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ABELIAN VARIETIES OVER FIELDS OF FINITE

CHARACTERISTIC

YURI G. ZARHIN

Abstract. The aim of this paper is to extend our previous results about

Galois action on the torsion points of abelian varieties to the case of (finitely

generated) fields of characteristic 2.

1. Introduction

Let K be a field, K̄ its algebraic closure, K̄s ⊂ K̄ the separable algebraic closure
of K, Gal(K) = Gal(K̄s/K) = Aut(K̄/K) the absolute Galois group of K.

Let X be an abelian variety over K. Then we write End(X) for its ring of
K-endomorphisms and End0(X) for the finite-dimensional semisimple Q-algebra
End(X) ⊗ Q. If n is a positive integer that is not divisible by char(K) then we
write Xn for the kernel of multiplication by n in X(K̄); it is well known that Xn

is free Z/nZ-module of rank 2dim(X) [9], which is a Galois submodule of X(K̄s).
We write ρ̄n,X for the corresponding (continuous) structure homomorphism

ρ̄n,X : Gal(K)→ AutZ/nZ(Xn) ∼= GL(2dim(X),Z/nZ).

In particular, if n = ` is a prime different from char(K) then X` is a 2dim(X)-
dimensional F`-vector space provided with

ρ̄`,X : Gal(K)→ AutF`
(X`) ∼= GL(2dim(X),F`).

We write

G̃` = G̃`,X,K

for the image (subgroup)

ρ̄`,X(Gal(K)) ⊂ AutF`
(X`).

By definition, G̃`,X,K is a finite subgroup of

AutF`
(X`) ∼= GL(2dim(X),F`).

If K(X`) is the field of definition of all points of order ` on X then it is a finite Galois
extension of K and the corresponding Galois group Gal(K(X`)/K) is canonically

isomorphic to G̃`,X,K . If K ′/K is a finite Galois extension of fields then Gal(K ′)
is a normal open subgroup of finite index in Gal(K) while X ′ = X ×K K ′ is a
dim(X)-dimensional abelian variety over K ′ and the Gal(K ′)-modules X` and X ′`
are canonically isomorphic. Under this isomorphism, G̃`,X′,K′ becomes isomorphic

to a certain normal subgroup of G̃`,X,K .

This work was partially supported by a grant from the Simons Foundation (#246625 to Yuri
Zarkhin).
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By functoriality, End(X) acts on Xn. This action gives rise to the embedding of
free Z/nZ-modules

End(X)⊗ Z/nZ ↪→ EndZ/nZ(Xn);

in addition, the image of End(X)⊗ Z/nZ lies in the centralizer EndGal(K)(Xn) of
Gal(K) in EndZ/nZ(Xn). Further we will identify End(X)⊗ Z/nZ with its image
in EndGal(K)(Xn) and write

End(X)⊗ Z/nZ ⊂ EndGal(K)(Xn).

If ` is a prime that is different from char(K) then we write T`(X) for the Z`-Tate
module of X and V`(X) for the corresponding Q`-vector space

V`(X) = T`(X)⊗Z`
Q`

provided with the natural continuous Galois action [13]

ρ`,X : Gal(K)→ AutZ`
(T`(X)) ⊂ AutQ`

(V`(X)).

Recall [9] that T`(X) is a free Z`-module of rank 2dim(X) and V`(X) is a Q`-
vector space of dimension 2dim(X). Notice that there are canonical isomorphisms
of Gal(K)-modules

X`i = T`(X)/`iT`(X) (0)

for all positive integers i. The natural embeddings

End(X)⊗ Z/`iZ ↪→ EndZ/`iZ(X`i)

are compatible and give rise to the embeddings of Z`-algebras

End(X)⊗ Z` ↪→ EndZ`
(T`(X))

and Q`-algebras

End(X)⊗Q` ↪→ EndQ`
(V`(X)).

Again, the images of End(X) ⊗ Z` in EndZ`
(T`(X)) and of End(X) ⊗ Q` in

EndQ`
(V`(X)) lie in the centralizers EndGal(K)(T`(X)) and EndGal(K)(V`(X)) re-

spectively. We will identify End(X) ⊗ Z` and End(X) ⊗Q` with their respective
images and write

End(X)⊗ Z` ⊂ EndGal(K)(T`(X)) ⊂ EndZ`
(T`(X)),

End(X)⊗Q` ⊂ EndGal(K)(V`(X)) ⊂ EndQ`
(V`(X)).

Similarly, if Y is another abelian variety over K then we write Hom(X,Y ) for the
(free commutative) group of all K-homomorphisms from X to Y . Similarly, there
are the natural embeddings

Hom(X,Y )⊗ Z/nZ ⊂ HomGal(K)(Xn, Yn) ⊂ HomZ/nZ(Xn, Yn),

Hom(X,Y )⊗ Z/`iZ ⊂ HomGal(K)(X`i , Y`i) ⊂ HomZ/`iZ(X`i , Y`i),

Hom(X,Y )⊗ Z` ⊂ HomGal(K)(T`(X), T`(Y )) ⊂ HomZ`
(T`(X), T`(Y )),

Hom(X,Y )⊗Q` ⊂ HomGal(K)(V`(X), V`(Y )) ⊂ HomQ`
(V`(X), V`(Y )).

Let

ρ`,X : Gal(K)→ AutZ`
(T`(X)) ⊂ AutQ`

(V`(X))

be the corresponding `-adic representation of Gal(K). The image

G`,X,K = ρ`,X(Gal(K)) ⊂ AutZ`
(T`(X)) ⊂ AutQ`

(V`(X))

is a compact `-adic Lie (sub)group [12, 13].
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Let d be a positive integer. We write Isog(X,K, d) for the set of K-isomorphism
classes of abelian varieties Y over K that enjoy the following properties:

(i) Y admits a K-polarization of degree d;
(ii) There exists a K-isogeny Y → X whose degree is prime to char(K).

For example, if d = 1 then Isog(X,K, 1) consists of (K-isomorphism classes of)
all principally polarized abelian varieties Y over K that admit a K-isogeny whose
degree is prime to char(K).

We write Isog(X,K) for the set of K-isomorphism classes of abelian varieties
Y over K such that there exists a K-isogeny Y → X whose degree is prime to
char(K). Clearly, Isog(X,K) coincides with the union of all Isog(X,K, d)’s.

