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1. Some context
Nearly all currently deployed public-key
cryptography is based on the hardness of:
 integer factorization (RSA)

 discrete logarithm problem (ECC)

𝑛𝑛 = 𝑝𝑝 ⋅ 𝑞𝑞 𝑝𝑝, 𝑞𝑞 ?

𝑃𝑃,𝑑𝑑𝑃𝑃 ∈ 𝐸𝐸(𝐅𝐅𝑞𝑞) 𝑑𝑑 ?

1994: Peter Shor describes an quantum algorithm solving both problems
� 𝑂𝑂(log3𝑛𝑛)
𝑂𝑂(log3𝑞𝑞)
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Mixed opinions on when/whether (universal) quantum computers will become real.

More consensus: there is non-negligible risk for this to happen in the nearish future.

motivates rapid transition to post-quantum cryptography:
 long pipeline from proposal to deployment,
 long-term secrets are under threat now

2017: NIST initiates “standardization effort” for key encapsulation and signatures

cryptography that
 runs on classical computers,
 resists quantum computers
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Main contending hard problems:

𝐸𝐸 𝐸𝐸𝐸𝜑𝜑

𝑣𝑣

finding short 
vectors in lattices

finding isogenies
between elliptic curves

0 1 0 0 1 1 0

0 1 0 0 0 1 1

decoding for random 
linear codes

solving non-linear
systems of equations

�
𝑓𝑓1 𝑠𝑠1, … , 𝑠𝑠𝑛𝑛 = 0

⋮
𝑓𝑓𝑚𝑚 𝑠𝑠1, … , 𝑠𝑠𝑛𝑛 = 0

finding preimages
under hash functions



#𝑠𝑠 ℎ
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2020: Preliminary NIST standards: 
LMS (stateful signatures)

XMSS (stateful signatures)



#


#

2022: First main NIST standards: 
Kyber (key encapsulation)

Dilithium (signatures)

Falcon (signatures)

SPHINCS+ (signatures)


#

Moved to extra round of scrutiny: 
BIKE (key encapsulation)

McEliece (key encapsulation)

HQC (key encapsulation)

SIKE (key encapsulation)

0 1 0 0 1 1 0

0 1 0 0 0 1 1

0 1 0 0 1 1 0

0 1 0 0 0 1 1

0 1 0 0 1 1 0

0 1 0 0 0 1 1

2023: Renewed competition for signatures (includes: SQISign ) 

broken few weeks after selection
[CD23], [MMP+23], [Rob23]
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Definition
A homomorphism between two elliptic curves 𝐸𝐸 and 𝐸𝐸𝐸 over a field 𝑘𝑘 is a 
morphism 𝜑𝜑:𝐸𝐸 → 𝐸𝐸𝐸 such that 𝜑𝜑 ∞ = ∞𝐸.
An isogeny is a non-constant homomorphism.

𝐸𝐸

𝐸𝐸𝐸𝜑𝜑

Facts:
 on �𝑘𝑘-points, isogenies are surjective group homomorphisms with finite kernel

notes:  if 𝜑𝜑 is separable then # ker𝜑𝜑 = deg𝜑𝜑
 every finite subgroup 𝐾𝐾 ⊂ 𝐸𝐸 is the kernel of a separable isogeny

𝜑𝜑:𝐸𝐸 → 𝐸𝐸𝐸

and this is unique up to post-composing 𝜑𝜑 with an isomorphism

makes sense to
write 𝐸𝐸𝐸 = ⁄𝐸𝐸 𝐾𝐾

(e.g., via Vélu’s formulae)



2. The isogeny-finding problem
5/28

Definition
A homomorphism between two elliptic curves 𝐸𝐸 and 𝐸𝐸𝐸 over a field 𝑘𝑘 is a 
morphism 𝜑𝜑:𝐸𝐸 → 𝐸𝐸𝐸 such that 𝜑𝜑 ∞ = ∞𝐸.
An isogeny is a non-constant homomorphism.

𝐸𝐸

𝐸𝐸𝐸𝜑𝜑

Facts:
 on �𝑘𝑘-points, isogenies are surjective group homomorphisms with finite kernel

 for each isogeny 𝜑𝜑:𝐸𝐸 → 𝐸𝐸𝐸 there is a unique dual isogeny �𝜑𝜑:𝐸𝐸′ → 𝐸𝐸 such that

𝜑𝜑 ∘ �𝜑𝜑 = deg𝜑𝜑 , �𝜑𝜑 ∘ 𝜑𝜑 = [deg𝜑𝜑]

being isogenous is an equivalence relation
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Theorem [Tat66]
Two elliptic curves 𝐸𝐸, 𝐸𝐸𝐸 over 𝐅𝐅𝑞𝑞 are isogenous over 𝐅𝐅𝑞𝑞 if and only if

#𝐸𝐸(𝐅𝐅𝑞𝑞) = #𝐸𝐸𝐸(𝐅𝐅𝑞𝑞).

The isogeny-finding problem is to find an efficient algorithm with
 input: two elliptic curves 𝐸𝐸, 𝐸𝐸𝐸 over 𝐅𝐅𝑞𝑞 satisfying #𝐸𝐸(𝐅𝐅𝑞𝑞) = #𝐸𝐸𝐸(𝐅𝐅𝑞𝑞)

 return: an 𝐅𝐅𝑞𝑞-isogeny 𝜑𝜑:𝐸𝐸 → 𝐸𝐸𝐸

Best known general algorithms:  exponential time complexity, usually 𝑂𝑂(𝑞𝑞 ⁄1 4),

 quantum computers do not seem to help 
(beyond quadratic speed-up via Grover)
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Remark: in general non-trivial how to represent an 𝐅𝐅𝑞𝑞-isogeny 𝜑𝜑:𝐸𝐸 → 𝐸𝐸𝐸…

 If deg𝜑𝜑 is smooth, return 𝜑𝜑 as composition of small-degree isogenies.

