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PAIR CORRELATION OF ZEROS OF DIRICHLET 𝐿-FUNCTIONS: A PATH
TOWARDS THE MONTGOMERY AND ELLIOTT-HALBERSTAM CONJECTURES

NEELAM KANDHIL, ALESSANDRO LANGUASCO AND PIETER MOREE

Abstract. Assuming the Generalized Riemann Hypothesis and a pair correlation conjecture for the
zeros of Dirichlet 𝐿-functions, we establish the truth of a conjecture of Montgomery (in its corrected
form stated by Friedlander and Granville) on the magnitude of the error term in the prime number
theorem in arithmetic progressions. As a consequence, we obtain that, under the same assumptions,
the Elliott-Halberstam conjecture holds true.

1. Introduction

The study of pair correlation of the zeros of the Riemann zeta function and Dirichlet 𝐿-functions
has its origin in the early 20th century. In the 1930s, Bohr and others (Landau, Hardy) investigated
the distribution of zeros in the critical strip. In 1942, Selberg [24] proved that a positive density of
the zeros of Riemann zeta function are of odd order and lie on the critical line. The density coming
out of his method is around 10−8; this was dramatically increased in 1974 by Levinson [13], who
improved it to more than one third. Currently it is known due to Bui, Conrey and Young [1] that
more than 40% of the zeros are simple and on the critical line.

In 1973, Montgomery made a major breakthrough and conjectured that the pair correlation of
zeros of the zeta function follows a distribution similar to that of the eigenvalues of random complex
Hermitian or unitary matrices of large orders. That there might be such a connection, was an
idea that first arose during a discussion he had with the physicist Dyson. In the intervening years,
much of the focus shifted to formalizing this connection and examining its implications. A way to
approach the pair correlation of Riemann zeros is to try to asymptotically evaluate sums of the form∑︁

0<𝛾 𝑗≤𝑇, 𝑗=1,2
𝜁 (1/2+𝑖𝛾 𝑗 )=0

𝑓 (𝛾1 − 𝛾2),

with 𝑓 taken from a class of functions as large as possible. Using Fourier analysis, see, e.g. [15], it
can be shown that ∑︁

0<𝛾 𝑗≤𝑇, 𝑗=1,2
𝜁 (1/2+𝑖𝛾 𝑗 )=0

𝑟

(𝛾1 − 𝛾2
2𝜋

)
𝑊 (𝛾1 − 𝛾2) =

∫ ∞

−∞
𝐹 (𝑒𝑥 , 𝑇) 𝑟 (𝑥)𝑑𝑥, (1)

where

𝑊 (𝑢) = 4
4 + 𝑢2 , 𝑟 (𝑥) =

∫ ∞

−∞
𝑟 (𝑢)𝑒−2𝜋𝑖𝑥𝑢𝑑𝑢,
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is the Fourier transform of 𝑟 ∈ 𝐿1(ℝ), and

𝐹 (𝑥, 𝑇) =
∑︁

0<𝛾 𝑗≤𝑇, 𝑗=1,2
𝜁 (1/2+𝑖𝛾 𝑗 )=0

𝑥𝑖(𝛾1−𝛾2) 𝑊 (𝛾1 − 𝛾2).

In 1973, Montgomery [15] proved, assuming the Riemann Hypothesis (RH), that
𝐹 (𝑥, 𝑇) ∼ (2𝜋)−1𝑇 log 𝑥 uniformly for 1 ≤ 𝑥 ≤ 𝑇1−𝜀, 𝑇 → ∞, (2)

a range he extended in 1987, together with Goldston [7] to 1 ≤ 𝑥 ≤ 𝑇 . In [15], Montgomery also
formulated the pair correlation conjecture, stating that

𝐹 (𝑥, 𝑇) ∼ (2𝜋)−1𝑇 log𝑇, uniformly for 𝑇 ≤ 𝑥 ≤ 𝑇 𝐴 for every 𝐴 ≥ 1 (3)
(for the heuristic arguments that led him to believe in this, see [15, §3]).

Using (1), for fixed 𝛼 ≤ 𝛽, it can be seen that this conjecture is equivalent to∑︁
0<𝛾,𝛾′≤𝑇

2𝜋𝛼
log𝑇 ≤𝛾−𝛾

′≤ 2𝜋𝛽
log𝑇

1 ∼
(∫ 𝛽

𝛼

(
1 −

( sin(𝜋𝑢)
𝜋𝑢

)2
𝑑𝑢

)
+ 𝛿(𝛼, 𝛽)

) 𝑇
2𝜋

log𝑇, (4)

as 𝑇 tends to infinity, where 𝛾, 𝛾′ are the imaginary parts of the zeros of the Riemann zeta function
on the critical line and 𝛿(𝛼, 𝛽) = 1 if 0 ∈ [𝛼, 𝛽], and 0 otherwise. For an accessible introduction to
the pair correlation conjecture, see, e.g., Goldston [6].

In the late 20th century, Odlyzko [19, 20] numerically studied the distribution of spacings
between zeros of the Riemann zeta function. He computed 10 billion zeros near 1022-nd zero of
Riemann zeta and verified the Riemann Hypothesis for those zeros. Additionally, he found that the
spaces between these zeros are closely distributed according to (4). Assuming RH, he showed that
the estimate (2) implies that at least 2/3 of the zeros of Riemann zeta function are simple (it is
expected that all the zeros are simple). This is a much stronger result than the unconditional results
mentioned in the beginning of the introduction. In 1982, Özlük [21] in his thesis, see also [22, 23],
studied the Dirichlet 𝐿-function analogue of Montgomery’s conjecture. Consequently, under the
Riemann Hypothesis for Dirichlet 𝐿-functions, also known as the Generalized Riemann Hypothesis
(GRH), in [23] he showed that at least 11/12 of all the zeros of such functions are simple (allowing
for a certain weight function).

In 1991, Yıldırım [25] studied the pair correlation of zeros of Dirichlet 𝐿-functions and an
analogue of the conjecture stated in equation (3). In the sequel, we will work with a redefined pair
correlation function. The key difference is that our summation will not be restricted to the zeros in
the upper half-plane but will also include those in the lower half-plane (note that the imaginary
parts of the zeros of Dirichlet 𝐿-functions are typically not symmetrically distributed with respect
to the real axis). In order to describe this in more detail, we need some notations.

From now on, we assume the Riemann Hypothesis for Dirichlet 𝐿-functions (GRH). Let 𝑞 be a
natural number, 𝜒 a Dirichlet character mod 𝑞 and 𝐿 (𝑠, 𝜒) the associated Dirichlet 𝐿-function. Let
𝛾 𝑗 be the imaginary part of the 𝑗 th zero (ordered by height on the half line). Given two Dirichlet
characters 𝜒1 and 𝜒2 modulo 𝑞, one can wonder to what extent the zeros of 𝐿 (𝑠, 𝜒1) are correlated
with those of 𝐿 (𝑠, 𝜒2). In order to measure this, we define

𝐺 𝜒1,𝜒2 (𝑥, 𝑇) =
∑︁

|𝛾 𝑗 |≤𝑇, 𝑗=1,2
𝐿 (1/2+𝑖𝛾 𝑗 ,𝜒 𝑗 )=0

𝑥𝑖(𝛾1−𝛾2)𝑊 (𝛾1 − 𝛾2).

Henceforth, throughout the article, whenever we write 𝛾 and 𝛾 𝑗 in the summation without
additional specifications, we assume, respectively, that 𝐿 (1/2+ 𝑖𝛾, 𝜒) = 0 and 𝐿 (1/2+ 𝑖𝛾 𝑗 , 𝜒 𝑗 ) = 0.
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Moreover, we remark that rather than 0 < 𝛾 ≤ 𝑇 , we require that |𝛾 | ≤ 𝑇 , thus taking into account
that the imaginary parts of the zeros of Dirichlet 𝐿-functions are (mostly) not symmetrical with
respect to the real axis.

