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ABSTRACT. In the first part of this paper we discuss a few concepts and results
about the algebraic topology in characteristic zero of the free loop space, in analogy
with the topology {geometry) of algebraic varieties over a finite field. In this analogy
the free loop space plays the role of the extension of the variety over the algebraic
closure of the field. In the second part we use the ”differential calculus ” on the free
loop space of a smooth manifold to provide a graded vector space valued homotopy
functor SH* whose restriction to 1-connected spaces unifies the Atiyah-Hirzebruch
topological K-theory and Waldhausen algebraic K-theory.

Given a topological space X, denote by X5 the space of continnous maps (free
loops) @ : 8! — X, equipped with the compact open topology. Here S := {2 €
Cl|z| = 1}. This space will be referred to as the free loop space of X. This space
can be viewed as an extension of X by identifying X to the subsct of X5 ' consisting
of constant maps (constant loops). The group of orientation preserving isometries
of S!, which can be identified to S? itself, acts continuously on XS'. The action
denoted by g, g @ S' x X5 = XS5' is defined by u(2,0)(z) = a(z'z). The
fixed point set of the action consists of the subsct of constant loops, hence can be
identified with X. In addition to u we have the continuous maps

o X5 o XS

defined by ¢r(a)(z) = @(2*) and referred in the title of this paper as the power
maps. Notice that the fixed point sct of ¢, for & > 2 consists also of the constant
loops. The action ¢ and the maps ¢, combine into a continuous action

M x X5 = XS of the monoid M whose underlying set is N x S! and
multiplication is given by

(n, z1) * (1, 22) = (nm, 27" 22).
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Here N denotes the natural numbers.

We refer to X5 as the space of oriented parametrized curves of X. A more
interesting object is the space of oriented nonparametrized curves of X; this space
is not accessible to traditional technics of analysis and geometry, but from the point
of view of algebraic topology, it can be satisfactory approximated by X 1 // 1, the
homotopy quotient (,as defined in section 1,) of X5 1 by jt.

The map @, is not equivariant with respect to p but if one considers py : St x
. 1 .
XSt 5 XS5 the ST-action on X° defined by px(z, ) :1u(zk,a), thenl Ok -
1 1 . . . .
(X5, ) = (X5, 1) is S'-equivariant and induces ¢} : (X° //je) = (X5 //1).
The commutative diagram

Slx x§' X g1y xS

e | 4|
Xsl id Xsl

with wi(z) = 2¥ induces the map €y, (Xsl//;.tk) — (XS1 //it) which is a rational
homotopy equivalence, i.e the map (Q)o : (XSI///L;;)Q - (XS //1t)o obtained
by localization at ”0” in the sense of Bousfield and Kan ( cf [BK] ), is a homotopy
equivalence. Denote by ¢, the pair

o= (XS /1) (X5 ) B (XS /sy

also referred to as power map in (X5 //u). jFrom the point of view of algebraic
topology in characteristic zero one can regard @ as the homotopy class (¢¥r)o =
(vl)a - (D))~ . It is easy to verify the equality

(‘:akn)Q = ((ﬁk)Q : (@rz)Q = (@n)Q . ((g’k)Q'

If X = M is simooth manifold modeled over a finite or infinite dimensional Hilbert
space we can restrict our attention to the smooth maps o : S' — M, and equip
this set with the C*°-topology. The resulting space, denoted by Mg; or {when no
confusion is possible) simply by M Sl, is a smooth Frechet manifold and the action
i is a smooth action. Moreover, in this case M f,; is Sl-homotopy equivalent to
MS'. On a Frechet manifold one can work with differential forms, vector fields etc.
and deRham Theorem holds.

Given n > 2, [ will view the system {(X,Xsl,(pnk)}, k > 0, and the system
{(X, XSI//u,gb,,k),k >} in analogy with (the affine picture and the projective
picture of) {V,V,F* & > 0}, where V is an algebraic variety over the field with ¢
elements F,, ¢ a prime number, V 1s the variety V' considered over the field F‘q,
the algebraic closure of £y, and F : V — V is the Frobenius map induced by the
Frobenius isomorphism F : F, — F,, F(x) = % Then the Weil zcta function
Z(V, z) is defined by

o (TT—F
log Z(V, z) = Z wzk.

k>1



It was shown by Grothendieck and Deligne ¢f [FK] that when V' is smooth and
projective, then Fiz(F~*) can be calculated as a Lefschetz number in | — addic
cohomology HZ,(V;Q;), (with | an arbitrary prime number prime to ¢,) i.c.

Lef(F*) i= (=1)"Tr(F ) HL(V; Q).

In this paper we will discuss two results of algebraic topology in ” characteristic

1 1 N N . . -
zero” involving XS and X //u. The first result, obtained in collaboration with
Z.Fiedorowicz and W.Gajda, cf [BFG],! is about additional structures in the coho-

. . . . L ;g1

mology with cocfficients in a ficld of characteristic zero, for example C, of X 5" and
1

XS/ .

If X is 1-connected we show that there exists a ”weight” decompositions? of the
- . 1
cohomology and of the cquivariant cohomology of X |

HY(XS',0) =Y H*(X550)(r)
r>0

H5 (X550 == HY(XS//1;€) = 3 H (X //15,©)(1)

r>0

and explain their nature in terms of power maps. These decompositions exist also
for the reduced cohomologies

F*(A’S‘;C) e COkeT{H'(pt;C) - H.(XSI,C)}

— 1 ; 1

Hgi (X5 ;C) := coker{H% (pt; C) —» Hi (X5 ;C)}.
If in addition X is a finite complex and is equipped with a "formality ” structure
( defined below), then this formality structure induces a refinement of the above
decompositions, called the Hodge decompositions:

H (XS0 =Y H x5 0r)

q=>0

T (X5,0)(r) =Y Ha "X, 0)(r)
q>0

We notice that a complex analytic Kahler structure on a simooth closed manifold
M specifies a formality structure on M.

We show that the numbers

‘q( )= E(—l)p dimﬁp'_q(XSlSC)(T)

p>0

1A number of misprints made [BFG] hard to read. This paper among others corrects these
misprints and provides a better formulation of the results in [BFG]

2in the literature on Hochschild and cyclic homology decomposition of the same nature as the
weight decompositions are improperly called Hodge decompositions



and

x5! (r) = 3 (=) dim XS /s ) (r)

p>0

are well defined when X is a finite complex, depend only on the Betti numbers
B := dim H*(X;C), and do not "se¢” the multiplicative structure of H*(X : C),
¢f Theorem 0.2. This is a rather unexpected fact since the Betti numbers of X 1
and XS'//u depend on the multiplicative structure of H*(X;C) and cven the
alternated sum Z(-l)kx;z E) when makes sense, for X not formal, might depend
on the multiplicative structure of the cohomology of X.

