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SPECTRAL RECIPROCITY FOR THE FIRST MOMENT OF TRIPLE PRODUCT

L-FUNCTIONS AND APPLICATIONS

XINCHEN MIAO

Abstract. Let F be a number field with adele ring AF , π1, π2 be two fixed unitary automorphic
representations of PGL2(AF ) with finite coprime analytic conductor u and v, q, l be two coprime
integral ideals with (ql, uv) = 1. Following [Zac20], we estimate the first moment of L( 1

2
, π ⊗ π1 ⊗ π2)

twisted by the Hecke eigenvalues λπ(l), where π runs over unitary automorphic representations of
finite conductor dividing uvq. By applying the triple product integrals, spectral decomposition and
Plancherel formula, we get a reciprocity formula links the twisted first moment of triple product L-
functions to the spectral expansion of certain triple product periods over automorphic representations
of finite conductor dividing l. As application, we study the subconvexity problem for the triple product
L-function in the level aspect and give a subconvex bound for L( 1

2
, π ⊗ π1 ⊗ π2) in terms of the norm

of q.
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1. Introduction, Background and History

Subconvexity estimates belong to the core topics in the theory of analytic number theory and L-
functions. Moreover, they are one of the most challenging testing grounds for the strength of existing
technology. Let F be a number field with adele ring AF , and let Π be an automorphic representation
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2 XINCHEN MIAO

of a reductive group G. Let L(s,Π) be the corresponding L-function associated to the representation
Π. If C(Π) denotes the analytic conductor of L(s,Π), then the famous Phragmen-Lindelof principle

gives the upper bound C(Π)
1
4
+ϵ on the critical line Re(s) = 1

2 . The subconvexity problem for L(12 ,Π)
is to establish a non-trivial upper bound of the shape as follows:

L(
1

2
,Π) ≪F,ϵ C(Π)

1
4
−δ+ϵ,

where δ is some positive absolute constant satisfying 0 < δ ⩽ 1
4 which is independent on C(Π).

The subconvexity problem has a very long history for more than one hundred years (See [Mic22]
for more details). We are far from well-understood (except for some lower rank groups). Over the
last one hundred years, mathematicians have developed many different approaches to understand the
subconvexity problem, for example the classical approach involving the approximate functional equa-
tion, the circle (delta) method, Voronoi and Poisson summation formula, also the moment and integral
representation approach involving spectral theory on higher rank groups, Petersson and Kuznetsov
trace formula, relative trace formulae and so on.

In this paper, we focus on the subconvexity problem of the triple product L-function in the finite
level aspect, which is the case G = GL2×GL2×GL2. Following [Zac20], we will use the period integral
and moment method approach to establish a spectral reciprocity formula for the twisted first moment
of the triple product L-function. Finally, via the amplification method, we can break the barrier of
the convexity bound and get the subconvexity bound.

In [Miao24], we also consider the subconvexity problem of the triple product L-function in the level
aspect. However, there exist some differences between these two papers. In [Miao24], we vary all
the three automorphic representations π1, π2, π3 and allow joint ramification and conductor dropping
range. Hence, we get the explicit hybrid subconvexity bound in a more general case. In this paper,
we fix two cuspidal automorphic representations π1, π2 and only vary the automorphic representation
π3 with finite conductor dividing q. The final subconvexity bound is only in terms of q, however, the
bound we get here is much stronger than [Miao24] and attaches the limit of the amplification method.

In order to state our results in a more precise way, we need to give some definitions of notations.
Let π1, π2 be two fixed unitary cuspidal automorphic representations with fixed finite coprime

conductor u and v (i.e.(u, v) = 1), π3 be a unitary automorphic representation of PGL2(AF ) with
finite conductor q. Here q, u, v are three integral ideals of OF , where OF is the ring of integers of the
fixed number field F . We further assume that q is coprime with uv, i.e. (q, uv) = 1. The norm of
integral ideals u, v, q are u, v, q. Therefore, we have (q, uv) = 1. In order to consider the level aspect
subconvexity problem in terms of q, we will let q → +∞. Hence, without loss of generality, since u
and v are positive absolutely bounded integers, we can further assume that u ≪ε q

ε and v ≪ε q
ε for

any ε > 0.
We let the real number θ be the best exponent toward the Ramanujan-Petersson Conjecture for

GL(2) over the number field F , we have 0 ≤ θ ≤ 7
64 .

Let l be an integral ideal of norm ℓ. We assume that (l, uvq) = 1, hence (l, uvq) = 1. We define the
following for the cuspidal contribution:

(1.1) C(π1, π2, q, l) := C1 ·
∑

π cuspidal
C(π)|uvq

λπ(l)
L(12 , π ⊗ π1 ⊗ π2)

Λ(1, π,Ad)
f(π∞)H(π, q).

Here H is certain weight function in terms of finite many ramified non-archimedean local places
defined in Section 5.3 and f(π∞) is defined in Section 5.4. Here the constant C1 is a positive constant
depending only on the number field F and the nature of the three representations π, π1, π2. If π, π1, π2
are all cuspidal, then C1 = 2ΛF (2).
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For the continuous part, we denote by πω(it) the principal series ω| · |it⊞ω| · |−it and define similarly

E(π1, π2, q, l) := C2 ·
∑

ω∈F̂×\A1
F

C(ω)2|uvq

∫ ∞

−∞
λπω(it)(l)f(πω∞(it))H(πω(it), q)

×
L(12 + it, π1 ⊗ π2 ⊗ ω)L(12 − it, π1 ⊗ π2 ⊗ ω)

Λ∗(1, πω(it),Ad)

dt

4π
.

(1.2)

In this case, C2 = 2Λ∗
F (1) and H is certain weight function in terms of finite many ramified non-

archimedean local places defined in Section 5.3. We also note that the completed L-functions satisfy
Λ(s, π,Ad) = Λ(s, χ2)Λ(s, χ−2)ζF (s), where π is an Eisenstein series normalized induced from a char-
acter χ. In above Equation 1.2, χ = ω|·|it and ω is a unitary Hecke character. For χ2 ̸= 1, we define
Λ∗(1, π,Ad) = Λ(1, χ2)Λ(1, χ−2)ζ∗F (1), where ζ

∗
F (1) is the residue of the Dedekind zeta function at

s = 1, and is a positive real number by the class number formula. We also note that the Dedekind
zeta function has a simple pole at s = 1. When χ2 = 1, we define 1/Λ∗(1, π,Ad) := 0 (Section 3.2 in
[BJN24]). Hence, the function 1/Λ∗(1, π,Ad) is continuous in terms of the induced character χ. Since
the Dedekind zeta function has a simple pole at s = 1, if χ2 = 1 and π is normalized induced from χ,
for some small real number t satisfying |t| ≤ 1 (can take zero), we have 1/Λ∗(1 + it, π,Ad) ≫F t

2.
We define

(1.3) M(π1, π2, q, l) = C(π1, π2, q, l) + E(π1, π2, q, l).

