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Polynomial Periodicity for Betti Numbers of Covering Surfaces

ERrikOo HIRONAKA

1. Introduction.
Fix a smooth complex projective surface ¥ and a finite union of curves B C Y
To each finite group G and surjective group homomorphism

¢:m(Y —B) — G,
there i3 a canonically associated normal surface X4 and a finite surjective morphism
Py Xy =Y.

This is the branched covering associated to ¢, and it is determined by the following
property: let X be the preimage p;'l(Y — B), then the restriction of py to X 3 18
the regular unbranched covering associated to ¢. (This construction generalizes to
other dimensions, but we will be mainly concerned with the surface case.)

For each positive integer n, let -

$n: m(Y —B) - Hy(Y — B; Z/nZ_)

be the natural homomorphism and let ps : X» — Y be the corresponding branched
covering. For any desingularization o : X;, — X,, let g, : X, — Y be the
composition p, o g. In this paper we show that, with certain restrictions on B, the
first Betti number b, (X,,) is “polynomial periodic” as a function of n.

The evidence from classical as well as recent computations shows that the number
by (X n) exhibits a combination of polynomial and periodic behavior as a function of -
n. If one replaces the surface Y by a smooth curve and does the same construction,
the Riemann-Hurwitz formula immediately implies that the first Betti number of
the coverings is a polynomial in n. Zariski [Zal], {Za2] showed that in the case Y
is P? and B is the union of an irreducible curve with nodes and cusps and a line
in general position (Hy(Y — B; Z/nZ) ~ Z/nZ in this case) that (X,) is periodic.
Libgober [Lb] and Vacquié [V] have extended this result, Libgober to more general
curves, and Vacquié to the case when the curve is not irreducible (in this case the
map ¢, is defined slightly differently.)

For Hirzebruch coverings (see [Hz]), where Y is P2 and B is a finite union of
lines, there has been various work on computing the invariant, including [Is], [G],
[Ho], [Zu]. Polynomial or quasi-polynomial behavior was found by Glaser [G]
and Zuo [Zu] for certain examples. In [Zu] Zuo computes an example for which
b1(Xn) = g(n) + ¢, where ¢ is a polynomial and ¢ varies periodically with n.

Zuo’s main result (in [Zu]) goes further in describing by (X, ).



THEOREM 1.1. Let Y be any smooth surface and let B be any union of curves
on Y with the following properties are linearly equivalent as divisors, intersect
one another transversally and whose self intersection is positive. Then there is a
polynomial ¢q(n) and an integer no so that b(X,) = ¢(n) unless ny divides n. The
degree of ¢(n) equals one less than the maximum number of curves in B intersecting
in a point. For any n, b;(X,) differs from g(n) by a bounded constant depending
onlyon Y and B.

The aim in this paper is to show that under certain conditions the sequence
b1(Xn) is polynomial periodic, a concept we will now define.
DEFINITION 1.2: An integer valued function

f:N=C

is polynomial periodic if there is an integer NV and a finite sequence of polynomials
po(2),...,pn-1(%) so that if n = i(mod N) then

f(n) = pi(n).

In [S] (Theorem 1.2.) Sarnak proves the following result. (See also [Lr}.)

THEOREM 1.3. Let Y® be a topological space homotopy equivalent to a finite CW
complex and, for each n > 0, let

[ED S
be the unbranched covering associated to the homomorphism
7 (Y™) = Hi(Y™®; Z/nl).
Then b, (X?) is polynomial periodic.

Since the case where Y™* is the complement of a finite union of curves B in a
smo_gth surface X is included in this statement, this leads him to ask whether
b1(Xn), for X, the sequence of surfaces defined above, is also polynomial periodic.

REMARK 1.4: In [Lb], Libgober proved that if Y = P? and B is a union of any irre-
ducible curve C and line L in general position, then the difference b;(X,) — b;(X?)
equals one. Thus, Theorem 1.3 proves polynomial periodicity for this situation.

The following simple observation will be useful in our analysis.
REMARK 1.5: Given Y and B, if Y’ is another smooth surface

i:Y' =Y
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is an isomorphism outside of B and B' = ¢~1(B), then (Y — B) = m (Y’ — B’)

and the corresponding branched coverings X, and X, are birationally equivalent.
We will also need the following definition.

DEFINITION 1.6: Define the global inertia subgroup Ic C H,(Y —B; Z) associated to

an irreducible curve C on Y to be the subgroup generated by a positively oriented

meridinal loop around C in Y — B. (The orientation of the loop is given by the

complex structure.) Thus, if C' ¢ B then Ic = (0).

The main result is the following,

THEOREM 1.7. Let Y and B be such that there exists a smooth surface Y’ and a
morphism
o:Y' SY
which is an isomorphism outside the preimage B' of B with the property that
(1) B’ consists of smooth curves with normal crossings,
(2) Ic is infinite for all C C B' and
(3) for all distinct curves C,D C B' with CN D # @, we have Ic N Ip = (0).

Then b1()?,,) is polynomial periodic.
Theorem 1.7 gives us the following corollary (see Remark 5.2.)

COROLLARY 1.8. Let Y be P? and let B be a union of smooth curves intersecting
transversally. Then b,(X,,) is polynomial periodic.

To prove Theorem 1.7, we study an algorithm (described in [Ho}) for computing
the first Betti number and break up the problem into showing that two numbers,
the first Betti number and the nullity of the intersection matrix for curves above the
branch locus are polynomial periodic. The difference between these two numbers,
as we show in section 4, is the first Betti number.
Here is a rough outline of the algorithm. By Remark 1.5 we can assume B consists
of smooth curves with normal crossings.
(1) Find a presentation for the fundamental group of ¥ — B.
(2) Using Fox Calculus, find a presentation matrix M (related to the Alezander
matriz) for Hi(Y — B;Z) as a Z|G]-module, where G = H;(Y — B;Z) and
Y = B is the unbranched covering associated to the Hurewicz map and from
this find b, (X}).

(3) Let C be the union of curves B and, if B doesn’t support an ample divisor, also
include an ample curve in general position. Find the nullity, Null(5;*(C)),
of the intersection matrix for the curves 571(C) in X,.

The numbers obtained in parts (2) (as shown by Sarnak) and (3) (the new result
of this paper) are polynomial periodic functions in n. The proofs of both these
facts are similar because they come down to transforming geometric problems into
essentially combinatorial ones involving finitely generated groups and matrices with
entries in group rings. -



We review the proof of Theorem 1.3 from this point of view in section 2. Fox in
[F] shows how to find the first Betti number of unbranched coverings by a formal
manipulation of combinatorial data such as matrices with entries in a group ring.
Sarnak uses Fox’s result and the following key proposition ([S], Proposition 1.7) to
prove Theorem 1.3.

PROPOSITION 1.9. Let fi,..., fr be polynomials in k variables. Then the number
of k-tuples of nth roots of unity satisfying f1,..., f = 0 is polynomial periodic as
a function of n.

We generalize the results of section 2 in section 3, where again the crucial step is
Proposition 1.9. In sections 5 and 6, we show how finding the number in part (3)
reduces to the situation described in section 3. _

Here are some remarks about the other numerical invariants of X,,.

Iverson [Iv] has a formula for the topological Euler characteristic of branched
coverings, which shows that xtop(f,.) is polynomial periodic in n. Since the first
and second Betti numbers are related by the topological Euler characteristic we see
that given the same hypotheses as in Theorem 1.7 all the Betti numbers of X, are
polynomial periodic.

The Chern numbers for branched coverings can be computed fairly easily and
can be shown to be polynomial periodic for our examples. For surfaces the Chern
numbers in combination with the first Betti number allow one to compute the
arithmetic and topological genera and the Hodge numbers. From this one sees that
all these invariants also are polynomial periodic under the assumptions of Theorem
1.7.

It would be nice to also be able to describe the Picard number for X,,. So far we
only get a polynomial periodic lower bound given by the rank of the intersection
matrix of g, 1(C).

I would like to thank Bill Fulton, Alan Landman and Anatoly Libgober for their
help during the preparation of my thesis, which contains some basic ideas used
in this paper, and to Peter Sarnak for suggesting the problem of proving polyno-
mial periodicity for Betti numbers of branched coverings. I am also grateful to
Laci Babai, Darren Long, Dave Roberts, Zeév Rudnick and Ilan Vardi for helpful
conversations.

