrams
HY(X;0L) L5 1 (v, 0l

T T
HY(X,0%)®2C 2 H'(Vi, 03,)®7C

HY (Vi Q) -2 HY(FL QL)
T T ¢(= (1/2mi)dolg)
H' (Vi, 03)®2C 5 H'(Fy, O3,)®2C
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We claim that ¢’ is an isomorphism, and that ¢ is a surjection. If this claim is
verified, then we see that dimcCoker(cof) < dimcCoker(8;) by the diagram. The
homomorphism ¢ is an injection by [Na 1, (2.2), CLAIM] because p; € X is a rational
singularity. It is, however, not a surjection because u(U;) > 0 by Proposition 6. Hence,
we have dimcCoker()) < dimcCoker(f,) by the diagram, which implies that

(##) dimcCoker(oo 1) < dimcCoker(8)).

This contradicts (#), and therefore, 47 is not a surjection. This argument also implies
that dimgcCoker(v?) > pu(U;).

From now on, we shall prove the claim. First, for simplicity, we introduce some
notation. Put D,‘ =Dn Vi, and C; = D,— N F;. Note that F; = E; U f);. E; is a
vartety with normal crossing, and it can be embedded into some projective space by
definition. Moreover, D; is a resolution of D; = D NU; which is a sufficiently small open

neighborhood of a rational double point of a surface.

Sublemma 9.

(a) HY(F;, OF) = H'Y(E;, Og);
(b) HY(F;, k) = H'(E;, QL)

Proof.  (a): We shall show that H'(F;, OF) = H*(F;,Z) and that H'(E;, Of,) =
H?*(E;,Z). If these are proved, then the result lollows since there is a deformation retract

of F; to E;. Consider the commutative diagram

EYt = HY(Vi, Q) = HPY(V, C)
4 |
FP9 = HI(E;, QF ) = HP(E;, C)
The second spectral sequence degenerates at Fy-terms (cf.[Fr 1]). Since H7(V;, Oy,) =
0 for j > 0, we have H/(E;,Op,) = 0 for j > 0 by the diagram. Thus, we have
HY(E;, Of,) = H*(E;,Z) by the exponential sequence. Let v : FO = D E; — F

be the natural projection. Then there is an exact sequence

0 — Op — .Opp — O¢; — 0.

11



Since D; has a rational double point, H1(Op ) = H)(Og,) = 0 for j > 0. Hence,
we have Hj(Opj) = 0 for 7 > 0 by the above exact sequence, which implies that
H'(F;, OF) = (I, Z).

(b): One has an exact sequence
A1 N1 A1
0— Qp — v.Qpg — Qg — 0.
Since C; is a tree of smooth rational curves, the following sequence is exact:

0 — HY(F, QL) — HY (v QL) — HY(C:, Q).
Now the result would follow if the homomorphism H‘(D,-,Qb_) — HI(C,-,QIC'_) is
an isomorphism. Consider the commutative diagram

H'(D;, 0% )®2C — H'(Di, Q)

4 4
Hl(Cvi’ OE‘.)@ZC — [-[](C‘fﬁ s52]0,)

The horizontal map on the top is an isomorphism because D; is a V-manifold and
hence, p(D;) = 0. The horizontal map on the bottom is also an isomorphism by the
Hodge theory on C; (cf. [Fr 1]) because HO(Cy, Q%) = H'(Ci, O¢,) = H*(C;,Oc,) = 0.
Since H'(Di, 03, ) = H*(D;, Z) and since H'(Ci, Og,) = H*(C;, Z), the vertical map on
the left-hand side is an isomorphism. Thus, we have the result. Q.F.D.

We shall return to the proof of the claim. First we have /'(V;, 05.) = H'(E;, OF,) =
H*(E;, Z). Next, by (a) of sublemma 9. we have H'(F;, O3,) = H*(E;,Z). Thus, o’ is
an isomorphism.