Note that 𝐺 𝜒1,𝜒2 (𝑥, 𝑇) is an analogue of 𝐹 (𝑥, 𝑇). We make a more global object out of
𝐺 𝜒1,𝜒2 (𝑥, 𝑇) by considering

𝐹𝑞 (𝑥, 𝑇) =
∑︁

𝜒1,𝜒2 (mod 𝑞)
𝜒1(𝑎)𝜒2(𝑎)𝐺 𝜒1,𝜒2 (𝑥, 𝑇).

Observe that 𝐹𝑞 (𝑥, 𝑇) depends on 𝑎. However, in our estimates the actual value of 𝑎 will not
play a role and so, in accordance with the existent literature, we suppress the 𝑎 dependence. Now,
using [2, Ch. 16, eqn 1] and [2, Ch. 16, Lemma], we have

|𝐺 𝜒1,𝜒2 (𝑥, 𝑇) | ≤
∑︁

|𝛾 𝑗 |≤𝑇, 𝑗=1,2

1
4 + (𝛾1 − 𝛾2)2 ≪ 𝑇 (log(𝑞𝑇))2,

uniformly in 𝑥 as 𝑇 → ∞. Therefore, we trivially have

𝐹𝑞 (𝑥, 𝑇) ≪ 𝑇 (𝜑(𝑞) log(𝑞𝑇))2, (5)

uniformly in 𝑥 as 𝑇 → ∞, where 𝜑 denotes the Euler’s totient function. Yıldırım [25] defined the
𝐺 𝜒1,𝜒2 (𝑥, 𝑇) analogue

𝐺+
𝜒1,𝜒2 (𝑥, 𝑇) =

∑︁
0<𝛾 𝑗≤𝑇

𝑥𝑖(𝛾1−𝛾2)𝑊 (𝛾1 − 𝛾2),

and proved the following result.

Theorem 1 (Yıldırım [25]). Under GRH, as 𝑥 → ∞, we have∑︁
𝜒1,𝜒2 (mod 𝑞)

𝜒1(𝑎)𝜒2(𝑎)𝐺+
𝜒1,𝜒2 (𝑥, 𝑇) ∼

𝜑(𝑞)
2𝜋

𝑇 log 𝑥 (6)

uniformly for
1 ≤ 𝑞 ≤

√
𝑥 log−3 𝑥 and

𝑥

𝑞
log 𝑥 ≤ 𝑇 ≤ exp( 4√𝑥).

For smaller 𝑇 (with respect to 𝑥), he conjectured:

Conjecture 1 (Pair correlation for Dirichlet 𝐿-functions [25]). Let 𝑞 = 1 or 𝑞 be a prime and
0 < 𝜂 ≤ 1 be a fixed real number. Then, under GRH, as 𝑥 → ∞,∑︁

𝜒1,𝜒2 (mod 𝑞)
𝜒1(𝑎)𝜒2(𝑎)𝐺+

𝜒1,𝜒2 (𝑥, 𝑇) ∼
𝜑(𝑞)
2𝜋

𝑇 log(𝑞𝑇), (7)

uniformly for
𝑞 ≤ min(

√
𝑥 log−3 𝑥, 𝑥1−𝜂 log 𝑥) and 𝑥𝜂 ≤ 𝑇 <

𝑥

𝑞
log 𝑥.

We remark that in Conjecture 1 and in his results about the mean square of primes in arithmetic
progressions, Yıldırım assumed that 𝑞 is prime in order to avoid the contribution of imprimitive
characters; we do not have such a limitation in our application.

We prove the following result, which is inspired by [11, eq. 3].

Theorem 2. Let 𝜀 > 0. Under GRH, as 𝑥 → ∞, we have

𝐹𝑞 (𝑥, 𝑇) ≪ 𝜑(𝑞)𝑇 log 𝑥,
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uniformly for
1 ≤ 𝑞 ≤ 𝑥1−𝜀 and 𝑥 ≤ 𝑇 ≤ exp(

√
𝑥).

Remark 1. In fact, by using the Brun-Titchmarsh estimate in its whole range of validity, it is easy
to see that the 𝑞-uniformity range in Theorem 2 can be slightly extended to 1 ≤ 𝑞 ≤ 𝑥 log−(1+𝜀) 𝑥,
at the cost of having the slightly worse estimate 𝐹𝑞 (𝑥, 𝑇) ≪ 𝜑(𝑞)𝑇 log2 𝑥/log log 𝑥.

The different uniformity ranges for 𝑞, 𝑇 in our result compared with the ones in Yıldırım’s
are due to the fact we wish to work with 𝑞 larger than

√
𝑥, so outside the range in which the

Bombieri-Vinogradov theorem works. As a consequence, having 𝑞 so large forces us to have 𝑇

larger than 𝑥 (instead of 𝑥/𝑞 log 𝑥 as in Yıldırım’s result) and to obtain an upper bound for 𝐹𝑞 (𝑥, 𝑇)
instead than an asymptotic formula.

Motivated by conjectures made by Montgomery, see (3), and Yıldırım, see (7), for the remaining
values of 𝑇 with respect to 𝑥, we believe:

Conjecture 2. Let 𝜀 > 0 fixed. Under GRH, as 𝑥 → ∞, we have
𝐹𝑞 (𝑥, 𝑇) ≪ 𝜑(𝑞)𝑇𝑥𝜀, (8)

uniformly for
1 ≤ 𝑞 ≤ 𝑥1−𝜀 and 𝑥𝜀 ≤ 𝑇 < 𝑥.

In Theorem 3 we refine Theorem 1. In it the allowed 𝑇-range is extended, as we show that the
logarithmic term from the lower bound for 𝑇 can be removed by utilizing the Goldston-Montgomery
version of Montgomery-Vaughan’s mean value theorem for Dirichlet series (see Lemma 3), instead
of the original version given in [17]. Furthermore, correcting a typo in [25] as mentioned in
Footnote 3 we are able to replace exp(𝑥1/4) by exp(𝑥3/4) in the upper bound for 𝑇 .

Theorem 3. Let 𝜀 > 0. Under GRH, as 𝑥 → ∞, we have

𝐹𝑞 (𝑥, 𝑇) ∼
𝜑(𝑞)
𝜋

𝑇 log 𝑥 (9)

uniformly for
1 ≤ 𝑞 ≤

√
𝑥 log−(2+𝜀) 𝑥, and

𝑥

𝜑(𝑞) ≤ 𝑇 ≤ exp(𝑥3/4).

Comparing (6) with (9) one can wonder about a missing factor 2 at the denominator but this is
justified by the fact that we are summing the imaginary parts of the zeros over a range which is
twice the one used in (6).

Note that the asymptotic estimate proved in Theorem 3 is in the 𝑞-aspect the square root of the
trivial estimate (5). In achieving this the orthogonality of the Dirichlet characters plays a key role.

Besides the consequences on the simplicity of the zeros mentioned at the beginning of this
introduction, it is not surprising that these results and conjectures can give information on the
distribution of primes too. In 1978, Gallagher and Mueller [5] were the first to establish a result
connecting the pair correlation of zeros of 𝜁 (𝑠) and prime number distribution. They proved that
assuming RH, and pair correlation conjecture for zeros of Riemann zeta function,

𝜓(𝑥) = 𝑥 + 𝑜(
√
𝑥 log2 𝑥) as 𝑥 → ∞.1 (10)

This improves on the classic result that, assuming RH, the above estimate holds with error
term 𝑂 (

√
𝑥 log2 𝑥). However, In 1982, Heath-Brown [9] was able to obtain the estimate in (10)

assuming the weaker hypothesis 𝐹 (𝑥, 𝑇) = 𝑜(𝑇 log2 𝑇), as 𝑇 → ∞, uniformly for 𝑇 ≤ 𝑥 ≤ 𝑇 𝐴 for

1We recall some standard prime number theory notations in Section 2.
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every constant 𝐴 ≥ 1. In the same year, Goldston and Montgomery [7, Thm 2] established an
equivalence between an asymptotic result for the distribution of primes and the pair correlation
conjecture (3). Assuming Conjecture 1, Yıldırım [25] was able to establish, following the work
of Goldston-Montgomery [7], an asymptotic formula for the mean square of primes in arithmetic
progressions.