The following statement was proven under an additional assumption that p does
not divide d by the author when p > 2 [18] and by S. Mori when p = 2 [8, Ch.
XII, Cor. 2.4 on p. 244]. (This is a strenghening of Tate’ finiteness conjecture for
isogenies of abelian varieties [16, 25].)

Theorem 1.1 (Corollary 2.4 on p. 244 of [8]). Assume that p := char(K) > 0 and
K is finitely generated over the finite prime field Fp. Let d be a positive integer and
X be an abelian variety over K.

Then the set Isog(X,K, d) is finite.

The finiteness of Isog(X,K, d) combined with results of [17] implies the Tate
conjecture on homomorphisms of abelian varieties and the semisimplicity of Tate
modules over K (see [18] for p > 2 and [8, Ch. XII, Th. 2.5 on pp. 244–245]).

Theorem 1.2 (Theorem 2.5 on pp. 244–245 of [8]). Assume that p := char(K) > 0
and K is finitely generated over the finite prime field Fp.

Then for all abelian varieties A and B over K and every prime ` 6= char(K) the
Galois module V`(A) is semisimple and the natural embedding of Z`-modules

Hom(A,B)⊗ Z` ↪→ HomGal(K)(T`(A), T`(B))

is bijective.

Remark 1.3. In fact, Theorem 1.2 follows even from a special case of Theorem
1.1 that deals only with principally polarized abelian varieties (i.e., when d = 1),
see Remark 3.12.

By Lemma 1 of [16, Sect. 1] the second assertion of Theorem 1.2 implies the
following statement.

Theorem 1.4. Assume that p := char(K) > 0 and K is finitely generated over the
finite prime field Fp.

Then for all abelian varieties A and B over K the natural embedding of Q`-vector
spaces

Hom(A,B)⊗Q` ↪→ HomGal(K)(V`(A), V`(B))

is bijective.

1.5. Let K be a field that is finitely generated over the finite prime field Fp and A
an abelian variety of positive dimension over K. Let ` be a prime different from p.
By Theorem 1.4 (applied to B = A) and Theorem 1.2, the Gal(K)-module V`(A)
is semisimple and

EndGal(K)(V`(A)) = End(A)⊗Q` = End0(A)⊗Q Q`.
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Since G`,A,K is the image of Gal(K)→ AutZ`
(T`(A)) ⊂ AutQ`

(V`(A)), the G`,A,K-
module V`(A) is semisimple and

EndG`,A,K
(V`(A)) = End(A)⊗Q` = End0(A)⊗Q Q`.

Let Q`G`,A,K be the Q`-subalgebra of EndQ`
(V`(A)) spanned by G`,A,K . It follows

from the Jacobson density theorem [6, Ch. XVII, Sect. 3, Th. 1] that Q`G`,A,K

coincides with the centralizer of End(A) ⊗ Q` in EndQ`
(V`(A)). It follows easily

that if Z`G`,A,K is the Z`-subalgebra of EndZ`
(T`(A)) spanned by G`,A,K then the

centralizer of End(A)⊗ Z` in EndZ`
(T`(A)) contains Z`G`,A,K as a Z`-submodule

of finite index.

2. Main results

The aim of this note is to prove variants of Theorem 1.2 where Tate modules are
replaced by Galois modules An and Bn. Most of our results were already proven
in [19, 30] or stated in [22] under an additional assumption p > 2. (See also [29]
where the case of finite fields is discussed.)

Throughout this section, K is a field that is finitely generated over the finite
prime field Fp.

Theorem 2.1. Let A be an abelian variety of positive dimension over K. Then
the set Isog(A,K) is finite.

Remark 2.2. A weaker version of Theorem 2.1 (where Isog(A,K) is replaced by
its subset that consists of abelian varieties that admit a polarization of degree prime
to p) is proven in [19, Th. 6.1] under an additional assumption that p > 2.

Corollary 2.3. Let A be an abelian variety of positive dimension over K. There
exists a positive integer r = r(A) that is not divisible by p and enjoys the following
properties.

(i) If C is an abelian variety over K that admits a K-isogeny C → A whose
degree is not divisible by p then there exists a K-isogeny β : A → C with
ker(β) ⊂ Ar.

(ii) If n is a positive integer that is not divisible by p and W is a Galois sub-
module in An then there exists u ∈ End(A) such that

rW ⊂ u(An) ⊂W.
(iii) For all but finitely many primes ` the Galois module A` is semisimple.

Remark 2.4. Corollary 2.3(iii) is proven in [19, Th. 1.1] under an additional
assumption p > 2.

Theorem 2.5. Let A be an abelian variety over K. Then there exists a positive
integer r1 = r1(A) that enjoys the following properties.

Let n be a positive integer that is not divisible by p and un an endomorphism of
the Galois module An. If we put m := n/(n, r1) then there exists u ∈ End(A) such
that both u and un induce the same endomorphism of the Galois module Am.

If A and B are abelian varieties over K then applying Theorem 2.5 to their
product X = A×B, we obtain the following statement.

Theorem 2.6. Let A and B be abelian varieties over K. Then there exists a
positive integer r2 = r2(A,B) that enjoys the following properties.
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Let n be a positive integer that is not divisible by p and un : An → Bn a ho-
momorphism of the Galois modules. If we put m := n/(n, r1) then there exists
u ∈ Hom(A,B) such that both u and un induce the same homomorphism of the
Galois modules Am → Bm.

Theorem 2.6 implies readily the following assertion.

Corollary 2.7. Let A and B be abelian varieties over K. Then for all but finitely
many primes ` the natural injection

Hom(A,B)⊗ Z/`Z ↪→ HomGal(K)(A`, B`)

is bijective.

Remark 2.8. Theorem 2.6 was stated without proof in [22] under an additional
condition that p > 2. Corollary 2.7 was proven in [19, Th. 1.1] under an additional
condition that p > 2.

Theorem 2.9. Let A be an abelian variety of positive dimension over K. Then
for all but finitely many primes ` the centralizer of End(A) ⊗ Z` in EndZ`

(T`(A))
coincides with Z`G`,A,K .

Remark 2.10. When K is a field of characteristic zero that is finitely generated
over Q, an analogue of Theorem 2.9 was proven by G. Faltings [3, Sect. 3, Th.
1(c)].

