. CONSTANT MEAN CURVATURE TORI
IN TERMS OF ELLIPTIC FUNCTIONS

by
U. Abresch
Max-Planck~Institut Sonderforschungsbereich 40
fiir Mathematik Theoretische Mathematik
Gottfried-Claren~Str. 26 BeringstraBe 4
D- 5300 Bonn 3 D~ 5300 Bonn 1

MPI/SFR 85~ 50



CONSTANT MEAN CURVATURE TORI

IN TERMS OF ELLIPTIC FUNCTIONS

Tori with constant mean curvature have been discovered
first by H.C. Wente in 1984. The coanstruction is based on
special solutions of the sinh~Gordon equation., Wente could
only give an abstract existence proof for these solutions so

that his deseription of the H~tori is not very explicit.

Based on a numerical approximation of such a solution,
we could produce plots of one H-torus. In these computer
‘generated pictures the curvature lines for the smaller prin-
cipal curvature A1 looked almost planar. We then decided
to restrict ourselves to H-tori with one family of planar
curvature lines., This condition translates into a second
partial differential equation which induces a separation of
variables in the sinh-Gordon equation. Therefore the over-
determined system can be solved explicitly in terms of elliptic
functions. We obtain a classification of all H-tori in E°

which have one family of planar curvature lines.

THEQREM:

There existe no H~torus sueh that all Az—curvature lines
are planar. The H-tori with planar A1~curvature lines are
naturally parametrized by those angles 8€ (mw,2w) whickh

are rgtional multiples of 21 ,



The gymmetry group of such an H-torue containg a central
reflection 94 which maps any planar curvature line onto
itself. Each A1*curvature line looks like a figure eight
perpendicular to the fixed point plane of 0, .

When the family parameter changes, they oscillate around a
symmetrical figure which 18 a closed elastica; their two,
vertices move on Ay -curvature lines ¢, and C_ in the

+

fixed point pZané of 0y . The curves ¢, and c_ cotincide

+
precisely when the denominator n 1in g% = % , (men) =1,

18 odd. (ef. Fig.1).
8 <8 the angle between the normals at two congecutive vertices
of ¢, the planar set c Uc_ 1is invariant under the

dihedral group D and the symmetry group of the immersed

n Ed

H-torus 18 D, x {id,co} .

Fig.1la Fig.1b
Fig.la: the set c,Uc_ in case 6 = 5+ 27 : 3 symmetry axes!

+ 21 : 4 symmetry axes!

ESTREMIE

Fig.1b: the set C,Uc_ in case @ =



We emphasize that our H-tori are known explicitly up
to solving systems of ordinary differential eqguations, the
Frenet equations for the planar curvature lines. The proof
is given in section 1-4 of this paper; in section 1 the
classification is reduced ‘to a problem on the sinh~Gordon
equation using standard arguments from the theory of sqrfaces.
The actual analytical work is then carried out in section 2
and 3 which can be read independently; we calculate two
two—-parameter familieé of explicit solutions of the sinh-
Gordon equation which might be of interest féi other
applications as well. In section 4 we finally put things
together; we evaluate the closedness conditions and determine
the range of the parameters. We prove the theorem and provide

pictures of the H-torus with 8 = % * 27 . (cf, Pig. 5).

In section 5 we digress on a problem for positive
solutions of the sinh-Gordon equation on a rectangle with
zexo boundary values. For each rectangle which is not a priori
too large we have written down in section 2 one solution with
these properties. (cf. Proposition 3.4) The explicit solutions
are unstable. It is still an open guestion whether the above
Dirichlet problem for the sinh-Gorden eqﬁation has unique
solutions;: then we would have found all sclutions. We shall
not answer this question here. However, we shall show that
the hypothetical bifurcations are of the simplest possible

type:



THEOREM:

When the ginh-Gordon equation
Aw + sinhw *coshw = 0
18 lineariaed around a positive solution on a rectangle

Rab , then the linearized operator

I -1
Lm : I-Ig (R& > H (Rab)
Lw(p 1= ~Ap-coshiw.g

hae an at most one~dimensional kernel.



1.) CLASSICAL DIFFERENTIAIL, GEOMETRY:

In this section we shall explain how to immerse tori

.
r4

T ='R2/A with constant mean curvature into three~dimensional

euclidean space ES . The task of finding H-tori will be
reduced to an analytical problem on the sinh~-Gordon equa;ion.
This translation is done by the standard Frenet theory of
surfaces, and, in fact, it is quite well-known. Hence we
shall be brief and omit all computations.

To begin with, we recall:

1.1. THEOREM (Hopf):

A compact immersed surface M? S E3 with constant mean curvature
H is either totally umbilical, hence a standard sphere, or it
has only tsolated umbilics, each with strietly negative, possibly

half-integral index.

The sum of these indices is just the Euler characteristic

e(MZ) . Therefore an H-torus cannot have any umbilic at all.

We normalize size and orientation, requiring that
H= 1/2 . Moreover, we shall index the principal curvatures
such that A1v<x2 . The role of A1 and Az is significantly
different; it is only A1 which can - and will - change sign
(cf. [HH2]). Finally we introduce a function w®w by

2w -



1.2. PROPOSITION:

On any H- gurface MEC%-> EB (normalized to H=1/2)
a small neighborhood around any point p which is not
an umbilic can be described by a map F : Uc:R2‘¥~> o

such that:

i) F{0) = p
ii) the curves s > Fis,t} and t }b—> Fs,t) are
the A1~ and Az—curvature lines, respectively; 7.e.

the Weingarten map in these coordinates diagonalizes:

(1.1 ae [ M %) [eYsinhe 0
0 A, 0 e “cosh w

2

iii) (s,t) €R" are orientation preserving conformal

coordinates; more precisely:

F'yh and |F'| = |F] =e® = (A -1/2

L]

2™ M)

Here ' and ~ denote the derivatives w.r.t. the
2

standard coordinates s and t on UcR™ ,

respectively.

