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ABSTRACT. In thc first part of this paper we diseuss a fcw conccpts and results
about. the algcbraic topology in characteristic zero of the free loop space, in analogy
wit.h thc topology (geometry) of algebraic varict.ieK over a. finite field. 111 this analogy
the free loop space plays the role of the extension of the variety over the algebraic
closure of the field. In the second part we use the II differential calcllills " on the frce
loop space of a SIl100th manifold to pl'ovide a graded vcctor space valucd homotopy
functor SH* whose restriction to l-connected spaces unifies the Atiyah-Hirzebrllch
topological K-theory and Waldhausen algebraic K-thcory.

Given a. topological space X, denote by X S1 the space of contiuuous Inaps (free
loops) Cl:' : SI -+ J'Y, equipped with thc conlpact open topology. Here SI := {z E

Cilzi = I}. This space will be rcfcrrecl to as the free loop space of X. This space

can be viewcd as an extension of X by idcntifying J'Y to the subset of X S1 consisting
of constant Inaps (constant loops). Thc group of orientation prcserving isolnctrics

of SI, which can be idcntified to SI itself, acts continuously on J'y5
1

• T·he action

denotecl by fL, 11- : SI X X
S1 -+ X SI

, is dcfincd by IL(Z', a)(z) = a(z'z). The
fixed point set of thc action consists of the subset of constant loops, hence can bc
identifiecl with X. In addition to J-l we havc thc continuous nu\ps

defincd by /pk(a)(z) = a(zk) and rcferred in the titlc of this paper as thc ]Jowel'
nl,aps. Nobce that thc fixed point set of /Pk 1 for k 2:: 2 consists also of the constant
loops. The action IL anel the rnaps /Pk cOlubinc into a continuolls action
Ti : M x J'y5

1
-+ )(5

1
of thc rnolloicl M whosc unclerlying set is N x SI and

Illultiplication is given by
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Here N clenotes the natural nUIllbers.

Wc refer to X Sl
as thc space of orientccl pararnetri~ccl curves of X. A 11101'e

interesting object is the space of orientecl nonpararlletrizecl curves of X; this space
is not accessiblc to traclitional tecltnics of analysis anel geornetry, but frolll thc point

of view of algebraic topology, it can be satisfactory approxilnatccl by ~ySI IIIL, thc

hOIllotOpy quotient (,as dcfined in section 1,) of ~ySI by 11"

The 111ap 'Pk is not equivariant with respect to IL but if one consiclers ILk : SI X

X S1 --t X S1 , the SI-action on X Sl
defineel by lLk(Z, a) = IL(zk, 0'), thell 'Pk ;

(~\Sl, ILk) --t (~\Sl, lL) is Sl-cquivariant anel ineluces 'P~ : (X S1 II/-"k) --t (X Sl 111")'
Tllc cornIIlutative diagrarn

SI X )(S1 Wk xid SI X X S1
)

~k1 ~1
X Sl id

X S1

with Wk(Z) = Zk incluces thc rnap r2k : (XS11IlLk) --t (XS111J-") which is a rational

hornotopy cql1ivalencc, i.e thc I11ap (r2kJQ : (X S1 II/ik)Q --t (~\S1 IIp')Q obtainecl
by localb~ation at "0" in thc sense of Bousfield and Kan ( cf [BK] ), is a hOIllotOpy
cquivalence. Denote by t{;k the pair

t{;k == ()(Sl I I IL) ~ (){Sl I I lLk) ~ (X S ' I I ji,)

also referred to as power I11ap in (X S1 I I IL). i,Fr0I11 the point of view of algebrak
topology in characteristic ~ero onc can regard t{;k as the hOIllOtOpy dass ('{5k)Q =
('P~)Q . ((!1k)Q)-I. It is easy to verify thc equality

(t{;kn)Q = (t{;k)Q . (!{Jn)Q = (!{Jn)Q . (rpk)Q.

If X = M is Slllooth rnanifold 1110delcd over a finite 01' infinite dilnensional Hilbcrt
space we can rcstrkt our attention to the SlllOOth Inaps 0' : SI -r M 1 and cqllip

this set with thc COO-topology. The reslllting space, denotcel by Mfr:t 01' (whcn no

confusion is possible) sirnply by Ms
l

, is a S1l1ooth Frechet Inanifold and the action

J-" is a srnooth action. Moreover, in this casc !v!~:". is SI-honl0topy equivalent to

MS
l

• On a Frcchet rnanifold one can work with differential fonns, vector fields etc.
and deRharl1 Theormll holels.

Given n 2: 2, I will view tbe systeIll {(X, ...ySl,'Pnk)}, k 2: 0, anel the systenl

{(...\, X S ' II/-", epa k ), k ~:} in analogy with (the affine picture anel thc projective
picture of) {V, V, JFk, /;; 2: O}, whcl'c V is an algebraic variety ovcr thc field with q
elernents F(J: q a prinle nurnber 1 V is the variety V consiclerecl over tbe field Fq ,

thc algebraic dosure of Fq , anel IF : V -r V is the Frobenhls tHap iuchlceel by the
Frobenills iSOl110rphis111 IF : Fq -r Fq , IF(x) = x q . Then the Weil ~eta function
Z(V, z) is dcfined by

1 )' Z(V ) = '"""' F'i:r;(IF-
k

) kog , z LJ k Z.

k2 1
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It was shown by Grothcndieck and Dclignc cf [FK] that when V is sl1100th anel
projectivc, then Fix(IF- k ) can be calculated as a. Lefschetz nurnbcr in l - addic
cohorl101ogy H~t (V; QI), (with l an arbitrary prinlc nurl1bcr prirl1c to q,) i.c.

In this paper wc will diseuss two rcsllits of algcbraie topology in "charactcristic
zero" involving 1yS

I
anel Xs

l
/ //L. The first result, obtained in collabol'ation with

Z.Ficdorowicz and Vv'.Gajda, cf [BFG], 1 is about additional structures in thc coho­

11l010gy with cocfficients in a field of chal'actcristic zero, for cxanlple C, of 1Y51 allel
51)( //1),·
If X is l-connccted wc show that there exists a "weight" deconlpositions2 of thc

cohorllology anel of thc equivariant cohcunology of X5
1

,

JI*(X 51 ;C) = :L H*(1y5
1

; C)(r)
">0

H S1 (X
51

; C) := H* (1y
51

/ / 11.; C) = :L H* ()(5
1

/ / tL; C)('!')

"2: 0

allel explain their nature in tenns of power ruaps. These elecol11positions exist also
for thc reducccl cohoITlologies

If in addition X is a finite cornplcx anel is equippcd with a l' fonnality " structure
( clefincd below), then this fonnality strllcture illchlces a l'efinClncnt of thc above
decornpositions, calleel the Hodge cleCOll1positions:

H* ()(5
1

; C) (1') = :L H*+q,-q (X 51
; C) (r)

q>O

IJ~1 (X51
; C)(T) = :L IJ~;q,-q (X51

; C)(r)
q2: 0

VI/e notice that a cOIuplcx analytic Kähler strllcture on a Sl1100th closecl rnanifold
M speeifies a fonnality strlletllrc on M.