Recall that an old result of Grothendieck [10] asserts that in characteristic p an
abelian variety of CM-type is isogenous to an abelian variety that is defined over a
finite field. (The converse follows from a theorem of Tate [16].)

Theorem 2.11. Let X be an abelian variety over K. Suppose that for infinitely
many primes ` the group G̃`,X,K is commutative. Then X is an abelian variety of
CM type over K and therefore is isogenous over K̄ to an abelian variety that is
defined over a finite field.

Theorem 2.11 may be strengthened as follows.

Theorem 2.12. Let X be an abelian variety over K. Suppose that for infinitely
many primes ` the group G̃`,X,K is `-solvable, i.e., its Jordan–Hölder factors are
either `-groups or groups whose order is not divisible by `. Then there is a finite
Galois extension K ′/K such that X ×K K ′ is an abelian variety of CM type over
K ′ and therefore is isogenous over K̄ to an abelian variety that is defined over a
finite field.

Theorem 2.12 combined with the celebrated theorem of Feit-Thompson (about
solvability of groups of odd order) implies readily the following statement.

Corollary 2.13. Let X be an abelian variety of positive dimension over K that is
not isogenous over K̄ to an abelian variety that is defined over a finite field. Then
for all but finitely many primes ` the group G̃`,X,K is not solvable and its order is
divisible by 2`.

Remark 2.14. See [26, 28, 27] for plenty of explicit examples of abelian varieties
in characteristic p without CM.

Theorem 2.11 was proven in [20] under an additional assumption that p > 2.
Theorem 2.12 was stated without proof in [22] under an additional assumption
that K is global and p > 2.
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In order to state another (partial) strenghening of Theorem 2.11, we need to
introduce the following notation. IfA a commutative group then we write TORS(A)
for its subgroup of all periodic elements and TORS(A)(non− p) that consists of all
elements of TORS(A), whose order is prime to p.

Theorem 2.15. Let Kab ⊂ K̄s be the maximal abelian extension of K. Let X be a
simple abelian variety over K. If TORS(X(Kab))(non− p) is infinite then X is an
abelian variety of CM-type over K and therefore is isogenous over K̄ to an abelian
variety that is defined over a finite field.

Remark 2.16. In characteristic zero an analogue of Theorem 2.15 was proven in
[24, Th. 1.5].

Theorem 2.15 implies readily the following statement. (Compare with [24, Corol-
lary on p. 132].)

Corollary 2.17. Let Kab ⊂ K̄s be the maximal abelian extension of K. Let
X be an abelian variety of positive dimension over K. Let X1, . . . , Xr be simple
abelian varieties over K such that the product

∏r
i=1Xi is K-isogenous to X. Then

TORS(X(Kab))(non−p) is finite if and only if all the groups TORS(Xi(K
ab))(non−

p) are finite, i.e., all Xi are not of CM-type over K (1 ≤ i ≤ r).

Now we discuss the torsion of abelian varieties in infinite Galois extensions of K
with finite “field of constants”.

Theorem 2.18. Let X be an abelian variety of positive dimension over K such that
the center of End0(X) is a direct sum of totally real number fields. Let K ′ ⊂ K̄s be
an infinite Galois extension of K. Let F′ be the algebraic closure of Fp in K ′ and
suppose that F′ is a finite field. Then TORS(X(K ′))(non− p) is finite.

Theorem 2.18 is an immediate corollary of the conjunction of following two as-
sertions.

Theorem 2.19. Let X be an abelian variety of positive dimension over K such that
the center of End0(X) is a direct sum of totally real number fields. Let K ′ ⊂ K̄s

be an infinite Galois extension of K. If ` 6= p is a prime such that the `-primary
component of TORS(X(K ′)) is infinite then K ′ contains all `-power roots of unity.
In particular, the algebraic closure of Fp in K ′ is infinite.

Theorem 2.20. Let X be an abelian variety of positive dimension over K such
that the center of End0(X) is a direct sum of totally real number fields. Let us
choose a polarization λ : X → Xt that is defined over K. Let ` 6= p be a prime that
enjoys the following properties:

(i) ` is odd and prime to deg(λ);
(ii) The Gal(K)-module X` is semisimple and

EndGal(K)(X`) = End(X)⊗ Z/`Z.

If the `-primary component of TORS(X(K ′)) does not vanish then K ′ contains a
primitive `th root of unity. In particular, if F′ be the algebraic closure of Fp in K ′

then its order is strictly greater than `.

Remark 2.21. Let S be the set of primes ` that do not enjoy either property (i)
or property (ii). Then S is finite.
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The paper is organized as follows. In Section 3 we discuss isogenies of abelian
varieties and their kernels (viewed as finite Galois modules). One of the goals
of our approach is to stress the role of analogues of Tate’s finiteness conjecture for
isogeny classes of abelian varieties. In Section 4 we prove all the main results except
Theorem 2.12, which will be proven in Section 5. Section 6 contains additional
references to results that may be extended to characteristic 2 case.

Acknowledgements. I am grateful to Alexey Parshin, Chad Schoen and Doug
Ulmer for their interest in this paper. My special thanks go to the referees, whose
comments helped to improve the exposition.

The final version of this paper was prepared during my stay at Max-Planck-
Institut für Mathematik (Bonn) in September 2013: I am grateful to the MPI for
the hospitality and support.

3. Isogenies and finite Galois modules

We write P for the set of all primes. Let K be a field. Let P ⊂ P be a nonempty
set of primes that does not contain char(K). If X and Y are abelian varieties over
K then a K-isogeny X → Y is called a P -isogeny if all prime divisors of its degree
are elements of P . For example, if P is a singleton {`} then a P -isogeny is nothing
else but an `-power isogeny. We say that X and Y are P -isogenous over K if there
is a P -isogeny X → Y that is defined over K. The property to be P -isogenous
is an equivalence relation. Indeed, one has only to check that there exists a P -
isogeny v : Y → X that is defined over K. Indeed, thanks to Lagrange theorem,
ker(u) ⊂ Xn where

n := deg(u) = #(ker(u)).

It follows that there is a K-isogeny v : Y → X such that the composition vu : X →
Y → X coincides with multiplication by n in X. This implies that

n2dim(X) = deg(vu) = deg(v) deg(u).

