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Polynomial Periodicity for Betti Numbers of Covering Surfaces

ERIKO HmONAKA

1. Introduction.
Fix a smooth complex projective surface Y and a finite union of curves 8 c Y.

To each finite group G and surjective group homomorphism

f/J : 11"1 (Y - 8) -+ G,

there is a canonically associated normal surface Xq, and a finite surjective morphism

PtP: Xt/I -+ 1':

This is the branched covering associated to f/J, and it is determined by the following
property: let X; be the preimage p;l(y - B), then the restrietion of PtP to X; is
the regular unbranched covering associated to <po (This construction generalizes to
other dimensions, but we will be mainly concerned with the surface case.)

For each positive integer n, let "

f/Jn : 1r't(y - B) -+ H1(Y - B; Z/nZ)

be the natural homomorphism and let pn : X n -+ Y be the corresponding branched
coveri~g. For any desingularization q : Xn -+ X n, let Pn : Xn -+ Y be the
oomposition pn 0 (70 In this paper we show that, with certain restrietions on B, the"
first Betti number b1(Xn) is "polynomial periodie" as a function of n.

The evidence from classical as weil as recent computations shows that the number
b1(Xn ) e:dubits a combination of polynomial and periodie behavior as a function of
no If one replaces the surface Y by a smooth curve and does the same construction,
the Riemann-Hurwitz formula immediately implies that the first Betti number of
the coverings is a polynomial in n. Zariski [Zal], [Za2] showed that in the case Y
is p2 and B is the union of an irreducible curve with nodes and cusps and a line
in general position (H1(Y - B; Z/nZ) ~ Z/nZ in this case) that bt(Xn ) is periodie.
Libgober [Lb] and Vacquie [V] have extended this result, Libgober to more general
curves, and Vacquie to the case when the curve is not irreducible (in this case the
map f/Jn is defined slightly differently.)

For Hirzebruch coverings (see [Hz]), where Y is p2 and B is a finite union of
lines, there has been variOUB work on computing the invariant, including [15], [G],
[Ho], [Zu]. Polynomial or quasi-polynomial behavior was found by Gläser [G]
and Zuo [Zu] for certain examples. In [Zu] Zuo computes an example for which
bt (Xn ) = q(n) + c, where q is a polynomial and c varies periodically with n.

Zuo's main result (in [Zu]) goes further in describing b1(Xn ).



THEOREM 1.1. Let Y be any smooth surface and let 8 be any union of CUIYes

on Y with the following properties are linearly equivalent as divisors, interseet
one another transversally and whose sell intersection is positive. Then there is a
polynomial q(n) and an integer no so that bt(Xn ) = q(n) unless no divides n. The
degree ofq(n) equals one less than the maximum number oEcurves in B intersecting
in a point; For any n, b1(Xn ) cliffers from q(n) by a bounded constant depending
onlyon Y and B.

The aim in this paper is to show that under certain conditions the sequence
bt (Xn) is polynomial perlodic, a concept we will now define.

DEFINITION 1.2: An integer valued function

f:N-+C

is polynomial periodic if there is an integer N and a finite sequence of polynomials
Po(x), ... ,PN-l(X) so that if n = i(modN) then

f(n) = pi(n).

In [8] (Theorem 1.2) Sarnak proves the following result. (See also [Lr].)

THEOREM 1.3. Let yu be a topological space homotopy equivalent to a nmte CW
complex and, for each n > 0, let

be the unbranched covering associated to. the homomorphism

Then b1(X:) is polynomial periodie.

Since the case where Y· is the complement of a finite union of rurves B in a
smooth surface X is included in this statement, this leads him to ask whether
bt (Xn), for Xn the sequence of surfaces defined above, is also polynomial periodie.

REMARK 1.4: In [Lb], Libgober proved that ifY = p2 and B is a union of any irre­
ducible curve C and line L in general position, then the difference b1(Xn ) - b1(X;:)
equals ODe. Thus, Theorem 1.3 proves polynomial periodicity for this situation.

The following simple observation will be useful in our analysis.

REMARK 1.5: Given Y and B, if Y' is another smooth surface

(f: Y' -+ Y
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is an isomorphism outside of B and 8' = .,.-1 (8), then 1rl (Y - 8) = 7l-1 (y' - B')
and the corresponding branched coverings Xn and X~ are birationally equivalent.

We will also need the following definition.

DEFINITION 1.6: Define the global inertia 3ubgroup I e C H1(Y - B; Z) associated to
an irreducible curve C on Y to be the subgroup generated by a positively oriented
meridinalloop around C in Y - B. (The orientation of the loop is given by the
complex structure.) Thus, if C rt B then Ie = (0).

The main result is the following.

THEOREM 1.7. Let Y and 8 be such that tbere exists a smootb. surface Y' and a
morphism

(j: y' -+ Y

whicb. is an isomorp;tllsm outside the preimage B' of B witb. tb.e property that

(1) B' consists of smootb. curves witb normal crossings,
(2) Ie is inEnite for a11 C c B' and
(3) for a11 distinct curves C, D C B' with C nD 1= 0, we bave Ie n ID = (0).

Tben bt (Xn) is polynomial periodie.

Theorem 1.7 gives us the following corollary (see Remark 5.2.)

COROLLARY 1.8. Let Y be p2 and let B be a union of smootb curves intersecting
transversally. Then bt (Xn) is polynomial periodie.

To prove Theorem 1.7, we study an algorithm (described in [Ho]) for computing
the first Betti number anq. break up the problem into showing that two numbers,
the first Betti number and the nullity of the intersection matrix for curves above the
branch locus are polynomial periodie. The difference between these two numbers,
as we show in section 4, is the first Betti number.

Here is a rough outline of the algorithm. By Remark "1.5 we can assume B consists
of smooth curves with normal crossings.

(1) Find a presentation for the fundamental group of Y - B.
(2) Using Fox Caleulus, find a presentation matrix M (reIate<! to the Alexander

matrix) for H 1(Y - B; Z) as a Z[G]-module, where G = H1 {Y - 8; Z) and
Y - 8 is the unbranched covering assoeiated to the Hurewicz map and from
this find b1(X:).

(3) Let C be the union of curves Band, ifB doesn't support an ample divisor, also
include an ample curve in general position. Find the nullity, Null(p;;1(C)),
of the intersection matrix for the curves p;;1(C) in Xn .

The numbers obtained in parts (2) (as shown by Sarnak) and (3) (the new result
of this paper) are polynomial periodie functions in n. The proofs of both these
facts are similar because they come down to transforming geometrie problems into
essentially combinatorial ones involving finitely generated groups and matrices with
entries in group rings.
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We review the proof of Theorem 1.3 from this point of view. in section 2. Fox in
[F] shows how to find the first Betti number of unbranched coverings by a formal
manipulation of combinatorial data such as matrices witb entries in a group ring.
Sarnak uses Fox's result and the following key proposition ([8], Proposition 1.7) to
prove Theorem 1.3.

PROPOSITION 1.9. Let 11, ... , Il be polynomials in k variables. Tben tbe number
oE k-tuples oE ntb roots oE unity satisfying 11, ... , It = 0 is polynomial periodie as
a function ofn.

We generalize the results of section 2 in section 3, where again the crucial step is
Proposition 1.9. In sections 5 and 6, we show how finding the number in part (3)
reduces to the situation described. in section 3.

Here are some remarks about the other numerical invariants of Xn •

lverson [Iv] has a formula for the topological Euler characteristic of branched
coverings, which shows that Xtop(Xn ) is polynomial periodie in n .. Since the first
and second Betti numbers are related by the topological Euler characteristic ~e see
that given the same hypotheses as in Theorem 1.7 all the Betti numbers of X n are
polynomial periodie.

The ehern numbers for branched coverings can be computed fairly ·easily and
can be shown to be polynomial periodie for our examples. For surfaces the ehern
numbers in combination with the first Betti number allow one to compute the
arithmetic and topological genera and the Hodge numbers. From this one sees that
all these invariants also are polynomial periodie under the assumptions of Theorem
1.7.

It would be niee to also he ahle to descrihe the Picard number for Xn • .50 far we
oo1y get a polynomial periodie lower bound given by the rank of the intersection
matrix of p;1(C).

I would like to thank Bill Fulton, Alan Landman and Anatoly Libgober for their
help during the preparation of my thesis, which contains seme basie ideas used
in this paper, and to Peter Sarnak for suggesting the problem of proving palyna­
mial periodicity for Betti numbers of branched coverings. I am also grateful to
Laci Babai, Darren Lang, Dave Roberts, Zeev Rudnick and nan Vardi for helpful
conversations.