In these coordinates the GauB equation becomes:
(1.2) Aw + sinhw +coshw =0 ,

where A 1g the coordinate Laplacian, t.e¢.:

Aw = " + & .



REMARK: The transition functions between any two "adapted"
coordinate systems as introduced in the proposition are Jjust
translations in R2 or 180°~rotations. Notice that in iii)

we have also normalized the scale of the coordinate domain R2 .

Qutline of PROQF: It is a classical application of the
Frobenius theorem to obtain coordinates s and t such that
i} and ii) hold and that F'(s,0) = ew(s,O) and

F(O,t) = em(O't) . Clearly, F' and ¥ are perpendicular

on all of U . A straightforward calculation shows that the

integrability condition for having |F'| = |F| = &

open neighborhood of OEZR2 are just the Codazzi equations

in an

and the condition H=1/2

The same computations simultaneously prove the converse.

1.3. PROPOSITION:

Any solution w to equation 1.2. defined on a connected
open netighborhood Uc:R2 of O wuniquely determines an
H=1/2 <immersion F : U-aE3 bykmeans of the Frenet data

1.1, oncee the following inital data are specified:

i) the point p = F(0)

and ii) the oriented, orthonormal frame

e Werr(0), e ¥ F(0) .



Since this proposition will be basic for the
construction of the H-tori, we shall give the Frenet
equations which determine F in terms of w explicitly

in the (s,t)-coordinates:

F*" = w'F' -~ ofF + e®sinhw -+ N
F' = F' + @'F

(1.3) F = ~o'F' + oF + e“coshw -+ N
N' = -e “sinhw - F'
N = -e “coshw- F

Here N denotes the unit normal field associated with the
Weingarten map A . Later on we shall also use the curvature
Ki and the torsion Ti of the Xi—curvature lines viewed

as space curves in E3(i=1,2):

K? = o720 -(éz-fsinhzw) ; K?eod = -e Y. ,

Kg = &% . (u'? + cosh®uw) ; nggd = e %y ,
{1.4)

K3-11 = e—3w +(sinhw *» @'-coshw * aw') ’

Kg'Tz = e 3% .(coshw-+ o' -sinhw * ow') .

Theorem 1.4 turns the local description into a global result.



1.4. THEOREM:

Propogition 1.2 and 1.3 determine natural injections:

3

{H=1/2~tort Tzﬂ%e-E with base point pﬂ}/{motionﬁ in 53}

i
NI :RZo R | w solves 1.2 and is invariant w.r.t.

some lattice Az:Rg 1

i E
—2 s {H= 1/2 ~immersions F: R’ 9—> 33] F(0) =pgse m*l"’{ﬁ}do.i '

and e+ F(0) =D, 1},

where b1'b2'b3 stand for the canonical basis of E3 .
Moreover, whenever w 1Llies in the image of ij , then the
group A := {reR? Jwld(x)) = o(d+x) = wix), vz € R%} of
transglational symmetries contains all decktransformations
of the H-torusg. Conversely, the map iz determines a

homomorphism X, : A —> {motions in B>}, and

i

the immersion F i, (w) 18 equivariant under ﬁw w.r.t.

Xw , LT.€.:

X,(\) o F = Foa

;, VAEAR .
w
For generic w€l the group of translational symmetries is
just a lattice in Rz . However this group can be non~discrete

in special cases:

i) ﬁm = Rz : then w must be a constant and hence wvanish

identically. The corresponding H-surface is a cylinder

with radiug 1.
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ii) R - kcc:Aw # R2 for some RO # 0 :
Here w is determined by an ordinary differential
equation along the axis Aé::RZ . When AQ = (1,0)
or AO = (0,1) , then one gets surfaces of revolution
with constant mean curvature. These are classically
known and called Delaunay surfaces. (cf.[DEL]). For each
choice of lé there exists a one-parameter family of
such surféces; for one of them the meridean curves have

no self-intersections, whereas for the other family

they do have.

Clearly 12 is a kind of left-inverse of i1 . This helps
in characterizing the subset #0* := {we® fF==iz(w) closes up

to a torus }.

1.5. COROLLARY:

*

B = dim(d,) = {wem | X, has compact image o

PROOF: Observe that by definition Am is cocompact for all

weEM !

Clearly the right-hand side in this corollary is a condition
on [Xw} , the equivalence class of X under conjugation
in the group of motions. This just restates the fact that the

closedness condition depends only on w and not on the choice
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of the initial conditions one can make when applying
Proposition 1.3.

We shall translate this group-theoretic closedness
condition and express it in terms of functionals on weE

only for special solutions u .

1.6. DEFINITION:

Given a,b>0 , we say that a soclution w : R2 —> R

of the sinh-Gordon equa-

| Py | tion 1.2 lies in:
1 ol H
i i
! [
i
i b |
| !
B !
e e e e
' I
! I
|
R * >
! o} ab I a s
| |
f |
U SN . S
|
| |
i ]
Fig. 2
i) mgb , 1ff it is invariant under the action of a group Pab
generated by the reflections at the four lines g=0 ,
s=a,t==D, and t=b .
) P, _(-2,2),(-k, 2
ii) mab s 1ff the rectangle Rab'( 2,2)x( 2,2) is a

connected component of {(s,t) €R? | w(s,t) >0}

-
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REMARKS:

. R b
i} Solutions u>€mab

and can be recovered from their re-

vanish on the boundary of the

rectangle Rab
striction w|R,, ~when extending it in the obvious way
as an odd function w.r,.t. all boundary edges. In fact,
this procedure has originally been used by Wente in
order to obtain an abstract existence result for
equation 1.2.

ii) Notice that agbc:mgb for all positive a and b .
The additional symmetries w.r.t. the axes of the rec-

tangle Rab follow directly from a theorem by Gidas-

Ni-Nirenberg (cf. [GNNI).