 If 𝐸𝐸 𝑁𝑁 ⊂ 𝐸𝐸(𝐅𝐅𝑞𝑞𝑟𝑟) for smooth 𝑁𝑁 > 2 deg 𝜑𝜑 and small 𝑟𝑟, return

 deg𝜑𝜑

 𝜑𝜑(𝑃𝑃), 𝜑𝜑(𝑄𝑄) for some basis 𝑃𝑃,𝑄𝑄 ∈ 𝐸𝐸[𝑁𝑁]. 

default understanding of 
“returning an isogeny”

2. The isogeny-finding problem



7/28

Remark: in general non-trivial how to represent an 𝐅𝐅𝑞𝑞-isogeny 𝜑𝜑:𝐸𝐸 → 𝐸𝐸𝐸…

 If deg𝜑𝜑 is smooth, return 𝜑𝜑 as composition of small-degree isogenies.

 If 𝐸𝐸 𝑁𝑁 ⊂ 𝐸𝐸(𝐅𝐅𝑞𝑞𝑟𝑟) for smooth 𝑁𝑁 > 2 deg 𝜑𝜑 and small 𝑟𝑟, return

 deg𝜑𝜑

 𝜑𝜑(𝑃𝑃), 𝜑𝜑(𝑄𝑄) for some basis 𝑃𝑃,𝑄𝑄 ∈ 𝐸𝐸[𝑁𝑁]. 

default understanding of 
“returning an isogeny”

2. The isogeny-finding problem

(for the moment, forget about this)



3. Supersingular isogeny Diffie-Hellman (SIDH/SIKE)
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High-level idea:

𝐸𝐸 𝐸𝐸𝐴𝐴 = 𝐸𝐸/𝐴𝐴

𝐸𝐸𝐵𝐵 = 𝐸𝐸/𝐵𝐵

𝜑𝜑𝐴𝐴

𝐸𝐸𝐴𝐴𝐵𝐵 = ⁄𝐸𝐸𝐴𝐴 𝜑𝜑𝐴𝐴(𝐵𝐵)

𝜑𝜑𝐴𝐴∗𝜑𝜑𝐵𝐵

𝜑𝜑𝐵𝐵∗𝜑𝜑𝐴𝐴
𝐸𝐸𝐵𝐵𝐴𝐴 = ⁄𝐸𝐸𝐵𝐵 𝜑𝜑𝐵𝐵(𝐴𝐴)

⁄𝐸𝐸 (𝐴𝐴 + 𝐵𝐵)
≅

≅

Constructive problem:
how do we allow Bob 
to determine 𝜑𝜑𝐴𝐴(𝐵𝐵)
without revealing𝜑𝜑𝐴𝐴?

… and likewise
for Alice

𝜑𝜑𝐵𝐵
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Solution [JDF11]: choose public bases 𝑃𝑃𝐴𝐴,𝑄𝑄𝐴𝐴 ∈ 𝐸𝐸[𝑁𝑁𝐴𝐴],  𝑃𝑃𝐵𝐵 ,𝑄𝑄𝐵𝐵 ∈ 𝐸𝐸[𝑁𝑁𝐵𝐵]

𝐸𝐸 𝐸𝐸𝐴𝐴 = 𝐸𝐸/𝐴𝐴

𝐸𝐸𝐵𝐵 = 𝐸𝐸/𝐵𝐵

𝐴𝐴 = ⟨𝑃𝑃𝐴𝐴 + 𝑎𝑎𝑄𝑄𝐴𝐴⟩

𝜑𝜑𝐵𝐵

𝜑𝜑𝐴𝐴
Alice reveals

𝜑𝜑𝐴𝐴(𝑃𝑃𝐵𝐵), 𝜑𝜑𝐴𝐴(𝑄𝑄𝐵𝐵)

Bob reveals
𝜑𝜑𝐵𝐵(𝑃𝑃𝐴𝐴), 𝜑𝜑𝐵𝐵(𝑄𝑄𝐴𝐴)

allows Bob to compute
𝜑𝜑𝐴𝐴 𝐵𝐵 = ⟨𝜑𝜑𝐴𝐴 𝑃𝑃𝐵𝐵 + 𝑏𝑏𝜑𝜑𝐴𝐴 𝑄𝑄𝐵𝐵 ⟩

allows Alice to compute 𝜑𝜑𝐵𝐵 𝐴𝐴 = ⟨𝜑𝜑𝐵𝐵 𝑃𝑃𝐴𝐴 + 𝑎𝑎𝜑𝜑𝐵𝐵 𝑄𝑄𝐴𝐴 ⟩

𝐸𝐸𝐵𝐵𝐴𝐴 ≅ 𝐸𝐸𝐴𝐴𝐵𝐵

𝜑𝜑𝐴𝐴∗𝜑𝜑𝐵𝐵

𝜑𝜑𝐵𝐵∗𝜑𝜑𝐴𝐴

𝐵𝐵 = ⟨𝑃𝑃𝐵𝐵 + 𝑏𝑏𝑄𝑄𝐵𝐵⟩



3. Supersingular isogeny Diffie-Hellman (SIDH/SIKE)
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Solution [JDF11]: choose public bases 𝑃𝑃𝐴𝐴,𝑄𝑄𝐴𝐴 ∈ 𝐸𝐸[𝑁𝑁𝐴𝐴],  𝑃𝑃𝐵𝐵 ,𝑄𝑄𝐵𝐵 ∈ 𝐸𝐸[𝑁𝑁𝐵𝐵]

𝐸𝐸 𝐸𝐸𝐴𝐴 = 𝐸𝐸/𝐴𝐴

𝐸𝐸𝐵𝐵 = 𝐸𝐸/𝐵𝐵

𝐴𝐴 = ⟨𝑃𝑃𝐴𝐴 + 𝑎𝑎𝑄𝑄𝐴𝐴⟩

𝜑𝜑𝐴𝐴

𝐵𝐵 = ⟨𝑃𝑃𝐵𝐵 + 𝑏𝑏𝑄𝑄𝐵𝐵⟩
Technical remarks:
 𝑁𝑁𝐴𝐴 = deg𝜑𝜑𝐴𝐴, 𝑁𝑁𝐵𝐵 = deg𝜑𝜑𝐵𝐵 must be smooth

 why supersingular?

 makes for hardest isogeny-finding problem, 

 good control over torsion / base field

 not crucial for attack

𝜑𝜑𝐵𝐵



Important: recovering secret isogeny

3. Supersingular isogeny Diffie-Hellman (SIDH/SIKE)
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𝐸𝐸 𝐸𝐸𝐴𝐴 = 𝐸𝐸/𝐴𝐴
𝜑𝜑𝐴𝐴

𝜑𝜑𝐴𝐴(𝑃𝑃𝐵𝐵), 𝜑𝜑𝐴𝐴(𝑄𝑄𝐵𝐵)𝑃𝑃𝐵𝐵, 𝑄𝑄𝐵𝐵

is not a pure instance of the isogeny-finding problem!

