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CONSTANT MEAN CURVATURE TORI 

IN TERMS OF ELLIPTIC FUNCTIONS 

Tori with constant mean curvature have been discovered 

first by H.C. Wente in 1984. The construction is based on 

special so~utions of the sinh-Gordon equation. Wente could 

only give an abstract existence proof for these solutions so 

that his description of the H-tori is not very explicit. 

Based on a numerical approximation of such a solution, 

we could produce plots of one H-torus. In these computer 

'generated pictUres the curvature lines for the smaller prin­

cipal curvature A1 looked almost planar. We then decided 

to restrict ourselves to H-tori with one family of planar 

curvature lines. This condition translates into a second 

partial differential equation which induces a separation of 

variables in the sinh-Gordon equation. Therefore the over­

determined system Can be solved explicitly in terms of elliptic 

functions. We obtain a classification of all H-tori in E3 

which have one family of planar curvature lines. 

THEOREM: 

The~e exists no H-torus such that all A2-curvature lines 

are ptanar. The H-tori with planar A1-curvature lines are 

naturat:ty pa~ametl'i2ed by those angles eE hr,21f) which 

are l'ational multipte8 Of 2~. 



- 2 -

The 8ymmetpy group of 8uch an H-tOPU8 contain8 a centpal 

peflection cro which maps any planap cupvatupe line onto 

it8elf. Each A1-cupvatupe line look8 like a figupe eight 

perp~ndicular to the fixed point plane of cr O ' 

When the family parameter changes, they oscillate around a 

8ymmetpicaZ figure ~hich i8 a closed ela8tica; theip t~o 

c+ and c - in the vertice8 move on A2-cupvatupe Line8 

fixed point plane of crO ' The cUPVes 

ppecisely ~hen the denominatop n in 

c+ and c coincide -e m (m,n) 1 2'1f = - , = , 
n 

is odd. (cf. Fig.l). 

e is the angle bet~een the normals at t~o consecutive vertices 

of c+ the ptanap Bet c+ U c_ i8 invapiant undep the 

dihedral gpo up Dn' and the 8ymmetry group of the immersed 

H-tol"US i8 Dn x {id,crO} 

Fig.1a Fig.1b 

Fig.1a: the set c+ U c_ in case a 2 
== 3' • 2'IT 3 symmetry axes! 

Fig.1b: the set c+ U c_ in a 3 4 case .. 't • 2'1f .. symmetry axes! .. 
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We emphasize that our H-tori are known explicitly up 

to solving systems of ordinary differential equations, the 

Frenet equations for the planar curvature lines. The proof 

is given in section 1-4 of this paper; in section 1 the 

classification is reduced ,to a problem on the sinh-Gordon 

equation using standard arguments from the theory of surfaces. 

The actual analytical work is then carried out in section 2 

and 3 which can be read independently; we calculate two 

two-parameter families of explicit solutions of the sinh­

Gordon equation which might be of interest for other 

applications as well. In section 4 we finally put things 

together; we evaluate the closedness conditions and determine 

t~o range of the parameters. We prove the theorem and provide 
2 pictures of the H-torus with e = 3 • 2'IT (cf. Fig. 5 ) • 

In section 5 we digress on a problem for positive 

so.lutions of the sinh-Gordon equation on a rectangl~ with 

zero boundary values. For each rectangle which is not a priori 

too large we have written down in section 2 one solution with 

these properties. (cf. proposition 3.4) The explicit solutions 

are unstable. It is still an open question whether the above 

Dirichlet problem for the Sinh-Gordon equation has unique 

solutions: then we would have found all solutions. We shall 

not answer this question here. However, we shall show that 

the hypothetical bifurcations are of the simplest possible 

type: 
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THEOREM: 

When the sinh-Go~don equation 

/100 + sinh w • cosh 00 = 0 

is Linearized apound a positive solution on a rectangZe 

Rab ' then the linearized ope~ator 

-> 

Looq> := - /1q> - cosh 200 • q> 

has an at most one-dimensional kernel. 
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1.) CLASSICAL DIFFERENTIAL GEOMETRY: 

In this section we shall explain how to immerse tori 

T~ ='a2/A with constant mean curvature into three-dimensional 

euclidean space E3 • The task of finding H-tori will be 

reduced to an analytical problem on the sinh-Gordon equation. 

This translation is done by the standard Frenet theory of 

surfaces, and, in fact, it is quite well-known. Hence we 

shall be brief and omit all computations. 

TO begin with, we recall: 

1.1. THEOREM (Hopf): 

A compact immersed surface Mf~> E3 with constant mean curvature 

H is either totaz:t.y umbilicaZ, hence a standard sphere, 01' it 

has only isolated umbilics, each with strictly negative, possibZy 

haZf-integraZ indez. 

The sum of these indices is just the Euler characteristic 

e(M2) • Therefore an H-torus cannot have any umbilic at all. 

We normalize size and orientation, requiring that 

H- 1/2 • Moreover, we shall index the principal curvatures 

such that "1 < "2 • The role of "1 and "2 is significantly 

different; it is only "1 which can - and will - change sign 

(cf. [HH2]). Finally we introduce a function w by 
2w 

e ("2-"1' =1. 
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1.2. PROPOSITION: 

(1 • 1} 

(1 .2) 

On any H - sU:r:>face M29-> E3 (no:r:>mal.ized to H e 1/2 ) 

a small neighbo:r:>hood a:r:>ound any point p which is not 

an umbi lic can be desc1'ibed by a map F: U cR2 
G)-> E3 

such that: 

1) F(O) = p 

ii) the curves s ~> F(s,t) and t r-> F(s,t) are 

the A1- and A2-curvature lines~ respectively; i.e. 

the Weingarten map in these coordinates diagonalizes: 

A = 
( 

-w ) e sinh w 0 ::: 

o e-wcosh w 

iii) (s, t) € a2 a:r:>e orientation preserving conformal, 

coordinates; m01'e precisely: 

• FI .L F and I F' I = (A - A ) -1/2 
2 1 

He1'e I and • denote the de1'ivatives W.1'. t. the 

standa1'd coo1'dinates 

1'e spective 1,.y. 

sand t on 2 
OcR J 

In these coo1'dinates the GauB equation becomes: 

Ilw + sinh w • cosh w = 0 

where is the coo1'dinate LapZacian, i.e.: 

Ilw ::: w" + W 

i 
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REMARK: The transition functions between any two "adapted" 

coordinate systems as introduced in the proposition are just 

translations in R2 or 180°-rotations. Notice that in iii) 

we have also normalized the scale of the coordinate domain R2. 

