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Preliminaries



The McEliece cryptosystem (1978)

pe=2 secret =
structural
data J
Alice l e.g. binary Goppa code Bob
t-error decoding error-correcting code C message m
algorithm generator matrix G )
noise e <—¢ {|e| = t}
l T y ciphertext y = mG + e
|
. N 777
Q (1) G looks like a generic generator matrix
(2) decoding a generic linear code is hard
Eve
Note:

(1) ad hoc problem, trapdoor similar to those in today's multivariate cryptography
(2) well-studied problem, NP-hard, believed to be quantum-resistant
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Stability of McEliece cryptanalysis
Asymptotic complexity for rate R, length n — oo codes: (C + o(1))®e

Blue: information set decoding — improving C would be a major result!
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Blue: information set decoding — improving C would be a major result!

Red: Goppa structure distinguisher/recovery
(unmentioned results only work for extreme regimes or other types or codes, or need additional information)
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Stability of McEliece cryptanalysis
Asymptotic complexity for rate R, length n — oo codes: (C + o(1))®e

Blue: information set decoding — improving C would be a major result!
Red: Goppa structure distinguisher/recovery
(unmentioned results only work for extreme regimes or other types or codes, or need additional information)

continuous incremental improvements vs. sudden leaps, potentially devastating
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Preliminaries — codes
» [ field — F" product algebra (componentwise multiplication)

x:(X17"'7Xn)7y:(y17'-'7yn) — xy:X*y:(lelv-"axnyn)

» a [n, k]-code (or [n, k|g-code) is a k-dimensional linear subspace C C F”

» generalized Reed-Solomon code: for x,y € F”, all x; distinct, all y; nonzero,
GRSk(x,y) = (¥, ¥, ..., yx* 1)r = {yf(x) : £(X) € F[X]<x} CF"

with generator matrix the generalized Vandermonde matrix

B4 . Yn
X o nXn
G — Vk(x7Y) = yl: 1 y: c ]Fk><n
ylefl o y,,x,’,‘_1
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Preliminaries — more codes

» I, C Fym extension of finite fields, e.g. ¢ =2, m =12
» alternant code: for x,y € (Fg4m)", all x; distinct, all y; nonzero,
Alt,(x,y) = GRS:(x,y)* N (Fy)"
={ce(F)": ayiX+ - +cyax =0 (0<j<t)}

v

this is a [n, (>)n — mt],-code
» Goppa code:

Gop(x, &) = Altdeg(g)(X, g(x)_l)
for g(X) € Fym[X] nonvanishing on x, e.g. g irreducible

» we have efficient decoding algorithms for all these codes, provided we know
the structural data (x,y) or (x, g) from which they were constructed.

Given a generator matrix G, can we decide if it is that of an alternant/Goppa
code? If so, can we recover (some) corresponding (x,y) or (x,g)?
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The square distinguisher
(and slightly beyond)



The square distinguisher — products and powers of codes

>

v

F" endowed with componentwise multiplication — product of codes:
CCCCF' — CU=CxC=(cc’:ceC el

powers C{" = C*’ defined inductively: C®» =F.1, C{+) =cnC
C1,...,Cx basis of C (rows of generator matrix) — evaluation map

F[Xl,...,Xk] — "
X,' — C;

maps subspace of homogeneous forms F[Xy, ..., Xi], onto C{")
in particular, the c;c; (1 < i <j < k) generate C@ and

dim C*? < min <n, @)

Cascudo-Cramer-Mirandola-Zémor (2015): for random C, this inequality is
an equality with high probability
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The square distinguisher — FGOPT11, MP12, MT22

Theorem
For any q, m, n, t, there is an explicit positive constant T = Tgop(q, m, n, t) such
that the dual code C of any Goppa code with these parameters satisfies

k(k+1
dim C? < min <n, % — T) :

Moreover, experimental evidence shows that for most parameter sets, this
inequality is an equality with overwhelming probability.
(+ similar result for non-Goppa alternant codes, with another explicit Ty)

2
random code. Moreover, in all cases, dim C(? is efficiently computable.