The weight and Hodge decormpositions suggest a homology ”zeta function” which
can be defined for any 1-connected finite complex with a formality structure. This
homological ”zeta function” is a formal series in two variables, and presents some
analogy with the Weil zeta function of smooth variety over a finite field.

The second result is the construction of a new (graded) vector space valued ho-
motopy functor, defined in this paper only for smooth manifolds M of the homotopy
type of a CW-complex of finite type®, which I used to call to string cohomology™”*
of M and denote by SH*(M). This functor carries ”» Adams operations” which are
induced by the power maps defined above and "unifies” the Atiyah Hirzebruch K-
theory and the Waldhausen K-theory of M, (c¢f. Theorem 0.3) in a way consistent
with Adams operations in K-theory. This functor is defined analytically in terms
of infinite sequences of smooth §!—invariant forms on the Frechet manifold M
The proof of Theorem 0.3 uses the infinite dimensionality of M® " in an essential
way.

If one calls a tubular neighborhood of the constant loops in MS' | small loops,

7
and the complement of the constant loops in MS large loops, it turns out that
in the "unification” mentioned above, the small loops are responsible for Atiyah
Hirzebruch K-theory, the large loops for Waldhausen K-theory and all loops, small
and large together, for SH*. The sets of small and large loops are not disjoint.

Now we want to make these results more precise.
The power maps ¢, : X5 = X5 and (Pr)g (XSI//}L)Q — (XSl//;_L)Q induce
endomorphisms
Ui HY(XS;C) » H*(XS';C) and ¥} : H3(X5';C) = Hi (X5 C)
which are automorphisins when X is simply connected.
Proposition 0.1. ({BFG]) If X is 1-connected and of the homotopy type of a CW -

complex of finite type then:
1) The eigenvalues of U} and of U}, are among EC =1,k k2. ..
3finite type= finitely many cells in each dimension

41 understand that M.Konsevici has already used the term ”string cohomology” for another
functor so the reader can read SH as "special cohomology”



2) The eigenspace corresponding to k" is independent of k and therefore denoted
by H*(XS',C)(r) resp. H*(XS" /1, C)(r).

8) H*(XS';C)(0) = H*(X,C), H*"Y(X5'//15C)(0) = H*(X,0C),
and H™(XS'//11,C)(p) = H'(X5,C)(p) = 0,if p 2 7 + 1.

Proposition 0.1 will be proven for X = M a smooth 1-connected smooth (Hilbert)
manifold® by constructing the isomorphisms

0% H (MS':C) » HH_,(Q" (M), d"
H M

O - H (M5 //11;€) » HC_, 11(0* (M), d};)

between the reduced cohomology resp. reduced equivariant cohomology of M* " and
Hochschild resp. cyclic homology of (Q*(M), d3},), the deRhamn algebra of M. This
is a differential graded algebra which is commutative in the graded sense. These
isomorphisms intertwine the endomorphisms ¥}, and lil}‘: with the Adams operations
in Hochschild and cyclic homology of (2*(M),das) (cf [BFG]). The operations ¥}
and W % are always defined for commutative algebras.

By a "formality” structure on a smooth manifold M we mean a triple consisting
of a C-commutative differential graded algebra (A*,d%) and two morphisms
ar = (A% dY) = (*(M),d}y) and oy : (A*,dY) — (H*(M;C),d* = 0) which
induce isomorphisms in cohomology. A complex analytic Kahler structure on the
closed manifold M, provides a canonical ”formality” structure on M cf [DGMS].
The existence of a formality structure is an homotopy invariant property.

The Hochschild or cyclic homology of a commutative graded algebra when viewed
as a degree +1 commutative differential graded algebra B* with differential equal
to zero, as well as their reduced versions have natural decompositions

HH*(B*) =Y HH*" ~9(B*), HC*(B*) = > HCrHem(BY)

qz0 q20

which diagonalize the Adams operations. Using the formality structure one can
identify the reduced Hochschild and cyclic homologies of (Q*(M), d},) and of
(H*(X;C),0) and using the isomorphisms 63} () one obtains decompositions of

H'(X5';C) and H (X5 C) which diagonalize the endomorphisms U and U3,

H(X50)(r) =S B 7UXS ;5 0)(r)

q20

Ho (X¥50)(r) = 3 Hg! " (X*50)(r).
¢>0
Denote by ’
B = dimH (X;C)

Sany X satisfying the hypotheses of Proposition 0.1 is homotopy equivalent with such manifold



o= dimﬁi(xsl;c), b= dinlﬁfgl(XSl;C)

by (r) := (limffi(X‘s"l ;C)(r), big(r) :=dim Fsl (XSl ; C)(r)
and by

W) = dimETNXSO)(r), W) = dimHgr (X5 0)(r).

While the Hodge decompositions depend on the formality structure, the numbers
b’,}(_g) (r) do not and are the same for different formality structures.

Let

and
Pr(z, A\ u) = Z VT (r) 2P ATul.
q,r,p20
Following P. Hanlon [H], denote by® Px(2) = 3,5, 8:(X)z* and form the power
series N
Qu(z,A) = (14 Px(2)) [J(1 + Px(2'))~<®
]

Qr(z, ,\) = (‘IIDX_(‘;)) (H(l + ]')X(ZI))—ﬁ(l) - ,\)
!

where

e(l) = % S u(d)e,

)l

Here p(d) denotes the Mébius function g : N — {+1,0, —1} defined by p(1) = 1,
(1) = 0 if the prime factors decomposition d = p1p, . .. p, has at least two primes
equal and p{d) = (-~1)* otherwise.

Theorem 0.2. (c¢f [BFG]) It M is 1-connected smooth (Hilbert) manifold of the
homotopy type of a CW-complez of finite type with a formality structure, then:

1) Pug)(z, A, w) € Z[2][[A, u]] hence Pr(—1, A, u) and Pg(—1, A, u) are defined

2) Pu(=1, A\ u) = Quu,A) and Peg(—1,\,u) = Qp(u, A).

Theorem 0.2 implies that Euler Poincaré characteristics x57(r) and xz?(r) are
completely determined by the Betti numbers of X.

