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Properties of a Jacobian mate

Leonid Makar-Limanov * Leonid Trakhtenberg �

Abstract

A polynomial f ∈ C[x, y] is a Jacobian mate if the Jacobian J(f, g) = 1

for some g ∈ C[x, y]. It is not known that then C[f, g] = C[x, y] and a

conjecture that this is the case is the Jacobian conjecture (JC). In this note

we will assume that a counterexample to JC exists and obtain additional

restrictions on f .

Mathematics Subject Classification (2000): Primary 14R15.

Key words: Jacobian mate, Jacobian conjecture.

Introduction.

Assume that f ∈ C[x, y] (where C is the field of complex numbers) satisfies

J(f, g) = ∂f
∂x

∂g
∂y − ∂f

∂y
∂g
∂x = 1 for some g ∈ C[x, y]. The JC (Jacobian conjecture)

implies that then C[f, g] = C[x, y] (see [K]).

Recall that if p ∈ C[x, y] is a polynomial in 2 variables and each monomial

of p is represented by a lattice point on the plane with the coordinate vector

equal to the degree vector of this monomial then the convex hull N (p) of the

points so obtained is called the Newton polygon of p.

*This author is grateful to the Max Planck Institute for Mathematics, where he was a

visitor when the project was started. He is also supported by a FAPESP grant 2024/01973-7.
�This author implemented the algorithm described in the paper.
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It is known for many years that for a potential counterexample to JC there

exists an automorphism ξ of C[x, y] such that the Newton polygon N (ξ(f))

of ξ(f) contains a vertex v = (m,n) where n > m > 0 and is included in a

trapezoid with the vertex v, edges parallel to the y axis and to the bisectrix

of the first quadrant adjacent to v, and two edges belonging to the coordinate

axes (see [A1], [A2], [AO], [GGV], [H], [J], [L], [M], [MW], [Na1], [Na2], [NN1],

[NN2], [Ok]). This was improved with a completely new approach by Pierrette

Cassou-Noguès who showed that N (f) does not have an edge parallel to the

bisectrix (see [CN] and [ML1]). From now on we will assume that f is “shaped”

like this, i.e. that N (f) has a vertex (m,n) and is included in a trapezoid

described above. We will call v the leading vertex and the right edge containing

this vertex the leading edge.

Our goal is to obtain additional restrictions on f under assumption that g

exists. In order to do this we apply to f the Newton resolution process. Here

is a brief reminder of this process.

Newton introduced the polygon which we call the Newton polygon in order

to find a solution y of p(x, y) = 0 in terms of x for a polynomial p(x, y) =∑
(i,j)∈N (p) pijx

iyj (see [N]). Here is the process of obtaining such a solution.

Consider an edge e of N (p) which is not parallel to the x axis. Denote by p(e) =∑
(i,j)∈e pijx

iyj . The form p(e) allows to determine the first summand of a

solution as follows. Consider the equation p(e) = 0. Since p(e) is a homogeneous

form relative to a weight given by w(x) = α(̸= 0), w(y) = β, w(xiyj) = iα+jβ,

solutions of this equation are y = cix
β
α and ci ∈ C. Choose any solution cix

β
α

and replace p(x, y) by p1(x, y) = p(x, cix
β
α + y). Though p1 is not necessarily

a polynomial in x we can define the Newton polygon of p1 in the same way

as it was done for the polynomials; the only difference is that p1 may contain

monomials xµyν where µ ∈ Q rather than in Z. The polygon N (p1) contains

the degree vertex v of e, i.e. the vertex with ordinate equal to degy(p(e)) and

an edge e′ which is a modification of e (e′ may collapse to v). Take the order

vertex v1 of e′, i.e. the vertex with ordinate equal to the order of p1(e
′) as a

polynomial in y (if e′ = v take v1 = v). Use the edge e1 for which v1 is the degree
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vertex to determine the next summand and so on. After possibly a countable

number of steps we obtain a vertex vµ and the edge eµ for which vµ is not the

degree vertex, i.e. either eµ is horizontal or the degree vertex of eµ has a larger

ordinate than the ordinate of vµ. It is possible only if N (pµ) does not have any

vertices on the x axis. Therefore pµ(x, 0) = 0 and a solution is obtained.

When characteristic is zero the process of constructing a solution is more

straightforward then it may seem from this description. The denominators of

fractional powers of x (if denominators and numerators of these rational numbers

are assumed to be relatively prime) do not exceed degy(p). Indeed, for any initial

edge there are at most degy(p) solutions while a summand cx
M
N can be replaced

by cεMx
M
N where εN = 1 which gives at least N different solutions.

There are two sets of solutions: by increasing powers of x and by decreasing

powers of x. We will be using solutions by decreasing powers. After such a

solution is obtained we can talk about the corresponding Newton polygon. It

will have a finite chain of non-horizontal edges and possibly infinite horizontal

edges going to −∞.

If we apply this process to a Jacobian mate f with the leading vertex xmyn

we will obtain n solutions. The Newton polygon which we will be using has a

chain of vertices vi = (µi, νi), 0 ≤ i ≤ s+1 starting with the leading vertex v0 =

(µ0, ν0) = (m,n) and ending with the principal vertex vs+1 = (µs+1, νs+1) =

(µs+1, 1).

All vertices vi are above the bisectrix of the first quadrant, i.e. µi < νi, also

µi+1 < µi, νi+1 < νi, 0 ≤ i ≤ s and the lines connecting vi and vi+1 intersect

the x axis in positive points ρi. The edge connecting vertices vi and vi+1 is

denoted by ei.

The edge es connecting the vertex vs and the principal vertex vs+1 is the

principal edge. The slope of the principal edge is larger than 1.

If the leading edge is vertical then f(e0) = ϕ0(x)y
n and we can assume that

the polynomial ϕ0 has at least two different roots. (If ϕ0(x) = c0(x − c1)
m we

can make a substitution x→ x+ c1, y → y and get rid of this edge.)

Existence of a solution satisfying these conditions was shown in [ML2]. In
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the process of obtaining a solution we will get intermediate expressions which

are polynomials in y and Laurent polynomials in fractional powers of x.

Denote by fi expression for which the Newton polygon N (fi) contains an

edge e′i from which the edge ei is obtained after the next step of resolution and

by fs+1 the first expression for which N (fs+1) contains all vertices vi.

We will be using only these expressions. To obtain a solution we may need

infinitely many additional steps.

Integrality conditions.

The Newton polygon N (f) contains an edge e′0 from which the edge e0

is obtained after the first step of resolution (e0 cannot collapse to a vertex).

Similarly, N (fi) contains an edge e′i from which the edge ei is obtained after

the ri + 1 steps of resolution. Generally specking ri can be not equal to i. For

example, it is possible that fi = fi+1. This happens if ei = e′i. It is also possible

that ri > i because in the resolution process some edges can collapse to a vertex.

The edges e′i and ei define a weight wi for which all points on these edges

have the same weight. If we put wi(x) = 1 then this weight is uniquely defined

and wi(fi) = ρi > 0. This is one of the properties of a solution we have chosen.

Similarly, we can define the weight we for a non-horizontal edge e. If an

expression p can be presented as the sum of we homogeneous forms, denote by

p(e) the leading form of this expression, i.e. the summand with the maximal

weight we.

An expression fi described in the introduction is obtained from f by substi-

tuting yi = y +
∑ri
j=1 cjx

ϵj
δj , cj ∈ C, ϵj , δj ∈ Z, δj > 0 into f : fi = f(x, yi),

so f0 = f ∈ C[x, y] and fi ∈ Ci = C[x±
1

∆i , y], ∆i > 0 and minimal possible.

Consider the form fi(e
′
i) and an algebra Ai with elements ai =

∑
j ψi,j

where ψi,j ∈ Ci[fi(e
′
i)

−1] are forms homogeneous relative to wi and wi(ψi,j+1) <

wi(ψi,j).

Lemma on radical. If r ∈ Q and fi(e
′
i)
r ∈ Ci then f

r
i ∈ Ai.
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Proof. By the Newton binomial theorem fri = fi(e
′
i)
r
∑∞
j=0

(
r
j

)
( fi
fi(e′i)

− 1)j . □

Since we assumed that f is a Jacobian mate there exists a g ∈ C[x, y]

for which J(f, g) = 1. (It is shown in [ML2] that g can be recovered if f is

known.) Consider gi = g(x, yi). Clearly gi ∈ Ci and J(fi, gi) = 1. Therefore

J(fi(e
′
i), gi(e

′
i)) is either 0 or 1.