2. Basic results on unbranched coverings and polynomial periodicity.

In this section we sketch Sarnak’s proof of Theorem 1.3.

Fox Calculus provides a way of transforming a hard to handle geometric problem
to a formal algebraic one. Given a presentation of the fundamental group of a
space Y ", one can construct a more manageable matrix from which one can in turn
compute the first Betti numbers of finite abelian unbranched coverings.

Assuming Sarnak’s Proposition 1.9, we review his proof of polynomial periodicity
for the ranks of such matrices. One of our aims is to set up notation that will be
useful for the new results in section 3.



We begin with a brief review of Fox calculus.

Let Y* be homotopy equivalent to a finite CW-complex. Let ¢ : m(Y™*) — G
be any surjective homomorphism. Let p% : X3 — Y* be the corresponding regular
unbranched covering. The group G acts on the homology groups of X3 and there
is a chain complex for X 3

L — Co(XY) 2, Ci(X3) LA Co(X3)

:1 :l | =l
R, A,
. — CGf —— 6 — Cc[G}

Now, let G = H,(Y'®; Z) and let ¢ be the Hurewitz map. There is a matrix M rep-
resenting the map Ry, which can be obtained from any finite presentation of m; (¥'*)
using Fox Calculus. This matrix, called the Alezander matriz, has the following u-
niversal property. For any abelian group H and surjection ¢g : 71(Y®) — H there
is a factorization ¢y = ¢y 0 ¢ where ¢y : G — H. Let My be M with all entries
replaced by their images under the map Z[G] — Z[H] induced by ¥y. Then My
represents the map Ry, .

Let G(n) be the group H,(Y™*;Z/nZ). So G(n) = G ® Z/nZ. For each n, let X3
be the unbranched covering associated to the map

7 (Y") = Hy(Y™;Z/nZ).

Let M, be the matrix representing R(n)- Since rankc(Ag(n)) must equal |G(n)| —~
1, we have .

Nulle(Ag(m) = (r - DIG(n)| +1.

Therefore, we have

bi(Xz) =(r — )|G(n)| +1 — rankc(Mn)
=(r = 1IG(n)| +1 - (s|G(n)] - Nulle(M,))
_ =(r — 3 —1)|G(n)} + 1 + Nulle(M,,).

The problem of finding the first Betti number of the unbranched coverings X as
a function of n comes down to a problem in a purely formal combinatorial setting
which we will now describe.

Let G be a finitely generated abelian group. For each positive integer n, let
G(n) =G ®1Z/nZ and let

a1 G — G(n)

be reduction modulo n. Let A = C[G] and A(n) = C[G(n)] and let
U,:A— A(n)
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be the C-algebra homomorphism induced by #,.

DEFINITION 2.1: A sequence of elements p, € A(n) is stable if thereisa p € A so
that ¥,(p) = pa for all n. A sequence of r x s matrices M,, with entries in A(n) is
stable if all its entries are stable.

An r x s matrix M,, with entries in A(n) defines a map
M, : A(n)” — A(n)"

between C-vector spaces. Thus, it has a well-defined C-nullity, the dimension of its
kernel, and C-rank, the dimension of its image. We will denote these by Nullc(M,)
and rankc(My), respectively.

PROPOSITION 2.2. If M, is a stable sequence of r x s matrices with entries in A(n),
then the sequence Nullc(M,) is polynomial periodic.

Returning to the geometric problem, let Y* be any topological space homotopy
equivalent to a finite CW-complex. Tensor the underlying spaces of the matrices
M and M, with C. By the universality of the Alexander matrix, explained above
M, is a stable sequence of matrices. Thus, Proposition 2.2 implies Theorem 1.3.

Remark 2.3: As Sarnak points out ([S], Corollary 1.4), Proposition 2.2 can be ap-
plied directly to show that the first Betti number of certain sequences of branched
coverings is polynomial periodic, as long as one can find stable sequences of matri-
ces M, presenting the first homology group of the branched coverings. This was
done by Murasugi and Mayberry [M-M] in the case of branched coverings over the
three-sphere branched along a link. They showed how to augment the Alexander
matrices to give presentation matrices for the branched coverings. These augment-
ed matrices are stable, so Proposition 2.2 implies that the first Betti numbers are
polynomial periodic. To the author’s knowledge, such augmented matrices for pre-
senting homology groups for general branched coverings have not been found.

For any ideal J(n) C A(n), since J(n) is closed under multiplication by elements
of A(n), M, induces a linear map on the direct sum J(n)*:

Mu|z(nye : T(n)* = T(n)".
We will denote the C-nullity and C-rank of this map by Nullc(M,, J(n)) and

rankc(Mn, J(n)), respectively. Proposition 2.2 can be extended as follows.

PROPOSITION 2.4. If M, is a stable sequence of r x s matrices with entries in
A(n), J(n) C A(n) is a sequence of ideals, and there exists an ideal J C A so that
Uo(J) = J(n), then Nullc(Mn, T (n)) is polynomial periodic.

The proofs of Proposition 2.2 and Proposition 2.4 reduce to a study of zero sets
of certain ideals in polynomial rings.



First we fix some new notation. Let k be any positive integer, and let R be the
polynomial ring Cl[t;,...,t]. Let 2, C R be the ideal generated by

th—1,...,88 — L.
Let R(n) be the quotient algebra
R(n) = R/Q,.

We will later write A(n) in terms of R(n). For any ideal J C R, let V(J) C C* be
the set of zeros of the polynomials in J. Let J(n) C R be the ideal generated by
J and Q,, and let V,,(J) = V(J(n)). For a finite set S, let |S| denote the number
of points in S and let 15 be the indicator function for S.

The following is a restatement of Proposition 1.9.

PROPOSITION 2.5. For any ideal J C R, the sequence |V,(J)| is polynomial peri-
odic.

Now fix n and let T be any r x s matrix with coefficients in R(n). Form =1,...,s,
let F,; be the ideal of m x m minors of T, called the mth fitting ideal for T. Let
F;, C Rbe any ideal which maps onto F,, under the quotient map R — R(n).
Note that |V,.(F},)| doesn’t depend on this choice.

LEMMA 2.6. The C-nullity of T is given by

Nulle(T) = ) Va(Fn)l

m=1
Proof: The set of monomials in #;,..., ¢ of the form
L where0< ¢g; <n-—-1,for1=1,...,k,

forms a basis for R(n) as a vector space over C.
Consider the action of (Z/nZ)* on R(n), where (ay,...,ax) € (Z/nZ)* acts by

it
We will construct a new basis for R which diagonalizes this action. Let
qwo(t) = 1 + wot + CJ)02t2 + fea _I,_ won—ltn—l

for wy any nth root of unity. Let W,, = V(2,). Then the set of

k
Pu = H Qo (ti)a
1=1



where w ranges over all elements of W,, spans R(n). Furthermore, for each w € W,
and j =1,...,k,

k
tipw =t; H qu; (t:)

1=1

k
= w;l H Gu; (1)

-1
- wJ' Puw-

Thus, for any f € R(n), fr. = f(w™!)pu, where w™! = (wt, w3z, ..., wit).

Let R.,(n) C R(n) be the subspace spanned by {p,,}. Then R, (n) is an ideal in
R(n), since it is closed under multiplication by elements of R(n), so T restricts to
a linear map on the direct sum R, (n)*:

TlR...(n)‘ : Rw(n)' — Rw(n)'.

Since R(n)* decomposes as

R(n)' = @ Ru(n)’,

weEW,

we have
Nulle(T) = ) Nulle(T, Ru(n)).

wEW,

Now the restriction of T to R,(n)*, acts in the same way as the matrix T(w™!)
obtained from T by replacing all entries f of T by their values f(w™!). Thus,
Nulle(T, R..(n)) is the nullity of the matrix T(w™!) and

Nulle(T)= ) > ly(Fm)w™)

weW,, m=1

=Y IVa(Fn)l-

m=1

|
Let J C R(n) be an ideal. For any transformation

T : R(n)* — R(n)",
let T'| 7+ be the restriction to the direct sum J* and let T : (R(n)/J)* — (R(n)/J)"
be the induced transformation on quotient algebras. Let J' C R be any ideal so
that J is the image of J' under the quotient map R — R(n).
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LEMMA 2.7. The C-nullity of the restriction T| 7. is given by
]
Nulle(T, ) = Y (ValF)l = Va(Fr + T,
m=1
and the C-nullity of the induced transformation T is given by

Nulle(T) = 2‘: [Va(Fr + T

m=1

Proof- Let p,, be as constructed in the proof of Lemma 2.6. The set of p,, where w
lies in W,, — V,,(J"') forms a basis for J. Thus, to find Nulle(T,.J) we need to sum
over w in W, — V,(J'). That is,

Nulle(T, )= Y Z 1y(Fm)

wEW, -V, (J') m=1

= > (ValF)l = IValFo) N Va(T)).