We recall that in 1837, Dirichlet (see for example [18, Chp. 2]) proved that there are infinitely
many primes congruent to 𝑎 (mod 𝑞) for (𝑎, 𝑞) = 1. The method used by Hadamard to prove the
Prime Number Theorem allowed him to show also, cf. [18, p. 206], that

𝜓(𝑥; 𝑞, 𝑎) − 𝑥

𝜑(𝑞) = 𝑜

( 𝑥
𝑞

)
, (11)

as 𝑥 → ∞. In 1936 Walfisz proved, for any fixed 𝐴 > 0, that (11) holds uniformly for 𝑞 ≤ log𝐴 𝑥.
Under GRH, for any (𝑎, 𝑞) = 1 it is known, uniformly for 1 ≤ 𝑞 < 𝑥, that

𝜓(𝑥; 𝑞, 𝑎) − 𝑥

𝜑(𝑞) = 𝑂
(√

𝑥 log2 𝑥
)

(12)

as 𝑥 → ∞. See for instance, [2, p. 125]. Moreover, estimate (12) implies that under GRH, for any
𝜀 > 0, (𝑎, 𝑞) = 1, the estimate (11) holds uniformly for 1 ≤ 𝑞 ≤

√
𝑥 log−(2+𝜀) 𝑥, as 𝑥 → ∞.

Friedlander and Granville [4, Cor. 2] proved that the estimate (11) can not hold uniformly for the
range 1 ≤ 𝑞 < 𝑥/log𝐵 𝑥, where 𝐵 > 0 is any arbitrary fixed number. In the same paper they also
formulated the following corrected form of another conjecture of Montgomery, see [4, p. 366].

Conjecture 3 (Montgomery). For any 𝜀 > 0, (𝑎, 𝑞) = 1, uniformly for 1 ≤ 𝑞 < 𝑥 we have

𝜓(𝑥; 𝑞, 𝑎) − 𝑥

𝜑(𝑞) ≪
√︂

𝑥

𝑞
𝑥𝜀 . (13)

For 1 ≤ 𝑞 ≤ 𝑥𝜀 it is clear that equation (13) follows immediately from (12). Hence it suffices to
restrict our analysis to the range 𝑥𝜀 < 𝑞 < 𝑥.

Our main result states that if both GRH and Conjecture 2 hold true, then the estimate (13) holds
in almost the whole 𝑞-range given in Montgomery’s Conjecture 3.

Theorem 4. Let 𝜀 > 0 and (𝑎, 𝑞) = 1. Assume that both GRH and Conjecture 2 hold true. Then,
(13) holds for 𝑥 sufficiently large and uniformly for 1 ≤ 𝑞 ≤ 𝑥1−𝜀.

Another very important conjecture on the distribution of primes is:

Conjecture 4 (Elliott-Halberstam [3]). For every 𝜀 > 0 and 𝐴 > 0,∑︁
𝑞≤𝑥1−𝜀

max
(𝑎,𝑞)=1

���𝜓(𝑥; 𝑞, 𝑎) − 𝑥

𝜑(𝑞)

��� ≪𝐴,𝜀

𝑥

(log 𝑥)𝐴
.

If true, this is close to best possible as Friedlander and Granville [4], using the Maier matrix
method [14], showed the conjecture to be false when 𝑥1−𝜖 is replaced by 𝑥 log−𝐵 𝑥, with 𝐵 > 0
arbitrary. Indeed, Maier’s matrix method can be used to establish limitations to a very successful
probabilistic prime number distribution model of Cramèr, cf. Granville [8].

So far, an estimate like the one in Conjecture 4 is known only in the interval 𝑞 ≤
√
𝑥 log−𝐵 𝑥,

with 𝐵 > 0 thanks to the Bombieri-Vinogradov result.
Theorem 4 has the following straightforward elegant corollary supporting the Elliott-Halberstam

conjecture.
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Corollary 5. Let 𝜀 > 0 and (𝑎, 𝑞) = 1. Assume that both GRH and Conjecture 2 hold true. Then,
for 𝑥 sufficiently large, we have∑︁

𝑞≤𝑥1−4𝜖

max
(𝑎,𝑞)=1

���𝜓(𝑥; 𝑞, 𝑎) − 𝑥

𝜑(𝑞)

��� ≪ 𝑥1−𝜀 .

We remark that the 𝑥𝜀-factor present on the right hand side of (13) implies that the 𝑞-range of
the sum in Corollary 5 cannot be further enlarged. In fact, assuming the truth of Conjecture 2 in
a 𝑞-uniformity range larger than the one stated would have no consequence on Corollary 5. We
hence decided to assume the the truth of Conjecture 2 only in the uniformity ranges strictly needed
to obtain Corollary 5.

Moreover, it is also possible to show that a weaker form of (13) follows by assuming a weaker
form of the pair correlation conjecture for the Dirichlet 𝐿-functions. This weaker form involves an
additional factor satisfying 1 ≤ 𝑔(𝑞) ≤ 𝜑(𝑞) in the upper bound, the original Conjecture 2 arising
on putting 𝑔(𝑞) = 1 and, essentially, the trivial estimate for 𝐹𝑞 (𝑥, 𝑇), equation (5), on choosing
𝑔(𝑞) = 𝜑(𝑞).

Conjecture 5 (Weak pair correlation for Dirichlet 𝐿-functions). Let 𝜀 > 0 fixed and 𝑔(𝑞) be an
arithmetic function satisfying 1 ≤ 𝑔(𝑞) ≤ 𝜑(𝑞). Under GRH, as 𝑥 → ∞, we have

𝐹𝑞 (𝑥, 𝑇) ≪ 𝜑(𝑞)𝑔(𝑞)𝑇𝑥𝜀

uniformly for

1 ≤ 𝑞 ≤ 𝑥1−𝜀 and 𝑥𝜀 ≤ 𝑇 < 𝑥.

Theorem 6. Let 𝜀 > 0, (𝑎, 𝑞) = 1 and 𝑔(𝑞) be an arithmetic function satisfying 1 ≤ 𝑔(𝑞) ≤ 𝜑(𝑞).
Assume that both GRH and Conjecture 5 hold true. Then, uniformly for 1 ≤ 𝑞 ≤ 𝑥1−𝜀 we have, for
sufficiently large 𝑥, that

𝜓(𝑥; 𝑞, 𝑎) − 𝑥

𝜑(𝑞) ≪

√︄
𝑥𝑔(𝑞)
𝑞

𝑥𝜀 .

