Isogeny-based group actions in cryptography

Sabrina Kunzweiler Inria Bordeaux, Institut de Mathématiques Bordeaux December 05, 2024

Classical Diffie-Hellman setting

Diffie-Hellman key exchange

Idea: Alice and Bob establish a shared session key, communicating over a public channel.

Setting $\mathbb{G} = \langle g \rangle$ of prime order *p*.

1

Cryptographic assumptions

We require that the following two problems are hard:

- **DLOG** Given $x, y \in \mathbb{G}$, determine $a \in \mathbb{Z}/p\mathbb{Z}$ with $y = x^a$.
- **CDH** Given $x, y = x^a, z = x^b \in \mathbb{G}$, determine $w \in \mathbb{G}$ so that $w = x^{ab}$.

Solving DLOG in a group $\mathbb G$

Generic classical algorithms

• Lower bound: $O(\sqrt{p})$ on a classical computer (Shoup, Eurocrypt '97) \Rightarrow achieved by Pollard-Rho and Baby-step-giant-step algorithms

Specialized algorithms

- $\mathbb{G} \subset \mathbb{F}_q$: index calculus attacks \rightarrow subexponential complexity
- $\mathbb{G} \subset E(\mathbb{F}_q)$ for some elliptic curve E/\mathbb{F}_q :
 - pairing attack (MOV) when d is small: reduction to DLOG in \mathbb{F}_q^d with $\mathit{E}[p] \subset \mathbb{F}_{q^d}$
 - lifting attack when $E(\mathbb{F}_p) = p$: reduction to DLOG in the formal group of some lift \tilde{E} over \mathbb{Q}_p

Shor's algorithm \rightarrow polynomial in log *p* on a quantum computer

Cryptographic Group Actions

Group Actions

Group Action Let (\mathcal{G}, \circ) be a group with identity element $id \in \mathcal{G}$, and \mathcal{X} a set. A map $\star : \mathcal{G} \times \mathcal{X} \to \mathcal{X}$ is a group action if it satisfies the following properties:

- 1. Identity: $id \star x = x$ for all $x \in \mathcal{X}$.
- 2. Compatibility: $(g \circ h) \star x = g \star (h \star x)$ for all $g, h \in \mathcal{G}$ and $x \in \mathcal{X}$.

Technical Assumptions

• \mathcal{G} , \mathcal{X} are finite, \mathcal{G} is abelian, the action is regular.

Example

$$\begin{split} \mathcal{G} &= (\mathbb{Z}/p\mathbb{Z})^*, \, \mathcal{X} = \langle \mathsf{P} \rangle \setminus \{\mathsf{O}\} \subset \mathsf{E}[\mathsf{p}] \\ \star : \mathcal{G} \times \mathcal{X} \to \mathcal{X}, \quad (\mathsf{a}, \mathsf{Q}) \mapsto [\mathsf{a}] \cdot \mathsf{Q} \end{split}$$

Group action Diffie-Hellman

Setting $\star : \mathcal{G} \times \mathcal{X} \to \mathcal{X}$, $x_o \in \mathcal{X}$.

Cryptographic assumptions 1

We require that the following two problems are hard:

- GA-DLOG: Given $g \star x_0 \in \mathcal{X}$, find $g \in \mathcal{G}$.
- GA-CDH: Given $(g \star x_0, h \star x_0) \in \mathcal{X}^2$, find $z = (g \circ h) \star x_0 \in \mathcal{X}$.

¹We use the notation of the cryptographic group action framework by (AFMP, AsiaCrypt'20). This is similar to the framework of Hard Homogeneous spaces by (Couveignes, Eprint '06).

Solving GA-DLOG

Consider a group action $\mathcal{G} \times \mathcal{X} \to \mathcal{X}$ with $\#\mathcal{G} = \#\mathcal{X} = N$.

Classical attacks

• Lower bound in the generic group action model: $O(\sqrt{N})$ (DHKKLR, PKC'23) \Rightarrow achieved by (a variant of) the baby-step-giant-step algorithm

Note: *N* is not assumed to be prime. Pohlig-Hellman-style attacks do not apply!

Quantum attacks

- · Best known attack: Kuperberg's algorithm with subexponential complexity
- No meaningful lower bounds from a quantum generic group action model.