Since Vo(F;,) N Voa(T') = Va(F,, + J') this completes the first part of the claim.
The quotient space R(n)/J has as basis the image of the elements p,, under the

quotient map, where w ranges in V,(J'). It follows that the nullity is found by

taking the sum where w ranges over elements of V,(J'). The rest of the proof

proceeds as in the previous paragraph. I

Proof of Proposition 2.2: Choose k generators for G. Let R = Clt;,...,%;] as

before. Then there is a natural C-algebra homomorphism

a:R—- A

which sends the elements ¢,,...,¢; to these generators. Let a, = ¥, 0 a.

Since all elements of G(n) have finite order they can be represented as the image
of a product of positive powers of generators of G. Thus, a, : R — A(n) is onto
and A(n) is isomorphic to the quotient ring

Q(n) = R/J'(n)
where J'(n) C R is the kernel of the map a,. Let J' C R be the kernel of the map

a. Then J'(n) = J' + Q, for all n.
Let M], be the map on Q(n)’ corresponding to M,:

M} : Q(n)* — Q(n)".
9



The sequence of these maps are also stable and have the same rank as M,,. By the
second part of Lemma 2.7, the sequence of C-nullities is polynomial periodic. i
Proof of Proposition 2.4: Let J(n) C A(n) be ideals and let J C A be an ideal so
that ¥,(J) = J(n). Let B(n) be the quotient of A(n) by the ideal J(n). Let M,
be the transformation

M, : B(n)’ = B(n)"

induced by M,,. Then Nullc(M,, J(n)) can be written as
Nulle(M,., J(n)) = Nullg(M,) — Nullc(M,,)

which by Proposition 2.2 is polynomial periodic. } '

3. Polynomial periodicity of intersection matrices.

This section is concerned with bilinear forms on certain group algebras.

We begin with some basic notation for general group algebras. Let S be any
group and let C{S] be the corresponding group algebra. The elements of S form a
natural basis for C[S]. There is also a natural inner product on C[S] given by

1 ifslzsg

(s1,00) = {

0 otherwise.

Our main concern is with abelian groups. Let G be a finitely generated abelian
group and let Hy,..., Hx be subgroups of G. Let C(3) = G/H;. For g € G let ¢(i)
be the corresponding coset in C(3).

For each positive integer n, let G(n) = G @ Z/nZ and let ¥, : G.— G(n) be the
quotient map. Let Hy(n),..., Hx(n) be the images of Hi,..., Hy under the map

Yn.

Let C(i,n) denote the set of cosets G(n)/Hi(n). For any element g € G(n),
let g(i,n) be the corresponding coset in C(i,n). We will simultaneously consider
g(i,n) € C(i,n) as a subset of G(n) and also as an element of the coset group with
the multiplicative law :

g(t, n)h(i,n) = gh(i,n).

Let C[C(i, n)] be the corresponding group algebra.
Let V(n) be the vector space

& cici,n)l.

i=1
This has a canonical basis given by the union
k
| cG,n)
=1
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and elements of V(n) can be written uniquely as

k
Z: Z ag(i,n)g(is n)'

i=1 g(i,n)eC(i,n)

We extend the inner product {, ) to all of V(n) so that {g(z, n), k(j, n)) = 0 whenever
i# .

There are two bilinear forms on V(n) that we will be interested in: the plain
intersection form and the fwisted intersection form. The plain intersection form

I: V(n) x V(n) = C

is defined by
I(9(3,n), (3, n)) = lg(i, n) N h(j,n)|

or, in other words, the number of elements in the intersection of the corresponding
sets of g(i,n) and h(j,n). '

The twisted intersection form will depend on some parameters. For each t,5 =
1,...,k, let v(i,7) be positive integers, and, for p = 1,...,r(%,j), let (3,4, p) be
complex numbers and let tw(i, §, p, n) be elements of G(n). The latter will be called
the twisting elements. The twisted intersection form associated to these parameters,

T:V(n) x V(n) — C,

is defined by
r(1,5)

T(g(i,n), h(G,n)) = D Wg(, n), tw(i, j, p,n) " h(j, n))c(i, 4, p)-
p=1

Note that 7' need not be symmetric, since we do not assume that tw(z,j,p,n) =
tw(i, j, p,n)" 1. It will be symmetric, however, in our applications in sections 5 and
6.

The main goal of this section is to prove the following Proposition.

PROPOSITION 3.1. If the twisting elements tw(i, j, p, n) are stable as functions of n,
then the nullity of the associated twisted intersection form is polynomial periodic.

Note that since the plain intersection form I is a special case of the twisted
intersection form, the nullity of I is also polynomial periodic as a function of n.

For any subspace W C V(n), define Null(T, W) to be the nullity of T restricted
to W.

Here is an outline of our proof. We define an index set 7 and for each 7 € 7 define
groups R,. Welet R.(n) = R, ® Z/nZ and let &, , : R, — R.(n) be the quotient
maps. We define subspaces U-(n) of V(n) which naturally imbed into a group

11



algebra of the form C{R,(n)]’. The images of U.(n) are of the form J.(n)*, where
J-(n) C C[R.(n)] is an ideal and there is a J, C C[R,] so that @, (J:) = J-(n).
We show that for all v € Ur(n) and w € U (n), if 7 # 7', then T(v,w) = 0 and we
show that V(n) decomposes into a direct sum of the U,(n). Thus, we have

Null(T, V(n)) = > Null(T, %, (n)).
reT

In the final step we show that the intersection form T on U,(n) corresponds to the
restriction of one on C[R,(n)]® defined by a stable sequence of s X s matrices. By
Proposition 2.4, the nullities of the restrictions to J,(n)® are polynomial periodic.

Our index set will be the set T of subsets of {1,...,k}. Let e; € T be the element
ei = {1}. Define a partial ordering on 7 by 7 < 7' if 7 C r'. Define addition on 7
by 7+ 7/ = 7 U 7. Let || be the number of elements in 7.

For each 7 € T, let

S. =) H,
€T

and let R, = G/S,. For ' > 1, let

M : C[R.] — C[R.]

be the quotient map. Let J, C C[R,] be the ideal given by

Jr = n ker(']r,r')-

>

For each integer n > 0, let R.(n) = R, ® Z/nZ and let &, , : C[R,] = C[R,(n)]
be the quotient map. Let Jr(n) = ®,(J). Let R.(n) be a lift of the quotient
map G(n) — R,(n). For each i € 7, let 5,(i,n) be the image of S, in C(i, n).

Any element of C[C(i,n)] can be written uniquely as

Z E Ctgh(g,n)gh(i, n).

gER, (n) h(in)€ES, (i,n)
Then there is a natural map
o(r,i,n) : C[C(i,n)] » C[R.(n)]

given by

Z Z ®gh(i,n)9h(3, 1) Z Tym9(n).

g(n)ER,(n) h(i,n)€S,(i,n) 9(n)ER.(n)

12



where :
QAg(n) = Z Xgh(i,n)-
A(i,n)ES,(i,n)
The choice of lifting R.(n) doesn't affect this map since as long as ¢ € r any
g € R,(n) determines a unique element g¢(¢,n) € C(i,n).
If : € 7, define K, (¢,n) to be the kernel of (i, n), i.e.,

K.(i,n) = { Z ag(,-,,,)g(i, n): Z agniimy =0 Vge G(n)} ,

9(#,n)€C(i,n) h(i,n)€S,(i,n)

and let

L.(i,n) = { z ag(in)9(3, 1) : Ang(in) = Ag(i,n) Vh(3,n) € S,-(i,n)} .

9(¥,n)€C(i,n)

Ifi:gr,let Ki(t,n) = L,(i,n) = 0. Then o-(i,n) restricts to an isomorphism on
L:(i,n).

Let

Unliym) = ([ Ko (irm) 1 L1 (i)
>

Then o,(i,n)(U-(i,n)) = Jr(n) for all i such that ¢ € 7.

