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Good packings from random lattices

» Observation: ‘random’ lattices are good packings
» Gaussian Heuristic: A1(L£) = gh(L)
» Seen as the hardest instances for lattice problems

Good packing

1 ’

1 1

1 > :
on the average ! i
]

Seems harder?
Actually easier!

» Crypto: random g-ary lattices (LWE, SIS, NTRU)

The Haar measure on SL,(R) has finite mass on the quotient space of
unit volume lattices Ly = SL,(R)/SL,H(Z).

__________________________________________________________________
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Averaging formula and the Minkowski-Hlawka Theorem

,[Average number of lattice points: Hlawka43, Siege145} ............. .

Let L[, be the space all lattices of dimension n and volume 1, then

LEL

E |[£0X-B" =1+vol(A-B"). 5

‘Average of one non-zero point per unit volume’

EY e e
* o .~=-{Proof: Minkowski-Hlawka Theorem}---s
* . * Pick A = 1 Mk(n),
» o ¢ ° i then Eﬁeﬁ[n] ILNAX-B"| =2. E
[ J ! .
. 0 o ¢« ! = 3Le Ly with [LNAX-B7 <2,
[ ] 1 :
o . ° . i = 3L € Ly with Ai(£) > A = § Mk(L)
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Lattice Isomorphism Problem

L(B1) = L(B)

<~
O . L(B1) = L(B?) for some O € On(R)
<~
O:-Bi-U=8B; for some O € On(R), U € GLA(Z)
<
UtB{BlU = BéBz for some U € GL,(Z)

——
gram matrix

If either O or U is trivial: linear algebra.
Solution unique up to Aut(L) ={0€ O,(R): 0-L =L}.
Use gram matrix formulation to only consider U.

vV vyVvYyy

We restrict to integer gram matrices G := B!'B.
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Encryption scheme from LIP (informal)

Decodable lattice

Bad basis of rotation

®
[ ] [ ] [ ] [ ] (] (
[ ]
o
e o | o | o | o 1
m’ \¢ ([ ]
° /}c, e o o 0 € O(R) :
7 ‘\
S f(. ® S A (Secret key) \ @
0 (
®
([ ] [ ] ([ ] ([ ] ®
[ ] \
o o | o | o o ° .\\\ -~
\ : .
Decrypt using decoding algorithm
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Cryptography from LIP

» LIP as a new hardness assumption

,[Dvw, EC2022: On LIP, QFs, Remarkable Lattices, and Cryptographyj--_

Use LIP to hide a remarkable lattice:
» Identification, Encryption and Signature scheme

__________________________________________________________________

([BGPSD’ EC2023: Just how hard are rotations of Z”?} _______________ -,
i » Encryption scheme based on LIP on Z", ]
- [DPPVW , AC2022: HAWK SCheme} _____________________________________ _

i Efficient signature scheme based on module-LIP on 7"
i » now in round 2 of NIST call for additional signatures

__________________________________________________________________

» Many other works using LIP appeared recently
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Distinghuish LIP

{Definition: distinguish LIP (A—LIP)} .............................

E Let L1, L7 be two non-isomorphic lattices and let b < {1,2} uniform.
' Given L € [Lp], recover b.

» L1,L> can be represented by any (good) gram matrix Gj, Gz.
» L is represented by a random U'GpU < D([Gp]) (worst-case)

,[Usual security assumption:} ...................................... S

Given:
1. some remarkable lattice L£j
2. an auxiliary lattice Ly with certain (good) geometric properties

Then: cryptographic scheme is secure if A-LIP on L1, L3 is hard.

Goal: find an auxiliary lattice with the right geometric properties

Example: good packing, smoothing, covering.. 9 / 24
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ireeng

al Lo & e bl St ittt sttt ittt =

- If ari(L£1) # ari(L32), then ALIP with L1, L> can be solved efficiently. E

= auxiliary lattice must have same invariants
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Genus

The genus gen(L) of a lattice £ consists of all lattices that are .
equivalent over R and over Zj, for all primes p '

» Equivalent over R < same rank
» Equivalent over Zp, & ZpQ L1 =7Zp Q L2
& UtGIU = G, for U € gﬁ,,(Zp).
» Covers all the other known arithmetic invariants
» How restricting is the genus invariant?
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¢[BGPSD, EC 2023: Just how hard are rotations of Z"?} --------------- .

Do there exist lattices £ € gen(Z") with

> A1(L) > Q(/n/log(n)), or
t > ne(L) < n(2")/\/log(n) = \/log(1/€)/log(n) for e < n~“)7

,[ARLW, WCC 2024: PKE from LIP} ................................... _

Conjecture: for nm > 85 there exists a lattice £ € gen(Z") with

» A\1(£) > V72n.