For instance, if 𝑔(𝑞) = 𝜑(𝑞)𝛼, 0 ≤ 𝛼 ≤ 1, then assuming GRH and Conjecture 5, Theorem 6
implies that ∑︁

𝑞≤𝑄
max
(𝑎,𝑞)=1

���𝜓(𝑥; 𝑞, 𝑎) − 𝑥

𝜑(𝑞)

��� ≪ 𝑥1−𝜀

for 𝑄 := 𝑄(𝛼, 𝑥) ≤ 𝑥1/(1+𝛼)−4𝜀. Note that 𝑥1/2−4𝜀 ≤ 𝑄 ≤ 𝑥1−4𝜀 for such 𝛼’s.
The paper is organised as follows. In §2, we recall results we need to prove our theorems. In

§3, we prove Theorems 2–3 and the §4 is devoted to proofs of the main results of this paper, i.e,
Theorems 4 and 6. The crux of the proof of Theorem 4 lies in the following observations. As noted
earlier, the conjectural estimate represents a substantial improvement compared to the trivial bound
in both the 𝑞 and 𝑇 aspects when discussing the pair correlation of zeros of Dirichlet 𝐿-functions
(see (5), (7) & (8)). On the other hand, it is relatively less significant in the context of the correlation
of zeros of the Riemann zeta. This leads to the following key point: while proving Theorem 4, the
analysis proceeds smoothly in case of “not too small” zeros, aligning with the case of modulus 1
(see [9, Thm 1]). However, when accounting for the contributions of low-lying zeros, the trivial
estimate becomes inadequate. To address this difficulty, we dissect the problem into dyadic intervals
and subsequently transition from local to global intervals. For more details, please refer to §4.
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2. Preliminaries

2.1. Prime number distribution. In this section, we recall the material we need on the distribution
of prime numbers, using the notations

𝜋(𝑡) =
∑︁
𝑝≤𝑡

1, 𝜋(𝑡; 𝑞, 𝑎) =
∑︁
𝑝≤𝑡

𝑝≡𝑎 (mod 𝑞)

1,

and

𝜓(𝑡) =
∑︁
𝑛≤𝑡

Λ(𝑛), 𝜓(𝑡; 𝑞, 𝑎) =
∑︁
𝑛≤𝑡

𝑛≡𝑎 (mod 𝑞)

Λ(𝑛), 𝜓(𝑡, 𝜒) =
∑︁
𝑛≤𝑡

Λ(𝑛)𝜒(𝑛),

where Λ denotes the von Mangoldt function and 𝜒 a Dirichlet character (mod 𝑞). For fixed
coprime integers 𝑎 and 𝑞, we have asymptotic equidistribution:

𝜋(𝑡; 𝑞, 𝑎) ∼ 𝜋(𝑡)
𝜑(𝑞) , and 𝜓(𝑡; 𝑞, 𝑎) ∼ 𝜓(𝑡)

𝜑(𝑞) (𝑡 → ∞),

with 𝜑 Euler’s totient.
An important tool we will use is the following theorem (for a proof, see, e.g., Montgomery-

Vaughan [16, Theorem 2]).

Classical Theorem 1 (Brun-Titchmarsh theorem). Let 𝑥, 𝑦 > 0 and 𝑎, 𝑞 be positive integers such
that (𝑎, 𝑞) = 1. Then, uniformly for all 𝑦 > 𝑞, we have

𝜋(𝑥 + 𝑦; 𝑞, 𝑎) − 𝜋(𝑥; 𝑞, 𝑎) < 2𝑦
𝜑(𝑞) log(𝑦/𝑞) .

Starting point for our deliberations is an explicit truncated form of the von Mangoldt explicit
formula, which we state in the classical, respectively Dirichlet 𝐿-function case.

Lemma 1. [2, Ch. 17] Let 2 ≤ 𝑍 ≤ 𝑥. Assuming RH, we have, as 𝑥 → ∞,

𝜓(𝑥) = 𝑥 −
∑︁
|γ |≤𝑍

𝜁 (1/2+𝑖γ)=0

𝑥1/2+𝑖γ

1/2 + 𝑖γ
+𝑂

(𝑥 log2(𝑥𝑍)
𝑍

)
.

Lemma 2. [2, Ch. 19] If 𝜒 is a non principal character modulo 𝑞 and 2 ≤ 𝑍 ≤ 𝑥, then assuming
GRH, we have, as 𝑥 → ∞,

𝜓(𝑥, 𝜒) = −
∑︁
|𝛾 |≤𝑍

𝑥1/2+𝑖𝛾

1/2 + 𝑖𝛾
+𝑂

(𝑥 log2(𝑞𝑥)
𝑍

)
.

We will apply the Cauchy-Schwarz inequality (𝐿2-norm form) multiple times in our proofs so
we record it here: For any square-integrable complex valued functions 𝑓 and 𝑔, we have���∫ 𝑏

𝑎

𝑓 (𝑡)𝑔(𝑡)𝑑𝑡
��� ≤ (∫ 𝑏

𝑎

| 𝑓 (𝑡) |2𝑑𝑡
) 1

2
(∫ 𝑏

𝑎

|𝑔(𝑡) |2𝑑𝑡
) 1

2
.

Now we record the following crucial lemma, an analogue of Montgomery-Vaughan’s mean value
theorem for Dirichlet series [17].

Lemma 3. [7, 12] Let S(𝑡) = ∑
𝜇∈M 𝑐(𝜇)𝑒2𝜋𝑖𝜇𝑡 be a Fourier series with M be a countable set of

real numbers and with 𝑐(𝜇) real Fourier coefficients. If
∑

𝜇∈M |𝑐(𝜇) | < ∞, then uniformly for
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𝑇 ≥ 1 and 1/2𝑇 ≤ 𝛿 ≤ 1/2, we have∫ 𝑇

−𝑇
|S(𝑡) |2𝑑𝑡 =

(
2𝑇 +𝑂 (𝛿−1)

) ∑︁
𝜇∈M

|𝑐(𝜇) |2 +𝑂
(
𝑇

∑︁
𝜇,𝜈∈M

0< |𝜇−𝜈 |<𝛿

|𝑐(𝜇)𝑐(𝜈) |
)
.

3. Proofs of Theorems 2–3

The idea of the proof of Theorem 2 is to integrate both sides of the identity (14) from −𝑇 to 𝑇 .
The left hand side then gives 2𝜋𝐹𝑞 (𝑥, 𝑇) plus an error term. For the right hand side an upper bound
is derived. This is done by finding upper bounds for

∫ 𝑇

−𝑇 |𝑅 𝑗 (𝑥, 𝑡) |2𝑑𝑡 for 𝑗 = 1, . . . , 4 and then
applying the Cauchy-Schwarz inequality.

Proof of Theorem 2. Under GRH, following the argument in Landau [10, p. 353] we obtain for
𝑞 ≥ 1, (𝑎, 𝑞) = 1, 𝑥 > 1, and for primitive characters 𝜒 (when 𝑞 > 1) that∑︁′

𝑛≤𝑥

Λ(𝑛)𝜒(𝑛)
𝑛𝑠

= 𝛿𝑞
𝑥1−𝑠

1 − 𝑠
+

∞∑︁
ℓ=0

𝑥−2ℓ−𝑠−𝔞

2ℓ + 𝑠 + 𝔞
−
∑︁
𝜌

𝑥𝜌−𝑠

𝜌 − 𝑠
− 𝐿′

𝐿
(𝑠, 𝜒),

where ′ over the summation means only half of the term with 𝑛 = 𝑥 is included in the sum, the
sum over the non-trivial zeroes is interpreted in the symmetrical sense as lim𝑍→∞

∑
|𝛾 |<𝑍 , 𝑠 ∈ ℂ,

𝑠 ≠ 1, 𝑠 ≠ 𝜌, 𝑠 ≠ −(2ℓ + 𝔞), 𝔞 = 0 if 𝜒(−1) = 1, 𝔞 = 1 if 𝜒(−1) = −1, and 𝛿𝑞 = 1 if 𝑞 = 1 and
𝛿𝑞 = 0 otherwise.2 Letting 𝑠 = 3/2 + 𝑖𝑡, following the proof of Montgomery [15, p. 185–186], and
summing over the Dirichlet characters, we can write�� ∑︁

𝜒 (mod 𝑞)
𝜒(𝑎)

∑︁
𝛾

2𝑥𝑖𝛾

1 + (𝑡 − 𝛾)2

��2 =
�� 4∑︁
𝑗=1

𝑅 𝑗 (𝑥, 𝑡)
��2, (14)

where

𝑅1(𝑥, 𝑡) = − 1
√
𝑥

∑︁
𝜒 (mod 𝑞)

𝜒(𝑎)
(∑︁
𝑛≤𝑥

Λ(𝑛)𝜒(𝑛)
(𝑥
𝑛

)− 1
2+𝑖𝑡 +

∑︁
𝑛>𝑥

Λ(𝑛)𝜒(𝑛)
(𝑥
𝑛

) 3
2+𝑖𝑡)

,

𝑅2(𝑥, 𝑡) = 𝑥−1+𝑖𝑡
∑︁

𝜒 (mod 𝑞)
𝜒(𝑎) (log(𝑞∗𝜏) +𝑂 (1)),

𝑅3(𝑥, 𝑡) = 𝑂 (𝑥− 1
2 𝜏−1𝜑(𝑞) + 𝛿𝑞𝑥

1
2 𝜏−2),

𝑅4(𝑥, 𝑡) =
1
√
𝑥

∑︁
𝜒 (mod 𝑞)

𝜒(𝑎)
( ∑︁

𝑛≤𝑥
𝜒(𝑛)≠𝜒∗ (𝑛)

Λ(𝑛)𝜒∗(𝑛)
(𝑥
𝑛

)− 1
2+𝑖𝑡 +

∑︁
𝑛>𝑥

𝜒(𝑛)≠𝜒∗ (𝑛)

Λ(𝑛)𝜒∗(𝑛)
(𝑥
𝑛

) 3
2+𝑖𝑡)

.