In the analogy mentioned above He XSI;C is the analogue of the reduced
e s g
algebraic K-theory of the varicty V. There are reasons to view the vector spaces

S ETUXSO)) and S He (xS 0)(r)

q,r>0 q,r >0

SNotice that Bo(X) = 0



as the analogue of the reduced { — adic cohomology of V' in degree p and since these
vector spaces might be of infinite dimension it is convenient to write them as formal
power series

> HUXS',C)(r)A"u?, and > Hg (XS'; Q) (r)A 4.
q,r>0 q,r>0

Define oy
Lef (¢7* Z Z DiTr(9,) k|ﬁ.-.—q(xsl)(r)/\"uq=

70,20, i20

30 ) (=0T () AT e

r,q,2>0,i>0

Lef (‘P L)"‘ Z Z( 1 TT(‘I’n) k‘y’ TUXS (r )’\ ul =

rq,20,1>0
5 5 ‘ 2 (=F7) b”_q(v‘))\"uq
r,q,20,3i>0

and in analogy with Weil zeta function of a smooth projective variety over finite
field introduce the formal power series

1ogZH(E’(n,X,A,n,z)=Z( (f P =2 _Xnlm) (") n’kk
r>1 '

It can be shown that because the cohomology of X is finite dimensional in each
dimension, given any g, dimH9(X5';C) and dimHI(XS //1;C) are finite and
therefore for all but finitely many pairs (p, ) the numbers b5;74(r) and ¥ %(r) are
zero. This implies that log ZHF) (n, X, X u, 2) is a formal power series in w, z with
coefficients polynomials in A and thercfore one can cvaluate at A = 1 and obtain
the formal power series in u, z,

log ZH (n, X, u, z) == log Z" (n, X, 1,u, 2),
g g

log Z8(n, X, u,z) :==log Z%(n, X, 1,u, 2).

These series are called the” homological Zeta power scries” of the formal space X,
and are completely determined by the Betti numbers of X. So far we know very little
about the analyticity of these formal power serics as functions of two variables and
about their geometric relevance, but we expect that they have partition functions
interpretations.

Suppose M is a smooth Hilbert manifold. As we have already indicated MS' s
a Frechet smooth manifold of infinite dimension. Denote by L the smooth vector
field provided by the "tangents to the orbits” of the smooth action u, and by 7y :
Q*(MS') = Q*=1(M5") the contraction with respect to L. Let (27, (M5, gy
be the differential graded algebra of S!-invariant differential forms. We will always
consider complex valued differential forms. The contraction 7y, leaves the subalgebra



QF (M*S) invariant and restricts to a derivation of degree —1 in this subalgebra.
Let us form the cochain complex

cr = [] @t ms'y, pr.cn — o
k>0

with D_ =d+1p, ig(wr,wrg2,...) = (pWrs2, ipWets ... ), and d(w,, wyyo...) =
(dwy, dwy42,...). Denote by SH*(M) the cohomology of (C*,D*). Let K"(X)
denote the Atiyah Hirzebruch complex K-theory and A, (X ) denotes the reduced
Waldhausen K-theory (cf [B2]) of X in degree r.

Theorem 0.3. 1) The assignment M ~~ SH*(M) is a Z-graded vector space val-
ued homotopy functor defined on the category of smooth manifolds of the homotopy
type of CW complexes of finite type and of smooth maps.

2)There exist natural transformations
chy : K"(X) - SH"(X)

and, between the functors SH” and A, when restricted to the Sull subcategory of
1-connected manifolds, the natural transformations

C,: SH"(X) = Hom(A,_,(X),C)

so that 3
0— K"(X)®C — SH"(X) - Hom(4,(X),C) = 0

15 a short ezact sequence for any r.

3) The power maps ¢, induce endomorphisms SP), in SH" (X} so thal ch, in-
tertwines the Adams operations in topological K-theory with S®7,.7

The proof of these results are based on the following facts:

Given a minimal model of M (in the sense of rational homotopy theory, cf [L] or
[DGMS]), one can construct explicit minimal models for M5 and M5 //ju as well
as models for power maps cf [VS], [VB] and [BFG]. Using these mnodels one can
show that the Hochschild and cyclic homology of (* (M), d3},) are isomorphic to the
cohomology of M*° " and of M’ / /i by isomorphisms which intertwine the Adams
operations in Hochschild and cyclic homology with the automorphisms induced by
the power maps ¢ and @,. This fact permits the verification of Propositions 0.1,
and is used in the proof of Theorem 0.3. Theorem 0.2 requires in addition results
about partial Euler Poincaré characteristics in Hochschild and cyclic homology
of commutative graded algebras due to Ph. Hanlon. The proof of Theorem 0.3
also needs the identifications of the reduced equivariant cohomology of X S with
Hom(A,(X),C) established in [B2].

In section 1 we introduce the necessary concepts and outline the main steps in
the proof of Propositions 0.1 and Theoren 0.2 and in section 2 we outline the proof
of Theorem 0.3.

7it is possible to define Adams operations in the rational Waldhausen algebraic K-theory and
then Cr intertwines S®7 with the dual of the Adams operations in rational Waldhausen K-theory.



SECTION 1

1: An M-spacc (smooth manifold) consists of a space (smooth manifold) Y
together with a continuous (smooth) action 7 : M xY — Y. To give an M— action
Ti is equivalent to give an S1— action gz : S' x Y — Y and the continuous (smooth)
maps ¢y : ¥ — Y,k > 1, which satisfy

(11) w1 = id, Prr = Pk " Pr

(1.2) or(u(e™, z)) = p(e’, pi(x)).

The relationship between JI, ;¢ and @y is provided by the equality
(1.3) ((k, ), ©) = o (u(e?, 1))
The action p: S* x Y = Y induces the fibration (smooth bundle)
(1.4) Y//n=ES'xg1 Y =5 BS!

with fiber Y, where ES? is the unit sphere S®° = {v € I5] 3,5, |2|* = 1} in the
infinite dimensional complex Hilbert space la = {v = (21, , Zn, - )| Soim 23] <
oo} and BS! is the quotient space S%°//ug where py : ST x §° — §% is given
by po(e'?,v) = e'®v. Notice that ES! and BS! are smooth Hilbert manifolds and
p: ES! — BS' the canonical projection, is a smooth submersion. The action p
provides a canonical vector field L on Y, the ”tangents to the orbits”, which at any
x € Y associates the tangent vector to the orbit through z. Denote by 7y, : Q*(Y) —
Q*~1(Y) the contraction with respect to L. The following two observations arc
important:

Observation 1.1: There exists a smooth 1-form v € 21($°°) so that:
a) 7y is S1- invariant
b) if Lo denotes the canonical vector field for pg, then i,y =0
c)dy = @ is the pull back of a closed 2—form u on S°°// 1y representing the Euler
class of the S'-principal bundle §®° — §%//y.

Any connection in the principal bundle §%° — §°°//uo provides such v and .

