
Max-Planck-Institut für Mathematik
Bonn

Regulator of modular units and Mahler measures

by

Wadim Zudilin

Max-Planck-Institut für Mathematik
Preprint Series 2013 (30)





Regulator of modular units and Mahler
measures

Wadim Zudilin

Max-Planck-Institut für Mathematik
Vivatsgasse 7
53111 Bonn
Germany

School of Mathematical and Physical Sciences
The University of Newcastle
Callaghan, NSW 2308
Australia

MPIM 13-30





REGULATOR OF MODULAR UNITS AND MAHLER MEASURES

WADIM ZUDILIN

Abstract. We present a proof of the formula, due to Mellit and Brunault, which
evaluates an integral of the regulator of two modular units to the value of the L-
series of a modular form of weight 2 at s = 2. Applications of the formula to
computing Mahler measures are discussed.

1. Introduction

The work of C. Deninger [6], D. Boyd [2], F. Rodriguez-Villegas [12] and others
provided us with a natural link between the (logarithmic) Mahler measures

m
(
P (x1, . . . , xm)

)
:=

1

(2πi)m

∫
· · ·
∫

|x1|=···=|xm|=1

log |P (x1, . . . , xm)| dx1
x1
· · · dxm

xm

of certain (Laurent) polynomials P (x1, . . . , xm), higher regulators and Bĕılinson’s
conjectures, though it took a while for those original ideas to become proofs of
some conjectural evaluations of Mahler measures. In this note we mainly discuss
a recent general formula for the regulator of two modular units due to A. Mellit
and F. Brunault, its consequences for 2-variable Mahler measures and some related
problems.

For a smooth projective curve C given as the zero locus of a polynomial P (x, y) ∈
C[x, y] and two rational non-constant functions g and h on C, define the 1-form

η(g, h) := log |g| d arg h− log |h| d arg g; (1)

here d arg g is globally defined as Im(dg/g). The form (1) is a real 1-form defined
and infinitely many times differentiable on C\S, where S is the set of zeros and poles
of g and h. Furthermore, it is not hard to verify that the form (1) is antisymmetric,
bi-additive and closed; the latter fact follows from

dη(g, h) = Im

(
dg

g
∧ dh

h

)
= 0,

as the curve C has dimension 1. In turn, the closedness of (1) implies that, for a
closed path γ in C \ S, the regulator map

r({g, h}) : γ 7→
∫
γ

η(g, h) (2)
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only depends on the homology class [γ] of γ in H1(C \ S,Z).
Factorising P (x, y) as a polynomial in y with coefficients from C[x],

P (x, y) = a0(x)
n∏
j=1

(y − yj(x)),

and applying Jensen’s formula, we can write [5, 9, 12, 13] the Mahler measure of P
in the form

m
(
P (x, y)

)
= m

(
a0(x)

)
+

1

2π
r({x, y})([γ]), (3)

where

γ :=
n⋃
j=1

{
(x, yj(x)) : |x| = 1, |yj(x)| ≥ 1

}
= {(x, y) ∈ C : |x| = 1, |y| ≥ 1} (4)

is the union of at most n closed paths in C \ S.
In case the curve C : P (x, y) = 0 admits a parameterisation by means of modular

units x(τ) and y(τ), where the modular parameter τ belongs to the upper halfplane
H = {τ ∈ C : Im τ > 0}, one can change to the variable τ in the integral (2) for
r({x, y}); the class [γ] in this case [4] becomes a union of paths joining certain cusps
of the modular functions x(τ) and y(τ). The following general result completes the
computation of the Mahler measure in the case when x(τ) and y(τ) are given as
quotients/products of modular units

ga(τ) := qNB(a/N)/2
∏
n≥1

n≡a mod N

(1− qn)
∏
n≥1

n≡−a mod N

(1− qn), q = exp(2πiτ), (5)

where B(x) = B2(x) := {x}2 − {x}+ 1
6
.