The precise definition of 𝑅2 and 𝑅3 is not relevant for our purposes, the estimates above will suffice.
Here 𝜏 = |𝑡 | + 2, and 𝜒 (mod 𝑞) is a character induced by the primitive character 𝜒∗ (mod 𝑞∗).
The last term in the parentheses is a correction term for non primitive 𝜒3. Using the orthogonality
of Dirichlet characters, we see that

𝑅1(𝑥, 𝑡) = −𝜑(𝑞)
√
𝑥

( ∑︁
𝑛≤𝑥

𝑛≡𝑎 (mod 𝑞)

Λ(𝑛)
(𝑥
𝑛

)− 1
2+𝑖𝑡 +

∑︁
𝑛>𝑥

𝑛≡𝑎 (mod 𝑞)

Λ(𝑛)
(𝑥
𝑛

) 3
2+𝑖𝑡)

, (15)

2The term with 𝛿𝑞 gives the contribution of the pole at 1 of the Riemann zeta function, see the proof of eq. (18) in
[15], and it should be inserted into [25, formula (6)] too.

3Remark that in the analogous formula in [25, eq. (8)] in the contribution for primitive characters for 𝑥1/2 one should
read 𝑥−1/2.
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and

𝑅1(𝑥, 𝑡) + 𝑅4(𝑥, 𝑡)

= − 1
√
𝑥

∑︁
𝜒 (mod 𝑞)

𝜒(𝑎)
( ∑︁

𝑛≤𝑥
𝜒(𝑛)=𝜒′ (𝑛)

Λ(𝑛)𝜒(𝑛)
(𝑥
𝑛

)− 1
2+𝑖𝑡 +

∑︁
𝑛>𝑥

𝜒(𝑛)=𝜒′ (𝑛)

Λ(𝑛)𝜒(𝑛)
(𝑥
𝑛

) 3
2+𝑖𝑡)

= − 1
√
𝑥

∑︁
𝜒 (mod 𝑞)

𝜒(𝑎)
( ∑︁

𝑛≤𝑥
(𝑛,𝑞)=1

Λ(𝑛)𝜒(𝑛)
(𝑥
𝑛

)− 1
2+𝑖𝑡 +

∑︁
𝑛>𝑥

(𝑛,𝑞)=1

Λ(𝑛)𝜒(𝑛)
(𝑥
𝑛

) 3
2+𝑖𝑡)

= −𝜑(𝑞)
√
𝑥

( ∑︁
𝑛≤𝑥

𝑛≡𝑎 (mod 𝑞)

Λ(𝑛)
(𝑥
𝑛

)− 1
2+𝑖𝑡 +

∑︁
𝑛>𝑥

𝑛≡𝑎 (mod 𝑞)

Λ(𝑛)
(𝑥
𝑛

) 3
2+𝑖𝑡)

= 𝑅1(𝑥, 𝑡),

so 𝑅4(𝑥, 𝑡) = 0.
We integrate both sides of equation (14) from 𝑡 = −𝑇 to 𝑡 = 𝑇 , where 𝑇 will be specified later.

The left hand side of equation (14) can be written as∑︁
𝜒1,𝜒2

𝜒1(𝑎)𝜒2(𝑎)
∑︁

𝛾 𝑗 , 𝑗=1,2

4𝑥𝑖(𝛾1−𝛾2)

(1 + (𝑡 − 𝛾1)2) (1 + (𝑡 − 𝛾2)2)
.

Now we integrate this expression from 𝑡 = −𝑇 to 𝑡 = 𝑇. We claim that∫ 𝑇

−𝑇

∑︁
𝜒1,𝜒2

𝜒1(𝑎)𝜒2(𝑎)
∑︁

𝛾 𝑗 , 𝑗=1,2

4𝑥𝑖(𝛾1−𝛾2)

(1 + (𝑡 − 𝛾1)2) (1 + (𝑡 − 𝛾2)2)
𝑑𝑡

=

∫ ∞

−∞

∑︁
𝜒1,𝜒2

𝜒1(𝑎)𝜒2(𝑎)
∑︁
|𝛾 𝑗 |≤𝑇
𝑗=1,2

4𝑥𝑖(𝛾1−𝛾2)

(1 + (𝑡 − 𝛾1)2) (1 + (𝑡 − 𝛾2)2)
𝑑𝑡 +𝑂 (𝜑(𝑞)2 log𝑇 log2(𝑞𝑇)

= 2𝜋𝐹𝑞 (𝑥, 𝑇) +𝑂 (𝜑(𝑞)2 log𝑇 log2(𝑞𝑇). (16)

To prove equation (16), we first recall that for 𝜒 mod 𝑞, there are ≪ log(𝑞𝑇) zeros such that
𝐿 (1/2 + 𝑖𝛾, 𝜒) = 0 and 𝑇 ≤ 𝛾 ≤ 𝑇 + 1, 𝑇 ≥ 2. This implies for |𝑡 | ≤ 𝑇 that∑︁

|𝛾 |>𝑇

1
1 + (𝑡 − 𝛾)2 ≪ log(𝑞𝑇)

𝑇 − 𝑡 + 1
. (17)

We now recall [2, Ch. 16, Lemma], i.e.,∑︁
𝛾

1
1 + (𝑡 − 𝛾)2 ≪ log(𝑞𝜏). (18)

Using (17)-(18) we obtain that∫ 𝑇

−𝑇

∑︁
𝜒1,𝜒2

𝜒1(𝑎)𝜒2(𝑎)
∑︁
𝛾1,𝛾2
|𝛾2 |>𝑇

4𝑥𝑖(𝛾1−𝛾2)

(1 + (𝑡 − 𝛾1)2) (1 + (𝑡 − 𝛾2)2)
𝑑𝑡 ≪ 𝜑(𝑞)2(log𝑇) log2(𝑞𝑇), (19)

For |𝑡 | > 𝑇 , we have ∑︁
|𝛾 |≤𝑇

1
1 + (𝑡 − 𝛾)2 ≪ log(𝑞 |𝑡 |)

|𝑡 | − 𝑇 + 1
,
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so that ∫
|𝑡 |>𝑇

∑︁
|𝛾 𝑗 |≤𝑇
𝑗=1,2

𝑑𝑡

(1 + (𝑡 − 𝛾1)2) (1 + (𝑡 − 𝛾2)2)
≪

∫
|𝑡 |>𝑇

log2(𝑞 |𝑡 |)
( |𝑡 | − 𝑇 + 1)2 𝑑𝑡 ≪ log2(𝑞𝑇).

This implies that∫
|𝑡 |>𝑇

∑︁
𝜒1,𝜒2

𝜒1(𝑎)𝜒2(𝑎)
∑︁
|𝛾 𝑗 |≤𝑇
𝑗=1,2

4𝑥𝑖(𝛾1−𝛾2)

(1 + (𝑡 − 𝛾1)2) (1 + (𝑡 − 𝛾2)2)
𝑑𝑡 ≪ 𝜑(𝑞)2 log2(𝑞𝑇). (20)

Now (16) follows on combining equations (19)–(20) and applying Cauchy’s residue theorem to
evaluate the second integral in (16).