The first theorem establishes an upper bound for this twisted first moment.

Theorem 1.1. Let π1, π2 be two fixed unitary θi-tempered (i = 1, 2) cuspidal automorphic repre-
sentations with finite coprime conductor u and v. We let the real number θi be the best exponent
toward the Ramanujan-Petersson Conjecture for GL(2) over the number field F for π1 and π2, we
have 0 ≤ θi ≤ 7

64 . Let q, l be two coprime ideals of OF with the condition (ql, uv) = 1 and write q and
ℓ for their respective norms. Therefore, the twisted first moment satisfies

(1.4) M(π1, π2, q, l) ≪π1,π2,F,ε (qℓ)
ϵ ·
(
ℓ
1
2 · q−

1
2
+θ + ℓ−

1
2
+θ1+θ2

)
.

Combining Theorem 1.1 with the amplification method, we obtain the following two subconvexity
bounds in the level (also depth) aspect.

Theorem 1.2. Let F be a number field with ring of integers OF . Let q be an integral ideal of OF of
norm q and π3 a cuspidal automorphic representation of PGL2(AF ) with finite conductor q. Let π1, π2
be fixed unitary θi-tempered (i = 1, 2) cuspidal automorphic representations with finite fixed coprime
conductor u and v. Assume that for all archimedean places v|∞, either π1,v or π2,v is a principal
series representation. If (q, uv) = 1, then for any ε > 0, we have the following subconvex estimation

(1.5) L
(
1
2 , π1 ⊗ π2 ⊗ π3

)
≪ε,F,π1,π2,π∞ q1−( 1

2
−θ)(1−2θ1−2θ2)/(3−2θ1−2θ2)+ε.

Here we have polynomial dependence on u and v in the above subconvexity bound. If we pick θ = θ1 =
θ2 =

7
64 , then we have (12 − θ)(1− 2θ1 − 2θ2)/(3− 2θ1 − 2θ2) =

225
2624 >

1
11.7 . Hence, we have

L
(
1
2 , π1 ⊗ π2 ⊗ π3

)
≪ε,F,π1,π2,π∞ q1−

225
2624

+ε

unconditionally. If we further assume the Ramanujan-Petersson Conjecture, we will have

L
(
1
2 , π1 ⊗ π2 ⊗ π3

)
≪ε,F,π1,π2,π∞ q1−

1
6
+ε.

As a parallel of Theorem 1.2, we have the following
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Theorem 1.3. Let F be a number field with ring of integers OF . Let q be an integral ideal of OF

of norm q and χ a unitary Hecke character with finite conductor q. Let π1, π2 be fixed unitary θi-
tempered (i = 1, 2) cuspidal automorphic representations with finite fixed coprime conductor u and v.
If (q, uv) = 1, then for any ε > 0, we have the following subconvex estimation

(1.6) L
(
1
2 , π1 ⊗ π2 ⊗ χ

)
≪ε,F,π1,π2,π∞ q1−( 1

2
−θ)(1−2θ1−2θ2)/(3−2θ1−2θ2)+ε.

If we pick θ = θ1 = θ2 =
7
64 , then we have

L
(
1
2 , π1 ⊗ π2 ⊗ χ

)
≪ε,F,π1,π2,π∞ q1−

225
2624

+ε

unconditionally.

Remark 1.4. If we further assume that both π1 and π2 are holomorphic cusp forms which satisfy
the Ramanujan-Petersson Conjecture and θ1 = θ2 = 0, then by Theorem 1.3, we have the following
inequality if we pick θ = 7

64 :

L
(
1
2 , π1 ⊗ π2 ⊗ χ

)
≪ε,F,π1,π2,π∞ q1−

25
192

+ε.

If we pick θ1 = 0 and θ2 = θ = 7
64 , we have

L
(
1
2 , π1 ⊗ π2 ⊗ χ

)
≪ε,F,π1,π2,π∞ q1−

625
5696

+ε.

Since 1
6 >

1
7.5 >

25
192 >

1
7.7 >

1
9 >

625
5696 >

1
9.2 >

1
11.5 >

225
2624 >

1
11.7 >

1
12 >

1
16 >

1
20 >

1
23 , then our

Theorem 1.3 is an improvement of the subconvexity bound for GL(1) twists of GL(2)×GL(2) Rankin-
Selberg L-functions both in the finite level and depth aspect (See [Gho23, Theorem 1] and [Sun24,
Theorem 1] for more details and comparison).

2. Automorphic Forms Preliminaries

In this paper, F/Q will denote a fixed number field with ring of intergers OF and discriminant ∆F .
We make the assumption that all prime ideals considering in this paper (q, l, u, v) do not divide ∆F .
We let ΛF be the complete ζ-function of F ; it has a simple pole at s = 1 with residue Λ∗

F (1).
For v a place of F , we set Fv for the completion of F at the place v. We will also write Fp if v

is finite place that corresponds to a prime ideal p of OF . If v is non-Archimedean, we write OFv for
the ring of integers in Fv with maximal ideal mv and uniformizer ϖv. The size of the residue field
is qv = OFv/mv. For s ∈ C, we define the local zeta function ζFv(s) to be (1 − q−sv )−1 if v < ∞,

ζFv(s) = π−s/2Γ(s/2) if v is real and ζFv(s) = 2(2π)−sΓ(s) if v is complex.

The adele ring of F is denoted by AF and its unit group A×
F . We also set ÔF :=

∏
v<∞OFv for the

profinite completion of OF and A1
F = {x ∈ A×

F : |x| = 1}, where |·| : A×
F → R>0 is the adelic norm

map.
We denote by ψ =

∏
v ψv the additive character ψQ ◦ TrF/Q where ψQ is the additive character on

Q \ AQ with value e2πix on R. For v < ∞, we let dv be the conductor of ψv : this is the smallest
non-negative integer such that ψv is trivial on mdv

v . In this case, we have ∆F =
∏
v<∞ qdvv . We also

set dv = 0 for the Archimedean local place v.
If R is a commutative ring, GL2(R) is by definition the group of 2× 2 matrices with coefficients in

R and determinant in R∗. We also defined the following standard subgroups

B(R) =

{(
a b

d

)
: a, d ∈ R∗, b ∈ R

}
, P (R) =

{(
a b

1

)
: a ∈ R∗, b ∈ R

}
,

Z(R) =

{(
z

z

)
: z ∈ R∗

}
, A(R) =

{(
a

1

)
: a ∈ R∗

}
,

N(R) =

{(
1 b

1

)
: b ∈ R

}
.
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We also set

n(x) =

(
1 x

1

)
, w =

(
1

−1

)
and a(y) =

(
y

1

)
.