Theorem 1 (Mellit–Brunault [11]). For a, b and c integral, with ac and bc not
divisible by N , ∫ i∞

c/N

η(ga, gb) =
1

4π
L(f(τ)− f(i∞), 2), (6)

where the weight 2 modular form f(τ) = fa,b;c(τ) is given by

fa,b;c := ea,bceb,−ac − ea,−bceb,ac

and

ea,b(τ) :=
1

2

(
1 + ζaN
1− ζaN

+
1 + ζbN
1− ζbN

)
+
∑
m,n≥1

(ζam+bn
N −ζ−(am+bn)

N )qmn, ζN := exp(2πi/N),

(7)
are weight 1 level N2 Eisenstein series.
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The L-value on the right-hand side of (6) is well defined because of subtracting
the constant term

f(i∞) =
1

2

(
1 + ζbN
1− ζbN

1 + ζbcN
1− ζbcN

− 1 + ζaN
1− ζaN

1 + ζacN
1− ζacN

)
= −1

2

(
cot

πb

N
cot

πbc

N
− cot

πa

N
cot

πac

N

)
in the q-expansion f(τ) = f(i∞) +

∑
n≥1 cnq

n. Furthermore, if a linear combination

f(τ) =
∑

(a,b,c)∈M

λa,b,cfa,b;c(τ), λa,b,c ∈ C,

happens to be a cusp form (and this corresponds to application of Theorem 1 to
Mahler measures), then formula (6) produces the evaluation

∑
(a,b,c)∈M

λa,b,c

∫ i∞

c/N

η(ga, gb) =
1

4π
L(f(τ), 2).

Note as well that the theorem allows one to integrate between any cusps c/N and

d/N with the help of
∫ d/N
c/N

=
∫ i∞
c/N
−
∫ i∞
d/N

.

Here is a sketch of the proof of Theorem 1; details are given in Section 2. We
parameterise the contour of integration by τ = c/N + it, 0 < t <∞, and note that
the Möbius transformation τ ′ := (cτ − (c2 + 1)/N)/(Nτ − c) preserves the contour:
τ ′ = c/N + i/(N2t). Then the logarithms of ga(τ) and gb(τ), hence their real and
imaginary parts — everything we need for computing the form (1), can be written as
explicit Eisenstein series of weight 0 in powers of exp(−2πt) and exp(−2π/(N2t)).
Finally, executing the analytical change of variable from [14] the integrand becomes
a linear combination of pairwise products of weight 1 Eisenstein series in powers of
exp(−2πt) integrated against the form t dt along the line 0 < t <∞.

Applications of Theorem 1 to Boyd’s and Rodriguez-Villegas’ conjectural eval-
uations of 2-variable Mahler measures are discussed in Section 3, while Section 4
highlights some open problems related to 3-variable Mahler measures.

2. Proof of the Mellit–Brunault formula

The two auxiliary lemmas indicate particular modular transformations of the
modular functions (5) and the Eisenstein series (7). Lemma 1 also describes the
asymptotic behaviour of the modular functions (5) in a neighbourhood of a cusp
with Re τ = 0; it is used in the form (10) to determine the integration contours (4)
for our applications in Section 3.
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Lemma 1. For a, c integers,

log ga(c/N + it) = πicB(a/N)− πtNB(a/N)

−
∑
m,n≥1
n≡a

ζacmN

m
exp(−2πmnt)−

∑
m,n≥1
n≡−a

ζ−acmN

m
exp(−2πmnt)

= −πi
2

+ πia(c2 + 1)(N − ac) + πicB(ac/N)− πB(ac/N)

Nt

−
∑
m,n≥1
n≡ac

ζ−amN

m
exp

(
−2πmn

N2t

)
−
∑
m,n≥1
n≡−ac

ζamN
m

exp

(
−2πmn

N2t

)
,

where t > 0.

Proof. First note that definition (5) implies

log ga(τ) = πiτ NB(a/N) +
∑
n≥1
n≡a

log(1− qn) +
∑
n≥1
n≡−a

log(1− qn)

= πiτ NB(a/N)−
∑
m,n≥1
n≡a

qmn

m
−
∑
m,n≥1
n≡−a

qmn

m
.

Therefore, the substitution τ = c/N + it, equivalently q = ζcN exp(−2πt), results in
the first expansion of the lemma.

Secondly, the modular units (5) are particular cases of the ‘generalized Dedekind
eta functions’ [17, eq. (3)]. Applying [17, Theorem 1] with the choice h = 0 and
γ =

(
c −c2−1
1 −c

)
we deduce that

ga(τ) = g̃a,c

(
cτ − (c2 + 1)/N

Nτ − c

)
,

where

g̃a,c(τ) := exp(−πi/2 + πia(c2 + 1)(N − ac)) qNB(ac/N)/2

×
∏
n≥1

n≡ac mod N

(1− ζ−a(c
2+1)

N qn)
∏
n≥1

n≡−ac mod N

(1− ζa(c
2+1)

N qn).