Thus, setting

Ur(n) = BU:(i,n) C V(n)

we have maps
o.(n) : U (n) > T-(n)* C C[R.(n)]°.
We claim that
(1) v € Ur(n), w € U (n) and 7 # 7' then T(v,w) = 0. (Le. the U (n) are
orthogonal with respect to the bilinear form T.)

(2)

V(n) = Ur(n).

(= @ Ueln)

We will show that in fact the U,(n) are orthogonal with respect to any bilinear
form '

B:V(n)x V(n) = C

satisfying
B(sg(i, n), h(j,n)) = B(g(i, n), s~ (5, n)),

for 3 € G(n). Note that {,}, [ and T all have this property.
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For any g, € G(n), define [g,](r,i,n) to be the element of C[C(7, n)] given by

[@l(nin)= > agn)

92€5-(i,n)

We can write any element of £,(i,n) uniquely as

Y. aglal(nin).

M ER,(n)

LEMMA 3.2. Forany v € 7, s € S;(n) and g,h € G(n), if i € 7, then, for any
j=1,...,k, we have

B([g](7,¢,n), sh(j,n)) = B([g](T, i, 1), h(j, n)).

Proof. We have
[g(rin) = > gh(i,n)

he S, (i,n)

=s7' > gh'(i,n)

h'€S,(i,n)
=57 {g)(r,4,n),

where the sum in the second row is taken over k' = s'h, where s’ is the image of s
in S,(z,n). 1 _ ‘
It is easy to see that C[C(z, n)] breaks up into the direct sum

ClC(i,n)] =K. (i,n) ® L.(i,n).

Furthermore, X, (%, n) and £,(i, n) are orthogonal with respect to the natural inner
product {,) on C[C(:,n)]. We will now show that K,(i,n) and £,(:,n) are also
orthogonal with respect to the form B.

LEMMA 3.3. Take any 7 with 1,5 € 7. Then the spaces K.(i,n) and L.(j,n) are
orthogonal in V(n) with respect to B.

Proof. For all hy, g; € R.(n), Lemma 3.2 implies

z Qhyhy(iyn) B(hlh2(£1 n)7 [gl](T7 j’ n)) ‘
h?GSf(iln)

= ( Z Qh, hz(i'")) B(hl(iu n)’ [gl](T7 I n'))

h2€S, (i,n)

14



Take any v € X.(i,n), w € L,(i,n). Then w is a linear combination of [g](7,¢,n),
where g; ranges in R,(n) and v is a linear combination of

Z ah;h;(i,n)hlhz(i’n))
h3E€Sr(i,n)
where h, ranges in R.(n) and
z afuh:(l',n) = 0‘
ha€S,(i,n)
Thus, we have B(v,w) =0. I
LEMMA 3.4. Foranyr andi € T

U.(i,n) = (ﬂ Keite; (i n)) N L.(i,n).
JEr
Proof. It is enough to show that if j € 7 then
Krie;(1,n) N Lo (4, n) = Ke;4e;(5,7) N Lo (4,1).

Since K¢, +¢;(3,n) C Krye; (3, n), we have one obvious inclusion. Now take any
v € Krye; (3,n) N L-(i,n). We can write v as

v= Z ay(i,n)9(3, n).
9(i,n)€C(i,n)
Let hy,..., R, € Hj(n) be coset representatives for
(Hi(n) + Hj(n))/Hi(n)
and let gy,...,9¢ € ) _;c, Hi(n) be coset representatives for
(D Hi(n))/(Hi(n) + Hy(n)).
€T
Then, since v € K,4;(i,n),

r t
2D Oheglim =0

=1 m=1
and, since v € £,(i,n),
Xhogm(i,n) = Xhegi(i,n)

for all £ and m. Therefore,
D Chigmim) =0
=1

forallm=1,...,t. Sov € K., 4.;(¢,n). Ul
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LEMMA 3.5. If 7 # 7', v € U.(3,n) and w € U (j, n), then B(v,w) = 0.

Proof. Let d be such that d ¢ 7 and d € . We can assume 1 € 7 and j € 7/, since
. otherwise U, (i, n) or U (j,n) would be trivial.
We will do the case where d = j and the case where d is not equal to ¢t or j
separately. :
Suppose d = j, in other words, j € 7. Set 79 = €; + ¢;. Then by Lemma 3.4 we
have
veE K, (in)

Thus, we can write v as

v = Z Z aglgz(i,n)glgz(i)n)"

gleRro(") g,ESfo(‘.‘n)

where, for all g; € R,,(n),

Z gy ga(i,n) = 0.

E:GSro(i,ﬂ)
For all g; € S;,(i,n), g1 € Ry (n) and h € C(j,n)
B(glgz(ii n’)’ h(]i n)) = B(gl(ia n)! h(]) ﬂ))

Thus, for any k(j,n) € C(j,n),

B(v, h(], ﬂ.)) = E Z Qg 92(i,n) B(9192(i1 n): h(:h n))

91€Rcy 92€S5r, (i,n)

= z ( Z a,lg,(;,n)) B(gl(i:n’)ih(j?n))

g1 ERI'O yzESro (irn)
=0.

Therefore, since w is a linear combination of the k(j,n), we have B(v,w) = 0.
Now suppose ¢, € T and ¢, € 7', d ¢ T and d € 7'. Then v € K, 4.,(3,n) C
K-(i,n) and w € L,(j,n). Thus, by Lemma 3.3, we have B(v,w) =0. §

We have thus proven (1). To prove (2), we will show that C[C(i,n)] decomposes
into the direct sum of the U.(i,n), as 7 ranges in 7. Since, by Lemma 3.5, the
U,(i,n) are orthogonal with respect to the usual inner product {, ) on C[C(i,n)], it
suffices to show the following,

16



LEMMA 3.6. The space C[C(3i,n)] is spanned by U.(i,n) ast ranges among elements
of T containing 1.

Proof: We will show inductively that

L
CiCi,n)) =B P U:.G,n)yo( V. Lu(,n))

=1 |r|=¢,icr |7 |=L+1
foral L=1,...,k—1, where'\thg denotes the join or span of the subspaces S,.
Since L.(i,n) = U,(i,n) for 7 = {1,..., k}, this will conclude the proof.
The proof is by induction on L. If |7| = 1 then U, (i, n) is either trivial (if 1 & 1)
or 7 = e;. In the latter case

L.(i,n) = C[C(i, n)]

and hence
Ur(i,n) = [ Keige; (i, 7).
J#E
Now the orthogonal complement of K., 4.; (3, 1) in C[C(¢,n)] is L., +¢;(3,n). There-
fore, the orthogonal complement of U, (#,n) is

j¥i£8i+05 (4,n) = [f}izﬁr(z’ n).

Thus,
CICG, )] = Un(iym) @ ( V. LoGyr)

Now assume the hypothesis for L — 1. Then we have

L-1
CiCG,n) =D P U-(i,n) & (|r|‘i Lr(in)).

=1 |r|=¢

For each 7 and each 7' > 7, the orthogonal complement of L(i,n) in £.(3,n) is
K, (i,n) N L,(i,n). Therefore,

L.(i,n) = ( (] K~(,n) N L., n)) ® (fyr,z,,(e, n))

r<r!
= U.(i,n) ® (TZ’J"" i, n)) .

Since L, (i,n) C L(i,n) for 7" > 7/, we have
V C.(G,n)= @ UG, V. L.G,n)).
Loltn) = @ umo (Y, £oim)

1
Now we will restrict to the particular bilinear forms I and T. The following lemma
can be shown from elementary facts about cosets.
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LEMMA 3.7. The bilinear form I has the following properties.

|Hi(n) N Hj(n)| if gh™! € Hi(n) + H;(n)

0 otherwise.

Ig(i, n), h(j,n)) = {

If g, h € R.(n), then, since (Hi(n) + Hj(n)) N R.(n) = (1),
I(g(i, n), h(j,n)) = (g, | Hi(n) N Hj(n)|.
Let tw(r,1, j, p,n) be the image of tw(i, 7, p,n) in C[R,(n)).
LEMMA 3.8. If T is such that i,j € 7, then
r(i,j)
T({g)(r, i, n) [RI(r, 5, n)) = |S<(n)] D _ (9, tw(r i, 5, p,n) T h)e(iy 5, p)-
p=1
Proof. Let My(i,n) C S-(i,n) and M3(j,n) C S-(j, n) be coset representatives for
Sr(i, 1)/ Seite; (4,n)

and
Sf(j: n)/Sc.'+e,' (.7, 'ﬂ),
respectively. Both of these are isomorphic to S-(n)/(Hi(n) + H;(n)).
We have, for all s € S;4.; (i,n),
T(g(s,n), sh(5,n)) = T(g(i, n), k{3, n)).