For any place v, we let Kv be the maximal compact subgroup of G(Fv) defined by

(2.1) Kv =


GL2(OFv) if v is finite

O2(R) if v is real

U2(C) if v is complex.

We also set K :=
∏
vKv. If v <∞ and n ⩾ 0, we define

Kv,0(ϖ
n
v ) :=

{(
a b
c d

)
∈ Kv : c ∈ mn

v

}
.

If b is an integral ideal of OF with prime factorization b =
∏
v<∞ p

fv(b)
v (pv is the prime ideal corre-

sponding to the finite place v), then we set

K0(b) :=
∏
v<∞

Kv,0

(
ϖfv(b)
v

)
.

We use the same measures normalizations as in [MV10]. At each place v, dxv denotes a self-dual

measure on Fv with respect to ψv. If v < ∞, dxv gives the measure q
−dv/2
v to OFv . We define

dx =
∏
v dxv on AF . We take d×xv = ζFv(1)

dxv
|xv | as the Haar measure on the multiplicative group F×

v

and d×x =
∏
v d

×xv as the Haar measure on the idele group A×
F . We provide Kv with the probability

Haar measure dkv. We identify the subgroups Z(Fv), N(Fv) and A(Fv) with respectively F×
v , Fv

and F×
v and equipped them with the measure d×z, dxv and d×yv. Using the Iwasawa decomposition,

namely GL2(Fv) = Z(Fv)N(Fv)A(Fv)Kv, a Haar measure on GL2(Fv) is given by

(2.2) dgv = d×zdxv
d×yv
|yv|

dkv.

The measure on the adelic points of the various subgroups are just the product of the local measures
defined above. We also denote by dg the quotient measure on

X := Z(AF )GL2(F ) \GL2(AF ),
with total mass VF := vol(X) <∞.

Let π = ⊗vπv be a unitary automorphic representation of PGL2(AF ) and fix ψ a character of F\AF .
The intertwiner

(2.3) π ∋ φ 7−→Wφ(g) :=

∫
F\AF

φ(n(x)g)ψ(−x)dx,

realizes a GL2(AF )-equivariant embedding of π into a space of functions W : GL2(AF ) → C satisfying
W (n(x)g)) = ψ(x)W (g). The image is called the Whittaker model of π with respect to ψ and it is
denoted by W(π, ψ). This space has a factorization ⊗vW(πv, ψv) into local Whittaker models of πv. A
pure tensor ⊗vφv has a corresponding decomposition

∏
vWφv where Wφv(1) = 1 and is Kv-invariant

for almost all place v.
We define a normalized inner product on the space W(πv, ψv) by the rule

(2.4) ϑv(Wv,W
′
v) := ζFv(2)×

∫
F×
v
Wv(a(y))W

′
v(a(y))d

×y

ζFv(1)L(1, πv,Ad)
.

This normalization has the good property that ϑv(Wv,Wv) = 1 for πv and ψv unramified andWv(1) = 1
[JS81, Proposition 2.3]. We also fix for each place v an invariant inner product ⟨·, ·⟩v on πv and an
equivariant isometry πv → W(πv, ψv) with respect to (2.4).
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Let L2(X) be the Hilbert space of square integrable functions φ : X → C. If π is a cuspidal
representation, for any φ ∈ π, we can define the L2-norm by

(2.5) ||φ||2L2 :=

∫
X
|φ(g)|2dg.

We denote by L2
cusp(X) the closed subspace of cusp forms, i.e. the functions φ ∈ L2(X) with the

additional property that ∫
F\AF

φ(n(x)g)dg = 0, a.e. g ∈ GL2(AF ).

Each φ ∈ L2
cusp(X) admits a Fourier expansion

(2.6) φ(g) =
∑
α∈F×

Wφ

((
α

1

)
g

)
,

(2.7) Wφ(g) =

∫
F\AF

φ

((
1 x

1

)
g

)
ψ(−x)dx.

The group GL2(AF ) acts by right translations on both spaces L2(X) and L2
cusp(X) and the resulting

representation is unitary with respect to (2.5). It is well known that each irreducible component π
decomposes into π = ⊗vπv where πv are irreducible and unitary representations of the local groups
GL2(Fv). The spectral decomposition is established in the first four chapters of [GJ79] and gives the
orthogonal decomposition

(2.8) L2(X) = L2
cusp(X)⊕ L2

res(X)⊕ L2
cont(X).

L2
cusp(X) decomposes as a direct sum of irreducible GL2(AF )-representations which are called the

cuspidal automorphic representations. L2
res(X) is the sum of all one dimensional subrepresentations of

L2(X). Finally the continuous part L2
cont(X) is a direct integral of irreducible GL2(AF )-representations

and it is expressed via the Eisenstein series. In this paper, we call the irreducible components of L2
cusp

and L2
cont the unitary automorphic representations. If π is a unitary representation appearing in the

continuous part, we say that π is Eisenstein.
For any ideal b of OF , we write L2(X, b) := L2(X)K0(b) for the subspace of level b automorphic

forms, which is the closed subspace of functions that are invariant under the subgroup K0(b).
Recall that if π is a cuspidal representation, we have a unitary structure on π given by (2.5).

If π belongs to the continuous spectrum and φ is the Eisenstein series associated to a section f :
GL2(AF ) → C in an induced representation of B(AF ) (see for example [MV10, Section 4.1.6] for the
basic facts and notations concerning Eisenstein series), we can define the norm of φ by setting

||φ||2Eis :=
∫
K
|f(k)|2dk.

We define the canonical norm of φ by

(2.9) ||φ||2can :=


||φ||2L2(X) if π is cuspidal

2Λ∗
F(1)||φ||2Eis if π is Eisenstein,

Using [MV10, Lemma 2.2.3], we can compare the global and the local inner product : for φ = ⊗vφv ∈
π = ⊗vπv a pure tensor with π either cuspidal or Eisenstein and non-singular, i.e. π = χ1 ⊞ χ2 with
χi unitary, χ1χ2 = 1 and χ1 ̸= χ2, we have

(2.10) ||φ||2can = 2∆
1/2
F Λ∗(1, π,Ad)

∏
v

⟨φv, φv⟩v,
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where Λ(s, π,Ad) is the complete adjoint L-function
∏
v L(s, π,Ad) and Λ∗(1, π,Ad) is the first non-

vanishing coefficient in the Laurent expansion around s = 1. This regularized value satisfies [HL94]

(2.11) Λ∗(1, π,Ad) = C(π)o(1), as C(π) → ∞,

where C(π) is the analytic conductor of π, as defined in [MV10, Section 1.1].