Let us now assume that wezmgb for some a,b>0 . The
fixed point set of a reflection = Erab is a horizontal or a

vertical line in RZ , and therefore it is not only a geodesic
but also a curvature line. Under F it is therefore mapped

onto a planar curve . in E3 . Because of the fundamental
existence and uniqueness theorem the immersed surface is
symmetric w.r.t. the plane which contains C. and is perpen-—
dicular to the surface. Hence we obtain a homomorphism

wab :Pab — Isom(33) which coincides with Xw on the finite
index subgroup Fabf}Am  and in fact the immersion F 1is equi-

variant under T with respect to ?ab .

ab

Since Fab preserves curvature lines, we have proven:
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1.7. PROPOSTION:

w €M,y deseribes a torus, i.e. lies in W¥ , iff all Aq*
k2~curvature lines close up, or equivalently iff the planar
Ay-ourvature line c, %8 f—> F(s,0) and the planar A,—eur-

vature line c, : &t > F(O,t) Doth close up.

This is easily made explicit in terms of w using a

standard fact on Coxeter groups:
the planar curve cj closes up, iff either ejiziQ\Z) * T Or

* 6. EZ 7 d . =0
(*) i an nj

~
L.
1]
el
-
V]
"

Here we have made use of the following gquantities:

i} the angle ej between two consequtive symmetry planes

perpendicular to cj r i.e. the angles:

' a
8,= ¥ (F'(0,0),F' (a,0)) = [ sinhw(s,0)ds ,
0
{1.5) b
8, = ¥ (F{0,0),F(0,b)) = f coshw (0,t) dt , and
0

ii} the oriented distance function pj between such a pair
of planes, which is defined in case the planes are parallel.

It is given by:

oy = e @{Cr0) | pi(0,0),F(a,0) -F(0,0) >
(1.6)

o, = e®(0:0) | c5i5.0) ,F(0,b) - F{D,0) >

REMARKS:
i) The fact that we are working with a reflection group

r_, and a homomorphism ¥, into Isom(E’) implies



ii)

iii)

directly that 6, €Z-+m or ©0,€2Z+7 , i.e. that at

1 2
least one pair of symmetry planes is parallel.
In case mezﬁgbc:mib , it is clear from the above for-

mula that 6,=0 .

1
Wente has given a different closedness argument. His
reasoning is based on the fact that for us€mgg the
curves s b—> F(s,(n +%—> b) r n€Z , lie in planes tangen-—
tial to the immersed surface. Along the same lines one can
prove that for these more special solutions w the curves
t p—> F((n +—;—)a,t) i n€Z , lie on unit spheres which are
tangential to the immersed surface. Moreover, if the sur-

face closes up, all these spheres must coincide.
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2. EXPLICIT SOLUTIONS OF THE SINH~GORDON EQUATION:

In this section we shall classify all real-analytic
solutions w : R2 —> R ©0f the following overdetermined

system:

Aw + sinhw +coshuw

H
o

(2.1)

sinhw *» ¥' - coshw * ow'

fl
o
»

Actually by elliptic regularity w is automatically
real-analytic, once it is assumed to be locally bounded

and measurable,

We were lead to the second equation basically for geometric
reasons; it is precisely the condition that all A1-curvature
lines of the corresponding H-surface are planar curves (cf.
formulae 1.4). It will lead to explicit solutions of the sinh-
Gordon equation; it induces a separation of variables and
reduces system 2.1 to solving ordinary differential equations.
Likewise we could have asked for planar Az-curvature lines and

supplement the sinh-Gordon equation with

(2.1.1i1)" coshw* o' -sinhw *»ow' = 0

instead of eguation 2.1.1i, We shall give the corresponding
results in section 3 ; however, in section 4 it will turn out

that none of the corresponding H-surfaces is compact.
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To analyse system 2.1, we first consider the function
W = coshw and look for real-analytic solutions of the

following system:

2

"
o

2
(W2 = 1) AW - W - [vw|™ + w- W2 -1
(2.2)
(W2 - 1) W - 2WeWewW =0 .

2.1. THEOREM:

The real-analytic solutions W:RZ»R of system 2.2

are precisely the functions given by

(2.3) W= (1+£2+g2) "V o (£14G)

2

where s b—> £(s) and t l—>g({t) are meromorphic

functions of one variable which solve

£12 = £ 4 (1ec-a)El s c
£ = 2834 (1+c-A) £

2.4 éz = g4 +(1-c+d)g2-fd
g = 2g° + (1-c+d)g

for some constants c¢c,d€ER .

Moreover, £ and g can be recovered from W by



L

W' = —f£(s) » (Wo-1)
(2.5)

~g(t) « (WP -1) ,

=l
]

except when W2 =1 .

The proof of this theorem and all the following results will

be deferred to the end of the section.

REMARKS :
i) When W2 =1 , then clearly (‘l+c—-d)2 -dc = (‘!—-c+d)2 -4d=0.
ii) The second order equations for £ and g in 2.4
cannot be dropped, since they exclude certain enveloping
sclutions of the first order equations.

iii} We point out that W = %1 at the pcocles of £ and g .

The theorem will be proved by purely local calculations,

and we see that in fact any germ of a real-analytic
solution W of system 2.2. extends uniguelv to a

globally bounded solution defined on all of R2 .

The functions s > W(s,t) can be viewed as a family
of elliptic functions parametrized by the elliptic curve deter-

mined by g .