Observation 1.2: If Y is a smooth manifold equipped with the smooth action
@ S'x Y = Y and L denotes the canonical vector field, then the smooth forms
Q*(Y/ /) identifies to the smooth forms on S xY which are invariant with respect
to the diagonal action on §° x Y and satisfy ip,+r(w) = 0. Note that Lo+ L is
the canonical vector field associated to the diagonal action of pg and g

Let wy @ ST — ST denote the group homomorphism induced by wy(¢?) = ()
and denote by Fwy : §%° — 5§ the smooth map defined by

k

)= (e

EUJk(Zl,"' 3 Rn

ESRECSAPAES UEAY A

9



Since Ewg(po(e®,v)) = po(wr(e'?), Ewk(v)), the smooth map Ewy induces the
smooth map Buwy, : BS! — BS!.

The commutative diagram
W Xid idx g
Stxy “&°  Stxy = Stxy

ARyT7 _ 4 tink AT
Y Vid Y 3 Y.

induces the commutative diagram

Y/ /]t T Y/ /tink On Y//ttn
(1.5) I I IR

Bst " pst X pst
We put 2% =, and (,0:,1 = ¢}, and one can verify
(16) Q” ’ Q:ik = Quk, (10;1 ) (Pr:;. = (p:n‘c! (P:'l ! Q::k = Qk ) (tonkk“

We denote by @, the pair (Q, ¢}.)

ok = {7/ & () 1) B (V] )}

In the rational category (of spaces localized at "0” in the sense of Bousfield Kan, cf
[BK]), we regard @y as the homotopy class (¢r)g = (¢i)o  ((Q%k)o)~!. Using (1.6)
one can verify that

(Prn)o = (Br)q - (Pn)g = (@n)q - (Gr)e-
The fibration (1.4) induces the Gysin sequence

(1.7) — H*(Y;C) 6—‘> H*_l(Y//,u; C) S—)_l H"+1(Y//;L; C J—ﬁ H*'H(Y;C) —,

and the maps @ and @ induce the endomorphisms ¥, : H*(Y;C) - H*(Y;C)
and ¥y : H*(Y//u; C) = H*(Y//p; C). 1t is not hard to check that §* intertwines
Wr with ¥;~", J* intertwines W} with ¥} and S* intertwines Wi with £¥it2.

Recall that the cohomology of the homotopy quotient Y//u is by definition the
Sl.equivariant cohomology of Y with respect to the action g and it is usually
denoted by HZ, (Y, j1; C). Denote by ﬁ*()’;C) and F;l (Y, 14; €} the reduced coho-
mologies

H™(Y;C) = coker(H(p) : H*(pt;C) — H*(Y;C))
Hai (Y, 115, C) = coker(Hgi (p) : Hy (pt; C) — Hi (Y, 115C)).

where p 1 Y — pt is the map from Y to the space pt consisting of one point, and
observe that the power maps ¢ and (@r)g induce endomorphisms ¥} and ¥} in

10



reduced cohomology as well as reduced equivariant cohomology of Y. 1t is easy to
check that if the M-space Y has fixed points, then the Gysin sequence for reduced
cohomologies remains exact.

2: Consider the category of commutative differential graded algebras with differ-
ential of degree +1 over the field of characteristic zero C, abbreviated CDGA. The
objects in this category are pairs (A*,d%), A* a unital augmentable commutative
differential graded algebra with differential d% of degree +1, i.e

(1.8) d(ar - az) = d(a1) - az + (=1)9% q; - d(az), d%'dy =0,

and the morphisins [ = f* : (A%, d%) — (B*,dj) are degree zero linear maps which
are compatible with the products, preserve the unit and intertwine the differentials
d4 and dg. (Recall that "augmentable” means that therc exists morphisms ¢ :
(A*,d%) = (K*,0) where K* denotes the unital graded algebra whose components
KP =0ifi# 0 and K° = C. In order to lighten the notation we will sometimes write
(A, d4) instead of (A*,d%). The category CDGA is the algebraic analoguc of the
category of topological spaces and continuous maps and we can provide algebraic
analogues for all previous coticepts and constructions.

For a commutative differential graded algebra (A*, d%), the graded vector space
H*(A*,d*) = Ker(d*)/Im(d*~') is a commutative graded algebra whose multipli-
cation is induced by the multiplication in A*. A morphism f = {f*} : (A*,d%) —
(B*,dy) induces a degree zero linear map which is an algebra homomorphism
H*(f) : H*(A*,d%) — H*(B*,dj). In analogy with topological spaces one has
a concept of homotopy between morphisms of CDGA (cf [L] and [Ha]) and it can
be shown that two homotopic morphisms induce the same linear maps in cohomol-
ogy. A morphism f, so that H*(f)’s are isomorphisms for all k, is called a quasi
isomorphisin.

An Sl-commutative differential graded algebra consists of a commutative dif-
ferential graded algebra (A*,d%) as above together with a degree —1 differential
i% : A* = A*~1 which anticommutes with d%. This means that:

(19) 'iA(wl . wz) = iA(wl) - wog + (_l)dcgwlwl ' ‘iA((JJg), ?,Il_l’l.jq = 0,
(1.10) Sty AN = 0.

An M-commutative differential graded algebra consists of a commutative S'—
differential graded algebra
(A*,d%, %) together with the morphisms ¢ = {¢;} : (A*,d*) = (A%, dY), k> 1
which satisfy

(111) ¢1 = ’id, (.bkr = (,bk, : ¢r

(1.12) br - ia = ki .

11



Denote by S1-CDGA resp. M-CDGA the categories of S resp. M-commutative
differential graded algebras with the obvious morphisms. Observe that if

(A*, d%, %) vesp. (A*, d¥%, %, ¢x) is in S'— CDGA resp. M— CDGA, then for
any integer n, (A*, d%,ni%) resp. (A*, d%,ni%, ¢r), is in S'— CDGA resp. M—
CDGA. The CDGA K* can be viewed as an M-CDGA with i = 0 and ¢ = id,
and then an S'-CDGA as well. We will sometimes write (A, d4,i4) instead of
(A%, d2, %)

A first example of M- CDGA is given by an M-smooth manifold consisting
of a smooth manifold Y, a smooth action x : 8! x Y = ¥, and smooth maps
wr 1 Y = Y. The associated M-DCGA consists of the differential graded algebra
(Q5,,(Y),d}), the degree —1 differential 7;, given by contraction with respect to
the canonical vector field L, and the morphisms ¢;’s induced by the simooth maps
¢k Observe also that while (7, (Y),d},1}) is the S1-CDGA associated to the the
Sl-space (Y, u), (25, (Y), d}, nit) is the S'-CDGA associated to (Y, puy,). We will
pay particular attention to the case Y = M2 " where M is a smooth manifold.