3. Integral representations of triple product L-functions

Let π1, π2, π3 be three unitary automorphic representations of PGL2(AF ) such that at least one of
them is cuspidal, say π2. We consider the linear functional on π1 ⊗ π2 ⊗ π3 defined by

I(φ1 ⊗ φ2 ⊗ φ3) :=

∫
X
φ1(g)φ2(g)φ3(g)dg.

This period is closely related to the central value of the triple product L-function L(12 , π1 ⊗ π2 ⊗ π3).
In order to state the result, we write πi = ⊗vπi,v and for each v, we can consider the matrix coefficient

(3.1) I ′v(φ1,v ⊗ φ2,v ⊗ φ3,v) :=

∫
PGL2(Fv)

3∏
i=1

⟨πi,v(gv)φi,v, φi,v⟩vdgv.

It is a fact that [MV10, (3.27)]

(3.2)
I ′(φ1,v ⊗ φ2,v ⊗ φ3,v)∏3

i=1⟨φi,v, φi,v⟩v
= ζFv(2)

2L(
1
2 , π1,v ⊗ π2,v ⊗ π3,v)∏3
i=1 L(1, πi,v,Ad)

,

when v is non-Archimedean and all vectors are unramified. It is therefore natural to consider the
normalized version

(3.3) Iv(φ1,v ⊗ φ2,v ⊗ φ3,v) := ζFv(2)
−2

∏3
i=1 L(1, πi,v,Ad)

L(12 , π1,v ⊗ π2,v ⊗ π3,v)
I ′v(φ1,v ⊗ φ2,v, φ3,v).

The following proposition connects the global trilinear form I with the central value L(12 , π1⊗π2⊗π3)
and the local matrix coefficients Iv. The proof when at least one of the πi’s is Eisenstein can be found
in [MV10, Equation (4.21)] and is a consequence of the Rankin-Selberg method. The result when all
πi are cuspidal is due to Ichino [Ich08].

Proposition 3.1. Let π1, π2, π3 be unitary automorphic representations of PGL2(AF ) such that at
least one of them is cuspidal. Let φi = ⊗vφi,v ∈ ⊗vπi,v be pure tensors and set φ := φ1 ⊗ φ2 ⊗ φ3.

(1) If none of the πi’s (i = 1, 2, 3) is a singular Eisenstein series, then

|I(φ)|2∏3
i=1 ||φi||2can

=
C

8∆
3/2
F

·
Λ(12 , π1 ⊗ π2 ⊗ π3)∏3
i=1 Λ

∗(1, πi,Ad)

∏
v

Iv(φv)∏3
i=1⟨φi,v, φi,v⟩v

,

with C = ΛF (2) if all πi are cuspidal and C = 1 if at least one πi is Eisenstein and non-
singular.

(2) Assume that π3 = 1 ⊞ 1 and let φ3 be the Eisenstein associated to the section f3(0) ∈ 1 ⊞ 1
which for Re(s) > 0, is defined as follows:

f3(g, s) := | det(g)|s ·
∫
A×
F

Φ((0, t)g)|t|1+2sd×t ∈ |·|s ⊞ |·|−s,

where Φ =
∏
v Φv and Φv = 12OFv

for finite v. Then we have

|I(φ)|2∏2
i=1 ||φi||2can

=
1

4∆F
·
Λ(12 , π1 ⊗ π2 ⊗ π3)∏2
i=1 Λ

∗(1, πi,Ad)

∏
v

Iv(φv)∏3
i=1⟨φi,v, φi,v⟩v

.
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3.1. Hecke operators. Let p be a prime ideal of OF of norm p and n ∈ N. Let Fp be the completion
of the number field F at the place corresponding to the prime ideal Fp and ϖp be a uniformizer of the
ring of integer OFp . Let Hpn be the double coset in GL2(Fp) with

Hpn := GL2(OFp)

(
1

ϖpn

)
GL2(OFp),

which, for n ⩾ 1, has measure pn−1(p + 1) with respect to the Haar measure on GL2(Fp) assigning
mass 1 to the maximal open compact subgroup GL2(OFp) (See [Ven10, Section 2.8]). We consider the
compactly supported function:

µpn :=
1

pn/2

∑
0⩽k⩽n

2

1H
pn−2k

.

Now for any f ∈ C∞(GL2(AF )), the Hecke operator Tpn is given by the convolution of f with µpn , i.e.
for any g ∈ GL2(AF ),

(3.4) (Tpnf)(g) = (f ⋆ µpn)(g) :=

∫
GL2(Fp)

f(gh)µpn(h)dh,

and the function h 7→ f(gh) has to be understood under the natural inclusion GL2(Fp) ↪→ GL2(AF ).
This definition extends to an arbitrary integral ideal a by multiplicativity of Hecke operators.

This abstract definition of Hecke operators has a lot of advantages. It simplifies a lot when we deal
with GL2(AF )-invariant functionals. Indeed, consider the natural action of GL2(AF ) on C∞(GL2(AF ))
by right translation and let ℓ : C∞(GL2(AF )) × C∞(GL2(AF )) → C be a GL2(AF )-invariant bilinear
functional. Then for any f1, f2 which are right GL2(OFp)-invariant, we have the relation

(3.5) ℓ(Tpnf1, f2) =
1

pn/2

∑
0⩽k⩽n

2

γn−2k · ℓ
((

1
ϖn−2k

)
· f1, f2

)
,

with

(3.6) γr :=

 1 if r = 0

pr−1(p+ 1) if r ⩾ 1.

4. Estimations of some period integrals

We recall that in Section 1, π1, π2 are two fixed unitary θi-tempered (i = 1, 2) cuspidal automorphic
representations with trivial central character and finite coprime conductor u and v. Let φi = ⊗vφi,v ∈
πi = ⊗vπi,v be pure tensor vectors defined as follows: Since π1 and π2 are cuspidal, we fix a unitary
structure ⟨·, ·⟩i,v on each πi,v compatible with (2.4) as in previous Section 2 and take φi,v to be
newvectors and have normalized norm 1.