 Recurring issue in cryptographic design.

 Torsion point information was already shown
to reveal 𝜑𝜑𝐴𝐴 if 𝑁𝑁𝐵𝐵 ≫ 𝑁𝑁𝐴𝐴 [Pet17], [dQKL+20].

 Pure isogeny-finding problem remains hard.

“torsion point 
information”

known smooth degree



Henceforth, focus on following problem:

 input:
 𝐸𝐸,𝐸𝐸′/𝐅𝐅𝑞𝑞 connected by an 𝐅𝐅𝑞𝑞-isogeny 𝜑𝜑 of known degree 𝑑𝑑,
 a basis 𝑃𝑃,𝑄𝑄 ∈ 𝐸𝐸 𝑁𝑁 ⊂ 𝐸𝐸(𝐅𝐅𝑞𝑞𝑟𝑟) for smooth and large enough𝑁𝑁, small 𝑟𝑟,
 𝑃𝑃′ = 𝜑𝜑 𝑃𝑃 ,𝑄𝑄′ = 𝜑𝜑 𝑄𝑄 ∈ 𝐸𝐸′[𝑁𝑁].

 return: a representation of 𝜑𝜑.

4. Recovering an isogeny from torsion point information
10/28

𝐸𝐸 𝐸𝐸𝐸
𝜑𝜑

𝑃𝑃′ = 𝜑𝜑 𝑃𝑃 ,𝑄𝑄′ = 𝜑𝜑(𝑄𝑄)𝑃𝑃,𝑄𝑄

Lemma [JU18]
A degree-𝑑𝑑 isogeny 𝜑𝜑:𝐸𝐸 → 𝐸𝐸𝐸 is fully determined by the images of any 4𝑑𝑑 + 1 points.

𝑁𝑁 > 2 𝑑𝑑 would be the
optimal assumption



Special first case: 𝑁𝑁 > 𝑑𝑑, gcd 𝑁𝑁,𝑑𝑑 = 1
𝑁𝑁 − 𝑑𝑑 = 𝑎𝑎2 is square

Consider:

Easy to check that �Φ ∘ Φ = Φ ∘ �Φ = 𝑁𝑁 ,
i.e., Φ is an (𝑁𝑁,𝑁𝑁)-isogeny.

4. Recovering an isogeny from torsion point information
11/28

E.g., �Φ ∘ Φ =

𝑎𝑎 − �𝜑𝜑
𝜑𝜑 𝑎𝑎

𝑎𝑎 �𝜑𝜑
−𝜑𝜑 𝑎𝑎 =

𝑎𝑎2 + �𝜑𝜑𝜑𝜑 0
0 𝑎𝑎2 + �𝜑𝜑𝜑𝜑

=

𝑎𝑎2 + 𝑑𝑑 0
0 𝑎𝑎2 + 𝑑𝑑

Φ : 𝐸𝐸 × 𝐸𝐸𝐸 𝐸𝐸 × 𝐸𝐸𝐸

𝑎𝑎 �𝜑𝜑
−𝜑𝜑 𝑎𝑎

𝐸𝐸 𝐸𝐸𝐸
𝜑𝜑

𝑃𝑃′ = 𝜑𝜑 𝑃𝑃 ,𝑄𝑄′ = 𝜑𝜑(𝑄𝑄)𝑃𝑃,𝑄𝑄
𝐸𝐸𝐸 𝐸𝐸

We follow approach of [Rob23].
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Special first case: 𝑁𝑁 > 𝑑𝑑, gcd 𝑁𝑁,𝑑𝑑 = 1
𝑁𝑁 − 𝑑𝑑 = 𝑎𝑎2 is square

Consider:

Easy to check that �Φ ∘ Φ = Φ ∘ �Φ = 𝑁𝑁 ,
i.e., Φ is an (𝑁𝑁,𝑁𝑁)-isogeny.

Note: 

Φ 𝑎𝑎 𝑃𝑃,𝑃𝑃′ = 𝑎𝑎 �𝜑𝜑
−𝜑𝜑 𝑎𝑎

𝑎𝑎𝑃𝑃
𝜑𝜑(𝑃𝑃)

=
(𝑎𝑎2 + 𝑑𝑑)𝑃𝑃

∞𝐸
= (∞,∞𝐸)

and likewise for (𝑎𝑎 𝑄𝑄,𝑄𝑄′).

Φ : 𝐸𝐸 × 𝐸𝐸𝐸 𝐸𝐸 × 𝐸𝐸𝐸

𝑎𝑎 �𝜑𝜑
−𝜑𝜑 𝑎𝑎

𝐸𝐸𝐸 𝐸𝐸

(𝑎𝑎 𝑃𝑃,𝑃𝑃′)
(𝑎𝑎 𝑄𝑄,𝑄𝑄′)

𝐸𝐸 𝐸𝐸𝐸
𝜑𝜑

𝑃𝑃′ = 𝜑𝜑 𝑃𝑃 ,𝑄𝑄′ = 𝜑𝜑(𝑄𝑄)𝑃𝑃,𝑄𝑄

We follow approach of [Rob23].
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Special first case: 𝑁𝑁 > 𝑑𝑑, gcd 𝑁𝑁,𝑑𝑑 = 1
𝑁𝑁 − 𝑑𝑑 = 𝑎𝑎2 is square

Consider:

We find that the (𝑁𝑁,𝑁𝑁)-subgroup ⟨ 𝑎𝑎 𝑃𝑃,𝑃𝑃′ , 𝑎𝑎 𝑄𝑄,𝑄𝑄′ ⟩ must be all of kerΦ.