Since u is a P -isogeny, all prime divisors of n belong to P . This implies that all
prime divisors of deg(v) also belong to P , i.e., v is a P -isogeny and we are done.

Let Xt and Y t be the dual abelian varieties (over K) of X and Y respectively
and

ut : Y t → Xt, vt : Xt → Y t

be the K-isogenies that are duals of u and v respectively. Since

deg(ut) = deg(u).deg(vt) = deg(v),

Xt and Y t are also P -isogenous over K. (Warning: X and Xt are not necessarily
P -isogenous!) This implies that if X and Y are P -isogenous over K then (X×Xt)4

and (Y × Y t)4 are also P -isogenous over K.
We write IsogP (X,K) for the set of isomorphism classes of abelian varieties

Y over K that are P -isogenous to X over K. We write IsogP (X,K, 1) for the
subset of IsogP (X,K) that consists of all isomorphism classes of Y with principal
polarization over K. For example, if P is P \ {char(K)} then

IsogP (X,K) = Isog(X,K), IsogP (X,K, 1) = Isog(X,K, 1).

Now Theorem 2.1 becomes an immediate corollary of Theorem 1.1 and the fol-
lowing statement.
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Theorem 3.1. Let X be an abelian variety over a field K. Suppose that the set
IsogP ((X ×Xt)4,K, 1) is finite. Then the set IsogP (X,K) is also finite.

Proof. (i) Let us fix an abelian variety X be over K. Let Y be an abelian variety
over K that is P -isogenous to X over K. As we have seen, (Y ×Y t)4 is P -isogenous
to (X×Xt)4 over K. Recall [19, 23, 8] (see also [29, Sect. 7]) that (Y ×Y t)4 admits
a principal polarization over K 1. Since the set IsogP ((Y ×Y t)4,K, 1) is finite, the
set of K-isomorphism classes of all (Y ×Y t)4 (with fixed X) is finite. On the other
hand, each Y is isomorphic to a K-abelian subvariety of (Y × Y t)4 over K. But
the set of isomorphism classes of abelian subvarieties of a given abelian variety is
finite [7]. This implies that the set of K-isomorphism classes of all Y ’s is finite. �

Corollary 3.2. Let X be an abelian variety of positive dimension over a field K.
Suppose that the set IsogP ((X ×Xt)4,K, 1) is finite.

Then there exists a positive integer r = r(X) that is not divisible by char(K) and
enjoys the following properties.

(i) If Y is an abelian variety over K that is P -isogenous to X over K then
there exist a P -isogeny β : X → Y over K with ker(β) ⊂ Xr.

(ii) If n is a positive integer, all whose prime divisors lie in P and W is a
Galois submodule in Xn, then there exists u ∈ End(X) such that

rW ⊂ u(Xn) ⊂W.

Proof. By Theorem 3.1, there are finitely many K-abelian varieties Y1, . . . , Yd that
are P -isogenous to X over K and such that every K-abelian variety Y that is P -
isogenous to X over K is K-isomorphic to one of Yj . For each Yi pick a P -isogeny
βi : X → Yi that is defined over K. Clearly, ker(βi) ⊂ Xmi

where mi = deg(βi).

Let us put r =
∏d

i=1mi. Clearly, for all Yi

ker(βi) ⊂ Xmi
⊂ Xr.

This implies that for every K-abelian variety Y that is P -isogenous to X over K
there exists a P -isogeny β : X → Y over K whose kernel lies in Xr. This proves
(i), since every prime divisor of r is a prime divisor of one of mi = deg(βi) and
therefore lies in P .

Proof of (ii) The quotient Y = X/W is an abelian variety over K. The canonical
map π : X → X/W = Y is a P -isogeny over K, because deg(π) = #(W ) divides
#(Xn) = n2dim(X). This implies that Y is P -isogenous to X over K.

The rest of the proof goes literally (with the same notation) as in [29, Sect. 8,
pp. 331–332] provided one replaces the reference to [29, Cor. 3.5(i)] by the already
proven case (i) of Corollary 3.2. (In [29], nX : X → X and nY : Y → Y denote the
multiplication by n in X and Y respectively.) �

Theorem 3.3. Suppose that P is infinite. Let X be an abelian variety of positive
dimension over a field K. Suppose that the set IsogP ((X ×Xt)4,K, 1) is finite.

Then for all but finitely many primes ` the Galois module X` enjoys the following
properties.

If W is a Galois submodule in X` then there exists ũ ∈ End(X) ⊗ Z/`Z such
that ũ2 = ũ and ũ(Xn) = W . In particular, the Galois module Xn splits into a
direct sum

Xn = ũ(Xn)⊕ (1− ũ)(Xn) = W ⊕ (1− ũ)(Xn)

1In [8, Ch. IX, Sect. 1] Deligne’s proof is given.
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of its Galois submodules W and (1− ũ)(Xn).

Theorem 3.3 implies immediately the following assertion.

Corollary 3.4. Suppose that P is infinite. Let X be an abelian variety of positive
dimension over a field K. Suppose that the set IsogP ((X ×Xt)4,K, 1) is finite.

Then for all but finitely many primes ` ∈ P the Galois module X` is semisimple.

Proof of Theorem 3.3. It is well known that for all but finitely many primes ` the
finite-dimensional F`-algebra End(X)⊗Z/`Z is semisimple. (See, e.g., [19, Lemma
3.2].) Let r be as in Corollary 3.2. Now let ` ∈ P be a prime that does not divide
r and such that End(X) ⊗ Z/`Z is semisimple. Let W be a Galois submodule in
X`. By Corollary 3.2, there exists u ∈ End(X) such that

rW ⊂ u(X`) ⊂W.
Since ` does not divide r, we have rW = W and therefore u(X`) = W . Let u` be
the image of u in End(X)⊗ Z/`Z. Clearly,

u`(X`) = u(X`) = W.

Let I be the right ideal in semisimple End(X) ⊗ Z/`Z generated by u`. The
semisimplicity implies that there exists an idempotent ũ that generates I. It follows
that

W = u`(X`) = ũ(X`).

�

We will need the following lemma [29, Lemma 9.2 on p. 333].

Lemma 3.5. Let Y be an abelian variety of positive dimension over an arbitrary
field K. Then there exists a positive integer h = h(Y,K) that enjoys the following
properties.