2. Basic results on unbranched coverings and polynomial periodicity.
In this section we sketch Sarnak's proof of Theorem 1.3.
Fox Caleulus provides a way of transforming a hard to handle geometrie problem

to a formal algebraic one. Given a presentation of tbe fundamental group of a
spare Y", one can construct a more manageable matrix from whieh one can in turn
compute the first Betti numbers of finite abelian unbranched coverings.

Assuming Sarnak's Proposition 1.9, we review his proof of polynomial periodicity
for the ranks of such matrices. One of our aims is to set up notation that will be
use:ful for the new results in section 3.
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We begin with a brief review of Fox calculus.
Let yu be homotopyequivalent to a finite CW-complex. Let cP : 1rt(YU) -+ G

be any surjective homomorphism. Let p; :X; -+ yu be the corresponding regular
unbranched covering. The group G acta on the homology groupa of X; and there
ia achain complex for X;:

a a
I C2(X;) I C}(X;) ~ Co(X;)

~1 ~1 ~1

C(G]·
1l.

C(G]r
Ä.

C[G].• I

Now, let G = H}(Yu; Z) and let q., be the Hurewitz map. There ia a matrix M rep­
resenting the map 'R.?, which can be obtained from any finite presentation of 11"} (Y1&)
using Fox Calculus. This matrix, called the Alezander matrix, has the following u­
niversal property. For any abelian group H and surjection rP H : 1l"} (YU) -+ H there
is a factorization 4>H = t/JH o<p where t/JH : G -+ H. Let MH be M with all entries
replaced by their images under the map Z[G] -+ Z[H] induced by tPH. Then MH
represents the map 'R.,pg.

Let G(n) be the group H}(YU j Z/nZ). So G(n) = G ® Z/nl. For each n, let X:
be the unbranched covering associated to the map

Let Mn be the matrix representing 'Ra(n)' Since ranke(Ao(n») must equalIG(n)l­
1, we have

Nullc(AG(n» = (r - l)IG(n)1 + 1.

Therefore, we have

bt(X:) ='(r -l)IG(n)1 + 1 - rankc(M n )

= (r - l)IG(n)1 + 1 - (sIG(n)1 - Nullc(Mn »
= (r - s -l)IG(n)1 +1 +Nullc(Mn ).

The problem of finding the first Betti number of the unbranched coverings X~ as
a funetion of n comes down to a problem in a purely formal combinatorial setting
which we will now describe.

Let G be a finitely generated abelian group. For each positive integer n, let
G(n) = G ® l/nZ and let

tPn : G -+ G(n)

be reduction modulo n. Let A = erG] and A(n) = C(G(n)] and let

wn : ;A -+ A(n)
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be the C-algebra homomorphism induced by tPn.
DEFINITION 2.1: A sequenee of elements pn E A(n) ia .stahle if there is a p E A so
that 'ltn(p) = Pn for al1 n. A sequenee of r x s matriees Mn with entries in A(n) is
Jtable if all its entries are stable.

An r x s matrix Mn with entries in A(n) defines a map

between C-veetor spaces. Thus, it has a well-defined C-nullity, the dimension of its
kernei, and C-rank, the dimension of its image. We will denote these by Nulle(Mn )

and rankc(Mn ), respectively.

PROPOSITION 2.2. IfMn is astahle sequence ofr x s matrices with entries in A(n),
then the sequence Nullc(Mn ) is polynomial periodie.

Returning to the geometrie problem, let yu be auy topological space homotopy
equivalent to a finite CW-complex. Tensor the underlying spaces of the matriees
M and Mn with C. By the universality of the Alexander matrix, explained above
Mn is a stable sequence of matrices. Thus, Proposition 2.2 implies Theorem 1.3.

Remark f.9: As Sarnak points out ([8], Corollary 1.4), Proposition 2.2 ean be ap­
plied direetly to show that the first Betti numher of certain sequences of branched
eoverings is polynomial periodic, as long as one can find stahle sequences of matri­
ees Mn presenting the first homology group of the branched coverings. This was
done by Murasugi and Mayberry [M-M] in the case of branched coverings over the
three-sphere branched along a link. They showed how to augment the Alexander
matriees to give presentation matriees for the "branched coverings. These augment­
ed matrices are stahle, so Proposition 2.2 implies that the first Betti nwnbers are
polynomial periodie. To the author's knowledge, such augmented matrices for pre­
senting homology groups for general branched coverings have not been found.

For any ideal3(n) C A(n), sinee 3(n) is elosed under multiplication by elements
of A(n), Mn induces a linear map on the direct SUffi 3(n)6:

We will denote the C-nullity and C-rank of this map by Nulle (Mn ,3"(n)) and
ranke (Mn, 3(n)), respectively. Proposition 2.2 ean be extended as folIows.

PROPOSITION 2.4. lf Mn iB astahle sequenee of r x s matrices witb entries in
A(n), 3(n) C A(n) is a sequence ofidea1s, and there exists an idea13" C Aso that
'It n (3) = 3 (n ), then Nulle (Mn, :r(n )) is polynomial periodie.

The proofs of Proposition 2.2 and Proposition 2.4 reduce to a study of zero sets
of certain ideals in polynomial rings.
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First we fix some new notation. Let k be any positive integer, and let R be the
polynomial ring e[t!, ... ,t,,]. Let 11n eRbe the ideal generated by

t~- 1, ... ,tk- 1.

Let R(n) be the quotient algebra

R(n) = Rinn.

We williater write A(n) in terms of R(n). For any ideal:J C R, let V(:J) C C" be
the set of zeros of the polynomials in:J. Let :J(n) eRbe the ideal generated by
:J and nn, and let Vn(:J) = V(3(n)). For a finite set 8, let 181 denote the number
of points in 8 and let 1s be the inclicator function for 8.

The following is a restatement of Proposition 1.9.

PROPOSITION 2.5. For any ideal 3 c R, the sequence IVn (3)1 is polynomial peri­
odic.

Now fix n and let T be any rxs matrix with coefficients in R(n). For m = 1, ... , s,
let Fm be the ideal of m x m minors of T, called the mth fitting ideal for T. Let
F:n eRbe any ideal which maps onto Fm under the quotient map R -+ R(n).
Note that IVn(F:n)1 doesn't depend on this choice.

LEMMA 2.6. The C-nullity ofT is given by

•
Nullc(T) = L IVn(F:n)I·

m=l

Proof. The set of monomials in t 1, ••• , tl;: of the form

t qt tqll
1 •.• " where 0 < qi < n - 1, for i = 1, ... , k,

forms a basis for R(n) as a vector spare over C.
Consider the action of (Z/nZ)" on R(n), where (ab"" a,,) E (ZlnZ)1i: acts by

t · ........ t~i. .'
We will construct a new basis for R which cliagonalizes this action. Let

for Wo any nth root of unity. Let Wn = V(nn)' Then the set of

k

Pr..I = II qr..li (ti),
i=l
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where w ranges over al.l elements of Wn , spans R(n). Furthermore, for each w E Wn

and j = 1, ... , k,
k

tjPw = tj TI qWi(td
;=1

k

= wjl TI qWi (t;)
;=1

-1= W j Pw·

Thus, for any fE R(n), fpw = f(w- 1)pw, where w-1 = (w11 ,w21
, ... ,W;l).