On the other hand,

τ ′ :=
cτ − (c2 + 1)/N

Nτ − c

∣∣∣∣
τ=c/N+it

=
c

N
+

i

N2t
,

so that

log g̃a,c(τ
′) = −πi

2
+ πia(c2 + 1)(N − ac) + πicB(ac/N)− πB(ac/N)

Nt

−
∑
m,n≥1
n≡ac

ζ
−a(c2+1)m+cmn
N

m
exp

(
−2πmn

N2t

)
−
∑
m,n≥1
n≡−ac

ζ
a(c2+1)m+cmn
N

m
exp

(
−2πmn

N2t

)
,
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and it remains to use the congruences n ≡ ac and n ≡ −ac to simplify the exponents
of the roots of unity. �

Lemma 2. For a, b integers not divisible by N ,

1

N2τ
ea,b

(
− 1

N2τ

)
= ẽa,b(τ) :=

∑
m,n≥1

m≡a, n≡b

qmn −
∑
m,n≥1

m≡−a, n≡−b

qmn.

Proof. In [16, Section 7] the following general Eisenstein series of weight 1 and level
N are introduced:

Ga,c(τ) = GN,1;(c,a)(τ) := −2πi

N

(
κa,c +

∑
m,n≥1

n≡c mod N

ζamN qmn/N −
∑
m,n≥1

n≡−c mod N

ζ−amN qmn/N

)
,

where

κa,c :=


1

2

1 + ζaN
1− ζaN

if c ≡ 0 mod N,

1

2
−
{
c

N

}
if c 6≡ 0 mod N.

Then for γ =
(
A B
C D

)
∈ SL2(Z) we have

Ga,c(γτ) = (Cτ +D)GaD+cB,aC+cA(τ). (8)

The partial Fourier transform from [7, Chapter III] applied to Ga,c results in

Ĝa,b(τ) :=
N−1∑
c=0

ζbcN Ga,c(τ) = −πi
N

(
1 + ζaN
1− ζaN

+
1 + ζbN
1− ζbN

)
− 2πi

N

∑
m,n≥1

(ζam+bn
N − ζ−(am+bn)

N )qmn/N .

On the other hand, taking γ =
(
0 −1
1 0

)
in (8) we find that

τ−1Ĝa,b(−1/τ) =
N−1∑
c=0

ζbcN G−c,a(τ)

= −2πi

N

N−1∑
c=0

ζbcN

(
1

2
−
{
a

N

}
+
∑
m,n≥1
n≡a

ζ−cmN qmn/N −
∑
m,n≥1
n≡−a

ζcmN qmn/N

)

= −2πi

( ∑
m,n≥1

n≡a, m≡b

qmn/N −
∑
m,n≥1

n≡−a, m≡−b

qmn/N

)
.

Using now Ĝa,b(Nτ) = −2πi ea,b(τ)/N we obtain the desired transformation. �

The next two statements are to take care of integrating the constant terms of
auxiliary Eisenstein series.
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Lemma 3. For a, b integers not divisible by N ,∫ ∞
0

(
ea,b(it) + ea,−b(it)−

1 + ζaN
1− ζaN

)
t dt = iCl2

(
2πa

N

)
B

(
b

N

)
,

where

Cl2(x) :=
∑
m≥1

sinmx

m2

denotes Clausen’s (dilogarithmic) function.

Proof. The integral under consideration is equal to∫ ∞
0

∑
m,n≥1

(ζam+bn
N − ζ−(am+bn)

N + ζam−bnN − ζ−(am−bn)N ) exp(−2πmnt) t dt

=

∫ ∞
0

∑
m,n≥1

(ζamN − ζ−amN )(ζbnN + ζ−bnN ) exp(−2πmnt) t dt.

On using the Mellin transform∫ ∞
0

exp(−2πkt)ts−1 dt =
Γ(s)

(2π)sks
for Re s > 0, (9)

the integral of the double sum evaluates to

1

4π2

∑
m≥1

ζamN − ζ−amN

m2

∑
n≥1

ζbnN + ζ−bnN

n2
=

i

π2
Cl2

(
2πa

N

)∑
n≥1

cos(2πnb/N)

n2
.