Let l be an integral ideal of OF which is coprime to u, v, q. From the multiplicativity of the Hecke
operators, without loss of generality, we take l of the form pn with p ∈ Spec(OF ) and n ∈ N and set p
for the norm of p, so that ℓ = pn is the norm of l. For 0 ⩽ r ⩽ n, we write as usual

φpr

i :=

(
1

ϖr
p

)
· φi.

Remark 4.1. Observe that for every finite place v, our local vectors φi,v are uniquely determined since
they are normalized newvectors. Indeed if πi (i = 1, 2) is cuspidal, there is a unique L2-normalized
new-vector in πv. We allow here the infinite component φi,∞ (i = 1, 2) to have a certain degree of
freedom. In fact, these will be chosen for Theorem 1.2 and 1.3 in Section 5.4 (See Proposition 5.1)
and will depend on π1,∞, π2,∞, π3,∞. Here π3 is the automorphic representation which we want to
obtain subconvexity bound in Section 6. We make therefore the convention that all ≪ involved in the
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following sections depend implicitly on φ1,∞ and φ2,∞. We can also fix them by choosing for each
infinite place v, φi,v ∈ πi,v to be the unique normalized vector of minimal weight for i = 1, 2.

4.1. A L2-norm. We have the following quick upper bound for L2-norm.

Proposition 4.2. For any real number ε > 0, we have the following estimation∫
X

∣∣∣φ1φ
l
2

∣∣∣2 ≪π1,π2,ε ℓ
ε.

Proof. Since π1 and π2 are both cuspidal, applying Cauchy-Schwarz inequality we get the following
bound: ||φ1||2L4 ||φ2||2L4 ≪π1,π2,ε ℓ

ε. □

4.2. A generic term. Now we gives the following estimation for a particular generic expansion from
the spectral decomposition:

Proposition 4.3. For any real number ε > 0. Then the generic expansion∑
π cuspidal

c(π)|l

∑
ψ∈B(π,l)

∣∣∣⟨φ1φ
l
2, ψ⟩

∣∣∣2

+
∑

χ∈ ̂F×\A1
F

c(χ)2|l

∫ ∞

−∞

∑
ψit∈B(χ,χ−1,it,l)

∣∣∣⟨φ1φ
l
2,E(ψit)⟩

∣∣∣2 dt
4π
,

(4.1)

is bounded, up to a constant depending on π1, π2, F and ε, by ℓε.

Proof. Since both πi (i = 1, 2) are cuspidal, the expansion (4.1) is equal to∣∣∣∣∣∣φ1φ
l
2

∣∣∣∣∣∣2
L2

− V −1
F

∑
χ2=1

∣∣∣〈φ1φ
l
2, φχ

〉∣∣∣2 ,
where φχ(g) := χ(det g). The L2-norm is bounded by ℓε by Proposition 4.2. The one-dimensional
contribution (constant term) is zero if π1 is not isomorphic to a quadratic twist of π2. Otherwise,
there exists at most finite many quadratic characters χ (depending on the number field F ) such that
π1 ≃ π2 ⊗ χ. The cardinality of such quadratic character χ is Oε,F ((uvℓ)

ε). For such a χ, we have
using the Hecke relation identity (3.5) and the θ2-temperedness:

(4.2)

∣∣∣∣∫
X
φ1φ

l
2φχ

∣∣∣∣ ⩽ ζFp(1)
n+ 1

ℓ1/2−θ2
||φ1||L2 ||φ2||L2 ≪ε,π1,π2 ℓ

−1/2+θ2+ε.

Since 0 ⩽ θ2 ⩽ 7
64 , we prove the result. □

5. A Symmetric Period

Let π1, π2 and φi ∈ πi as in Section 4. We take q which is an integral ideal of OF and l which is
an integral ideal of the form pn with n ∈ N and p ∈ Spec(OF ) coprime with q. Here the integral ideal
q is the same as in Section 1 and is coprime to uv. By the multiplicativity of the Hecke operators,
without loss of generality, we write q = qm1 with m ∈ N and q1 ∈ Spec(OF ) coprime with l and p. We
write q, q1, p, ℓ for the norms of q, q1, p and l respectively. We also recall that the integral ideal l is
coprime to uvq. We also adopt the convention that all ≪ involved in this section depend implicitly
on the infinite datas φ1,∞ and φ2,∞ (See Remark 4.1). By setting

(5.1) Φ = φ1φ
q
2,

we also consider the period as in [Zac20]

(5.2) Pq(l,Φ,Φ) :=

∫
X
Tl(Φ)Φ = ⟨Tl(Φ),Φ⟩ .
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5.1. Expansion in the q-aspect. Since π1 and π2 are cuspidal automorphic representations, We note
that Φ1 = φ1φ

q
2 is a rapid-decay function which is invariant under the congruence group K0(uvq), we

apply Plancherel formula (See [Zac20, Theorem 2.8]) to the well-defined inner product (5.2) in the
space of forms of level mnq. We have the following decomposition of the considered period

(5.3) Pq(l,Φ,Φ) = Gq(l,Φ,Φ) + C1,

where the generic part is given by

Gq(l,Φ,Φ) =
∑

π cuspidal
c(π)|uvq

λπ(l)
∑

ψ∈B(π,uvq)

∣∣⟨φ1φ
q
2, ψ⟩

∣∣2
+

∑
χ∈ ̂F×\A1

F

c(χ)2|uvq

∫ ∞

−∞
λχ,it(l)

∑
ψit∈B(χ,χ−1,it,uvq)

∣∣⟨φ1φ
q
2,E(ψit)⟩

∣∣2 dt
4π
.

(5.4)

Moreover, the constant term C1 is the one-dimensional contribution (constant term) which appears
only if both π1 and π2 are cuspidal and there exists finite many quadratic characters χ (depending on
the number field F ) of F×\A1

F such that π1 ≃ π2⊗χ (χ = 1 if π1 = π2 for example). The cardinality of
such quadratic character χ is Oε,F ((uvq)

ε) = Oε,F (q
ε). For such a quadratic character χ, by applying

the Hecke relation (3.5), we have the following:

(5.5)

C1 =V −1
F · ⟨Tl(Φ), φχ⟩⟨φχ,Φ⟩ =

χ(l) deg(Tl)

VF
·
∣∣〈φ1φ

q
2, φχ

〉∣∣2
=
ζq(2)

2χ(l) deg(Tl)

ζq(1)2VF
·
∣∣∣∣ 1

q1/2

(
⟨φ1 · (Tqφ2), φχ⟩ −

1

q1
·
〈
φ1 · (Tqm−2

1
φ2), φχ

〉)∣∣∣∣2
=
ζq(2)

2χ(l) deg(Tl)