2.2. PROPOSITION:

Let £,g and W be as in Theorem 2.1. Then W 4s a
solution of the following first order differential

equations:
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(2.6)

-0
[ %]
[i}
Paiien
=
[ %]
I
—ly
R
M
—
o+
Hh [«3
N
1
=
+
i
N
L
Pt
=
1
h
3%
%]
p——

It remains to characterize the solutions W which arise

as coshw for some real-anlytic solution w of system 2.1.
2

Clearly W21 , and hence c¢c=a"20 and d=8220 (c.£. 2.6}).

2.3. THEOREM:

i) There exists a two-parameter family of real analytie
solutions w of system 2.1 which is defimned on
?={(a;B)ER2]a,BZO and a+ 821} by means of

the equations:

(2.7) coshw = W = (1+f2+g‘2)~4i - (£'+9) , w(0,0)20
w' = ~f(s) » sinhuw

(2.8) .
w = =-g{t) »sinhuw

where f£(s) and glt) are the elliptic functions

determined by:

2 2

£12- £, (14028522 + 0% , £(0)=0, £'(0)=a

(2.9)

& agts (madegdig? 82 L 9l0)=0, §(0) = 8

.



ii) Conversely, if w <8 any real-analytic solution of
syetem 2.1, then w is globally bounded, |w|
achieves its maximum, and up to a translation w or

-w 18 contained in the above family.

Observe that the ambiguity of arccosh in a neighborhood

of a zero of w is fixed by equations 2.8,

We shall briefly discuss the special solutions on the
boundary 3P of the parameter space. It is easily checked that
the trivial solution w=0 corresponds to the whole segment
o+B =1, a,B20 in 2P . The rays a =0, 21 and
B =0, a2z 1 parametrize solutions w which are one-dimensional
in the sense that they either depend only on t or only on s
They describe the two types of Delaunay surfaces mentioned in

section 1.

For the sake of simplicity let us now assume that «,B>0

and o + B>1 . The gqualitative behaviour of f depends in

a crucial way on the gquestion whether the quartic

f4-+(1+a%—62)f2a-a2 has real zeroes or not. In fact, on the

real axis f qualitatively resembles the functions tan

¥

tanh , or sin , when B>a+1 , B =a+1 , or B<a+1,
respectively. Another way to exXpress this difference is the

following: Since o # 0 , we can speak of the smallest positive

zero a = ala,B8) of f . When B>a+1 (B<a +1) , then

alo,B) is a half period (resp. a full period) of £ . On the

borderline B =qa+1 the function f has no positive zero and a =+
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A similar statement holds for the smallest positive zero

b =Dbl{a,8) of g.

Finally we should point out that on P the lattices of
f and ¢ viewed as elliptic functions defined on € are
completely unrelated. In fact, one choice for the cross—-ratios

for £ and g is:

1 2 2 1 2 2
T3 (B - {a-1) ) and 18 (a - (B~-1) ) .

2.4. PROPOSITION: (see Fig.3)

Suppose that «,B>0 and a+B>1

i)  Except when |a—~B| =1, the solution w 1is invariant
under the reflection group Tab with a and b as
above. (notation as introduced in section 1).

ii) If J|e-B| <1, then the connected components of
{(s,t}EERZ{ wis,t) #0} are rectangles; more precisely
mEimgb with a and b as above . Otherwise
Bza+1 or a2B+1 , and the complement of the nodal
set of w consists of horizontal or vertical strips,

respectively.

iii) The strip PD= {(a,B) €P|la—Bl <1} around the diagonal
in the parameter space is mapped diffeomorphically onto
D_ 2, -2 =2, -2 .
the set R -{(ao,b0)€R+1aO +b0 27w “} . This set
contains the edgelengthsof all rectangles 2. b which
070



can arise as a connected component of the complement
of the nodal set for a solution w of the sinh-Gordon

equation 1.2.

Part iii) of this proposition asserts that we have not
lost any rectangle, when imposing the additional condition 2.7.11
in the beginning of this section. In fact, the subfamily parame-
trized by PD is just the family of "Dirichlet solutions" which

bifurcates away from (0 along the curve of rectangles with

-2 .,-2__-2
ag +b0 =7

uniqueness which we encountered in our parametrization for oa+B8=1.

. This gives a natural interpretation to the loss of

B=a+ 1

O %ap
nodal set

= U 1lines t= gonst.
“horizontal® lines

Delaunay surfaces
with mperidean -

a=£+1

€ T
w mab
nodal set

= U lines s=const.
= “yertical" lines.

L (NIRRT RN AN SRR
) Q

1
bifurcation line Delaunay surfaces
with meridean

.........

FIGURE 3: the different pieces of the parameter space P .
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PROOF of Theorem 2.1:

Step 1: a real analytic function W : R2 —> R solves system

2.2, if and only if there exist meromorphic functions
f and g of gne variable only such that equations

2.3 and 2.5 hold.

Let us first consider the case when W2§é1 . Then eguations 2.5

are just the integrated version of

1 1

0= (W=D o = (w1 o) ,

i.e. of equation 2.2 ii . Equation 2.3 merely restates 2.2i in

terms of £ and g wusing egquations 2.5.

In case Wz

L]

1 , the only condition which is not a priori
empty is equation 2.3. It is then a condition on £ and g
and leads to ordinary differential equations £’ = W- (a-+f2)
and g = W .(5-+g2) with a+ 8 = 1 . These are clearly
solvable. Hence we have not excluded the case W2551 when

passing from system 2.2 to the equations 2.3 and 2.5.

Step 2: equations 2.3 and 2.5 imply that with suitable con-

stants ¢ and d , we have:

(2.4)!

Hence £ and g are elliptic functions.

Substituting W into equation 2.5i yields:



(2.10) ke - E. _—
(1+£7+g")

1efeg?

i
e
*

Multiplying with 2f' and integrating w.r.t. s , we obtain
with a suitable constant ki{t)

2 .2
£'-9 . f2 + k{t)

1+f2+g

We multiply the above eqguations with 1+f2+g3 and £ ,

respectively, and add them up:

3

£7 = 2682 4 (1+g2(t) + k(t)) - £ .