It remains to use ∑
n≥1

cosnx

n2
= π2B

(
x

2π

)
,

and the required evaluation follows. �

Lemma 4. For a, b integers not divisible by N ,∫ ∞
0

1

iNt
d
∑
m≥1

ζamN − ζ−amN

m

(∑
n≥1
n≡b

−
∑
n≥1
n≡−b

)
exp

(
−2πmn

N2t

)

= −i Cl2

(
2πa

N

)
1 + ζbN
1− ζbN

.

Proof. Performing the change of variable u = 1/(N2t) in the integral, it becomes
equal to

2πN

i

∫ ∞
0

∑
m≥1

(ζamN − ζ−amN )

(∑
n≥1
n≡b

−
∑
n≥1
n≡−b

)
n exp(−2πmnu)u du,
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and applying (9) with s→ 2+ it evaluates to

N

π

∑
m≥1

sin(2πam/N)

m2
lim
s→1+

(∑
n≥1
n≡b

−
∑
n≥1
n≡−b

)
1

ns

=
1

π
Cl2

(
2πa

N

)
·
(
ψ(1− {b/N})− ψ({b/N})

)
=

1

π
Cl2

(
2πa

N

)
π cot

πb

N
,

where ψ(x) is the logarithmic derivative of the gamma function. It remains to use
cot(πb/N) = −i(1 + ζbN)/(1− ζbN). �

Proof of Theorem 1. To integrate the 1-form η(ga, gb) along the interval τ ∈ (c/N, i∞)
we make the substitution τ = c/N + it, 0 < t <∞. It follows from Lemma 1 that

log |ga(τ)| = −πB(ac/N)

Nt
− 1

2

∑
m≥1

ζamN + ζ−amN

m

(∑
n≥1
n≡ac

+
∑
n≥1
n≡−ac

)
exp

(
−2πmn

N2t

)
(10)

and

d arg ga(τ) = − 1

2i
d
∑
m≥1

ζacmN − ζ−acmN

m

(∑
n≥1
n≡a

−
∑
n≥1
n≡−a

)
exp(−2πmnt)

=
1

2i
d
∑
m≥1

ζamN − ζ−amN

m

(∑
n≥1
n≡ac

−
∑
n≥1
n≡−ac

)
exp

(
−2πmn

N2t

)
.

This computation implies

η(ga, gb) = −πB(ac/N)

2iNt
d
∑
m≥1

ζbmN − ζ−bmN

m

(∑
n≥1
n≡bc

−
∑
n≥1
n≡−bc

)
exp

(
−2πmn

N2t

)

+
1

4i

∑
m1≥1

ζam1
N + ζ−am1

N

m1

(∑
n1≥1
n1≡ac

+
∑
n1≥1
n1≡−ac

)
exp

(
−2πm1n1

N2t

)

× d
∑
m2≥1

ζbcm2
N − ζ−bcm2

N

m2

(∑
n2≥1
n2≡b

−
∑
n2≥1
n2≡−b

)
exp(−2πm2n2t)
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+
πB(bc/N)

2iNt
d
∑
m≥1

ζamN − ζ−amN

m

(∑
n≥1
n≡ac

−
∑
n≥1
n≡−ac

)
exp

(
−2πmn

N2t

)

− 1

4i

∑
m1≥1

ζbm1
N + ζ−bm1

N

m1

(∑
n1≥1
n1≡bc

+
∑
n1≥1
n1≡−bc

)
exp

(
−2πm1n1

N2t

)

× d
∑
m2≥1

ζacm2
N − ζ−acm2

N

m2

(∑
n2≥1
n2≡a

−
∑
n2≥1
n2≡−a

)
exp(−2πm2n2t).