ζq(1)2VF
·
∣∣∣∣ 1

q1/2

(
λπ2(q)−

1

q1
λπ2

(
qm−2
1

))
· ⟨φ1φ2, φχ⟩

∣∣∣∣2
=
ζq(2)

2χ(l) deg(Tl)

qζq(1)2VF
·
∣∣∣∣(λπ2(q)− 1

q1
λπ2

(
qm−2
1

))∣∣∣∣2 · |⟨φ1φ2, φχ⟩|2 ,

where Tq is the Hecke operator and ζq(s) :=
∏
v|q ζFv(s) is the partial Dedekind zeta function. If

the integral ideal q is squarefree, i.e. m = 1, we define Tqm−2
1

:= 0 and λπ2
(
qm−2
1

)
:= 0. Hence,

Tqm−2
1

φ2 = 0. Moreover, the degree of the Hecke operator Tl is defined by

(5.6) deg(Tl) :=
1

ℓ1/2

∑
0⩽k⩽n

2

γn−2k = ℓ1/2
ζFp(1)

ζFp(n+ 1)
⩽ ℓ1/2ζFp(1).

Since π2 is θ2-tempered at all the finite places, we have |λπ2(q)| ⩽ (m + 1) · qθ2 . Applying Cauchy-
Schwartz inequality,

C1 ≪π1,π2,F,ε (ℓq)
ε ℓ1/2

q1−2θ2
≪π1,π2,F,ε (ℓq)

ε ℓ
1/2

q25/32

since 0 ⩽ θ2 ⩽ 7
64 . Hence we can conclude

(5.7) Pq(l,Φ,Φ) = Gq(l,Φ,Φ) +Oπ1,π2,F,ε

(
(ℓq)ε

ℓ1/2

q1−2θ2

)
,

where we recall that Φ is defined as (5.1).
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5.2. The symmetric relation. The symmetric relation is obtained by grouping differently the vec-
tors φi (i = 1, 2): In the period Pq(l,Φ,Φ), we first use the Hecke relation (3.5) to expand the Hecke
operator Tl. Secondly we do the same, but on the reverse way, for the translation by the matrix(

1
ϖqm1

)
. Therefore, this time the Hecke operator Tqm1

= Tq appears. We thus obtain the following

symmetric relation:

(5.8) q
1
2
ζq(1)

ζq(2)
· Pq(l,Φ,Φ) =

1

ℓ1/2
·
∑

0⩽k⩽n
2

γn−2k ·
(
Ppn−2k(q,Ψ1,Ψ2)−

1

q1
· Ppn−2k(qm−2

1 ,Ψ1,Ψ2)

)
,

where we simply define Ppn−2k(qm−2
1 ,Ψ1,Ψ2) := 0 if the integral ideal q is squarefree, i.e. m = 1.

Moreover,

(5.9) Ψ1 = φ1φ
pv−2k

1 and Ψ2 = φ2φ
pv−2k

2 .

Here Equation 5.8 is a generalization of [Zac20, Equation 4.9].
We consider the period Ppn−2k(q,Ψ1,Ψ2) in (5.8). The period Ppn−2k(qm−2

1 ,Ψ1,Ψ2) on the right
hand side of (5.8) can be estimated in a similar way and is dominated by the period Ppn−2k(q,Ψ1,Ψ2).
We note that the period Ppn−2k(q,Ψ1,Ψ2) admit a similar expansion as (5.3), but this time over

automorphic representations of conductor dividing pn−2k. This is the phenomenon of the spectral
reciprocity formula. We get a close and interesting relation between different type of first moment of
L-functions with different spectral length. Hence, we have the following spectral decomposition:

Ppn−2k(q,Ψ1,Ψ2) = Gpn−2k(q,Ψ1,Ψ2) + C2(k),

where Gpn−2k(q,Ψ1,Ψ2) is the generic part and C2(k) is the one-dimensional contribution (constant
term).

By definition, we have

Gpn−2k(q,Ψ1,Ψ2) :=
∑

π cuspidal
c(π)|pn−2k

λπ(q)
∑

ψ∈B(π,pn−2k)

⟨Ψ1, ψ⟩⟨ψ,Ψ2⟩

+
∑

χ∈ ̂F×\A1
F

c(χ)2|pn−2k

∫ ∞

−∞
λχ,it(q)

∑
ψit∈B(χ,χ−1,it,pn−2k)

⟨Ψ1,E(ψit)⟩⟨E(ψit),Ψ2⟩
dt

4π
.

(5.10)

Since the automorphic representation π1 and π2 are cuspidal, the constant term C2(k) is bounded by

(5.11)

|C2(k)| ⩽
∑
χ

|χ(q)|deg(Tq)ζq(1))

VF ζq(2)
·

2∏
i=1

∣∣∣∣∫
X
φiφ

pv−2k

i φi,χ

∣∣∣∣
⩽
∑
χ

V −1
F q1/2

ζq(1)
2

ζq(2)

2∏
i=1

∣∣∣∣∫
X
φiφ

pv−2k

i φi,χ

∣∣∣∣ ,
where the degree of the Hecke operator Tq is defined by

(5.12) deg(Tq) :=
1

q1/2

∑
0⩽k⩽m

2

γm−2k = q1/2
ζFp(1)

ζFp(m+ 1)
⩽ q1/2ζFp(1),

since ζFp(m + 1) > 1. Moreover, the summation is over quadratic Hecke character χ satisfying
π1 ∼= π1 ⊗ χ and π2 ∼= π2 ⊗ χ and φχ(g) = χ(det g). We note that the cardinality of such quadratic
character χ is finite (depending on the number field F ), hence is bounded by Oε,F ((uvℓ)

ε. For such a
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quadratic character χ, applying Hecke relation identity (3.5) (See also Equation 4.2), for i = 1, 2 we
have ∣∣∣∣∫

X
φiφ

pn−2k

i φi,χ

∣∣∣∣ ⩽ ζFp(1)
n− 2k + 1

p
n−2k

2
(1−2θi)

||φi||2L2 =⇒ C2(k) ≪ε,π1,π2,F (qℓ)ε
q1/2

p(n−2k)(1−θ1−θ2)
.

Similarly, the constant term C3(k) in the period Ppn−2k(qm−2
1 ,Ψ1,Ψ2) can be bounded by (uvqℓ)ε ·

q
(m−2)/2
1 /p(n−2k)(1−θ1−θ2). The generic term is almost the same as (5.10) by substituting the integral

ideal q to qm−2
1 .

Now, the total constant term is obtained after summing over 0 ⩽ k ⩽ n/2 as in (5.8), i.e.