(k%—l)

Compare with the expected dim C?’ = min (n LiLes) ) for (the dual of) a

— This provides a distinguisher in the regime n > — T, i.e. when the
square of the dual of the alternant/Goppa code does not fill the whole space.
In turn, this condition implies that this dual has small rate, or equivalently, that
the primal code has high rate: typically 0.96 for n of cryptographic size.
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The square distinguisher — some ideas behind
» fundamental example: C = GRS,(x,y), €1 =y, ¢2 =YX, ..., € = yx*~
— CiC; = y2xi+f_2 — C<2> = GRSQk_l(X, y2)
—  dim C® = min(n, 2k — 1) can be much smaller than min(n,
» this comes from quadratic relations between codewords:

1

k(k+1
(2+))

cic,—cic; =0  whenever i+ =i+
» for any C, such relations live in h(C) = ker(F[X1, ..., Xi]» — C?), so
k(k+1)
2
> recall Alt;(x,y) = GRS:(x,y)* N (Fy)"; set C = Alt,(x,y)*; then generically
Cr,» = GRS:(x,y) ® GRS(x%,y%) @ - - @& GRS, (x*" ",y*" ")
> thus (Cr,.) contains the quadratic relations of all these GRS (and possibly

dimC®? = — dim h(C)

some more), which contributes to make dim]qu(C]qu)<2> small
> compatibility with extension of scalars:  dimy, C? = diqum(C]qu)<2>
Remark: h(C) and C? are equivalent regarding dimension, so we can work with
whichever is more convenient for computations, proofs, etc. 2/



Improvements upon and around the square distinguisher

» Bardet-Mora-Tillich (2023) combine ideas from the square distinguisher,
shortening/filtration arguments, and a careful Grobner basis modeling, to
get structural recovery attacks in some specific regimes.

» Other approach? In the alternant/Goppa case, even if C®? fills the space,
(C) is not a random space of quadratic relations: after extension of scalars,
it contains uncommonly short relations such as c;c; — cjcj. Moreover, these
short relations involve the structural basis: uncovering them could possibly
lead to an attack. To exploit this, one needs:

1. a good notion of length/weight/rank for quadratic relations
2. then solve a nonlinear problem akin to MinWeight /MinRank.
| thought a little bit, but failed at 1. and got discouraged by 2.

» But Couvreur-Mora-Tillich (2024) also had this idea, and they succeeded
— extension of the distinguisher, with a trade-off between complexity and
attainable rate. (Plus another attack in another specific regime.)

» This might be the most promising approach, and there is ongoing work
further in this direction. Yet...
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In nature, poisonous creatures
will develop bright colors to
warn others of their toxicity

David Eisenbud

The Geometry of
Syzygies

d Course in Commutative
R e Rigebrekt Goometey

Qspringer

Theorem 2.8. Let X be a set of 7 points in linearly general position in P3. There
are just two distinct Betti diagrams possible for the homogeneous coordinate ring
Sx:

o 1 2 3 o 1 2 3
o1t - - - o1 - - -
- s - - o |- 3 2 -
2/- 1 6 3 2|- 3 6 3

In the first case the points do not lie on any curve of degree 3. In the second case,
the ideal J generated by the quadrics containing X is the ideal of the unique curve
of degree 3 containing X, which is irreducible.
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In nature, poisonous creatures
will develop bright colors to
warn others of their toxicity

David Eisenbud

The Geometry of
Syzygies

A Second Course in Commutative
‘Algebra and Algebraic Geometry

Qspringer K)

Theorem 2.8. Let X be a set of 7 points in linearly general position in P3. There
are just two distinct Betti diagrams possible for the homogeneous coordinate ring
Sx:

o 1 2 3 o 1 2 3
o1 - - - . o1 - - -
- s - - o |- 3 2 -
2(/- 1 6 3 2|- 3 6 3

In the first case the points do not lie on any curve of degree 3. In the second case,
the ideal J generated by the quadrics containing X is the ideal of the unique curve
of degree 3 containing X, which is irreducible.

Figure 1: a distinguisher for [7,4] GRS codes

Aim of this talk: make you understand this, and generalize.
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[7,4] GRS codes

For any [7,4]-code C with C®? = F7, we have
k(k+1
dim h(C) = % —n=3.

