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Lattices

Lattice

R-linearly independent b1, . . . , bn ∈ Rn

L(B) := {
∑

i xi bi : x ∈ Zn} ⊂ Rn,

basis B, gram matrix G := BtB

Infinitely many distinct bases

B′ = B · U, G ′ = UtGU,

for U ∈ GLn(Z).

Lattice (co)volume

det(L) := vol(Rn/L) = | det(B)|

0 b1

b2
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Lattice packings

First minimum & theta series

λ1(L) := min
x∈L\{0}

∥x∥2

θL(q) :=
∑

x∈L q∥x∥
2
= 1 + Nλ1qλ2

1 + . . .

Packing density

δ(L) = vol( 1
2 λ1(L)·Bn)

det(L)

Minkowski’s Theorem (δ(L) ≤ 1)

λ1(L) ≤ 2
det(L)1/n

vol(Bn)1/n︸ ︷︷ ︸
Mk(L)

≈
√

2n/πe det(L)1/n

0
λ1

v

There exists a lattice L ⊂ Rn

with λ1(L) > gh(L) := 1
2 Mk(L).

Minkowski-Hlawka Theorem
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Good packings from random lattices

▶ Observation: ‘random’ lattices are good packings

▶ Gaussian Heuristic: λ1(L) ≈ gh(L)
▶ Seen as the hardest instances for lattice problems

Good packing
on the average

=⇒ There exists
a good packing

Seems harder?
Actually easier!

▶ Crypto: random q-ary lattices (LWE, SIS, NTRU) (WC to AC reductions)

The Haar measure on SLn(R) has finite mass on the quotient space of
unit volume lattices L[n] = SLn(R)/SLn(Z).

Definition (Siegel 1945): Haar measure
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Averaging formula and the Minkowski-Hlawka Theorem

Let L[n] be the space all lattices of dimension n and volume 1, then

E
L∈L[n]

|L ∩ λ · Bn| = 1 + vol(λ · Bn).

‘Average of one non-zero point per unit volume’

Average number of lattice points: Hlawka43, Siegel45

0

Pick λ = 1
2 Mk(n),

then EL∈L[n] |L ∩ λ · Bn| = 2.

⇒ ∃L ∈ L[n] with |L ∩ λ · Bn| ≤ 2,

⇒ ∃L ∈ L[n] with λ1(L) > λ = 1
2 Mk(L)

Proof: Minkowski-Hlawka Theorem
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LIP and the genus of a lattice
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Lattice Isomorphism Problem (LIP)

L(B)
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O · L(B′), B′ = BU

0

LIP: given isomorphic L1,L2,

compute O ∈ On(R) s.t. L2 = O · L1.
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Lattice Isomorphism Problem

L(B1) ∼= L(B2)

⇐⇒
O · L(B1) = L(B2) for some O ∈ On(R)

⇐⇒
O · B1 · U = B2 for some O ∈ On(R), U ∈ GLn(Z)

⇐⇒
UtBt

1B1U = Bt
2B2︸ ︷︷ ︸

gram matrix

for some U ∈ GLn(Z)

▶ If either O or U is trivial: linear algebra.
▶ Solution unique up to Aut(L) = {O ∈ On(R) : O · L = L}.
▶ Use gram matrix formulation to only consider U.
▶ We restrict to integer gram matrices G := BtB.
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Encryption scheme from LIP (informal)

Decodable lattice Bad basis of rotation

LIP

L O · L

Hides (decoding) structure of LEncrypt by adding a small errorDecrypt using decoding algorithm

0

c ′
m′

0

b′1
b′2

m
c = m + e

O ∈ On(R)

(Secret key)
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Cryptography from LIP

▶ LIP as a new hardness assumption

Use LIP to hide a remarkable lattice:
▶ Identification, Encryption and Signature scheme

DvW, EC2022: On LIP, QFs, Remarkable Lattices, and Cryptography

▶ Encryption scheme based on LIP on Zn,

BGPSD, EC2023: Just how hard are rotations of Zn?

Efficient signature scheme based on module-LIP on Zn

▶ now in round 2 of NIST call for additional signatures

DPPvW, AC2022: HAWK scheme

▶ Many other works using LIP appeared recently
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Distinghuish LIP

Let L1,L2 be two non-isomorphic lattices and let b ← {1, 2} uniform.
Given L ∈ [Lb], recover b.

Definition: distinguish LIP (∆-LIP)

▶ L1,L2 can be represented by any (good) gram matrix G1, G2.

▶ L is represented by a random UtGbU ← D([Gb]) (worst-case)

Given:
1. some remarkable lattice L1
2. an auxiliary lattice L2 with certain (good) geometric properties

Then: cryptographic scheme is secure if ∆-LIP on L1,L2 is hard.

Usual security assumption:

Goal: find an auxiliary lattice with the right geometric properties
Example: good packing, smoothing, covering..
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Invariants

▶ When is ∆-LIP with L1,L2 a hard problem?

Arithmetic Invariants (ari(L))

▶ det(L) = det(Lb).

