Interpolating isogenies between elliptic curves: destructive and constructive applications

Wouter Castryck (KU Leuven)

The Mathematics of Post-Quantum Cryptography, MPI Bonn, 4 December 2024

COSIC

KUL

Nearly all currently deployed public-key cryptography is based on the hardness of:

integer factorization (RSA)

$$n = p \cdot q \quad \longrightarrow \quad p, q ?$$

➢ discrete logarithm problem (ECC)
P, dP ∈ E(**F**_q) → d?

1994: Peter Shor describes an $\begin{cases} O(\log^3 n) \text{ quantum algorithm solving both problems} \\ O(\log^3 q) \end{cases}$

Mixed opinions on when/whether (universal) quantum computers will become real.

More consensus: there is non-negligible risk for this to happen in the nearish future. motivates rapid transition to post-quantum cryptography: long pipeline from proposal to deployment, long-term secrets are under threat now cryptography that

- runs on classical computers,
- resists quantum computers

2017: NIST initiates "standardization effort" for key encapsulation and signatures

Main contending hard problems:

finding short vectors in lattices

decoding for random linear codes

finding isogenies between elliptic curves

 $\begin{cases} f_1(s_1, \dots, s_n) = 0\\ \vdots\\ f_m(s_1, \dots, s_n) = 0 \end{cases}$

solving non-linear systems of equations

finding preimages under hash functions

2023: Renewed competition for signatures (includes: SQISign $\subset \frown \subset$)

Definition

A homomorphism between two elliptic curves E and E' over a field k is a

morphism $\varphi: E \to E'$ such that $\varphi(\infty) = \infty'$.

An **isogeny** is a non-constant homomorphism.

Facts:

- \succ on \overline{k} -points, isogenies are surjective group homomorphisms with finite kernel
 - notes: if φ is separable then $\# \ker \varphi = \deg \varphi$
 - every finite subgroup $K \subset E$ is the kernel of a separable isogeny

5/28

makes sense to write E' = E/K $\varphi: E \to E'$ (e.g., via Vélu's formulae) and this is unique up to post-composing φ with an isomorphism

Definition

A homomorphism between two elliptic curves E and E' over a field k is a

morphism $\varphi: E \to E'$ such that $\varphi(\infty) = \infty'$.

An **isogeny** is a non-constant homomorphism.

Facts:

- \succ on \overline{k} -points, isogenies are surjective group homomorphisms with finite kernel
- \succ for each isogeny φ: *E* → *E*' there is a unique **dual isogeny** $\hat{φ}$: *E*' → *E* such that

$$\varphi \circ \hat{\varphi} = [\deg \varphi], \qquad \hat{\varphi} \circ \varphi = [\deg \varphi]$$

being **isogenous** is an equivalence relation

Theorem [Tat66]

Two elliptic curves *E*, *E'* over \mathbf{F}_a are isogenous over \mathbf{F}_a if and only if

 $#E(\mathbf{F}_a) = #E'(\mathbf{F}_a).$

The isogeny-finding problem is to find an efficient algorithm with

 \succ input: two elliptic curves *E*, *E'* over \mathbf{F}_a satisfying $\#E(\mathbf{F}_a) = \#E'(\mathbf{F}_a)$

▶ **return:** an
$$\mathbf{F}_q$$
-isogeny $\varphi: E \to E'$

Best known general algorithms: • exponential time complexity, usually $O(q^{1/4})$,

6

 quantum computers do not seem to help (beyond quadratic speed-up via Grover)

Remark: in general non-trivial how to **represent** an \mathbf{F}_a -isogeny $\varphi: E \to E'$...

 \succ If deg φ is smooth, return φ as composition of small-degree isogenies.

default understanding of "returning an isogeny"

▶ If $E[N] \subset E(\mathbf{F}_{q^r})$ for smooth $N > 2\sqrt{\deg \varphi}$ and small r, return probably most important

- $\deg \varphi$
- by-product of attack [Rob22a] • $\varphi(P), \varphi(Q)$ for some basis $P, Q \in E[N]$.