Por fixed t this is just the claimed differential equation
for £ . Since £ does not depend on t , we can in fact
pick any of the values of 1+g2(t) + k{t) for © . The

differential equation for g follows similarly.

Step 3: The equation (2.4})' have first integrals:

2.4y

Moreover any solution to {2.4'} and {2.4)" defines a real-

analytic function W : ﬁz ~->» R by means of formula 2.3,

Claim: These functions f£,9 and W obey equations 2.5,

if £ and g solve equations 2.4.
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We insert formulae (2.4') and 2.4"} into eqguation (2.10).

It follows that eguation 2.5i is equivalent to:

(2.114) 0= (§+d-2) ~f-g> + ({d-~c+T=1) + £ .
Similarly equation 2.5ii is seen to be equivalent to
(2.1144) 0= (E+d-2) - f2.g+ (c-d+d~1) +g .

This proves the if-direction in the claim. In order to obtain
the only-if part as well, let us first assume that W#0 .
Then we may further on assume w.r.g. that g is not a constant.
If moreover £ does not vanish identically, then it follows
from eguation 2.11i that € = 1+c=d and E=1—c;rd .

If £=0 , then equation 2.1ii yields d=1-c+d ; the claim
follows, since © can be modified arbitrarily. We point out
that in this case c:v must be zero. The reméining case

W=0 1is even easier: equations 2.5 directly imply that

f=g=0 , hence c=d=0 , and both € and d can be chosen

arbitrarily.

PROOF of Proposition 2.2:

It is sufficient to prove formula 2.6i. Because of

formula 2.5i we must compute that



(2.12)

- 25 =

2. w1 = =25 - (g w-—Lyp?
“1+g 1+g

For this purpose we multiply equation 2.3 with

2

13

(1+£2+g2 W - 2§ = £' =§ .

and obtain:

2 .2
2 w2 s W ((1+g2)W - 28) =f—1--‘3—3—5 =2 -g%4c-a

1+£ +g

Equation 2.12 follows when collecting terms, using 2.4

once more.

PROOF of Theorem 2.3:

i)

We recall that system 2.2 follows from system 2.1 when

substituting W=coshw . Conversely a real-analytic

'solution W of system 2.2 which is 21 defines a

solution w of the original system. A little care is
necessary at the places where W=1 , Bince the func~

tions £ and ¢ in theorem 2.2 have Only simple poles

-1 -1

with principal parts (s_ - s) and (t_ - t) , it

o]
follows from equations 2.5 that the solution W can
take the value +1 only with multiplicity 2, except

when W=1 . Hence a solution W which is >»>1 at some

.
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point is 21 everwhere, and moreover there is no
problem with the function arccosh being well-defined.

We see that w can have only simple zeroes, provided

w # 0 , and eguations 2.8 merely restate formulae 2.5 in
the variable. The claim follows, since

W(0,0) = a+B821 and W=1 for oa+8 = 1.

ii) It is sufficient to show that for any real-analytic

solution W2 1 which is not identically 1 the func-

tions f and g must have zeroes S and to such
that o = £'(s,) 20 and B = c}(to) 20 .
Let us first show that f must have a zero s We

0
view equation 2.5i1i as a Riccati equation for the bounded
functions s > Wi(s,t) . It follows that £ cannot be
bounded away from zero uniformly on R . If £ had no
zero at all, we could hence conclude from equation 2.4i
that ¢=0 and ds 1 . Passing to the limit £ —> 0 the
condition W21 would give §21+g> so that dz 1
because of 2.4iii. Combining these inequalities, we

would get £'=f> and §=1+g% , hence W=1 , the
desired contradiction.

Let us now suppose that £ had only zeroes with f'
negative. Since all poles of f have principal parts
(sm'—-s)”1 , we conclude that f is monotone decaying with
one zero only. But then W must become singular because
of the Riccati equation 2.51i, again a contradiction.

The same arguments apply to g , hence the proof.
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PROOF of Proposition 2.4:

i} & ii) One can easily see from formula 2.8 that w 1is
even at all zeroces of f and g and odd at all poles
of these functions, hence both the claims.

iii) First let us analyse the map

D 2

D
—> R~ C R+

P 7 (0"6) F—> (a(arB), b(OL,B)) . Tt will

be convenient to parametrize ?D as follows:
(2.13) o = mtd 8 = m-9§ (m,8) € I o\ (-2 l)
* ’ ’ 7 2 r 2 Fi 2 -

The mapping is then given by:

a(m+s,m-68) = dx =
A V<;;6)(1+x4)+(1+4m6)x2
(2.14) -
b(m+8,m-8) = dy _ — _
’ V4;-6)(1+y4)+(1*4m6)y2

-— 00

It follows that %E P %% , and %g are all less

than zero, whereas %% > 0 . Hence the map ({a,b)

)

is injective on P and has maximal rank. To prove
that its image is all of RD , it is sufficient to

know the following limits and boundary values:
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- 1 - 1_ =1
a=mn/ 2'+6 , b= o/ 5 § for m = 5 P
a-0 : b -0 for m ~» R
{2.15)
a =+ o ’ b ~» n/ %+m for 5"”‘% 7
1 1
and a->"mn/ z+m ; b >+ for 6-¢§ .

It remains to show that on rectangles greater than those
parametrized by 20 there exists no positive solution of the
sinh-Gordon equation 1.2 with zero boundary values. Note that

w can be viewed as the first Dirichlet-eigenfunction of the

sinhw | ¥

linear operator =~ AY - ®

. This operator is bounded

from above by - A¥-Y¥ ; the claim follows since k1 for

this operator is known on rectangles.
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3.) THE SECOND FAMILY OF EXPLICIT SOLUTIONS

This time the starting point is the system

1
o

Aw + sinhw * coshuw
(3.1)

]
o
-

coshw * @' ~sinhow * ow'

The discussion begins completely analogous to what has been done
in section 2; only sinh and cosh are interchanged, and
hence a couple of signs will be different.