Φ : 𝐸𝐸 × 𝐸𝐸𝐸 𝐸𝐸 × 𝐸𝐸𝐸

𝑎𝑎 �𝜑𝜑
−𝜑𝜑 𝑎𝑎

but this determinesΦ!
(up to post-composition with ≅)

𝐸𝐸 𝐸𝐸𝐸
𝜑𝜑

𝑃𝑃′ = 𝜑𝜑 𝑃𝑃 ,𝑄𝑄′ = 𝜑𝜑(𝑄𝑄)𝑃𝑃,𝑄𝑄

We follow approach of [Rob23].

𝐸𝐸𝐸 𝐸𝐸

(𝑎𝑎 𝑃𝑃,𝑃𝑃′)
(𝑎𝑎 𝑄𝑄,𝑄𝑄′)



4. Recovering an isogeny from torsion point information
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Special first case: 𝑁𝑁 > 𝑑𝑑, gcd 𝑁𝑁,𝑑𝑑 = 1
𝑁𝑁 − 𝑑𝑑 = 𝑎𝑎2 is square

Consider:

Conclusion: using higher-dimensional analogues of Vélu, 
can essentially compute 𝜑𝜑 𝑋𝑋 via −Φ X, 0 , for any 𝑋𝑋 ∈ 𝐸𝐸. 

Φ : 𝐸𝐸 × 𝐸𝐸𝐸 𝐸𝐸 × 𝐸𝐸𝐸

𝑎𝑎 �𝜑𝜑
−𝜑𝜑 𝑎𝑎

apply to basis of 𝐸𝐸[𝑑𝑑]
for recovering ker𝜑𝜑
(needs smooth 𝑑𝑑, as 

in SIDH/SIKE)

our efficient representation
(easy to determine ≅ if 𝑁𝑁 > 2 𝑑𝑑)

𝐸𝐸 𝐸𝐸𝐸
𝜑𝜑

𝑃𝑃′ = 𝜑𝜑 𝑃𝑃 ,𝑄𝑄′ = 𝜑𝜑(𝑄𝑄)𝑃𝑃,𝑄𝑄
𝐸𝐸𝐸 𝐸𝐸

(𝑎𝑎 𝑃𝑃,𝑃𝑃′)
(𝑎𝑎 𝑄𝑄,𝑄𝑄′)

We follow approach of [Rob23].



Particularly nice case: 𝑁𝑁 = 2𝑛𝑛

Then Φ is a composition of (2,2)-isogenies. 

4. Recovering an isogeny from torsion point information
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𝐸𝐸𝐸
𝐸𝐸

𝐻𝐻1

…
𝐻𝐻𝑛𝑛−1

𝐸𝐸𝐸
𝐸𝐸

Φ1 Φ2 Φ𝑛𝑛−1 Φ𝑛𝑛

kerΦ1 = 2𝑛𝑛−1 kerΦ = ⟨ 2𝑛𝑛−1𝑎𝑎𝑃𝑃, 2𝑛𝑛−1𝑃𝑃′ , 2𝑛𝑛−1𝑎𝑎𝑄𝑄, 2𝑛𝑛−1𝑄𝑄′ ⟩

kerΦ2 = 2𝑛𝑛−2Φ1 kerΦ and so on …

𝐸𝐸𝐸 𝐸𝐸

(𝑎𝑎 𝑃𝑃,𝑃𝑃′)
(𝑎𝑎 𝑄𝑄,𝑄𝑄′)



Particularly nice case: 𝑁𝑁 = 2𝑛𝑛

Then Φ is a composition of (2,2)-isogenies. 

4. Recovering an isogeny from torsion point information
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𝐸𝐸𝐸
𝐸𝐸

𝐻𝐻1

…
𝐻𝐻𝑛𝑛−1

𝐸𝐸𝐸
𝐸𝐸

Φ1 Φ2 Φ𝑛𝑛−1 Φ𝑛𝑛

explicit gluing formulae [HLP00]

Richelot isogenies (19th century!)

Also explicit: (3,3)-isogenies [BFT14]; in general resort to [LR22].

𝐸𝐸𝐸 𝐸𝐸

(𝑎𝑎 𝑃𝑃,𝑃𝑃′)
(𝑎𝑎 𝑄𝑄,𝑄𝑄′)
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Next case:  𝑁𝑁 > 𝑑𝑑, gcd 𝑁𝑁,𝑑𝑑 = 1
𝑁𝑁 − 𝑑𝑑 = 𝑎𝑎12 + 𝑎𝑎22 is sum of two squares

Approach: same, but use

Now must resort to algorithms from [LR22].

𝐸𝐸 𝐸𝐸𝐸
𝜑𝜑

𝑃𝑃′ = 𝜑𝜑 𝑃𝑃 ,𝑄𝑄′ = 𝜑𝜑(𝑄𝑄)𝑃𝑃,𝑄𝑄

Φ : 𝐸𝐸2 × 𝐸𝐸′2 𝐸𝐸2 × 𝐸𝐸′2

𝑎𝑎1 𝑎𝑎2 �𝜑𝜑 0
−𝑎𝑎2 𝑎𝑎1 0 �𝜑𝜑
−𝜑𝜑 0 𝑎𝑎1 −𝑎𝑎2

0 −𝜑𝜑 𝑎𝑎2 𝑎𝑎1
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Next case:  𝑁𝑁 > 𝑑𝑑, gcd 𝑁𝑁,𝑑𝑑 = 1
𝑁𝑁 − 𝑑𝑑 = 𝑎𝑎12 + 𝑎𝑎22 + 𝑎𝑎32 + 𝑎𝑎42 is sum of four squares (Lagrange)

Approach: 
work on 𝐸𝐸4 × 𝐸𝐸′4 and use

𝐸𝐸 𝐸𝐸𝐸
𝜑𝜑

𝑃𝑃′ = 𝜑𝜑 𝑃𝑃 ,𝑄𝑄′ = 𝜑𝜑(𝑄𝑄)𝑃𝑃,𝑄𝑄

𝑎𝑎1 −𝑎𝑎2 −𝑎𝑎3 −𝑎𝑎4 �𝜑𝜑 0 0 0
𝑎𝑎2 𝑎𝑎1 𝑎𝑎4 −𝑎𝑎3 0 �𝜑𝜑 0 0
𝑎𝑎3 −𝑎𝑎4 𝑎𝑎1 𝑎𝑎2 0 0 �𝜑𝜑 0
𝑎𝑎4 𝑎𝑎3 −𝑎𝑎2 𝑎𝑎1 0 0 0 �𝜑𝜑
−𝜑𝜑 0 0 0 𝑎𝑎1 𝑎𝑎2 𝑎𝑎3 𝑎𝑎4