Outline of PROOP: It is a classical application of the 

Probenius theorem to obtain coordinates sand t such that 

i) and ii) hold and that pi (s,O) = eW(s,O) and 

F(O,t) = ew(O,t} • Clearly, pi and F are perpendicular 

on all of u. A straightforward calculation shows that the 

integrability condition for having IF'I = IFI = e W in an 

open neighborhood of 0 € R2 are just the Codazzi equations 

and the condition H = 1/2 • 

The same computations simultaneously prove the converse. 

1.3. PROPOSITION: 

Any solution W to equation 1.2. defined on a aonneated 

open neighborhood U CR
2 of 0 unique Zy determines an 

H501/2 immersion F: U~E3 by means of the Fpenet data 

1.1> onae the following initaZ data ape speaified: 

and 

i) the point p = F(O) 

ii) the oriented, o1'thono1'maZ frame 

e-w.F'(O), e-w.p(O) . 

• 
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Since this prop~sition will be basic for the 

construction of the H-tori, we shall give the Prenet 

equations which determine P in terms of OJ explicitly 

in the (s,t)-coordinates: 

F" w'F' · . w sinh OJ • = - wP + e N 

-pI = wF' + w'F 

( 1 .3) 
.. . . w F ::: -w'p' + wF + e cosh w • N 

Nt = -w -e sinh w • pi 

• -w . 
N = -e cosh w • P 

Here N denotes the unit normal field associated with the 

Weingarten map A. Later on we shall also use the curvature 

K. and the torsion 
~ 

'l. 
~ 

of the Ai-curvature lines viewed 

as space curves in E 3 ti=1,2): 

2 -2w ·2 2 geod -w . 
K1 ::; e • (w + sinh w) ; K1 = -e • w 

K2 -2w 2 2 geod -w 
= e • (w' + cosh w) ; K2 = e· • w' 2 

(1.4) 
2 -3w 

• (sinh w • w J - co sh w • ww' ) K,t 1 = e 

2 -3w • (cosh w • w' - sinh w • ww I ) K2 -T2 = e 

, 

Theorem 1.4 turns the local description into a global result. 
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1.4. THEOREM: 

Proposition 1.2 and 1.3 determine natural injections: 

{H = 1/2 -tori T2 c::;)-> E3 with base point PO} I{motions in E3} 

11 2 
;:. > ill = {w: R ~R I w so1"ves 1.2 and is invariant tV.fl.t. 

some tattioe A c R2 } 

tVhere b1 ,b2 ,b3 stand for the oanonioaZ basis of E3 • 

Moreover~ tVhenever w ties in the image of i, , then the 

group ltw:= {A€R2 1 wC).(x» = w(A.+x) = w(x), VXER2} of 

translationaZ symmetries contains aZl decktrans/oflmations 

of the H-torus. Converse1"y, the map i2 determines a 

homomorphism Xw: Aw --> {motions in E3} , and 

the immersion F = i 2 (w) is equivariant under AU,) w.r.t. 

x (A) (I F = F 0 A. -1 , VA. € It 
w w 

For generic w € m the group of translational symmetries is 

just a lattice in R2 • However this group can be non-discrete 

in sEecial cases: 

i) It = R2 : then w 
identically_ The 

with radius 1. 

must be a constant and hence vanish 

corresponding H-surface is a cylinder 
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ii) R • AO c Aw ¥ R2 for some AO ¥ 0 : 

Here w is determined by an ordinary differential 

equation along the axis A~ c R2 • When AO = (1,0) 

or AO = (0,1) t then one gets surfaces of revolution 

with constant mean curvature. These are classically 

known and called Delaunay surfaces. (cf.[DEL]). For each 

choice of A~ there exists a one-parameter family of 

such surfaces; for one of them the meridean curves have 

no self-intersections, whereas for the other family 

they do have. 

Clearly i2 is a kind of left-inverse of i1 • This helps 

in characterizing the subset Ill*: = {w E III I F = i2 (w) closes up 

to a torus} . 

1 • 5. COROLLARY: 

PROOF: Observe that by definition 

wEill ! 

A 
w 

is cocompact for all 

Clearly the right-hand side in this corollary is a condition 

on [Xw] I the equivalence class of Xw under conjugation 

in the group of motions. This just restates the fact that the 

closedness condition depends only on wand not on the choice 

• 
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of the initial conditions one can make when applyin~ 

Proposition 1.3. 

We shall translate this group-theoretic closedness 

condition and express it in terms of functionals on wE m 

only for special solutions w. 

1'.,6 _ DEFINITION: 

Given a,b > 0 , we say that a solution 2 
w:R ->R 

of the sinh-Gordon equa-

t 
tion 1.2 lies in: 

b 

__ ...J _______ , _______ _ 

I I 
I I 

I 

o ab a s 

I 
---t-----t----- L - - - ----

I I 
I 
t 

FiST- 2 

i) m~b' iff it is invariant under the action of a group rab I 

generated by the reflections at the four lines s = 0 , 

S :::: a I t = O,and t:::: b • 

ii) m~b' iff the rectangle Rab = (- ~ I ~ ) X ( - ~ , ~ ) 

connected component of { (s I t) € R2 I w (s I t) > O} 

is a 
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REMARKS: 

i) Solutions w E m~b vanish on the boundary of the 

rectangle Rab and can be recovered from their re­

striction wlRab when extending it in the obvious way 

as an odd function w.r.t. all boundary edges. In fact, 

ii) 

this procedure has originally been used by Wente in 

order to obtain an abstract existence result for 

equation 1.2. 