The substitution W

]

sinhw vields

(W2+1) AW

L}
o

we lvw]? o+ we w2
(3.2) .

W)W - 2 « W - W

3.1. THEOREM:

The real solutions W : RZ»R of system 3.2 are precisely

the funetions given by:

2

(3.3) W= (1+£2+g5)7 . (£ + &)

where s b>f(s) and t t—>g{t) are real-valued functions

of one variable which solve

-2 w (el s o

- £v = 2874 (14c-A)E
{314} - 4 2

- g° = g + {1-c+d)g” + d

¥
i

g 2g3 + {1=c+d)g
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for some constants <,d50 .

Moreover £ and g ecan be recovered from W by

W!

[}

~ £(s) » (W2 +1)
(3.5) )
~ g(t) « (W +1) .

=e
i

The proof is almost the same as for thecrem 2.1, except
the special case Wz = 1 has no counterpart. On the other
we have encountered the conditions c¢,d$0 when requiring

the equations 3.4 have real-valued solutions £ and g .

PROPOSITION:

If f£,4, and W are ae in Theorem 3.1, then:

2 -c 2 :
(W24 1) » ( - (1+g?) (w-——g——f)z)
1+gz 1+g

P2 = W) ( S (w—w f'z)z) :
1+£ 1+£

W’2

i

(3.6)

=
Y

Since sinh : R+ R 1is a diffeomorphism there is no

problem in translating back to the original variable w .

Equations (3.5) become:

{(3.7)

-f(s} » cosh w

i

mi

]

#

- g{t) + coshuw .
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The normalization to £{(0) = g{(0) =0 , £'(0) = a20 ,
g'(0) = 20 , i.e. ¢ =-»a2 and d = —-Bz is also easy.
It follows directly from the fact that both f and g

oscillate around 0 .

The analoque of Proposition 2.4 becomes just as easy as
that of Theorem 2.3: for all o,8>0 the solution

. . T D o
arcsinh W 1lies in mab\ 3% where a = af{a,B) and

>
il

U
L}

b{a,B) again denote the smallest positive zero of £ and

g , respectively.

Note that the axis o =0 or B = 0 again parametrize

"one-dimensional" solutions, the Delaunay surfaces.



4.) GEOMETRIC INTERPRETATION OF THE SOLUTIONS w :

In this section we shall concentrate on the family of
solutions to the Sinh-Gordon equation which has been construc-
ted in Theorem 2.3. We shall refer to it as family A in the
sequel. Some of our results will have no analogue for the
H~surfaces obtained from family B , the explicit solutions
given in section 3.VFor instance, the latter family contains no
closed H-tori, whereas family A does. In fact, the evaluation

of the closedness criterion is a major goal in this section.

To begin with, we carry out one more integration in the
Frenet egquations for the families of planar curvature lines.
In case of family A these are the XT-—curvature lines, and

we consider the functions

@(Srt) = i: (F'(S,t), F’(O,t)) and
(4.1)
Uls,t) = cosw(s,t)==e*w(s't)’m(0’t}- <F'(s,t),F'(0,t) >
4.1. LEMMA:
2 .
(4.2) a0 = (1+g2) -W-—é = f? ._;L%i_i - f2 .___%~_7 .
1+ +g 1+£7+g
U2 = (1+g2) 71 (1-02) - (lau+d) % - (1+g2)?)
(4.3)
0% = (1+£5) 71 (1-0%) - ((gurEn) 2 - (1+£H)?) .



- 33 -

PROOF: Clearly ¢'=|F'

*Ky = V1+g2 *sinhw = V1+g2 ve2—1 .

Hence we obtain, using formula 2,6:

1
2

g—‘g = -‘f-p—l—. = _._-_..__g..i-... — (w..w—im)z)
' 1 »
aw w (1+g2)2 1+92

Formula 4.2 follows by integration, checking that

-

w(o,t) = %  and U(0,t) = 1 by definition.
1+g

Formulae (4.3) are just restatements of eguation 2.6.

4.2. DESCRIPTION OF THE H-SURFACES WITH PLANAR
A1~CURVATURE LINES:

i} the angle between the normal vector N on the surface
and any plane containing a h1—curvaﬁure line is constant
along this curve: The tangent of this angle is the functicn
g which has been introduced in section 2 Ffor purely

analytical reasons.

ii} VWhen RB>a+ 1 , then 61= T and 04 <Of(see (1.8))exrcept when
a=0. The k1-curvature lines look like a sequence of
the letter A& ; one should imagine that the eircles of
the Delaunay surface burst like this, when one tries to

bend the surface.
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iii) When B<ao+ 1 , then 61==0 and the tangent vector
of a XT-curvature line oscillates around the normal
on a symmetry plane, intersected perpendicularly bythe
curvature line. The amplitude in angle is less than

T . The only closed planar curves have the shape of

a figure 8.

iv) When B <oa-1, then the tangent vector of the A1—
eurvature lines S pb—> F(s,(n*~%)°b), n€ % , remains
in a fixed open halfspace; its projection onto
F'(Q,(n-+%)-b) 18 positive everywhere. Therefore none

of the planar A1—aurvature lines can close up.

v) In order to get an immersion with closed planar AT—
eurvature lines, it ts necessary that either a=0
(» Delaunay surfaces) or that (o,B) 1lies in the open

diagonal strip pP

PROOF: i) this follows directly from formulae 1.4 and 2.8.
ii,iii}) We use the lemma. By a homotopy argument it is suffi-

cient to consider only those A -curvature lines s b—> £f(s,t)

1
for which g(t) = 0 and §(t) = 8 . Then the quartic on the

right hand side of equation 4.31i has zerces:

- 1+
- -R

It follows that for B8<a+1 , the function U = cosy

oscillates between 1§§ and 1 , hence claim iii). In case



iv)

v)
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B>0 + 1 we see that 61 = 7 and U oscillates between

-1 and 1 . In order to see that Py <0 , we compute:
ar ) _ B} o L
K
. . - 2 1 =-2w
Now it is sufficient to observe that Ky = Vi+g -5(1~e )
is positive and monotone decreasing in s on [0,a] .