0 −𝜑𝜑 0 0 −𝑎𝑎2 𝑎𝑎1 −𝑎𝑎4 𝑎𝑎3
0 0 −𝜑𝜑 0 −𝑎𝑎3 𝑎𝑎4 𝑎𝑎1 −𝑎𝑎2
0 0 0 −𝜑𝜑 −𝑎𝑎4 −𝑎𝑎3 𝑎𝑎2 𝑎𝑎1

(Zarhin’s trick)
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Full case:  𝑁𝑁 > 𝑑𝑑, gcd 𝑁𝑁,𝑑𝑑 = 1
𝑁𝑁2 − 𝑑𝑑 = 𝑎𝑎2 or   𝑎𝑎12 + 𝑎𝑎22 or   𝑎𝑎12 + 𝑎𝑎22 + 𝑎𝑎32 + 𝑎𝑎42

Approach: proceed as if we know the images of  1
𝑁𝑁
𝑃𝑃, 1

𝑁𝑁
𝑄𝑄 ∈ 𝐸𝐸[𝑁𝑁2].

𝐸𝐸 𝐸𝐸𝐸
𝜑𝜑

𝑃𝑃′ = 𝜑𝜑 𝑃𝑃 ,𝑄𝑄′ = 𝜑𝜑(𝑄𝑄)𝑃𝑃,𝑄𝑄

𝐴𝐴=

𝐸𝐸𝑟𝑟 × 𝐸𝐸′𝑟𝑟

𝐴𝐴
Φ?

we no longer know kerΦ…
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𝐸𝐸 𝐸𝐸𝐸
𝜑𝜑

𝑃𝑃′ = 𝜑𝜑 𝑃𝑃 ,𝑄𝑄′ = 𝜑𝜑(𝑄𝑄)𝑃𝑃,𝑄𝑄

𝐴𝐴=

𝐸𝐸𝑟𝑟 × 𝐸𝐸′𝑟𝑟

𝐴𝐴
Φ1

but we do know 𝑁𝑁(kerΦ)!

𝑋𝑋
�Φ2

we also know 𝑁𝑁(ker �Φ)

Full case:  𝑁𝑁 > 𝑑𝑑, gcd 𝑁𝑁,𝑑𝑑 = 1
𝑁𝑁2 − 𝑑𝑑 = 𝑎𝑎2 or   𝑎𝑎12 + 𝑎𝑎22 or   𝑎𝑎12 + 𝑎𝑎22 + 𝑎𝑎32 + 𝑎𝑎42

Approach: proceed as if we know the images of  1
𝑁𝑁
𝑃𝑃, 1

𝑁𝑁
𝑄𝑄 ∈ 𝐸𝐸[𝑁𝑁2].
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𝐸𝐸 𝐸𝐸𝐸
𝜑𝜑

𝑃𝑃′ = 𝜑𝜑 𝑃𝑃 ,𝑄𝑄′ = 𝜑𝜑(𝑄𝑄)𝑃𝑃,𝑄𝑄

𝐴𝐴=

𝐸𝐸𝑟𝑟 × 𝐸𝐸′𝑟𝑟

𝐴𝐴
Φ1 𝑋𝑋

�Φ2

so we recoverΦ as ��Φ2 ∘ 𝜃𝜃 ∘ Φ1 for some 𝜃𝜃 ∈ Aut(𝑋𝑋)

Full case:  𝑁𝑁 > 𝑑𝑑, gcd 𝑁𝑁,𝑑𝑑 = 1
𝑁𝑁2 − 𝑑𝑑 = 𝑎𝑎2 or   𝑎𝑎12 + 𝑎𝑎22 or   𝑎𝑎12 + 𝑎𝑎22 + 𝑎𝑎32 + 𝑎𝑎42

Approach: proceed as if we know the images of  1
𝑁𝑁
𝑃𝑃, 1

𝑁𝑁
𝑄𝑄 ∈ 𝐸𝐸[𝑁𝑁2].

(can be a bit subtle)
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Breaking SIDH/SIKE in practice: 
 prefer to use 2,2 -isogenies or (3,3)-isogenies (until [LR22] is practical),

 good news:  𝑁𝑁𝐴𝐴 = 2𝑛𝑛 and  𝑁𝑁𝐵𝐵 = 3𝑚𝑚 and either 𝑁𝑁𝐴𝐴 > 𝑁𝑁𝐵𝐵 or 𝑁𝑁𝐵𝐵 > 𝑁𝑁𝐴𝐴,

 bad news:  𝑁𝑁𝐴𝐴 − 𝑁𝑁𝐵𝐵 = 𝑎𝑎2 extremely unlikely,

 𝑁𝑁𝐴𝐴 − 𝑁𝑁𝐵𝐵 = 𝑎𝑎12 + 𝑎𝑎22 more likely, but can we avoid dimension 4?

4. Recovering an isogeny from torsion point information

Φ : 𝐸𝐸 × 𝐸𝐸𝐸 𝐸𝐸 × 𝐸𝐸𝐸

𝑎𝑎 �𝜑𝜑
−𝜑𝜑 𝑎𝑎

?

?

Yes for special starting curves 𝐸𝐸!