If Cis a [7,4] GRS code, with basis ¢;, €y, €3, €4 = y, yx, yx*, yx>, we have
C1C3 = C3, C€1C4 = CxC3, CC4 = C3
linearly independent quadratic relations, i.e.
h(C) = (@1, @2, Q3) where @) = X1X3—X22, Q2 = X1 Xy=Xo X3, Q3 = X2X4—X32-

These @1, @, Q3 are linearly independent over I, i.e. they satisfy no scalar linear
relation. But they satisfy linear relations with degree 1 coefficients, a.k.a.
syzygies of total degree 3. There are two of them:
X1Q3 = Xo@Qo + X3Q1 = XoQ3 — Xz@ + XoQ1 = 0.
( X1 Xo X3 ) ( Xo X3 Xg )
Proof: det X1 Xo X3 = det X1 Xo X3 =0.
Xa X3 X X2 X3 X

This characterizes [7,4] GRS codes: generic triples of quadratic forms do not
admit such syzygies. 10/%4



The degree 3 syzygy distinguisher
» S =T[Xy,..., X graded by total degree, /,(C) = ker(S, — C{")
» syzygies as above lie in the kernel of the “Macaulay matrix”

/2(C) & 51 — /3(C) g 53

> assume C = F", so dim h(C) = (1) — n and dim 5(C) = (¥4 —n

» we have a certain number of contingent syzygies, forced by dimension:
+
dim(ker 3) > (kdim h(C) — dim K(C))* = (k — 1) (@ _ ,,)

» random code: we make the heuristic that this is an equality w.h.p.

» algebraic code: get a certain number T = TA|t or TGop of structural syzygies,
function of g, m, n, t, proven or just guessed/inferred from experiments

. . e . = k(k+1) + .
> this gives a distinguisher when T > (k — 1) (=5~ —n) i.e. when
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Side-by-side

Square distinguisher:
ev:S, — C@ CEF"

Kk(k+1) + : . . . .
» (=5 —n) contingent quadratic relations (from dimension)

» T structural quadratic relations (from alternant/Goppa structure)

» distinguishability threshold:
k(k +1)

Degree 3 syzygy distinguisher:
Y3 . /2(C) (24 51 — /3(C) Q 53

+
> (k—1) <@ - n) contingent syzygies (from dimension)

> T structural syzygies (from alternant/Goppa structure)
» distinguishability threshold:
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Numerical data on the degree 3 distinguisher
Benchmarking distinguishers:

» choose type of code, g, m; set n = g™ — find the largest distinguishable t
» choose type of code, g, m, t — find the shortest distinguishable n

typem.t H Altg 3 ‘ Altg 4 H Gopg 3 ‘ Gop, 5 ‘ Gopg 4 ‘ Gopg ¢ ‘ Gop;p7

k = mt 24 36 18 21 32 54 70
T 16 261 886 1003 | 4000 | 26738 | 54084

Ndeg 3 dist. 200 | 437 62 104 223 486 873

Nsquare dist. — — 63 106 225 487 876

Table 1: shortest deg 3 syzygy-distinguishable n, for g = 2

Remarks:

» for alternant codes, transition to nondistinguishability is abrupt

» for Goppa codes, transition more progressive, both for degree 3 distinguisher
and for square distinguisher — can catch slightly shorter n with good proba

» CMT24 does much better for Gop6,3: NemT24 = 59
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Higher modules of syzygies



Geometric view on codes

» G € F**" generator matrix of C <> its rows ¢y, ...c, form a basis of C
» for any polynomial f(X) = f(Xy,...,Xk) € S we have

ev(f) = f(cy,...,ck) = (F(p1),-..,f(Pn))

where p1, ... p, are the columns of G
» C ~ C linearly isometric <+ C' = aC? for some a € (F")*, 0 € &,
eq. class of multiset {p;,...,p,} C P*1(FF)

» lin. isometry class of C <+ - :
mod. projective automorphisms

» the homogeneous coordinate ring of C (or of {py,...,P,}) is
cl) = @ cin
r>0

» under ev, C™ is a graded S-module — actually it is a graded quotient of S:
0—/(C)—S—C—0

where /(C) = @,-, +(C) is the homogeneous ideal of C (or of {py,...,P,})
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General definition of syzygies

» S =TF[Xy,..., X] graded by total degree

My finitely generated graded S-module

G ={g1,...,8n} a minimal system of homogeneous generators of My
Fo free S-module on G: its elements are formal sums ) . fi[gi], fi € S
My = ker(Fy — My) is the first module of syzygies of My

Y flale M < ) fig=0in M,

Fo and M; define My by generators and relations. But M not free in general...