If J(fi(e
′
i), gi(e

′
i)) = 0 then gi(e

′
i) = ai,0fi(e

′
i)
λi,0 where ai,0 ∈ C, λi,0 ∈ Q,

and gi,1 = gi − ai,0f
λi,0

i ∈ Ai. If J(fi(e
′
i), gi,1(e

′
i)) = 0 we can find ai,1fi(e

′
i)
λi,1

such that gi,1(e
′
i) = ai,1fi(e

′
i)
λi,1 and define gi,2 = gi,1 − ai,1f

λi,1

i , etc.. After

several steps like that we will obtain gi,ti for which J(fi(e
′
i), gi,ti(e

′
i)) = 1.

gi =

ti−1∑
j=0

ai,jf
λi,j

i + gi,ti ; ai,j ∈ C, λi,j ∈ Q

Because of the properties of the chosen solution wi(xy) > 0. It is known that

then hi = fi(e
′
i)gi,ti(e

′
i) ∈ Bi = C[x

1
∆i , y] (see [D] or [ML1]).

In the introduction we defined the degree and the order vertices of a non-

horizontal edge e. Denote by dv(p(e)) the degree vertex and by ov(p(e)) the

order vertex of the edge ep supporting p(e). (The edges e and ep are parallel.)

The degree vertex of e′i is vi and dv((hi(e
′
i))) is proportional to vi because

J(fi(e
′
i), hi) = fi(e

′
i) and ei doesn’t collapse to a vertex by the definition of fi.

Thus dv((hi(e
′
i))) = ci(µi, νi), ci ∈ Q and ordinate ciνi of civi is an integer

while abscissa ciµi of civi belongs to
1
∆i

Z. Denote ciνi by ki.

Our first integrality condition is that ki ∈ Z.

If we know vi = (µi, νi), ki, and ν′i+1 we can find µ′
i+1 as follows. We

can find ρi because vectors ⟨µi, νi⟩ − ⟨ρi, 0⟩ and ci⟨µi, νi⟩ − ⟨1, 1⟩ are parallel.

Since ciwi(µi, νi) = wi(1, 1) and wi(x) = 1 we see that wi(y) = − ciµi−1
ciνi−1 and

ρi = µi − ciµi−1
ciνi−1 νi =

νi−µi

ciνi−1 .

ρi =
νi − µi
ki − 1

Now, fi(e
′
i) = xρipi(x

αiy) where αi = −wi(y) = ciµi−1
ciνi−1 = kiµi−νi

νi(ki−1) .

αi =
kiµi − νi
νi(ki − 1)
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Hence the vertex v′i+1 = (ρi, 0) + (αi, 1)ν
′
i+1 and

ν′i+1 − µ′
i+1 = (1− αi)ν

′
i+1 − ρi =

(νi−µi)ki
νi(ki−1) ν

′
i+1 −

νi−µi

ki−1 =
(νi−µi)(kiν

′
i+1−νi)

νi(ki−1) .

Thus

µ′
i+1 = ν′i+1 −

(νi − µi)(kiν
′
i+1 − νi)

νi(ki − 1)

Similarly for vi+1

µi+1 = νi+1 −
(νi − µi)(kiνi+1 − νi)

νi(ki − 1)

The second integrality condition is that µ′
i+1 ∈ 1

∆i
Z and µi+1 ∈ 1

∆i+1
Z.

The third integrality condition is that ciµi ∈ 1
∆i

Z because hi ∈ Bi, i.e.
ki
νi
µi ∈

1
∆i

Z since ci =
ki
νi
.

We see that if µ0, ν0 ∈ Z are given and we know integers νj , kj 1 ≤ j ≤ i ∈ Z

and νi+1 ∈ Z then we can recover vertices vj , 1 ≤ j ≤ i+ 1.

Additional restriction on data are inequalities:

ki > 1 since dv(hi) ̸= (1, 1) because e′i doesn’t collapse to a vertex (if dv(hi) =

(1, 1) then hi = c0x(y + c1x
τ ) and fi(e

′
i) = c2x

µ(y + c1x
τ )ν); kiµi − νi > 0

because αi > 0; kiνi+1 − νi > 0 because νi+1 > µi+1.

Also ki is not divisible by νi:

Lemma on divisibility. If J(fi(e
′
i), hi) = fi(e

′
i) then wi(fi) doesn’t divide

wi(hi).

Proof. Since dv(hi) ̸= (1, 1) the degree vertices of dv(hi) and fi(e
′
i) are propor-

tional. If wi(hi)
wi(fi)

= k ∈ Z then we can find c ∈ C for which dv(hi − cfi(e
′
i)

ki
νi ) ̸=

dv(hi). Since J(fi(e
′
i), hi − cfi(e

′
i)
k) = fi(e

′
i) these implies that hi − cfi(e

′
i)
k =

c0x(y + c1x
τ ). But then ei is a vertex contrary to our assumption. □

Remark. If ei is the principal edge then hi = fi(e
′
i)gi(e

′
i) and wi(gi) doesn’t

divide wi(hi) = wi(xy). □
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Polynomiality conditions

In the previous section we checked that gi =
∑ti−1
j=0 ai,jf

λi,j

i + gi,ti where

ai,j ∈ C, λi,j ∈ Q and J(fi(e
′
i), gi,ti(e

′
i)) = 1. We can call this the expansion

relative to the edge e′i.

The expansion relative to the edge e′s is very short since J(fs(e
′
s), gs(e

′
s)) = 1

for the principal edge e′s. It is shown in [ML2] that λ0 = ws(gs)
ws(fs)

and therefore

λ0 =
ws(xy)

ws(fs)
− 1

because ws(fsgs) = ws(xy).

Lemma on sub-expansion. The expansion relative to the edge e′i is a

sub-expansion of the expansion relative to the edge e′i−1, i.e. ti−1 > ti, λi−1,j =

λi,j , ai−1,j = ai,j for j < ti.

Proof. Consider algebra D = C[fs, fsgs]. It is clear that the expansion of fsgs

relative to the edge ei of fs is

fsgs =

ti−1∑
j=0

ai,jf
λi,j+1
s + fsgs,ti

and that fs(ei)gs,ti(ei) = hi. Since wi(hi) = wi(xy) > 0 because the slope of ei

is larger than the slope of es if i < s all λi,j + 1 > 0.

As we know dv(hi) is proportional to dv(fs(ei)); also ov(hi) = (1, 1) because

ov(fs(ei)) has a positive ordinate.

We can find ψ which is a polynomial in y such that fs(ei) = ψd and d is

maximal possible. If p ∈ D then

p(ei) =
∑

kwi(ψ)+lwi(hi)=wi(p)

ck,lψ
khli

Therefore ov(p(ei)) = lm(1, 1) + km(ov(ψ)) where lm is the largest value of l

since the slope of < 1, 1 > is smaller that the slope of < µi+1, νi+1 >. Hence if

ov(p(ei)) is proportional to vi+1 then p(ei) = cϕdp and dv(p(ei)) is proportional

to vi with the same proportionality coefficient
dp
d .
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Now we can repeat this consideration for the edge ei−1, etc., to confirm that

if ov(p(ei)) is proportional to vi+1 then N (p) has a chain of edges which is

homothetic to the chain of edges e0, . . . , ei.

Since ov(fs(es−1)gs(es−1)) is proportional to vs with the coefficient λ0+1 =

ws(xy)
ws(fs)

we see that λi,0 = λ0 and ai,0 = a0 for i < s.

If λ0 + 1 = θ0
κ0

and p1 = (fsgs)
κ0 − aκ0

0 fθ0s then

p1 = κ0(a0f
λ0+1
s )κ0−1(

ti−1∑
j=1

ai,jf
λi,j+1
s + fsgs,ti) + . . .

Consider the largest i1 for which ai1,1 ̸= 0. The order vertex ov(p1(ei1)) is

proportional to vi1+1. Hence λi,1 = λ1 and ai,1 = a1 for i ≤ i1.

We can construct p2, etc. in a similar fashion to check the claim of the

Lemma. □

Corollary Since dv(hj) is proportional to dv(fs(ej)) with the coefficient
kj
νj

we have the polynomiality conditions:

fi(ei)
kj
νj ∈ Bi+1 if j > i.

Complexity of a counterexample

Recall that the leading vertex of f is (m,n). Hence the total degree of f is

D = m + n. It seems that the primary decomposition of D may be a measure

of complexity of a counterexample.

If f is a Jacobian mate then f(e′0) = ϕd00 where d0 > 1. Hence D cannot be

a prime number. Also if d0 = gcd(m,n) then f is not a Jacobian mate because

in this case J(ϕ0, h) = ϕ0 is impossible by Lemma on divisibility. Indeed, since

ϕ0 is not a monomial J(ϕ0, h) = ϕ0 is possible only if dv(h) = κdv(ϕ0), κ ∈ Q,

but if dv(ϕ0) = (m1, n1) and gcd(m1, n1) = 1 then κ ∈ Z. On the other hand if

J(ϕd00 , h) = ϕd00 then J(ϕ0, d0h) = ϕ0.

Therefore (m1, n1) = δ(a0, b0), δ > 1, gcd(a0, b0) = 1, b0 > a0 ≥ 1,

D = d0δ(a0 + b0)
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and D is the product of at least three primes.

If f(e′0) = ϕd00 and ϕ0 is a polynomial which is not a power of a polynomial

then the expansion relative to the zero edge is

g =

t0−1∑
j=0

cjf
λj + gt0 ; cj ∈ C, λj ∈

1

d0
Z, λi > λi+1

and expansions relative to the other edges are sub-expansions of this expansion.