Breaking SIDH/SIKE in practice: 
 prefer to use 2,2 -isogenies or (3,3)-isogenies (until [LR22] is practical),

 good news:  𝑁𝑁𝐴𝐴 = 2𝑛𝑛 and  𝑁𝑁𝐵𝐵 = 3𝑚𝑚 and either 𝑁𝑁𝐴𝐴 > 𝑁𝑁𝐵𝐵 or 𝑁𝑁𝐵𝐵 > 𝑁𝑁𝐴𝐴,

 bad news:  𝑁𝑁𝐴𝐴 − 𝑁𝑁𝐵𝐵 = 𝑎𝑎2 extremely unlikely,

 𝑁𝑁𝐴𝐴 − 𝑁𝑁𝐵𝐵 = 𝑎𝑎12 + 𝑎𝑎22 more likely,

 breaks all security levels of SIKE in seconds on a laptop [OP22], [DK23]

Φ : 𝐸𝐸 × 𝐸𝐸𝐸 𝐸𝐸 × 𝐶𝐶

𝑎𝑎1 + 𝐢𝐢𝑎𝑎2 �𝜑𝜑
− 𝑎𝑎1 + 𝐢𝐢𝑎𝑎2 ∗𝜑𝜑 𝜑𝜑∗(𝑎𝑎1 + 𝐢𝐢𝑎𝑎2)

16/28
4. Recovering an isogeny from torsion point information

𝐸𝐸: 𝑦𝑦2 = 𝑥𝑥3 + 𝑥𝑥

𝐢𝐢 ∶ 𝐸𝐸 → 𝐸𝐸: 𝑥𝑥,𝑦𝑦 ↦ (−𝑥𝑥, −1𝑦𝑦)



5. Isogeny interpolation: general statement
Variations on this idea lead to:  

Theorem [Rob23,DFP24,CDM+24]

𝐸𝐸
?

There is an algorithm for the evaluation of an isogeny 𝜑𝜑 ∶ 𝐸𝐸 → 𝐸𝐸𝐸 over 𝐅𝐅𝑞𝑞 of known 
degree 𝑑𝑑 at any given point, upon input of interpolation data

𝑃𝑃1,𝜑𝜑 𝑃𝑃1 , 𝑃𝑃2,𝜑𝜑 𝑃𝑃2 , … , 𝑃𝑃𝑟𝑟 ,𝜑𝜑 𝑃𝑃𝑟𝑟

such that the group ⟨𝑃𝑃1,𝑃𝑃2, … ,𝑃𝑃𝑟𝑟⟩ has order 𝑁𝑁 with

𝑁𝑁 smooth,    𝑁𝑁 > 4𝑑𝑑, gcd 𝑞𝑞,𝑁𝑁 = 1, 

with a running time that is polynomial in the input size and 
in the degrees of the defining fields of 𝐸𝐸 ℓ ⁄𝑒𝑒 2 for all prime powers ℓ𝑒𝑒 ∣ 𝑁𝑁. 

optimal [JU18]

17/28
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𝑁𝑁 smooth,    𝑁𝑁 > 4𝑑𝑑, gcd 𝑞𝑞,𝑁𝑁 = 1, 

with a running time that is polynomial in the input size and 
in the degrees of the defining fields of 𝐸𝐸 ℓ ⁄𝑒𝑒 2 for all prime powers ℓ𝑒𝑒 ∣ 𝑁𝑁. 

empty conditions in supersingular case
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5. Isogeny interpolation: general statement
Variations on this idea lead to:  

Theorem [Rob23,DFP24,CDM+24]

𝐸𝐸
?

There is an algorithm for the evaluation of an isogeny 𝜑𝜑 ∶ 𝐸𝐸 → 𝐸𝐸𝐸 over 𝐅𝐅𝑞𝑞 of known 
degree 𝑑𝑑 at any given point, upon input of interpolation data

𝑃𝑃1,𝜑𝜑 𝑃𝑃1 , 𝑃𝑃2,𝜑𝜑 𝑃𝑃2 , … , 𝑃𝑃𝑟𝑟 ,𝜑𝜑 𝑃𝑃𝑟𝑟

such that the group ⟨𝑃𝑃1,𝑃𝑃2, … ,𝑃𝑃𝑟𝑟⟩ has order 𝑁𝑁 with

𝑁𝑁 smooth,    𝑁𝑁 > 4𝑑𝑑, gcd 𝑞𝑞,𝑁𝑁 = 1, 

with a running time that is polynomial in the input size and 
in the degrees of the defining fields of 𝐸𝐸 ℓ ⁄𝑒𝑒 2 for all prime powers ℓ𝑒𝑒 ∣ 𝑁𝑁. 

might be liftable in general (Dieudonné modules)

17/28



6. Isogeny representation
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Re: what does it mean to represent a degree-𝑑𝑑 isogeny 𝜑𝜑:𝐸𝐸 → 𝐸𝐸𝐸?

 As a rational map ?

Object of size 𝑂𝑂 (log 𝑞𝑞)𝑑𝑑 .

Feasible only if 𝑑𝑑 is smooth write 𝜑𝜑 as composition of

𝜑𝜑 ∶ 𝑥𝑥,𝑦𝑦 ↦
𝑥𝑥3 + 𝑥𝑥2 + 𝑥𝑥 + 2

𝑥𝑥 − 5 2 ,𝑦𝑦
𝑥𝑥3 − 4𝑥𝑥2 + 2

𝑥𝑥 − 5 3E.g.,

pre-2022: default understanding of isogeny representation

small-degree isogenies



6. Isogeny representation
19/28

Re: what does it mean to represent a degree-𝑑𝑑 isogeny 𝜑𝜑:𝐸𝐸 → 𝐸𝐸𝐸?

 Via its kernel 𝐺𝐺?

If the points in 𝐺𝐺 defined over 𝐅𝐅𝑞𝑞𝑓𝑓: object of size 𝑂𝑂((log 𝑞𝑞)𝑓𝑓).

Requires conversion to be useful (e.g., to a rational map via Vélu).

 Via its kernel ideal 𝐼𝐼𝜑𝜑?

Requires sufficient knowledge of the endomorphism ring.

To be useful, must be smoothened via [KLP+14] or lattice reduction.



6. Isogeny representation
20/28

Re: what does it mean to represent a degree-𝑑𝑑 isogeny 𝜑𝜑:𝐸𝐸 → 𝐸𝐸𝐸?

 Via interpolation data !

Two caveats: 

 interpolation data must be provided,

 efficiency much depends on parameters (ideally dim 2 and 𝑁𝑁 = 2𝑛𝑛). 

𝐸𝐸
?



Kani’s lemma [Kan97]

7. Isogeny generation
21/28

main source of inspiration for the SIDH attacks



Kani’s lemma [Kan97]

7. Isogeny generation
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Consider a commuting diagram of isogenies:

Then the map

is a degα + deg β , degα + deg β -isogeny of p.p. abelian surfaces with kernel 

𝛼𝛼 𝑃𝑃 ,𝛽𝛽 𝑃𝑃 𝑃𝑃 ∈ 𝐸𝐸1 deg𝛼𝛼 + deg𝛽𝛽 .