» |terate: F; free S-module on a min. syst. of homog. gen. of M;
» M1 = ker(F; — M;) is the (/ + 1)-th module of syzygies of Mp.

We will apply this to My = C*? — My = I(C), My ="usual" syzygies, ...
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Minimal resolution and Betti numbers

» The minimal resolution of My is
oo — FF—F— - —FH—F

» Hilbert's syzygy theorem: this terminates, more precisely F; = 0 for i > k
» Betti numbers: §;; =number of degree j generators of F;

— new invariants for codes
» the square distinguisher actually is a [ >-distinguisher (81, = dim(h(C)))
» the degree 3 syzygy distinguisher actually is a (3, 3-distinguisher
» Betti diagram:

0 1 2 .. k
. J Boj  Brj+1 Pojre - Brjrk
J+1| Bojr1 Bijre Bojiz - Brjrksl

minimality: im(Fi11) C (X4,..., Xk)Fi — if F; generated in deg > D, then
Fiy1 generated in deg > D + 1
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Examples of Betti diagrams

(01 2 3 [0 1 2 3 4 5

oj1 — — — o] — — - - -

11— 3 — — 1}— 10 16 - — —

2/— 1 6 3 2|— 1 5 26 20 5

Figure 2: the [7,4]> Hamming code Figure 3: the [12,6]3 Golay code

o 1. 2 3 4 5 6 7 8 9 10 11
1

0 - - - = — — — - - - =
1| — 55 320 891 1408 1210 320 55 - - = =
2|— 1 11 55 220 650 1672 1870 1221 485 110 11

Figure 4: the [23,12], Golay code
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Basic properties of Betti diagrams of codes

» Auslander-Buchsbaum: My = C{ has depth 1 — columns range from 0 to
k — 1 (instead of k)

» C!) is a quotient of S — 0-th column = (1, —, —,...)T
» /.1(C)=0 — O-throw=(1,—,—,...)

Definition (Mumford, 1966)
Castelnuovo-Mumford regularity of C' is max{j : 3i, 8;;1; # 0}.

Definition (Ran15)
Castelnuovo-Mumford regularity of projective code C is min{j : CY/ =TF"}.

Theorem
These two definitions coincide.

— If C!2 = F", Betti diagram only has rows 0,1,2 (and /(C) gen. in deg 2, 3).
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Effective computation

Only interested in first row of Betti diagram (linear strand of resolution)
» 3,1, =dim(M,_1,), where M,_; , lowest degree part of M,_;
» by definition M,_1, = ker(y,) where

or M2, 1®5 — M,_,
» but also M,_1, = ker(1),) where
VM o, 105 — M3, ,05
givenby M, 5, 1®5 C(M, 3, 2®5)®5 > M_3, .05,
—» iteratively construct and take kernel of blockwise Macaulay matrix in

[F KBr—2,r—1 X (k;—l)ﬁr—3,r—2

» looks “Grobner-ish” but no use of Grobner basis algorithm
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Algebraic codes: structural syzygies



The Eagon-Northcott complex

Let R be a ring, and for f > g let ® € Rf*# define a linear map
F=R — G=R&.

The Eagon-Northcott complex of ® is

g+1 g

F g
0= (Sym 86 o \NF— - =6 a ANF> ANFAESAG=R.
It has length f — g + 1, and its r-th term is free of rank (577 ?) (g+’:_1).

Under mild hypotheses (e.g. 1-genericity), it is exact: it defines a resolution of
the quotient of R defined by the ideal /;(®) of maximal minors of ®.
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The Eagon-Northcott complex for g = 2

When g =2 and ® = < X} X% X’,( ) we can make everything explicit:
x| Xy ... X

] _ / / f
> L(®) is generated by the g;; = x;x] — X;x] so there are (3) of them
> relations between the g;; are generated by the
> rijk = Xiqjk — X;qik + Xkqij
/ / / /
> ik = XiQjk — Xjqik + X, qjj
so there are 2(;) of them
H /
> relations between the rj and rj, are generated by the
> Sijki = Xirjki — Xj ikl + Xklij — X ijk
> s'ij}k/ = x,;rjflk, — ler,-’/k, + Xk ré-, — x/r;jk + X! i — xjfr,-k/ + X riji — X ik
> Siik = Xi kg — Xl T Xkl
so there are 3(}) of them
> etc.
We observe that these are “short” relations.