Notice that for all positive a and b • 

The additional symmetries w.r.t. the axes of the rec­

tangle Rab follow directly from a theorem by Gidas­

Ni-Nirenberg (cf. [GNN]). 

Let us now assume that r 
wE 1Rab for some a'b > 0 • The 

fixecl. pOint set of a reflection '[ E r ab is a horizontal or a 

vertical line in R2, and therefore it is not only a geodesic 

but also a curvature line. Under F it is therefore mapped 

onto a planar curve c~ in E3 • Because of the fundamental 

existence and uniqueness theorem the immersed surface is 

symmetric w.r.t. the plane which contains c
T 

and is perpen­

dicular to the surface. Hence we obtain a homomorphism 

3 
\f ab : r ab -> Isom(E) which coincides with Xw on the finite 

index subgroup r b n A I and in fact the immersion F is equi­a w 
variant under rab with respect to ~ab' 

Since rab preserves curvature lines, we have proven: 
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1.7. PROPOSTION: 

wE mab descx>ibes a tox>us, i. e. lies in m*, iff alZ A1-

A2-cux>vatux>e lines close up, ox> equivaZently if! the planap 

A1-aupvatux>e line c,: s ~> F(s,O) and the pZanap A2-CUP­

vatux>e Zine c 2 : t 1--> F(O,t) both close up. 

This is easily made explicit in terms of OJ using a 

standard fact on Coxeter groups: 

the planar curve c. 
) 

closes up, iff either e. E (Q\Z) • 1£ or 
) 

(* ) and p. = 0 
) 

; j = 1,2 

Here we have made use of the following quantities: 

i) the angle a . 
J 

between two consequtive symmetry planes 

perpendicular to c j , i.e. the angles~ 

a 
e 1 = ~ (F t (0, 0) , F' (a, 0 }) = J sinh w (s I 0) ds , 

o 
(1.5) 

b 

ii) 

6 2 = J:; (F{O,O) ,F(O,b» = I cosh til (O/t) dt I and 
o 

the oriented distance function between such a pair 

of planes, which is defined in case the planes are parallel. 

It is given by: 

( 1 .6) 
P 1 :::: e -OJ (c I O) • <: F I (0 I 0) , F (a, 0) - F (0 1 0) > 

P 2 ::: e -OJ ( 
0 

I O) • <F (0,0) ,F (O I b) - F ( 0 , 0) > 

REMARKS: 

i) The fact that we are working with a reflection group 

fab and a homomorphism ~ab into ISom(E3) implies 
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directly that 61 € Z • 11 or e
2 

E Z • 11 , i.e. that at 

least one pair of symmetry planes is parallel. 
D r 

In case wE mab c mab ' it is clear from the above for-

mula that 6
1 

=0 • 

iii) Wente has given a different closedness argument. His 

reasoning is based on the fact that 

curves s \--> F (s f ( n + ~) b ), n E Z , 

for W E mD", the 
ab 

lie in planes tangen-

tial to the immersed surface. Along the same lines one can 

prove that for these more special solutions w the curves 

t \--> F ((n + ~ ) a, t) ; n E Z , lie on unit spheres which are 

tangential to the immersed surface. Moreover, if the sur-

face closes up, all these spheres must coincide. 
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2. EXPLICIT SOLUTIONS OF THE SINH-GORDON EQUATION: 

In this section we shall classify all real-analytic 

solutions 2 w : R --> R of the following overdetermined 

system: 

AW + sinh W • cosh w = 0 
(2. 1 ) 

sinh w • w' - cosh W • WW J = 0 

Actually by elliptic regularity w is automatically 

real-analytic, once it is assumed to be locally bounded 

and measurable. 

We were lead to the second equation basically for geometric 

reasons; it is precisely the condition that all A,-curvature 

lines of the corresponding H-surface are planar curves (cf. 

formulae 1.4). It will lead to explicit solutions of the sinh-

Gordon equation; it induces a separation of variab~es and 

reduces system 2.1 to solving ordinary differential equations. 

Likewise we could have asked for planar A2-curvature lines and 

supplement the sinh-Gordon equation with 

(2.1-.ii)' cosh w • w I - sinh w • ww I = 0 

instead of equation 2.1.ii. We shall give the corresponding 

results in section 3 i however, in section 4 it will turn out 

that none of the corresponding H-surfaces is compact. 
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To analyse system 2.1, we first consider the function 

W = cosh OJ and look for real-analytic solutions of the 

following system: 

(W2 - 1) • t::. w - W • I 'i/ W ,2 + W. (W2 - 1) 2 = 0 

(2.2) 

(W
2 

- 1) • W' - 2W· W • W' = 0 

2.1. THEOREM: 

The peal-analytic solutions 2 
W : R -+R of system 2.2 

ape ppeciseZy the functions given by 

(2.3) 

where s 1--> f (s) and t 1--> g (t) are mepomopphic 

functions of one vapiable which solve 

f,2 f4 2 
= + (1 +c-d) f ... c 

fn = 2f3 + (1 +c-d) f 
(2.4) ·2 4 (1-c+d)g2 + d 9 = 9 + 

., 
2g3 + (1-c+d)g 9 = 

fop some constants c,d € R • 

MOP80Ver, f and 9 can be recovered from W by 
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WI = - f (s) • (W2 - 1) 

W = - g (t) • (W
2 

- 1 ) 

except when w2 
== 1 

, 

The proof of this theorem and all the following results will 

be deferred to the end of the section. 

REMARKS: 

i) When w2 
== 1 , then clearly (1 +c-d) 2 - 4c = (1-c+d) 2 - 4d = 0 

ii) The second order equations for f and g in 2.4 

cannot be dropped, since they exclude certain enveloping 

solutions of the first order equations. 

iii) We point out that W = ±1 at the poles of f and g . 

The theorem will be proved by purely local calculations, 

and we see that in fact anx germ of a real-analytic 

solution W of system 2.2. extends uniquely to a 

globally bounded solution defined on all of R2 . 

The functions s ~> W(s,t) can be viewed as a family 

of elliptic functions parametrized by the elliptic curve deter-

mined by g. 