Φ ∶ 𝐸𝐸2 × 𝐸𝐸3 𝐸𝐸1 × 𝐸𝐸4

�𝛼𝛼 �̂�𝛽
− 𝛿𝛿 𝛾𝛾

𝐸𝐸1 𝐸𝐸3

𝐸𝐸2 𝐸𝐸4

𝛽𝛽

𝛼𝛼 𝛾𝛾

𝛿𝛿

𝐸𝐸𝑖𝑖 𝐸𝐸𝑗𝑗

“isogeny diamond”

same degree

same degree, coprime to previous 



Kani’s lemma [Kan97]

7. Isogeny generation
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Consider a commuting diagram of isogenies:

Then the map

is a degα + deg β , degα + deg β -isogeny of p.p. abelian surfaces with kernel 

𝛼𝛼 𝑃𝑃 ,𝛽𝛽 𝑃𝑃 𝑃𝑃 ∈ 𝐸𝐸1 deg𝛼𝛼 + deg𝛽𝛽 .

Φ ∶ 𝐸𝐸2 × 𝐸𝐸3 𝐸𝐸1 × 𝐸𝐸4

�𝛼𝛼 �̂�𝛽
− 𝛿𝛿 𝛾𝛾

𝐸𝐸1 𝐸𝐸3

𝐸𝐸2 𝐸𝐸4

𝛽𝛽

𝛼𝛼 𝛾𝛾

𝛿𝛿

can also be written as
� deg𝛼𝛼 𝑄𝑄,𝛽𝛽 �𝛼𝛼 𝑄𝑄 � 𝑑𝑑

�𝑑𝑑 𝑄𝑄 ∈ 𝐸𝐸2 deg𝛼𝛼 + deg𝛽𝛽
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Special case revisited:

𝑁𝑁 > 𝑑𝑑, gcd 𝑁𝑁,𝑑𝑑 = 1
𝑁𝑁 − 𝑑𝑑 = 𝑎𝑎2 is square

𝐸𝐸 𝐸𝐸𝐸

𝐸𝐸 𝐸𝐸𝐸

𝜑𝜑

[𝑎𝑎] [𝑎𝑎]

𝜑𝜑

Φ : 𝐸𝐸 × 𝐸𝐸′ 𝐸𝐸 × 𝐸𝐸𝐸

𝑎𝑎 �𝜑𝜑
−𝜑𝜑 𝑎𝑎



7. Isogeny generation
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Useful subroutine in isogeny-based cryptography:

 input: supersingular 𝐸𝐸 with known endomorphism ring
large prime ℓ

 output: random isogeny

of degree ℓ

𝐸𝐸𝐸𝐸𝐸𝜑𝜑 ∶
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Useful subroutine in isogeny-based cryptography:

 input: supersingular 𝐸𝐸 with known endomorphism ring
large prime ℓ

 output: random isogeny

of degree ℓ

𝐸𝐸 𝐸𝐸𝐸

Cumbersome solution: generate ideal 𝐼𝐼𝜑𝜑 of norm ℓ,
find equivalent ideal 𝐼𝐼𝜓𝜓 ∼ 𝐼𝐼𝜑𝜑 of smooth norm via [KLP+14],
convert 𝐼𝐼𝜓𝜓 into isogeny and recover 𝜑𝜑 = ⁄(𝜓𝜓 ∘ �𝜓𝜓𝜑𝜑) deg𝜓𝜓

𝜑𝜑 ∶

𝜓𝜓



7. Isogeny generation
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Nakagawa-Onuki trick aka QFESTA [NO23]:

 generate 𝜃𝜃 ∈ End(𝐸𝐸) with norm ℓ 2𝑛𝑛 − ℓ , necessarily fits in diagram

𝐸𝐸𝐸 𝐸𝐸

𝐸𝐸 𝐹𝐹

𝛽𝛽

𝛼𝛼 𝛾𝛾

𝛿𝛿

𝜃𝜃

degree 2𝑛𝑛 − ℓ

degree ℓ

( 𝜃𝜃 = 𝛽𝛽 ∘ �𝛼𝛼 )



7. Isogeny generation
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Nakagawa-Onuki trick aka QFESTA [NO23]:

 generate 𝜃𝜃 ∈ End(𝐸𝐸) with norm ℓ 2𝑛𝑛 − ℓ , necessarily fits in diagram

 compute isogeny                                                                     from known kernel

 generalizes from endomorphism factorization to isogeny factorization

Φ ∶ 𝐸𝐸 × 𝐸𝐸 𝐸𝐸𝐸 × 𝐹𝐹

�𝛼𝛼 �̂�𝛽
− 𝛿𝛿 𝛾𝛾

𝐸𝐸𝐸 𝐸𝐸

𝐸𝐸 𝐹𝐹

𝛽𝛽

𝛼𝛼 𝛾𝛾

𝛿𝛿

𝜃𝜃

𝛼𝛼 𝑃𝑃 ,𝛽𝛽 𝑃𝑃 𝑃𝑃 ∈ 𝐸𝐸𝐸 2𝑛𝑛

=

ℓ 𝑄𝑄 ,𝜃𝜃 𝑄𝑄 𝑄𝑄 ∈ 𝐸𝐸 2𝑛𝑛

=

recover 𝐸𝐸𝐸 and 
interpolation data 

for 𝜑𝜑 = �𝛼𝛼



7. Isogeny generation
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Clapoti [PR23,BDD+24]: given ideal 𝐼𝐼𝜑𝜑 ⊆ End(𝐸𝐸), compute 𝜑𝜑 ∶ 𝐸𝐸 → 𝐸𝐸𝐸

 high-level idea: find 𝐼𝐼 ∼ 𝐼𝐼′ ∼ 𝐼𝐼𝜑𝜑 with 𝑁𝑁 𝐼𝐼 + 𝑁𝑁 𝐼𝐼′ = 2𝑛𝑛,

 then 𝐼𝐼′ = 𝐼𝐼
�𝜃𝜃

𝑁𝑁(𝐼𝐼)
for some 𝜃𝜃 ∈ End(𝐸𝐸), implies �𝜑𝜑𝐼𝐼′ ∘ 𝜑𝜑𝐼𝐼 = 𝜃𝜃,

 fits in diamond                                               from which we recover 𝜑𝜑𝐼𝐼 and 𝐸𝐸𝐸,