(5.13) C2 :=
1

ℓ1/2

∑
0⩽k⩽n

2

γn−2k ·
(
C2(k)−

1

q1
· C3(k)

)
with the following upper bound

(5.14) C2 ≪ε,π1,π2,F (qℓ)ε · q1/2

ℓ1/2−θ1−θ2
.

From the above discussion, we have the following spectral reciprocity relation between the two generic
parts:
(5.15)

q1/2
ζq(1)

ζq(2)
|Gq(l,Φ,Φ)| ⩽

1

ℓ1/2

∑
0⩽k⩽n

2

γn−2k · |Gpn−2k(q,Ψ1,Ψ2)|+ C2

+
1

ℓ1/2

∑
0⩽k⩽n

2

γn−2k ·
1

q1
· |Gpn−2k(qm−2

1 ,Ψ1,Ψ2)|+Oπ1,π2,F,ε

(
(qℓ)ε

ℓ1/2

q1/2−2θ2

)
.

Now we have to bound the geometric sum Gpn−2k(q,Ψ1,Ψ2). The estimation of the geometric sum

Gpn−2k(qm−2
1 ,Ψ1,Ψ2) is almost the same as Gpn−2k(q,Ψ1,Ψ2) and will give a similar bound. Finally,

we can estimate the generic terms on the righthand side simply using the bound |λπ(q)| ⩽ τ(q)qθ,
Cauchy-Schwartz inequality and Proposition 4.3, obtaining

(5.16)
1

ℓ1/2
·
∑

0⩽k⩽n
2

γn−2k · Gpn−2k(q,Ψ1,Ψ2) ≪π1,π2,F,ε (ℓq)
ε · ℓ1/2 · qθ.

Here the real number θ is the best exponent toward the Ramanujan-Petersson Conjecture for GL(2)
over the number field F , we have 0 ⩽ θ ⩽ 7

64 . Similarly, we have

(5.17)
1

ℓ1/2
·
∑

0⩽k⩽n
2

γn−2k · Gpn−2k(qm−2
1 ,Ψ1,Ψ2) ≪π1,π2,F,ε (ℓq)

ε · ℓ1/2 · qθ.

Since 1
2 − 2θ2 > 0, we can rewrite Equation (5.15) as follows:

(5.18) q1/2
ζq(1)

ζq(2)
|Gq(l,Φ,Φ)| ≪ε,F,π1,π2 C2 + (ℓq)εℓ1/2qθ ≪ε,F,π1,π2 (ℓq)ε ·

(
q1/2

ℓ1/2−θ1−θ2
+ ℓ1/2qθ

)
.

5.3. Connection with the triple product. We connect in this section the expansion (5.4) with a
first moment of the triple product L(12 , π ⊗ π1 ⊗ π2) over automorphic representations π of conductor
dividing uvq. For such a representation π, we define

(5.19) L(π, q) :=
∑

ψ∈B(π,uvq)

∣∣⟨φ1φ
q
2, ψ⟩

∣∣2 ,
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where we recall that B(π, uvq) is an orthonormal basis of the space of K0(uvq)-vectors in π. By
Proposition 3.1 and Definition (2.9) of the canonical norm, we have

(5.20) L(π, q) =
C

2∆
1/2
F

f(π∞)
L(12 , π ⊗ π1 ⊗ π2)

Λ∗(1, π,Ad)
ℓ(π, q),

where the constant C = 2ΛF (2). If we identify π ≃ ⊗vπv, then ℓ(π, q) =
∏
v|uvq ℓv and the local

factors ℓv are given by the summation of the local triple product integrals in Proposition 3.1 over an
orthonormal basis B(π, uvq). We define the weight function

H(π, q) :=
ℓ(π, q)

2∆
1/2
F

.

For the finite place v|q, by [Hu17, Theorem 4.1], if c(πv) = m ⩾ 1, we have
∏
v|q ℓv ≍ 1

q . If

0 ⩽ c(πv) ⩽ m− 1, by definition, it is known that ℓv ⩾ 0.
If the finite place v|uv, since u, v are coprime and the corresponding norms u, v are positive absolutely

bounded integers, by [BJN24, Corollary 3.4, Remark 3.4], [Hu17] and [Wood12], we have ℓv ≫ 1. In
conclusion, if C(π) = q, then we have

H(π, q) ≫u,v
1

q
.

5.4. Archimedean function f(π∞). The Archimedean function f(π∞) appearing in the factoriza-
tion (5.20) is given by (See [Zac19, Equation (3.10)])

(5.21) f(π∞) :=
∑

φ∞∈B(π∞)

I∞(φ∞ ⊗ φ1,∞ ⊗ φ2,∞)L(12 , π∞ ⊗ π1,∞ ⊗ π2,∞),

where the local period I∞ is defined in (3.3). The function f(π∞) is non-negative and depends on the
infinite factors π1,∞ and π2,∞ and more precisely, on the choice of test vectors φi,∞ ∈ πi,∞ and the
orthonormal basis B(π∞). For our application, it will be fundamental that f satisfies the following
property: Given π = π∞ ⊗ πfin a unitary automorphic representation of PGL2(AF ), there exists
φi,∞ ∈ πi,∞, i = 1, 2 with norm 1 and a basis B(π∞) such that f(π∞) is bounded below by a power of
the archimedean conductor c(π∞). It is a result of Michel and Venkatesh [MV10, Proposition 3.6.1]
that such a choice exists when at least one of the local representation π1,v and π2,v is a principal series
when the local place v|∞. We give the statement as the following proposition.

Proposition 5.1. [MV10, Propostion 3.6.1] Assume that for all archimedean place v|∞, either π1,v
or π2,v is a principal series representation. Then for any ε > 0, there exists a positive constant
C(π1,∞, π2,∞, ε), such that we have the lower bound

(5.22) f(π∞) ⩾
C(π1,∞, π2,∞, ε)

c(π∞)1+ε
> 0.

If neither π1,v nor π2,v is a principal series representation for v|∞, and we further assume that π
is an Eisenstein series, then for every archimedean place v|∞, πv is automatically a principal series
representation. Without loss of generality, we may assume that the local field Fv = R. Since if Fv = C,
then π1,v, π2,v, πv must be principal series representations by the classification. Since neither π1,v nor
π2,v is a principal series representation, they must both be discrete series. Applying the non-negativity
result in [BJN24, Corollary 3.4, Remark 3.4] and explicit computations in [Wood17, Proposition 3.4],
we can get

f(π∞) ⩾
C(π∞, π2,∞, ε)

e(4+ε)·c(π∞)
> 0,

that is f(π∞) ≫π1,∞,π2,∞,ε e
−(4+ε)·c(π∞) > 0, which is a weak form of above Proposition 5.1, but is

enough for our purpose.
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Remark 5.2. In fact, for the local field Fv = R, if π1,v, π2,v, πv are not all discrete series, i.e. at least
one of them is a principal series representation, then we always have

f(π∞) ≫π1,∞,π2,∞,π∞ e−(4+ε)·c(π∞) > 0,

by the positivity result in [BJN24, Corollary 3.4, Remark 3.4] and explicit computations in [Wood17,
Proposition 3.2, Proposition 3.3, Proposition 3.4], which is enough for our purpose. Hence, in Theorem
1.2, we may slightly weaken the condition that at least one of π1,∞, π2,∞ and π3,∞ is a principal series
representation.