The hypothesis f8<a -1 implies that the quadric

G2 + (1-a2+62)G + 62 has a smallest positive root G in

the interval (0,0~1) . Hence the function g must oscil-
late between -~ v G and + /G , taking its. extremal values
for t = (nﬂ-%) *b , neZ . Inserting this information into

equation 4.3i, we see that U' wvanishes if and only if
U=21+1 or U=z % « {(G+1) . S8ince U(Q) = 1 , it is now
clear that U oscillates in the interval [-%(G-+1) ,1] .
In particular, U remains positive everywhere. ‘The claim
now follows from the definition of U and from

Proposition 1.7.

This statement essentially summarizes information contained

in the previous parts of the lemma. Only the boundary of PD
in the parameter space P has to be considered in addition.
When @8 = g+ 1 , the curvature function of the A1—curvature

lines is not periodic (since £(s) = /o »tanh vq s) , and

the case B8 = g=-1 can be included as a limit of the

argument given in iv).
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For (u,B)éiPD , the function g has poles, and

hence there are special A1-curvature lines which lie in planes
tangential to the surface. It turns out that closedness of

the A1—curvature lines, i.e. the condition p1 = § , can be
easily checked for these "singular" AT—curvature lines. It is
a straightforward computation, using formula 2.9, to pass to

the limit g-« in equations (4.2) and (4.31i):

u, = £'-f£°
{4.4)
ur= 20 - (U + @ (1-Ud) ,
1 2 2 . . . .
where 1~bq-—§a (B~ {(a=1)") , which is twice a cross ratio
of f . Recall that |[F'| = 1 along these special curvature

lines. So they are up to congruence uniquely determined by

the function U, = cosyg, . Observe that gEZ(—1,1) since

we have restricted ourselves to (a,B)EﬁPD .

4.3, LEMMA:

Closedness of the hj-curvature lines is a condition on q,
i.e. on the conformal type of the lattice of the elliptice

Function £

1

U dy
2
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This equation determines a unique g€ (0,1) , which

is approximately 0.652229... .

The above reasoning showes that the right-hand side of

formula 4.5 is just % Y20 times the quantity op introduced

1
in fomula 1.6, This explains the lemma.
In fact, the special A1‘curvature lines enjoy a nice geo-

metric property:

4.4. PROPOSITION:

All A1—curvature lines (of family A ) which lie in a plane

tangential to the H-surface are elasticae, 1.e. critical

points of the absolute squared curvature functional

F(c) = [(K(s)lz ds .
C

PROOF: We shall compute that

'2

(4.6) 3

T e

(Kf - 2u(1+q)> (Kf + 2a(’l—q)> :

]

Since on these curves s 1is indeed arciength, we have thus
verified the Euler equations of F in the plane (c.f. {LS]).
Here o 1is a scaling parameter whereas g determines the
shape of the curﬁe,

Clearly we have Ky = @' . Therefore:

2 _ 2, - 2
Ky = {1 - Uw)

1 12
. Um - Za(Uw + q) F
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and formula 4.6 follows directly from equation 4.4.

It remains to investigate, when the kz-curvatnre
lines close up as well. Using Proposition 2.2 and Theorem 2.3,

we see that the functional 8 introduced in formula 1.5,

2 r
becomes:
b b .
0, = f W(0,t)dt = ; if%—dt
0 0 1+g
i.e.
i
[+ <]
+ dg
- j & for a<B+1
) (1497 VaTr (1-a2+82) g2 +82
(4.7) 62 = 4
a+B
I - W dw for a>f+1
oop VIO -1) (a+B-W) (B-o+W)

We recall that in the interior of the parameter space ?

the set pq = 0 is given by the hyperbola:

(4.8) 82 = (a+q)2 + 1-¢° ,

where g is as in Lemma 4.3. This curve clearly lies in the

strip a<B<a+1 ; it begins at the point (o,B) = (0,1) .
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LEMMA 4.5:

i) 62 18 monotone increasing along the curve Py =0 .
ii) 92(0,1) = 7

iii) lim ez(a,a+€) = 2% , uniformly for e€€[0,1] .
IS

PROOF:

i} From formula 4.7 we calculate that for B8 >gq

25 - f (g?+8%) ag . 0
da "2 L /3 3 2. 2 .2
VQ +{1-a"+B87)g " +B
and
< 2
9 . 9 = g +B » (B-0)
5 T 38 22 3 >0 -

~o g%+ (1~a2+p2) g2 +g?

The tangent vector of the curve P4 =0 is a convex combina-
9 9

tion of o and 3o t 36 -
iii) Since the factor alvg4+(1+2ae-+52)g2+(a+s}2

in formula 4.7 converges monotonically to 1 for

o —> © , it is clear that

iim ez(a,a+g) = J ~§3§ .
o> 1+g

Uniformity in € follows from the inequality:

62(u,m+1) s Bz(a,a+z) g ez(a,a) .
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Fig.4

the parameter space P and the closedness

discussion in terms of 61,91,82 , and Py -



We summarize the above discussion (recall that A1 <l2 by

convention):

4.6. THEOREM:

For any © € (m,2m) such that é%r-a is rational there

exists precisely one torus with H=1/2 , planar

A -eurvature lines, and 8, =10 . These are all immersed

tori in E3 with H=1/2 and planar A1¥eurvature lines.