The surjectivity of ¢ lollows from the commutative diagram

HY(F}, 07,)®7C — H'(F}, Q)
! A}
HY(E:, O3)®2C — HY(E;, Q)

Here the vertical maps are both isomorphisms by sublemma 9, and the horizontal
map at the bottom is a surjection. Q.E.D.



There is a natural homomorphism f; from the space of 1-st order deformations of
(Vi, F;) to the space of 1-st order deformations of (U;, D;). This homomorphism can be

expressed as the composition of the following homomorphisms:

HY(V;,0v(=log F)) = HY(V; — E;,Ov.(—log F)) = H (U; — p;,Ou,(=log D)) =
HO(U;, Ext' (% (log D), Ox))

Proposition 10.  Consider the following diagram
S0 (], Ao JO(1]. £a41(OL @ 101/
Bat (O (log D), 0x) 23 @, HO(U;, Ext* (@ (log D), 0x)) B @11 (Vi, 0u,(~log 1))

Then there is an element n € Ext'(Q% (log D), Ox) such that ci,e(n)i & I'mage(3:)

for all i such that p; € X is netlther a smooth point nor an ordinary double point.

Proof.  Consider the exact commutative diagram (**) above Lemma 8. If p; € X
is neither a smooth point nor an ordinary double point, then +; is not an injection by
Lemma8. Hence there is an elementn € Ext!(Q) (log D), Ox) such that 7;(auoe(n):) # 0

by the diagram. By Lemma 7, 7; is factored as follows:
H2(X;0x(~log D)) = HE(X,05(=log F)) — HE(X,0%(log I7)).

Hence we have 7/(au,4(1):) # 0. Consider the exact sequence obtained by the spectral
sequence of local cohomology

HO(X; R .0 ¢ (~log F)) L H2(X,0x(~log D)) — HE (X, 05 (~log F)).

We then have ay,(n)i € Image(5;). Q.E.D.

?

Let Def(Usi; D;) be the semi-universal space of the deformations of the pair (Us; D)
which is a complex manifold since Exi?(Qy;.(log D;),Oy;) = 0. Let ¢ : (U, D) —
Def(U;, D;) be the semi-universal family over Def(U;, D;). We shall construct a strati-
fication of Def(U;, ;) into locally closed (in the Zariski topology) smooth subsets. We
must define a terminology before constructing the stratification. Let g : X' —» S be a
smooth morphism of complex manifolds and let D = £,D; be a divisor of A" with simple
normal crossing. Then g : (&', D) — S is called log smooth if (1) Dy = ¥;D;, is a
divisor of X; with simple normal crossing for every point ¢ € S, and (2) ¢ is locally a

trivial deformation of (X, D;) around any point p € A", where ¢t = g(p).
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We note that g; : (U;, D;) — Def(U;, D) is log smooth over a non-empty Zariski
open subset S? of Def(Us, D;). By an inductive process, we can construct a stratification
Def(U;, D;) = ]_IkzOSf‘ with the following properties:

1) S? is a Zariski open subet of Def(U;, D;), and (U;, D;) is log smooth over S;
1 ]. g t

(2) S¥is alocally closed smooth subsct of pure codimension, and codim(S¥, De f(U;, Dy)) <
codim(SFH, Def(U;, D;)) (k> 0);

(3) if k> {, then S¥NS! =0, and

(4) (U;, D;) has a simultancous resolution over each S¥:

Let gf : (UF,DF) — SF be the base change of ¢; by SF — Def(U;, D;). Then
there is a resolution v : (VF, FF) — (UF, DF) such that (v%)~'(D¥) = FF and that
gfovf  (VE, FFY — U} is a log smooth.

Theorem 11  Let X be a generalized Fano 3-fold with Gorenstein terminal singu-

larities. Then X can be deformed to a smooth generalized Fano 3-fold.