It was shown in [ML2] that λ0 is neither an integer nor the reciprocal of an

integer.

If λ0 = ϵ0
d0

and gcd(ϵ0, d0) = 1 then e′1 is the principal edge. Indeed, ν1 =

d0ν1,1, ν1,1 ∈ Z because f(e0) = ϕd00 where ϕ0 is a polynomial in y. Hence

k1
ν1

= l1
d0

because k1
ν1

= λj for some j in the expansion relative to e0. Therefore

k1 = ν1,1l1. If e
′
1 is not the principal edge then f1(e

′
1)
λ0 is a polynomial in y, i.e.

ϕ1 = f1(e
′
1)

1
d0 is a polynomial in y and dv(h1) = l1dv(ϕ1) which, as we know,

is impossible for a Jacobian mate. Hence if d0 is a prime number then e′1 is the

principal edge, which is a rather strong restriction.

If f1(e
′
1) = ϕ

d′1
1 where d′1 is maximal possible if ϕ1 is a polynomial in y and

e′1 is not the principal edge then d1 = gcd(d0, d
′
1) is a proper factor of d0: if it

is d0 we have a contradiction as above and if it is 1 then λ0 = ϵ0
d0

= ϵ1
d′1

which

is possible only if λ0 ∈ Z. If we expand g1 relative to the edge e′1 then all

corresponding λj ∈ 1
d1
Z.

We defined d0 and d1. Similarly, we can define di: if di−1 is defined and

fi(e
′
i) = ϕ

d′i
i where d′i is maximal possible if ϕi is a polynomial in y and e′i is not

the principal edge then di = gcd(di−1, d
′
i) is a proper factor of di−1. If we expand

gi relative to the edge e′i then all corresponding λj ∈ 1
di
Z. Because of that if e′i

is not the principal edge and di is a prime number then e′i+1 is the principal edge.

Algorithm

We can use the technique developed in the previous sections in order to

construct potential counterexamples which this technique doesn’t reject.
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The total degree m + n of f was denoted by D. We can assume that

f(e′0) = ϕd00 where ϕ0 ∈ C[x, y] and d0 > 1 is maximal possible, dv(ϕ0) =

δ(a0, b0), gcd(a0, b0) = 1, b0 > a0, and δ > 1. (See Complexity of a counterex-

ample.) Therefore

D = d0δ(a0 + b0); µ0 = d0δa0, ν0 = d0δb0

and D is the product of at least three prime numbers.

Possible vertices v′1.

Assume that degy(h0) = k0. Since ρ0 = ν0−µ0

k0−1 we have a bound on values of

k0 because ρ0 ≥ 2. If ρ0 < 2 then f(x, 0) = c0x + c1. If c0 ̸= 0 we can find

a polynomial p(t) ∈ C[t] such that g(x, 0) − p(f(x, 0)) = 0. Then J(f, g̃) = 1

where g̃ = g − p(f). If e is the non-horizontal edge of N (f) with the vertex

(1, 0) then J(f(e), g̃(e)) ̸= 0 since ov(g̃(e)) ̸= (k, 0). Hence J(f(e), g̃(e)) = 1

an ov(g̃(e)) = (0, 1). But then the degree vertices of f(e) and g̃(e) cannot be

proportional and J(f(e), g̃(e)) ̸= 1. If c0 = 0 we can assume that f(x, 0) = 0.

Since J(f, g) = 1 this implies that gx(x, 0) = c ∈ C∗ because (fxgy−fygx)|y=0 =

−fy|y=0gx(x, 0) = 1 and we will get the same contradiction as above.

Therefore ν0−µ0

k0−1 ≥ 2 and k0 ≤ ν0−µ0+2
2 . Additionally k0 = l0b0 because

dv(ϕ0) and dv(h0) are proportional. Thus

l0 ≤ ν0 − µ0 + 2

2b0

and by Lemma on divisibility gcd(δ, l0) ̸= δ.

The choice of l0 determines the slope of the edge e′0 because e′0 is parallel to

N (h0), thus to the edge with vertices (1, 1) and l0(a0, b0). So the vector with

components < l0a0 − 1, l0b0 − 1 > is going in the right direction. The shortest

vector with integral components going in this direction is < β0, γ0 > where

β0 =
l0a0 − 1

ϵ0
, γ0 =

l0b0 − 1

ϵ0
; ϵ0 = gcd(l0a0 − 1, l0b0 − 1).

Possible vertices v′1 are given by

v′1 = (µ′
1, ν

′
1) = v0 − t1d0(β0, γ0) = (µ0 − t1d0β0, ν

′
1 = ν0 − t1d0γ0)
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where 1 ≤ t1 ≤ ν0
d0γ0

because ν′1 ≥ 0 and t1 ̸= ν0−µ0

d0(γ0−β0)
= ϵ0(ν0−µ0)

d0l0(b0−a0) = ϵ0d0δ
d0l0

=

ϵ0δ
l0

because µ′
1 ̸= ν′1. The coefficient d0 appears because coordinates of v′1 must

be divisible by d0.

The inequality t1 ≤ ν0
d0γ0

allows to get another bound for l0 as follows:

ν0
d0γ0

= ϵ0ν0
d0(l0b0−1) ≤

(b0−a0)ν0
d0(l0b0−1) because ϵ0 = gcd(l0a0 − 1, l0b0 − 1) = gcd(l0(b0 −

a0), l0b0 − 1) = gcd(b0 − a0, l0b0 − 1) ≤ b0 − a0.

Since t1 can be defined only if ν0
d0γ0

≥ 1 we have (b0 − a0)ν0 ≥ d0(l0b0 − 1)

and l0 ≤ (b0−a0)ν0+d0
d0b0

. So

1 ≤ l0 ≤ (b0 − a0)ν0 + d0
d0b0

Possible vertices v1.

We need a Newton modification y → y + cx
−β0
γ0 if ν′1 < µ′

1. Possible vertices v1

are given by

v1 = v′1 + (d0t2 − ν′1)(
β0
γ0
, 1) = (µ′

1 + (d0t2 − ν′1)
β0
γ0
, d0t2)

where
µ′
1γ0−ν

′
1β0

(γ0−β0)d0
< t2 ≤ ν0−ν′

1

d0γ0
. The lower limit for t2 insures that µ1 < ν1, the

upper limit is obtained as follows: f(e′0) = ϕd00 , ϕ0 = xµ
′
1,1yν

′
1,1q0(x

β0yγ0) where

µ′
1,1 =

µ′
1

d0
, ν′1,1 =

ν′
1

d0
and deg(q0) =

δb0−ν′
1,1

γ0
=

ν0−ν′
1

d0γ0
. After such a modification

we obtain v1 = (µ1, ν1).

The Newton polygon of f(x, y + cx
−β0
γ0 ) contains points with fractional ab-

scissae and we can take Γ0 = γ0 as the common denominator of these fractions.

If ν′1 > µ′
1 then we can take v1 = v′1. In this case we will put Γ0 = 1.

Is e′1 the principal edge?

If d0 is a prime number then e′1 must be the principal edge. It also can be the

principal edge if d0 is not prime. To check whether this is possible the formula

ν′2 − µ′
2 =

(ν1 − µ1)(k1ν
′
2 − ν1)

ν1(k1 − 1)
(1)

can be used. Here k1 = degy(h1) and since f(e0)
k1
ν1 ∈ B1 we have k1

ν1
= l1

d0
.

Thus k1 = l1ν1,1 where ν1,1 = ν1
d0
.
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Using this formula we can check whether it is possible that the vertex v′2 is

either (µ′
2, 0) or (µ′

2, 1) where 0 < µ′
2 < 1 and Γ0µ

′
2 ∈ Z and that e′2 intersects

the line y = 1 in a point with abscissa between 0 and 1.

Since (1) can be rewritten as

ν′2 − µ′
2 =

(ν1 − µ1)(l1ν1,1ν
′
2 − d0ν1,1)

ν1(l1ν1,1 − 1)
(2)

the condition that e′2 intersects the line y = 1 in a point with abscissa between

0 and 1 means that l1 > d0 (also gcd(l1, d0) < d0 by Lemma on divisibility).

If ν′2 = 0 then Γ0
ν1−µ1

ν1,1l1−1 = z ∈ Z where z < Γ0
ν1−µ1

ν1,1d0−1 = Γ0
ν1−µ1

ν1−1 since

l1 > d0. We can find l1 for all possible values of z:

l1 =
Γ0ν1 − Γ0µ1 + z

zν1,1

and we have a potential counterexample if l1 ∈ Z and l1
d0

̸∈ Z, d0
l1−d0 ̸∈ Z

(otherwise λ0 is either an integer or the reciprocal of an integer).