> If deg φ is smooth, return φ as composition of small-degree isogenies.

default understanding of "returning an isogeny"

3. Supersingular isogeny Diffie-Hellman (SIDH/SIKE)

High-level idea:

3. Supersingular isogeny Diffie-Hellman (SIDH/SIKE)

Solution [JDF11]: choose public bases P_A , $Q_A \in E[N_A]$, P_B , $Q_B \in E[N_B]$

8/28

not crucial for attack

3. Supersingular isogeny Diffie-Hellman (SIDH/SIKE)

Important: recovering secret isogeny

is **not a pure instance** of the isogeny-finding problem!

- Recurring issue in cryptographic design.
- ➢ Torsion point information was already shown to reveal φ_A if N_B ≫ N_A [Pet17], [dQKL+20].
- > Pure isogeny-finding problem **remains hard**.

Henceforth, focus on following problem:

$N > 2\sqrt{d}$ would be the optimal assumption

10/28

➢ input:

E

P, *Q*

• $E, E'/\mathbf{F}_q$ connected by an \mathbf{F}_q -isogeny $\boldsymbol{\varphi}$ of known degree d,

 $P' = \varphi(P), Q' = \varphi(O)$

• a basis $P, Q \in E[N] \subset E(\mathbf{F}_{q^r})$ for smooth and large enough N, small r,

•
$$P' = \varphi(P), Q' = \varphi(Q) \in E'[N].$$

 \succ return: a representation of φ .

- Lemma [JU18]

A degree-*d* isogeny $\varphi: E \to E'$ is fully determined by the images of any 4d + 1 points.

We follow approach of [Rob23].

$$E \longrightarrow E'$$

$$P, Q \qquad P' = \varphi(P), Q' = \varphi(Q)$$

Special first case:
$$N > d$$
, $gcd(N, d) = 1$
 $N - d = a^2$ is square

Consider:

$$\begin{pmatrix} a & \hat{\varphi} \\ -\varphi & a \end{pmatrix}$$

$$\Phi : E \times E' \longrightarrow E \times E'$$

Easy to check that $\widehat{\Phi} \circ \Phi = \Phi \circ \widehat{\Phi} = [N]$, i.e., Φ is an (N, N)-isogeny.

$$E' = E = E$$

$$E' = E = E$$

$$\left(\begin{array}{cc} a & -\hat{\varphi} \\ \varphi & a \end{array}\right) \left(\begin{array}{c} a & \hat{\varphi} \\ -\varphi & a \end{array}\right) =$$

$$\left(\begin{array}{c} a^{2} + \hat{\varphi}\varphi & 0 \\ 0 & a^{2} + \hat{\varphi}\varphi \end{array}\right) =$$

$$\left(\begin{array}{c} a^{2} + d & 0 \\ 0 & a^{2} + d \end{array}\right)$$

We follow approach of [Rob23].

$$E \xrightarrow{\varphi} E'$$

$$P, Q \qquad P' = \varphi(P), Q' = \varphi(Q)$$

Special first case:
$$N > d$$
, $gcd(N, d) = 1$
 $N - d = a^2$ is square

Consider:

$$\begin{pmatrix} a & \hat{\varphi} \\ -\varphi & a \end{pmatrix}$$

 $\Phi: E \times E' \longrightarrow E \times E'$
Easy to check that $\widehat{\Phi} \circ \Phi = \Phi \circ \widehat{\Phi} = [N],$

i.e., Φ is an (N, N)-isogeny.

Note:

$$\Phi(a P, P') = \begin{pmatrix} a & \hat{\varphi} \\ -\varphi & a \end{pmatrix} \begin{pmatrix} aP \\ \varphi(P) \end{pmatrix}$$
$$= \begin{pmatrix} (a^2 + d)P \\ \infty' \end{pmatrix} = (\infty, \infty')$$

and likewise for (a Q, Q').