2.2. PROPOSITION: 

Let fig and W be as in Theopem 2.1. Then W is a 

sorution of the fo!!owing fipst opdep diffepential 

equation8: 



- 18 -

W,2 (wl-1) . 
( 1+

C

g 2 
2 (w - · r = - (1 +g ) ~) , 

(2.6) 

-2 (W2
-1) • (--L - (1+f2) (W -~ n w = 

1 +f2 1 +f2 

It remains to characterize the solutions W which arise 

as cosh w for somereal-anlytic solution w of system 2.1. 

Clearly W ~ 1 , and hence c = a 2 ~ 0 and d = 13 2 ~ 0 (c. f. 2.6). 

2.3. THEOREM: 

i) There exists a two-parameter family of peal analytic 

solutions w of system 2.1 which is defined on 

(2.9) 

l' = {(a, 13) E R2 I a, f3 ~ 0 and a + f3 ~ 1} by means of 

the equations: 

(2.7) coshw 
2 2 -1 • 

= W = (1+f +g) • (f'+g) , w(O,O) ? 0 

w ' = - f (s) • sinh w 
(2.EH . 

w = - g (t) • sinh w 

whepe f(s) and g(t) are the elliptic functions 

determined by: 
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ii} Conversely, if w is any real-analytia solution of 

system 2.1, then w is gZobaZ Zy bounded. I w I 
aahieves its maximum, and up to a transZation w or 

- w is contained in the above famiZy. 

Observe that the ambiguity of arccosh in a neighborhood 

of a zero of w is fixed by equations 2.8. 

We shall briefly discuss the special solutions on the 

boundary aF of the parameter space. It is easily checked that 

the trivial solution w == 0 corresponds to the whole segment 

a + 13 = 1, a, 13 ;;: 0 in of. The rays a = 0, 13;;; 1 and 

B = 0, a ~ 1 parametrize solutions w which are one-dimensional 

in the sense that they either depend only on t or only on s . 

They describe the two types of Delaunay surfaces mentioned in 

section 1. 

For the sake of simplicity let us now assume t~at a,B> 0 

and a + B > 1 • The sualitative behaviour of f depends in 

a crucial way on the question whether the quartic 

f4+ (1+a2,_a2)f2+ex2 has real zeroes or not. In fact, on the 

real axis f qualitatively resembles the functions tan , 

tanh , or sin, when B > a + 1 , B = a + 1 ,or B < CL + 1 , 

respectively. Another way to express this difference is the 

following: Since ex to, we can speak of the smallest positive 

zero a = a(a,B) of f. When B > a + 1 (B < a + 1) , then 

a(ex,S} is a half period (resp. a full period) of f . On the 

borderline B = a+ 1 the function f has no positive zero and a =+00 . 
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A similar statement holds for the smallest positive zero 

b = b(a,B) of g. 

Finally we should point out that on P the lattices of 

f and g viewed as elliptic functions defined on re are 

completely unrelated. In fact, one choice for the cross-ratios 

for f and g is: 

and 

2.4. PROPOSITION: (see Fig.3) 

Suppose that a, f3 > 0 and a + f3 > 1 • 

i} E:ccept when I a - B I = 1 , the so l.ution w is invariant 

under the reflection group fab with a and b as 

above. (notation as introduced in section 1). 

i1) If I a - B I < 1 , then the connected components Of 

{ (s, t) E R2 I w (s, t) '" o} are pectangZes; mope preaise Zy 

o 
wE lllab with a and b as above. Otherwise 

13 ~ a + 1 op a.;;; f3 + 1 • and the comp l.emen t of the noda Z 

set of w consists of horizontal or vertical. strips, 

pespeatively. 

iii) The strip pO = { (a, f5) E P II a.-B I < 1} around the diagonal. 

in the parameter spaae is mapped diffeomorphically onto 

o 2 -2 -2 -2 the Bet n = {(aotb
O

) E R+ a O + b O ~ if } • This set 

aontains the edgelengthsof all rectangles whiah 
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can arise as a conneated component of the aomplement 

of the nodal set fop a soLution w of the sinh-Gopdon 

equation 1.2. 

Part iii) of this proposition asserts that we have not 

lost any rectangle, when imposing the additional condition 2.1.ii 

in the beginning of this section. In fact, the subfamily parame­

trized by I'D is just the family of "Dirichlet solutions" which 

bifurcates away from 0 along the curve of rectangles with 

-2 -2 -2 a O +bO =n • This gives a natural interpretation to the loss of 

uniqueness which we encountered in our parametrization for cr+S=1. 

Delaunay surfaces 
with meridean ~ 

nodal set 
'" U lines t'" const. 

''0 "horizontal" lines 

Pig.3 

E lIIf 
W ab 

nodal set 
= U lines s'" const. 
;: "'vertici;ll" lines. 

FIGURE 3: the different pieces of the parameter space P . 
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PROOF of Theorem 2.1: 

Step 1: a real analytic function 2 
W : R -> R solves system 

2.2, if and only if there exist meromorphic functions 

f and g of one variable only such that equations 

2.3 and 2.5 hold. 

Let us first consider the case when w2 ;. 1 • Then equations 2.5 

are just the integrated version of 

i.e. of equation 2.2 ii • Equation 2.3 merely restates 2.2i in 

terms of f and g using equations 2.5. 

In case W2
!E 1 , the only condition which is not a priori 

empty is equation 2.3. It is then a condition on f and g 

and leads to ordinary differential equations f' = W· (ct + f2) 

and g = W • (e + g2) with 0: + f3 = 1 • These are clearly 

solvable. Hence we have not excluded the case w2 ;;; 1 when 

passing from system 2.2 to the equations 2.3 and 2.5. 

Step 2: equations 2.3 and 2.5 imply that with suitable con­

stants c and d, we have: 

fit = 2f3 + c . f 
(2.4) I 

.. 2 3 -d g = g + .g 

Hence f and g are elliptic fUnctions. 

Substituting W into equation 2.5i yields: 
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(2.10) 
fH 

:: f .. 