sm

A second example is provided by the following construction. Consider a free
CDGA of the form (A[V],d) where V = @®;>1V; is a graded vector space with
Vo =0, and denote by V = Ga,-zgvi the graded vector space with V; = V1. Equip
the free commutative graded algebra A[V @ V] with the unique degree —1 derivation
v A[V @ V] = AV @ V] defined by

(1.13) w(v) =7,and +v (T) = 0,

and extend d to the unique degree +1 derivation 6, : A[V @& V] = A[V @ V] defined
by

(1.14) On(v) = d(v),and 6,(0) = —nuy (d(v)).
Define ¢y, : (A[V @ V],6,) = (A[V @ V], 6,) by the formulas

(1.15) dr(v) =v, ¢r(v) = kv

It is easy to check that for any n, (A[V&V], 6, ¢, = ney, ¢, k > 1) is a M- CDGA.
Notice that if f: (A[V],d) = (A,d4) is a morphism in CDGA and (A,d4,t4) is
in S'- CDGA then f extends uniquely to the morphism F, : (A[V @ V], 6,,t,) —
(A,da,niy) in the category S'- CDGA, defined by

(1'16) Fn(v) = f('U), Fn(ﬁ) = T“’A(f('v))‘

We will put,
6 :=40;, t:=,and, F = F).

To any (A*, d%,i%,) in S'— CDGA one can associate the extension
(1.17,) (Alu),d = 0) = (A*[u], dyu]) = (A%, d%)

12



where A[u] denotes the free commutative graded algebra generated by u of degree
2, d*[u] is defined by

(1.18) 4y [u)le@u) = dy(a) @ u +ip(a) @ ™t
and e* is defined by
(1.18) efla®@u”)=0, >0

e(a®1)=a.
If (A*, d%, 1%, ) is in M— CDGA then ¢y induces the morphism

éi : (A*[u], dy[u]) = (A*[u], d%[u]) defined by

-~

(1.187) Prlc@u") = %qﬁk(a)@ur.

Clearly e intertwinces g?)k with ¢x.

The extension (1.17) induces the Gysin sequence
(1.19)

- H*(A,d) 2 H* (A, d[u]) s H* P (Alu), d.a[u]) B H* YA, dg) =,

where §* is induced by a — i 4(a), S* by the multiplication by « and E* by e.
The morphisins ¢ and ¢ induce the endomorphisms @, : H*(A,da) = H*(A,da)
resp. Dy : H*(Alul, da[u]) = H*(A[u], da[u]). Observe that 6* intertwines # with
S ST . L w2
@, J* intertwines df'k* with @} and S* intertwines @, with k& *

If f: (A da,ia) = (B,dg,ig) is a morphism in §'— CDGA’s then it induces
the commutative diagram (1.20) whose horizontal lines are the extensions (1.17)
for (A,da,i4) and (B, dg,i5).

Al d=0) - (Aluldal) - (A da)
(1.20) L 1d ! flu] L1
(Alu],d=0) — (Blu],dg[u]) — (B,dg)

The diagram (1.20) induces the commutative diagram (1.21) whose horizontal lines
are the Gysin sequences associated to the horizontal lines of (1.20).
(1.21)
Ly «—1 41
= H*(A,da) 23 H* Y (Alu), dalu)) 55 H* Y A, dalu)) g H* 1A, d4)
LE()) L HTH D) L HT () L HT)
5 =1 ~+1
= H*(B,dg) 8 H*(Blu],dslu]) 5 H**+\(B[u],ds[u)) "= H**1(B,dg)
Let (A,da,i4,¢4k) and (B,dg,ig, ¢ x) be two M— CDGA’s. The morphism
f:(Ada,ig) — (B, dp,ip) is called "M~ homotopic” if f and flu] intertwine

b4 with ¢pr and ¢4 x[u] with ¢p x[1] up to homotopy. This implies that the

13



vertical arrows in the diagram (1.21) intertwine 4 4's and @ 4 x’s with @ ,'s and
with (PB,k’s.

Suppose p: S x Y — Y, is a the smooth S$'— manifold and (QF,,(Y),d}, 1} ),
is the S'— CDGA of invariant differential forms. Suppose f : (A, d4,14) —
(§25,,(Y),dy,4%) is a morphism in S'— CDGA’s. Then f induces a morphism
f(u) « (A*[u],dafu]) — (Q*(Y//;.L),d;//“) constructed in the following way: de-
note by m; : S x Y — 8% and wp : §° x Y — Ythe canonical projections and
define f[u] by the formula

F@)Q ar@u’) = Iar) A (ri(@)"

where @ is the 2-form in Observation 1.1 and

I(a) = f(a) + (=1)%* " 3 (f(iala) A 75 (7).
It is not hard to see that f[u] is a mnorphism of CDGA’s and that its image consists

only of smooth forms which, by Observation 1.2, identify to pull backs of smooth
forms on Y//p.

Proposition 1.3. If f: (A4,d4) = (Q5,,(Y),d}) is a quasi isomorphisin then so

To check Proposition 1.3 we first verify the statement for f = Id. In this case the
the proof is the samc as the proof that the cquivariant cohomology defined using
invariant forms and the contraction i, is the same as the deRhain cohomology of
the smooth manifold Y//pu, ¢f {AB]. The general case follows from the commutative
diagram (1.21) and the case f = [d.

It is convenient to write HZ, (A, da,14) := H*(Alu],d[u]) and to consider the
reduced versions of these cohomologies, A (A, d.4) and Hgi (A, da, t4),
H (A, d4) = coker(H(%) : H*(K,0,0) = H*(A, d4))
Hi (A, du,0a) = coker(Hsi (i) : H3 (K, 0,0) — 3 (A, da, o),
where i : (K,0,0) — (A, da,¢) is the morphism in S-CDGA’s defined by the unit of
A. The power maps ¢ and @ induce endomorphisms @,* and 'I;k* in cohomology
and equivariant cohomology ordinary and reduced. Notice that if (A, d4,¢4) 1s

augmentable (i.e there exists the morphism e : (A, d4,t) = (K,0,0) so that i = id,
then the Gysin sequence in reduced cohomologies remains exact.

3. Recall that given a connected smooth manifold M, a model for M is a pair
((A[V],dy), 0), with (A[V],dy) a free connected® commutative differential graded
algebra and 6 : (A[V],dyv) — (Q*(M), dp) a quasi isomorphism. The commutative
differential graded algebra (A[V], dy) is called minimal if dy restricts to zero on V
and dy is decomposable, i.e dy (V) € (A*[V])?; here AT[V] denotes the ideal of the
elements of positive degree.