Let Rw(n) C R(n) be the subspace spanned by {Pw}. Then llw(n) is an ideal in
R(n), sinee it is closed under multiplication by elements of R(n), 50 T restriets to
a linear map on the direct sum .Rw(n)·:

Since R(n)· decomposes as

R(n)· = EB R.,(n)6,
wEWn

we have
Nullc(T) = L Nullc(T, R.w(n)).

toJEWn

Now the restrietion of T to Rw(n)·, acts in the same way 88 the matrix T(w- 1 )

obtained from T by replacing al.l entries f of T by their values f(w- 1 ). Thus,
Nullc(T, Rw(n)) is the nullity of the matrix T(w- 1 ) and

•
Nul1c (T) = L L Iv(Fm)(w- 1

)

wEWn m=l

•
= L IVn(F~)I·

m=l

•
Let .:T c R(n) be an ideal. For any transformation

let Tlj. be the restrietion to the direct sum .:T6 and let T : (R(n )/ :1) 6 --? (R(n ) / .:J)r

be the induced transformation on quotient· algebras. Let.:T' eRbe any ideal so
that :r ia the image of :T' under the quotient map R --? R(n ).
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LEMMA 2.7. The C-nullity oE tbe restrietion TI.,.. is given by

a

Nullc(T,3) = L: (IVn(F:n)1 - IVn(F~ +3')1),
m=l

and the C-nullity oE the induced transformation T is given by

•
Nullc(T) = L: IVn(F~ + 3')1·

m=l

Proof Let Pw be as constructed in the proof of Lemma 2.6. The set of Pw where w
lies in W n - Vn (3') forms a basis for:1. Thus, to find Nullc(T, 3) we need to SUffi

over w in W n - Vn (3'). That ia,

a

Nullc(T,.1) = L: L: Iv(Fm )

wEWn -Vn (..1") m=l

•
= L: (IVn(F:n)I- IVn(F'm) n Vn(:1')I).

m=l

Sinee Vn(F:n) n Vn(3') = Vn(F:n + .1') thi~ completes the first part of the claim.
The quotient apace R(n)/:r has as basis the image of the elements Pw under the

quotient map, where w ranges in Vn(J"). It follows that the nullity is found by
taking the sum where w ranges over elements of Vn (.1'). The rest of the proof
proceeds as in the previous paragraph. •

Proof 0/ PropoJition 2.~: Choose k generators for G. Let R = C[t1, ... , tk] as
before. Then there is a natural C-algebra homomorphism

a:R-+A

which sends the elements tl, ... , tk to these generators. Let an = 'ltn 0 a.
Since all elements of G(n) have finite order they can be represented as the image

of a product of positive powers of generators of G. Thus, an : R --+ A(n) is onto
and A(n) is isomorphie to the quotient ring

Q(n) = R/:l'(n)

where .:l'(n) c R is the kernel of the map an' Let:1' eRbe the kernel of the map
a. Then:l'(n) = 3' + f2n for all n.

Let M~ be the map on Q(n)· corresponding to Mn:
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The sequence of these maps are also stable and have the same rank as Mn. By the
second part of Lemma 2.7, the sequence of C-nullities is polynomial periodie. I
Proof 0/ PropoJition 2.4: Let ..1(n) C A(n) be ideals and let ..1 C A be an ideal so
that \I1 n (..1) = :J(n). Let B(n) be the quotient of A(n) by the ideal :J(n). Let Mn
be the transformation

Mn : B(n)4 -+ B(n)r

induced by Mn. Then Nulle(Mn , :J(n)) can be written as

which by Proposition 2.2 is polynomial periodie.•

3. Polynomial periodicity oC intersection matrices.
This section is concerned with bilinear forms on certain group algebras.
We begin with some basic notation for general group algebras. Let S be any

group and let CrS] be the corresponding group algebra. The elements of S form a
natural basis for CrS]. There is also a natural inner product on CrS] given by

if SI = 82

otherwise.

Our main concern is with ,abelian groups. Let G be a finitely generated abelian
group and let H1 , .•• , Hk be subgroups of G. Let G(i) = G/Bi. For g E G let gei)
be the corresponding coset in G(i).

For each positive integer n, let G(n) = G ~ Z/nZ and let 1/Jn : G.-+ G(n) be the
quotient map. Let H1 ( n), .... , H}; (n) be the images of H1 , ••• , H}; under the map
"pn<

Let G(i, n) denote the set of cosets G(n)/Hi(n). For any element g E G(n),
let gei, n) be the corresponding coset in G(i, n). We will simultaneously consider
gei, n) E G(i, n) as a subset of G(n) and also as an element of the coset group with
the multiplicative law

gei, n)h(i, n).= gh(i, n).

Let C[G(i, n)] be the corresponding group algebra.
Let V (n) be the vector space

};

EB C[G(i, n)].
i=1

This has a canonical basis given by the union

};

UG(i, n)
i=l
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and elements of V(n) can be written uniquely as

k

L L Qg(i,n)g(i,n).
i=1 g(i,n)EC(i,n)

We extend the inner product (,) to all of V(n) so that (g(i, n), h(j, n)) = 0 whenever
i fj.

There are two bilinear forms on V(n) that we will be interested in: the plain
intersection form and the twüted intersection form. The plain intersection form

I : V(n) x V(n) --+ C

ia defined by
l(g(;, n), h(j, n)) = Ig(i, n) n h(j, n)1

or, in other words, the number of elements in the intersection of the corresponding
sets of g( i, n) and h(j, n).

The twisted intersection form will depend on some parameters. For each i, j =
1, ... , k, let r(i,j) be positive integers, and, for p = 1, ... , r(i,j), let c(i,j,p) be
complex numbers and let tw(i,j,p, n) be elements of G(n). The latter will be called
the twi.5ting elements. The twüted intersection form associated to these parameters,

T : V(n) x V(n) --+ C,

'is defined by

r(i,j)

T(g(i, n), h(j, n)) = L I(g(i, n), tw( i, j, p, n)-1 h(j, n))c(i, j, p).
p=1

Note that T need not be symmetrie, since we do not assume that tw(i,j,p, n) =
tw(i, j, p, n)-1. It will be symmetrie, however, in our applieations in sections 5 and
6.

The main goal of this section is to prove the following Proposition.

PROPOSITION 3.1. If tbe twisting elements tw(i,j, p, n) are stable as functions ofn,
then the nullity of the associated twisted intersection form is polynomial periodic.

Note that sinee the plain interseetion form I ia a special case of the twisted
intersection form, the nullity of I ia also polynomial periodie as a function of n.

For any subspace W C V(n), define Null(T, W) to be the nullity of T restricted
to l-V.

Here is an DUtline of our proof. We define an index set T and for each 'T E T de:f1ne
groups RT. We let RT(n) = RT® l/nZ and let <PT,n : R,. -t R,.(n) be the quotient
maps. We define subspaces UT(n) of V(n) which naturally imbed inta a group
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algebra of the form C[R.,.(n)]"'. The ima.ges of Ur(n) are of the form :J.,.(n)·, where
:Jr(n) C C[R.,.(n)] is an ideal and there is a :J.,. C C[R.,.] so that ~.,.,n(:J.,.) = :J.,.(n).
We show that for all v E Ur(n) and w E Url(n), if T =1= T', then T(v, w) = 0 and we
show that V(n) decomposes into a direct sum of the U.,.(n). Thus, we have

Null(T, V(n» = L Null(T,Ur(n» .
.,.ET

In the final step we show that the intersection form T on U".(n) eorresponds to the
restrietion of one on C[~(n)]"' defined by a stable sequenee of s x s matrices. By
Proposition 2.4, the nullities of the restrietions to :J".(n)"' are polynomial periodie.

Our index set will be the set T of snbsets of {I, ... , k}. Let eiE T be the element
ei = {i}. Define a partial ordering on T by T < T' if T C T'. Define addition on T
by T +T' = TU T'. Let ITI be the number of elements in T.

For each T E T, let

and let R.,. = G/S".. For T' > T, let

1]r,.,-' : C[Rrl -+ C[R.,.,]

be the quotient map. Let :Jr C C[Rr ] be the ideal given by

:J". = nker(71".,,,.')·
,r'>r

For each integer n > 0, let R.,.(n) = R". ~ Z/nZ and let ~r,n : C[Rr] -+ C[R".(n)]
be the quotient map. Let .J".(n) = ~r,n(.J). Let Rr(n) be a lift of the quotient
map G(n) -+ Rr(n). For each i E T, let Sr(i, n) be the image of Sr in C(i, n).

Any element of C[C(i, n)] ean be written uniquely as

L L etgh(i,n)gh(i, n).

gERr(n) h(i,n)ESr(i,n)

Then there is a natural map

0" ( T, i, n) : C[C(i, n )] -+ C[R.,.(n )]

given by

L L etgh(i,n)gh(i, n) ~ L G:g(n)g(n).

g(n)ERr(n) h(i,n)ESr(i,n) g(,!,)ERr(n)
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where
Og(n) = L Ogh(i,n)'

h(i,n)ESr(i,n)

The choice of lifting Rr(n) doesn't affect this map since as long as i E T any

9 E R,.(n) determines a unique element g(i, n) E C(i, n).
H i E T, define A:r(i, n) to be the kernel of u(i, n), i.e.,

and let

H i ~ T, let K:r(i, n) = .cr(i, n) = O. Then ur(i, n) restriets to an isomorphism on
.cr(i, n).