11/28

We follow approach of [Rob23].

$$E \xrightarrow{\varphi} E'$$

$$P, Q \qquad P' = \varphi(P), Q' = \varphi(Q)$$

Special first case:
$$N > d$$
, $gcd(N, d) = 1$
 $N - d = a^2$ is square

Consider:

$$\begin{pmatrix} a & \widehat{\varphi} \\ -\varphi & a \end{pmatrix}$$
$$\Phi : E \times E' \longrightarrow E \times E'$$

We find that the (N, N)-subgroup $\langle (a P, P'), (a Q, Q') \rangle$ must be all of ker Φ .

but this determines Φ ! (up to post-composition with \cong)

We follow approach of [Rob23].

$$E \xrightarrow{\varphi} E'$$

$$P, Q \qquad P' = \varphi(P), Q' = \varphi(Q)$$

Special first case: N > d, gcd(N, d) = 1 $N - d = a^2$ is square

Consider:

$$\begin{pmatrix} a & \hat{\varphi} \\ -\varphi & a \end{pmatrix}$$
$$\Phi : E \times E' \longrightarrow E \times E'$$

Conclusion: using higher-dimensional analogues of Vélu, can essentially compute $\varphi(X)$ via $-\Phi(X, 0)$, for any $X \in E$.

our efficient representation (easy to determine \cong if $N > 2\sqrt{d}$)

> apply to basis of E[d]for recovering ker φ (needs smooth d, as in SIDH/SIKE)

 Φ_{n-1}

Particularly nice case: $N = 2^n$

 Φ_1

Then Φ is a composition of (2,2)-isogenies.

$$\ker \Phi_1 = 2^{n-1} \ker \Phi = \langle (2^{n-1}aP, 2^{n-1}P'), (2^{n-1}aQ, 2^{n-1}Q') \rangle$$

 H_1

 $\ker \Phi_2 = 2^{n-2} \Phi_1(\ker \Phi)$

 Φ_2

 H_{n-1}

 Φ_n

E'

E

Also explicit: (3,3)-isogenies [BFT14]; in general resort to [LR22].

13/28

$$E \longrightarrow E'$$

$$P, Q \qquad P' = \varphi(P), Q' = \varphi(Q)$$

Next case:
$$N > d$$
, $gcd(N, d) = 1$
 $N - d = a_1^2 + a_2^2$ is sum of two squares

Approach: same, but use

$$\Phi: E^{2} \times E'^{2} \xrightarrow{q_{2}} \phi = 0 \\ \begin{pmatrix} a_{1} & a_{2} & \hat{\varphi} & 0 \\ -a_{2} & a_{1} & 0 & \hat{\varphi} \\ -\phi & 0 & a_{1} & -a_{2} \\ 0 & -\varphi & a_{2} & a_{1} \end{pmatrix}$$

Now must resort to algorithms from [LR22].

14/28

$$E \xrightarrow{\varphi} E'$$

$$P, Q \qquad P' = \varphi(P), Q' = \varphi(Q)$$

Next case: N > d, gcd(N, d) = 1 $N - d = a_1^2 + a_2^2 + a_3^2 + a_4^2$ is sum of four squares (Lagrange)

Approach: work on $E^4 \times E'^4$ and use (Zarhin's trick) $\begin{pmatrix}
a_1 & -a_2 & -a_3 & -a_4 & \hat{\varphi} & 0 & 0 & 0 \\
a_2 & a_1 & a_4 & -a_3 & 0 & \hat{\varphi} & 0 & 0 \\
a_3 & -a_4 & a_1 & a_2 & 0 & 0 & \hat{\varphi} & 0 \\
a_4 & a_3 & -a_2 & a_1 & 0 & 0 & 0 & \hat{\varphi} \\
-\varphi & 0 & 0 & 0 & a_1 & a_2 & a_3 & a_4 \\
0 & -\varphi & 0 & 0 & -a_2 & a_1 & -a_4 & a_3 \\
0 & 0 & -\varphi & 0 & -a_3 & a_4 & a_1 & -a_2 \\
0 & 0 & 0 & -\varphi & -a_4 & -a_3 & a_2 & a_1
\end{pmatrix}$