The terms involving double sums only can be integrated with the help of Lemma 4,
and we obtain∫ i∞

c/N

η(ga, gb) =
πi

2

1 + ζbcN
1− ζbcN

Cl2

(
2πb

N

)
B

(
ac

N

)
− πi

2

1 + ζacN
1− ζacN

Cl2

(
2πa

N

)
B

(
bc

N

)
− π

2i

( ∑
m1,m2≥1

(ζam1
N + ζ−am1

N )(ζbcm2
N − ζ−bcm2

N )

(∑
n1≥1
n1≡ac

+
∑
n1≥1
n1≡−ac

)(∑
n2≥1
n2≡b

−
∑
n2≥1
n2≡−b

)

−
∑

m1,m2≥1

(ζbm1
N + ζ−bm1

N )(ζacm2
N − ζ−acm2

N )

(∑
n1≥1
n1≡bc

+
∑
n1≥1
n1≡−bc

)(∑
n2≥1
n2≡a

−
∑
n2≥1
n2≡−a

))

× n2

m1

∫ ∞
0

exp

(
−2π

(
m1n1

N2t
+m2n2t

))
dt.

Now we execute the change of variable u = n2t/m1, interchange integration and
quadruple summation and use Lemma 2:

∫ i∞

c/N

η(ga, gb) =
πi

2

1 + ζbcN
1− ζbcN

Cl2

(
2πb

N

)
B

(
ac

N

)
− πi

2

1 + ζacN
1− ζacN

Cl2

(
2πa

N

)
B

(
bc

N

)
− π

2i

∫ ∞
0

∑
m1,m2≥1

(ζam1
N + ζ−am1

N )(ζbcm2
N − ζ−bcm2

N ) exp(−2πm1m2u)

×

(∑
n1≥1
n1≡ac

+
∑
n1≥1
n1≡−ac

)(∑
n2≥1
n2≡b

−
∑
n2≥1
n2≡−b

)
exp

(
−2πn1n2

N2u

)

−
∑

m1,m2≥1

(ζbm1
N + ζ−bm1

N )(ζacm2
N − ζ−acm2

N ) exp(−2πm1m2u)

×

(∑
n1≥1
n1≡bc

+
∑
n1≥1
n1≡−bc

)(∑
n2≥1
n2≡a

−
∑
n2≥1
n2≡−a

)
exp

(
−2πn1n2

N2u

)
du
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=
πi

2

1 + ζbcN
1− ζbcN

Cl2

(
2πb

N

)
B

(
ac

N

)
− πi

2

1 + ζacN
1− ζacN

Cl2

(
2πa

N

)
B

(
bc

N

)
− π

2i

∫ ∞
0

(
ea,bc(iu)− ea,−bc(iu)− 1 + ζbcN

1− ζbcN

)(
ẽb,ac(i/(N

2u)) + ẽb,−ac(i/(N
2u))

)
−
(
eb,ac(iu)− eb,−ac(iu)− 1 + ζacN

1− ζacN

)(
ẽa,bc(i/(N

2u)) + ẽa,−bc(i/(N
2u))

)
du

=
πi

2

1 + ζbcN
1− ζbcN

Cl2

(
2πb

N

)
B

(
ac

N

)
− πi

2

1 + ζacN
1− ζacN

Cl2

(
2πa

N

)
B

(
bc

N

)
+
π

2

∫ ∞
0

(
ea,bc(iu)− ea,−bc(iu)− 1 + ζbcN

1− ζbcN

)(
eb,ac(iu) + eb,−ac(iu)

)
u

−
(
eb,ac(iu)− eb,−ac(iu)− 1 + ζacN

1− ζacN

)(
ea,bc(iu) + ea,−bc(iu)

)
u du

=
πi

2

1 + ζbcN
1− ζbcN

Cl2

(
2πb

N

)
B

(
ac

N

)
− πi

2

1 + ζacN
1− ζacN

Cl2

(
2πa

N

)
B

(
bc

N

)
+ π

∫ ∞
0

(
ea,bc(iu)eb,−ac(iu)− ea,−bc(iu)eb,ac(iu)

)
u

− 1

2

(
1 + ζbcN
1− ζbcN

(
eb,ac(iu) + eb,−ac(iu)

)
− 1 + ζacN

1− ζacN

(
ea,bc(iu) + ea,−bc(iu)

))
u du

(we apply Lemma 3)

= π

∫ ∞
0

(
fa,b;c(iu) +

1

2

1 + ζaN
1− ζaN

1 + ζacN
1− ζacN

− 1

2

1 + ζbN
1− ζbN

1 + ζbcN
1− ζbcN

)
u du,

and the result follows by appealing to (9). �

3. Applications

The modularity theorem guarantees that an elliptic curve C : P (x, y) = 0 can
be parameterised by modular functions x(τ) and y(τ), whose level N is necessarily
the conductor of C, such that the pull-back of the canonical differential on C is
proportional to 2πif(τ) dτ = f(τ) dq/q, where f is (up to an isogeny) a normalised
newform of weight 2 and level N , which automatically happens to be a cusp form
and a Hecke eigenform. Computing the conductor of C and producing the cusp form
f of this level give one an efficient strategy to determine successively the coefficients
in the q-expansions of x(τ) = ε1q