The CSIDH group action

CSIDH [CLMPR, AsiaCrypt'18] Isogeny Graph

Setting: prime $p = 4 \cdot \ell_1 \cdots \ell_n - 1$ with ℓ_1, \ldots, ℓ_n are small odd primes, and $\mathcal{O} = \mathbb{Z}[\sqrt{-p}]$.

Isogeny Graph over \mathbb{F}_{419} with 3-, 5-, and 7- isogenies.

Vertices: Elements in $\mathcal{E}\ell_p(\mathcal{O})$, i.e. elliptic curves with endomorphism ring \mathcal{O} .

- cardinality: $O(\sqrt{p})$
- labelled by Montgomery coefficient A $\Rightarrow E_A : y^2 = x^3 + Ax^2 + x$

Edges: ℓ_i -isogenies for ℓ_1, \ldots, ℓ_n

- 2-regular for each ℓ_i
- directed graph
- dual isogenies allow to go back

Commutative Supersingular Isogeny Diffie-Hellman (CSIDH)

Key Idea: Alice and Bob take secret walks on the isogeny graphs. They only exchange the end vertices.

An example with p = 59. The starting vertex is fixed to **(0**).

Graph with 3- and 5- isogenies.

Formal description of CSIDH

- $\mathcal{G} = cl(\mathcal{O})$ with $\mathcal{O} = \mathbb{Z}[\sqrt{-p}]$, $p = 4\ell_1 \cdots \ell_n 1$.
- $\mathcal{X} = \mathcal{E}\ell\ell_p(\mathbb{Z}[\pi])$ with π the Frobenius endomorphism. $\star : cl(\mathcal{O}) \times \mathcal{E}\ell\ell_p(\mathcal{O}) \mapsto \mathcal{E}\ell\ell_p(\mathcal{O}), \quad ([\mathfrak{a}], E) \mapsto E/\mathfrak{a}.$

Evaluating the group action

- The primes ℓ_1, \ldots, ℓ_n are Elkies primes in \mathcal{O} , we have

$$(\ell_i) = l_i \bar{l}_i$$
, with $l_i = (\ell, \pi_p - 1), \ \bar{l}_i = (\ell, \pi_p + 1).$

- $[l_i]$ defines the isogeny $E \to E'$ with kernel $G = \ker([\ell]) \cap E(\mathbb{F}_p)$. Notation: $E' = [l_i] \star E$.
- Efficient evaluation of elements $[a] \star E$ where $a = \prod l_i^{e_i}$ and e_i small.

Exponent vector $(e_1, \ldots, e_n) \leftrightarrow$ element $[\mathfrak{a}] = [l_1^{e_1} \cdots l_n^{e_n}] \leftrightarrow$ path in the isogeny graph

Security assumptions and special properties of the CSIDH group action

Ideally, we want a group action $\mathcal{G}\times\mathcal{X}\to\mathcal{X}$ to be effective. Essentially:

• Efficient computation in \mathcal{G} .

- Distinguished element $x_o \in \mathcal{X}$.
- Membership testing for elements in \mathcal{X} .
- Efficient evaluation of *.

CSIDH is only a restricted effective group action (AFMP, Asiacrypt'20).

• We can evaluate $[\mathfrak{a}] \star E$ efficiently, when $[\mathfrak{a}] = \prod \mathfrak{l}_i^{e_i}$ for a small exponent vector e.

REGA-DLOG

• Given $x, y \in \mathcal{X}$, find a (small) exponent vector (e_1, \ldots, e_n) with $y = \prod g_i^{e_i} \star x$, say $e \in \{-m, \ldots, m\}^n$ for some n.

(A) Attacks on REGA-DLOG

Ρ

Given
$$x, y \in \mathcal{X}$$
, find small $e \in \mathbb{Z}^n$, so that $y = \prod g_i^{e_i} \star x$.

Notation:
$$N = \#G$$
 and
 $N_m = \#\{-m, ..., m\}^n = (2m + 1)^n$.

Classic	Quantum
ollard-style random walk	Kuperberg
$\mathcal{O}(\sqrt{N})$	2 ^O (\vig N)
Meet-in-the-middle ² $\mathcal{O}(\sqrt{N_m})$	Grover / Claw finding $\mathcal{O}(\sqrt[3]{N_m})$

In practice $N_m \ll N$

- Smaller secret keys
- Faster computations

 \Rightarrow **Ternary key spaces** $\{-1, 0, 1\}^n$ (The SQALE of CSIDH '2022).

²In practice, $\mathcal{O}\left(\frac{N_m^{3/4}}{\sqrt{W}}\right)$ with Parallel Collision Search (PCS) is more realistic.