Multiplying with 2f' and integrating w.r.t. s, we obtain 

with a suitable constant k(t) 

We multiply the above equations with 1 +f2+(;l and f, 

respectively, and add them up: 

For fixed t this is just the claimed differential equation 

for f. Since f does not depend on t, we can in fact 

pick any of the values of 1 + g2 tt) + k(t) for c " The 

differential equation for 9 follows similarly. 

Ster:? 3: The equation (2.4)* have first inte~rals: 

ff 2 :: f4 + - f2 c • '*' c 
(2.4)" 

-2 g :: 9 4 + (f ,.. 92 ... d 

Moreover any solution to (2 .. 4') and (2.4)*' defines a r~al-

analytic function W 2 R by means of formula 2.J .. . R -> . 

Claim: These functions f/9 and W obey equations 2 .. 5, 

if f and 9 solve equations 2.4 .. 
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We insert formulae (2.4 1
) and 2.4") into equation (2.10). 

It follows that equation 2.5i is equivalent to: 

(2.11i) o = (c + d - 2) • f • g2 + (d - c + C - 1) • f 

Similarly equation 2.5ii is seen to be equivalent to 

(2.11ii) o = (c + d - 2) • f2 . g + (c - d + d - 1) • g 

This proves the if-direction in the claim. In order to obtain 

the only-if part as well, let us first assume that W ~ 0 • 

Then we may further on assume w.r.g. that g is not a constant. 

If moreover f does not vanish identically, then it follows 

from equation 2. 11i that c = 1 + c = d and 0'= 1 - c + d 

If f EO, then equation 2.1 ii yields d = 1 - c + d ; the claim 

follows, since c can be mOdified arbitrarily. We point out 
, 

that in this case c must be aero. The remaining case 

W!!! 0 is even easier: equations 2.5 directly imply that 

f !!! g = 0 , hence c::: d = 0 , and both c and d can be chosen 

arbitrarily. 

PROOF of PropoSition 2.2: 

It is sufficient to prove formula 2.6i. Because of 

formula 2.5i we must compute that 

• 
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(2.12) (1+g2) (W_~)2 
1 +g 

For this purpose we multiply equation 2.3 with 

. 
fl -g I 

and obtain: 

Equation 2.12 follows when collecting terms, using 2.4 

once more. 

PROOF of Theorem 2.3: 

i) We recall that system 2.2 follows from sy.stem 2.1 when 

substituting W = cosh w • Conversely a real-analytic 

solution W of system 2.2 which is i: 1 defines a 

solution w of the original system. A little care is 

necessary at the places where W = 1 • Since the func-

tions f and 9 in theorem 2.2 have only simple poles 

with prinCipal parts (s~ - s)-1 and (t~ - t)-1 I it 

follows from equations 2.5 that the solution Vi can 

take the value +1 only with multiplicity 2, except 

when w. 1 • Hence a solution W which is > 1 at some 

• 
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point is ~ 1 everwhere, and moreover there is no 

problem with the function arccosh being well-defined. 

We see that w can have only simple zeroes, provided 

w ~ 0 , and equations 2.8 merely restate fo~mulae 2.5 in 

the variable. The claim follows, since 

W (0,0) ::: Ct + S ~ 1 and W e 1 for Ct + S ::: 1 • 

ii) It is sufficient to show that for any real-analytic 

solution W ~ 1 which is not identically 1 the func-

tions f and 9 must have zeroes 

Let us first show that f must have a zero So . We 

view equation 2'.5i as a Riccati equation for the bounded 

functions s ~ W(s,t) . It follows that f cannot be 

bounded away from zero uniformly on R., If f had no 

zero at all, we could hence conclude from equation 2.4i 

that c::: 0 and d ~ 1 • passing to the limit f -> 0 the 

condition W ~ 1 
• 2 

would give g:! 1 + 9 so that d;;: 1 

because of 2.4ii1. Combining these inequalit,ies, we 

would get 2 • 2 
f J = f and 9 = 1 + g , hence W e 1 I the 

desired contradiction. 

Let us now suppose that f had only zeroes with ft 

negative. Since all poles of f have principal parts 

(s - s) -1 , we conclude that f is monotone decaying with 
00 

one zero only. But then W must become singular because 

of the Riccati equation 2.5i, again a contradiction. 

The same arguments apply to g, hence the proof. 

• 
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PROOF of Proposition 2.4: 

i) .& ii) One can easily see from formula 2.8 that w is 

even at all zeroes of f and g and odd at all poles 

of these functions, hence both the claims. 

iii) First let us analyse the map 

(2.13) 

(2. 14) 

D D 2 
P -> R C R+ ' (a,S) l--> (a (CI.,f3) I b(CI.,I3}) . It will 

be convenient to parametrize I'D as follows~ 

a = m+o , B = m-o 

The mapping is then given by: 

QG 

a(m+o,m-o) = J dx 

- 00 

00 

b (m+o,m-o) = J 
_ 00 

dy 

~ 4 i (m-o) (1 +y ) + (1-4mo)¥ 

CIa oa Clb 
It follows that am' 36 I and am are all less 

db than zero, whereas a8 > 0 . Hence the map (a,b) 

is injective on I'D and has maximal rank. To prove 

that its image is all of RD, it is sufficient to 

know the following limits and boundary values: 
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1Tlj~+o b nl ji - 6 for 1 a == I 
:::: m :::: 2" 

a ... 0 b ... 0 for m-+ 00 I 

(2.15 ) 

a ... + QO b ... nlj~+ m for o ... 1 
-'2 

and "'Tf//~+m b-++ro for IS -+ 1 a 2" 

It remains to show that on rectangles greater than those 

parametrized by aD there exists no positive solution of the 

sinh-Gordon equation 1.2 with zero boundary values. Note that 

w can be viewed as the first Dirichlet-eigenfunction of the 

linear operator _ 1l'1' _ sinh w • '1' • This operator is bounded 

from above by - 6'1' - 'P ; the claim follows since Al for 

this operator is known on rectangles. 