Wc show that thc Illllllbers

xitq (1') := :L(-l)P dirn [f),-(j (1y5
1

; e)(r)
p>O

1 A number of misprints made [BFG] hal'd to read. This paper among others COl'l'ccts thesc
misprints alld pl'ovidcs a bettel' forlIlulation of the results in [BFG]

2in thc literatul'e on Hochschild and cyclic hOIllology dccomposition of thc same llat.llre 3,.<; t.lle
wcight. decompositiolls are improperly called Hoclge decolllposit.iolls
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allel

XE/1(r) := L (-1 )1) elilll IIPl
-

q
(X

SI
/ / 'Li CH1')

p>O

are weIl defined whcn X is a finite cOlnplex, depend only on thc Bctti ntll11bers
ßi := diInHi(X; C), and do not "sec" the rnultiplicative structllre of H*()( : C),
cf TheoreIll 0.2. This is a rather uncxpected fact since the Betti nurnbers of X S1

anel X SI
/ / tL depend on the llluitiplicative structure of H* (X; C) anel even thc

alternated sunl '2:(-l)kXH~E) when Inakes sense, for X not fornutl, 111ight depenel
on the 111ultiplicative structllre of the cohorI1ology of X.

Thc weight anel Hodge dccornpositions suggcst a hornology "~eta function" which
can be dcfincd for any 1-connectcel finite cornplcx with a fonnality strllctllre. This
hornological "zeta fUllction" is a fornli--d serics in two variables, allel presellts SOl11e
analogy with the vVcil zeta function of SillOOth variety over a finite fidd.

Thc sccolld rcsult is the constrllction of a new (graded) vector space vallled ho­
1110tOpy functor, defincd in this paper ollly for snlOoth Inanifolds M of thc hOInotopy
type of Cl CW-cornplex of finite typc3 , which I llsed to call to "string cohonlOlogy"4
of M and dcnote by S 11"* (M). This functor carries " Adallls operations" w hich are
indllced by the power nULps dcfined above and "unifies" the Atiyah Hirzebruch K­
theory and the Walelhauscn K -theory of NI, (cf. Theorern 0.3) in a way consistcnt
with Adall1S operations in K-theory. This functor is elefineel analytically in tenns
of infinite sequences of srnooth SI-invariant fo1'1118 on the Frechet Inanifold M-s

l
•

Thc proof of Theorclll 0.3 uses the infinite dirnensionality of Ms
l

in an essential
way.

If one caUs a tubular neighborhooel of thc constant loops in M S1
, srnall loops,

anel the c0l11plen18nt of thc constant loops in M sl large 100ps, it turns out that
in the "unification" Inentioned abovc, the sll1all loops are responsiblc for Atiyah
Hirzebruch K -theory, the large loops for Waldhausen K -thcory anel a11 loops, snla11
anel large together, for SH*. The sets of sIllall anel large loops are not disjoint.
Now we want to rnake these results 1110re prccisc.

The power I1U\.PS 'Pk : X SI
-7 Xs

l

allel (epk)Q : (XS
I

/ /IL)Q -7 (..ry S
1 / /IL)Q inchlce

enelol11orph iSl11S

* *( SI) *( SI) - * * ( SI) . * ( 51 )'lJ k : H X ;C ---+ H X ;C and 'lJ k : Iisl X ;C ---+ HSI..rY i C

which are alltol110rphislns when X is sirnply connectecl.

Proposition 0.1. ([BFG]) 1f X is l-connected nnd of the hornotopy type of n G'vV ­
c01nple:c of fi:nite type then:

1) The eigenvalues of Wk and of ~k are among kO = 1, k 1, k 2
, ...

3finitc typc= finitely lIlany cells in each dimension
41 underst.c\-Ild t.hat. M.KonHcvici ha.s already u5cd thc term "string cohoI1lology" for another

functor so thc reader can read SH as uspccial COhOlIlOlogy"
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2) The eigenspace corresponding to k" is independent of k fLnd lherefore denoted

by H*(X
Sl

; C)(r) res]J. H*(X
SI

/ /JJ" C)(1').

3) H*C.y·s
l

; C)(O) = H*(X, C), H*-l(XSI IIJ./,; C)(O) = JI*(X, C),
und Hr (X S1 IIt/', C)(p) = H" (X S1

; C)(p) = 0, ij p 2:: l' + 1.

Proposition 0.1 will be provcn for X = M a SlllOOth l-connected SlllOOth (Hilbert)
lnanifold5 by constructing thc isolllorphisnlS

8f[ : H* (M
Sl

; C) -t H H_*(ü,* (1'.11), d~)

8E: If* (M
Sl II//,; C) -t HC-*+1 (o'*(M), d~1)

bctwcen thc reduccd coholnology resp. reduced equivariant COhOlllOlogy of M s1 Cl.nd
Hochschild rcsp. cyclic hOlllOlogy of (0* (M), dM), the deR.harn algebra of M. This
is Cl differential graded algebra whieh is conlnlutativ~ in the graded sense. These
isomorphisIllS intertwine thc endolllorphislllS Wkand Wk with the Adallls operations
in Hc:chschild and cyc1ic horIlology of (0.* (M), dM ) (cf [BFGJ). The operations wZ:
and wh; are always defined for COllullutative algebras.

By a "fol'lllality" structure on a SlllOOth rnanifold M we rrlCan a tripIe consisting
of a C-conunutative differential graded algebra (A*, dA) and two l110rphislns
ltl : (A*:dA) -t (O*(Al),dM) anel (}:1 : (A*,d:A) -t (H*(M;C),rl* = 0) which
induce isolllorphisrl1s in cohornology. A cOlllplex analytic Kähler structllre on thc
closecl lnanifold M, provides a callonical "fonnality" structure on Al cf [DGMS].
The existence of a fonnality structure is an hornotopy invariant property.

The Hochschild 01' cyc1ic hOlllOlogy of a cOllunutative graeled algebra when viewed
as a degrce +1 cornnlutative differential gTaded algebra B* with differentia.l equal
to zero, as well as their rednced versions havc natural decollIpositions

H H*(B*) = L H H*+q,-(j(B*): HC*(B*) = L HC*+q,-(j(B*)

q~O (j~o

which eliagonalize the Adanls operations. Dsing thc fonnality structurc Olle cau
identify the reduced Hochschild anel cyclic hornologies of (0.* (At[): d'M) anel of
(H* C/Y; C) 1 0) anel using the isonlOrphis111S 8~,(E} one obtains decolllpositiollS of

If* (..-ySI; C) anel JI~1 (XSI
; C) which diagonalize the endolllorphisrns Wk anel ~k'

H* (XSI ; C)(7') = L H*+q,-q(..-ySI; e)(r)

q>O

Denotc by
. -ißl := dirn H (..-\; C)

5 any X satisfying the hypotheses of Proposit.ion 0.1 is hOlllot.opy equivalent witlt such manifold
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· -i 51 . -i 51bk := din1 H C.Y ;C), bk:= diln H SI (X ; C)

anel by

While the Hodge decolnpositions dcpend on thc fonnality structure, thc nun1bers
ll;;(i) (r) do not and are thc salne for different fonnality structures.

Let
PH(Z, A, 'lL):= L bj;-q(r)zPAruq

q,7',1)~O

and
PE(Z, A, u):= L llj};-q (r )zPAruq.

q,r,p;:::O

Following P. Hanlon [H], denote by6 Px(z) = Li2::0 ßi(X)zi and rann thc power
series

Q H(z, A) = (1 + Px (z)) TI(1 + Px (zl) )-e(l)

l

where

Hcre J-L(d) denotes thc Möbius function Il: N --+ {+1,0,-1} clefinecl by Il(l) = 1,
J-L(1) = °if thc prinlc factors dCCOHlposition d = PIP2 ... Ps IHL9 at least two prilnes
equal anel tt(d) = (_1)8 othcrwisc.

Theorem 0.2. (cf [BFGJ) Jt M 1:8 1-counectcd smooth (Hilbert) 'Inanifold 0/ the
h01notopy type 0/ a CW-cornplex of finite type with a formality stT1Lcture, then:
1) PR(E) (z, A, n) E 7l[z][[A, u]] hence PH ( -1, A, u) aur! PE (-1, A, 1l) are defined
2) PH (-1,A,1l) = QH(-u"A) andPE(-l,A,u) = QE(1l,A).