(A) Classical security analysis of CSIDH with ternary keys

Standard techniques:

- Meet-in-the-middle: high memory cost
- Golden collision: low memory requirements

Time-memory trade-offs with partial representations (CE**K**M, ACNS'23)

• technique known from the cryptanalysis of codes

(B) Twists in CSIDH

For $E_A : y^2 = x^3 + Ax^2 + x$, the quadratic twist is given by

$$(E_A)^t : -y^2 = x^3 + Ax^2 + x$$

which is \mathbb{F}_p -isomorphic to $E_{-A}: y^2 = x^3 - Ax^2 + x$.

• Twisting corresponds to inverting the group action:

 $([\mathfrak{a}] \star E_{\mathrm{O}})^{t} = [\mathfrak{a}]^{-1} \star E_{\mathrm{O}}.$

- △ Different from the classical DH setting! E.g. given g^a , it is hard to compute $g^{a^{-1}}$.
 - Constructive use (BKV, Asiacrypt'19; LGS, Eurocrypt'21)
 - Destructive use (AEKKR, Crypto'22)

Isogeny graph over \mathbb{F}_{59} with 3- and 5- isogenies.

(B) Twists as a security risk (1/2)

Example: Password-Authenticated Key Exchange (PAKE)

Literal translation of **SPEKE** (Jablon '96) to the group action setting.

+ H: hash function $\{0,1\}^* \to \mathcal{X}$

- General idea: Alice and Bob share a (potentially weak) password pw ∈ {0, 1}* that is used for authentication.
- ▲ The twisiting property makes the protocol insecure.

(B) Twists as a security risk (1/2)

Offline dictionary attack against group action SPEKE (with twists).

After this execution of the protocol, Mallory can test all passwords $pw \in PW$ until finding the correct session key K_{ab} .

Second problem with the group action SPEKE (and many other protocols).

We need a **secure** hash function $H : \{0, 1\}^* \to \mathcal{X}$.

It is easy to define a hash function into the group $H' : \{0,1\}^* \to \mathcal{G}, \quad pw \mapsto g_{pw}.$ Then define $H : \{0,1\}^* \to \mathcal{X}, \quad pw \mapsto g_{pw} \star x_0.$

▲ This hash function is not considered <u>secure</u>. Here, secure means no information about the DLOG of an element.

This remains is an open problem (Failing to hash into supersingular isogeny graphs, BBDFG**K**MPSSTVVWZ, Computer Journal '24)

(D) The decisional Diffie-Hellman problem: Genus theory

DDH Given $x, y = g_a \star x, z = g_b \star x, w \in \mathcal{X}$, decide if $w = (g_a \circ g_b) \star x$.

Genus theory attacks (CSV, Crypto'20)

- Let \mathcal{O} order in an imaginary quadratic field with discriminant Δ .
- For all odd primes $m \mid \Delta$, there is a quadratic character

$$\chi_m: \operatorname{cl}(\mathcal{O}) \to \{\pm 1\}, [\mathfrak{a}] \mapsto \left(rac{N(\mathfrak{a})}{m}\right).$$

- ∧ Given *E* and [a] * *E*, can evaluate $\chi_m(\mathfrak{a}) = \chi_m(E, [\mathfrak{a}] * E)$. ⇒ **Implication for DDH**: Testing $\chi_m(x, y) \stackrel{?}{=} \chi_m(z, w)$ breaks the assumption if χ_m is non-trivial (and *m* small).
 - In CSIDH: $\mathcal{O} = \mathbb{Z}[\sqrt{-p}]$, $\Delta = -4p$ The attack does not apply to CSIDH.

Summary

The CSIDH group action: Summary and questions

- 1. Which properties distinguish CSIDH from a generic group action?
 - <u>REGA</u>-property: no uniform sampling, smaller key spaces
 - <u>twists</u>: given $x = g \star x_0$, can compute $x^t = g^{-1} \star x_0$ without knowing g.
 - More ideas ?
- 2. Can we sample supersingular elliptic curves at random without revealing information on the endomorphism ring?
- 3. Can we solve the Decisional Diffie Hellman Problem?

$$\mathsf{DDH}(x, y = g_a \star x, z = g_b \star x, w) = \begin{cases} 1 & \text{if } w = (g_a \circ g_b) \star x \\ 0 & \text{otherwise.} \end{cases}$$

Thanks!