15/28

$$E \longrightarrow E'$$

$$P, Q \qquad P' = \varphi(P), Q' = \varphi(Q)$$

Full case:
$$N > \sqrt{d}$$
, $gcd(N, d) = 1$
 $N^2 - d = a^2$ or $a_1^2 + a_2^2$ or $a_1^2 + a_2^2 + a_3^2 + a_4^2$

Approach: proceed **as if we know** the images of $\frac{1}{N}P$, $\frac{1}{N}Q \in E[N^2]$.

$$E \longrightarrow E'$$

$$P, Q \qquad P' = \varphi(P), Q' = \varphi(Q)$$

Full case:
$$N > \sqrt{d}$$
, $gcd(N, d) = 1$
 $N^2 - d = a^2$ or $a_1^2 + a_2^2$ or $a_1^2 + a_2^2 + a_3^2 + a_4^2$

Approach: proceed **as if we know** the images of $\frac{1}{N}P$, $\frac{1}{N}Q \in E[N^2]$.

15/28

$$E \longrightarrow E'$$

$$P, Q \qquad P' = \varphi(P), Q' = \varphi(Q)$$

Full case:
$$N > \sqrt{d}$$
, $gcd(N, d) = 1$
 $N^2 - d = a^2$ or $a_1^2 + a_2^2$ or $a_1^2 + a_2^2 + a_3^2 + a_4^2$

Approach: proceed **as if we know** the images of $\frac{1}{N}P$, $\frac{1}{N}Q \in E[N^2]$.

$$A \xrightarrow{\Phi_1} X \xleftarrow{\Phi_2} A$$
$$\overset{\|}{\|} E^r \times E'^r \qquad \text{so we recover } \Phi \text{ as } \widehat{\Phi}_2 \circ \theta \circ \Phi_1 \text{ for some } \theta \in \text{Aut}(X)$$
$$(can be a bit subtle)$$

15/28

Breaking SIDH/SIKE in practice:

- prefer to use (2,2)-isogenies or (3,3)-isogenies (until [LR22] is practical),
- ▶ good news: $N_A = 2^n$ and $N_B = 3^m$ and either $N_A > N_B$ or $N_B > N_A$,
- ≻ bad news: $|N_A N_B| = a^2$ extremely unlikely,

$$\Phi: E \times E' \longrightarrow E \times E'$$

 $|N_A - N_B| = a_1^2 + a_2^2$ more likely, but can we avoid dimension 4?

Yes for special starting curves *E*! <

Breaking SIDH/SIKE in practice:

➢ prefer to use (2,2)-isogenies or (3,3)-isogenies (until [LR22] is practical),

16/28

- ▶ good news: $N_A = 2^n$ and $N_B = 3^m$ and either $N_A > N_B$ or $N_B > N_A$,
- ▶ bad news: $|N_A N_B| = a^2$ extremely unlikely,

▶
$$|N_A - N_B| = a_1^2 + a_2^2$$
 more likely,

breaks all security levels of SIKE in seconds on a laptop [OP22], [DK23]

E

5. Isogeny interpolation: general statement

Variations on this idea lead to:

Theorem [Rob23,DFP24,CDM+24] There is an algorithm for the evaluation of an isogeny $\varphi : E \to E'$ over \mathbf{F}_q of known **degree** d at any given point, upon input of interpolation data $P_1, \varphi(P_1), P_2, \varphi(P_2), \dots, P_r, \varphi(P_r)$

such that the group $\langle P_1, P_2, \dots, P_r \rangle$ has order N with

N smooth,
$$N > 4d$$
, $gcd(q, N) = 1$,

with a running time that is **polynomial** in the input size and in the degrees of the defining fields of $E[\ell^{\lfloor e/2 \rfloor}]$ for all prime powers $\ell^e \mid N$.