• 
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3.) THE SECOND FAMILY OF EXPLICIT SOLUTIONS 

Th~s time the starting point is the system 

A We + sinh w • cosh w ::: 0 
{3. 1 } 

cosh w • 00' - sinh We • ww' = 0 

The discussion begins completely analogous to what has been done 

in section 2; only sinh and cosh are interchanged, and 

hence a couple of signs will be different. 

The substitution W = sinh w yields 

(3.2) 

::: 0 

3.1. THEOREM: 

The peal sol-uti-ons W: a2 
--+ R of system 3.2 ape ppeci.sely 

the functions given by: 

(3.3) 

whepe s ~ f (s) and t ~ 9 ttl ape peal-vatued functions 

of One vapiable whiah solve 

2 £4 2 
- ff ::: + (1+c-d) f + c 

_ ft, ::: 2£3 + (1 +c-d) f 
(3.4) -2 4 (1-C+d)g2 ... 9 ::: 9 + + d 

.. 293 + (1-c+d) 9 ... Sf == 
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f01" some constants c,d S 0 . 
M01"eove1" f and g can be 1"e cove 1"ed f1"om W by 

W' :;; - f(s) • (W2 + 1) 
(3.5) • (W2 +1) W = - g (t) • 

The proof is almost the same as for theorem 2.1, except 

that the special case W2 • 1 has no counterpart. On the other 

hand we have encountered the conditions c,d S 0 when requiring 

that the equations 3.4 have real-valued solutions f and g. 

3.2. PROPOSITION: 

If f,g, and W a1"e as in Theo1"em 3.1, then: 

W,2 = (W2+1) • ( -c 
1+g2 

_ (1+g2) (W-~)) 
(3.6) 

·2 
(W

2
+1). ( ~ - (1+f

2
) (Vi -"'~}) W :: 

1+f2 1+f2 

Since sinh: R ... R is a diffeomorphism there is no 

problem in translating back to the original variable w • 

Equations (3.5) become: 

w ' :;; - f (s) • cos h w 
(3.7) 

• 
W :: - g tt) • cosh w 
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The normalization to f (0) :::: 9 (0) :::: 0, f I (0) ::; il ~ 0 

9'(0) = 13~0 , i.e. 2 
c = - a and 2 

d = - 13 is also easy. 

It follows directly from the fact that both f and 9 

oscillate around o. 

The analogue of Proposition 2.4 becomes just as easy as 

that of Theorem 2.3: for all il,l3 > 0 the solution 

r \ D w :::: arcsinh W lies in mab lab where a = a(a,l3) and 

, 

b = b{a,el again denote the smallest positive zero of f and 

g , respectively. 

Note that the axis a = 0 or 13:::: 0 again parametrize 

Ilone-dimensional" solutions, the Delaunay surfaces. 

• 
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4.) GEOMETRIC INTERPRETATION OF THE SOLUTIONS w 

In this section we shall concentrate on the family of 

solutions to the Sinh-Gordon equation which has been construc-

ted in Theorem 2.3. We shall refer to it as family A in the 

sequel. Some of our results wiil have no analogue for the 

H-surfaces obtained from family B, the explicit solutions 

given in section ~. For instance, the latter family contains no 

closed H-tori, whereas family A does. In fact, the evaluation 

of the closedness criterion is a major goal in this sect~on . 

To begin with, we carry out one more integration in the 

Frenet equations for the families of planar curvature lines. 

In case of family A these are the A 1 - curvature lines, and 

we conSider the functions 

tp ( s , t) :::: 1: (F I (s, t), F I (0, t) ) and 
(4.1) 

U(s,t)::: costp(s,t) =e-w(s,t)-<J.l(O,t). <F'(s,t),F'(O,t} > • 

4.1. LEMMA: 

(4.2) 

(4.3) 

a • U = (1 +g2) • W - g 

U,2:::: (1+g 2 )-1.(1_U 2). «o,u+g)2 _ (1+g2)2) 

62 ::: (1+f2 )-1. (1-U2 ) • «SU+f,)2 _ (1+f2)2) 
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PROOF: Clearly q>1:: IF'I • K1 :: A+g2. sinhw :: A+g2 ·/W2-1 

Hence we obtain, using formula 2.6: 

dq> 

dW 

Formula 4.2 follows by integration, checking that 

W (0, t) :: 

Formulae 

. 
~ 
1+g2 

(4.3) 

and U{O,t} :: 1 by definition. 

are just restatements of equation 2.6. 

4.2. DESCRIPTION OF THE H-SURFACES WITH PLANAR , 
A1-CURVATURE LINES: 

i) the ang'le between the nOr'maL vector' N .. on the supface 

• 

and any plane containing a A1-cupvatups 'line is constant 

along this cupve: The tangent of tl~i$ angle is the furwtian 

g which has been introduced in sec Lien 2 for p~!'eLy 

analytical peasons. 

ii) When f3 > ct + 1 , then e 1 ::: 'IT and 01 < 0 (see (1. e ))ex.:ept when 

ct :: O. The A1-curvatupe lines look Like a sequence of 

the letter t; one should imagine that the cir'cLes of 

the DeZaunqy suplace buvst Zike this, when one tvies to 

bend the surface. 
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iii) When 8 < a. + 1 , then 6 1 :: 0 and the tangent veator 

of a l 1-aurvatupe line osaillates around the normal 

o'n a symmetry plane, interseated perpendiau larly by the 

aurvature tine. The amplitude in angle is less than 

~ . The only alosed planar curves have the shape of 

a figu'J.'e 8. 

iv) When 8 < a. - 1 , then the tangent veator of the A1-

aurvature tines s 1-> F (s, (n + ~) ·b) , n E Z , remains 

in a fixed open halfspaae; its ppojeation onto 

F' (0, (n +~) ·b) is positive everywhere. Therefore none 

of the planar A1-curvature lines aan alose up. 

v} In order to get an immersion with closed planar A1-

aurvature tines, it is necessary that either a. = 0 

(~ Delaunay 8urfaaes) Or that (0.,8) lies in the open 

diagonal strip I'D • 

PROOF: i) this follows directly from formulae 1.4 and 2.8. 