Theorcln 0.2 iInplics that Euler Poincare charactcristics Xi/(T) and XEq(T) are
cOIllpletcly dctcnninccl by thc Betti IluIllbcrs of X.

In thc analogy lncntioncel abovc H~1 (,X S1
; C) is the allaloguc of thc reduced

algebraic K-thcory of thc varicty V. Thcrc are rcasons to vicw the vector spaces

L H 1l ,-Q(XS1 jC)(r) allel L H~\-q(XSI;C)(.,.)

q,r2::0 q,f'2::0

GNotice that ßo(X) :;;: 0

G



as the analogue of the reduced l- (Ldic COhOlllOlogy of V in degree p and since these
vector spaces Inight be of infinite diIncnsion it is convenicnt to write thClll as fonnal
power senes

L .HP,-{J(XB1
; C)(r»tuq , anel L Hi\-q(X S1

; C)(r»tuq.
q,f',2:0 q,1',2:0

DeRne
LejH(<p;;k) = L L(-l)iTr(Wn)-kIHi'-Q(XSl)(1'»/"uQ =

1',q,,2:0, i,2:0

L L (-1 )in (-k1')b~{-q (1'),,\1' ur]

1',q,,2:0, i,2:0

L f E( -k) - ""( )iT (,TI )-kl . \f', q _e <Pu - L L -1 r '±In H~;q(XSl (1')A LL -

1',q,,2:0, i,2:0

L L( -l)inJ-k1')b~-q(T),,\1''l/l

7',q,,2:0, i,2:0

anel in analogy with Weil zeta function of a snlooth projective variety over finite
fielel introeluce the formal power series

(L j H(E)( -l)k)(\ ) \f' k, q

I Z H(E) ( v \ ) _" e !.pn A, U k _" -q (.) /\ Z LL
og 71" ..t'-, A,U, Z - L k Z - L XH(E) 7 nf'kk

1',2:1

It can be shown that becausc thc coholnology of X is finite dilncnsional in cach
dirncnsion, givcn any q, dirr~Hq(..tySl; C) anel rlirnHq(X S1 / /lt; C) arc finite anel
thcrefore for all but finitely lllany pairs (p, T) thc rnunbers v;.;-(l(r) and b~-q(T) are

zero. This irnplies that log ZH(E) (n, X , "\, 7L, z) is a fornlal power series in 7L, Z with
coefficients polynornials in ,,\ anel thereforc one can evaluate at ..\ = 1 anel obtain
thc fornutl power series in u, z,

log ZH (n, X , 1L, z) := log ZH (11" ..t\, 1, 'It, z),

log ZE(n, X, 1L, z) := log ZE(n , X, 1, 'Il, z).

These series are called thc" hOlnological Zcta power scrics" of thc fonnal spacc )(,
anel are cOIllpletely detennined by the Betti nlllllbcrs of X. So [ar WB kllOW very little
aballt the analyticity of these fanna.l power series as functions of two variablcs and
about their geornetric relevance, but wc expect that they have partition functions
interpretations.

Sllppose AI is a slllooth Hilbert Inanifold. As we have alTcady indicated AIsl is
a Frechet srllooth rnanifold of infinite dilncnsion. Denote by L the slJlOoth vecLor
field provided by the II tangents to the orbits" of the smooth action J.L, anel by iL :
0* (MB

l

) --+ 0*-1 (MB
1

) the contraction with respect to L. Let (O:nv (M Bl ), d~Sl)
be the differential gTaded algebra of SI-invariant differential fOrIns. We will always
cOllsider cOlnplex valucd differential fonns. The contractioll i L lcavcs thc suhalgehra

7



f'l;nv (MSI
) invariant and restricts to a derivation of elegree -} in this subalgebra.

Let us fonn the cochain conlplex

Cl' = TI f'l'."+2k(M s1 ) D r : C 7
' --+ C 1'+1

- lUV ,- - -

k2°

with D_ = (I + 1,L, IL(wr , Wr +2: ... ) = (iLWr +2, iLWr+4 ... ), anel rI(wr , Wr +2 ... ) =
(riwn dW r +2, ... ). Denote by SH·(M) the cüholl1ology of (C:", D~). Let Kr(X)
deHote the Atiyah Hirzebruch cOlnplex K -theory anel A1• (X) denotes the rednccd
Walelhausen K -theory (cf (B2]) of X in degree T.

Theorem 0.3. 1) The nssignmen,t Ai .....-.+ SH*(M) is a Z+-gradcd vectoT space val­
ued homotopy funct07' defined on the categol/j of 87nooth 'rnanifolds of the hornotopy
type of CW complexes oJ finite type nnd of s1Twoth runps.

2) There exist natural t7un.'ifonnations

and, bet7ueeT/, the Junctors S Hr and Ar when restricted to the Juli subcategoT"!} 0/
l-connected rnan1Jolds, the natural trnnsjorrnations

so that

is a short exnct sequence JOT any T.

3) Thc power .,na]J8 rPu induce endoTnorphiSTn,,, S p;~ inSH r (X) so thai eh7" zn­
tertwines the Ada7ns operations in topological K-theoT'Y with Sp;~.7

The prüof of these results are baseel on the following facts:
Given a nlinilllal llloclei of 1\1 (in the sense of rational hOlllOtOpy theory, cf [L] 01'

[DGMS]), Olle can construct explicit lninitnal 1l10clcis for M Si anel M S 1 / / lL as weH
as rnodcls for power lnaps cf [VS], [VB] anel [BFG]. USillg these lnodels oue can
show that the Hochschilel anel cyclic hOlnology of (f'l* (M), dM) are isornorphic to thc

coholnology of M S1 anel of lv/si / / J-L by isolnorphislllS which intertwine thc Adan1s
operations in Hochschilel anel cyclic hOlllOlogy with the alltürnorphisrlls indllced by
thc power lnaps 'Pk and <Pk. This fact pennits thc verification of Propositions 0.1,
and is used in the proof of Theorerll 0.3. TheorCill 0.2 requires in addition results
about partial Euler Poincarc charactcristics in Hochschild aud cyclic horllology
of COlllIllutative graeleel algebras due to Ph. Hanlün. The prüof of Theorelll 0.3
also neecls thc identifications of thc rcducccl cquivariant COhOlllOlogy of ..,ySI with
HOTrI,(;t,(X), C) cstablishcd in [B2].

In seetion 1 we introduce the necessary concepts anel outline thc lnairl steps in
the proof of Propositions 0.1 and Thcorenl 0.2 anel in section 2 we outline the prüof
of Theorclll 0.3.