 likewise 𝐼𝐼 = 𝐼𝐼𝜑𝜑
�𝜂𝜂

𝑁𝑁(𝐼𝐼𝜑𝜑)
for some 𝜂𝜂 ∈ End(𝐸𝐸) 𝜑𝜑 = ⁄𝜑𝜑𝐼𝐼𝜂𝜂 𝑁𝑁(𝐼𝐼)

 turns CM ideal-class group action into an effective group action

𝐸𝐸𝐸 𝐸𝐸

𝐸𝐸 𝐹𝐹

�𝜑𝜑𝐼𝐼′

𝜃𝜃�𝜑𝜑𝐼𝐼

can be relaxed to 
𝑢𝑢𝑁𝑁 𝐼𝐼 + 𝑣𝑣𝑁𝑁 𝐼𝐼′ = 2𝑛𝑛



6. Cryptographic application: PRISM [BCC+24]
26/28

Simplified version:

 secret and public key: 

𝐸𝐸0 𝐸𝐸pk
𝜏𝜏sk

 signing message msg: using knowledge of 𝜏𝜏sk, produce interpolation data for 

𝜎𝜎 ∶ 𝐸𝐸pk → 𝐸𝐸sig

of degree ℓ = 𝐻𝐻 ‖msg 𝐸𝐸pk ∈ {primes ≤ 𝐵𝐵}

 verifying a signature for msg:
verify that data interpolates isogeny of degree ℓ = 𝐻𝐻 ‖msg 𝐸𝐸pk

𝐸𝐸sig
𝜎𝜎



6. Cryptographic application: SQIsignHD [DLR+24]
27/28

Intermediate version between SQIsign [DKL+20] and SQIsign2D-West [BDD+24].

updated version for 2nd round
competitor in renewed NIST competition 



6. Cryptographic application: SQIsignHD [DLR+24]
27/28

Intermediate version between SQIsign [DKL+20] and SQIsign2D-West [BDD+24].

Built from identification scheme:

𝐸𝐸 𝐸𝐸pk
𝜏𝜏sk

𝐸𝐸com

𝜓𝜓

𝐸𝐸ch

𝜑𝜑

response

Original: respond by smoothening 𝜑𝜑 ∘ 𝜏𝜏sk ∘ �𝜓𝜓 ∶ 𝐸𝐸com → 𝐸𝐸ch via generalized KLPT.

HD: respond with interpolation data for random isogeny 𝜎𝜎:𝐸𝐸com → 𝐸𝐸ch.

✓ cleaner security assumption
✓ better scaling
✓ faster signing
✓ smaller signatures
✗ slower verification



7. Surprising application [Rob22b]
28/28

Let 𝐸𝐸/𝐅𝐅𝑞𝑞 be an ordinary elliptic curve. We know:

𝐙𝐙 𝜋𝜋𝑞𝑞 ⊆ End 𝐸𝐸 ⊆ 𝑂𝑂𝐾𝐾 with   𝐾𝐾 = 𝐐𝐐 𝑡𝑡2 − 4𝑞𝑞

but where exactly?



7. Surprising application [Rob22b]
28/28

Let 𝐸𝐸/𝐅𝐅𝑞𝑞 be an ordinary elliptic curve. We know:

𝐙𝐙 𝜋𝜋𝑞𝑞 ⊆ End 𝐸𝐸 ⊆ 𝑂𝑂𝐾𝐾 with   𝐾𝐾 = 𝐐𝐐 𝑡𝑡2 − 4𝑞𝑞

index 𝒇𝒇



7. Surprising application [Rob22b]
28/28

Let 𝐸𝐸/𝐅𝐅𝑞𝑞 be an ordinary elliptic curve. We know:

𝐙𝐙 𝜋𝜋𝑞𝑞 ⊆ End 𝐸𝐸 ⊆ 𝑂𝑂𝐾𝐾 with   𝐾𝐾 = 𝐐𝐐 𝑡𝑡2 − 4𝑞𝑞

divisible by which prime 
powers dividing 𝒇𝒇 ?

To test a prime power 𝑏𝑏 ∣ 𝑓𝑓, we:

 determine 𝑎𝑎 ∈ 𝐙𝐙 such that charpol𝜋𝜋𝑞𝑞 𝑋𝑋 ≡ 𝑋𝑋 − 𝑎𝑎 2 mod 𝑏𝑏,

 evaluate hypothetical endomorphism 𝜋𝜋𝑞𝑞−𝑎𝑎
𝑏𝑏

on sufficiently many points

 run isogeny interpolation: algorithm will crash iff 𝑏𝑏 ∤ End 𝐸𝐸 :𝐙𝐙 𝜋𝜋𝑞𝑞

small order coprime with 𝑏𝑏



7. Surprising application [Rob22b]
28/28

Let 𝐸𝐸/𝐅𝐅𝑞𝑞 be an ordinary elliptic curve. We know:

𝐙𝐙 𝜋𝜋𝑞𝑞 ⊆ End 𝐸𝐸 ⊆ 𝑂𝑂𝐾𝐾 with   𝐾𝐾 = 𝐐𝐐 𝑡𝑡2 − 4𝑞𝑞

divisible by which prime 
powers dividing 𝒇𝒇 ?

To test a prime power 𝑏𝑏 ∣ 𝑓𝑓, we:

 determine 𝑎𝑎 ∈ 𝐙𝐙 such that charpol𝜋𝜋𝑞𝑞 𝑋𝑋 ≡ 𝑋𝑋 − 𝑎𝑎 2 mod 𝑏𝑏,

 evaluate hypothetical endomorphism 𝜋𝜋𝑞𝑞−𝑎𝑎
𝑏𝑏

on sufficiently many points

 run isogeny interpolation: algorithm will crash iff 𝑏𝑏 ∤ End 𝐸𝐸 :𝐙𝐙 𝜋𝜋𝑞𝑞

requires factorization of 𝒇𝒇



Questions?
Danke schön!
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