If n is a positive integer that is not divisible by char(K), u, v ∈ End(Y ) are
endomorphisms of Y such that

{ker(u)
⋂
Yn} ⊂ {ker(v)

⋂
Yn}

then there exists a K-isogeny w : Y → Y such that

hv − wu ∈ n · End(Y ).

In particular, the images of hv and wu in

End(Y )⊗ Z/nZ ⊂ EndGal(K)(Yn) ⊂ EndZ/nZ(Yn)

coincide.

Theorem 3.6. Let X be an abelian variety of positive dimension over a field K.
Suppose that the set IsogP ((X ×Xt)8,K, 1) is finite. Then there exists a positive
integer r1 = r1(X,K) that enjoys the following properties.

Let n be a positive integer, all whose prime divisors lie in P and m = n/(n, r1).
If un ∈ EndGal(K)(Xn) then there exists u ∈ End(X) such that the images of un
and u in EndGal(K)(Xm) coincide.

Proof. Let us put Y = X ×X. Then (Y × Y t)4 = (X ×Xt)8. Let r(Y ) be as in
Corollary 3.2 and h(Y ) as in Lemma 3.5. Let us put

r1 = r1(X,K) = r(Y,K)h(Y,K).
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Now the proof goes literally as the the proof of Theorem 4.1 in [29, Sect. 10],
provided one replaces the references to Cor. 3.5 and Lemma 9.2 of [29] by references
to Cor. 3.2 and Lemma 3.5 respectively. �

Let A and B be abelian varieties over K. Applying Theorem to X = A×B and
using the obvious compatible decompositions

End(X) = End(A)⊕ End(B)⊕Hom(A,B)⊕Hom(B,A),

EndGal(K)(Xn) =

EndGal(K)(An)⊕ EndGal(K)(Bn)⊕HomGal(K)(An, Bn)⊕HomGal(K)(Bn, An),

we obtain the following statement.

Theorem 3.7. Let A and B be abelian varieties of positive dimension over a field
K. Suppose that the set IsogP ((A × B × At × Bt)8,K, 1) is finite. Then there
exists a positive integer r2 = r2(A,B,K) = r1(A×B,K) that enjoys the following
properties.

Let n be a positive integer, all whose prime divisors lie in P and m = n/(n, r1).
If un ∈ HomGal(K)(An, Bn) then there exists u ∈ Hom(A,B) such that the images
of un and u in HomGal(K)(Am, Bm) coincide.

Corollary 3.8. Let A and B be abelian varieties of positive dimension over a field
K. Suppose that the set IsogP ((A × B × At × Bt)8,K, 1) is finite. Then for all
primes ` ∈ P the natural injection

Hom(A,B)⊗ Z` ↪→ HomGal(K)(T`(A), T`(B))

is bijective.

Proof of Corollary 3.8. Let r2 = r2(A,B) be as in Theorem 3.7. Let `i0 be the exact
power of ` that divides r2. Let v ∈ HomGal(K)(T`(A), T`(B)). For each i > i0, v
induces a homomorphism vi ∈ HomGal(K)(A`i , B`i). By Theorem 3.7, there exists
ui ∈ Hom(A,B) such that the images of ui and vi in Hom(A`i−i0 , B`i−i0 ) coincide.
This means that ui − v sends T`(A) into `i−i0T`(B). It follows that v coincides
with the limit of the sequence {ui}∞i>i0

in HomZ`
(T`(A), T`(B)) with respect to

`-adic topology. Since Hom(A,B)⊗ Z` is a compact and therefore a closed subset
of HomZ`

(T`(A), T`(B)), the limit v also lies in Hom(A,B)⊗ Z`. �

The following lemma will be proven at the end of this section.

Lemma 3.9. Let X be an abelian variety of positive dimension over a field K.
Suppose that the set IsogP ((X × Xt)4,K, 1) is finite. Let r = r(X,K) be as in
Corollary 3.2. Then every ` ∈ P enjoys the following properties.

Let S be a Galois-invariant Z`-submodule in T`(X) such that the quotient T`(X)/S
is torsion-free. Then there exists u ∈ End(X)⊗ Z` such that

r1 · S ⊂ u(T`(X)) ⊂ S.

Theorem 3.10. Let X be an abelian variety of positive dimension over a field K.
Suppose that the set IsogP ((X ×Xt)8,K, 1) is finite. Then every ` ∈ P enjoys the
following properties.

If W is a Gal(K)-invariant Q`-vector subspace in V`(X) then there exists ũ ∈
End(X)⊗Q` such that ũ2 = ũ and ũ(V`(X)) = W. In particular, V`(X) splits into
a direct sum

V`(X) = ũ(V`(X))⊕ (1− ũ)(V`(X)) = W ⊕ (1− ũ)(V`(X))
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of its Galois submodules W and (1 − ũ)(V`(X)) and the Gal(K)-module V`(X) is
semisimple.

Proof of Theorem 3.10. Let us put S = W
⋂
T`(X). Clearly, S is a Galois-invariant

free Z`-submodule in T`(X) and W = Q`S. In addition, the quotient T`(X)/S is
torsion-free.

By Lemma 3.9, there exists u ∈ End(X)⊗ Z` such that

r · S ⊂ u(T`(X)) ⊂ S.

It follows that
r ·W ⊂ u(V`(X)) ⊂W.

Since r ·W = W, we have u(V`(X)) = W. Notice that

End(X)⊗ Z` ⊂ End(X)⊗Q` = End0(X)⊗Q Q`

and End0(X) is a finite-dimensional semisimple Q-algebra. It follows that End(X)⊗
Q` is a finite-dimensional semisimple Q`-algebra. Let I the left ideal in semisimple
End(X)⊗Q` generated by u; there is an idempotent ũ that generates I. Clearly.

ũ(V`(X)) = u(V`(X)) = W.

�

Proof of Lemma 3.9. If S = {0} then we just put u = 0. If S = T`(X) then we
take as u the identity automorphism 1X of X.