If ν′2 = 1 then Γ0
(ν1−µ1)(ν1,1l1−ν1)

ν1(ν1,1l1−1) = z ∈ Z where z < Γ0
ν1−µ1

ν1
since

Γ0
(ν1−µ1)(ν1,1l1−ν1)

ν1(ν1,1l1−1) = Γ0
ν1−µ1

ν1

ν1,1l1−ν1
ν1,1l1−1 < Γ0

ν1−µ1

ν1
because ν1 > 1.

If we know z then

l1 =
ν1(Γ0ν1 − Γ0µ1 − z)

ν1,1(Γ0ν1 − Γ0µ1 − zν1)
= d0

Γ0ν1 − Γ0µ1 − z

Γ0ν1 − Γ0µ1 − zν1

As above, we have a potential counterexample when l1 ∈ Z, l1
d0

̸∈ Z, d0
l1−d0 ̸∈ Z.

If d0 is prime then e′1 must be principal and we can look at the next possible

vertex v1.

If d0 is not prime then the case when e′1 is not principal should be con-

sidered. In this case f1(e
′
1) = ϕd1 where d > 1 is maximal possible. If d is

divisible by d0 the Jacobian condition J(f1(e
′
1), h1) = f1(e

′
1) cannot be satisfied

because degy(h1) = l1ν1,1 will be then divisible by degy(f1(e
′
1)

1
d ) (see Lemma

on divisibility).

Since the expansion relative to e′1 is a sub-expansion of the expansion relative

to e0 we can take d1 = gcd(d0, d) as the common denominator of the powers of

f1 in this expansion and record f1(e
′
1) = ϕd11 where d1 is a proper divisor of d0.
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Now we should find vertices v2. This is similar to finding v1, the differences

are that only the second upper bound for l1 can be used and that the unit of

measurement along the x axis is 1
Γ0

. The search of the vertex vi+1 when the

previous vertices and Γi−1 are known and e′i is not the principal edge is the

same as this one.

Since k1 = l1ν1,1 the choice of l1 determines the slope of the edge e1 because

dv(h1) = l1(µ1,1, ν1,1) where µ1,1 = µ1

d0
, ν1,1 = ν1

d0
and N (h1) contains a point

(1, 1).

We need to define the shortest vector proportional to the vector

< l1µ1,1 − 1, l1ν1,1 − 1 > where the measurement unit along x axis is 1
Γ0

. Com-

ponents β1, γ1 are computed similarly to components β0, γ0

ϵ1 = gcd(Γ0(l1µ1,1 − 1), l1ν1,1 − 1), β1 =
l1µ1,1−1

ϵ1
, γ1 =

l1ν1,1−1
ϵ1

.

v′2 = (µ′
2, ν

′
2) = v1−t1d1(β1, γ1) = (µ1−t1d1β1, ν1−t1d1γ1), where 1 ≤ t1 ≤ ν1

d1γ1

because ν′2 ≥ 0 and t1 ̸= ν1−µ1

d1(γ1−β1)
= ϵ1(ν1−µ1)

d1l1(ν1,1−µ1,1)
= ϵ1d0

d1l1
because µ′

2 ̸= ν′2.

The inequality t1 ≤ ν1
d1γ1

allows to bound l1 as follows:

ν1
d1γ1

= ϵ1ν1
d1(l1ν1,1−1) ≤

Γ0(ν1,1−µ1,1)ν1
d1(l1ν1,1−1) because ϵ1 = gcd(Γ0l1µ1,1−Γ0, l1ν1,1−1) =

gcd(Γ0l1(µ1,1−ν1,1), l1ν1,1−1) = gcd(Γ0(µ1,1−ν1,1), l1ν1,1−1) ≤ Γ0(ν1,1−µ1,1).

Since t1 can be defined only if ν1
d1γ1

≥ 1 we have Γ0(ν1,1−µ1,1)ν1 ≥ d1(l1ν1,1−1)

and l1 ≤ Γ0(ν1,1−µ1,1)ν1+d1
d1ν1,1

. So

1 ≤ l1 ≤ Γ0(ν1,1 − µ1,1)ν1 + d1
d1ν1,1

Additional restriction on l1 is gcd(l1d1, d0) < d0. Indeed, f1(e
′
1) = ϕd11 . Hence

degy(ϕ1) =
ν1
d1

while degy(h1) = l1
ν1
d0

and l1
ν1
d0
÷ ν1
d1

̸∈ Z by Lemma on divisibility.

Now we can define v2.

If ν′2 > µ′
2 then v2 = v′2, Γ1 = Γ0.

If ν′2 < µ′
2 then v2 = (µ′

2, ν
′
2) + (d1t2 − ν′2)(

β1

γ1
, 1) = (µ2, ν2),

γ1µ
′
2−β1ν

′
2

d1(γ1−β1)
< t2 ≤ ν1−ν′

2

d1γ1
.

We had fractions with the denominator Γ0. The denominator of β1

γ1
= Γ0β1

Γ0γ1

is Γ0γ1
gcd(Γ0β1,Γ0γ1)

. Therefore now we have fractions with the denominator

Γ1 = lcm(Γ0,
Γ0γ1

gcd(Γ0β1,Γ0γ1)
)
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Here is a similar description of the algorithm after the vertex vi is found. At

this stage we also know di−1 and Γi−1.

Next step: check if ei is the principal edge. This is based on the formula

ν′i+1 − µ′
i+1 =

(νi−µi)(kiν
′
i+1−νi)

νi(ki−1) and properties of the principal edge already

discussed. Since fi−1(ei−1)
ki
νi ∈ Bi we have ki

νi
= li

di−1
. Thus ki = liνi,1 where

νi,1 = νi
di−1

.

ν′i+1 − µ′
i+1 =

(νi − µi)(liνi,1ν
′
i+1 − νi)

νi(liνi,1 − 1)
=

(νi − µi)(liν
′
i+1 − di−1)

di−1(liνi,1 − 1)

If ν′i+1 = 0 then Γi−1
νi−µi

νi,1li−1 = z ∈ Z where z < Γi−1
νi−µi

νi,1di−1−1 = Γi−1
νi−µi

νi−1

since li > di−1.

We have a potential counterexample if for some admissible z

li =
Γi−1νi − Γi−1µi + z

zνi,1
∈ Z

and li
di−1

̸∈ Z, di−1

li−di−1
̸∈ Z.

If ν′i+1 = 1 then Γi−1
(νi−µi)(li−di−1)
di−1(liνi,1−1) = z ∈ Z where z < Γi−1

νi−µi

νi
since

Γi−1
(νi−µi)(νi,1li−νi)

νi(νi,1li−1) = Γi−1
νi−µi

νi

νi,1li−νi
νi,1li−1 < Γi−1

νi−µi

νi
because νi > 1.

Again, we have a potential counterexample if for some admissible z

li = di−1
Γi−1νi − Γi−1µi − z

Γi−1νi − Γi−1µi − zνi
∈ Z

and li
di−1

̸∈ Z, di−1

li−di−1
̸∈ Z.

If ei is the principal edge then λ0 + 1 = wi(xy)
wi(fi)

= wi(hi)
wi(fi)

= ki
νi

= li
di−1

. Hence

λ0 =
li
di−1

− 1

If di−1 is prime then e′i must be principal and we can look at the next possible

vertex vi.

If di−1 is not prime then the case when e′i is not principal should be consid-

ered. In this case fi(e
′
i) = ϕdii where di is a proper divisor of di−1 and di can

be taken as the common denominator of the powers of fi in the expansion of gi

relative to the edge ei.

Now we should find the vertex vi+1.
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Since ki = liνi,1 the choice of li determines the slope of the edge ei because

dv(hi) = li(µi,1, νi,1) where µi,1 = µi

di−1
, νi,1 = νi

di−1
and N (hi) contains a point

(1, 1).

We need to define the shortest vector proportional to the vector

< liµi,1 − 1, liνi,1 − 1 > where the measurement unit along x axis is 1
Γi−1

.

Components βi, γi are computed similarly to components β1, γ1.

ϵi = gcd(Γi−1(liµi,1 − 1), liνi,1 − 1), βi =
liµi,1−1

ϵi
, γi =

liνi,1−1
ϵi

.

v′i+1 = vi − t1di(βi, γi); µ
′
i+1 = µi − t1diβi, ν

′
i+1 = νi − t1diγi, where

1 ≤ t1 ≤ νi
diγi

because ν′i+1 ≥ 0 and t1 ̸= νi−µi

di(γi−βi)
= ϵi(νi−µi)

dili(νi,1−µi,1)
= ϵidi−1

dili

because µ′
i+1 ̸= ν′i+1.

The inequality t1 ≤ νi
diγi

allows to bound li as follows:

νi
diγi

= ϵiνi
di(liνi,1−1) ≤ Γi−1(νi,1−µi,1)νi

di(liνi,1−1) because ϵi = gcd(Γi−1liµi,1 − Γi−1, liνi,1 −

1) = gcd(Γi−1li(µi,1 − νi,1), liνi,1 − 1) = gcd(Γi−1(µi,1 − νi,1), liνi,1 − 1) ≤

Γi−1(νi,1 − µi,1).