Let
Ur(i, n) = ( nK:r,(i, n)) n .cr(i, n)

r>T

Then ur(i, n)(Ur(i, n» = Jr(n) for all i such that i E T.

Thus, setting

we have maps

We claim that

(1) Ir v E UT(n), w E Ur(n) and T =1= T' then T(v, w) = o. (I.e. the Ur(n) are
orthogonal with respect to the bilinear form T.)

(2)

We will show that ~n fact the Ur(n) are orthogonal with respect to any bilinear
form

B : V(n) x V(n) -+ C

satisfying
B(8g(i, n), h(j, n» = B(g(i, n), 8-

1 h(j, n»,

for 8 E G(n). Note that (,), I and T all have this property.
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For any gl E G(n), define [gl](T, i, n) to be the element of C[C(i, n)J given by

[glJ(T, i, n) = L 91g2(i, n).
9,ESr(i,n)

We can write any element of .cr(i, n) uniquely as

L a 91 [gl]( T, i, n).
91ER r (n)

LEMMA 3.2. For any T E T, s E Sr(n) and g, h E G(n), if i E T, then, for any
j = 1, ... ,k, we have

B([g] (T, i, n), sh(j, n)) = B([g](T, i, n), h(j, n)).

Proof We have

[g](T, i, n) = L gh(i, n)
hESr(i,n)

= S-l L gh'(i, n)
h'ESr (i,n)

= S -1 [g](T, i, n),

where the SUfi in the second row is taken over h' = s' h, where s' is the image of s
in Sr(i, n).•

It is easy to see that C[C(i, n)] breaks up into the direct sum

C[C(i, n)] = ~r(i, n) E9 .cr(i, n).

Furthermore, ~r(i, n) and Lr(i, n) are orthogonal with respect to the natural inner
product (,) on C[C(i, n)]. We will now show that ~r(i,n) and .cr(i, n) are also
orthogonal with respect to the form B.

LEMMA 3.3. Take any T with i,j E T. Then the spaces K:r(i, n) and .cr(j, n) are
orthogonal in V (n) with respect to B.

Proof For all hl, gl E Rr(n), Lemma 3.2 implies

L ah1h,(i,n) B(h1h2(i, n), [gl](T,j, n))
h~ESr(i,n)

14



Take any v E Jer(i, n), WE Lr(i, n). Then w is a linear combination of [gl](T, i, n),
where 91 ranges in Rr(n) and v is a linear combination of

L Uh1h2(i,n)h1h2(i, n),
h 2 ESr(i,n)

where h1 ranges in Rr(n) and

L Uh1h2(i,n) = O.
h2 E S r(i,n)

Thus, we have B(v, w) = O. I

LEMMA 3.4. For any T and i E T

Ur(i,n) = (n K.Ci+Cj(i,n)) n .cr(i,n).
J~r

Proof. I t is enough to show that if j fI. T then

Jer+cj (i, n) n .cr (i, n) = K:ci+Cj (i, n) n .cr(i, n).

Since Jeci+cj(i,n) C K:r+cj(i,n), we have one obvious indusion. Now take any
v E K. r +cJ (i, n) n .cr(i, n). We can write v as

v = L G'g(i,n)g(i, n).
g(i,n)EC(i,n)

Let h1 , . •• ,hr E Hj(n) be coset representatives for

(Hi(n) + Hj(n))/Hi(n)

and let 91, ... ,9t E :EiE r H i ( n) be coset representatives for

(L Hi(n))/(Hi{n) + Hj(n)).
iEr

Then, since v E A,r+ej (i, n),

r t

L L Uh(gnl(i,n) = 0
l=l m=1

and, since v E .cr ( i, n),

for all l and m. Therefore,
r

L Ckhtgm(i,n) = 0
l=l

for all m = 1, ... , t. So v E K ei+ej (i, n). I

15



LEMMA 3.5. If T 1= T', V E Ur(i, n) and w E Ur(j, n), tben B(v, w)" O.

Proof. Let d be such that d f/ T and d E T'. We can assume i E T and j E T', since
otherwise Ur (i, n) or Ur' (j, n) would be trivia!.

We will do the case where d = j and the case where d is not equal to i or j
separately. .

Suppose d = j, in other words, j f/ T. Set TO = ei + ej. Then by Lemma 3.4 we
have

Thus, we can write v as

v = L L a 9t92(i,n)9192(i, n),
gtER,.o(n) 92ESl'o(i,n)

where, for all 91 E ~o(n),

L agtg~(i,n) = O.
92ESl'o (i,n)

For all 92 E Sro(i, n), 91 E R,.o(n) and h E G(j, n)

B(9192(i, n), h(j, n)) = B(gl(i, n), h(j, n)).

Thus, for any h(j, n) E G(j, n),

B(v, h(j, n)) = L L aglg~(i,n) B(g1g2(i, n), h(j, n))
91 ERl'O g2ESl'o (i,R)

- L ( "L (k9192(i1n») B(91(i, n), h(j, n))
91 ER,.o 92 ESl'O (I,R)

=0.

Therefore, since w is a linear combination of the h(j, n), we have B(v, w) = O.
Now suppose i,j E T and i,j E T', d rt T and d E T'. Then V E K:ei+e,,(i, n) c

K:r(i, n) and w E ..cr(j, n). Thus, by Lemma 3.3, we have B(v, w) = O. I

We have thus proven (1). To prove (2), we will show that C[G(i, n)] decomposes
into the direct sum of the Ur(i, n), as T ranges in T. Since, by Lemma 3.5, the
Ur(i, n) are orthogonal with respect to the usua! inner product (,) on C[C(i, n)], it
suffices to show the following~

16



LEMMA 3.6. Tbe space C[C( i, n )] is spanned byUr(i, n) as r ranges among elements
oE T containing i.

Proof. We will show inductively that
L

C[C(i, n)] = ffi ffi Ur(i, n) EB ( V .er/(i, n»
":I7 W Ir/I=L+l
i=l Irl=l,iE1'

for all L = 1, ... , k - 1, where ·VSl denotes the join or span of the subspaces Si.
i

Since .e1'(i, n) =U1'(i, n) for r ={I, ... , k}, this will conclude the proof.
The proof is by induction on L. If ITI = 1 then Ure i, n) is either trivial (if i f!. r)

or T = ei. In the latter case

.e1'(i, n) = C[C(i, n)]

and hence
U1'(i, n) = nK:ei + ej (i, n).

i~i

Now the orthogonal complement of K,ei+ej (i, n) in C[C( i, n)] is .eei+ej (i, n). There­
fore, the orthogonal complement of U1'(i, n) is

V .eeo+e o(i, n) = V .er(i, n).
i:#=i • J 11'1=2

Thus,
C[C(i, n)] =Ur(i, n) EB ( V .e1'(i, n».

11'1=2

Now assume the hypothesis fot L -1. Then we have
L-l

C[C(i, n)] = EB EB U1'(i, n) ffi ( V .c1'(i, n».
Irl=L

l=ll 1'l=i

For each r and each T' > T, the orthogonal complement of .er/(i, n) in .e1'(i, n) is
Kr/(i, n) n .c1'(i, n). Therefore,

.e1'(i, n) = ( nKr/(i, n) n .cr(i, n») EI1 (S,.,cr(i, n))
r<,-I

= Ur(i, n) EB ( V .c,-J(i, n») .
1'<r/

Since .eru (i, n) C L,-J (i, n) for r U > r l
, we have

V L1'(i,n) = ffi Ur(i,n) ffi ( V .c1'I(i,n)).
Irl=L W !r'I=L+lIrl=L

•Now we will restriet to the particular bilinear forms I and T. The following lemma
can be shown from elementary facts about cosets.
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LEMMA 3.7. The bilinear form I has the following properties.

I(g(i, n), h(j, n)) = { IH;(n) n Hj(n)~ if gh-1 E Hi{n) + Hj{n)

othenvise.

Hg, hE Rr{n), then, since (H.{n) +Hj(n)) n Rr{n) = (I),

I(g(i, n), h(j, n)) = (g, h}IH.{n) n Hj(n)l.

Let tw(r, i,j,p, n) be the image of tw(i, j, p, n) in C[Rr(n)].