Thus, for g1, k1 € R.(n), T({g:1](7, ¢, n), [h1](7, 7, n)) equals

Z E dl(i,j)T(glg2(i1n)’h1h2(jsn))3

92(i,n)EM2(i,n)  ha{jn)EMa(jn)

where

d1(6,5) = Sere; (i )| Serbe; Gy )
_ |Hin) + Hy(n)?
H ;)

Since T(glgg(i, n)’ hy hz(j, ﬂ)) = T(gl (i': n)1 hy h2g‘2_1(j3 n))a we have

T(lg:)Gn), [A1)G, ) = Y, da(i,5) T(91(G, ), By ha(j, n)),

h2(j,n)EM1(j,n)
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where
PN A(OE /10 GBI A
) = Mg T ™ TERm) 0 Ey Gl

Let tw(i, j, p,n); be the image of tw(s, j,p,n) in M>(j,n). Since
Mz(j,n) N (Hi(n) + Hj(n)) = (1),
we have

I(gl(i'z n): tw(ia ja P n’)_lhl h2(j) ﬂ)) = I(gl(is n)r tw(iaj: D, n)l_l hlh')(ia n))
= (g1, tw(i, j, p, n)y " h1ho )| Hi(n) N Hj(n)|.

Since MZ(j: n)nR‘r(n) = (1) if we write t‘UJ(i, JsPs ﬂ)]_ as tw(ra t,J,P n)tw(ia J: P n’)2:
where tw(s, j, p,n)2 € My(j, n), we have

(gla t‘LU(t, j’ Dy n’)_l hl hz) = (gl, t‘UJ(T, i! jv b, n)—lhl)(tw(i$j) D, n)zy h2)'

Thus,
Tlloali ) (i) = TS N i)
=18-(n)| ’:zji)(yu tw(r, i, 5, P n)~'hi)e(i, 4, p)-.
|

Proof of Proposition 3.1: Let T' be the intersection form on J,(n)* induced by
the restriction of T to U.(n). For C[R,(n)] considered as a C[R,(n)]-module, we
can write the generators as E;(n) = [1](i,n) for all i with i € 7. If f; and f, are
elements of C[R,(n)} then, by Lemma 3.8,

T'(f1Ei(n), f2Ej(n)) = |Se(n)] D_{f1, c(i, j, p)tw(r,i,5,p,n) " f2)

p=1

defines an extension of the intersection form T' to C[R,(n)]°. One can write down
an intersection matrix for T' on C[R,(n)]® with respect to the generators E;, for
i€ 7T, as
(i, j)
1S:(n)l D e(iy g, pYtw(ryd,5,p,m) 7t |
p=1 ijer
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Since |Sr(n)| is a nonzero constant not depending on i the C-rank and C-nullity of
this matrix doesn’t change if we replace it by

r(i,5)
My = | c(i,j,p)tw(r,i,j,p,n)7" | .

=1

By the hypotheses of Proposition 3.1, tw(i, j, p, n) are stable. Therefore, the images
tw(r,1, 7, p,n) and hence the entries of M, are also stable. Thus, by Proposition
2.4, the sequence of C-nullities of M, restricted to Jr(n)?, or Nulle(T, U (n)), is
polynomial periodic. Therefore,

Nullg(T, V(n)) = Y _ Nulle(T,Us(n))
reT

is polynomial periodic. [

4, Difference between the first Betti numbers of a smooth surface and
the complement of curves.

Let X be a smooth complex projective surface and let C be a finite union of curves
on X. This section concerns the relation between the difference of Betti numbers

bi(X —C) — bi(X)

and intersections of curves in C.

We begin with some notation. Let Picq(X) and NSq(X) be the Picard group
and Néron-Severi group of X tensored with Q. Let Picq(X,C) and NSq(X,C) be
the subspaces generated by divisors supported on C. Let #C be the number of
irreducible components (i.e. curves) in C.

The following fact was originally communicated to me by A. Landman and A.
Libgober.

PROPOSITION 4.1. Let X be a smooth complex projective surface and C a finite
union of curves on X. Then

by(X — €) — bi(X) = #C — dimq NSq(X, C).

The proof of this proposition can be found in [Ho}, Proposition 1.6.3, but we give
a briefer version here.

Proof of Proposition 4.1: We look at the exact homology sequence for the pair
(X, X — C) with rational coefficients:

HQ(X)—* HQ(X,X - C) —
HI(X - C)--’ Hl(X)—b HI(X,X - C)
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There are non-degenerate pairings coming from intersections:
Hi(X,X -C)®H,i(C) = Q.
This implies that H,(X, X —C) is trivial, and the map
Ha(X) — Ho(X, X - C)

is dual to the map
i: HQ(C) — HQ(X)

induced by inclusion. The claim then follows since #C equals dimg H2(C) and
NSq(X,C) is isomorphic to the image of the map i. 1

Let Null(C) be the nullity of the intersection matrix for C, that is, if we enumerate
the curves C},...,Cy in C, then Null(C) equals the nullity of the k¥ X k matrix with
entries [a; ;], where a;; = C;.C;. Of course, the nullity doesn’t depend on the
ordering of the curves.

PROPOSITION 4.2. The difference #C — dimq NSq(X,C) can be computed in one
of the following ways.
(1) If C supports an ample divisor, then

Null(C) = #C — dimq NSq(X,C).
(2) If C doesn’t support an ample divisor, then for any ample curve H on X

Null(C U H) = #C — dimq NSq(X, C).

Proof: If C supports an ample divisor then any divisor D supported on C, with the
property that D.E = 0 for all E supported on C, has the property that D.H =0
for some ample divisor H and that D? = 0. By the Hodge Index Theorem, such a
D is numerically equivalent to zero. Therefore, the kernel of the intersection matrix
equals the kernel of the map from Picq(X,C) to NSq(X,C).

If C doesn’t support an ample divisor and H is an ample curve, then, since CUH
supports an ample divisor, by the same argument as above we have

Null(C U H) = #C U H — dimgq NSq(X,C U H).

On the other hand, #C U H and dimg NSq(X,CU H) both equal one more than #C
and dimg NSq(X,C). The latter holds because any divisor numerically equivalent
to an ample divisor must be ample by the Nakai-Moishezon criterion. §

Proposition 4.1 and 4.2 imply that given a smooth surface Y and a finite union of
curves C we can compute the first Betti number of the associated branched coverings
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X in the following way. If C supports an ample divisor then so does the preimage
PYC) of C in X ., where p, is the projection of X, toY factoring through p,.
Hence _
51(Xn) = bi(X3) — Null(p,(C)).
If C doesn’t support an ample divisor, then we find an ample curve H on Y and
bi(Xn) = bi(X3) — Null(5; (C U H)).

Thus, to prove polynomial periodicity for b;(X,), in light of Theorem 1.3, it suffices
to show that the nullity of the intersection matrix for curves above the branch locus
and possibly an extra curve supporting an ample divisor is polynomial periodic.

5. Intersections on abelian coverings.

Let ¥ be a smooth surface and let B be a finite union of curves in Y. Let
p: X — Y be an abelian covering with branch locus B and Galois group G. We
assume (recall Remark 1.7) that B is a union of smooth curves with normal crossings.
As in section 3, for a finite set S, |S| denotes the number of elements in S. Recall
that by curve we always mean an irreducible curve.

For any irreducible algebraic subset V on Y, there are associated inertia and
stabilizer subgroups Iy and Hy of G defined as follows:

Iv={g9g€G | forallzep (V) gz =z}
Hy ={g€ G | for all irreducible components V' C p~}(V), (V') = V'}.
Here are some elementary observations (see also [Ho}, Chapter IL.)

(1) The subvariety V is contained in the branch locus B if and only if Iy # (0).
(2) Given an irreducible component V' C p~!(V') there is a canonical one-to-one
correspondence between cosets G/Hy and 1rreduc1ble components of p~}(V)
by the map
gHy — gV'.