▶ gcd(L) := gcd{⟨x, y⟩ : x, y ∈ L}
▶ parity par(L) = gcd{∥x∥2 : x ∈ L}/ gcd(L)
▶ Equivalence over R ⊃ Z, U ∈ GLn(R), R ∈ {R,Q, ∀p Qp,∀p Zp︸ ︷︷ ︸

Genus

}

If ari(L1) ̸= ari(L2), then ∆LIP with L1,L2 can be solved efficiently.

Lemma:

⇒ auxiliary lattice must have same invariants
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Genus

For a prime p the p-adic integers Zp are given by formal series, i.e.,

Zp =

{∞∑
i=0

ai pi , with 0 ≤ ai < p
}

p-adic integers:

The genus gen(L) of a lattice L consists of all lattices that are
equivalent over R and over Zp for all primes p

Genus:

▶ Equivalent over R ⇔ same rank
▶ Equivalent over Zp ⇔ Zp ⊗ L1 ∼= Zp ⊗ L2

⇔ UtG1U = G2 for U ∈ GLn(Zp).
▶ Covers all the other known arithmetic invariants
▶ How restricting is the genus invariant?
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Application

Do there exist lattices L ∈ gen(Zn) with

▶ λ1(L) ≥ Ω(
√

n/ log(n)), or
▶ ηε(L) ≤ ηε(Zn)/

√
log(n) ≈

√
log(1/ε)/ log(n) for ε < n−ω(1)?

BGPSD, EC 2023: Just how hard are rotations of Zn?

Conjecture: for n ≥ 85 there exists a lattice L ∈ gen(Zn) with

▶ λ1(L) ≥ 4√72n. (needed to instantiate PKE security proof)

ARLW, WCC 2024: PKE from LIP

For any lattice L1, does there exist a lattice L2 ∈ Gen(L1) such that

▶ gh(L)/λ1(L) = O(1) for L = L2,L∗2 ?

(would significantly improve general instantiation)

DvW, EC 2022: On LIP, QFs, Remarkable Lattices, and Cryptography
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Mass formula and the size of a genus

Any genus G contains a finite number of isom. classes and its mass

M(G) :=
∑

[L]∈G

1
|Aut(L)|

,

is efficiently computable given the prime factorization of det(G)2.

Theorem: Smith-Minkowski-Siegel mass formula (Siegel, 1935)

▶ Lemma: |G| ≥ 2M(G). Proof: |Aut(L)| ≥ 2.
▶ Example: M(Gen(Z32)) ≈ 4.33 · 1016

M(Gen(Z40)) ≈ 1.21 · 1063

▶ Grows fast: M(G) ≥ nΩ(n2) as n →∞
▶ Enormous number of isomorphism classes in same genus
▶ Question: do these behave like random lattices?
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Random distribution over genus

Let w(L) =: 1/|Aut(L)|. For a genus G let D(G) be the distribution
such that each class [L] ∈ G is sampled with probability w(L)

M(G).

Definition: distribution over Genus

▶ Coincides with the distribution of random lattices (Haar measure)
restricted to a single genus.

▶ Can be sampled from efficiently.
(limit distribution of randomized Kneser’s p-neighbouring method)

▶ Comes with similar average point counting results!
( =⇒ Minkowski-Hlawka like theorem?)
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Kneser p-neighbouring (1957) and sampling

▶ Two integral lattices L1,L2 are p-neighbours L1 ∼p L2 if

[L1 : L1 ∩ L2] = [L2 : L1 ∩ L2] = p.

▶ If L1 ∼p L2 then Gen(L1) = Gen(L2).

▶ A lattice has ∼ pn−2 p-neighours (↔ isotropic lines in L/pL).

▶ Turns any genus into a graph with nodes [L1], . . . , [LN] and an edge
([Li ], [Lj ]) if L1,L2 are p-neighbours up to isometry.
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random p-neighbour of Li .

▶ For large enough p, a random walk has limit distribution D(G).
=⇒ efficient sampling algorithm for D(G).
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Results - Good (dual) packing

Let G be any genus of dimension n ≥ 6 such that rkFp(G) ≥ 6 for all
primes p. Let C = 7ζ(3)

9ζ(2) ≈ 0.57. Then there exists a L ∈ G with

λ1(L)2 ≥
⌈
(C · det(L)/ωn)

2/n
⌋
≈ n/2πe · det(L)2/n = gh(L)2.

Theorem (good packing): Minkowski-Hlawka theorem for fixed genus

▶ Essentially matches packing density of a random lattice.
▶ Similar result for simultaneous good primal and dual packing.
▶ For a constant 0 < c ≤ 1 we get that

P
[
λ1(L) ≥

⌈
c2 · (C · det(L)/ωn)

2/n
⌋]

> 1− cn.

▶ Similar result for smoothing parameter and covering radius.
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Siegel-Weil mass formula

For a genus G its average theta series is given by

ΘG(q) = E
[L]←D(G)

[θL(q)] =
∑

[L]∈G w(L) · θL(q)
M(G)

Definition: average theta series

The coefficient Nm of qm in ΘG(q) can be efficiently computed given
the prime factorization of m det(G)2.