LEMMA 3.8. Hr is such that i,j E r, then

r(',j)

T([gJ{r,i,n), [h](r,j,n)) = ISr{n)1 L {g, tw(r, i,j,p,n)-lh}c(i,j,p).
p=l

Proof Let M 2{i, n) c Sr{i, n) and M 2 (j, n) c Sr{j, n) be coset representatives for

and
Sr(i, n)/Sei+ej (j, n),

respectively. Both of these are isomorphie to Sr(n)/(H,(n) + Hj{n)).
We have, for all .s E Sei+ej Ci, n),

T{g{i, n), sh{j, n)) = T(g(i, n), h{j, n)).

Thus, for gb h1 E Rr(n), T([gl]{r, i, n), [h1]{r,j, n)) equals

L L d1(i,j)T(glg2(i, n), h1 h2 (j, n)),
92(i,n)EM2(',n) h2 (j,n)EM2 (i,n)

where
d1 (i, j) = ISei+ej (i, n )IISei+ej (j, n)1

_ IHi(n) + Hj(n)1 2

- IHi(n)IIHj(n)1 .

Sinee T(9192(i, n), h1h2 (j, n)) = T(91(i, n), h}h29:;1(j, n)), we have

T([gl](i, n), [h1](j, n)) = L d2 ( i, j) T(91(i, n), h} h2 (j, n)),
h2(j,n)E M 2(jln)

18



where

Let tw(i,j,p, n)I be the image of tw(i,j,p, n) in M 2 (j, n). Since

we have

l(gl(i, n), tw(i,j,p, n)-lh1h2 (j, n» = l(gl(i, n), tw(i,j,p, n)ll h1h2 (j, n»

= (gI, tw(i,j,p, n)ll h1h2}IHj (n) n Bj(n)l.

Since M 2(j, n) nR.,.(n) = (1) if we write tw( i, j, p, n)l as tw(T, i, j, p, n )tw(i, j, p, n )2,
where tw(i,j, p, nh E M 2 (j, n), we have

Thus,

T([gl)(i, n), [h1)(j, n)) = IHi(~"~~j(n)1 T(gl(i, n), h1h2 (j, n)

r(i,j)

= ISr(~)1 L (gI, tw(r,i,j,p,n)-lh1)c(i,j,p)..
p=l

•
Proo! of PropoJition 9.1: Let T' be the intersection form. on :Tr(n)tJ induced by
the restrietion of T to Uren). For C[R.,.(n)] considered a.s a C[R.,.(n)]-module, we
can write the generators as Ei(n) = [l](i, n) for all i with i E T. If 11" and 12 are
elements of C[Rr(n)] then, by Lemma 3.8,

n

T'(11 Ei(n), 12 Ej(n» = ISr(n)1 L{11' c(i,j,p)tw(r, i,j,p, n)-l 12)
p=l

defines an extension of the intersection form. T' to C[Rr(n)]tJ. One can write down
an intersection matrix for T' on C[Rr(n)]tJ with respect to the generators Ei, for
i E T, as

[

r(i,j) ]
ISr(n)1 ~ c(i,j,p)tW(T, i,j,p, n)-l "

p-I . oe',J r
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Since IS,.:(n) I is a nonzero constant not depending on i the C-rank and C-nullity of
this matrix doesn' t change if we replace it by

[
r<i1j

) ]
Mn = L c(i,j,p)tw(r, i,j,p, n)-I .

p=I

By the hypotheses of Proposition 3.1, tw(i,j,p, n) are stahle. Therefore, the images
tw(r, i,j,p, n) and hence the entries of Mn are also stahle. Thus, by Proposition
2.4, the sequence of C-nullities of Mn restricted to :TT(n)6, or Nullc(T,UT(n)), is
polynomial periodic. Therefore,

Nullc(T, V(n)) = L Nullc(T,UT(n))
TET

is polynomial periodic.•

4. DifFerence between the first Betti numbers of a smooth surface and
the complement of curves.

Let X be a smooth complex projective surface and let C be a finite union of curves
on X. This section concems the relation between the difference of Betti numbers

and intersections of curves in C.
We begin with some notation. Let PicQ(X) and NSQ(X) be the Picard group

and Neron-Severi group of X tensored with Q. Let PicQ(X, C) and NSQ(X, C) be
thc subspaces generated by divisors supported on C. Let #C be the number of
irreducible components (Le. curves) in C.

Thc fol1owing fact was originally communicated to me by A. Landman and A.
Libgober.

PROPOSITION 4.1. Let X be a srnooth complex projective sunace and C a finite
union of curves on X. Then

The proof of this proposition can be found in [Ho], Proposition 1.6.3, but we give
a briefer version here.

Proof 0/ Propo3ition 4.1: We look at the exact homology sequence for thc pair
(X, X - C) with rational coefficients:

H2 (X)--+ H2 (X, X - C) --+

HI (X - C)-+ HI (X)-+ HI (X, X - C).
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There are non-degenerate pairings coming !rom intersections:

This implies that Hl(X, X - C) is trivial, and the map

is dual to the map
i : H2 (C) -+ H2 (X)

induced by inclusion. The claim then follows sinee #C equals dimQ H2(C) and
NSQ(X,C) is isomorphie to the image of the map i .•

Let Null(C) be the nullity of the intersection matrix for C, that is, if we enumerate
the curves Cl, ... ,CIt in C, then Null(C) equals the nullity of the k x k matrix with
entries [ai,j], where ai,j = Ci.Cj • Of course, the nullity doesn't depend on the
ordering of the curves.

PROPOSITION 4.2. The difference #C - dimQ NSQ(X, C) can be computed in one
of the following w~ys.

(1) If C supports an ample divisor, then

Null(C) = #C - dim.Q NSQ(X, C).

(2) HC doesn't support an ample divisor, then for any ample curve H on X

Null(C U H) = #C - dimQ NSQ(X,C).

Proo/: If C supports an ample divisor then any divisor D supported on C, with the
property that D.E = 0 for al.1 E supported on C, has the property that D.H = 0
for some ample divisor H and that D 2 = o. Hy the Hodge Index Theorem, such a
D is numerieally equivalent to zero. Therefore, the kerne! of the intersection matrix
equals the kernel of the map !rom PieQ(X, C) to NSQ(X, C).

If C doesn't support an ample divisor and H is an ample curve, then, sinee Cu H
supports an ample divisor, by the same argument as above we"have

Nuil(C U H) = #C U H - diIIlQ NSQ(X,C U H).

On the other hand, #C U H and dimQ NSQ(X,CUH) both equal one more than #C
and dimQ NSQ(X,C). The latter holds beeause any divisor numerieally equivalent
to an ample divisor must be ample by the Nakai-Moishezon criterion. I

Proposition 4.1 and 4.2 imply that given a smooth surface Y and a finite union of
curves C we ean compute the first Betti number of the associated branched coverings
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Xn in the following way. H C supports an ample divisor then so does the preimage
p;l(C) of C in Xn, where Pn is the projection of Xn to Y factoring through Pn.
Hence

bt(Xn ) = b1(X:) - Null(p;;l(C)).

H C doesn't support an ample divisor, then we find an ample curve H on Y and

bt(Xn ) = b1(X:) - Null(p;;l(C U H)).

Thus, to prove polynomial periodicity for b1(.in), in light of Theorem 1.3, it suffices
to show that the nullity of the intersection matrix for curves above the branch locus
and possibly an extra curve supporting an ample divisor ia polynomial periodie.

5. Intersections on abelian coverings.
Let Y be a smooth surface and let B be a finite union of curves in Y. Let

P : X -+ Y be an abelian covering with branch locus B and Galois group G. We
assume (reca1l Remark 1.7) that Bis a union of smooth curves with normal crossings.
As in section 3, for a finite set 5, IBI denotes the number of elements in S. Recall
that by curve we always mean an irreducible curve.

For any irreducible algebraic subset V on Y, there are associated inertia and
Jtabilizer subgroups Iv and H v of G defined as follows:

Iv = {g E G I for all x E p-l(V), gx = x}

Hv = {g E G I for all irreducible components V' C p-l(V), g(V') = V'}.

Here are some elementary observations (see also [Ho], Chapter 11.)

(1) The subvariety V is contained in the branch locus B if and oo1y if Iv # (0).
(2) Given an irreducible component V' C p-l(V) there ia a canonical one-to-one

correspondence between cosets G/Hv and irred.ucible components of p-l(V)
by the map

gHv 1--+ gV'.