7it is possible to deRne Adams operations in the rational Waldhausen algcbraic K-thcory anel
t.llen er intertwine.<; S4>~ with the dual of the Adams operations in rational Waldhausen K-theory.
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SECTION I

1: An M-space (sInooth rnanifold) consists of aspace (SIllOOth rnanifold) Y
togcther with a continuous (srnooth) action Ti : M x Y -t Y. To give an M - action
Ti is cquivalent to give an SI- action J-L : SI x Y -t Y and thc continuous (srnooth)
rnaps !.pk : Y -t Y, k 2:: 1, which satisfy

(1.1)

(1.2)

!.pI = id, !.pkr = !.pk . !.pr

Thc relationship bctween Til l" and !.pk is provided by the equality

(1.3)

The action J--l : SI x Y -t Y incluces thc fibration (srnooth bundle)

(1.4) YIIli = ES I
XSl Y ~ ES I

with fibel' Y, wherc ES I is thc ullit spherc Soo = {v E l21 2:i> 1 I Zi 1
2 = I} in thc

infinite dilnensional cornplex Hilbcrt space l2 {v = (ZI, ... ,Z:l ... )l2:i> 1 jZi 1
2 <

oo} anel Es l is thc quotient space Soo1/ /-La whcre /-La : SI x SOO -t Soo- is givcn
by llo(ei (} 1 v) = eiOv. Notice that ES I and ES I arc s11100th HilbCl,t rnanifolds anel
]J : ES1 -t ES l

1 thc canonical projcctioll l is a sll100th subnlersion. The action IL

provicles a canonical vector ficlcl L on Y, the 11 tangcnts to thc orbits:' , which at any
x E Y associates thc tangent vector to tbc orbit through :r:. Denote by iL : 0* (Y) -t

0*-1 (Y) the contraction with respcct to L. Thc following two observations are
irnportant:

Observation 1.1: Thcre exists a snlOoth I-fonn , E 01(SOO) so that:
a) , is Sl_ invariant
b) if La clenotes the canonical vector field for JLQ, then i L o' = 0
c)d, = 11, is thc pull back of Cl closed 2-fonn 1L on 5 001II.Lo reprcsenting thc Euler
dass of thc SI-principal bundlc SOO -t Soo I liLa.

Any connection in thc principal bundle 8 00 -t 8 00 I liLa providcs such, anel ü.

Observation 1.2: If Y is a Sillooth llranifold eqllipped with thc slnooth action
tL : 51 X Y -t Y" anel L denotes the canonical vector ficlel, then the srllooth fonns
0* (YI I I.L) identifies to thc snl00th fornlS on Soo x Y which are invariant with respcct
to thc diagonal action on Soo x Y and satisfy i Lo+L (w) = O. Note that La + L is
thc canonical vector field associatcd to thc diagonal action of l.Lo anel IL.

Let Wk : SI -t SI elenote thc group hOrl10IllOrphislTI incluced by Wk (eiO ) = (e ikO )

and clenote by EWk : Soo -t Soo thc s11100th rnap defincd by



Since EWk(/-Lo(eiB,v)) = /-LO(Wk(eiB ), EWk(V)), the srnooth lnap EWk induccs the
s11100th luap EWk : ES l --t ES l

.

The COlIlluutative diagrarll

W n xirl
f-

induces thc COnlI11utative diagrain

(1.5)

We put 0;1 := On aud <P:; = <p~ anel Olle cau verify

(1.6) I nn _ n 'k,~'Pn . Hnk - Hk . 'Pn h,.

We denote by rpk thc pair (r2k1 'P~)

In the rational category (of spaces localizcd at lJ 0" in the sense of Bousfield Kan, cf
[BK]), we regard rpk as the horuotopy dass (i>k)Q = ('P~)Q . ((Ok)Q) -1. Using (1.6)
one can verify that

Thc fibration (1.4) induces thc Gysin sequence

and the rnaps <Pk anel i>k inc!tlcc thc cndorl1orphislllS Wk :H*(Y; C) ---+ JI*(Y; C)
anel ~k : H* (Y/ / /-Li C) --t H* (Y/ /11,; C). It is not harcl to check that 6* intcrtwincs
\lI k with ~~-l, .1* intertwines ~k with \lIZ anel S* intertwines ~k with k~~+2.

Recall that the cohorllology of thc hornotopy quotient Y// J-L is by definition the
Sl-equivariant cohorllology of Y with respect to the action JL and it is usually
denoted by HIP (Y, I"; C). Denote by H* (Y i C) anel H~l (Y, JL; C) the redllccd coho­
IllOlogics

H* (Yi C) = GOkCT(H(p) : H* (pt; C) -t H* (Y i C))

Jf~l (Y, JL; C) = coker(Hsl (p) : H EJI (pt; C) --t H SI (Y, JL; C)).

where p : }.r -t pt is thc Inap frolll Y to thc space pt consisting of one point, and
observe that thc power rnaps 'Pk anel (CPk)Q inducc endOlTIOrphisI11S wk and ~k in
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reduced coholnology as weH a.s reducecl equivariant coholnology of Y. It is easy to
check that if the M-space Y has fixed points, then the Gysin sequcncc for redllced
cohonlologies rClnains exact.

2: Consider the category of conlIllutative differential graded algebr&'3 with differ­
ential of degree +1 over the field of characteristic zero C, abbreviated CDGA. Thc
objects in this category are pairs (A*, dA)' A * a unital augrnentable conunutative
differential graded algebra with differential dA of dCb'Tee +1, Le

and the morphisrlls J = f* : (A*, (lAJ ---t (8*, da) are degree zero linear Inaps which
are cOlnpatible with the prodllcts, prescrve the unit anel intertwine the differentials
dA and dß . (Recall that II augnlcntable" lneans that there exists IllorphisIllS E :

(A*, dÄ) ---1 (K*, 0) where K* denotes the unital gradecl algebra whose corl1ponents
K i = 0 if i =I=- 0 and KU = C. In order to lighten thc notation wc will sOllletilllcs writc
(A, dA) instead of (A*, dA)' The category CDGA is tbc algebraic analoguc of thc
category of topological spaces and continuous lllaps anel we can provide algebl'aic
analogues for all previous cOllcepts and cOllstructions.

For a COIllllllltative differential graded algebra (A*, dA)' thc graded vector space
H* (A*, d*) = K er(d*)/11n(d*-1) is a C0111111utative graded algebra whose Inultipli­
cation is induced by the l1ul1tiplication in A*. A lllorphislll f = {f*} : (A*: dA) ----+
(8*, da) inchlces a degrcc zero linear 111ap which is an algebra, hornornorphis111
H* (1) : H* (A *, dA) ----+ H* (8*, da)' In analogy with topological spaces one has
a concept of hOlllOtOpy betweell InorphislllS of CDGA (cf [L] anel [Ha]) anel it can
bc shown that two hOlnotopic rnorphisll1S induce the salne linear rnaps in cohornol­
ogy. A 1110rphislll f: so that Hk(f)'s are isonlorphislllS for all k, is called aquasi
isoluorphisln.

An S1_Collllllutative differential graded algebra consists of a cOlnnlutative dif­
ferential graded algebra (A*, dÄ) as above together with a degrcc -1 differential
iA : A * ---1 A*-1 which anticollunutes with dA' This rncans that:

(1.9)

(1.10)

An M-cOllunutative differential b'Taded algebra consists of a COllllllutative S1­
differential graded algebra
(A *, dA' iA) togethcr with thc IIlorphisrlls ePk = {ePk} : (A* ,d*) ---1 (A * , dA)' k 2:: 1
which satisfy

(1.11)

(1.12)

11



DeHote by SI-CDGA resp. M-CDGA the categories of SI resp. M-collln1utative
differential gradeel algebras with the obvious Illorphisms. Observe that if
(A*, dA' i:A) resp. (A*, rIA,iA,<Pk) is in SI- CDGA resp. M- CDGA, then for
any integer 11" (A*: dA: ni:AJ resp. (A*, dA: niA1 <Pk), is in SI- CDGA resp. M­
CDGA. The CDGA K* can be vieweel as an M-CDGA with i'K: =°anel <Pk = id,
anel then an SI-CDGA as weIl. We will sOllletilnes write (A, dA, iA) instead of

(A*, dA' iA)·
A first exarllple of M- CDGA is given by an M-srnooth Inanifold consisting

of a SlllOOth nlanifolel Y, a SlllOOth action li : SI X Y --+ Y, and SlIlooth Inaps
'Pk : Y --+ Y. The associated M-DCCA cOllsists of the differential graded algebra
(n;nv(Y)' cly), the degree -1 differential i'L given by contraction with respect to
the canonical vector fidel L, anel the lllorphisins 4Jk 's induced by thc SlIlOOth rnaps
'Pk. Observe also that while (O;7tv(Y) , rly,ij.J is the Sl-CDGA associated to thc the
SI-space (Y, li), (O:nv(},T) 1 cly,nijJ is thc SI-CDGA associated to (Y, /in ). VVe will

pay particular attention to the case Y = M~~ where M is a sl1100th luanifold.