The following results, due to D. Sullivan (cf [L],[DGMS]), constitute the so called
Sullivan’s minimal model theory.

8ieVyp=0
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Theorem 1.4. (1) If f : (A[V],dv)} = (A[W],dw) is a quasi isomorphism between
two minimal CDGA’s then f is an isomorphism.

(2)There exists mininal models for any 1-connected smooth manifold M which
has the homotopy type of a CW-compler of finite type.

(3) Let h: My — My be a smooth map between two smooth manifolds as in (2).
IfQ(h) . (O (Ma),dyy,) — (Q°(M),d}yy,) denotes the morphisin between the corre-
sponding deRham algebras induced by h and 0; : (A[Vi),dv,) = (@ (M), dp,), 1 =
1,2 are minimal models, then there exists [ : (A[Va],dv,) — (A[VA],dv,) which
makes the following diagram homotopy commutative

(A[Va], dvy) —2— (Q*(M2), d3y,)
(1.22) | o) |
(AWl dv,) —2 (Q*(M1), d}y,)

(4) Given 0;, the assignment h ~ f provides a well defined map from the set of
homotopy classes of smooth maps h : My — My to the set of homotopy classes of
morphisms f : (A[Va], dv,) = (A[VA], dv,).

The main tool used in the proof of Proposition 0.1 and of the Theorems 0.2 and
0.3 is provided by the following theorem:

Theorem 1.5. (1)Suppose 6 : (A[V],dy) — (U (M), d},) is a minimal model for
the 1-connected manifold M. Then there exists the morphism

B (AIV @V, 600y 0m) = (U (MS,), d%ysr, i}

Ny 8TH

in S1-CDGA so that 0, : (A[V & V),8,) — (QF,,(M5)), d*

inv am/s C MS‘) 8 (1 quast 150mor-
phism.

(2) With respect to the M-structure on (A[V & V|, 6,1v) provided by the power

maps defined in (1.15) and the M-structure on Q;‘,W(Mf,:}) induced by the maps
ok, 0 18 an M-homotopic morphism.

About the proof of (1): For n = 1 this statement was first proven in [VS] and
[VB], ¢f Theorem 3.2 in [BFG]. For n arbitrary this is Proposition 3.3 in[BFG).

Observe that Theorem 1.5 (1) implies that

(1.23) On  (AIV @ V],0,) = (o (M), djy50) (M), d3s0)
and
(1.24)

O (AV @V & [u]], 0) = (U (M), e [uln) = (M5 /1), diygs )

are minimal modecls. Here [u] denotes the one dimensional graded vector space
concentrated in the degree 2, generated by the symbol u, the index "n” for d ;s [u],
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indicates that this differential is constructed as in (1.17), (1.18), from d,,s1 and
m'L.

About the proof of (2): In view of Theorem 1.4 (4) this statement is equivalent,
to the fact that the morphisms

(1.25) b (AV @), 8) » (A[V @ 7),5)
and
(1.26) br[u] : (A(VEBV)[u],J[u]) — (A(V GBV)[u],é[u])

represent g and (@g )@, with respect to the minimal models ¢ = 6rand 8[u] = 64 [u).
To establish (1.26) it suffices to show that the map ¢} : MS' e = MS' [/

induced by @y : MS' = MS' s represented with respect to the minimal models
6, [u] and [u] by

(1.27} drlu] : (A[V @ V1), 8,[u]) = (A[V @ Vu], 6[u])

Indeed, it is not hard to sec that the map {1, is represented with respect to the
same minimal models by QF : (A[V @ V][u], 8[u]) = (A{V & V][u], §.[w]), defined by

(1.8) Qr(v) =v, U, (0) =7, Q,(u) = nu.

The statement follows from the equality (¢x)o = (¢})o-((§%)g) L. The verification
of (1.25) and (1.27) is done in Proposition 3.4 in [BFG].
Few misprints in [BFG] have remained uncorrected in the Erratum. On page 279,
the vertical arrows in the first diagram and the horizontal arrow @y in the second
diagram should have the directions changed.

The above theorem implies that the Gysin sequence (1.7), for ¥ = M;S;:L, iden-
tifies to the Gysin sequence (1.19) for (A[V @ V], 6,+) defined in (1.13)-(1.15) and
the identification is compatible with the endomorphisms @;’s and &y’

4. Recall that for the category of associative unital differential graded algebras
over a field of characteristic zero onc has two Z,.-graded vector spaces valued func-
tors, the Hochschild and cyclic homology. For any such algebra A, HH,(A), the
Hochschild homology, and HC\, (A), the cyclic homology, are related by a long exact
sequence (Connes exact sequence).

(1.29) -+ — HHL(A) L5 HC.(A) 25 HC\_3(A) =5 HH._1(A) > - -+,

If f: A= B isamorphism of unital algebras one has the commutative diagram

A A )A
SHHA) D HC(AS  HC_.(4)'S HH,_ (A
(1.30) b HH(f). L HC(f). L HCUH.—2 L HH(f) -

58 b

B )2
S HH.(B)D HC.B)D HC._.(B)'3*  HH._.(B)
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One can define a reduced version of the Hochschild resp. cyclic homologies
HH,(A) := coker(HH, (i) : HH,(C) —» HH,(A)

HC,(A) := coker(HC,(4) : HC.(C) — HC,(A)

where 1 : € — A denotes the morphism induced by the unit of A. The sequence
(1.29) induces a similar sequence for the reduced cohomologies which, when A is
augmentable, remains exact. If in addition A is commutative both Hochschild and
cyclic homologies (reduced homologies) carry natural Adams operations

Ady : HH,(A)(HH,(A)) » HH,(A)(HH,(A)) and

Ady, : HC,(A)(HC,(A)) - HC.(A)(HC,(A)). These operations satisfy Ad, =
1d, Adg, = Ady - Ad, and have the following intertwining propertics

(1.32) Ji - Adg = Ady, - Ji, Sk Adg = kAdg_g - Sk, by Ady = Ady, - b

It was observed ([B2],[BFG]) that Hochschild and cyclic homology as well as the
exact sequence (1.29) can be extended’as Z-graded vector spaces valued functors to
unital differential graded algebras with differential of degree +1. Similarly Adamns
operations In Hochschild and cyclic homology can be extended to commutative
differential graded algebras. Here is a summary of these extensions; for details we

reffer to [BFG].