So, further we assume that S is a proper free Z`-module in T`(X) of positive
rank say, d and let {e1, . . . , ej . . . ed} be its basis. Since S is pure in T`(X), for all
positive integers i the natural homomorphism of Galois modules

Si := S/`iS→ T`(X)/`iT`(X) = X`i

is an injection of free Z/`iZ-modules. Further, we will identify Si with its image in
X`i . We write ēij for the image of ej in Si ⊂ X`i ; clearly, the d-element set {ēij}dj=1

is a basis of the free Z/`iZ-module Si. By Corollary 3.2 applied to n = `i and
W = Si there exists ui ∈ End(X) such that

rSi ⊂ ui(X`i) ⊂ Si.

In particular, ui(X`i) contains rēij for all j. It is also clear that for each z ∈ T`(X)

ui(z) ∈ S + `iT`(X).

For each ēij pick an element

z̄ij ∈ T`(X)/`iT`(X) = X`i

such that ui(z̄
i
j) = rēij . Let us pick zij ∈ T`(X) such that its image in X`i coincides

with z̄ij . Clearly, the image of ui(z
i
j) in T`(X)/`iT`(X) = X`i equals rēij . Using

the compactness of End(X) ⊗ Z` and T`(X), let us choose an infinite increasing
sequence of positive integers i1 < i2 < · · · < im < . . . such that {uim}∞m=1 converges

in End(X) ⊗ Z` to some u and {zjim}
∞
m=1 converges in T`(X) to some zj for all j

with 1 ≤ j ≤ d. It follows that

u(zj) = limuim(zjim) = rej .

This implies that u(T`(X)) ⊃ r · S. On the other hand, for each z ∈ T`(X)

uim(z) ∈ S + `imT`(X).
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Since {im}∞m=1 is an increasing set of positive integers, {S + `imT`(X)}∞m=1 is a
decreasing set of compact sets whose intersection is compact S. It follows that
u(z) = limuim(z) lies in S. �

Lemma 3.11. Let X be an abelian variety of positive dimension over K. Let `
be a prime that is different from char(K) and such that the Gal(K)-module X` is
semisimple and

EndGal(K)(X`) = End(X)⊗ Z/`Z.

Then the centralizer of End(X)⊗ Z` in EndZ`
(T`(X)) coincides with Z`G`,X,K .

Proof of Lemma 3.11. Clearly, G̃X,`,K is the image of Gal(K) � G`,X,K → AutF`
(X`).

It follows that the G̃X,`,K-module X` is semisimple and

EndG̃X,`,K
(X`) = End(X)⊗ Z/`Z.

By the Jacobson density theorem, F`G̃X,`,K coincides with the centralizer of End(X)⊗
Z/`Z in EndF`

(X`). (Here F`G̃X,`,K is the F`-subalgebra of EndF`
(X`) spanned

by G̃X,`,K .)
Let M be the centralizer of End(X) ⊗ Z` in EndZ`

(T`(X)). Clearly, M is a
saturated Z`-submodule of EndZ`

(T`(X)) (i.e., the quotient EndZ`
(T`(X))/M is

torsion-free); in addition, M contains Z`G`,X,K . We have

M/`M ⊂ EndZ`
(T`(X))⊗ Z`/`Z` = EndF`

(X`).

Clearly, M/`M lies in the centralizer of

End(X)⊗ Z` = ⊗Z`/`Z` = End(X)⊗ Z/`Z.

This implies that

M/`M ⊂ F`G̃X,`,K ⊂ EndF`
(X`).

On the other hand, the image of Z`G`,X,K in

EndZ`
(T`(X))⊗ Z`/`Z` = EndF`

(X`)

obviously coincides with F`G̃X,`,K . Since this image lies in M/`M , we conclude

that M/` = F`G̃X,`,K and M = Z`G`,X,K + ` ·M . It follows from Nakayama’s
Lemma that the Z`-module M coincides with its submodule Z`G`,X,K . �

Remark 3.12. Let P be a singleton {`} and d = 1. Now Theorem 1.1 combined
with Corollary 3.8 and Theorem 3.10 implies readily Theorem 1.2.

4. Proof of main results

Throughout this section, K is a field that is finitely generated over Fp. Let us
put P = P \ {p}.

Proof of Corollary 2.3 and Theorem 2.5. Corollary 2.3 follows readily from Corol-
lary 3.2 combined with Theorem 1.1. Theorem 2.5 follows readily from Theorem
3.6 combined with Theorem 1.1. �

Proof of Theorems 2.1 and 2.6. One has only to combine Theorem 1.1 with Theo-
rems 3.1 and 3.7 respectively. �

Proof of Theorem 2.9. The assertion follows readily from Lemma 3.11 combined
with Corollary 2.3 and Theorem 2.5. �
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Proof of Theorem 2.11. The proof of [20, Theorem 4.7.4] works literally provided
one replaces the reference to [19, Theorem 1.1.1] by references to Corollaries 2.3
and 2.7. �

Proof of Theorem 2.15. Theorem 2.15 is an immediate corollary of the conjunction
of two following statements. (Compare with Theorems 2 and 3 on p. 133 of [24].)

Theorem 4.1. Let X be a simple abelian variety over K that is not of CM type.
Let ` 6= p be a prime, W a nonzero Galois-invariant Q`-vector space in V`(X) and
GW the image of Gal(K) in AutQ`

(W ). Then the group GW is not commutative.

Theorem 4.2. Let X be a simple abelian variety over K that is not of CM type.
Then for all but finitely many primes ` 6= p the following condition holds: Let W
a nonzero Galois-invariant F`-vector space in X` and GW the image of Gal(K) in
AutF`

(W ). Then the group GW is not commutative.

Proof of Theorems 4.1 and 4.2. The proof of Theorems 2 and 3 in [24, Sect. 3]
works literally provided one replaces the reference to [24, p. 139, Statements 1 and
2] by references to Theorem 1.2 (instead of Statement 1) and to Corollaries 2.3 and
2.7 (instead of Statement 2). �

�

Proof of Theorems 2.19 and 2.20. The proofs of Theorems 7 and 8 in [24, Sect. 4]
work literally in our case for Theorems 2.19 and 2.20 respectively. (As in the proof
of Theorems 4.1 and 4.2 one should replace the reference to [24, p. 139, Statements
1 and 2] by references to Theorem 1.2 and to Corollaries 2.3 and 2.7.) �

5. Torsion and ramification in solvable extensions

5.1. Let K be an arbitrary field and O ⊂ K a discrete valuation ring whose field
of fractions coincides with K. We write p for the maximal ideal of O and p for the
characteristic of the residue field O/p. Let L/K be a finite Galois field extension
with Galois group Gal(L/K) and OL the integral closure of O in L. The following
assertion is well known (see, e.g., [31, Ch. 5, Sect. 7–10], [11, Ch. 1, Sect. 7]).