Integrating the right hand side of equation (14) from 𝑡 = −𝑇 to 𝑡 = 𝑇 , we obtain4

∫ 𝑇

−𝑇
|𝑅2(𝑥, 𝑡) |2𝑑𝑡 ≪

𝜑(𝑞)2𝑇 log2(𝑞𝑇)
𝑥2 , (21)

and ∫ 𝑇

−𝑇
|𝑅3(𝑥, 𝑡) |2𝑑𝑡 ≪

𝜑(𝑞)2

𝑥
+ 𝑥 ≪ 𝑥 (22)

for 1 ≤ 𝑞 ≤ 𝑥.
The mean square of 𝑅1(𝑥, 𝑡) is evaluated in the following lemma.

Lemma 4. As 𝑥 → ∞ and uniformly for 𝑞 ≤ 𝑥1−𝜀 and 𝑥/𝜑(𝑞) ≤ 𝑇 we have that

1
𝜑(𝑞)2

∫ 𝑇

−𝑇
|𝑅1(𝑥, 𝑡) |2𝑑𝑡 = 2𝑇𝑆(𝑥) +𝑂

(√︁𝑇𝑥𝑆(𝑥)
𝜑(𝑞)

)
, (23)

where

𝑆(𝑥) = 1
𝑥2

∑︁
𝑛≤𝑥

𝑛≡𝑎 (mod 𝑞)

𝑛Λ(𝑛)2 + 𝑥2
∑︁
𝑛>𝑥

𝑛≡𝑎 (mod 𝑞)

Λ(𝑛)2

𝑛3 .

Proof. Recalling the definition of 𝑅1(𝑥, 𝑡) given in (15), we follow the argument given in [12].
Using Lemma 3, we have

1
𝜑(𝑞)2

∫ 𝑇

−𝑇
|𝑅1(𝑥, 𝑡) |2𝑑𝑡 = 2𝑇𝑆(𝑥) +𝑂 (𝛿−1𝑆(𝑥) + 𝐸1 + 𝐸2), (24)

where

𝐸1 := 𝑇
∑︁
𝑛<𝑥

𝑛≡𝑎 (mod 𝑞)

( ∑︁
𝑚≤𝑥

𝑚≡𝑎 (mod 𝑞)
0< | log(𝑛/𝑚) |<2𝜋𝛿

Λ(𝑛)Λ(𝑚) (𝑛𝑚)1/2

𝑥2 +
∑︁
𝑚>𝑥

𝑚≡𝑎 (mod 𝑞)
0< | log(𝑛/𝑚) |<2𝜋𝛿

Λ(𝑛)Λ(𝑚) 𝑛
1/2

𝑚3/2

)
,

4Equation (21) is the analogue of the first of the two integral estimates appearing in the middle of [25, p. 330],
where for 𝑥 in both argument and bound one should read 𝑥2. Taking this into account we arrive at a better upper bound
for 𝑇 in Theorem 3.
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and

𝐸2 := 𝑇

∞∑︁
𝑟=0

2𝑟+1𝑥∑︁
𝑛=2𝑟𝑥

𝑛≡𝑎 (mod 𝑞)

( ∑︁
𝑚≤𝑥

𝑚≡𝑎 (mod 𝑞)
0< | log(𝑛/𝑚) |<2𝜋𝛿

Λ(𝑛)Λ(𝑚)𝑚
1/2

𝑛3/2 +
∑︁
𝑚>𝑥

𝑚≡𝑎 (mod 𝑞)
0< | log(𝑛/𝑚) |<2𝜋𝛿

Λ(𝑛)Λ(𝑚) 𝑥2

(𝑛𝑚)3/2

)
.

Using the Brun-Titchmarsh Classical Theorem 1 we obtain

𝑆(𝑥) ≪ log 𝑥
𝜑(𝑞) , (25)

as 𝑥 → ∞, uniformly in 𝑞 ≤ 𝑥1−𝜀. Choosing

𝛿 =
𝜑(𝑞)

2

√︂
𝑆(𝑥)
𝑇𝑥

, (26)

for sufficiently large 𝑥 we have that 1/𝑇 ≤ 2𝛿 ≤ 1, when 𝑥/𝜑(𝑞) ≤ 𝑇 and 𝑞 ≤ 𝑥1−𝜀 .
Uniformly for 𝑞 ≤ 𝑥1−𝜀, we have, for sufficiently large 𝑥, that

𝐸1 ≪ 𝑇

𝑥

∑︁
𝑘≤104𝛿𝑥

∑︁
𝑛≤104𝑥

𝑛≡𝑎 (mod 𝑞)

∑︁
𝑚≤104𝑥

𝑚≡𝑎 (mod 𝑞)
|𝑛−𝑚 |=𝑘

Λ(𝑛)Λ(𝑚) ≪ 𝑇

𝑥

∑︁
𝑛≤104𝑥

𝑛≡𝑎 (mod 𝑞)

Λ(𝑛)
∑︁

𝑛<𝑚≤𝑛+104𝛿𝑥
𝑚≡𝑎 (mod 𝑞)

Λ(𝑚)

≪ 𝑇

𝑥

∑︁
𝑛≤104𝑥

𝑛≡𝑎 (mod 𝑞)

Λ(𝑛) (𝜓(𝑛 + 104𝛿𝑥; 𝑞, 𝑎) − 𝜓(𝑛; 𝑞, 𝑎)) ≪ 𝑇𝛿𝑥

𝜑(𝑞)2 , (27)

where we have used the Brun-Titchmarsh Classical Theorem 1 in the final step. Similarly, we also
obtain

𝐸2 ≪ 𝑇

𝑥

∞∑︁
𝑟=0

1
23𝑟

∑︁
𝑘≤1042𝑟+1𝛿𝑥

∑︁
𝑛≤1042𝑟+1𝑥
𝑛≡𝑎 (mod 𝑞)

∑︁
𝑚≤1042𝑟+1𝑥
𝑚≡𝑎 (mod 𝑞)

|𝑛−𝑚 |=𝑘

Λ(𝑛)Λ(𝑚) ≪ 𝑇𝛿𝑥

𝜑(𝑞)2 , (28)

as 𝑥 → ∞, uniformly in 𝑞 ≤ 𝑥1−𝜀. Combining (24) and (27)–(28), and substituting the value of 𝛿
as in (26), we have the proof. □

From Lemma 4, see (23), and (25) it follows that∫ 𝑇

−𝑇
|𝑅1(𝑥, 𝑡) |2𝑑𝑡 ≪ 𝜑(𝑞)𝑇 log 𝑥 + (𝜑(𝑞)𝑇𝑥 log 𝑥)1/2, (29)

as 𝑥 → ∞, uniformly in the range 𝑞 ≤ 𝑥1−𝜀.
Using the Cauchy-Schwarz inequality, we can easily obtain that∫ 𝑇

−𝑇

�� 3∑︁
𝑗=1

𝑅 𝑗 (𝑥, 𝑡)
��2𝑑𝑡 = 3∑︁

𝑗=1

∫ 𝑇

−𝑇

��𝑅 𝑗 (𝑥, 𝑡)
��2𝑑𝑡

+𝑂

( 3∑︁
𝑗=1

3∑︁
𝑘=1
𝑘≠ 𝑗

(∫ 𝑇

−𝑇

��𝑅 𝑗 (𝑥, 𝑡)
��2𝑑𝑡)1/2 (∫ 𝑇

−𝑇

��𝑅𝑘 (𝑥, 𝑡)
��2𝑑𝑡)1/2

)
. (30)

Combining (21)–(22) and (29)–(30) it follows that
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∫ 𝑇