To a CDGA, (A, d4), we associate the bicomplex

(T(A)p,—q, D;

E
D,—q!} Dp,—q)pa q Z 1

with Df _ - T(A)p~g = T(A)p,—q—1 and DF_ : T(A)p _q = T(A)p-1,—¢ defined
as follows:
(1.33) T(Ap-q= B Au®A,0 A,

it tip=q

p
(1.34") D;’_q(%@- a;,) = dag, ®- -aip+2(—1)i°+"'+i'—‘(Li0®A cday, @ -ay,
i=1

p—1
Df_(a;{®-a;) = Z(_l)iﬂig ® - raq i, @ -a;+
=0
(1.347) +(“1)p+i”(i°+m+ip”)fli,,flio ®ai, @ -a;,_,.
The two differentials satisfy:
(1.35) (D2 =0,(DF)* =0 and D'DE + DED' = 0.

9 unital algebra can be regarded as DGA coucentrated in the degree 0
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One defines the action of the symmetric group S,, on A®™, the m-fold tensor
product (over C) of the graded algebra A with itsclf, by the formula

pﬂt(gi a’il ® T a’inl) = (—1)6(0;1:],“. ,inl)a’ia(l) ® T ® (Lia(ﬂl)
with e(o;41,- - ,4m) given as in [BFG] pp 274. Let 7 : T(A),,—q — T(A), —q be
given by

(1.36) T(a:‘o ® - ai,) = (=1)" ps1 (Wi, i @« - aim) =

— (_1)m+1.m(;0+...+1m—1)aim ® iy & - a;

with w41 the cyclic permutation of {0,1,2,--- ;m}. The total complex
(T.{A), D,) is defined by

(1.37) Tr(A) = ®p—yqer T(A)p,—g, D Z D} _,+DF

P—q
—g=r

and its homology is called the Hochschild homology of (A, d4). Put CoinvT, (A) =
Ty (A)/Im(1 — 7). Since D.(Im(1 — 1.) C Im(1 —7,), (CoinvT.(A), D,) is again
a chain complex and the canonical projection 7 : (T\(A), D} = (CoinvT.(A), D)
is a morphism of cochain complexes. Tlie homology of (CoinvT.(A), D) is called
the cyclic homology of (A,d4) and 7 induces the morphism J* : HH, (A, d4) —
HC,(A,d4). Since our algebras are unital, one defines the reduced Hochschild and
cyclic homology HH.(A,d4) and HC,(A,d4) as the homologies of the reduced
complexes (T,(A)/T,(C), D} and (CoinvT.(A)/CoinvT,(C), D). It is clear from
definitions that the (reduced) Hochschild and cyclic homologies are functors from
the category CDGA’s to the category of Z— graded vector spaces. It is easy to
verify (cf [B], [BV1]) that:

Proposition 1.8. If f: (A, d4) = (B,dg) is a quasi isomorphism then HH,(f),
HC.(f), HH.,(f), and HC,.(f) are isomorphisms.

To define Adams operations one construct first the elements 95 = 3" ako, o €
S, af € Z,in Z(S,,), the group ring of the symmetric group S,,, as in [L] p.13 (cf

also [BFG]).Then one defines the linear maps Ady, : (T.(A), D) — (T.(A), D) and
Ady, : (CotnvT(A), D) = (CoinvT.(A), D) by the formula:

Adgla;, ® - - a;, ) = Z oo, ® - ay,)
oES, ,k

Ady, induce in homology the endomorphisms (Adams operations)
Ady : HH, (A, (iA) — HH, (A, (i_A) and Adk cHC, (A, dA) — HC, (.«4, (iA).
which are natural transformations of functors.
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It is shown in [BV]? that (T, (A), D) resp. (CoinvT,(A), D) decomposes canon-
ically as a sum of subcomplexes

(T.(A), D) = (T.(A) (i), D.(i))
i>0
resp.
(CoinvT,(A), D) = @ (CoinvT, (A)(3), D.(i)),

i>0

and therefore HH.(A,d4) and HC.(A,d,4) decompose canonically as

(1.38) HH.(A,da) =Y HH.(A,d)(i)
i>0
and
(1.39) HC.(A,da)=> HC.(A,da)().
i>0
Moreover
(1.40) HH.(A,da)(0) =HC._1(A,d4)(0) = H (A,d4)

H,u (A, dA)(r)=HC,_1(A,d4)(r)=0ilr > n,

with HH,(A,d4)(i), vesp. HC,(A,d4)(i+1) eigenspaces of cigenvalues k¢ for the
linear maps Ady. These decompositions are referred to as the WEIGHT decompo-
sitions.

If in addition d 4 = 0, we have the additional decompositions
(1.41)

(T.(A),D.) = Z(T(A)p,-*: D;}f~¢)’ (CoinvTy(A), D) = Z(T(A)J’,—*a Dpl;:—i)

p=0 pz0

compatible with Adams operations and therefore the additional decompositions:

(1.42%) HH_.(Ada)(i)= @ HH, (A da)(i),
(1.42”) HC (A da)(@)= € HCp—(A,da))

The decompositions (1.42’) and (1.42”) will be called HODGE decompositions.
Let (A,d4 = 0) be a CDGA with dimA, = 8, < oo. Introduce

Pu(z):=> B2 T(z,0) =) (Z(-l)f’dim(H'H,,,_q(A, 0)(7:)) A4

>0 i,q P

CTl(z,A) = (Z(-1)f'dim(1fc,,,_,,(A, 0)(@) Az,

4q P
In [H] Ph.Hanlon has proven the following result:

1%for commutative difterential graded algebras with differential of degree —1, but the same
arguments hold for CDGA’s as above



Theorem 1.9. [H]. If (A,d4 = 0) is a CDGA with Ag = C and dimA, = 3, < o0,
then
M(z,A) = P(z) [ (1 + P(eh) ™/ Baw s,
leN

CTI(z, A) = P(2)/(1 = W[ (1 + P(h)) "Y' Zan @57 _\y,

leN

The following result is a graded version of Hochschild- Konstant-Rosenberg the-
orem and was proven in [BV] for commutative differential graded algebras with
differential of degree —1, but the same arguments hold in the case the differential
is of degree +1.

Theorem 1.10. [BFG]. If (A[V],dy) ts a connected free CDGA, then there exists
the natural isomorphisms h, : HH_,(A[V],dy) = H (A[V & V), 6) and
ey 1 HC_.(A[V],dy) = F;Tl(A[V @ V1, 8) which intertwine the reduced Adams
operations with the reduced power maps and identify the reduced Connes ezact se-
quence of (A[V],dy) with reduced Gysin sequence of (A[V @ V], dy, v ).

The following Corollary is useful in the calculation of the weight decompositions.

Corollary 1.11. Using the isomorphisms provided by Theorem 1.10 the weight
decomposition described above identifies to the decompositions (1.45) and (1.40).