A seconel exalllpie is provieled by thc following construction. Consieler a [ree
CDCA of the fonn (A[V], cl) where V = EBi21 Vi is a gradeel vector space with

V·o = 0, anel denote by V = EBi20Vi the gradcd vector space with Vi = Vi+l' Equip
the [ree eOlllnlutativc graded algebra A[V EB V] with the ulliquc degree -1 derivation

l.v : A[V EB V] --+ A[V EB V] dcfined by

(1.13) I,V (v) = V, anel I,V (v) = 0,

anel extenel d ta the uuique dcgree + 1 derivation 8n : A[V EB V] --+ A[V EB V] deflned
by

(1.14)

Define <Pk : (A[V EB V]' 8n ) --+ (A[V EB V], 8n ) by the fOflllUlas

(1.15)

It is easy to check that for any n, (A[VEBV], on, tu = lUV, <Pk' k 2: 1) is a M- CDCA.
Notice that if f : (A[V], d) --+ (A, clA) is a Illarphislll in CDGA and (A, dA, f'A) is
in Sl_ CDGA then f extenels lllliqllCly to the Inorphislll F n : (A[V EB V], 8n , I,tl) ---t
(A, dAl lUA) in thc category Sl_ CDGA, defilled by

(1.16)

We will Pllt

Ta any (A*, dA' 'lA') in Sl- CDGA one cau associate thc extension

(1.17,) (A[u], d = 0) ~ (A* [v.], dÄ[u]) ~ (A*, clA)
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where A[u] elenotes the free conllllutative graded algebra generated by U of degree
2, d:A[u] is definecl by

(1.18')

anel e* is defined by

(1.18) e ((L 0 '11.") = 0, r > 0

e(a01)=a.

(1.18")

If (A * l dÄ, iÄ, cPk) is in M - CDGA thcn cPk induccs thc 1110rphislll

~k : (A*[u], dÄ[u]) -t (A*[u], dÄJu]) dcfincd by

- 1
cPk (a ® ur) = k

"
cPk (a) ® ur,

Clearly e intcrtwincs cPk with cPk.

The extension (1.17) incluces the Gysin scqucncc
(1.19)

0* S·-l E*+l
-t H* (A, dA) -+ 11*-1 (A[u], rlA[U]) ----+ H*+1 (A[n], dA[U]) ---+ }J*+1 (A, dA) -t,

where 6* is induceel by CL -+ iA(a), S* by thc Inultiplication by U anel E* bye.
Thc rllorphisrns cPk and ~k inelllce the encIolllorphislllS iPk : H* (A, dA) -t H* (A, dA)
rcsp. cPk : H* (A[u], rlA[u]) -t H* (A[u], rlA[n]). Observe that 6* intcrtwincs P'k with
- .-1 . - * - * - .+2

Pk ,J* intertwines iPk with Pr: anel 8* intcrtwines Pk with kiPk .

If f : (A, dA, iA) -+ (8, da, i a ) is a lllorphislll in 8 1 _ CDGA's thcn it indnces
thc conunutative diagranl (1.20) whosc hori~ontal lincs are thc extensions (1.17)
for (A, dA, iA) anel (8, da, 'ia ).

(1.20)
(A [u], d = 0)

-!- Id
(A[u], d = 0)

-+ (A[u], dA[U]) -+
-!- f[u]

-t (B[u], da[u]) -+

(A, dA)
-!-1

(8, da)

H*-I(A[u],dA[U]) S~I H*+I(A[u],dA [u]) J~l IJ*+I(A ,dA )

-1- H~-l (f[u]) -1- H*+l (/[u]) 4- H*+l (I)
S*-I J*+l
-+ H*+1 (8[u], ria[u]) -+ JJ*+1 (8, da)

Thc cliagrarn (1.20) induces the C0I11Illutativc diagraIll (1.21) whose horizontallincs
are the Gysin sequcllteS associateel to thc hori~olltal lincs of (1. 20).
(1.21)

0*
-+ H* (A, dA) ~

t H* (J)
0*

-+ H* (B,dB) ~ H*-l (8[u], da[u])

Let (A, dA, i A, cPA,JJ and (B, dß , 'la, cPa,k) be two M- CDGA's. Thc rnorphislll
f : (A,dAliA) -+ (B,da,i a) is called "M- hornotopic" if f l111d j[u] illtül'twillü
cPA,k with 4>B,k anel cPA,k[U] with 4>s,du] up to hornotopy. This iIllplies that thc
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vertic~l arrows in the diagraill (1.21) intertwine tPAlk 's and <PAlk 's with <PB,k 's anel

with <PB,k 'so

Suppose J-L : SI x Y ---+ }', is a the srnooth Sl- Il1anifold and (Oinv (1'), dy,ijJ,
is the 8 1 - COGA of invariant differential fonns. Suppose f : (A, dA, "A) ---+
(Oinv(Y), d)"-'l ii) is a rnorphisIll in 8 1- CDGA's. Then f incltlces a 111orphisI11
f(u) : (A*[u], riA[u]) ---+ (O*(YI11")' dy//,J constructed in the following way: de­
note by 7f1 : Sec X Y ---+ 8 00 anel 7f2 : SOO X Y ---+ Ythe canonical projections and
elefine /[u] by the fonnula

!(u)(L ar 01/') = L I(ar ) 1\ (7f~(iL))r

where ü is the 2-fonn in Observation 1.1 anel

I(a) = f(a) + (_I)dcga-17f;(f(iA(a)) 1\ 7f;('))'

It is not hard to see that f(uJ is a lIlorphisIll of CDGA's and that its ilnage consists
only of Slllooth fonns which, by Observation 1.2, identify to pull backs of slnooth
fonns on YIIIL

Proposition 1.3. If f : (A, dA) -f (Oinv (Y), dy) is a quasi i.,;ornorphi.f.Nn then so
is f[u].

To check Proposi tion 1.3 we first verify the statelnent for f = 1(1. In this case the
the proof is thc SalTIe a.s the proof that the equivariant cohornology defincd llsing
invariant fonns anel the contraction i L is the same as thc cleRluuIl COhOilIOlogy of
the SIlloOth lnanifolel }'I1/", cf [AB]. The general case follows fron1 the COlllIllutative
diagralll (1.21) and the case f = fd.

It is convenicnt to write HS1 (A, dA, "A) := H* (A[u], d[n]) and to considel' the

reeluced versions of these cohornologies, H* (A: dA) anel If~l (A, riA, I,A),

H* (A, dA) = cokc7'(H('i) : H* (K, 0,0) -f H* (A, dA))

H~l (A, dA: "A) = coke7'(Hs l (i) : HSI (JC, 0,0) -t H S1 (A, dA, I,)),

where'i : (JC, 0,0) -t (A, dA, L) is thc rnorphisIll in SI-CDGA's defineel by the ullit of
- *A. The power Inaps CPk anel epk inchlce enelOlnorphisillS tPk * anel Pk in COhOIlIOlogy

anel equivariant cohorIlology ordinary and recIllceel. Notice that if (A, dA, I,A) is
augIllentable (i.e there exists the lllorphislll E : (A, dA, I,) -t (JC, 0,0) so that Ei = id,
then thc Gysin sequellce in reduceel cohornologics rCll1ains exact.