(3) For a point p € Y, we have
Hy=1, = Z Ic=2p€ C C Blc.

PECCY
(4) For a point p € C C Y and a component C' C p~}(C), we have
H,
'™ (p)) = e,
7]

(5) Let p € C N D for two distinct curves C,D C Y. Let C' C p~1(C) and
D' C p~1(D) be two curves so that C' N D' N p~1(p) # 0. Then

|Hc N Hp|
||
Furthermore, for any a,b € G, aC’ N bD' N p~!(p) is nonempty if and only if
~ aHcNbHp # 0.

IC'NnD' np~(p)| =
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Note that if aHe NbHp # @ then
|eHc NbHp| = |Hc N Hp|.

Putting together these facts, we have the following,.

PROPOSITION 5.1. Let C be a finite union of curves in Y, and for each curve C C C
fix a curve C' C p~1(C) in the preimage. For each triple (C, D, p), where C,D C C
are distinct curves and p € CN D, let tw(C, D,p) € G be an element so that

C'Ntw(C, D,p)D' N p~ (p) £ 9.
Then, for all elements a,b € G,

|aHc N tw(C, D,p)"*bHp|

laC'NbD|= Y A
P

pEC'ND!

If X is smooth, C contains only smooth curves and has only normal crossings,
then we can find the intersection matrix of curves in p~?(C) by using the fact that,
for all distinct pairs of curves C, D € C, all curves C' C p~}(C) and D' C p~1(D)
intersect transversally, so

C'.D' =|C'n D

Also, for any single curve C' C p~!(C), the curves in p~!(C) are disjoint so we have

(deg p)(#p~1(C))C™ = (deg p)*C™.

From the definitions of I¢ and H¢ this can be rewritten as

16l 16l on _ (1LY’
[c| |Hcl| lcl) ’

_ 1Hcl
[ Ic|?

In the case that X is not smooth we need to study resolutions of surface singu-
larities. Our analysis follows that of Laufer ([Lf], Chapter IL) By the hypothesis, p
restricts locally to branched coverings of a complex disk branched along two distinct
lines through the origin.

Any singular point on X clearly must lie above a crossing of two curves C, D € B.
Now take any point ¢ lying above such a crossing and let p = p(q). Since p is a
smooth point on Y, one can find an analytic neighborhood U C Y containing p,
isomorphic to a complex disk, and local coordinates ({,n) on U so that p is at the
origin and C and D are given by the local equations ( = 0 and n = 0, respectively.

c? C2.
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In general, for any finite branched covering p, : V — U branched along { = 0
and 1 = 0, there is an analytic isomorphism

a:D—{z=0}U{y=0}—'V*P;I({C=O}U{0=O}),

where D is a complex disk with coordinates z and y and the composition p, 0 «,
after some possible additional change of the coordinates ( and 7, is the same as the
map

(z,y) = (=7, 2"y")
where r,8,t are integersand 0 < s < t, 0 < r.

Returning to our situation, the integers r,s,t are closely related to the inertia
subgroups I¢c and Ip. To show this we start by defining meridinal loops around
curves.

For any curve C C Y and p € C a smooth point on C not contained in any

D C B, for D # C. Let B, be a small ball around p and let B, be its boundary.
Then OB, is a three-sphere, and @B, N C is a circle canonically oriented by the
complex structure of C. The positive generator of H, (0B, — C; Z) with respect to
the given orientation determines an element uc € Hy(Y — B;Z). Since the set of
smooth points on C, which are not contained in D C B for any D # C, is path-
connected, pc is a well-defined element. We call ue the meridinal loop around C
in Hy(Y - B; Z).
REMARK 5.2: (Proof of Corollary 1.8) Let us consider the case that Y = P2 and B is
a union of curves not all going through one point. Then by the Lefschetz hyperplane
theorem and Van Kampen’s theorem it is not hard to see that H;(P?2 — B;Z) is
generated by the uc where C C B and its only relation is

Z deg(Cluc = 0.
cCsB

Let P be the set of points in B lying in the intersection of three or more curves in B.
By blowing up all the points in P we obtain a new branch locus B’ as above where
all the curves are smooth and have normal crossings. Since Y — B and Y' — B’ are
canonically isomorphic there is a canonical identification between Hy(Y — B; Z) and
H,(Y'-B;2). If € C B' is the proper transform of a curve C C B then puc = pg
and if F is the exceptional curve above a point p € P then

HE = Z KC-

pECCHB

Thus, P? and B satisfy condition (1) of Theorem 1.7. §

It is not hard to see that if we let gc € G be the image of the meridinal loop u¢

under the map
HI(Y - B; Z) - G
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determined by the covering, then I¢ is generated by g¢ in G (see, for example,
[Hoj, section 1.4.)
Putting together the definitions, the integers r, s,¢ are such that

{rgc+sgp=0
tgp =0

generate the relations in I¢ + Ip.

If s = 0 the map a defined above extends to all of D and thus g has a neighborhood
isomorphic to a complex disk and ¢ is a smooth point. If s # 0 then one can
desingularize X at ¢ by adding exceptional curves with the following properties.
Let

t 1

- =k -

s k2 — 5=
be a continued fraction expansion for £, where ki, k3,... are positive integers. This
process terminates and we get a sequence of £ integers ky,..., ks all greater than

or equal to 2. Then X can be desingularized at ¢ by adding £ exceptional curves
E,,..., E, with

E,z = —k;,
1 ifli—jl=1
E.E; = | |
0 otherwise,

and for all curves F C p~!(C), we have

1 fi=1land F=C'
FE, =¢(1 fi=fand F=D'.

0 otherwise.

We now restate the results of this section in terms of our sequences of coverings.
Let '
pn:Xn—Y

be branched coverings, branched along a finite union of smooth curves B with normal
crossings and defined by the map

m (Y — B) - Hy(Y — B; Z/nl). _

Let p: fn — Y be the composition of p, with a desingularization )‘E,, — X,. Let
G = Hy(Y — B;Z), G(n) = Hy(Y — B;Z/nZ) and ¢, : G — G(n) the quotient
map. For each curve C C B let uc € G be the meridinal curve around C and let
pc(n) € G(n) be its image under 1,. Let C D B be a union of smooth curves with
normal intersections. Let P be the set of points of intersection on C.
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For each curve C C Y, let Hc C G be the subgroup given by the image of the
map

Hi(C-C-B;1) - Hy(Y — B; Z)

induced by inclusion. Let Ho(n) = ¥,(Hg). It is not hard to see that He(n) =
is the stabilizer subgroup for C for the branched covering p,. Let I¢ C G be the
subgroup generated by uc and let Ic(n) = po(Ic). Then Ic(n) is generated by
pc(n) and is the inertia subgroup for C.

For any curve C C C, let t(C,n) = |Ic(n)|. For each triple C, D, p where C,D C C
are distinct curves and p € C N D, define

r(C,D,n) =min{r € Z5o:3s € Z5q such that ruc(n)+ sup(n) =0.}
s(C,D,n) = min{s € Z», : r(C, D, n)uc(n) + spp(n) = 0.}

Note that r(C, D,n) and S(C, D,n) depend on the order in which you take C and
D.

To describe intersections above C there are two main cases to consider. The
simplest case is the following.

CASE 1: Assume that for all distinct curves C,D € B with CN D # @ and for all
n > 1, we have s(C, D,n) = 0. Then we have

(1) X, is nonsingular for all n > 1,
(2) for all distinct curves C, D € C with pe C N D, I¢(n) N Ip(n) = (0), and
(3) if for each C C C we fix a curve C' C p~'(C) and if, for each triple C, D, p of
distinct curves C, D € B and a point p € CND, we find tw(C, D, p,n) € G(n)
so that
Cc'nD'np~i(p) # 9,

then intersections for curves above C are given by

1 _
aC'.bD' = TRESIIEI] ;Dlaﬂc(n) Ntw(C, D, p,n) *bHp(n)|.
PECN

The rank and nullity of the resulting matrix doesn’t change if we delete the leading

constant

1
[Ie(r)liIp(n)|

(this corresponds to multiplying rows and columns of the intersection matrix by
nonzero integers.) Let

1 #C#D

— 2
«(CD,p) { ¢ if ¢ =D.