Proof. Fix such a stratification of Def(U;, D;) as above for cach p; € X. Let
g € Def(U;, D;) be the origin corresponding to (U;, D;). Let SF be the stratum which
contains ¢;. Then the Uf‘ induces a resolution v; : V; — U; of U;. Since v; is an
isomorphism over U; — p;, we have a global resolution v : X — X. Let F be the union
of v-exceptional locus and v~1(D), and apply Proposition 10. Let g : (X,D) — Al
be the small deformation of (X, D) determined by n € Ezt!(Q) (log D),Ox). There is
a holomorphic map ¢; : Al — Def(U;, D;) with ¢;(0) = ¢; for each i. If p; is neither
a smooth point nor an ordinary double point, then the image of ¢; is not contained in
the stratum S¥ by Proposition 10. Hence, if we take a suitable point t € Al — {0},
then ¢;(t) € S¥ for some &' < k. We shall consider (X;, D;). Then the v* induces a
resolution v, : )Z’t — X, of X;. Let F; be the union of the v;-exceptional locus and
v (D). We apply Proposition 10 to (X’:, Fy). Since Def(U;, D;) is versal at every point
near the origin ¢, we can continue these process until X' becomes a generalized Fano
3-fold with only ordinary double points. By Proposition 4, a generalized Fano 3-fold
with ordinary double points is smoothable by a flat deformation. Thus, we have proved

the result.

§2.

[n this section we shall estimate the number of singular points on a generalized Fano

3-fold with Gorenstein terminal singularities.
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Lemma 12.  Let (X, D) be a pair of a gencralized Fano 3-fold X and its genecral

anli-canonical divisor D. Then we have
HO(XN,0x(=log D)) =0.

Proof. By the Serre duality, it is enough to prove that H3(X, Q4 (log D)(—D)) = 0.

Consider the exact sequence
0 — Q(log D)D) — Q4 — O — 0

We have H?(D;Q},) = 0 as follows. By the depth argument, Qj, is a torsion [ree
sheaf. Since there is an injection Q}, — Q}D and since its cokernel has a support only
on the singular points, we have H2(D,Q}) = H*(D, Q}j) By the Ho‘clge symmetry for
a V-manifold, 42(D, Q%) = h'(D, Kp). Since D is a K3 surface with rational double
points, we have (D, Kp) = 0. Thus, H*(D,Q1},) = 0 follows. We only have to show
that H2(X, %) = 0 by the above exact sequence. By the Serre duality, it is enough to
prove that H%(X,0x(—log D)) = 0. Let f : X — X be an equivariant resolution of X.
Since X has only terminal singularities, we have Ky = f*Kx 4+ Sa,;L; with «; > 0 for all
i. From this fact it follows that f.(O @K ;) = Ox®K x. Therefore, it is sufficient to
prove that HO():’, 0;®K ;) = 0. But this proved as follows. By Serre duality, we only
have to show that HS(-X’,Q;-,) = 0. By the Hodge symmetry, h3(};’,ﬂk,) = hY(X,K3),
which vanishes because X is a generalized Fano 3-fold with only terminal singularities.

Q.E.D.

Theorem 13. Assume that a smooth Fano 3-fold Z is degenerated lo a Fano

3-fold X with Gorenstein lerminal singularities by a flal deformation. Then we have
21 — (1/2)e(Z) 2 Epesingx)it( X, p) + #{ ordinary double points on X }.

Proof. Let f: X — X he a small partial resolution of X such that f is an
isomorphism over all points of X except ordinary double points; and that f is a small
resolution of the singularity around each ordinary double point. By definition, X isa
generalized Fano 3-fold with Corenstein terminal singularities. Let £ be the pull back
of D by f. By Theorem 11, X has a flat deformation to a smooth generalized FFano
3-fold X,. Since there is a closed immersion Def(X) into Def(X) (cf. [Na 2, (1.6),(1)
or (2.3),(1)]); the proofl there can be applied to our situation.), there is a small birational

contraction f, : X; — Xy such that X, becomes a small deformation of X. D moves
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sideway in the flat family because H'(D; Np,x) = 0. Thus, we have an anti-canonical
divisor Dy of X; which is a small deformation of D. Define D, to be the image of D,
by fi. Dy is an anti-canonical divisor of X, and it is a small deformation of D. By
Proposition 3 and Lemma 12, the Kuranishi space Def(X, D) is universal. Thus, for
[(X¢, D)) € Def(X, D), Def(X, D) itself becomes the Kuranishi space of (X, Dy) at
[(X:, Di)]. The similar things also hold for Def(X, D). We shall prove the following two

results:

(1) dim Def(X,D) > SPE?{'”(X’PZ; )
(2) dim Def(X, Dy) — dim Def(Xy, D;) > #{ ordinary double points on X }.

Note that Epex’;c(‘x’,p) = Loex (X, p) because g = 0 for an ordinary double point.
Thus, if the above results are proved, then we have dim Def( Xy, Di) 2 Epexpu(X, p)+#{
ordinary double points on X }. Let S be a general anti-canonical divisor of Z. By the
observation above, dim Def(Z,S) = dim Def(X, D) = dim Def(X:, D). To calculate

dim Def(Z,8) = dimcH'(Z,0z(—log S)), we consider the exact sequence
0 — Oz(—log S5) — Oz — Ng;z — 0

By using this sequence and Riemann Roch theorem, we have dimcH'(Z,0z(—log
S)) =21 — (1/2)e(Z). This implies the statement of Theorem.

Proof of (1) Consider the exact commutative diagram (**) above Lemma §. By
Lemma8, dimcKNer(vy;) 2 p(X, pi). Henceby (**) we easily see that dimg/mage(oiog) >
Ypexp(X,p), which implies that dimcFat' () (log D), Ox) > E,exp(X, p). Q.ED.

Proof of (2) Since a (—1,—1)-curve is stable under a flat deformation, X, has the
same number of ordinary double points as X. Since X, is smooth, X, has no other
singular points. By applying Proposition 4 to Xy, we have that o, : Ezt'(QY ,Ox,) —
H(X,Ty,) is surjective. We have a homomorphism f, : H'(X,,Ox,(log D) —
Ext'(QX, (log Dy),Ox,) corresponding to [ : (X, D;) — (X, Di). Since [ is a small
birational morphism, f is an injection (cf. [Na, 2, (1.6),(1) or (2.3)(1)]). We shall show
that cokernel of f. has at least n dimeiision as a C-vector space, where n = #{ ordinary
double points on X, }. Let n; € HO(X,,T}I) be a non-zero section such that 7; has the

support only on the ordinary double point p; € X;. Consider the commutative diagram

E’Ltl(Qj\t(log Dt)a OX:) — HU(‘thmﬁl(Q‘]X(([og Di)? OJ\'t))
) +
Eat'(Q,, Ox,) — H(X,,T}.)
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The vertical maps are both surjective since Ext*(Op,, Ox,) = 0 and Ext*(Op,, Ox,) =
0. Thus, by the diagram, we have a lifting ¢; € Ext'(Q%, (log D;),Ox,) of 7. Assume
that ¢; = fu(¢]) lor some (] € Hl(‘i’t,@f‘(—log Dy)). Note that the composition of
the maps Hl(}:'t,G)X‘(—Iog D,)) — Ext'(QY (log D), Ox,) — HO(X,, Ext* (R, (log
D), 0x,)) — HO(X:,T},) and the composition of the maps HY (X, O (—log D)) —
HY (X, 05,) — Bat' (R, Ox,) — H(X:,T},) coincide. Moreover, the sequence

0 — HY(X,,05,) — Eat'(Qk,,0x,) — H(X,,T})

is exact. In fact, H'(X;,Ox,) = H'(X,,0y,) because H°(X,, R' .04 ) =0. Thus,
by using the second composition of the maps above, we conclude that »; = 0. But, thisis
a contradiction. Hence ¢; is not contained in the image of f,. Since {Ci}lgign are C-linear

independent sections of the cokernel of f., we have proved that dimcCoker(f.) > n.
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