Remark 5.3. In Theorem 1.1, 1.2 and 1.3, it is possible to remove the condition that two ideals u
and v by following the proof idea in [MV10, Proposition 3.6.1] for the non-archimedean local field case
using the theory of Kirillov model. The only thing we may need is that the corresponding norms of
these two integral ideals are absolutely bounded positive integers.

Now the estimation of Theorem 1.1 can be achieved from the discussion in Section 4 and 5 (See
also [Zac20, Section 4.5]).

6. Proof of Theorem 1.2 and Theorem 1.3

Let q be an integral ideal of OF and fix π3 an automorphic representation (cusp form or Eisenstein
series) of PGL2(AF ) with finite conductor q. Let π1, π2 be two unitary cuspidal automorphic repre-
sentations satisfying the conditions in Theorem 1.2 and Theorem 1.3. We fix the test vectors φi ∈ πi
(i = 1, 2) as in the beginning of Section 4.

6.1. The amplification method. Let q1/100 < L < q be a parameter that we will choose at the
end of the proof. We recall that for any ε > 0, we have u ≪ε q

ε and v ≪ε q
ε. Given π a unitary

automorphic representation of conductor dividing uvq, following [BK19, Section 12] [Zac20, Section
5.1], we choose the following amplifier

A(π) :=


∑

p∈Spec(OF )
N(p)⩽L
p∤uvq

λπ(p)x(p)


2

+


∑

p∈Spec(OF )
N(p)⩽L
p∤uvq

λπ(p
2)x(p2)


2

,

where x(l) = sgn(λπ3(l)). By Landau Prime Ideal Theorem and the Hecke relation λπ0(p)
2 = λπ0(p

2)+
1, we have

(6.1) A(π3) ⩾
1

2


∑

p∈Spec(OF )
N(p)⩽L
p∤uvq

|λπ0(p)|+ |λπ0(p2)|


2

≫F
L2

(logL)2
.

On the other hand, using the Hecke relation again, we have

A(π) =
∑

p∈Spec(OF )
N(p)⩽L
p∤uvq

(x(p)2 + x(p2)2) +
∑
p1,p2

N(pi)⩽L
pi∤uvq

x(p21)x(p
2
2)λπ(p

2
1p

2
2)

+
∑
p1,p2

N(pi)⩽L
pi∤uvq

(x(p1)x(p2) + δp1=p2x(p
2
1)x(p

2
2))λπ(p1p2).

(6.2)



SPECTRAL RECIPROCITY FOR THE FIRST MOMENT OF TRIPLE PRODUCT L-FUNCTIONS AND APPLICATIONS15

Let C, f(π0,∞) be the quantity defined respectively in the previous Section 5.3. If π3 is cuspidal, by
positivity, we have

C · q−1 · A(π3)
L(12 , π1 ⊗ π2 ⊗ π3)

Λ(1, π3,Ad)
f(π3,∞) ⩽ MA(π1, π2, q, l),

with MA(π1, π2, q, l) as in (1.3), but with the amplifier A(π) instead of the Hecke eigenvalues in (1.1)
and (1.2). Using the lower bound (6.1), we get

L
(
1
2 , π1 ⊗ π2 ⊗ π3

)
Λ(1, π3,Ad)

f(π3,∞) ≪ε,F L
−2+ε · q ·MA(π1, π2, q, l).

Now we expand the amplifier as in (6.2) and apply Theorem 1.1 with specific integral ideal l = 1, p1p2
or l = p21p

2
2 yields the following:

L
(
1
2 , π1 ⊗ π2 ⊗ π3

)
Λ(1, π3,Ad)

f(π3,∞) ≪ε,F,π1,π2,φ1,∞,φ2,∞ qε
(
q · L−1+2θ1+2θ2 + q

1
2
+θ · L2

)
,

Finally, picking L = q(1/2−θ)/(3−2θ1−2θ2) (It is easy to see that q1/7 < L ⩽ q1/6) and we obtain the final
subconvexity bound

(6.3)
L
(
1
2 , π1 ⊗ π2 ⊗ π3

)
Λ(1, π3,Ad)

f(π3,∞) ≪ε,F,π1,π2,φ1,∞,φ2,∞ q1−( 1
2
−θ)(1−2θ1−2θ2)/(3−2θ1−2θ2)+ε.

Using (2.11) for the adjoint L-function at s = 1 and discussion in Section 5.4 (Proposition 5.1),
equation (6.3) transforms into

L
(
1
2 , π1 ⊗ π2 ⊗ π3

)
≪ε,F,π1,π2,π∞ q1−( 1

2
−θ)(1−2θ1−2θ2)/(3−2θ1−2θ2)+ε,

which gives the desired subconvexity bound in Theorem 1.2.
If π3 is not cuspidal, i.e. an Eisenstein series, the proof of Theorem 1.3 is almost the same as above.

Instead of the cuspidal distribution and its non-negativity (See Equation 1.1), we need the continuous
distribution and its positivity (See Equation 1.2). We note that in Theorem 1.3, for all archimedean
places v|∞, the condition that at least one of π1,v and π2,v is a principal series representation is not
assumed. Since in this case π3,v itself is a principal series representation, we can get a weak form of
Proposition 5.1 from the discussion in Section 5.4 and is enough for our purpose on the subconvexity
problem. Hence from the discussion between Equation 1.2 and Equation 1.3, we see that the only
barrier in deducing a subconvex bound is as follows: When the variable t attaches to 0 and χ is a
quadratic character, the quotient L(12 + it, π1 ⊗ π2 ⊗ ω)L(12 − it, π1 ⊗ π2 ⊗ ω)/Λ∗(1, πω(it),Ad) =

|L(12 + it, π1 ⊗ π2 ⊗ ω)|2/Λ∗(1, πω(it),Ad) has a zero of order two at t = 0. One can overcome this
obstacle by an application of Holder’s inequality, as in [Blo12, Section 4].
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