!
=X
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The Eagon-Northcott complex for alternant codes
Let C = Alt:(x,y)*, so

Cr,m = GRS:(x,y) @ GRS(x%,y%) ® - - & GRS,(x™" ", y7" ).

Let e = |log,(t —1)].
Then h(Cg,,) contains h(®) where

0 0 0 1 1 1
o X0 x©O xOL x® o x o x®
X0, x0, o xO x©, X X

qe_;’_l qe—1+1 qe—1+2 c v

Proof:
xlemxler) — xETOXxE) e (o)

q'+b q'+a

evaluates to
(yxa)qe’“(qu“rb)qe’v _ (qu“Jra)qe*“(yxb)qe*V -0

(or: the second row of @ evaluates to x9° times its first row).
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Shortening

Shortened subcode of C at S: take all codewords that vanish over S, then
discard these coordinates.
Proposition
Assume
h(C) 2 h(P)

where ® is a 2 X f matrix of linear forms. Let C, be a s-shortened subcode of C.
Then

/2(Cs) 2 I2(¢s)

where ®¢ is a 2 x (f — s) matrix whose columns are linear combinations of those
of ®, and ®; is 1-generic if ® is.
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Lower bound on structural syzygies

Theorem 1
For C € Altql’myn’t set e = |log (t —1)] and f = (e + 1)t — qe;Il. Then
F
O e (Y.
forr < f —s.

Proof: minimal resolution of C contains the Eagon-Northcott complex of ®,.

Remarks:
» f is close to k, so we will be able to shorten a lot

» can slightly improve for Goppa codes
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Random codes: contingent syzygies



Linear algebra reminder

In a finite exact sequence of F-vector spaces we have > .(—1)' dim(V;) = 0.

If p: U— Vis a linear map between [F-vector spaces, we define:
» its index:

ind(¢) = dim(U) — dim(V)
= dim ker(p) — dim coker(¢)

» its (rank) defect:

def(p) = min(dim(U), dim(V)) — rk()
= min(dim ker(y), dim coker())

thus
dimker(p) = ind(¢)" + def(), dim coker(y) = ind(p)~ + def(y)

where for each real x we write x = max(x,0) and x~ = (—x)T, so x = xT —x".
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More on regularity 2 codes

Definition
The Hilbert series of Cis Hc(z) = »_,-, 2" dim Cin.
Theorem
Set B; = Y,(—1)'Bij and B(z) = 3_; Bjz). Then B(z) = (1 — z)*Hc(2).
Recall o, : M, 5, 1® S — M, _»,
» [,_1, =dimker(p,)
» (3,2, = dimcoker(g,).

If C has regularity 2 then
> He(z)=1+kz+n(Z2+22+2+--)
> B, = (_1)r(5r72,r - ﬁrfl,r) = (_1)r—1 md(gp,)

> 5o ) — <k(k r+1) B n) (f: ;)
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The minimal resolution conjecture (caution!)

B, 1, > ind(p,)t = (M _ n)* (k - 1)'

r r—2

It follows

Now:
» random linear maps tend to have small defect
» defect is O with probability exponentially close to 1 when index grows
» if Cis random, we expect ¢, to behave like a random linear map
k(k+1) t k-1 . . -
— Bro1y = (— — n> (Fz) with high probability.

r

Backed by the Minimal resolution conjecture (Lorenzini 1993): claims it is so for
generic codes

» Bad: counterexamples were found (see e.g. Eisenbud-Popescu)
» Good: only for very specific parameters — conjecture still “true enough” for
our use
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The minimal resolution conjecture (caution!)

B, 1, > ind(p,)t = (M _ n)* (k - 1)'

r r—2

It follows

Now:
» random linear maps tend to have small defect
» defect is O with probability exponentially close to 1 when index grows

» if Cis random, we expect ¢, to behave like a random linear map, do we??
_( k(k+1) Ty 1
— Bro1y=(———2—n (r72) with high probability.

r

Backed by the Minimal resolution conjecture (Lorenzini 1993): claims it is so for
generic codes — over an infinite field

» Bad: counterexamples were found (see e.g. Eisenbud-Popescu)
» Good: only for very specific parameters — conjecture still “true enough” for
our use
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Syzygies and distance properties: the small defect heuristic

Experimental fact
For C a [n, k,d, d*]-code, we have
1. Br-1.,(C) > 0, hence def(yp,) > 0, for k+1) <r<k+1-d
2. B,—2.,(C) >0, hence def(p,) > 0, for dL << M)
Conversely for random C, and r out of these intervals, def(gp,) =0 w.h.p.