ii,iii) We use the lemma. By a homotopy argument it is suffi­

cient to consider only those A1-curvature lines s 1-> f(s,t) 

for which g(t) :: 0 and gft) = 8 • Then the quartic on the 

right hand side of equation 4.3i has zeroes: 

8-1 -1 , 1 , - a I -

It follows that for 8 < a + 1 , the function U = cos <P 

1-8 oscillates between and 1 , hence claim iii)., In case a 
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B > ex + 1 we see that e 1 = 'IT and U oscillates between 

-1 and 1 • In order to see that p 1 < 0 I we compute: 

I ~~ I = I ~: f = 

j 2 1 -2w Now it is sufficient to observe that K 1 = 1 + g . '2 (l-e ) 

is positive and monotone decreasing in s on [O,a] . 

iv) The hypothesis S < ex - 1 implies that the quadric 

G2 
+ (1-a2

+S
2 )G + S2 has a smallest positive root G in 

the interval (O,a-l). Hence the function 9 must oscil­

late between - fG and + fG I taking its. extremal values 

for 1 t = (n + '2) • b , n E Z . Inserting this information into 

equation 4.3i , we see that U' vanishes if and only if 

U = ± 1 
1 or U = ± - • (G + 1) . Since U (0) = 1 , it is now 
a 

clear that U oscillates in the interval [~(G + 1) , 1] . 

In particular I U remains posi ti ve everywhere. "The claim 

now follows from the definition of U and from 

Proposition 1.7. 

v) This statement essentially summarizes information contained 

in the previous parts of the lemma. Only the boundary of pD 

in the parameter space P has to be considered in addition. 

When S = ex + 1 , the curvature function of the A1-curvature 

lines is not periodic (since f (s) = ra · tanh ra s) , and 

the case a = a - 1 can be included as a limit of the 

argument given in iv). 

• 
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For (a., 6) E I'D , the function g has poles, and 

hence there are special A1-curvature lines which lie in planes 

tangential to the surface. It turns out that closedness of 

the A1-curvature lines, i.e. the condition P1 = 0 , can be 

easily checked for these "singular" A1-curvature lines. It is 

a straightforward computation, using formula 2.9, to pass to 

the limit g-+oo in equations (4.2) and (4.3i): 

(4.4) 

, 

where 1 + q = 210. U~2 - (a.-1) 2) , which is twice a crOSS ratio 

of f. Recall that IF'I = 1 along these special curvature 

lines. So they are up to congruence uniquely determined by 

the function UQI) = cos lPoo • Observe that 9 E (-1,1) since 
D we have restricted ourselves to (0.,6) E P . 

4.3. LEMMA: 

Ctosedne$8 of the A1-CUl'Vatul'e tines is a condition on q, 

i.e. on the confol'mat type of the lattice of the elliptic 

function f : 

1 

(4.S) o = J UdU 
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This equation de termines a unique q E (0,1) ,which 

is approzimately 0.652229 ••. 

The above reasoning showes that the right-hand side of 

formula 4.5 is just 1 -12& 2 
times the quantity 

in fomula 1.6. This explains the lemma. 

introduced 

In fact, the special A
1
-curvature lines enjoy a nice geo­

metric property: 

4.4. PROPOSITION: 

All A1-cuX'vature lines (of famiZy A) which lie in a plane 

tangential to the H-surface are elasticae, i.e. critical 

points of the absolute squared curvature functional 

F (c) ;: f I K (s) \2 ds 
c 

PROOF: We shall compute that 

Since on these curves s is indeed arclength, we have thus 

verified the Euler equations of F in the plane (c.f. [LS]). 

Here a is a scaling parameter whereas q determines the 

shape of the curve. 

Clearly we have K1 ;: ~' • Therefore: 

U,2;: 2a.(U + q) 
<lO <10. 
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and formula 4.6 follows directly from equation 4.4. 

• 

It remains to investigate, when the A2-curvature 

lines close up as well. Using Proposition 2.2 and Theorem 2.3, 

we see that the functional 8 2 , introduced in formula 1.5, 

becomes: 

Le. 

00 

-00 

(4.7) 

a+B 

f 
a-B 

b 

W (0, t) dt:: J 
o 

for 

for 

a<f;3+1 

a>i3+1 

We recall that in the interior of the parameter space P 

the set 

(4.8) 

p = 0 1 is given by the hyperbola: 

222 
f;3 = (a + q) + 1 - q , 

where q is as in Lemma 4.3. This curve clearly lies in the 

strip a < e < a + 1 ; it begins at the point (a, S) :: (0,1) • 
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LEMMA 4.5: 

i) 6 2 is monotone increasing along the curve P1 = 0 • 

ii) 62 (0,1) = n 

iii) 1 im 62 (a, a'" e: ) = 2 n ,u n if 0 rm Z. y f 0 l' e: € [ 0 I 1 ] 
(1+0::> 

PROOF: 

and 

i) From formula 4.7 we calculate that for f3 > a 

a 6 = J 
a(1 2 ~ 4 2 2 2 i

3 

a + ~ e aa as 2 

g + (l-a + f3 ) g + f3 

(lO 

= J g2+S· (a-a) 

-00 /g4+ (1_a2+f32)g2+f3213 

> 0 

> 0 

The tangent vector of the curve P = 0 1 is a conve~ comb ina-

a () a 
tion of aa and aa + as 

iii) Since the factor ~4 2 2 2' al 9 + (1+2ae: + e:- )9 +(a+e:) 

in formula 4.7 converges monotonically to 1 for 

Cl --> 00 I it is clear that 

lim 62 (a,a+e:) 
a+oo 

-<X:> 

Uniformity in e: follows from the inequality: 

• 
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We summarize the above discussion (recall that 1..1 < "2 by 

convention): 

4. 6. THEOREM: 

For any suah that 1 _. 6 
21T 

is rationaZ there 

exists precise'ly one torus with H;: 1/2 , p l.anar 

A1-curvature lines, and 62 = e . These are ill immersed 

tori in E3 with H;: 1/2 and planar "1-cupvature 'lines. 