Since t1 can be defined only if νi
diγi

≥ 1 we have Γi−1(νi,1−µi,1)νi ≥ di(liνi,1−1)

and li ≤ Γi−1(νi,1−µi,1)νi+di
diνi,1

. So

1 ≤ li ≤
Γi−1(νi,1 − µi,1)νi + di

diνi,1

Additional restriction on li is gcd(lidi, di−1) < di−1 (see Lemma on divisibility).

Now we can define vi+1.

If ν′i+1 > µ′
i+1 then vi+1 = v′i+1, Γi = Γi−1.

If ν′i+1 < µ′
i+1 then vi+1 = (µ′

i+1, ν
′
i+1) + (dit2 − ν′i+1)(

βi

γi
, 1) = (µi+1, νi+1),

γiµ
′
i+1−βiν

′
i+1

di(γi−βi)
< t2 ≤ νi−ν′

i+1

diγi
.

The denominator of βi

γi
= Γi−1βi

Γi−1γi
is Γi−1γi

gcd(Γi−1βi,Γi−1γi)
, hence Γi = lcm(Γi−1,

Γi−1γi
gcd(Γi−1βi,Γi−1γi)

).

Results

In the papers [H] and [M] the authors assisted by a computer considered

the cases when deg(f) and deg(g) do not exceed 100. Here we consider the

possibilities for f when deg(f) ≤ 100.
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Computer search gives the following 19 possibilities for D:

D ∈ {42, 48, 50, 56, 60, 63, 64, 66, 70, 72, 75, 80, 84, 88, 90, 96, 98, 99, 100}

In this section each of the cases is described. The leading vertex will be writ-

ten as d0 × δ × (a0, b0). Recall that f(e′0) = ϕd00 . Next, the coordinates of the

further vertices of non-principal edges before and after the Newton resolution

steps and of the principal edge before the Newton resolution are presented. The

forms supported by the leading edge and further edges, but not by the principal

edge will be also described. A description of the form supported by the principal

edge requires additional computations (see [D] or [ML1]). Of course, the ratio

λ0 of the degrees of g and f is also given.

D = 42. v0 = 2 × 3 × (2, 5), v′1 = (2, 0), v1 = 2( 73 , 4), v
′
2 = ( 23 , 1), λ0 = 7

2 ,

ϕ0 = cx(xy3 − r1)
4(xy3 − r2), r1r2 ̸= 0, r1 ̸= r2

1.

D = 48. v0 = 3× 4× (1, 3), v′1 = (3, 0), v1 = 3( 74 , 3), v
′
2 = ( 34 , 1), λ0 = 4

3 ,

ϕ0 = cx(xy4 − r1)
3.

v0 = 6× 2× (1, 3), v1 = v′1 = 2× 3× (2, 5), v′2 = (2, 0), v2 = 2( 73 , 4),

v′3 = ( 23 , 1), λ0 = 7
2 , ϕ0 = cx2y5(y − r1), f1(e

′
1) = ϕ21,

ϕ1 = cx(xy3 − r1)
4(xy3 − r2)

D = 50. v0 = 2× 5× (1, 4), v′1 = (2, 0).

v1 = 2( 85 , 3), v
′
2 = ( 15 , 0), λ0 = 3

2 , ϕ0 = cx(xy5 − r1)
3(xy5 − r2);

v1 = 2( 75 , 2), v
′
2 = ( 45 , 1), λ0 = 3

2 , ϕ0 = x(xy5 − r1)
2q0(xy

5), deg(q0) = 2.

(Hereinafter qi(0)qi(r1) ̸= 0.)

D = 56. v0 = 2× 7× (1, 3).

v′1 = (4, 2), v1 = 2(3, 5), v′2 = ( 34 , 1), λ0 = 3
2 , ϕ0 = cx2y(xy4 − r1)

5.

v′1 = (4, 2), v1 = 2( 114 , 4), v
′
2 = ( 34 , 1), λ0 = 7

2 , ϕ0 = cx2y(xy4 − r1)
4(xy4 − r2).

{Since v′1 = (4, 2) we have degx(f(x, 0)) < 2. This leads to a contradiction.}
1Further on ri are not equal to zero and different if the indexes are different.
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v′1 = (2, 0), v1 = 2( 137 , 3), v
′
2 = ( 57 , 1), λ0 = 5

2 , ϕ0 = cx(x2y7 − r1)
3.

v′1 = (2, 0), v1 = 2( 117 , 2), v
′
2 = ( 67 , 1), λ0 = 3

2 , ϕ0 = cx(x2y7 − r1)
2(x2y7 − r2).

D = 60, v0 = 2× 3× (3, 7), v′1 = (4, 0), v1 = 2( 133 , 7), v
′
2 = ( 23 , 1), λ0 = 13

2 ,

ϕ0 = cx2(xy3 − r1)
7.

v0 = 6×2×(1, 4), v′1 = v1 = 2×3×(2, 5), v′2 = (2, 0), v2 = 2( 73 , 4), v
′
3 = ( 23 , 1),

λ0 = 7
2 , ϕ0 = x2y5q0(y), deg(q0) = 3, f1(e

′
1) = ϕ21, ϕ1 = cx(xy3−r1)4(xy3−r2).

D = 63. v0 = 3× 3× (2, 5), v′1 = (3, 0).

v1 = 3( 83 , 5), v
′
2 = ( 23 , 1), λ0 = 7

3 , ϕ0 = cx(xy3 − r1)
5;

v1 = 3( 73 , 4), v
′
2 = ( 23 , 1), λ0 = 11

3 , ϕ0 = cx(xy3 − r1)
4(xy3 − r2).

D = 64. v0 = 4× 4× (1, 3), v′1 = (4, 0), v1 = 4( 74 , 3).

v′2 = ( 14 , 0), λ0 = 3
4 , f(e

′
0) = ϕ40, ϕ0 = cx(xy4 − r1)

3;

v′2 = v2 = ( 112 , 8), v
′
3 = ( 34 , 1), λ0 = 7

2 ϕ0 = cx(xy4 − r1)
3, f1(e

′
1) = ϕ21,

ϕ1 = x
11
4 y4(x

3
4 y2 − r1);

v′2 = v2 = ( 52 , 4), v
′
3 = ( 34 , 1), λ0 = 3

2 , ϕ0 = cx(xy4 − r1)
3, f1(e

′
1) = ϕ21,

phi1 = x
5
4 y2(x

9
4 y4 − r1).

D = 66. v0 = 2× 3× (3, 8), v′1 = (2, 0).

v1 = 2( 113 , 8), v
′
2 = ( 23 , 1), λ0 = 3

2 , ϕ0 = cx(xy3 − r1)
8;

v1 = 2( 73 , 4), v
′
2 = ( 23 , 1), λ0 = 7

2 , ϕ0 = x(xy3 − r1)
4q0(xy

3), deg(q0) = 4.

D = 70. v0 = 2× 5× (2, 5), v′1 = (4, 2).

v1 = 2( 133 , 8), v
′
2 = ( 23 , 1), λ0 = 5

2 , ϕ0 = cx2y(xy3 − r1)
8;

v1 = 2( 113 , 6), v
′
2 = ( 23 , 1), λ0 = 11

2 , ϕ0 = x2y(xy3 − r1)
6q0(xy

3), deg(q0) = 2.

{Since v′1 = (4, 2) we have degx(f(x, 0)) < 2. This leads to a contradiction.}

D = 72. v0 = 2× 4× (2, 7), v′1 = (2, 0).

v1 = 2( 114 , 7), v
′
2 = ( 14 , 0), λ0 = 3

2 , ϕ0 = cx(xy4 − r1)
7;

v1 = 2( 52 , 6), v
′
2 = ( 12 , 1), λ0 = 11

2 . ϕ0 = cx(xy4 − r1)
6(xy4 − r1).
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v0 = 6×2×(1, 5), v′1 = v1 = 2×3×(2, 5), v′2 = (2, 0), v2 = 2( 73 , 4), v
′
3 = ( 23 , 1),

λ0 = 7
2 , ϕ0 = x2y5q0(y), deg(q0) = 5, f1(e

′
1) = ϕ21, ϕ1 = cx(xy3−r1)4(xy3−r2).

v0 = 6× 3× (1, 3).

v′1 = v1 = 2 × 3 × (3, 7), v′2 = (4, 0), v2 = 2( 133 , 7), v
′
3 = ( 23 , 1), λ0 = 13

2 ,

ϕ0 = x3y7q0(y), deg(q0) = 2, f1(e
′
1) = ϕ21, ϕ1 = cx2(xy3 − r1)

7.

v′1 = v1 = 2× 3× (3, 8), v′2 = (2, 0), v2 = 2( 73 , 4), v
′
3 = ( 23 , 1), λ0 = 7

2 ,

ϕ0 = x3y8(y − r1), f1(e
′
1) = ϕ21, ϕ1 = x(xy3 − r1)

4q1(xy
3), deg(q1) = 4.

v′1 = v1 = 2× 3× (3, 8), v′2 = (2, 0), v2 = 2( 113 , 8), v
′
3 = ( 23 , 1), λ0 = 3

2 ,

ϕ0 = x3y8(y − r1), f1(e
′
1) = ϕ21, ϕ1 = cx(xy3 − r1)

8.

v0 = 9× 2× (1, 3), v′1 = v1 = 3× 3× (2, 5), v′2 = (3, 0).

v2 = 3( 73 , 4), v
′
3 = ( 23 , 1), λ0 = 11

3 , ϕ0 = x2y5(y − r1), f1(e
′
1) = ϕ31,

ϕ1 = cx(xy3 − r1)
4(xy3 − r2);

v2 = 3( 83 , 5), v
′
3 = ( 23 , 1), λ0 = 7

3 , ϕ0 = x2y5(y − r1), f1(e
′
1) = ϕ31,

ϕ1 = cx(xy3 − r1)
5.