(1.45) AV o718 =3 (Ve V™, o)
i>0

(1.46) AV @ V[, 8) = S _(AIVi[e] @ V", 8[u))
i>0

Proof of Proposition 0.1: It suffices to prove Proposition 0.1 for reduced coho-
mology resp. reduced equivariant cohomology of MS " Thesc cohornologies and the
action of the power maps on these cohomologies can be calculated with the help
of the explicit minimal models for X $' and X5’ / /1 and of the representation of
¢r and (q?)k)Q with respect to these minimal models given in Theorem 1.5 . Once
this noticed the verification of 1),2),3) can be done casily with the help of Corollary
1.11.

Theorem 1.10 combined with Proposition 1.8 provide a new proof of a result of
J.D.Jones’s (cf [J]), concerning the isomorphism between the cohomologies
E*(Af[ s! ; C) resp. ﬁ;, (M3 " C) and the reduced Hochschild resp. cyclic cohomolo-
gies of the de Rham algebra (Q2(M), d). This new proof permits also to verify that
the isomorphisins h, and ¢, intertwine the Adams operations with the power maps.

A formality structure on M,
(H*(M;C),d =0) & (A,da) 3 (QUM),d)
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identifies, using Proposition 2.8, the Hochschild resp. cyclic homology of

(Q(M)*, d,) with the Hochschild resp. cyclic homology of (H*(M;C),d* = 0).
This identification transports the Hodge decomposition (1.42}, on H (M5 : C)(5)
and on Hg: (MS";C)(s). Theorem 0.2 follows then from, Theorem 1.11.

Using the model (A[V @ V],6) of the smooth action 2 : S* x MS — MS' (cf
Theorem 1.5) one can derive (c¢f [VB] Corollary 4) the following result first proven
by Goodwillie [G] by a different method:

Theorem 1.12. If M is a smooth 1-connected (Hilbert) manifold of the homotopy
type of a CW complex of finite type, then

-2k

hm{ Heo (M5 C) 5 H*ST2L+2(MS[;C) =} =0

(For the nonsimply connected manifolds the above limit depends only on the
fundamental group cf [B3].)

SECTION 2

In Introduction, for a smooth (Hilbert) manifold M, we have introduced the func-
tor SH*(M) using (QF (MS ),d* = d} gi,t7). We have introduced the cochain

inv 871

complex (C*, D* : C* — C**) with C” = [Tiso QUE2E( 1S and

(2.1) D7 (wyp,wry2,wWrp2, ) = (d{w,) + tp(wry2), d(wrga) + tp(Wrga), )

and then we defined SH*(M) as the cohomology of (C*, D*).

The power maps ¢ define the endomorphisms @, : (C*,D*) = (Cx,D*) by
the formula

(2.2) Br(wr, Wrra, Wrya, ) = ($r(wr), 1/kdi(wrga), 1/E P (wrsa), - )

and these endomorphismes induce S@F : SH*(M) — SH*(M). SH*(M) is a func-
tor from the category of smooth Hilbert manifolds and smooth maps to the category
of Z-graded vector spaces and &} are natural transformations.

In order to prove Theorem 0.3 we have to introduce a few additional complexes:

(PC*,D*), (PC~,Dx) and (C7, D%), with the last two subcomplexes of the first.
They are defined as follows:

(2'3) : H Q:nvgk MSI
k>0
(23’) PCk:even - HQ?:’W(MS ) Pck_odd H Q?;j)‘l MS:L
i>0 >0
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(2‘3::) Pck even ,_ ZQuw
i>0 i20

(MrS ) Pck odd Z Q?I-E-l(MS

tny

and D = rstl + 75, where
(24’) EMSI (w(),\'.ug, e ) = ((ﬂdo,(lwz, e '), d= dMsl,

dpgsr (wi,wa, ) = (0,dwy, dws, - +), d=dye,

(25) IL(wg,wz,w4, . ) = (sz,l,w,;, . "), L=1r,

T (wi,wg, ) = (s, 0wz, 0 ), L=t

Define also @, : (C%., D}.) — (C%, D1) by the formula

(26) (le; (wm Wy_2,Wy—4, " ) = (qsk(wr): k'(;bk (wf"-2)1 k2¢k (w7‘—~2)1 e )

and &} : (PC*, D*) = (PC*, D*), with &} : PC* — PC" by the formula

(2.7) p([Jwaire) = [ [ H7drlwaine)

i>0 i>0

where € = 0 if n = even and e = 1 if n = odd.
Observe that the cohomology of (C}, DY) is exactly the equivariant cohomology

H%, (MS';C) and the cohomology of (PC*, D*) is

—x2k

a2k
lim{- -+ Hg (MSI) S—> Lhake2
—

He My = .-},

Denote by PHg: (MSI) the cohomology of (PC*, D*}. In order to understand the
relationship between all these cohomologies observe first that there exists the comn-
mutative diagram of cochain complexes where the horizontal lines are short exact
scquences and the vertical arrows are induced by inclusions.

-9 -
0- (Cr7%,Dr?) 5 (L, Dpy)y D (@) dys) So
(2.8) L Id*? Lin* 1 In*
{* L

0— (Cy%Dy™% 3 (pPCtDY) - (C*,D*) 50

This diagram induces the commutative diagram (2.9), whose horizontal sequences
are long exact sequences
(2.9)
-— JT —
- HITY(MS) POV I - A0V i HT'(MSY =
dId” 4 1 § Idx*

- HZAMSY B pHMSY 5 sHAM) B omEIY(wMS) o

52 5%
— 35

Proof of Theorem 0.3: It is shown in[JP], see also [B1] section 5, that PH §: (MS')
is isomorphic to [];5, H*(M;C) if 7 is even and to [[,5, H* 1 (M;C) if r is odd,
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hence it is isomorphic to K" (M)} ® C where K" (M) denotes Atiyah-Hirzebruch
K-theory. Moreover by this identification the operations &y : Pf]gl(ﬂ/fs‘) —
PHZ, (MS '} induced by the map of complexes @y, are intertwined with the Adams’s
operations in K-theory. The naturality of the diagram (2.9) and the homotopy in-
variance of K" (M) ® C and of Hg, (M5") imply the fact that the functor SH*(M)
is a homotopy functor. Tt is implicit in [B2] (sce also [B1] sections 2 and 4) that

if M is 1-connected then the reduced equivariant cohomology H g (M5 l) identifies

to Hom({A._(M),C). Proposition 1.12 implies that for M 1-connected, s* factors
through PHG, (ptS 1). The a long exact sequence provided by second line in the
diagram 2.9, combined with these observations lead to the proof of Theorem 0.3.
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