It follows that the index of the deck transformation 

group in A I the invariance group of the curvature functions, w 
is always ~3 • In this sense the simplest possible H-torus 

in E3 has 62 = i · 2TI • We shall depict this torus in Fig. 5. 

Not only the pictures look pretty non-standard. It is a 

matter of fact that this immersion of a torus into E3 is not 

regularly homotopic to a standard immersion. This follows 

directly when counting the number of twists for strips around 

curves representing a homology basis. (cf. [PIN]). 

Finally we point out that Lemma 4.1 and Proposition 4.2 

carryover to the second family of solutions with planar "2-

curvature lines. It will turn out that 62 = 1T and the "2-

curvature lines look like a sequence of the letter ~ - i.€. 

except when they are the circles of a Delaunay surface. 

4.7. COROLLARY: 

In Theorem 4.6 we have in fact cZassified aZl H-tori 

with one family of pZanc:u" CUl"Vature Zi.n(~8. 
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Fig. Sa 

Fig.Sb 

Fig.50 



- 43 -

Fig.5d 

FIGURE 5: curvature lines on the constant mean curvature 
2 torus with e = "3 • 21T 

a-c) top, side, a"nd bottom view of the cylindrical piece 
parametrized by an appropriate fundamental domain 
of the corresponding solution w • It is a cylinder 
over a planar figure 8, which changes its shape. 

d) skew parallel projection (like in Fig.5b) of the 
full torus which is glued from 3 congruent cylindri­

cal pieces. All non-planar A2-curvature lines have 
been suppressed; whereas all self-intersection lines 

have been included. 
For a more schematic view compare Fig.1a. 
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Fig.6a Fig.6b 

FIGURE 6: two more examples show how the planar A2-curvature 

line in the central symmetry plane and the self­

intersection line in this plane can look. When 

compared with Fig.1 and Fig.S these examples 

illustrate how the global picture of the H-torus 

jumps when changing the angle parameter e; the 

fundamental cylindrical pieces (cf. Fig.Sa-c}) 

nevertheless vary smoothly. 
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5. ON THE SPECTRUM OF THE LINEARIZED SINH-GORDON EQUATION: 

In this section we consider for an arbitrary function 

D 
wE mab the linearized operator: 

Lw (<p) ::::: - l\<p - cosh (2w) • <p 

We are interested in the Dirichlet spectrum of Lw on the 

rectangle Our basic tool will be the 

domain dependance of the first Dirichlet eigenvalue 

11.1 (Lw ' Q) • We shall consider the half-rectangles 

R 11 
ab = o ~ , 0) x (- ~ , ~) , R12 

ab 
:::: (o,~)x0~/~) 

R21 
ab 

:::: o ~ , ~) x (- ~ , 0 ) , R22 
ab 

:::: 0~/;)x(-o ,~) , 

and put 

A = 11.,( Lw' ~~) :::: A1(Lw'R!~) hor 

Avert 
:::: 1.1 (LwI R!~) = A1(Lw'R!~) 

Then 

:::: min { Ahor ' Avert } 
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is the smallest Dirichlet eigenvalue such that one of the 

corresponding eigenfunctions is odd w.r.t. at least one axis 

of the rectangle Rab 

5.1. PROPOSITION: 

i) Aodd > 0 

ii) A1 (Lw,Rab) < 0 , i.~. w is an unstable 

PROOF: 

i) 

ii) 

solution of the sinh-Gordon equation: 

Since -/). w _.1. sinh 2w :;: 0 I it is clear that 
2 

L (w') :;: 0 • Considering the nodal set of WI we 
W 

see that Ahor > Al (Lw' (- a,O) x (-~, ~)) :;: 0 

Similarly we prove that At> 0 • ver 

This follows from the inequality L < P w w 

p {tp} 
w 

sinh 2w = - /). c.p - 2w • tp 

Notice that A,1 (P to ' Rab) = 0 ! 

, where 

• 
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5. 2' e' THEOREM: 

If A < Aodd is a Dil'ich let eigenvalue of Loo on Rab , 

then the cOl'l'esponding eigenspace E(A} is 1-dimensional. 

Especial.l.y, dim ker L ~ 1 • 
00 

We shall establish two lemmas first. 

5.3. LEMMA: 

Let ~ be an eigenfunction of Lw with eigenvalue A. 

Suppose that one component C of {(s, t) E Rab I <P (5, t) :f O} 

is contained in one of the foul' haZf-l'ectangZes 

01' 

Then A ~ Aodd > 0 • 

This follows directly from Proposition 5.1i and the domain 

monotonicity of Dirichlet eigenvalues. It is an easy corollary 

that all Dirichlet eigenfunctions with eigenvalue A <: Aodd 

must be even w.r.t. both axes of the rectangle Rab 

5.4. LEMMA: 

Suppose that <p is a Dipichlet eigenfunction of Lw 

with eigenvalue ,,<: "odd • Then tp does not change sign 

in a SUfficiently small neighbol'hood U of cRab 
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PROOF: 

Let us assume conversely that there are components c+ 

and C of the sets {(s,t) E Rab I q>(s,t) < o} resp. 

{(S,t) I q>(s,t) > o} which touch the boundary. By symmetry 

we may assume moreover that both C+ and C intersect 

the right upper quadrant [0,;') x [0 ,~) . It follows from the 

Jordan curve theorem that one of the components C+ or C 

must lie entirely either in the half-rectanle R!~ or in 

. Lemma 5.3 therefore yields the contradiction \ ~ Aod..i . 

PROOF of the'theorem: 

Suppose that there are two linearly independant eigen­

functions (j),tP E E()') • A well-known argument based on the maxi­

mum principle shows that the normal derivative dV(j) vanishes 

nowhere on the boundary aRab except at the four corners 

(cf. [GNN]) • Since by Lemma 5.4 none of the linear combina-

tions 
t'V 

(j) - C • (j) , c E R I changes sign in a small neighborhood 

of the boundary aRab' we conclude that 

for a suitable constant Co E R • USing the maximum principle 

as above, we see that tP - Co • <p = 0 I a contradiction. 

• 

• 
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