PNC]
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Then, Null(p~!(C)) equals the nullity of the matrix with rows and columns corre-
sponding to

aC’,
where C ranges in C and a ranges in G(n)/Hc(n), with the entry in the (aC', bD')
place given by

>~ laHg(n) Ntw(C, D, p,n)"'bHp(n)|c(C, D, p).
pECNDNP

If we can arrange so that the tw(C, D, p, n) are stable as functions of n then Proposi-
tion 3.1 shows that the nullities of the intersection matrices are polynomial periodic.
We show how this can be done in section 6. )
REMARK 5.3: In general, however, Case 1 doesn’t apply. Furthermore, it won’t
apply even after a succession of blowing up the branch locus and pulling back the
covering. For example, let B be the union of a line L and any nodal curve C in P?
so that L and C are in general position.
Then
H,(P?-B;2)~12

and the meridinal loop u¢ is a generator for this group.

Let p be a nodal singularity on C. For any sequence of blowups over p, meridi-
nal loops around the exceptional curves will be positive multiples of uc (see [Ho],
Proposition 1.4.11.) Thereforf, there will always be an exceptional curve E inter-

secting the proper transform C of C so that ug = muc for some m. If n is relatively
prime to m then Ic(n) N Ig(n) is non-trivial.
CASE 2: We now consider the more general case.

LEMMA 5.4. Suppose that one of the following is true
(1) both I¢ and Ip are infinite and Ic N Ip = (0); or
(2) both I¢c and Ip finite.

(These are the conditions set up in Theorem 1.7.) Then
(1) £(n), k1(n),. .., kyn)(n) are periodic
(2) and one of the following holds: either

[Zo(n)l 1
a and ——
® TR I TACY]

are both periodic or

He(n) _ a(n)
(b) Up(ln)| ﬂ(nn)
L)~ n?

for periodic functions a(n) and B(n).
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We will first show that the proof of Theorem 1.7 reduces to proving Lemma 5.4
and proving that the twisting elements are stable.

Fix a such that 0 < a €< N - 1. We will show that for each a there is an
intersection matrix of the form described in section 3.

Take any positive integer n = a(mod N). Enumerate the curves Cy,...,Ci € C.
Let C! C p;1(C;) be any choice of curve for each curve C; C C. For pE P and
i=1,...,€(p,n), let E(p,i) be the curves mapping to p under the map pn.

Intersections for curves in p;!(C) C X, can then be described as follows. The
rows and columns of the intersection matrix can be made to correspond to the union
of the set of

aCi,

where i =1,...,k and @ € G(n)/Hc(n), and the set of

aE(p,j)

where p€ P, j =1,...,4(p,a) and a € G/I,(n). Define for each p € PN C; N C;
and f=1,...,4p,a)

Hep,p)(n) = Ip(n) = Ii(n) + Ig;(n) = (Ic; + Ig;)(n)

Tgp,(m = (0)-

Foreachi=1,...,k let
Cc?
P NCi|°

For each triple C;,Cj,p withi < j and p € C; N Cj let

C(Cil Ci') p) =

1 if P
A Cip) = { 0 otief“dm,
If p € P define
(|Ic,(n)| -
C(C.-, E(p, f)?p) =< !Ip(n)| f
| 0 otherwise
(g (n)] .
it BNEAS i f=2¢ a
(Cs, E(p, f)yp) = §  Hp(n)] f=¢p,a)
\ 0 otherwise
kg
C(E(P7 f),E(P, f),P) lI ( )I



Then for any C, D C p,(C), we have

Z |aHc(n) Ntw(C, D, p,n)~ BHp(n)|
[ Ic(n)llIp(n)|

aC.pD = c(C, D, p).

PE;n (C) n:;n (D)nP

If, in Lemma 5.4, (2)(a) holds, we multiply rows and columns corresponding to
aC by |Ic(n)| to get the intersection matrix for a twisted intersection of the form
studied in section 3.

In the case of (2)(b), we do the same as above, but also multiply the rows and
columns corresponding to aE(p, f) by n to get the intersection matrix in the desired
form.

Thus, if we can find stable sequences of twisting elements tw(C, D, p,n) (as we do
in the next section), then Null(p~!(C)) is polynomial periodic for positive integers
n with n = a(mod N). This shows that Null(3~!(C)) is polynomial periodic as a
function of n and hence so is b;(X.,). |
Proof of Lemma 5.4: For (1) it suffices to show that the rational number

t(D,n)
s(C,D,n)
is periodic for all distinct curves C, D C B with CN D # 0.
To show (2), since
[c(m)|lIp(n)l _ #(C,n)t(D,n)
lHe(n) N Ip(n)|  He(r) N Ip(n)

L) = lo(n) + In(n)] =

and

t(C,n)

[e(n) N Ip(n)| = ged(t(C, n), r(C, D,n))’

it suffices to show that either
t(C,n) and gcd((C,n),r(C,D,n))

are both periodic or they are both of the form na(n) where a(n) is periodic.
From the above discussion one sees that Lemma 5.4 is implied by the following
lemmas.

LEMMA 5.5. Take any pair of distinct curves C,D C B with CND # 0. If I is
infinite, then t(C,n) = na(n), where a(n) is periodic. If, in addition, Ic N Ip = (0)
then r(C, D,n) = nf(n) and s(C, D,n) = ny(n) where 8(n) and v(n) are periodic.

LEMMA 5.6. If I¢ and Ip are finite, then t(C,n), r(C, D,n) and s(C, D,n) are all
periodic.

To prove these lemmas we make the following definitions. Since G is a finitely
generated group, G/Ic, G/Ip and G/(Ic + Ip) are also finitely generated. Thus,
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their torsion parts are finite groups. Let A(C) (respectively, A(D), B(C, D)) be the
set of possible finite orders of elements in G/I¢ (respectively, G/Ip, G/(Ic + Ip)).
For a € A(D), define

ta(D) =min{t € Z50: 39 € G,a9 = tup}
and, for b € B(C, D), define

ro(C,D)=min{r €Z50:39 € G, 3Fs€ I3, ric+sup = bg}
sp(C, D) =min{s € I5o: g€ G, r(C,D)uc + spup = bg}.
If |Ip] < oo set
to(D) = min{t € Z5¢ : tup = 0}.

Otherwise set tg(D) = o00. If |Ig| < 00 or Ic N Ip # (0) set ro(C, D) and s¢(C, D)
so that ro(C, D) is the minimal positive integer so that

rO(C’ D).“C + sup =0,

for some non-negative integer s and so(C, D) is the minimal non-negative integer
such that

rO(C» D)PC + 30(03 D)/JD =0.
Otherwise set r5(C, D) equal to co and s4(C, D) equal to 0.
Proof of Lemma 5.5: Suppose I¢ is infinite and ¢ is the minimal positive solution
to ‘ '

tpc =ng

for some g € G. The order a of the image of g in G/I¢ must lie in A(C). There is
also a positive integer ¢’ dividing a so that

t'uc = ag.

Since I¢ is infinite ¢ must equal 2¢. By the definition of t, we have ¢, < ¢/, so by
the minimality of ¢ we must have t' = ¢, and, in fact,

t

t= min {n“}
¢€A(C),a|n a

la

=n min .
a€A(C),a|n a
Dividing by n gives a number which is clearly periodic.
Now suppose that Ip is infinite and I¢ N Ip = (0). Suppose r is a minimal
positive solution to
Tuc +sup =ng
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for some g € G and non-negative integer s. Let b be the order of the image of g in
G/(Ic + Ip). There are positive integers r', 8', with r' minimal, so that

r'uc +s'up = bg.
By the hypothesis ro(C, D) = oo. So

n
r=-—r and s=zs.

By the minimality conditions on r and s, ' = r, and s’ = s;. Thus
r= (o
beBlC, D) Bjn

=n {}

beB(c D) bjn

nry

and again dividing by n gives a periodic function. We can write this as ry(,)/b(n),
where b(n) is periodic and s is equal to

n3p(n)

¥n)

which is n times a periodic function. §

Proof of Lemma 5.6: Suppose |Ic| = to(C) is finite. Keeping the notation in the
proof of Lemma 5.5 we have 2t' — t is divisible by to(C). Furthermore, since ¢, is
minimal, we have t,|t' (we could replace t, by ged(t,,t').) So

t= -Z—t'(mod to(D))

= m%ta(mod to(D))

for some m € {1,...,t(D) - 1}.
On the other hand, take any ¢’ € G so that

ta(Cluc = ag'.
Then, for any m = 1,...,t(D) — 1 we have
mta(C)uc = a(mg’).
This implies that

n
t= 1 24 dt .
aGA(C),m=I1?i?t°(C)_l’a|”{ma o(C)(mod te(C))}
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Take any positive integers a,a and N, with 0 < @ £ N — 1. For all n divisible by
a, the value of 2(mod N) is « if and only if n(mod N) = aa(mod N). This imposes
a requirement on the modulus of n. It follows that ¢(C, n) is periodic in n.