It follows that the index of the deck transformation
group in Am » the invariance group of the curvature functions,
is always 23 . In this sense the simplest possible H~-torus

3 2

in E has 62 = §--2n . We shall depict this torus in Fig. 5.

Not only the pictures look pretty non-standard. It is a
matter of fact that this immersion of a torus into E3 is not
regularly homotopic to a standard immersion. This ﬁpllows
directly when counting the number of twists for strips around

curves representing a homology basis. (cf. [PIN]).

Finally we point out that Lemma 4.1 and Proposition 4.2
carry over to the second family of solutionswith planar Az—
curvature lines. It will turn out that >92 = 1 and the AQ-
curvature lines look like a sequence of the letter 4 - i.e.

pzaée - except when they are the circles of a Delaunay surface.

4.7. COROLLARY:

In Theorem 4.6 we have in fact classified all H-tord

with one family of planar curvature lines.
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curvature lines on the constant mean curvature
torus with 8 = %- 27 .

top, side, and bottom view of the cylindrical piece
parametrized by an appropriate fundamental domain
of the corresponding solution w . It is a cylinder

over a planar figure 8, which changes its shape.

skew parallel projection (like in Fig.5b) of the
full torus which is glued from 3 congruent cylindri-
cal pieces. All non-planar ),-curvature lines have
been suppressed; whereas all self-intersection lines
have been included.

For a more schematic view compare Fig.1a.
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Fig.b6a Fig.6b

FIGURE 6:

two more examples show how the planar Az-curvature
line in the central symmetry plane and the self-
intersection line in this plane can lock. When
compared with Fig.1 and Fig.5 these examples
illustrate how the global picture of the H-torus
jumps when changing the angle parameter @ ; the
fundamental cylindrical pieces {cf. Fig.5a-c})
nevertheless vary smoothly.
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5. ON THE SPECTRUM OF THE LINEARIZED SINH-GORDON EQUATION:

In this section we consider for an arbitrary function

b

mEﬁmab the linearized operator:

Lw(m) := - Ap - cosh{2w) ¢ .

We are interested in the Dirichlet spectrum of Lm on the

- .a a _b b i
rectangle Réb = 513 X"3135 - Our basic tool will ?e the

domain dependance of the first Dirichlet eigenvalue

AT(Lw, ) . We shall consgsider the half-rectangles

“at (300) (58 o oml-(008)-(53)
R c (5:5)(3.0) - mE-(38)(o3)
and put
>xhor - Al(Lw'R;;) - A1(Lw'R;i)
Avert = X1(Lw’3§;) - A?(Lw'Rig)
Then

L

Aodd # = min {Ahor 'Avert }
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is the smallest Dirichlet eigenvalue such that one of the
corresponding eigenfunctions is odd w.r.t. at least one axis

of the rectangle Rp

5.1. PROPOSITION:

i) Xodd > 0

ii) A1(Lw,Rab) <0 , Z.e. w s an unstable

solution of the sinh-Gordon equation.

PROQF :

i) Since ~Aw —% sinh 2w = 0 , it is clear that

Lw(w') = 0 . Considering the nodal set of w' , we

)-o -

oo

b
see that }\hor>)«1(Lw,(—-a,0) x (--2- '

Similarly we prove that kvert >0 .

ii) This follows from the inequality L,<?, » where

- - _ Sinh 2w |
o) = ~bo -5 0 .

Notice that }‘1(?w'R }y =0 !

ab
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5.2. THEOREM:

If A'<Aodd 18 a Dirichlet eigenvalue of Lw on Ry
then the corresponding eigenspace E{\) <is 1-dimensional.

Especially, dim keer £1 .

We shall establish two lemmas first.

5.3. LEMMA:

Let @ be an eigenfunetion of L, with eigenvalue A .
Suppose that ome component C of {(s,t) €R_ | ols,t) #0}

18 contained in one of the four half-rectangles

11 .12 .21 22
Rib' Rap " Ran s 97 Ryp

Then X2 Aodd > 0.

This follows directly from Proposition 5.1i and the domain
monotonicity of Dirichlét eigenvalues. It is an easy corollary
that all Dirichlet eigenfunctions with eigenvalue A‘:kcdd
must be even w.r.t. both axes of the rectangle Rab .

5.4. LEMMA:

Suppose that @ <18 a Dirichlet eigenfuncition of Lw

with eigenvalue A'<lodd . Then @ does not change sign

in a sufficiently small neighborhood U of BRab .
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PROOF:

Let us assume conversely that there are components C,
and C_ of the sets {(s,t) €R | o(s,t) <0} resp.

{(s,t) | ¢(s,t) >0} which touch the boundary. By symmetry
we may assume moreover that both C, and C_ intersect

the right upper quadrant [0 ' %) % {0 ' %) . It follows from the

Jordan curve theorem that one of the components C_ or C_

must lie entirely either in the half-rectanle R;f) or in
Razg . Lemma 5.3 therefore yields the contradiction 12 L

PROOF of the theorem:

Suppose that there are two linearly independant eigen-
functions ¢,9 € E(X) . A well-known argument based on the maxi-
mum principle shows that the normal derivative 3@ V¥ vanishes
nowhere on the boundary aRab except at the four corners
(cf. [GNN]) . Since by Lemma 5.4 none of the linear cé:mbina—
tions @-c.@ , CER , changes sign in a small neighborhood
of the boundary 3R ap ¢ Ve conclude that 3\;5 = Cq* 3\,&9

for a suitable constant ¢, €R . Using the maximum principle

0
as above, we see that 25—00 ¢ =0 , a contradiction.
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