(3) For a point pE Y, we have

Hp=Ip = L Ic=LPECcBIc .
pECCY

(4) For a point P E Ce Y and a component C' C p-l(C), we have

IG' n p-l(p)1 = I~~I.

(5) Let P E enD for two distinct curves C, D c Y. Let C' c p-l(C) and
D' C p-l(D) be two curves so that C' n D' n p-l(p) # 0. Then

IG' n D' n p-l(p)1 = IHcIZ~DI.

Furthermore, for any a, bEG, aC' n bD' n p-l(p) is nonempty if and only if
., aHc n bHD ~ 0.
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Note that if aHc n bHD 1: 0 then

IaHe n bHDI = IHe n HDI.

Putting together these facts, we have the following.

PROPOSITION 5.1. Let C be a finite union of curves in Y, and for each curve C C C
Bx a curve C' C p-l(C) in the preimage. For each triple (C, D,p), where C, D c C
are distinct curves and p E enD, let tw(C, D,p) E G be an element so that

C' n tw(C, D,p)D' n p-l(p) 1: 0.

Then, for an elements a, bEG,

laC' n bD'1 = L
pEC'nD'

IaHe n tw(C, D,p)-lbHDI

l1pl

If X is smooth, C contains oo1y smooth curves and has only normal crossings,
then we can find the intersection matrix of curves in p-1 (C) by using the fact that,
for all distinet pairs of curves C, D E C, all curves C' C p-l(C) and D' C p-.1(D)
intersect transversally, so .

C'.D' = IC' n D'I.

Also, for any single curve C' C p-l(C), the curves in p-l(C) are disjoint so we have

(degp)(#p-1(C)C12 = (degp)'C2
•

From the definitions of 1e and He this can be rewritten as

EL.ELc12 = (EL)2
l1ellHel l1el'

so
C12 = IHel C2

l1cl2 .
In the case that X is not smooth we need to study resolutions of surface singu­

larities. Gur analysis follows that of Laufer ([L~, Chapter IL) By the hypothesis, p
restriets locally to branched coverings of a eomplex disk branched along two distinct
lines through the origin.

Any singular point on X clearly must lle above a crossing of two curves C, D E B.
Now take any point q lying above such a crossing and let p = p(q). Since pisa
smooth point on Y, one can find an analytie neighborhood U C Y containing p,
isomorphie to a eomplex disk, and loeal coordinates ((, Tl) on U so that p is at the
origin and C and D are given by the IDeal equations ( = 0 and Tl = 0, respectively.
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In general, for any finite branched covering Pp : V -+ U branehed along ( = 0
and TJ = 0, there is an analytic isomorphism

a : V - {x = O} U {y = O} -+ V - p;l{{( = O} U {TJ = O}),

where V is a complex disk with coordinates x and y and the composition Pp 0 Q,

after some possible additional change of the coordinates ( and TJ, is the same as the
map

(x, y) t-+ (x r , X"yf)

where r, s, t are integers and 0 < s < t, 0 < r.
Returning to our situation, the integers r, s, t are closely related to the inertia

subgroups Ie and ID. To show this we start by deflning meridinalloops around
curves.

For any curve C C Y and p E C a. smooth point on C not contained in any
D C 8, for D 1= C. Let B p be a small ball around p and let aBp be its boundary.
Then aBp is a three-sphere, and aBp n C is a circle canonica1ly oriented by the
complex structure of C. The positive generator of H1(aBp - C; Z) with respect to
the given orientation determines an element JJe E H1(Y - Bi Z). Sinee the set of
smooth points on C, which are not contained in D C B for any D 1= c, is path­
eonnected, JJc is a well-defined element. We call JJc the meridinalloop around C
in H1{Y - Bj Z).
REMARK 5.2: (Proof 0/ Corollary 1.8) Let UB consider the case that Y = p2 and B is
a union of curves not all going through one point. Then by the Lefschetz hyperplane
theorem and Van Kampen's theorem it is not hard to see that H1{P2 - Bj Z) is
geneiated by the JJe where Ce B and its only relation is

L deg(C)Jle = O.
ceB

Let P be the set of points in B lying in the intersection of three or more curves in B.
By blowing up a1l the points in P we obtain a new branch locus B' as above where
all the curves are smooth and have normal crossings. Since Y - B and Y' - B' are
canonically isomorphie there is a canonical identification between H1(Y - Bj Z) and
H1(Y' - B'; Z). If Cc 8' is the proper transform of a curve C c B then JJc = JJe
aod if E is the exceptional eurve above a point pEP then

/-JE = L JJe·
pECCB

Thus, p2 and 8 satisfy condition (1) of Theorem 1.7.•

It is not hard to see that if we let 9c E G be the image of the meridinalloop /Je
under the map

H1 (Y - 8; Z) -+ G
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determined by the covering, then Ie is generated by ge in G (see, for example,
[Ho], section 1.4.)

Putting together the definitions, the integers r, s, t are such that

{
rge + sgD = 0

tgD = 0

gene.rate the relations in 1e + 1D.
If s = 0 the map a defined above extends to all of V and thus q has a neighborhood

isomorphie to a complex disk and q is a smooth point. If s i= 0 then one can
desingularize X at q by adding exceptional curves with the following properties.
Let

t 1
- = k1 - -----::-
S k2 - 1a :. ...

be a continued fraction expansion for ~, where k}, k2 , ••• are positive integers. This
process terminates and we get a sequence of l integers k1 , ••• ,kl all greater than
or equal to 2. Then X can be desingularized at q by adding l exceptional curves
EI, ... , Ei with

E; = -k"

Ei.Ej =C
and for all curves F C p-l(C), we have

if li - il = 1

otherwise,

F.Ei = {:
if i =. 1 and F = C'

if i = l and F = D' .
otherwise.

We now restate the results of this section in terms of our sequences of coverings.
Let

Pn: X n -+ Y

be branched coverings, branched along a finite union of smooth curves 8 with normal
crossings and defined by the map

- -Let p: X n ~ Y be the composition of pn with a desingularization X n ~ X n • Let
G = H1(Y - B; Z), G(n) = H1(Y - 8; Z/nZ) and tPn : G ~ G(n) the quotient
map. For each curve C c 8 let J-le E G be the meridinal curve around C and let
pc(n) E G(n) be its image under tPn. Let C ::> B be a union of smooth curves with
normal intersections.. Let P be the set of points of intersection on C.
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For each curve C c Y, let He C G be the subgroup given by the image of the
map

H I (C - C - 8; Z) -+ BI (Y - 8; Z)

induced by inclusion. Let He(n) = tPn(Hc ). It is not hard to see that He(n) =
is the stabilizer subgroup for C for the branched covering pn' Let Ie c G be the
subgroup generated by ",C and let Ie(n) = Pn{Ie). Then Ic{n) is generated by
Ile(n) and is the inerlia subgroup for C.

Forany curve Ce C, let t(C, n) = IIe(n)l. Forea.ch tripie C, D,pwhere C, D C C
are distinct curves and pE C n D, define

r(C, D, n) = min{r E Z>o : 38 E Z2=o such that T",e(n) +SIlD(n) = O.}

s(C, D, n) = min{s E Z2=o : r(C, D, n)llc{n) + sllD(n) = O.}

Note that r(C, D, n) and S(C, D, n) depend on the order in which you take C and
D.

Ta describe intersections above C there are two main cases to consider. The
simplest case is the following.

CASE 1: Assume that for all distinct curves C, D E B with C nD # 0 and for all
n > 1, we have s(C, D, n) - O. Then we have

(1) X n is nonsingular for all n > 1,
(2) for al.l distinct curves C, D E C with p E C n D, Ie(n) n ID(n) = (0), and
(3) iffor each C c C we~ a curve C' C p-I(C) and if, for each tripIe C, D,p of

distinct curves C, D E B and a point pE enD, we find tw(C, D,p, n) E G(n)
so that

then intersections for curves above C are given by

aC'.bD' - IIc(n)I~ID(n)1 LaD laHc(n) n tw(C, D,p, n)-lbHD(n)l·
pE n

The rank and nullity of the resulting matrix doesn't change if we delete the leading
constant

1

IIc(n)IIID(n)1

(this corresponds to multiplying rows and columns of the intersection matrix by
nonzero integers.) Let

c(C, D,p) = { C2 1

. l'PnCI
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Then, Null(p-l(C» equals the nullity of the matrix with rows and columns corre­
sponding to

aG' ,
where C ranges in C and a ranges in G(n)/He{n), with the entry in the (aC', bD')
place giyen by

L laHe(n) n tw(C, D, p, n)-lbHD (n)lc(G, D,p).
pEenDn1'

H we can arrange so that the tw(C, D, p, n) are stable as functions of n then Proposi­
tion 3.1 shows that the nullities of the intersection matrices are polynomial periodie.
We show how trus can be done in section 6. .