D = 75. v0 = 3× 5× (1, 4), v′1 = (3, 0).

v1 = 3( 85 , 3), v
′
2 = ( 35 , 1), λ0 = 16

3 , ϕ0 = cx(xy5 − r1)
3(xy5 − r2);

v1 = 3( 85 , 3), v
′
2 = ( 45 , 1), λ0 = 2

3 , ϕ0 = cx(xy5 − r1)
3(xy5 − r2);

v1 = 3( 75 , 2), v
′
2 = ( 45 , 1), λ0 = 5

3 , ϕ0 = x(xy5 − r1)
2q0(xy

5), deg(q0) = 2;

v1 = 3( 75 , 2), v
′
2 = ( 15 , 0), λ0 = 2

3 , ϕ0 = x(xy5 − r1)
2q0(xy

5), deg(q0) = 2.

D = 80. v0 = 2× 4× (3, 7), v′1 = (6, 2), v1 = 2( 173 , 9), v
′
2 = ( 23 , 1), λ0 = 17

2 ,

ϕ0 = cx3y(xy3 − r1)
9.

v0 = 5× 4× (1, 3), v′1 = (5, 0), v1 = 5( 74 , 3), v
′
2 = ( 34 , 1), λ0 = 7

5 ,

ϕ0 = cx(xy4 − r1)
3.

v0 = 8× 2× (1, 4), v′1 = v1 = 2× 4× (2, 7), v′2 = (2, 0).

v2 = 2( 114 , 7), v
′
3 = ( 14 , 0), λ0 = 3

2 , ϕ0 = x2y7(y − r1), f1(e
′
1) = ϕ21,

ϕ1 = cx(xy4 − r1)
7;

v2 = 2( 52 , 6), v
′
3 = ( 12 , 1), λ0 = 11

2 , ϕ0 = x2y7(y − r1), f1(e
′
1) = ϕ21,

ϕ1 = cx(xy4 − r1)
6(xy4 − r2).

v0 = 10× 2× (1, 3), v′1 = v1 = 2× 5× (2, 5), v′2 = (4, 2).
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v2 = 2( 133 , 8), v
′
3 = ( 23 , 1), λ0 = 5

2 , ϕ0 = x2y5(y − r1), f1(e
′
1) = ϕ21,

ϕ1 = cx2y(xy3 − r1)
8;

v2 = 2( 113 , 6), v
′
3 = ( 23 , 1), λ0 = 11

2 , ϕ0 = x2y5(y − r1), f1(e
′
1) = ϕ21,

ϕ1 = x2y(xy3 − r1)
6q0(xy

3), deg(q0) = 2.

{Since v′2 = (4, 2) we have degx(f(x, 0)) < 2. This leads to a contradiction.}

D = 84. v0 = 2× 6× (2, 5), v′1 = (4, 0), v1 = 2( 133 , 7), v
′
2 = ( 23 , 1), λ0 = 13

2 ,

ϕ0 = x2(xy3 − r1)
7q0(xy

3), deg(q0) = 3.

v0 = 2× 7× (1, 5), v′1 = (4, 0).

v1 = 2( 197 , 5), v
′
2 = ( 57 , 1), λ0 = 3

2 , ϕ0 = cx2(xy7 − r1)
5;

v1 = 2( 197 , 5), v
′
2 = ( 47 , 1), λ0 = 27

2 , ϕ0 = cx2(xy7 − r1)
5;

v1 = 2( 187 , 4), v
′
2 = ( 57 , 1), λ0 = 7

2 , ϕ0 = cx2(xy7 − r1)
4(xy7 − r2);

v1 = 2( 177 , 3), v
′
2 = ( 67 , 1), λ0 = 5

2 , ϕ0 = cx2(xy7 − r1)
3q1(xy

7), deg(q1) = 2.

v0 = 3× 7× (1, 3).

v′1 = (6, 3), v1 = 3(3, 5), v′2 = ( 14 , 0), λ0 = 2
3 , ϕ0 = cx2y(xy4 − r1)

5.

v′1 = (6, 3), v1 = 3( 114 , 4), v
′
2 = ( 34 , 1), λ0 = 11

3 , ϕ0 = cx2y(xy4−r1)4(xy4−r2).

v′1 = (3, 0), v1 = 3( 137 , 3), v
′
2 = ( 57 , 1), λ0 = 8

3 , ϕ0 = cx(x2y7 − r1)
3.

v′1 = (3, 0), v1 = 3( 117 , 2), v
′
2 = ( 67 , 1), λ0 = 5

3 , ϕ0 = cx(x2y7 − r1)
2(x2y7 − r2).

v′1 = (3, 0), v1 = 3( 117 , 2), v
′
2 = ( 17 , 0), λ0 = 2

3 , ϕ0 = cx(x2y7 − r1)
2(x2y7 − r2).

v0 = 4× 3× (2, 5), v′1 = (4, 0).

v1 = 4( 73 , 4), v
′
2 = ( 23 , 1), λ0 = 15

4 , ϕ0 = cx(xy3 − r1)
4(xy3 − r2);

v1 = 4( 83 , 5), v2 = v′2 = ( 223 , 12), v
′
3 = ( 23 , 1), λ0 = 11

2 ,

ϕ0 = cx(xy3 − r1)
5, f1(e

′
1) = ϕ21, ϕ1 = x

11
3 y6(x

5
3 y4 − s1);

v1 = 4( 83 , 5), v
′
2 = ( 23 , 0), v2 = 2( 73 , 4), v

′
3 = ( 23 , 1), λ0 = 7

2 ,

ϕ0 = cx(xy3 − r1)
5, f1(e

′
1) = ϕ21, ϕ1 = x

1
3 (xy2 − s1)

4(xy2 − s2);

v1 = 4( 83 , 5), v
′
2 = ( 23 , 0), v2 = 2( 116 , 3), v

′
3 = ( 16 , 0), λ0 = 3

2 ,

ϕ0 = cx(xy3 − r1)
5, f1(e

′
1) = ϕ21, ϕ1 = x

1
3 (xy2 − s1)

3q1(xy
2), deg(q1) = 2;

v1 = 4( 83 , 5), v
′
2 = v2 = 2( 133 , 8), v

′
3 = ( 23 , 1), λ0 = 5

2 ,

ϕ0 = cx(xy3 − r1)
5, f1(e

′
1) = ϕ21, ϕ1 = x

13
3 y8(xy2 − s1);

v1 = 4( 83 , 5), v
′
2 = v2 = 2( 73 , 4), v

′
3 = ( 23 , 1), λ0 = 7

2 ,

ϕ0 = cx(xy3 − r1)
5, f1(e

′
1) = ϕ21, ϕ1 = x

7
3 y4q1(xy

2), deg(q1) = 3.
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v0 = 6×2×(1, 6), v′1 = v1 = 2×3×(2, 5), v′2 = (2, 0), v2 = 2( 73 , 4), v
′
3 = ( 23 , 1),

λ0 = 7
2 , ϕ0 = x2y5q0(y), deg(q0) = 7, f1(e

′
1) = ϕ21, ϕ1 = cx(xy3−r1)4(xy3−r2).

D = 88. v0 = 2× 11× (1, 3). v′1 = (6, 2).

v1 = 2( 194 , 8), v
′
2 = ( 34 , 1), λ0 = 3

2 , ϕ0 = cx3y(xy4 − r1)
8;

v1 = 2( 174 , 6), v
′
2 = ( 34 , 1), λ0 = 11

2 , ϕ0 = cx3y(xy4 − r1)
6q0(xy

4), deg(q0) = 2.