3. Recall that given a connected SlIloOth Inanifold M, Cl, lllodel for lvI is Cl pair
((A[V], dv ), 0), with (A[V], rlv ) Cl free cOllnectccl8 C0l11nlutative differential graded
algebra anel () : (A[V], dv ) -7 (0* (M), dM ) aquasi isornorphisIll. The cOllunutative
differential gradcd algebra (A[V], dv ) is called nünirllal if dv restl'iets to ~ero Oll VI
anel dv is decolnposable, Le rl v (V) E (A+ [V])2 i here A+ [V] denotes the ideal of thc
elmnents of positive degree.

The following results, due to D. Sllllivall (cf [L),[DGMS]), constitute the so calleel
Sullivan 's nünilnallnodel thcory.

8i.e Va = 0
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Theorem 1.4. (1) /f ! : (1\ [V], clV) ~ (1\ [W], dw) is a quasi isornorphiSTn bcboeen
bilO ruini17uLl CDCA '8 then f is an iS017/,oryJhism.

(2) There existB minirnal 1nodels for any l-connected Bmooth rnnui!old M which
has the hornotopy type 0/ a CW-cornple:r; of finite type.

(3) Let h : MI -t 1v12 be n smooth rnap between t'llJO s1nooth mani/olds as in (2).
110(h) : (0* (NJ2 ) , dM2 ) -t (0* (MI)' dMI ) denotes the rT1.orphiBrn bctween the C01Te­
sponding deRha1n algebras induced by hand (Ji : (A[Vi], dvJ --+ (O*(Md: dMJ, i =
1,2 are rninimal 1nodels, then there exists f : (A[V2 ], rlV2 ) --+ (1\[VI ], dvl ) which
rnakc$ the Jollowing diagrarrt hornotopy CO'ln1nutative

(1.22)

(A[V2 ], dV2 )

/1
(A[V1 ], dvJ

(J'J ) (0* (M2 ), dM2 )

O(h)l

81 ) (O*(Mt}, divt)

(4) Civen Bi, the assigrnnent h ~ / provülcs a 'Welt deJincd 'lnap Jrorn !'he set oJ
homotopy classes 0/ S'fnooth lnaps h : A11 --+ M 2 to the set 0/ hom,otopy classcs 01
rT1.orphi$m,s f : (A[V2 ], dV2 ) --+ (1\[Vtl, dvJ.

Thc Inain tool uscd in thc proof of Proposition 0.1 anel of the TheorcIns 0.2 anel
0.3 is provicled by the following thcorcIn:

Theorem 1.5. (1)Suppos e e : (A [V], clv) --+ (0* (lvI), dNt ) is (L mini'fnal rnodel Jor
the l-connected lnanifold M. Then there exi.'lts the ul,017J!l.1:s1n

in SI-CDGA so that On : (A[V EB V], Jn) -+ (O;nv(NJf~), rl~SI) is a quasi isorf/.or­
phisrn.

(2) With rc.5pcct to th e M -structure on (A [V EB V], J1 I, v) providcd by I.h e power

ruaps defined in (1.15) and the M -stT'lLcture on 0inv (M.f:r,J indnccrl by the Tnaps
«Jk, () is an M -lunnotopic rno'rphisrn.

About the proof of (1): For n = 1 this stateinellt was first proven in [VS] anel
[VB], cf Theorern 3.2 in [BFG]. For Tl, arbitrary this is Proposition 3.3 in[BFG].

Observe that Thcorern 1.5 (1) irnplies that

(1.23)

and
(1.24)

en : (A[VffiVffi[u]],Jn ) --+ (O:nv(MSl)[u],d~sdu]n) -+ (n*(MSl//ILn),d~sl//J~n)

are nünirnal lnodels. Here [11,] elenotes the Olle dirnensional gradcd vector spacc
concentratcd in thc degrce 2, generated by thc sYInbol u, thc index "11," for rlMSl ['n]n
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incl icatcs t hat tl 1is cl iffcrential is constructed a..'3 in (1.1 7), (1.18): frolll dM Si anel
ntL·

About the proof of (2): In view of ThcofClu 1.4 (4) this statcluent is equivalent
to the fact that the nlorphislllS

(1.25)

anel

(1.26)

4>k : (A(V ES V), 0) -7 (A(V ES V), 0)

4>k[U) : (A(V ES V)[uJ, o(u]) -7 (A(V ES V)(u), o(u])

represcnt rpk and (fjJk)Q, with respect to the luiniInal rnodels () = Bland O[u] = B1[1l].

To establish (1.26) it suffices to show that thc lnap rp~ : lv1
s1

/ / tlk ---+ Af
sl

/ / Il

incluced by rpk : M s1 ---+ lv/
51 is represented with respect to the lninirnal lnodels

Bn[n] and O[u] by

(1.27)

Indeed, it is not harel to see that thc lnap On is representcd with rcspect to the
sallie 11linilllal lllodels by 0;1 : (A[V ES \i][n], o[u]) ---+ (A[V ES V"][nJ, on[uD, dcfined by

(1.8)

Thc statclllcnt follows frolll thc equality (<P/JQ = (rp~)Q' ((Ok)Q) -1. The verificatioll
of (1.25) aud (1.27) is done in Proposition 3.4 in [BFG).
Few nlisprints iu [BFG] have relnained uncorrected in the ErratUYll. On page 279,
the vertical arrows in thc first diagl'i-l.lll and the horizontal arrow rpk in thc second
diagraIn should havc the directions changcd.

The above theorerll irnplies that the Gysin sequence (1.7), for },T = M~,ltl iden­
tifies to thc Gysin sequence (1.19) for (A[V EB V]' 0, t-) defincd in (1~1;))-(1.15) anel
the identification is canlpatible with thc enclolllorphislllS Pk 's anel tPk 'So

4. Recall that for the catcgory of associative unital differential graded algebras
aver a field of characteristic z;ero Olle has two Z+-graded vector spaces valued func­
tors, thc Hochschild and cyclic hOlnology. For any such algebra A, H H.. (A), thc
Hochschild hOlllOlogy, anel HG.. (A), the cyclic hOlllOlogy, are related by a lang exact
sequence (Connes exact sequellce).

(1.29)

Ir f : A -t B is a rllorphislll of nnital algebras olle has the COllllllutative diagranl

(1.30)

JA
-t HH.. (A) 4

-l- HH(f).
JB

-7 HH.. (B) ....;

HG.. (A) ~
-l- HC(J).

HG.. (B) ~

16

1J~ 2
HG.. _2 (A) ~

-l- HC(J).-2
IJB

HC.. _2 (B) ~2

fIH.. - 1 (A)
-l- lJH(f).-l

H H .. - 1 (8)



One ean deRne a reclueed version üf the Hochschild resp. cyclic hürllologies

HH.(A) := GOkeT(HH.(i): HH.(C) ---+ HH.(A)

HC.(A) := COkCT(HC.(i) : HC.(C) --+ HC.(A)

where i : C --+ A denotcs thc 1110rphisul induced by the unit of A. Thc sequence
(1.29) in(!tlees a sirnilar sequenee for the redueed eoho1l10logies which, whell A is
augnlentable: relnains exact. If in addition A is COIl1Illutative both Hochsehild anel
eydie horllologies (rceluced hOIl1ologies) carry natural Adarns opera.tions
Adk : H H.(A)(HH.(A)) -f HH.(A)(HIf.(A)) aud
Ädk : HC.(A)(HC.(A)) -f HC.(A)(HC.(A)). These operations satisfy Ad1 ­

id, Adkr = Adk . Ad f " and havc thc follüwing intertwining properties

(1.32)
-- ..--. -- ......