,[Dvw, EC 2022: On LIP, QFs, Remarkable Lattices, and Cryptography}-«

For any lattice L1, does there exist a lattice L2 € Gen(£L1) such that
» gh(L£)/A1(£) = O(1) for L = Ly, L5 7
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Mass formula and the size of a genus

,[Theorem: Smith-Minkowski-Siegel mass formula (Siegel, 1935)} ....... .

Any genus G contains a finite number of isom. classes and its mass

1

(£]eg |aut(L)|’

i M(G) = 3

is efficiently computable given the prime factorization of det(G)2.

» Lemma: |G| > 2M(G). Proof: [Aut(L)| > 2. O
» Example: M(Gen(Z%?)) ~ 4.33-10'6
M(Gen(Z*?)) ~ 1.21 - 1053
Grows fast: M(G) > n¥") as n — oo
Enormous number of isomorphism classes in same genus

Question: do these behave like random lattices?
13/24
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Random distribution over genus

[Deflnltlon distribution over Genus] ------------------------------ ~

Let w(L) =: 1/|Aut(L)|. For a genus G let D(G) be the distribution

such that each class [£] € G is sampled with probability x%g;

» Coincides with the distribution of random lattices (Haar measure)
restricted to a single genus.

» Can be sampled from efficiently.

» Comes with similar average point counting results!
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Kneser p-neighbouring (1957) and sampling
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Kneser p-neighbouring (1957) and sampling

» Two integral lattices Lj,L» are p-neighbours Lj ~p Lo if
[l:l :l:lﬂl:z] = [ﬁz : Elﬂl:z] = p.

» If L4 ~p Ly then Gen(£1) = Gen(LZz).
» A lattice has ~ p" 2 p-neighours (<> isotropic lines in L/pL).

» Turns any genus into a graph with nodes [Li1],...,[Ln] and an edge
(I£i),[£;]) if L1,L are p-neighbours up to isometry.
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If L4 ~p Ly then Gen(£1) = Gen(LZz).

A lattice has ~ p" 2 p-neighours (<> isotropic lines in L/pL).
» Turns any genus into a graph with nodes [Li1],...,[Ln] and an edge

([£i), [£;]) if Li1,L are p-neighbours up to isometry.

el r— 2]

» Random walk: Ly ~p L2 ~p ... ~p Ly where Lj;1 is a uniformly
random p-neighbour of L;.
» For large enough p, a random walk has limit distribution D(G).
=> efficient sampling algorithm for D(G).
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Results - Good (dual) packing

,[Theorem (good packing): Minkowski-Hlawka theorem for fixed genus}-—

Let G be any genus of dimension n > 6 such that rkyp(g) > 6 for all

primes p. Let C = %8; =~ 0.57. Then there exists a £ € G with

Ai(£)? > [(C - det(L)/wn)?'"| = n/2me - det(L)?/" = gh(L)>.
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,[Theorem (good packing): Minkowski-Hlawka theorem for fixed genus}-—

Let G be any genus of dimension n > 6 such that rkyp(g) > 6 for all
primes p. Let C = %8; =~ 0.57. Then there exists a £ € G with

Ai(£)? > [(C - det(L)/wn)?'"| = n/2me - det(L)?/" = gh(L)>.

Essentially matches packing density of a random lattice.
Similar result for simultaneous good primal and dual packing.
For a constant 0 < ¢ <1 we get that

P [A(L) > [¢2 - (C - det(£)/wa)?/"|] > 1= c".

» Similar result for smoothing parameter and covering radius.
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Siegel-Weil mass formula

,[Definition: average theta series} ............................... =

For a genus G its average theta series is given by

w(L) -6
Og(q) =g D(g)[ 2(q)] = 2L)eg M((g)) c(q)

__________________________________________________________________
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The coefficient Np, of @™ in Og(q) can be efficiently computed given
the prime factorization of mdet(G)2.

» Recall that computing (coeff. of) O,(q) is usually extremely hard

» The average is efficient to compute
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Example: even unimodular case (1)

v[Definition: even unimodular lattices] ----------------------------- .

1
i The genus G e of Nn-dimensional even unimodular lattices consists of
! all integral lattices of determinant 1 and even parity.
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Example: even unimodular case (1)

v[Definition: even unimodular lattices] ----------------------------- .

The genus G e of Nn-dimensional even unimodular lattices consists of
all integral lattices of determinant 1 and even parity.

pe [Lemma: mass formula] ---------------------------------------------

For n = 8k > 8, B; the i-th Bernoulli number, and o,(m) = 3 4, d” is
the sum of positive divisors function, we have

—8k &

OQSk,e(q) = E4k(q2) =1+ TM Z 0'4k_1(m)q2'".