D = 90, v0 = 2× 3× (4, 11), v′1 = (2, 0).

v1 = 2( 113 , 8), v
′
2 = ( 23 , 1), λ0 = 3

2 , ϕ0 = x(xy3 − r1)
8q0(xy

3), deg(q0) = 3;

v1 = 2( 73 , 4), v
′
2 = ( 23 , 1), λ0 = 7

2 . ϕ0 = x(xy3 − r1)
4q0(xy

3), deg(q0) = 7.

v0 = 2× 9× (1, 4), v′1 = (2, 0).

v1 = 2( 179 , 4), v
′
2 = ( 23 , 1) or (

2
9 , 0), λ0 = 3

2 , ϕ0 = x(x2y9 − r1)
4;

v1 = 2( 53 , 3), v
′
2 = ( 23 , 1), λ0 = 5

2 , ϕ0 = x(x2y9 − r1)
3(x2y9 − r2).

v0 = 3× 3× (3, 7), v′1 = (6, 0), v1 = 3( 133 , 7), v
′
2 = ( 23 , 1), λ0 = 20

3 ,

ϕ0 = x2(xy3 − r1)
7.

v0 = 6× 3× (1, 4).

v′1 = v1 = 2× 3× (2, 5), v′2 = (2, 0), v2 = 2( 73 , 4), v
′
3 = ( 23 , 1), λ0 = 7

2 ,

ϕ0 = x2y5(xy7 − r1), f1(e
′
1) = ϕ21, ϕ1 = cx(xy3 − r1)

4(xy3 − r2).

v′1 = v1 = 2× 3× (3, 7), v′2 = (4, 0), v2 = 2( 133 , 7), v
′
3 = ( 23 , 1), λ0 = 13

2 ,

ϕ0 = x3y7q0(y), deg(g0) = 5, f1(e
′
1) = ϕ21, ϕ1 = cx2(xy3 − r1)

7.

v′1 = v1 = 2× 3× (3, 8), v′2 = (2, 0), v2 = 2( 73 , 4), v
′
3 = ( 23 , 1), λ0 = 7

2 ,

ϕ0 = x3y8q0(y), deg(q0) = 4, f1(e
′
1) = ϕ21, ϕ1 = cx(xy3 − r1)

4q1(xy
3),

deg(q1) = 4.

v′1 = v1 = 2× 3× (3, 8), v′2 = (2, 0), v2 = 2( 113 , 8), v
′
3 = ( 23 , 1), λ0 = 3

2 ,

ϕ0 = x3y8q0(y), deg(q0) = 4, f1(e
′
1) = ϕ21, ϕ1 = cx(xy3 − r1)

8.

v0 = 9× 2× (1, 4), v′1 = v1 = 3× 3× (2, 5), v′2 = (3, 0).

v2 = 3( 73 , 4), v
′
3 = ( 23 , 1), λ0 = 11

3 , ϕ0 = x2y5q0(y), deg(q0) = 3,

f1(e
′
1) = ϕ31, ϕ1 = cx(xy3 − r1)

4(xy3 − r2);

v2 = 3( 83 , 5), v
′
3 = ( 23 , 1), λ0 = 7

3 , ϕ0 = x2y5q0(y), deg(q0) = 3,

f1(e
′
1) = ϕ31, ϕ1 = cx(xy3 − r1)

5.
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D = 96. v0 = 3× 8× (1, 3), v′1 = (6, 0), v1 = 3( 134 , 5), v
′
2 = ( 34 , 1), λ0 = 7

3 ,

ϕ0 = x2(xy4 − r1)
5(xy4 − r2).

v0 = 6×2×(1, 7), v′1 = v1 = 2×3×(2, 5), v′2 = (2, 0), v2 = 2( 73 , 4), v
′
3 = ( 23 , 1),

λ0 = 7
2 , ϕ0 = x2y5q0(y), deg(q0) = 9, f1(e

′
1) = ϕ21, ϕ1 = cx(xy3−r1)4(xy3−r2).

v0 = 6× 2× (3, 5), v′1 = (6, 0), v1 = 6( 72 , 5), v
′
2 = (1, 0), v2 = 2( 196 , 4),

v′3 = ( 56 , 1), λ0 = 7
2 , ϕ0 = cx(xy2 − r1)

5, f1(e
′
1) = ϕ21,

ϕ1 = x
1
2 (x2y3 − r1)

4(x2y3 − r2).

v0 = 6× 4× (1, 3), v′1 = (6, 0), v1 = 6( 74 , 3), ϕ0 = cx(xy4 − r1)
3.

v′2 = ( 154 , 0), v2 = 3( 198 , 3), v
′
3 = ( 78 , 1), λ0 = 4

3 , f1(e
′
1) = ϕ31,

ϕ1 = cx
5
4 (x

3
4 y2 − s1)

3;

v′2 = ( 92 , 2), v2 = 2( 278 , 4), v
′
3 = ( 78 , 1), λ0 = 7

2 , f1(e
′
1) = ϕ21,

ϕ1 = cx
9
4 y(x

3
4 y2 − s1)

4;

v2 = v′2 = 3( 114 , 4), v
′
3 = ( 34 , 1), λ0 = 11

3 , f1(e
′
1) = ϕ31, ϕ1 = cx

11
4 y4(x

3
4 y2 − s1);

v2 = v′2 = 2( 194 , 8), v
′
3 = ( 34 , 1), λ0 = 3

2 , f1(e
′
1) = ϕ21, ϕ1 = cx

19
4 y8(x

1
2 y − s1);

v2 = v′2 = 2( 114 , 4), v
′
3 = ( 34 , 1), λ0 = 7

2 , f1(e
′
1) = ϕ21, ϕ1 = cx

11
4 y4(x

1
2 y − s1)

5;

v2 = v′2 = 2(3, 5), v′3 = ( 34 , 1), λ0 = 3
2 , f1(e

′
1) = ϕ21, ϕ1 = cx3y5(x

9
4 y4 − s1);

v2 = v′2 = 3( 54 , 2), v
′
3 = ( 34 , 1), λ0 = 5

3 or v′3 = ( 14 , 0), λ0 = 2
3 , f1(e

′
1) = ϕ31,

ϕ1 = cx
5
4 y2(x

9
4 y4 − s1).

v0 = 6× 4× (1, 3).

v1 = v′1 = 2× 3× (2, 5), v′2 = (2, 0), v2 = 2( 73 , 4), v
′
3 = ( 23 , 1), λ0 = 7

2 ,

ϕ0 = cx2y5(x2y7 − r1), f1(e
′
1) = ϕ21, ϕ1 = cx(xy3 − r1)

4(xy3 − r2).

v1 = v′1 = 2× 3× (3, 7), v′2 = (4, 0), v2 = 2( 133 , 7), v
′
3 = ( 23 , 1), λ0 = 13

2 ,

ϕ0 = cx3y7(xy5 − r1), f1(e
′
1) = ϕ21, ϕ1 = cx2(xy3 − r1)

7.

v1 = v′1 = 2× 3× (3, 8), v′2 = (2, 0), v2 = 2( 73 , 4), v
′
3 = ( 23 , 1), λ0 = 7

2 ,

ϕ0 = cx3y8(xy4 − r1), f1(e
′
1) = ϕ21, ϕ1 = cx(xy3 − r1)

4q1(xy
3), deg(q1) = 4.

v1 = v′1 = 2× 3× (3, 8), v′2 = (2, 0), v2 = 2( 113 , 8), v
′
3 = ( 23 , 1), λ0 = 3

2 ,

ϕ0 = cx3y8(xy4 − r1), f1(e
′
1) = ϕ21, ϕ1 = cx(xy3 − r1)

8.

v1 = v′1 = 2× 3× (4, 11), v′2 = (2, 0), v2 = 2( 73 , 4), v
′
3 = ( 23 , 1), λ0 = 7

2 ,

ϕ0 = cx4y11(y − r1), f1(e
′
1) = ϕ21, ϕ1 = x(xy3 − r1)

4q1(xy
3), deg(q1) = 7.

v1 = v′1 = 2× 3× (4, 11), v′2 = (2, 0), v2 = 2( 113 , 8), v
′
3 = ( 23 , 1), λ0 = 3

2 ,

ϕ0 = cx4y11(y − r1), f1(e
′
1) = ϕ21, ϕ1 = x(xy3 − r1)

8q1(xy
3), deg(q1) = 3.
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v1 = v′1 = 2× 6× (2, 5), v′2 = (4, 0), v2 = 2( 133 , 7), v
′
3 = ( 23 , 1), λ0 = 13

2 ,

ϕ0 = cx4y10q0(y), deg(q0) = 2, f1(e
′
1) = ϕ21, ϕ1 = cx2(xy3 − r1)

7q1(xy
3),

deg(q1) = 3.

v0 = 8× 2× (1, 5), v′1 = v1 = 2× 4× (2, 7), v′2 = (2, 0).

v2 = 2( 52 , 6), v
′
3 = ( 12 , 1), λ0 = 11

2 , ϕ0 = cx2y7q1(y), deg(q1) = 3,

f1(e
′
1) = ϕ21, ϕ1 = cx(xy4 − r1)

6(xy4 − r1);

v2 = 2( 114 , 7), v
′
3 = ( 14 , 0), λ0 = 3

2 , ϕ0 = cx2y7q1(y), deg(q1) = 3,

f1(e
′
1) = ϕ21, ϕ1 = cx(xy4 − r1)

7.

v0 = 8×3×(1, 3), v′1 = v1 = 2×4×(3, 7), v′2 = (6, 2), v2 = 2( 173 , 9), v
′
3 = ( 23 , 1),