J k . Adk = Adk . •1J~, Bk' A(h = kAdk _ 2 • Sk, bk · Adk = Adk . bk

It was observed ([B2],[BFG]) that Hoehschild anel eyc1ic h0l1101ogy as weIl as the
exact sequence (1.29) ean be cxtended9 as Z-graded veetor spaces valued fllnetors to
unital differential graded algebra..'3 with differential of degree +1. Sinülarly Adallls
operatiolls in Hochschild aud cyclic hOlllOlogy can be extcnded to conllnutative
differential graded algebras. Here is a SUllllnary of these extensions; für details we
reffel' to [BFG].

To a CDGA, (A, dA), we associate thc bicOlnplex

with D~,_q : T(A)PI-q -f T(A)p,_(j-l and D~_q : T(A)p,_q -f T(A)p-l,-(j defined
a..'3 follows:

(1.33) T(A)p,_q = E9 Aio ® A i1 0 ... A ip '

io+ .. ·+ip=q

p

(1.34') DI (n' 0··· (L' ) = da' 0··· a· +'"""(_l)io+"'+il - t (L' 0··· da' 0··· (L'l',-q . 1.0 1. p 1.0 1. p .L..J 1.0 1.1 1. p '

1=1

1)-1

nE (a·..o,· .. a· ) = '"""(-l)la· ..0, ••• a· a· ..0, ... (L' +p,-q 1.0 'CI . 1. p L 1.0 'CI 1.1 1.1+1 'CI . 1. p

1=0

(1.34" )

The two differentials satisfy:

(1.35)

Da unital algebra CCl.ll he regarded a8 DGA cOllcentratccl in thc degrcc 0
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One defines the action of the sYllunetric group Sm on A0m, the rn-rold tensor
product (over C) of the graded algebra. A with itsclf, by thc fonnula

with €(aj 'ilJ ... ,im) given as in [BFG] pp 274. Let r : T(A)p,_q -4 T(A)p,_q bc
given by

(1.36) r(a' 0 "'(L' ) = (_1)7TL p +1(W +1 (L' 0·· ·a· ) ='0 . 1 m 111. m, 10 1 m

= (_l)m+im{io+···+i m - t )a' 0 a· 0··· (L'
1 m 10 l m -t'

with Wm +l the cyclic penllutation of {O, 1,2,' .. l rn}. The total cOlllplex
(T.(A), D.) is e1efineel by

(1.37) T,(A) = EBp_(/=,T(A)p,-ql D f • = L: D~,_q + D{f,_q,
p-q=f'

and its hornology is called the HochschileI hOlllOlogy of (A, dA)' Put GO'invT. (A) =
T.(A)/Int(l- r.). Bince D*(Irn(l- r.) C Irn(l- r.), (Goin:vT*(A),D.) is again
a chain cOlnplex anel the canonical projection 1r : (T.(A), D) -4 (GoinvT.(A), D)
is a InorphisIll of cochain cOIl1plexes. The horllology of (GoinvT* (A), D) is called
thc cyclic hOlllOloßy of (A, dA) allel 7r induces the Illorphisll1 J. : H JI* (A, dA) -7

HG. (A, dA). Bince our algcbras are unital, one defines the redllccd Hochschild anel
cyclic hOI110logy HH.(A,rlA) and HG.(A,dA ) as the honl010gies of the rcducecl
conlplexes (T.(A)/T.(C),D) anel (Go'in.1JT*(A)/Coin1JT.(C),D). It is clear [1'0111
definitions that the (reclucccl) Hochschild anel cyclic hOlllo1ogies are functors fron1
thc catcgory CDGA's to thc category of Z - graded vector spaces. It is ea..,;;y to
verify (cf [B], [BV1]) that:

Proposition 1.8. 11 1 : (A, dA) -4 (8, da) is a qua.5i isornorph'i.'l'fn then H JI. (1),
HG. (1) J H H. (/), arul HG. (1) are iso'fnorphi.5rns.

To define AeicUllS operations one construct first thc elell1ents 7/J~ = I: a~a, a E

Sfll a~ E Z, in Z(Sn), thc group ring of the syuunetric gronp Sn, as itl (LJ p.13 (cf
also [BFG]).Then one deRnes thc linear 111apS Adk : (T.(A), D) ---1 (T.(A), D) and

;leik: (CoinvT*(A),D) ---1 (GoinvT*(A),D) by thc fornnda:

Adl.(ao 0'''a')= " okp(a(Lo t'V'I···a·)'" 11 1" L.,; (j l tl 'CI 1"

aESII,k

Adk induce in hOlllOlogy the cndolllorphislllS (Adanls operations)

which are natural transfoflnations of fllnctors.
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It is shown in [BV] 10 that (T", (A), D) resp. (CoinvT", (A), D) decoJnposes canOll­
ically as a SU1TI of sllbc01TIplexes

(T",(A) 1 D) = EB(T", (A)(i), D.(i))
i~O

resp.

(GoinvT", (A), D) = EB(GoinvT", (A)(i), D",('i)),
i~O

and thereforc H H '" (A, dA) allel HG", (A, (lA) decolnpose canonically as

(1.38)

anel

(1.39)

Moreover

HH",(A,dA) = LHH.(A,dA)(i)
i~O

HC",(A,dA) = LHC",(A,dAHi).
i2:0

(1.40) H H '" (A, dA)(O) = HG "'-I (A, dA) (0) = H'" (A, dA)

H Hn(A ,dA)(r) = HGn- 1(A, dA)(r) = °if r > n,

with HH",(A,dA)(i), resp. HC",(A, dA) ('i + 1) eigcllspaces ofeigcnvalllcs k i for the
linear Inaps Adk . These decolllpositions are referreel to a.."3 the WEIGHT decornpo­
sitions.

Ir in aeldition dA = 0, we have the additional decolnpositions
(1.41)

(T", (A), D",) = L(T(A)p,_"" D~_",), (G'O'lnvT*(A), D",) = L(T(A)JJ,-"" D~_",)
p~o P2:0

cornpatible with Achuns operations anel therefore thc additional elecornpositions:

(1.42')
-n=p-r

(1.42" )
-n=p-f'

Thc decolllpositiollS (1.42 ') and (1.42") will be calleel HODGE decolnpositiollS.

Let (A, dA = 0) be a CDGA with di:rnAr = ßr < 00. Introeluce

P H (z) := L ßf'Z7', II(z, A) = ~ (L( -l)lJdirn(HHp,_q(A, Ü)(i)) Ai z(j
r>O l,q p

CIl(z,A) =~ (L(-l)PdÜn(HGp,_q(A,O)(i)) Aizq.
l,q P

ln [H] Ph.Hanloll has provcll the following result:

lOfor cOlIlmutative differential graded algebra...... with differential of degrce -1, hut the sa.me
arguments hold for CDGA's as above
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Theorem 1.9. [H). Ij(A,dA = 0) is a CDGA with Ao = C and di1nAr = ßr < oo~

then
Il(z, A) = P(z) II (1 + p(zl)) -l/l L.dll ~(d)zl/d ,

lEN

eIl (z, A) = P (z) / (1 - A) {II (1 + P (zl ) ) -1 Il Ld 11 JL ( d) z // d - A}.
lEN

The following result is a graded version of Hochschilcl- Konstant-R.osenberg the­
orenl anel was proven in [BV] 1'01' COITInlutative differential gradcd algebras with
differential of degree -1, but the sanle arguillents hold in thc case tbc differential
is of degrce +1.

Theorem 1.10. [BFG]. If (A[\lL dv ) is CL connected fTee CDGA, then thcre e~J:ists

the nat'/tTal i.9 orrt0'f1Jhi..,rns h.. : H H _.. (1\ [\I], dv) -+ H* (1\ [V EB V]' 8) (lud
-- -*-1-

c.. : HG _* (1\ [li], dv ) -+ H SI (A[V EB V], 8) which intertwine lhe Teduced Adrl'lns
operations mith the red1lced power TTULpS and irlentify the red1lced Connes exact, se­
quence 01 (A[V], rlv ) wüh rcduccd Gysin sequcnce 01 (1\[V EB V]' 6v: I,V).