−M1 + · · · and y(τ) = ε2q
−M2 + · · · subject to

P (x(τ), y(τ)) = 0, where ε1 and ε2 are suitable nonzero constants. The particular
form of q-expansions only fixes a normalisation of x(τ) and y(τ) up to the action of
the corresponding congruence subgroup Γ0(N). Finally, it remains to verify whether
x(τ) and y(τ) just found are modular units — modular functions whose all zeroes
and poles are at cusps (so that they admit eta-like product expansions); if this is
the case, we can use Theorem 1 to compute the Mahler measure m(P (x, y)).
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In this section we touch the ‘classical’ family of Mahler measures

m(xy2 + (x2 + kx+ 1)y + x) = m
(
k + x+

1

x
+ y +

1

y

)
, k2 ∈ Z \ {0, 16},

which goes back to the works [2, 6, 12]. Namely, we will see that Theorem 1 applies
in the cases when the corresponding zero locus

E : k + x+
1

x
+ y +

1

y
= 0 (11)

can be parameterised by modular units. For this family, equation (3) assumes the
form

m
(
k + x+

1

x
+ y +

1

y

)
= m(y2 + (k + x+ x−1)y + 1) =

1

2π
r({x, y})([γ]), (12)

where γ is a single closed path on E \ {(0, 0)} corresponding to the zero y1(x) of
y2 + (k + x+ x−1)y + 1 which satisfies |y1(x)| ≥ 1.

The above general strategy restricted to the family (11) was identified by Mellit
in [10] and illustrated by him on the example of k = 2i; this is Example 2 below. The
modular functions x and y satisfying (11) are searched in the form x(τ) = (εq)−1+· · ·
and y(τ) = −(εq)−1 + · · · , where ε ∈ Z[k] is chosen so that k/ε is a positive integer.
The condition on the pull-back of the canonical differential on E takes the form

q (dx/dq)

εx(y − 1/y)
= f,

where f(τ) is the corresponding Hecke eigenform of weight 2.
The computational part of the examples below was accomplished in sage and

gp-pari. Below we will have occasional appearance of Dedekind’s eta-function
η(τ) := q1/24

∏∞
n=1(1 − qn). We hope that this extra eta notation does not cause

any confusion with (1), as it depends here on a single variable, which is always a
rational multiple of τ from the upper halfplane.

Example 1. The most classical example corresponds to the choice k = 1, when the
elliptic curve in (11) has conductor N = 15 and can be parameterised by modular
units

x(τ) =
1

q

∞∏
n=0

(1− q15n+7)(1− q15n+8)

(1− q15n+2)(1− q15n+13)
=

g7(τ)

g2(τ)
,

y(τ) = −1

q

∞∏
n=0

(1− q15n+4)(1− q15n+11)

(1− q15n+1)(1− q15n+14)
= −g4(τ)

g1(τ)
,

so that

q (dx/dq)

x(y − 1/y)
= f15(τ) := η(τ)η(3τ)η(5τ)η(15τ)
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and the path of integration γ in (12) corresponds to the range of τ between the two
cusps −1/5 and 1/5 of Γ0(15). Therefore, Theorem 1 results in

m
(

1 + x+
1

x
+ y +

1

y

)
=

1

2π

(∫ i∞

−1/5
−
∫ i∞

1/5

)
η(g7/g2, g4/g1)

=
1

8π2
L(2f7,4;−3 − 2f7,1;−3 − 2f2,4;−3 + 2f2,1;−3, 2)

=
15

4π2
L(f15, 2),

which is precisely Boyd’s conjecture from [2] first proven in [15].
Note that this evaluation implies some other Mahler measures, namely [8, 9]

m
(

5 + x+
1

x
+ y +

1

y

)
= 6m

(
1 + x+

1

x
+ y +

1

y

)
m
(

16 + x+
1

x
+ y +

1

y

)
= 11m

(
1 + x+

1

x
+ y +

1

y

)
,

m
(

3i+ x+
1

x
+ y +

1

y

)
= 5m

(
1 + x+

1

x
+ y +

1

y

)
,

though the corresponding elliptic curves k+x+ 1/x+ y+ 1/y = 0 for k = 5, 16 and
3i are not parameterised by modular units.