REMARK 5.3: In general, however, Case 1 doesn't apply. Furthermore, it won't
apply even after a succession of blowing up the branch locus and pulling back the
covering. For example, let B be the union of a line L and auy Doda! curve C in p2
so that L and C are in general position.

Then
H1(p2 - B; Z) ~ Z

and the meridinalloop /Je is a generator for this group.
Let p be a nodal singularity on C. For any sequence of blowups over p, meridi­

nal loops around the exceptional curves will be positive multiples of /Je (see [Ho],
Proposition 1.4.11.) Therefore, there will always be an exceptional curve E inter-
secting the proper transform Cof C so that /JE = mjJe for some m. If n is relatively
prime to m then Ie(n) n IE(n) is non~trivia1

CASE 2: We now consider the more general. C&Se.

LEMMA 5.4. Suppose tbat one oE tbe following is true

(1) botb 1e and ID are infinite and Ie n ID = (0); or
(2) botb Ie and ID D.ni.te.

(These are tbe conditions set up in Tbeorem 1.7.) Tben

(1) l(n), k1(n), ... , ki(n) ( n) are periodie
(2) and one of tbe following bolds: either

(a)

are botb periodie or

and
1

n
(b)

IIe(n)1 o(n)-IIp(n)1
1 ß(n)

IIp(n)1 = 7
for periodie functions o(n) and ß(n).
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We will first show that the proof of Theorem 1.7 reduces to proving Lemma 5.4
and proving that the twisting elements are stahle.

Fix a such that 0 ::; a < N - 1. We will show that for each a there is an

intersection matrix of the form described in section 3.
Take any positive integer n = a(modN). Enumerate the curves Cl, ... , Cl; E C.

Let Ci C p;;l(Ci) be any choice of curve for each curve Ci C C. For p E 'P and
i = 1, ... , l(p, n), let E(p, i)' be the curves mapping to p under the map Pn.

Intersections for curves in p;; 1(C) C Xn ean then be described as folIows. The
rows and columns of the intersection matrix eRD be made to correspond to the union
of the set of

oCi,

where i = 1, ... , k and 0: E G(n)/Hc(n), and the set of

aE(p,j)

where p.E 'P, j = 1, ... , l(p, a) and a E G/lp(n). Define for each p E 'P n Ci n Cj
and f = 1, ... , l(p, a)

HE(p,!)(n) = lp(n) = lCi(n) + ICj (n) = (lci + ICj )(n)

lE(p,!)(n) = (0).

For each i = 1, .. ", k let
C~

c(Ci, Ci,P) = I'P nlCil"

For each tripie Ci, Cj, p with i < j and p E Ci n Cj let

Hp E P define

c(C;, Cj,p) = C if p ~ 'P

otherwise.

{

IlGi(n)1

c(Ci , E(p, f),p) = IIin )1

0

{

IlGj(n)1

c(Cj, E(p, f),p) = IIp(n)l

o
kf

c(E(p, f), E(p, !),p) = -llp(n)l'
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aC·ßD=

Then for any C, D C Pn{C), we have

'" laHe(n) ntw(C,D,p,n)-lßHD(n)1 (C D )
_ ~ IIe(n)IIID{n)1 c , ,p.

pEpn(e)npn(D)nP

If, in Lemma .5.4, (2)(a) holds, we multiply rows and columns corresponding to
aC by IIe(n)1 to get the intersection matrix for a twisted intersection of the form
studied in section 3.

In the case of (2)(b), we do the same as above, but also multiply the rows and
columns corresponding to aE(p, f) by n to get the intersection matrix in the desired
form.

Thus, if we can find stable sequences of twisting elements tw(C, D, p, n) (as we do
in the next section), "then Null(p-l(C» is polynomial periodie for positive integers
n with n =a(modN). This shows that Null(p-l(C» is polynomial periodie aB a

funetion of n and hence so is b1(Xn).
Proof 0/ Lemma 5.4: For (1) it suffices to show that the rational number

t(D,n)
s{C,D,n)

is periodie for all distinct curves C, D c B with C nD =1= 0.
To show (2), since

11 (n)1 = IIe(n) + ID(n)1 = IIe{n)IIID(n)1 = tee, n)t(D, n)
p IIe(n) n ID(n)1 IIe(n) n ID(n)1

and tee, n)
IIe(n) n ID(n)1 = gcd(t(C, n), r(C, D, n»'

it suffices to show that either

t(C, n) and gcd(t(C, n), r(C, D, n»

are both periodie or they are both of the form na(n) where a(n) is periodie.
From the above discussion one sees that Lemma 5.4 is implied by the following

lemmas.

LEMMA 5.5. Take any pair oE distinct curves C, D C B with C nD t= 0. If 1e is
inBnite, then t(C, n) = na(n), where a(n) is periodie. H, in addition, 1e n I D = (0)
then r(C, D, n) = nß(n) and .5(C, D, n) = n"}'(n) where ß(n) and ,(n) are periodie.

LEMMA 5.6. If I e and I D are Bnite, then t(C, n), r(C, D, n) and"s(C, D, n) are al1
periodie.

To prove these lemmas we make the following definitions. Since G is a finitely
generated group, G/ 1e, G/ ID and G/ (1e + ID) are also finitely generated. Thus,
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their torsion parts are finite groups. Let A(C) (respectively, A(D), B(C, D)) be the
set of possible finite orders of elements in G/1c (respectively, G/1D, G/(le + ID))'

For a E A(D), define

ta(D) = min{ t E Z>o : 3g E G, ag = tJlD}

and, for bE B(C, D), define

rb(C, D) = min{r E Z>o : 39 E G,

Sb( C, D) = mini S E Z?:.O : 3g E G,

H IIDI < 00 set

3s E Z?:.O, rJle + SJlD = bg}

rb(C, D)llc + SilD = bg}.

to(D) = min{ t E Z>o : tllD = O}.

Otherwise set to(D) = 00. H IIcl < 00 or Ie n ID =1= (0) set ro(C, D) and so(C, D)
so that ro(C, D) is the minimal positive integer so that

ro(C, D)JJe + SPD = 0,

for seme non-negative integer S and so(C, D) is the minimal non-negative integer
such that

ro(C, D)J.lc + so(C, D)JlD = O.

Otherwise set ro(C, D) equal to 00 and so(C, D) equal to O.
Proof 0/ Lemma 5.5: Suppose 1e is infinite and t is the minimal positive solution
to .

tlJC = ng

for same 9 E G. The order a of the image of 9 in G/1e must lie in A(C). There is
also a positive integer t' dividing a so that

,
t /1c = ag.

Since 1e is infinite t must equal ~t'. By the definition of ta we have t(l :5 t', so by
the minimality of t we must have t' = tel and, in fact,

t . {nta }= IDln -
llEA(C),aln a

. { t ll }=n mIn -.
llEA(C),llln a

Dividing by n gives a number which is clearly periodie.
Now suppose that 1D is infinite and Je n I D = (0). Suppose r is a minimal

positive solution to
rjlc +Sp,D = ng
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for some 9 E G and non-negative integer s. Let b be the order of the image of 9 in
G/ (Ie + ID)' There are positive integers r ' , Si, with r ' minimal, so that

I I bgr !JC + s P.D = .

Hy the hypothesis ro(C, D) = 00. So

n
r = -r'

b
and

Hy the minimality conditioDS OD r and s, r ' = rb and Si = Sb. Thus

. {nrb }r = IDlD -
bEB(C,D),bln b

• {rb}= n IDlD - •
bEB(C,D),bln b

and again dividing by n gives aperiodie funetion. We can write this as rb(n)/b(n),

where b(n) is periodie and s is equal to

nSb(n)

b(n)

which is n times aperiodie funetion.•

Proo/ 0/ Lemma 5.6: Suppose Ilel = to(C) is finite. Keeping the Dotation in the
proof of Lemma 5.5 we have !!t' - t is divisible by to(C). Furthermore, sinee td, is

tI .

minimal, we have ttllt' (we eould replace t 4 by ged(ta , t ' ).) So

t = ~t'(modto(D»
a

n
= m-t4 (modto(D»

a

for some m E {I, ... , to(D) - I}.
On the other hand, take any g' E G so that

Then, for any m = 1, ... , to(D) - 1 we have

This implies that

t = min {m n t 4 (C)(mod to(C»}.
4EA(C),m=l, ...,to(C)-1,4In. a
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Take any positive integers a, a and N, with 0 ~ a < N - 1. For all n divisible by
a, the value of ~ (mod N) is a if and oo1y if n(mod N) = aa(mod N). This imposes
a requirement on the modulus of n. It follows that t(C, n) is periodie in n.