• optimal [JU18]

5. Isogeny interpolation: general statement

Variations on this idea lead to:

Theorem [Rob23,DFP24,CDM+24] There is an algorithm for the evaluation of an isogeny $\varphi : E \to E'$ over \mathbf{F}_q of known **degree** *d* at any given point, upon input of interpolation data $P_1, \varphi(P_1), P_2, \varphi(P_2), \dots, P_r, \varphi(P_r)$ such that the group $\langle P_1, P_2, ..., P_r \rangle$ has order N with EN smooth, N > 4d, gcd(q, N) = 1, with a running time that is polynomial in the input size and in the degrees of the defining fields of $E\left[\ell^{\lfloor e/2 \rfloor}\right]$ for all prime powers $\ell^e \mid N$.

empty conditions in supersingular case

5. Isogeny interpolation: general statement

Variations on this idea lead to:

Theorem [Rob23,DFP24,CDM+24] There is an algorithm for the evaluation of an isogeny $\varphi : E \to E'$ over \mathbf{F}_q of known **degree** *d* at any given point, upon input of interpolation data $P_1, \varphi(P_1), P_2, \varphi(P_2), \dots, P_r, \varphi(P_r)$ such that the group $\langle P_1, P_2, \dots, P_r \rangle$ has order N with E N smooth, N > 4d, gcd(q, N) = 1, with a running time that is **polynomial** in the input size and in the degrees of the defining fields of $E[\ell^{\lfloor e/2 \rfloor}]$ for all prime powers $\ell^e \mid N$.

might be liftable in general (Dieudonné modules)

6. Isogeny representation

Re: what does it mean to **represent** a degree-*d* isogeny $\varphi: E \to E'$?

➤ As a rational map ?

E.g.,
$$\varphi : (x, y) \mapsto \left(\frac{x^3 + x^2 + x + 2}{(x - 5)^2}, y\frac{x^3 - 4x^2 + 2}{(x - 5)^3}\right)$$

Object of size $O((\log q) d)$.

Feasible only if *d* is smooth \rightarrow write φ as composition of small-degree isogenies

pre-2022: default understanding of isogeny representation

6. Isogeny representation

Re: what does it mean to **represent** a degree-*d* isogeny $\varphi: E \to E'$?

➤ Via its kernel G?

If the points in *G* defined over \mathbf{F}_{qf} : object of size $O((\log q)f)$.

Requires conversion to be useful (e.g., to a rational map via Vélu).

 \succ Via its kernel ideal I_{φ} ?

Requires sufficient knowledge of the endomorphism ring.

To be useful, must be **smoothened** via [KLP+14] or lattice reduction.

SEE LATER

6. Isogeny representation

Re: what does it mean to **represent** a degree-*d* isogeny $\varphi: E \to E'$?

➢ Via interpolation data !

Two caveats:

- interpolation data must be provided,
- efficiency much depends on parameters (ideally dim 2 and $N = 2^n$).

Kani's lemma [Kan97]

main source of inspiration for the SIDH attacks

Kani's lemma [Kan97]

Consider a commuting diagram of isogenies:

is a $(\deg \alpha + \deg \beta, \deg \alpha + \deg \beta)$ -isogeny of p.p. abelian surfaces with kernel

 $\left\{ \left(\alpha(P), \beta(P) \right) \middle| P \in E_1[\deg \alpha + \deg \beta] \right\}.$

Kani's lemma [Kan97]

Consider a commuting diagram of isogenies:

21/28

Special case revisited:

$$N > d$$
, gcd $(N, d) = 1$
 $N - d = a^2$ is square

Useful subroutine in isogeny-based cryptography:

- > input: supersingular *E* with known endomorphism ring large prime ℓ
- output: random isogeny

$$\varphi: E \longrightarrow E'$$

of degree ℓ

Useful subroutine in isogeny-based cryptography:

- ➤ input: supersingular *E* with known endomorphism ring large prime *ℓ*
- output: random isogeny

Cumbersome solution: generate ideal I_{φ} of norm ℓ ,

find equivalent ideal $I_{\psi} \sim I_{\varphi}$ of smooth norm via [KLP+14], convert I_{ψ} into isogeny and recover $\varphi = (\psi \circ \hat{\psi} \varphi)/\deg \psi$

Nakagawa-Onuki trick aka QFESTA [NO23]:

▶ generate $\theta \in \text{End}(E)$ with norm $\ell(2^n - \ell)$, necessarily fits in diagram

 $(\theta = \beta \circ \hat{\alpha})$

Nakagawa-Onuki trick aka QFESTA [NO23]:

▶ generate $\theta \in \text{End}(E)$ with norm $\ell(2^n - \ell)$, necessarily fits in diagram

generalizes from endomorphism factorization to isogeny factorization

Clapoti [PR23,BDD+24]: given ideal $I_{\varphi} \subseteq \text{End}(E)$, compute $\varphi : E \to E'$

high-level idea: find
$$I \sim I' \sim I_{\varphi}$$
 with $N(I) + N(I') = 2^n$.
 then $I' = I \frac{\overline{\theta}}{N(I)}$ for some $\theta \in \text{End}(E)$, implies $\hat{\varphi}_{II} \circ \varphi_I = \theta$, can be relaxed to
 $uN(I) + vN(I') = 2^n$
 fits in diamond
 $\hat{\varphi}_I \downarrow \stackrel{\widehat{\varphi}_{II}}{\longrightarrow} \stackrel{E}{\longrightarrow} \stackrel{F}{\longrightarrow}$ from which we recover φ_I and E' ,
 likewise $I = I_{\varphi} \frac{\overline{\eta}}{N(I_{\varphi})}$ for some $\eta \in \text{End}(E) \longrightarrow \varphi = \varphi_I \eta / N(I)$

turns CM ideal-class group action into an effective group action

6. Cryptographic application: PRISM [BCC+24]

Simplified version:

secret and public key:

- Signing message msg: using knowledge of τ_{sk} , produce interpolation data for $\sigma: E_{pk} \to E_{sig}$ of degree $\ell = H(msg||E_{pk}) \in \{primes \leq B\}$
- verifying a signature for msg:

verify that data interpolates isogeny of degree $\ell = H(msg||E_{pk})$

6. Cryptographic application: SQIsignHD [DLR+24]

Intermediate version between SQIsign [DKL+20] and SQIsign2D-West [BDD+24].

competitor in renewed NIST competition updated version for 2nd round

6. Cryptographic application: SQIsignHD [DLR+24]

Intermediate version between SQIsign [DKL+20] and SQIsign2D-West [BDD+24].

Built from identification scheme:

✓ cleaner security assumption
 ✓ better scaling
 ✓ faster signing
 ✓ smaller signatures
 X slower verification

Original: respond by smoothening $\varphi \circ \tau_{sk} \circ \hat{\psi} : E_{com} \to E_{ch}$ via generalized KLPT.

HD: respond with interpolation data for **random** isogeny $\sigma: E_{com} \rightarrow E_{ch}$.

Let E/\mathbf{F}_q be an ordinary elliptic curve. We know:

$$\mathbf{Z}[\pi_q] \subseteq \operatorname{End}(E) \subseteq O_K \quad \text{with} \quad K = \mathbf{Q}(\sqrt{t^2 - 4q})$$

but where exactly?

Let E/\mathbf{F}_q be an ordinary elliptic curve. We know:

$$\mathbf{Z}[\pi_q] \subseteq \operatorname{End}(E) \subseteq O_K \text{ with } K = \mathbf{Q}(\sqrt{t^2 - 4q})$$

index *f*

Let E/\mathbf{F}_q be an ordinary elliptic curve. We know:

$$\mathbf{Z}[\pi_q] \subseteq \operatorname{End}(E) \subseteq O_K$$
 with $K = \mathbf{Q}(\sqrt{t^2 - 4q})$

small order coprime with b

divisible by which prime powers dividing *f* ?

To test a prime power $b \mid f$, we:

- → determine $a \in \mathbb{Z}$ such that $\operatorname{charpol}_{\pi_a}(X) \equiv (X a)^2 \mod b$,
- \triangleright evaluate hypothetical endomorphism $\frac{\pi_q a}{b}$ on sufficiently many points

≻ run isogeny interpolation: algorithm will crash iff *b* \nmid [End(*E*): **Z**[π_q]]

Let E/\mathbf{F}_q be an ordinary elliptic curve. We know:

≻ run isogeny interpolation: algorithm will crash iff $b \nmid [End(E): \mathbf{Z}[\pi_q]]$

Danke schön!