Example 2 ([10]). The modular parameterisation of (11) for k = 2i (the conductor
of elliptic curve is then N = 40) and the corresponding Mahler measure evaluation

m
(

2i+ x+
1

x
+ y +

1

y

)
=

10

π2
L(f40, 2),

where

f40(τ) :=
η(τ)η(8τ)η(10τ)2η(20τ)2

η(5τ)η(40τ)
+
η(2τ)2η(4τ)2η(5τ)η(40τ)

η(τ)η(8τ)
,

were given in Mellit’s talk [10]. He identifies x(τ) and y(τ) with infinite products
which are fully expressible by means of Ramanujan’s lambda function

λ(τ) = q1/5
∞∏
n=1

(1− qn)(
n
5 ) = q1/5

∞∏
n=1

(1− q5n−1)(1− q5n−4)
(1− q5n−2)(1− q5n−3)

;

namely,

x(τ) = −i λ(4τ)

λ(τ)λ(8τ)
= −i g2g3g7g13g16g17g18

g1g6g8g9g11g14g19
,

y(τ) = i
λ(τ)λ(2τ)

λ(8τ)
= i

g1g9g11g16g19
g3g7g8g13g17

in the notation (5) with N = 40. The corresponding range of τ for the path γ in
(12) is from 1/10 to −2/5.
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Example 3. The elliptic curve (11) for k = 2 has conductor N = 24 and admits
parameterisation by modular units

x(τ) =
g1g10g11
g2g5g7

, y(τ) = − g5g7
g1g11

.

Theorem 1 applies and produces the evaluation

m
(

2 + x+
1

x
+ y +

1

y

)
=

1

2π

(∫ i∞

−1/8
−
∫ i∞

1/8

)
η

(
g1g10g11
g2g5g7

,
g5g7
g1g11

)
=

6

π2
L(f24, 2),

where f24(τ) := η(2τ)η(4τ)η(6τ)η(12τ), conjectured in [2] and established in [14].
Note that another curve (11) with k = 8 of the same conductor N = 24 can be
parameterised by modular units as well: the pair

x(τ) =

(
g1g5g7g11

g4

)4

, y(τ) = −
(

g2g10
g1g4g5g7g11

)4

satisfies 8+x+1/x+y+1/y = 0; however, it is a subtle problem to fix the integration
path γ for this parameterisation. Note that

m
(

8 + x+
1

x
+ y +

1

y

)
= 4m

(
2 + x+

1

x
+ y +

1

y

)
is already known [9].

Example 4. For N = 17, the pair of modular units

x(τ) = −i g2g8
g1g4

, y(τ) = i
g6g7
g3g5

parameterise the elliptic curve i + x + 1/x + y + 1/y = 0. Applying Theorem 1 for
τ ranging from 3/17 to −3/17, we obtain

m
(
i+ x+

1

x
+ y +

1

y

)
=

17

2π2
L(f17, 2),

where

f17(τ) :=
q (dx/dq)

ix(y − 1/y)
= q − q2 − q4 − 2q5 + 4q7 + 3q8 − 3q9 + 2q10

− 2q13 − 4q14 − q16 + q17 +O(q18).

This Mahler measure evaluation was conjectured in [12, Table 4].

Example 5. Another conjecture in [12, Table 4],

m
(√

2 + x+
1

x
+ y +

1

y

)
=

7

2π2
L(f56, 2),
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corresponds to k =
√

2 in (11) and an elliptic curve over Z of conductor N = 56. It
is parameterised by the couple

x(τ) =
1√
2

η(τ)η(4τ)2η(7τ)η(28τ)2

η(2τ)2η(8τ)η(14τ)2η(56τ)
,

y(τ) = − 1√
2

η(2τ)η(4τ)η(14τ)η(28τ)

η(τ)η(7τ)η(8τ)η(56τ)
,

so that

f56(τ) :=
q (dx/dq)√
2x(y − 1/y)

= q + 2q5 − q7 − 3q9 − 4q11 + 2q13 − 6q17 + 8q19

− q25 + 6q29 + 8q31 +O(q34).