- == P

===

m=1

» Gake = {[Es]}, Og,.(q) =1+ 240q¢> + 2160q* + 67204° + O(q®)
> Ogu.(q) ~ 1+6.11-1037g2 +5.64 - 10~ 8% 4+ 7.00 - 10 7¢® +
52.01% + 6.63 - 107¢'0 + O(q2)
18 / 24



Good packing

» Idea: recall that:

OGiz.(q) = 14+6.11 - 10 ¥ ¢?+5.64 - 10 #q*+7.00 - 10" ¢°+52.01¢°+0(q'?)
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Good packing

» Idea: recall that:
OGy.(q) = 146.11 - 103" q?+5.64 - 10 '%¢*+7.00 - 10 "¢°+52.01¢%+0(q"°)
= on expectation there are only
6.11-1073 +5.64-10" +7.00- 10" = 7.00- 10~

non-zero vectors of squared norm < 8.

= there exists a lattice L € Gioge with < 7.00 - 10~7 < 2 non-zero
vectors of squared norm < 8, = A\1(L£)? > 8.

,[Lemma: existence of good packing} ............................... =

m=1

If Z)‘zl N,, < 2, then there exists a lattice L € G s.t. }\1([.',)2 > .

__________________________________________________________________

E Let G be a genus with average theta series Og(q) = 1+ Y o, N,,q™.



Example: even unimodular case (2)

{Lemma: even packing (Milnor, Serre, 73)} .......................... .

Let n = 8k > 8 with k € N, then there exists an n-dimensional even
unimodular lattice £ with A1(£)%? > 2- %(%wn)_z/"J ~ n/2me.
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Example: even unimodular case (2)

{Lemma: even packing (Milnor, Serre, 73)} .......................... .

Let n = 8k > 8 with k € N, then there exists an n-dimensional even
unimodular lattice £ with A1(£)%? > 2- E(%wn)_z/"J ~ n/2me.

e

—— Lemma 4 (lower bound)
[MH+73] (lower bound)

—— Gaussian Heuristic (w, /" ~ \/n/2me)

X Concrete

[\]
N

First minimum A\ (G)

o
s

0 100 200 300 400 500
Dimension (n)
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General case: compute mass formula

» We want to count the average number of solutions N, to
f(x) := x'Gex = m with x € Z" when [L] + D(G).
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General case: compute mass formula

» We want to count the average number of solutions N, to
f(x) := x'Gex = m with x € Z" when [L] + D(G).
» Idea: compute density dg,p(m) of solutions over Z, and R = Z.

,[Theorem: Siegel-Weil mass formula} ................................ .

For any genus G of dimension > 2 and average theta series Og(q) =
1+ Z;‘;l N,,q™ we have

— . 2 _ —
m= By xeilx?=mt="T] 8g,(m)

» Local-global principle
» Only primes p|2mdet(G)? have to be considered
» Can even be generalized to matrix equations!
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Bounding densities

» Need: upper bound on expected number N of solutions.

Nm = dg,00(m) . H dg,p(m)
—_— p=23,...

-~
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Bounding densities

» Need: upper bound on expected number N of solutions.
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Bounding densities

» Need: upper bound on expected number N of solutions.

Nm = dg,00(m) . H dg,p(m)
— p=23,...
mmoKVﬁHS"_J) N = Y

1 n/2—1.4 (g)—l
nw,m et 18¢(2)

if rke,(G)>6 Vp

» Relies on classification of p-adic normal forms by Conway.
» Sufficient to prove the main results
» Conjecture: remove conditions = extra factor poly(m)
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Open Questions

7 [Better invariants:] --------------------------------------------- -

i Can we construct stronger efficiently computable invariants?
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Open Questions

: [Better invariants:] --------------------------------------------- -

1
i Can we construct stronger efficiently computable invariants? !
N e e o e o e o e e e e e o e e e e e e e = = 4
P [Structured case :] ----------------------------------------------- -

i What about module lattices? (e.g. Hermitian forms over CM fields)

- [WC—AC reductions :] ----------------------------------------------- N

» the random case [£] - D(G) is heuristically the hardest.

]
1
1
1
» from any class [£] € G we can efficiently step to a random class. 1
1
Can we make a worst-case to average-case reduction within a genus? 1

:

]

Example: SVP, SIVP, LIP

__________________________________________________________________
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Smoothing parameter

L o ,
minimum s > 0 such that centered Gaussian

with width s is e-close to uniform over R"/L’
Ne(L) = min{s > 0: O.«(exp(—7s?)) < 1+ ¢}
Dual lattice
- - " a 5 L :={yeR":Vxe L,(x,y) € Z}
° ° Y ° Y 772—"(‘6) S \/E/AI(E*)
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Smoothing parameter

Smoothing parameter

L o ,
minimum s > 0 such that centered Gaussian

with width s is e-close to uniform over R"/L’

Ne(L) = min{s > 0: 0.+ (exp(—7ns?)) < 1+¢}

Dual lattice
° ° ° ° ° £*:={y €R":Vx € L, (x,y) € Z}
T ™ T T Ma-n(L) < /n/ A1 (L)
v[Good smoothing: € € (e™", 1]] ...................................... .

For a random lattice £*, O.«(exp(—7s?)) < 1+ O(ns~"det(L))
= there exists a lattice with n (L) < (det(L)/e)Y/".