If Ip is also finite, then ro(C, D) and sq(C, D) are both finite. As with ¢

r= m%r'(mod ro(C, D))

for some m. Since r3(C, D) is minimal one can easily check that ry(C, D) must
divide r’. Thus,

. mn
- beB(C,D),mﬂl,l.):.,ro(c,l)),ﬂn{_b-rb(C’ D)(mod ro(C, D))}

which is periodic. We can write r as

bi )) rb(,.)(modro(C D))
- mb((;))" rs(m) — Lo(C, D)

where m(n) and b(n) are periodic functions in n and L equals

%'Z(}:%rb(,,)n T((;))-rb(,,)n(mod T‘Q(C D))
ro(C D)

Note that for any positive integer a, L(mod «) is periodic. Since

ra(n)iC + Sym)tp = Y(n)g',

we have
ng =ruc + Sup
- mbggn (8(n)g' — ss(ayup] + sup + Lso(C, D)pp
= m(n)ng’' + (s + Lso(C, D) - b((n))n 3b(n))HD>
s =(Lso(C,D) - mbE:;n Sp(n))(mod to(D))

which is periodic. I
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6. Liftings of the intersection graph and twisting elements.

Throughout this section, fix a smooth surface Y and two finite unions of smooth
curves B C C C Y with normal crossings. Let p, : X, — Y be the branched
coverings corresponding to the composition ¢, of the maps

$:m(Y -B)-H(Y -B;Z)

and

Yo : Hy(Y - B;Z) - H,(Y — B;Z/nZ).

As before, let G = Hi(Y — BiZ), Gon = Hi(Y — B;Z/nZ). Let P be the set of
intersections on C. In Section 5 we reduced the proof of Theorem 1.7 to proving the
following lemma.

LEMMA 6.1. There are choices of curves C' in p;'(C) one for each curve C C C
and elements tw(C, D, p,n) in the covering groups G(n) so that

C' Ntw(C, D,p,n)D' N p7 (p)

is nonempty and so that the sequence of elements tw(C, D, p,n) is stable for each
triple C, D, p.

Proof: We will find the tw(C, D, p,n) as images of a single element in m;(Y — C)
under the map ¢, and use the fact that ¥, 0 ¢ = ¢, to show that there exists
tw(C, D, p) € G so that ¥,(tw(C, D, p)) = tw(C, D, p,n).

One way to make the choices of curves C' C p;!(C) and to find the twisting
elements tw(C, D,p,n) goes as follows. First, for each p € P, let B(p) be a small
analytic neighborhood of p so that

(1) B(p) N B(g) =0 for p # g;
(2) each connected component of p;!(B(p)) contains a single point of p;;!(p).

For each curve C C C, order the points py,...,p,. and let I'c be the graph
homeomorphic to [0, sc], with vertices V¢ the integers in [0, s¢]. We will write the
vertices as v¢(0),...,vc(sc). Fora=0,...,s,let Icp, = (a—,a+ 1) CTc. Let

fc:Fc—Pc—P

be an immersion so that

(1) fe(Ic,p) C B(p), forall pe PNC;
(2) fEI(B(p)) = IC,p-
Let T be the graph

[[Tcuz
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where X is the set of edges defined as follows: Enumerate the curves Ci,...,Cy C C.
Let X' be defined so that there is an edge in X' connecting two vertices v; € V¢,
and v € V¢; where ¢ # j. Assume i < j, v; = v¢,(a) and v, = vc;(d). Suppose

(1) fe:(v1), fc;(v2) € B(p) for some p € C; N Cj;

(2) b is the least integer among 1,..., s¢; so that (1) holds;

(3) there is no index £ with i < £ < j sothat C;NCr# 0 and C,NC; # 0.
Then, since I" can be defined inductively, starting with I'¢c, and at each step attach-
ing the connected, simply connected graph I'c; to an already existing connected,
simply connected graph by a single edge, we can conclude that I' is connected and
simply connected.

Now let

F:Tx[0,1] =Y

be an immersion so that

(1) F(Z,8) C [L,ep B(p), for t € [0,1];

(2) F(Ic,p,t) C B(p), for pe P and t € [0, 1];
(3) F(7,0) = fc(v), for C CC and v € T'g;
(4) F(v,t)eY —C,fory€T and t > 0.

Since f(I'c) C C—P, F can be made so that F(I¢,p % [0,1)]) intersects C transver-
sally at smooth points. Since I' x (0,1] is simply connected and

FIx(0,1]))CcY -,
for each n there exists a lifting
Fo:Tx(0,1] - X,

and F}, is also an immersion.

LEMMA 6.2. For a given choice of lifting F, : I'c x (0,1] = X,,, there is a unique
curve C' C p;'(C) which intersects the closure F,,(T'c.x (0, 1]).

Proof: Since p,, is an open mapping, we have

pa(Fa(Tc % (0,1])) = F(T¢ x [0,1}).

Thus,

pn(Fa(Te % (0,1))NC C C —P.

Since for all points ¢ € C — P, I, = I¢, pn restricts to an unbranched covering over
C — P (the covering having several connected components one contained in each
irreducible component of p;*(C).) Since F, is an immersion

Fo(Te x (0,1))) — Fu(Te x (0,1))
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is connected and thus must lie in a single curve C' C p;}(C). 1

We can also define twisting elements for the above choices of C' using the same
information. Take any triple (C,D,p) with C,D CC,C# Dand pe CND. We
want to find tw(C, D, p) € H\(Y — B;Z) so that

C' N ¢a(tw(C, D, p))D' N p;'(p) # 8.

If the vertices vo(p) € I'c and vp(p) € I'p are connected by an edge e in X, then
we automatically have
C'nD'np;l(p) # 8

since F(e) C B(p), so both C' and D' must contain the unique point in the inter-
section of the component of p;!(B(p)) containing F,(e) and the fiber p;1(p).

Otherwise, let ; be a path on F(T' x {1}) from F(vp(p),1) to F(ve(p),1). Let
v2 be a path on B(p) — C from F(vc(p,1)) to F(vp(p,1)). The composition v17,
defines a closed path v contained in ¥ — C from F(vp(p),1) to itself and hence an
element tw(C, D, p) € H1(Y — B; Z).

LEMMA 6.3. With tw(C, D, p) defined as above,
C' 1 $a(t(C, D, ))D' N p7(o)

is nonempty.

Proof: Fix n and let g, = ¢.(tw(C, D,p)). Let B(p)c (resp., B(p)p) be the con-
nected component of p,,l(B(p)) containing F,(vc(p),1) (resp., Fa(vp(p),1).) Let
gc (resp., gp) be the point in B(p)c N p;1(p) (resp., B(p)p N p;1(p)).) Then it
suffices to show that ¢,(gp) = gc-

Let 7' be the lift of v, defined above, with basepoint F,(vp(p), 1) € B(p)p. Then
since 1 C F(T x {1}), its endpoint lies in F(I'c x {1}). Thus, the endpoint of the
Lift of 4] with basepoint F,(vp(p), 1) equals F,(vc(p), 1) € B(p)c. Since v; € B(p),
the lift 45 with basepoint Fr(vc(p), 1) must lie in B(p)c. By uniqueness of liftings
¥' = 7173, so the endpoint of 4’ lies in B(p)c. This implies that g.(B(p)p) = B(p)c
and therefore g(gp) = q¢. 1

This completes the proof of Theorem 1.7.

There are still many questions to be answered about polynomial periodicity of
numerical invariants for coverings. It seems likely that the Betti numbers are poly-
nomial periodic in much higher generality: with no restrictions on the branch locus
or on the dimension of the base variety. Theorem 1.5 might also be generalized in
the realm of general topological spaces. Another direction of further research is to
find actual formulas for the polynomials and periodicities which occur. These could
- provide interesting isotopy invariants for the imbedding of the branch locus in the
base space.
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