It is not clear whether there are finitely or infinitely many cases of the parameter
k in (11) subject to parameterisation by modular units. A possible approach in
cases when such parameterisation is not available is writing down algebraic rela-
tions between any two standard modular units (5) of a given level N and sieving the
relations which may be used in producing the Mahler measures of 2-variable poly-
nomials which are potentially linked to the wanted Mahler measures by K-theoretic
machinery [5, 8, 9].

Finding what curves C : P (x, y) = 0 can be parameterised by modular units is
an interesting question itself. F. Brunault notices some heuristics to the fact that
there are only finitely many function fields F of a given genus g over Q which embed
into the function field of a modular curve such that F can be generated by modular
units; for g ≥ 2 this follows from [1, Conjecture 1.1]. In fact, he recently studied
the following related question: find all the elliptic curves E over Q whose canonical
parameterisation ϕ : X1(N) → E is such that the pre-image of the rational torsion
subgroup consists only of cusps. Brunault shows that there are only finitely many
elliptic curves with this property and produces the list of all them.

4. 3-variable Mahler measures

It would be desirable to have an analogue of Theorem 1 for 3-variable Mahler
measures of (Laurent) polynomials P (x, y, z) such that the intersection of the zero
loci P (x, y, z) = 0 and P (1/x, 1/y, 1/z) = 0 defines an elliptic curve E, and m(P )
is presumably related to the L-series of E evaluated at s = 3. No example of this
type is established, and one of the simplest evaluations is Boyd’s conjecture [3]

m
(
(1 + x)(1 + y)− z

) ?
= 2L′(E15,−1) =

225

4π4
L(E15, 3).

On the surface (1 + x)(1 + y)− z = 0 we have

x ∧ y ∧ z = x ∧ y ∧ (1 + x)(1 + y) = x ∧ y ∧ (1 + x) + x ∧ y ∧ (1 + y)

= −x ∧ (1 + x) ∧ y + y ∧ (1 + y) ∧ x
= −(−x) ∧ (1 + x) ∧ y + (−y) ∧ (1 + y) ∧ x.
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Applying the machinery described in [5, Section 5.2] to the 3-variable polynomial
P (x, y, z) = (1 + x)(1 + y)− z we obtain

m(P ) =
1

4π2

∫
γ

(
ω(−x, y)− ω(−y, x)

)
,

where

ω(g, h) := D(g) d arg h+
1

3

(
log |g| d log |1− g| − log |1− g| d log |g|

)
log |h| (13)

and

γ := {(x, y, z) : |x| = |y| = |z| = 1} ∩ {(x, y, z) : (1 + x)(1 + y)− z = 0}
∩ {(x, y, z) : (1 + x)(1 + y)z − xy = 0}.

Note that {(1 + x)(1 + y)− z = 0} ∩ {(1 + x)(1 + y)z − xy = 0} is the double cover
of an elliptic curve of conductor 15. Indeed, eliminating z we can write (one half of)
its equation as

(1 + x21)(1 + y21) + x1y1 = 0

in variables x1 =
√
x, y1 =

√
y, or

x2 + 1/x2 + y2 + 1/y2 + 1 = 0

in variables x2 = x1y1, y2 = x1/y1. Using the parameterisation of the latter equation
by the modular units from Example 1 we find out that

m(P ) =
1

2π2

∫ 1/5

−1/5

(
ω(X, Y )− ω(Y,X)

)
where

X(τ) :=
g4(τ)g7(τ)

g1(τ)g2(τ)
= q−2 +O(q−1) and Y (τ) :=

g1(τ)g7(τ)

g2(τ)g4(τ)
= 1 +O(q).

Also note that

1−X(τ) = −g6(τ)g7(τ)

g1(τ)g3(τ)
= −q−2+O(q−1) and 1−Y (τ) =

g1(τ)g3(τ)

g2(τ)g6(τ)
= q+O(q2)

are modular units.
The problem with integrating the form (13) is that it is, roughly speaking, inte-

grating the product of three modular components: two of them are logarithms of
modular functions (hence of weight 0) and one is the logarithmic derivative of a
modular function (hence of weight 2). On the other hand, the expected data for
applying the method from [14] used in our proof of Theorem 1 in Section 2 would
be integrating a product of two Eisenstein series of weights −1 and 3 (see [18] for
details).
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