−𝑇

�� 3∑︁
𝑗=1

𝑅 𝑗 (𝑥, 𝑡)
��2𝑑𝑡 ≪ 𝜑(𝑞)𝑇 log 𝑥 + (𝜑(𝑞)𝑇𝑥 log 𝑥)1/2 + 𝑥 + 𝜑(𝑞)2𝑇 log2(𝑞𝑇)

𝑥2

≪ 𝜑(𝑞)𝑇 log 𝑥 + (𝜑(𝑞)𝑇𝑥 log 𝑥)1/2, (31)

uniformly in the range 𝑞 ≤ 𝑥1−𝜀 and 𝑥/𝜑(𝑞) ≤ 𝑇 ≤ exp(
√
𝑥) as 𝑥 → ∞. Recalling (16) we also

need that 𝜑(𝑞) log𝑇 log2(𝑞𝑇) = 𝑜(𝑇 log 𝑥), as 𝑥 → ∞, and this implies 𝑇 ≥ 𝑥. Summarising, (16)
and (31) imply that

𝐹𝑞 (𝑥, 𝑇) ≪ 𝜑(𝑞)𝑇 log 𝑥,

uniformly in the range 𝑞 ≤ 𝑥1−𝜀 and 𝑥 ≤ 𝑇 ≤ exp(
√
𝑥) as 𝑥 → ∞. □

Proof of Theorem 3. Using the Prime Number Theorem in arithmetic progressions under GRH in
𝑆(𝑥) (defined in Lemma 4), we have

𝑆(𝑥) = log 𝑥
𝜑(𝑞) +𝑂

( log3 𝑥
√
𝑥

)
, (32)

as 𝑥 → ∞, uniformly in 𝑞 ≤
√
𝑥 log−(2+𝜀) 𝑥. From Lemma 4, see (23), and (32) it follows that∫ 𝑇

−𝑇
|𝑅1(𝑥, 𝑡) |2𝑑𝑡 = 2𝜑(𝑞)𝑇 log 𝑥 +𝑂

(𝜑(𝑞)2𝑇 log3 𝑥

𝑥1/2

)
+𝑂

( (
𝜑(𝑞)𝑇𝑥 log 𝑥(1 + 𝜑(𝑞) log2 𝑥

𝑥1/2 )
)1/2

)
= 2𝜑(𝑞)𝑇 log 𝑥(1 + 𝑜(1)) +𝑂

(
(𝜑(𝑞)𝑇𝑥 log 𝑥)1/2) , (33)

as 𝑥 → ∞, uniformly in 𝑞 ≤
√
𝑥 log−(2+𝜀) 𝑥.

From (21)–(22) and (30)–(33) we obtain∫ 𝑇

−𝑇

�� 3∑︁
𝑗=1

𝑅 𝑗 (𝑥, 𝑡)
��2𝑑𝑡 = 2𝜑(𝑞)𝑇 log 𝑥(1 + 𝑜(1)) +𝑂

(
(𝜑(𝑞)𝑇𝑥 log 𝑥)1/2 + 𝑥 + 𝜑(𝑞)2𝑇 log2(𝑞𝑇)

𝑥2

)
= 2𝜑(𝑞)𝑇 log 𝑥(1 + 𝑜(1)), (34)

as 𝑥 → ∞, uniformly in 𝑞 ≤
√
𝑥 log−(2+𝜀) 𝑥 when 𝑥/𝜑(𝑞) ≤ 𝑇 ≤ exp(𝑥3/4). In this range of 𝑞 and

𝑇 , we also have 𝜑(𝑞) log𝑇 log2(𝑞𝑇) = 𝑜(𝑇 log 𝑥), as 𝑥 → ∞. Equations (16) and (34) imply that

𝐹𝑞 (𝑥, 𝑇) ∼
𝜑(𝑞)
𝜋

𝑇 log 𝑥,

as 𝑥 → ∞, uniformly in 𝑞 ≤
√
𝑥 log−(2+𝜀) 𝑥 when 𝑥/𝜑(𝑞) ≤ 𝑇 ≤ exp(𝑥3/4). □

4. Proof of Theorems 4 and 6

Let (𝑎, 𝑞) = 1. It is a simple consequence of the orthogonality of Dirichlet characters that

𝜓(𝑥; 𝑞, 𝑎) = 1
𝜑(𝑞)

∑︁
𝜒 (mod 𝑞)

𝜒(𝑎)𝜓(𝑥, 𝜒)

Lemmas 1 and 2 imply that under GRH, and for 𝑍 ≤ 𝑥 that

𝜓(𝑥; 𝑞, 𝑎) = 𝜓(𝑥, 𝜒0)
𝜑(𝑞) + 1

𝜑(𝑞)
∑︁

𝜒≠𝜒0 (mod 𝑞)
𝜒(𝑎)𝜓(𝑥, 𝜒)

=
𝜓(𝑥) +𝑂 (log 𝑞 log 𝑥)

𝜑(𝑞) + 1
𝜑(𝑞)

∑︁
𝜒≠𝜒0 (mod 𝑞)

𝜒(𝑎)𝜓(𝑥, 𝜒)
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=
1

𝜑(𝑞)

(
𝑥 −

∑︁
𝜒 (mod 𝑞)

𝜒(𝑎)
∑︁
|𝛾 |≤𝑍

𝑥1/2+𝑖𝛾

1/2 + 𝑖𝛾

)
+𝑂

(𝑥 log2(𝑞𝑥)
𝑍

)
, (35)

as 𝑥 → ∞. Note that if 𝑍 = 𝑥 and 𝑞 ≤ 𝑥1−𝜀, then the error term in the previous estimate becomes
𝑂 (log2 𝑥).

We use now the analogue of several ideas contained in a paper of Heath-Brown [9]. Letting

Σ(𝑥, 𝑇, 𝑣) = Σ(𝑥, 𝑇, 𝑣; 𝑞, 𝑎) =
∑︁

𝜒 (mod 𝑞)
𝜒(𝑎)

∑︁
|𝛾 |≤𝑇

𝑥𝑖𝛾𝑒𝑖𝑣𝛾, (36)

remarking 𝑊 (𝑢) =
∫ +∞
−∞ 𝑒𝑖𝑣𝑢𝑒−2|𝑣 |𝑑𝑣 and arguing as in [11], it is easy to obtain that

𝐹𝑞 (𝑥, 𝑇) =
∫ +∞

−∞
|Σ(𝑥, 𝑇, 𝑣) |2 𝑒−2|𝑣 |𝑑𝑣. (37)

Lemma 5. For 𝑥 ≥ 2 and 𝑇 > 𝑈 ≥ 0, we have

|Σ(𝑥, 𝑇, 0) − Σ(𝑥,𝑈, 0) | ≪
(
𝑇 max

𝑈≤𝑡≤𝑇
𝐹𝑞 (𝑥, 𝑡)

)1/2
.

Proof. Define

𝑔(𝑥, 𝑇,𝑈, 𝑣) = Σ(𝑥, 𝑇, 𝑣) − Σ(𝑥,𝑈, 𝑣) =
∑︁

𝜒 (mod 𝑞)
𝜒(𝑎)

∑︁
𝑈< |𝛾 |≤𝑇

𝑥𝑖𝛾𝑒𝑖𝛾𝑣 . (38)

Then∫ ∞

−∞
|𝑔(𝑥, 𝑇,𝑈, 𝑣) |2𝑒−2|𝑣 |𝑑𝑣 =

∑︁
𝜒1,𝜒2 (mod 𝑞)

𝜒1(𝑎)𝜒2(𝑎)
∑︁

𝑈< |𝛾 𝑗 |≤𝑇
𝑗=1,2

𝑥𝑖(𝛾1−𝛾2)
∫ ∞

−∞
𝑒𝑖(𝛾1−𝛾2)𝑣𝑒−2|𝑣 |𝑑𝑣

=
∑︁

𝜒1,𝜒2 (mod 𝑞)
𝜒1(𝑎)𝜒2(𝑎)

∑︁
𝑈< |𝛾 𝑗 |≤𝑇

𝑗=1,2

𝑥𝑖(𝛾1−𝛾2)𝑊 (𝛾1 − 𝛾2)

=
∑︁

𝜒1,𝜒2 (mod 𝑞)
𝜒1(𝑎)𝜒2(𝑎)

(
𝐺 𝜒1,𝜒2 (𝑥, 𝑇) − 𝐺 𝜒1,𝜒2 (𝑥,𝑈)

)
= 𝐹𝑞 (𝑥, 𝑇) − 𝐹𝑞 (𝑥,𝑈).