The following Corollary is usefnl in thc calclllatioll of tbe weight dccolnpositions.

Corollary 1.11. Usi'n9 the isOm017Jhisrns pTovided by Thearern 1.10 the weight
decompositian described above identifies to the decornpositions (1.45) fLnd (1.46').

(1.45)

(1.46)

(A[V EB V], J) = 2::(1\[V] ~ ~i, J)
i2:0

(A[V EB V][n], J) = L(A[V][u] 0 ~i, J[u))
i2: 0

Proof of Proposition 0.1: It suffices to provc Proposition 0.1 for rcduced coho­
Inology resp. redllced eqllivariant cohonlology of MS

1

• These coholnologies and the
action of the power luaps on these coholnologies ca.n bc calculated with the help
of thc explicit lniniuwJ 1l10clels for X S1 anel X S1

/ /IL anel of thc representatioll of
cPk and (~k)Q with respect to these luinirnal Inodcls givcn in Thcorelll 1.5 . Ollce
this noticed the verification of 1),2),3) can be done easily with the help of Corollar'y
1.11.

Theoreln 1.10 cOlTIbinecl with Proposition 1.8 providc a new proof of a result of
.J.D ..Jones's (cf [.1)), concerning the iSOITIOrphislll bctweell the cohoITIologies
-* SI -* SiH (lvI ;C) resp. H SI (M j C) and the reduced Hochschild resp. cyclic COhOIllOlo-
gies of tbc dc Rhanl algebra (0(111), rl). This ncw proof pennits also to verify that
thc isoIllorphislIlS h.. alld c* intcrtwillc thc AdaIIls operations with thc power lllt:lpS.

A fonnality strllctllre on M,

(H* (Mj C), d = 0) ~ (A, dA) =4 (O(M), rl)
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identifies, using Proposition 2.8, the Hochschild resp. cyclic h01l101ogy of
(D(M)*, (1M) with thc Hochschild resp. cycli{~ homology of (H* (M; C), d* = 0).
This idcutification transports thc Hodge decolllposition (1.42), on H* (MS

l
; C) (i)

anel Oll H;\ (MSl ;C)('i). Thcorcln 0.2 follows then fronl, Thcormll 1.11.

Using the nloclel (A[V EB V]' J) of thc sluooth action I), : SI x M sl
---7 Ms

1
(cf

TheorC111 1.5) OllC cau dcrive (cf [VB] Corollary 4) thc following result first prOVCll
by Goodwillic [G] by a different lllethod:

Theorem 1.12. 11 M is a 87nooth l-connected (Hilbert) manifold of thc ho'motopy
type 01 a CW complex 01 finite type, then

(For the nonsilnply conncctcd lnanifolds the abovc lilllit elcpcnds only Oll the
fundalllcntal group cf [B3],)

SECTION 2

In Introductioll, for a SllloOth (Hilbm't) 111anifold M, wc havc introducecl thc func­

tor SH*(M) using (Dinv(Mfr:J, d* = d~SI' LI.)' WC havc introducccl the cochain

cOlllplex (C* D* : C* ---7 C*+I) with Cf' := n D~'+2k(A1S1) alld- ,- - - - k2:0 mv

allel thcn wc defillcd Sll*(M) as thc COhOlllOlogy of (C::,-, D~).

The power rnaps 1Jk clefinc thc enclolnorphislllS Pk : (C~ 1 D~) ---7 (C':', D::'-) by
the fonnllla

and these cnclolnorphisllies inclllcc Sc.P"k : SH*(M) ---7 SH*(M). SH*(M) is a fUllC­

tor [roln thc category of Sl1100th Hilbert lllanifolds and srnooth l1ll-tpS to thc category
of Z+-graded vector Hpaces and P'k are natural transforrnatiollS,

In order to provc Theorern 0.3 we have to introduce a few additional ceunplexes:
o

(PC*, D*), (PC~,D~) anel (C:t, D.+), with thc last two sllbcornplexes of thc first.
They are definecl as folIows:

(2.3)

(2.3')

Cf' '= TI O~-2k(MSl)+ ' tnv ,

k2:0

Pck=even '= TI D~i (M S1 ) PCk=odd '= TI O~i+l (Ms1 ), znv' . tnv

i2:0 i>O
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(2.3") pck=even '= ~ ,O~i (AlS') PCk=odd.=~ ,O?i+l(MSl). L....t 1.nv' . L....t UlV

i2::0 i;:::O

(2.4')

(2.5)

(,L(Wl, W3,' .. ) = (/,Wl, 1-W3,' . '), I, = iD.

Definc also cfJk : (C+, D:+J ---7 (C+, D4-) by thc fOflllula

anel Pk : (PC*, D*) ---7 (PC*, D*), with tPk : Pcn ---7 Pcn by thc fonnllla

(2.7) <Pk(TI W2i+€) = TI /;~i-nq;k(W2i+€)
i2::0 i2::0

where E = 0 if n = even anel E = I if 11. = adel.
Obscrve that the COhOlllOlogy of (C+, D+) is exactly thc eqllivariant cohorllology

1 0

H Sl (MS ;C) and the cohornology of (PC:", n:..) is

Denote by JPHsl (MS') the COhOlllOlogy of (PC* 1 D*). In order to unclcrstanel thc
relationship between all these COholllologies observe first that therc exists thc C0111­

Inutative diagnull of cochain cOluplexes where thc hori'l.ontal !ines are shart exact
sequences and the vertical arrows arc inclucecl by inclusians.

(2.8)
0---7

0---7

(C+ 1 D4-)
-1- 1'11,*

(PC*, D*)

.,.
---7 (,0* (MSl

), rlMSI)
-1- 171,*

(C:", D:")

~o

~o

This diagraul ill(hlCeS thc conllllutative cliagralll (2.9), whose hOl'i'l.ontal sequenccs
are lang exact sequences
(2.9)

---7 H;-;-2(11//sl)
-1- Id*

---7 H;-;-2 (lv/S ')

S·-2
---7 HSI (MSl

)

-1-

~ JP>H* (M S ')

~ H;-;-l (Msl )

-1- Id*

~ H;-;-1(A1 Sl
)

Praof ofTheorenl 0.3: It is shawn in[.JP}' see also [BI] sectian 5, that flH;, (lv/s ')
is isoillorphic to 0(;::0 H 2i (M; C) if l' is even and ta Oi20 H 2i+1 (M; C) if r is odd,
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henee it is isolllorphic to }Kr (M) ® C where ocr (M) denotcs Atiyah-HirzebrllCh

K-theory. Moreover by this idcntification thc operations rJlk : TJ!>I!sl (NIS
1

) ---t

J?Hs' (MB
t

) incIucccI by the rl1ap of cornplexes rJl k are intertwined with thc Adall1S'S
operations in K-theory. Thc natllrality of thc diagrarll (2.9) anel thc hOlnotopy in-

variance of ocr (lvI) ® C anel of HS1 (M Bt
) iInply the fact that thc functor SH* (M)

is a horl1otopy functor. It is iUlplicit in [B2] (sec also [BI] sections 2 anel 4) that

if M is l-connectecI then the recIucecI equivariant COhOl1l0logy H~l (NI S1
) identifies

to H ont(iL-l (M), C). Proposition 1.12 iruplies that for M l-connccted: s* factors

throllgh J?HSI (pt st ). The a long exact sequence providccl by sccond Ene in the
diagralll 2.9, cOlnbined with these observations lead to the proof of Theol'Cll1 0.3.
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