Theorem: Siegel-Weil mass formula (informal)

▶ Recall that computing (coeff. of) θL(q) is usually extremely hard

▶ The average is efficient to compute
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Example: even unimodular case (1)

The genus Gn,e of n-dimensional even unimodular lattices consists of
all integral lattices of determinant 1 and even parity.

Definition: even unimodular lattices

For n = 8k ≥ 8, Bi the i-th Bernoulli number, and σz(m) =
∑

d |m d z is
the sum of positive divisors function, we have

ΘG8k,e(q) = E4k(q2) = 1 +
−8k
B4k

∞∑
m=1

σ4k−1(m)q2m.

Lemma: mass formula

▶ G8k,e = {[E8]}, ΘG8,e(q) = 1 + 240q2 + 2160q4 + 6720q6 + O(q8)

▶ ΘG128,e(q) ≈ 1 + 6.11 · 10−37q2 + 5.64 · 10−18q4 + 7.00 · 10−7q6 +

52.01q8 + 6.63 · 107q10 + O(q12)
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Good packing

▶ Idea: recall that:

ΘG128,e(q) = 1+6.11 · 10−37q2+5.64 · 10−18q4+7.00 · 10−7q6+52.01q8+O(q10)

⇒ on expectation there are only

6.11 · 10−37 + 5.64 · 10−18 + 7.00 · 10−7 = 7.00 · 10−7

non-zero vectors of squared norm < 8.

⇒ there exists a lattice L ∈ G128,e with ≤ 7.00 · 10−7 < 2 non-zero
vectors of squared norm < 8, ⇒ λ1(L)2 ≥ 8.

Let G be a genus with average theta series ΘG(q) = 1 +
∑∞

m=1 Nmqm.
If

∑λ
m=1 Nm < 2, then there exists a lattice L ∈ G s.t. λ1(L)2 > λ.

Lemma: existence of good packing
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Example: even unimodular case (2)

Let n = 8k ≥ 8 with k ∈ N, then there exists an n-dimensional even
unimodular lattice L with λ1(L)2 ≥ 2 ·

⌈
1
2(

3
5ωn)−2/n

⌋
≈ n/2πe.

Lemma: even packing (Milnor, Serre, 73)
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General case: compute mass formula

▶ We want to count the average number of solutions Nm to
f (x) := xtGLx = m with x ∈ Zn when [L]← D(G).

▶ Idea: compute density δG,p(m) of solutions over Zp and R = Z∞.

For any genus G of dimension ≥ 2 and average theta series ΘG(q) =
1 +

∑∞
y=1 Nmqm we have

Nm = E
[L]←D(G)

∣∣∣{x ∈ L : ∥x∥2 = m}
∣∣∣ = ∏

p=2,3,...,∞
δG,p(m)

Theorem: Siegel-Weil mass formula

▶ Local-global principle
▶ Only primes p|2m det(G)2 have to be considered
▶ Can even be generalized to matrix equations!

(mass formula from M(G) follows from equation UtGU = G)
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Bounding densities

▶ Need: upper bound on expected number Nm of solutions.

Nm = δG,∞(m)︸ ︷︷ ︸

1
2 nωnmn/2−1·det(G)−1

·
∏

p=2,3,...

δG,p(m)

︸ ︷︷ ︸

if rkFp (G)≥6 ∀p

▶ Relies on classification of p-adic normal forms by Conway.
▶ Sufficient to prove the main results
▶ Conjecture: remove conditions =⇒ extra factor poly(m)

(but rather tedious to work out)
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Open Questions

Can we construct stronger efficiently computable invariants?

Better invariants:

What about module lattices? (e.g. Hermitian forms over CM fields)

Structured case:

▶ the random case [L]← D(G) is heuristically the hardest.

▶ from any class [L] ∈ G we can efficiently step to a random class.

Can we make a worst-case to average-case reduction within a genus?

Example: SVP, SIVP, LIP

WC-AC reductions:
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Conclusion

▶ The genus is the strongest known efficient invariant for LIP

▶ Well studied from a mathematical perspective (long ago!).
Thanks to the Siegel-Weil mass formula we can show for any genus:
▶ ∃ good primal and dual packings
▶ ∃ good smoothing
▶ ∃ good coverings
=⇒ usefull for instantiating LIP-based cryptography

▶ Lots of other deep theory behind it: randomness, Kneser
p-neighbouring, modular forms, more general mass formula’s, ...

▶ An exciting new area for mathematical cryptology!

Thanks!
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Smoothing parameter

Smoothing parameter

‘minimum s > 0 such that centered Gaussian
with width s is ϵ-close to uniform over Rn/L’

ηε(L) = min{s > 0 : θL∗(exp(−πs2)) ≤ 1 + ε}

Dual lattice

L∗ := {y ∈ Rn : ∀x ∈ L, ⟨x, y⟩ ∈ Z}
η2−n(L) ≤

√
n/λ1(L∗)

For a random lattice L∗, θL∗(exp(−πs2)) ≤ 1 + O(ns−n det(L))
⇒ there exists a lattice with ηε(L) ≤ (det(L)/ε)1/n.

Good smoothing: ϵ ∈ (e−n, 1]
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