Using the Sobolev-Gallagher inequality stated as in [11, Lemma 2], we have

|𝑔(𝑥, 𝑇,𝑈, 0) |2 ≪ 𝑇 max
𝑈≤𝑡≤𝑇

𝐹𝑞 (𝑥, 𝑡).

The lemma now immediately follows from (38). □

Lemma 6. For 𝑥 ≥ 2 and 𝑈 ≥ 0, we have∫ 2𝑥

𝑥

|Σ(𝑡,𝑈, 0) |2𝑑𝑡 ≪ 𝑥𝐹𝑞 (𝑥,𝑈).

Proof. Recalling (36) and substituting 𝑡 = 𝑥𝑒𝑣, we have∫ 2𝑥

𝑥

|Σ(𝑡,𝑈, 0) |2𝑑𝑡 = 𝑥

∫ log 2

0
|Σ(𝑥,𝑈, 𝑣) |2𝑒𝑣𝑑𝑣

≪ 𝑥

∫ +∞

−∞
|Σ(𝑥,𝑈, 𝑣) |2𝑒−2|𝑣 |𝑑𝑣 = 𝑥𝐹𝑞 (𝑥,𝑈),

where the final estimate is a consequence of (37). □
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Lemma 7. Let 𝜀 > 0, (𝑎, 𝑞) = 1 and

𝐼 (𝑥, 𝑞, 𝑇) = 1
𝜑(𝑞)

∑︁
𝜒 (mod 𝑞)

𝜒(𝑎)
∑︁
|𝛾 |≤𝑇

𝑥1/2+𝑖𝛾

1/2 + 𝑖𝛾
.

Let 𝑞 ≥ 𝑥𝜀, 𝑥 > 𝑞1+2𝜀 and 𝐽 be the maximal integer such that (𝑥/2𝐽)1−𝜀 ≥ 𝑞. Assuming GRH and
Conjecture 2 for 𝑗 = 0, . . . , 𝐽 we have��𝐼 ( 𝑥

2 𝑗
, 𝑞, 𝑇

)
− 𝐼

( 𝑥

2 𝑗+1 , 𝑞, 𝑇
) �� ≪ √︂

𝑥

2 𝑗𝑞
𝑥𝜀,

uniformly for 𝑞 ≤ (𝑥/2 𝑗 )1−𝜀 and 𝑥𝜀 ≤ 𝑇 ≤ 𝑥/2 𝑗 .

Proof. Let 𝑈 = 𝑥𝜀. Let 𝑦 = 𝑥/2 𝑗+1, 𝑗 = 0, . . . , 𝐽, 𝑞 ≤ 𝑦1−𝜀. Using partial summation, Conjecture
2 and Lemma 5, for 𝑐 = 1, 2 we obtain��� ∑︁
𝜒 (mod 𝑞)

𝜒(𝑎)
∑︁

𝑈< |𝛾 |≤𝑇

(𝑐𝑦)𝑖𝛾
1/2 + 𝑖𝛾

��� ≪ |Σ(𝑐𝑦, 𝑇, 0) − Σ(𝑐𝑦,𝑈, 0) |
𝑇

+
∫ 𝑇

𝑈

|Σ(𝑐𝑦, 𝑤, 0) − Σ(𝑐𝑦,𝑈, 0) | 𝑑𝑤
𝑤2

≪ 1
√
𝑇

(
max
𝑈<𝑡≤𝑇

𝐹𝑞 (𝑐𝑦, 𝑡)
)1/2

+
∫ 𝑇

𝑈

𝑤−3/2
(

max
𝑈<𝑡≤𝑤

𝐹𝑞 (𝑐𝑦, 𝑡)
)1/2

𝑑𝑤

≪ √
𝑞 𝑦𝜀 ≪ √

𝑞 𝑥𝜀,

as 𝑥 → ∞, uniformly for 𝑞 ≤ 𝑦1−𝜀. This implies that for 𝑈 ≤ 𝑇 ≤ 𝑦, we have
1

𝜑(𝑞)

��� ∑︁
𝜒 (mod 𝑞)

𝜒(𝑎)
∑︁

𝑈< |𝛾 |≤𝑇

(2𝑦)1/2+𝑖𝛾 − 𝑦1/2+𝑖𝛾

1/2 + 𝑖𝛾

��� ≪ √︂
𝑦

𝑞
𝑥𝜀, (39)

as 𝑥 → ∞, uniformly in 𝑞 ≤ 𝑦1−𝜀.
Recall that 𝑦 = 𝑥/2 𝑗+1, 𝑗 = 0, . . . , 𝐽. Using Conjecture 2 and Lemma 6, we have

𝜑(𝑞)
��𝐼 (2𝑦, 𝑞,𝑈) − 𝐼 (𝑦, 𝑞,𝑈)

�� = ��� ∫ 2𝑦

𝑦

𝑤−1/2Σ(𝑤,𝑈, 0)𝑑𝑤
��� ≪ ( ∫ 2𝑦

𝑦

|Σ(𝑤,𝑈, 0) |2𝑑𝑤
)1/2

≪ (𝑦𝐹𝑞 (𝑦,𝑈))1/2 ≪ (𝑞𝑈𝑦1+𝜀)1/2 ≪ √
𝑞 𝑦1/2𝑥𝜀, (40)

as 𝑥 → ∞, where we have used the Cauchy-Schwarz inequality in the previous estimate. The
lemma follows on combining (39)–(40) and recalling that 𝑞/𝜑(𝑞) ≪ log log 𝑞. □

Proof of Theorem 4. Let 𝑥 > 𝑞1+2𝜀 and 𝐽 be the maximal integer such that (𝑥/2𝐽)1−𝜀 ≥ 𝑞.
Using Brun-Titchmarsh Theorem (Classical Theorem 1), Lemma 7 and equation (35) with for
𝑥𝜀 ≤ 𝑞 ≤ 𝑥1−2𝜀, 𝑍 = 𝑥/2 𝑗 , 𝑗 = 0, . . . , 𝐽, we have

𝜓(𝑥; 𝑞, 𝑎) − 𝑥

𝜑(𝑞) =

𝐽∑︁
𝑗=0

(
𝜓
( 𝑥
2 𝑗

; 𝑞, 𝑎
)
− 𝜓

( 𝑥

2 𝑗+1 ; 𝑞, 𝑎
)
− 𝑥

2 𝑗+1𝜑(𝑞)

)
+ 𝜓

( 𝑥

2𝐽+1 ; 𝑞, 𝑎
)
− 𝑥

2𝐽+1𝜑(𝑞)

≪
𝐽∑︁
𝑗=0

√︂
𝑥

2 𝑗𝑞
𝑥𝜀 + 𝑥

2𝐽+1𝜑(𝑞)
≪

√︂
𝑥

𝑞
𝑥𝜀 .

Theorem 4 now follows on recalling that in the remaining interval 1 ≤ 𝑞 ≤ 𝑥𝜀 the result follows
from GRH only. □

Proof of Theorem 6. The proof of Theorem 4 and Lemma 7 remains valid if we replace the Conjec-
ture 2 with Conjecture 6. These changes result in 𝑥1/2𝑞−1/2𝑥𝜀 being replaced by (𝑥𝑔(𝑞))1/2𝑞−1/2𝑥𝜀

in the final estimates. □
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