λ0 = 17
2 , ϕ0 = cx3y7q1(y), deg(q1) = 2, f1(e

′
1) = ϕ21, ϕ1 = cx3y(xy3 − r1)

9.

v0 = 12× 2× (1, 3).

v′1 = v1 = 2× 6× (2, 5), v′2 = (4, 0), v2 = 2( 133 , 7), v
′
3 = ( 23 , 1), λ0 = 13

2 ,

ϕ0 = cx2y5(y − r1), f1(e
′
1) = ϕ21, ϕ1 = cx2(xy3 − r1)

7q1(xy
3), deg(q1) = 3.

v′1 = v1 = 4× 3× (2, 5), ϕ0 = cx2y5(y − r1), v
′
2 = (4, 0).

v2 = 4( 73 , 4), v
′
3 = ( 23 , 1), λ0 = 15

4 , f1(e
′
1) = ϕ41, ϕ1 = cx(xy3 − r1)

4(xy3 − r2);

v2 = 4( 83 , 5), v
′
3 = v3 = 2( 113 , 6), v

′
4 = ( 23 , 1), λ0 = 11

2 , f1(e
′
1) = ϕ41,

ϕ1 = cx(xy3 − s1)
5, f2(e

′
2) = ϕ22, ϕ2 = x

11
3 y6(x

5
3 y4 − t1);

v2 = 4( 83 , 5), v
′
3 = v3 = 2( 133 , 8), v

′
4 = ( 23 , 1), λ0 = 5

2 , f1(e
′
1) = ϕ41,

ϕ1 = x(xy3 − s1)
5, f2(e

′
2) = ϕ22, ϕ2 = x

13
3 y8(xy2 − t1);

v2 = 4( 83 , 5), v
′
3 = v3 = 2( 73 , 4), v

′
4 = ( 23 , 1), λ0 = 7

2 , f1(e
′
1) = ϕ41,

ϕ1 = x(xy3 − s1)
5, f2(e

′
2) = ϕ22, ϕ2 = x

7
3 y4q2(xy

2), deg(q2) = 3;

v2 = 4( 83 , 5), v
′
3 = ( 23 , 0), v3 = 2( 116 , 3), v

′
4 = ( 16 , 0), λ0 = 3

2 , f1(e
′
1) = ϕ41,

ϕ1 = x(xy3 − s1)
5, f2(e

′
2) = ϕ22, ϕ2 = x

1
3 (xy2 − t1)

3q2(xy
2), deg(q2) = 2;

v2 = 4( 83 , 5), v
′
3 = ( 23 , 0), v3 = ( 143 , 8), v

′
4 = ( 23 , 1), λ0 = 7

2 , f1(e
′
1) = ϕ41,

ϕ1 = x(xy3 − s1)
5, f2(e

′
2) = ϕ22, ϕ2 = x

1
3 (xy2 − t1)

4(xy2 − t2).

D = 98. v0 = 2× 7× (1, 6), v′1 = (2, 0), v1 = 2( 137 , 6), v
′
2 = ( 27 , 0) or

v′2 = ( 47 , 1), λ0 = 3
2 , ϕ0 = cx(xy7 − r1)

6.

v0 = 2× 7× (2, 5), v′1 = (6, 4), v1 = 2(5, 8), v′2 = ( 23 , 1), λ0 = 15
2 ,

ϕ0 = cx3y2(xy3 − r1)
8q0(xy

3),deg(q0) = 3.

{Since v′1 = (6, 4) we have degx(f(x, 0)) < 2. This leads to a contradiction.}
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D = 99. v0 = 3× 3× (3, 8), v′1 = (3, 0).

v1 = 3( 113 , 8), v
′
2 = ( 13 , 0), λ0 = 2

3 , ϕ0 = cx(xy3 − r1)
8;

v1 = 3( 103 , 7), v
′
2 = ( 23 , 1), λ0 = 5

3 , ϕ0 = cx(xy3 − r1)
7(xy3 − r2);

v1 = 3( 83 , 5), v
′
2 = ( 23 , 1), λ0 = 7

3 , ϕ0 = cx(xy3 − r1)
5q0, deg(q0) = 3;

v1 = 3( 73 , 4), v
′
2 = ( 23 , 1), λ0 = 11

3 , ϕ0 = cx(xy3 − r1)
4q0, deg(q0) = 4.

D = 100. v0 = 2× 5× (3, 7).

v′1 = (2, 0), v1 = 2( 195 , 7), v
′
2 = ( 35 , 1), λ0 = 13

2 , ϕ0 = cx(x2y5 − r1)
7.

v′1 = (2, 0), v1 = 2( 115 , 3), v
′
2 = ( 45 , 1), λ0 = 5

2 , ϕ0 = x(x2y5 − r1)
3q0,

deg(q0) = 4.

v′1 = (8, 4), v1 = 2(7, 11), v′2 = ( 23 , 1), λ0 = 21
2 , ϕ0 = cx4y2(xy3 − r1)

11.

v0 = 2× 10× (1, 4), v′1 = (4, 0).

v1 = 2( 185 , 8), v
′
2 = ( 35 , 1), λ0 = 5

2 , ϕ0 = cx2(xy5 − r1)
8;

v1 = 2( 165 , 6), v
′
2 = ( 35 , 1), λ0 = 11

2 , ϕ0 = x2(xy5 − r1)
6q0, deg(q0) = 2.

v0 = 4× 5× (1, 4), v′1 = (4, 0).

v1 = 4( 95 , 4), v
′
2 = ( 35 , 1), λ0 = 5

2 , ϕ0 = cx(xy5 − r1)
4;

v1 = 4( 85 , 3), v
′
2 = ( 35 , 1), λ0 = 11

2 , ϕ0 = x(xy5 − r1)
3(xy5 − r2);

v1 = 4( 75 , 2), v
′
2 = ( 45 , 1), λ0 = 7

4 , ϕ0 = x2(xy5 − r1)
2q0, deg(q0) = 2.

v1 = 4( 85 , 3), ϕ0 = x(xy5 − r1)
3(xy5 − r2),

v′2 = ( 145 , 0), v2 = 2( 2310 , 3), v
′
3 = ( 1

10 , 0), λ0 = 3
2 , f1(e

′
1) = ϕ21,

ϕ1 = x
7
5 (x

3
5 y2 − s1)

3;

v′2 = ( 25 , 0), v2 = 2( 1710 , 3), v
′
3 = ( 1

10 , 0), λ0 = 7
2 , f1(e

′
1) = ϕ21,

ϕ1 = x
1
5 (xy2 − s1)

3;

v′2 = ( 25 , 0), v2 = 2( 7
10 , 1), v

′
3 = ( 1

10 , 0), λ0 = 5
2 , f1(e

′
1) = ϕ21,

ϕ1 = x
1
5 (xy2 − s1)q1, deg(q1) = 2.

v1 = 4( 95 , 4), ϕ0 = x(xy5 − r1)
4.

v′2 = v2 = 2(2, 4), v′3 = ( 35 , 1), λ0 = 7
2 , f1(e

′
1) = ϕ21, ϕ1 = x2y4q1(x

2
5 y),

deg(q1) = 4;

v′2 = v2 = 2( 85 , 3), v
′
3 = ( 15 , 0), λ0 = 3

2 , f1(e
′
1) = ϕ21, ϕ1 = x

8
5 y3q1(x

2
5 y),

deg(q1) = 5.
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v0 = 10×2×(1, 4), v1 = 2×5×(2, 5), ϕ0 = x2y5q0(y), deg(q0) = 3, v′2 = (4, 2);

v2 = 2( 133 , 8), v
′
3 = ( 23 , 1), λ0 = 5

2 , f1(e
′
1) = ϕ21, ϕ1 = cx2y(xy3 − r1)

8.

v2 = 2( 113 , 6), v
′
3 = ( 23 , 1), λ0 = 11

2 , f1(e
′
1) = ϕ21, ϕ1 = cx2y(xy3 − r1)

6q1(xy
3),

deg(q1) = 2.

{Since v′2 = (4, 2) we have degx(f(x, 0)) < 2. This leads to a contradiction.}

References Sited

[A1] S. S. Abhyankar, Lectures On Expansion Techniques In Algebraic Geome-

try, Tata Institute of Fundamental Research, Bombay, 1977.

[A2] S. S. Abhyankar, Some remarks on the Jacobian question. With notes by

Marius van der Put and William Heinzer. Updated by Avinash Sathaye. Proc.

Indian Acad. Sci. Math. Sci. 104 (1994), no. 3, 515–542.

[AO] H. Appelgate and H. Onishi, The Jacobian conjecture in two variables, J.

Pure Appl. Algebra 37 (1985), no. 3, 215–227.

[CN] P. Cassou-Nogués, Newton trees at infinity of algebraic curves. Affine

algebraic geometry, 1–19, CRM Proc. Lecture Notes, 54, Amer. Math. Soc.,

Providence, RI, 2011. (The Russell Festschrift.)
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