If ID is also finite, then ro(C, D) and so(C, D) are both finite. As with t

n
r = mbr'(mod ro(C, D))

for sorne m. Since rb(C, D) is minimal one can easily check that rb(C, D) must
divide r' . Thus,

r = min {~rb(C,D)(modro(C,D))}
bEB(C,D),m=l,...,ro(C,D),bln b

which is periodie. We can write r as

m(n)n
r = b(n) rb(n)(modro(C, D))

m(n)n
= b(n) r6(n) - Lro(C, D)

where m(n) and b(n) are periodie functions in n and L equals

~rb(n)n - ~rb(n)n(modro(C,D))

ro(C,D)

Note that for any positive integer Q, L(moda) is periodie. Since

rb(n)/-lC + Sb(n)!JD = b(n )g',

we have
ng = r!JC + S!JD

m(n)n ,
= b(n) [b(n)g - Sb(n)!JD] + SjJD + Lso(C, D)!JD

, . m(n)n
= m(n)ng +(s + Lso(C, D) - b(n) Sb(n»)PD,

so
, m(n)n

s = (Lso(C, D) - b(n) Sb(n»)(mod to(D))

which is periodie. •
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6. Liftings of the intersection graph and twisting elements.
Throughout this section, fix a smooth surface Y and two finite unions of smooth

curves B c C c Y with normal crossings. Let pn : X n ~ Y be the branched
coverings corresponding to the composition q,n of the maps

and

tPn : H1(Y - Bi Z) --+ H1(Y - Bi Z/nZ).

As before, let G = H1(Y - 8; Z), Gn = H1(Y - B; Z/nZ). Let P be the set of
intersections on C. In Section 5 we reduced the proof of Theorem 1.7 to proving the
following lemma.

LEMMA 6.1. There are choices oE curves C' in p;l (C) one for each curve C c C
and elements tw(C, D, p, n) in the covering groups G(n) so that

C' n tw(C, D,p, n)D' n p;;l(p)

is nonempty and so tbat the sequence oE elements tw(C, D,p, n) is stable for each
tripIe C, D, p.

Proof: We will find the tw(C, D,p, n) as images of a single element in 1t'l(Y - C)
under the map 4Jn and use the fact that tPn 0 q, = <Pn to show that there exists
tw(C, D,-p) E G so that tPn(tw(C, D,p)) = tw(C, D,p, n).

One way to make the choices of curves C' C p;l(C) and to find the twisting
elements tw(C, D, p, n) goes as folIows. First, for each pEP, let B(P) be a small
analytic neighborhood of p so that

(1) B(p) n 8(q) = 0 for p f=. q;
(2) each connected component of p;;1(8(p)) contains a single point of p;;l(p).

For each curve C C C, order the points Po, ... ,P.c and let r c be the graph
homeomorphic to [0, sc], with vertices Vc the integers in [0, sc]. We will write the
vertices as vc(O), ... , vc(sc). For a = 0, ... ,s, let [C,Pe = (a - i, a + i) c rc. Let

fc:rc--+C-P

be an immersion so that

(1) fc(Ic,P) C B(p), for all pEP n C;
(2) fc1(B(p)) = Ic,P'
Let r be the graph

UrcUE
cce
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where Eis the set of edges defined as follows: Enumerate the curves CI, ... , Clt: C C.
Let E be defined so that there is an edge in E connecting two vertices VI E VCi

and V2 E VCj where i # j. Assume i < j, VI = vCi(a) and V2 = VCj (b). Suppose

(1) IC,(vI), ICj (V2) E B(p) for some p E Ci n Cj;
(2) b is the least integer among 1, ... ,SCj so that (1) holds;
(3) there is no index l with i < l < j so that Ci n Cl # 0 and Cl n Cj 1= 0.

Then, since r can be defined inductively, starting with rCl and at each step attach­
ing the connected, simply connected graph r Cj to an already existing connected,
simply connected graph by a single edge, we can conclude that r is connected and
simply connected.

Now let
F: r x [0,1] -+ Y

be an immersion so that

(1) F(E, t) c llpEl' B(P), for t E [0,1];
(2) F(Ic,P' t) C B(p), for pEP and t E [0,1];
(3) F(" 0) = le(,), for Ce C and, E r c ;
(4) F(" t) E Y - C, for, E r and t > 0.

Since I (rc) c c- P, F can be made so that F(IC,P x [0, 1]) intersects C transver­
sally at smooth points. Since r x (0, 1] is simply connected and

F(r x (0, 1]) C Y - C,

for each n there exists a lifting

Fn : r x (0,1] -+ X n

and Fn is also an immersion.

LEMMA 6.2. For a given cboice oE lifting Fn : rc x (0,1] -+ X n , there is a unique
curve C' C p;;I(C) which intersects the closure Fn(re.x (0,1]).

Proof: Since Pn is an open mapping, we have

Pn(Fn(rc x (0,1])) = F(rc x [0,1]).

Thus,
Pn(Fn(rC x (0, 1])) n C c C - P.

Since for all points q E C - P, l q = lc, pn restriets to an unbranched covering over
C - P (the covering having several connected componenta one contained in each
irreducible component of p;;I(C).) Since Fn is an immersion
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is connected and thus roust lie in a single curve C' C p;;I(C).•

We can also define twisting elements for the above choices of C' using the same
information. Take any tripie (C,D,p) with C,D c C, C t= D and pE C n D. We
want to find tw(C, D,p) E H1(Y - Bj Z) so that

H the vertices vc(p) E rc and vn(p) E rn are connected by an edge einE, then
we automatieally have

since F(e) C B(p), so both C' and D' must contain the unique point in the inter­
seetion of the component of p;;l(B(p» containing Fn(e) and the fiber p;;l(p).

Otherwise, let '"'(I be a path on F(r x {I}) from F(vn(p), 1) to F(vc(p), 1). Let
'"'(2 be a path on 8(p) - C from F(vc(p, 1» to F(vn(p, 1». The eomposition '"'(1'"'(2

defines a elosed path '"'( eontained in Y - C !rom F(vn (p), 1) to itself and hence an
element tw(C, D,p) E H1(Y - 8; Z).

LEMMA 6.3. With tw(C, D,p) defined. as above,

C' n tPn(tw(C, D, p))D' n p;;l(P)

is nonempty.

Proo/: Fix n and let gn = tPn(tW(C, D,p». Let B(p)c (resp., B(p)n) be the eon­
neeted component of p;;l(B(p» eontaining Fn(vc(p), 1) (resp., Fn (VD(P),l).) Let
qc (resp., qD) be the point in B(p)c n p;;l(p) (resp., B(p)n n p;;l(p».) Then it
suffices to show that gn(qD) = qc.

Let '"'(' be the lift of "Y, defined above, with basepoint Fn(vn(p), 1) E 8(p)n. Then
since '"'(I C F(r x {I}), its endpoint lies in F(rc x {I}). Thus, the endpoint of the
lift of '"'(~ with basepoint Fn(vn(p), 1) equals Fn(vc(p), 1) E B(p)c. Sinee '"'(2 E 8(p),
the lift '"'(~ with basepoint Fn(vc(p), 1) must lie in B(p)c. By uniqueness of liftings
l' = 1~1~, so the endpoint of l' lies in 8(p)c. This implies that gn(B(P)D) = B(p)c
and therefore g(qn) = qc.•

This completes the proof of Theorem 1.7.
Tbere are still many questions to be answered about polynomial periodicity of

numerical invariants for coverings. It seems likely that the Betti numbers are poly­
nomial periodie in much higher generality: with no restrietions on the branch locus
or on the dimension of the base variety. Theorem 1.5 might also be generalized in
the realm of general topological spaces. Another direction of further research is to
find actual fonnulas for the polynomials and periodicities whieh occur. These eould
provide interesting isotopy invariants for the imbedding of the branch locus in the
base space.
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