(i) OL is a principal ideal domain, the set of its maximal ideals is finite and
consists of (say) g maximal ideals q1, . . . , qg such that

pO =

(
t∏

i=1

qi

)e(L/K)

where e(L/K) is the (weak) ramification index at p. The degree f(L/K) =
[OL/qi : O/p] of the field extension (OL/qi)/(O/p) equals the product f0p

s

where f0 is the degree of the separable closure of O/p in OL/qi and s is
a nonnegative integer that vanishes if and only if OL/qi is separable over
O/p. The integers f0 and s do not depend on i. The product

e(L/K) · f0p
sg = e(L/K) · f · g = [L : K] = #(Gal(L/K))

In particular, e(L/K)·ps divides [L : K]. The field extension L/K is tamely
ramified at p if and only if #(I(qi)) is not divisible by p, i.e., e(L/K) is not
divisible by p and OL/qi is separable over O/p. Here

I(qi) ⊂ Gal(L/K)

is the inertia subgroup attached to qi.
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(ii) The Galois group Gal(L/K) acts transitively on the set {qi | 1 ≤ i ≤
g}. The corresponding inertia subgroups I(qi) ⊂ Gal(L/K) are conjugate
subgroups of order e(L/K)ps in Gal(L/K). (See [31, Ch. 5, Sect. 10, Th.
24 and its proof].)

(iii) Let L0/K be a Galois subextension of L/K, i.e., L0/K is a Galois field
extension and L0 ⊂ L. Then q0

i = qi
⋂
OL0 is a maximal ideal in OL0

that lies above p. The image of I(qi) under the surjection Gal(L/K) �
Gal(L0/K) coincides with the inertia subgroup

I(q0
i ) ⊂ Gal(L0/K)

attached to q0
i [11, Ch. 1, Sect. 7, Prop. 22(b)]; in particular, #(I(q0

i ))
divides #(I(qi)). On the other hand, #(I(q0

i )) divides #(Gal(L0/K)) =
[L0 : K]. This implies that if [L0 : K] and #(I(qi)) are relatively prime
then #(I(q0

i )) = 1, i.e., L0/K is unramified at p.

Let Y be an abelian variety of positive dimension over K. Let n ≥ 3 be an
integer that is not divisible by p. Assume that Yn ⊂ Y (K), i.e., all points of order
n on X are defined over K.

Let Y → Spec(O) be the Néron model of Y [1]; it is a smooth group scheme
whose generic fiber coincides with Y . Since Yn ⊂ Y (K), the Raynaud criterion [5,
Prop. 4.7] tells us that Y has semistable reduction at p, i.e., Y is a semiabelian
group scheme.

Let ` be a prime different from p. For all positive integers j the field K(Ymj
)

with mj = `j is a finite Galois extension. The following assertion was inspired by
[8, Ch. XII, Sect. 2.0 on p. 242].

Lemma 5.2. Let n ≥ 3 be an integer that is not divisible by p. Assume that
Yn ⊂ Y (K). Let L = K(Y`) and q be a maximal ideal in OL, which lies above p.
Then:

(i) The inertia group I(q) is a finite commutative `-group. In particular, L/K
is tamely ramified at p.

(ii) Let L0/K be a Galois subextension of L/K. If [L0 : K] is not divisible by
` then L0/K is unramified at p.

Proof of Lemma 5.2. The assertion (ii) follows readily from (i). So, let us prove (i).
For all positive integers j let us put Lj = K(Ymj

) and Oj = OLj
. We have

L1 = L,O1 = OL. We have a tower of Galois extensions

K ⊂ L1 ⊂ L2 ⊂ . . . Lj ⊂ . . . .

We write L∞ for the union
⋃∞

i=1 Li. For each j pick a maximal ideal q(j) in Oj

in such a way that q(1) = q and q(j+1) lies above q(j). (Such a choice is possible,
because the projective limit of nonempty finite sets is nonempty.) Then the Galois
group Gal(L∞/K) is the projective limit of finite groups Gal(Lj/K)’s. It is also
clear that

Gal(Lj/K) = ρ̄mj ,Y (Gal(K)) ⊂ AutZ/mjZ(Ymj ),

Gal(L∞/K) = ρ`,Y (Gal(K)) ⊂ AutZ`
(T`(Y )) ⊂ AutQ`

(V`(Y )).

Recall that the natural homomorphisms I(q(j+1))→ I(q(j)) are surjective for all
j. Let I∞ be the projective limit of the corresponding inertia subgroups I(q(j));
clearly, I∞ is a compact subgroup of Gal(L∞/K) and for each j the natural group
homomorphism I∞ → I(q(j)) is surjective, because the projective limit of nonempty
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finite sets is also nonempty. Therefore one may view I∞ as a certain compact
subgroup of

AutZ`
(T`(Y )) ⊂ AutQ`

(V`(Y )).

Since Y has semistable reduction at q, there exists a Q`-vector subspace W ⊂ V`(Y )
such that I∞ acts trivially on W and V`(Y )/W [5, Prop. 3.5]. It gives us an
injective continuous homomorphism of topological groups

I∞ → HomQ`
(V`(Y )/W),W),

σ 7→ {v + W 7→ σ(v)− v} ∀ σ ∈ I∞, v ∈ V`(Y ).

Since I∞ is compact, there is a continuous isomorphism between I∞ and its image,
which is a compact subgroup of HomQ`

(V`(Y )/W,W). Since the latter is a finite-
dimensional Q`-vector space, all of its compact subgroups are commutative pro-`-
groups (that are isomorphic either to a direct sum of several copies of Z` or to zero).
It follows that I∞ is also a commutative pro-`-group. Since there is a surjective
continuous homomorphism

I∞ → I(q(j)),

every I(q(j)) is a finite commutative `-group. This ends the proof, since q = q(1)

and therefore I(q) = I(q(1)). �

Proof of Theorem 2.12. If K is finite then there is nothing to prove. So, let us
assume that K is infinite. Let d ≥ 1 be the transcendence degree of K over Fp. Let
us pick a positive integer n ≥ 3 that is not divisible by p. Replacing K by K(Xn)
and X by X ×K K(Xn) , we may assume that Xn ⊂ X(K).