Thus:
1. ifd>k+1-— (k+1)weexpectﬁ,1,—0forr>

2. If dL k(kJFl) we expect 51’ 1r= (M — n) (r—2) for r < _k(kjl)-

r

k(k+1)
n

Remark: these conditions hold for random codes of low enough rate.
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More Betti diagrams

o 1. 2 3 4 5 6 7 8 9 10 11
1

— 55 319 880 1353 990 — — — - -
2| — — - = — 330 1617 1870 1221 485 110 11

Figure 5: an idealized [23, 12]-code according to the minimal resolution conjecture

0o 1. 2 3 4 5 6 7 8 9 10 11
1

0
1|— 55 319 884 1397 1224 490 121 18 1 - =
2| — — 4 44 234 820 1738 1888 1222 485 110 11

Figure 6: a (pseudo)random [23,12]-code (d = 3, d* = 4)

Critical values for r: d*, @ k+1—d
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The distinguisher



Principle

Fix an r:
» if distance condition in the small defect heuristic is met, random codes have

+
(k(kjl) _ ,,) (“~2) contingent syzygies

> dual alternant/Goppa codes have 3;_; , structural syzygies (e.g. from
Eagon-Northcott complex)

k(k+1)  B7 4,1

' (:22)
Also works for shortened subcodes — smaller n, k, R — helps with complexity
and with distance condition.

— distinguishability threshold n > [

We will restrict to r > @ — compute 3,1, and check whether = 0 or > 0.
Asymmetry in the heuristic:

» part 1 needed for the distinguisher to work

» part 2 used only for complexity estimate
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Practical and non-practical results

» contains the square distinguisher as a special case = the /31 ,-distinguisher
» outperforms CMT24 in all experiments, both in terms of
» distinguishable parameters
» efficiency
» largest practically manageable parameters, with a naive, non-optimized
Magma implementation: g, m,n, t = 2,10,1024,10 — k = mt = 100
then for 40-shortened subcodes we consistently find
» 334 =30 in the Goppa case
» (334 =0 in the random case
» Classic McEliece 348864: g, m,n,t = 2,12,3488,64 — k = mt = 768

» 377-shortened dual Goppa codes have 34950 > 0
» expect (4950 = O for shortened random codes (distance condition is ok)
» but complexity estimate ~ 2528

How far could we go with a more optimized implementation, sparse linear
algebra, etc.?
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Asymptotics

Fix a dual rate R, take n — oo, and m = [log,(n)], k ~ Rn, t = £,
Let C be a dual alternant/Goppa code with these parameters.
Recall: for s-shortened subcodes of C,

ﬁr—l,r(cs) > 0

forall r <f —s, where f = (e+ 1)t — qi:_lzl, e = |log,(t—1)].

Lemma
This f is very close to k, namely

o plo8glogg(n)
Iogq(n)

We can distinguish at 3,_1 ,, after shortening s := f — r times, as long as
(k—f+r)(k—f+r+1)
r> .
n—f+r
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Asymptotics

Theorem
Such codes can be distinguished at 3,_; ., after shortening f — r times, where

R2 log,, Iogq(n) 2
~ n.
1-R log,,(n)

r

Complexity is at most

R2 (logg logq(m)3
(w1%r+om) (logg(m)2 "

which is subexponential in —7—.
og(n)

Remarks:

» better than ISD algorithms, exponential in -~
og(n)

» asymptotic gain % — 0 but very slowly
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Conclusion

» |s McEliece broken? — No.
» Will it be broken soon? — | don't know, and | wouldn’t bet in any direction.

» s our understanding of its security stable? — No: these last 3 years saw
considerable progress from the algebraic approach (not limited to this work),
and this is likely to continue.

TODO:
» Improve implementation, theoretically and practically.

» Provide missing proofs, especially regarding links between Betti numbers and
distance properties.

» This is not a black-box distinguisher, it provides a lot of structural
information — use it (joint with other techniques) for structural recovery?

» Betti numbers are new code invariants. Find other applications, e.g. to the
monomial/linear equivalence problem?
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