Let P be an infinite set of primes ` 6= p such that G̃`,X,K is `-solvable. By
deleting finitely many primes from P , we may and will assume that the Gal(K)-

module X` is semisimple for all ` ∈ P . Since G̃`,X,K is the image of Gal(K) in

AutF`
(X`) ∼= GL(2g,F`), the G̃`,X,K-module X` is semisimple for all ` ∈ P .

Let C be the field of complex numbers. Let us put g = dim(X). Recall that
X` is a 2g-dimensional F`-vector space. Let G be a finite `-solvable subgroup of
AutF`

(X`) such that the natural faithful representation of G in X` is completely
reducible. Let us split the semisimple F`[G]-module X ′` into a direct sum

X` = ⊕m
i=1Wi

of simple F`[G]-modules Wi. If di = dimF`
(Wi) then 2g ==

∑m
i=1 di. By a

theorem of Fong-Swan [14, Sect. 16.3, Th. 38], each Wi lifts to characteristic zero;
in particular, there is a group homomorphism ρi : G→ GL(di,C) whose kernel lies
in the kernel of G→ AutF`

(Wi) (for all i). Clearly, the product-homomorphism

ρ =

d∏
i=1

ρi : G→
m∏
i=1

GL(di,C) ⊂ GL(2g,C)

is an injective group homomorphism and therefore G is isomorphic to a finite sub-
group of GL(2g,C). By a theorem of Jordan [2, Th. Th. 36.13], there is a positive
integer N = N(2g) that depends only on 2g and such that G contains a normal
abelian subgroup of index dividing N . By deleting from P all prime divisors of N ,
we may and will assume that ` does not divide N for each ` ∈ P .

Let us apply this observation to G = G̃`,X,K . We obtain that for all ` ∈ P the

group G̃`,X,K contains an abelian normal subgroup H` of index dividing N . For
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each ` ∈ P let us consider the corresponding subfield of H`-invariants

K` := (K(X`))
H` ⊂ K(X`).

Clearly, K`/K is a Galois extension of degree dividing N while Gal(K(X`)/K`)
coincides with commutative (sub)group H`. Since K` ⊂ K(X`) and [K` : K]
divides N and therefore is not divisible by `, Lemma 5.2 tells us that the Galois
extension K`/K is unramified with respect to every discrete valuation of K. (Since
char(K) = p, its every residual characteristic is also p.)

Let k be the (finite) algebraic closure of Fp in K and let S be an absolutely
irreducible normal d-dimensional projective variety over k whose field of rational
functions k(S) coincides with K. Let V ⊂ S be a smooth open dense subset such
that the codimension of S \ V in S is, at least, 2. Let V` be the normalization
of V in K`/K. Now Zariski-Nagata purity theorem tells us that the regular map
V` → V is an étale Galois cover; clearly, its degree equals [K` : K] and therefore
divides N . Let π1(V ) be the fundamental group of V that classifies étale covers of
V ([4], [8, Ch. XII, Sect. 1, pp. 241–242]. This group is a (natural) topologically
finitely generated (topological) quotient of Gal(K) [8, Ch. XII, Sect. 1, p. 242]
and the natural surjection

Gal(K) � Gal(K`/K)

factors through π1(V ), i.e., it is the composition of the canonical continuous sur-
jection Gal(K) � π1(V ) and a certain continuous surjective homomorphism

γ` : π1(V ) � Gal(K`/K)

whose kernel is an open normal subgroup in π1(V ) of index dividing N .
Since π1(V ) is topologically finitely generated, it contains only finitely many

open normal subgroups of index dividing N (because it admits only finitely many
continuous homomorphisms to any finite group of order dividing N). If Γ is the
intersection of all such subgroups then it is an open normal subgroup in π1(V ) that
lies in the kernel of every γ` for all ` ∈ P ; in particular, it has finite index. The
preimage ∆ of Γ is an open normal subgroup of finite index in Gal(K) and the
corresponding subfield of ∆-invariants E := K̄∆

s is a finite Galois extension of K
that contains K` for all ` ∈ P . This implies that for all ` ∈ P the compositum
EK(X`) is abelian over E, because K(X`) is abelian over K`. But EK(X`) =
E(XE

`) where

XE = X ×K E

is an abelian variety over E. Applying Theorem 2.11 to XE and E (instead of X
and K), we conclude that XE is an abelian variety of CM type and isogenous over
Ē = K̄ to an abelian variety that is defined over a finite field. The same is true for
X, since XE = X ×K E.

�

6. Concluding Remarks

Theorem 1.2 and Corollaries 2.3(iii) and Corollary 2.7 imply readily that the
following results remain true for all prime characteristics p, including p = 2.

• Assertions (Sect. 1.3 and 4.4), Corollaries 1–6, Theorem 4.1, and Remark
1 of [20] remain true over any field E that is finitely generated over a finite
field of arbitrary characteristic, including 2. Corollary 7 of [20] remains
true for any field F of arbitrary prime characteristic, including 2.
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• Theorem 1.1(ii) of [15].
• Theorems 1.1, 1.4, 1.6, 1.9, 2.1 of [30].

7. Corrigendum to [29]

Page 317, Remark 1.3, second sentence: one has to assume additionally that the
kernel of the morphism is W .

Page 317, line -12: read Hom(Y t, Xt) instead of Hom(Y,X).
Page 326, Proof of Theorem 3.4, second line: read 8g-dimensional instead of

4g-dimensional.

References

[1] Bosch S., Lütkebohmert W., Raynaud M., Néron models, Springer Verlag, Berlin Heidelberg

New York, 1990.

[2] Curtis Ch. W., Reiner I., Representation theory of finite groups and associative algebras,
Interscience Publishers, New York London, 1962.

[3] G. Faltings, Complements to Mordell, Chapter VI in: Faltings G., Wustholz G. et al., Rational

points. Aspects of Mathematics, E6. Friedr. Vieweg & Sohn, Braunschweig, 1984.
[4] Grothendieck A et al., Revêtements étales et groupe fondamental (SGA 1), Lecture Notes in

Math. 224, Springer Verlag, Berlin-Heidelberg-New York, 1971.
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