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BISMUT-ZHANG THEOREM AND ANOMALY FORMULA FOR THE RAY-SINGER
METRIC FOR SPACES WITH ISOLATED CONICAL SINGULARITIES

URSULA LUDWIG

ABSTRACT. In this article we extend to spaces with isolated conical singularities Bismut
and Zhang’s generalisation of the Cheeger-Miiller Theorem, i.e. the comparison formula
between analytic torsion and Milnor torsion of a smooth compact manifold equipped with
an arbitrary flat Hermitian vector bundle. We also establish anomaly formulas for all three
terms appearing in our Bismut-Zhang formula for a space with isolated conical singulari-
ties, in particular we generalise Bismut and Zhang’s anomaly formula for the Ray-Singer
metric to this singular context.

1. INTRODUCTION

The Cheeger-Miiller theorem, the comparison of analytic (or Ray-Singer) and topo-
logical (or Reidemeister-Franz) torsion for smooth compact manifolds equipped with a
unitary flat vector bundle, is one of the most important comparison theorems in global
analysis. It has been conjectured by Ray and Singer and has been independently proved
by Cheeger [Che79] and Miiller [Mul78]]. In [Mul93]] Miiller extended the result to the
case of odd dimensional manifolds, where only the metric on the determinant of the flat
vector bundle is required to be flat, the so-called unimodular case. In the same time, in
[BZ92], Bismut and Zhang combined the Witten deformation ([Wit82, [HS85]]) and local
index techniques to generalise the result of Cheeger and Miiller to arbitrary flat vector
bundles with arbitrary Hermitian metrics. Bismut and Zhang compare the analytic tor-
sion with the Milnor torsion: If the flat vector bundle is not unitary or unimodular the
two torsions are no longer equal and the difference between them can be expressed in
terms of the Mathai-Quillen current. In this article we refer to this most general version
of the comparison theorem of torsions as the Bismut-Zhang theorem.

The question of extending the Cheeger-Miiller theorem to spaces with conical singular-
ities has been raised by Dar [Dar87] nearly 40 years ago, very early in the development
of global analysis of these spaces. She proved well-definedness of analytic torsion on
singular spaces with isolated conical singularities and also defined the intersection Rei-
demeister torsion for general stratified pseudomanifolds (for any perversity function in
the sense of Goresky and MacPherson). For an even-dimensional oriented space with
isolated conical singularities, she then proved equality between analytic and intersection
Reidemeister torsion (with middle perversity m); this case is easy due to a duality argu-
ment. Following an idea suggested by Lesch in [Les98|, Problem 5.3], namely to study
the problem of a Cheeger-Miiller theorem for singular spaces via gluing formulas, sev-
eral articles have computed and studied the analytic torsion on a truncated cone [Ver09],
[MV14], [HS10], [HS11], [HS16]. The recent preprint [HS20] seems to carry out the
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gluing. However, a problem which the authors face in this approach is the missing inter-
pretation of the analytic correction term, stemming from the singularities of the space,
to the comparison formula in the odd dimensional case.

Although a Cheeger-Miiller theorem for spaces with isolated conical singularities was
still missing, it was expected that the Ray-Singer metric is no longer a topological invari-
ant in general. Only partial results on anomaly formulas for the Ray-Singer metric for
spaces with isolated conical singularities exist so far: In [MV14] an asymptotic variation
formula for the analytic torsion of a truncated odd dimensional cone is given.

In [MV12] Mazzeo and Vertman prove the well-definedness of analytic torsion for
incomplete edge spaces (sometimes also called wedge spaces in the literature), i.e. spaces
with a singular stratum of positive dimension and a cone-like metric near the singular
stratum. The authors also prove topological invariance of the analytic torsion for an odd
dimensional wedge space with an odd dimensional singular stratum. The Cheeger-Miiller
theorem on an odd dimensional wedge space with odd dimensional singular stratum
equipped with a unimodular bundle satisfying an additional acyclicity condition has been
studied in [ARS22]. The strategy in [ARS22]] consists in the study of analytic torsion via
degeneration of smooth metrics into conical metrics. The assumptions made in [ARS22]]
exclude the case of odd dimensional spaces with isolated singularities, they also exclude
the case of the trivial bundle.

Yet another strategy to approach the Cheeger-Miiller theorem for spaces with singu-
larities, proposed by the author, is to attack the question, by generalising the strategy
of Bismut and Zhang in [BZ92] to the singular setting. This approach has been suc-
cessful, providing in [Lud20a] an answer to the long open question. The generalisation
of the Cheeger-Miiller theorem for singular spaces with isolated conical singularities in
[Lud20a] has been proved in the case of unitary vector bundles and under the assump-
tion of the Witt and an additional spectral Witt condition. The comparison theorem in
[Lud20a] establishes the equality of the Ray-Singer metric and a metric also defined in
[Lud20a] and which henceforth we will call the Bismut-Zhang metric (its definition is re-
called in Section [2.9). The Bismut-Zhang metric is a Milnor like metric with an analytic
correction term from the singular points of the space. This analytic correction term is
precisely the analytic torsion of a model operator on the infinite cone over the link of the
singularity. This model operator on the infinite cone has been introduced in [Lud17b]
and is the generalisation of Witten’s famous harmonic oscillator [Wit82]].

The aim of this article is to fully profit from the strength of the Bismut-Zhang approach
to the study of torsion and complete the program of the study of the comparison of
torsions on spaces with isolated conical singularities started in [Lud20a]: Firstly we
manage to prove the most general version of the comparison theorem of torsions for
spaces with isolated conical singularities, i.e. the Bismut-Zhang theorem for these spaces.
Secondly we provide anomaly formulas for all three terms in the Cheeger-Miiller/Bismut-
Zhang theorem, in particular for the Ray-Singer metric on spaces with isolated conical
singularities — a task not yet addressed neither in [Lud20a] nor elsewhere.

In the first part of this article we prove a Bismut-Zhang formula for spaces with isolated
conical singularities, i.e. we treat the case, where the flat bundle is not unitary. We are
also able to remove the assumption made in [Lud20al], that the space satisfies the Witt
and a spectral Witt condition:
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Theorem 1. Let (X, g7X) be a space with isolated conical singularities and let § € {m, n}
be the lower resp. upper middle perversity. Let (F, V¥ g') be a flat vector bundle over the
smooth stratum X,,,. Let f : X — R be an anti-radial Morse function, g1 a Riemannian
metric on X, coinciding with g"* in a neighbourhood of the singular set Sing(X) and such
that the pair (f, gt*) is Morse-Smale. Set Y := V,, f. Then:

H Hde IH
(1.1) log Y;TX = —J O(F, g")Y*U(TX, V),
I et THS( X
where | [[1 1+ (x ) denotes the Ray-Singer metric (see Section 2.6)), | H?;j?; () denotes
q )

the Bismut-Zhang metric (see Section [2.9), 0(F, g*) is a closed 1-form measuring the ob-
struction to the existence of a flat metric on det(F’) (see Section 2.4)) and ¥ (T X, VT¥)
is the Mathai-Quillen current (see Section [3.2)).

Theorem I generalises the smooth Bismut-Zhang theorem [BZ92|, Theorem 0.2] as well
as the Cheeger-Miiller theorem for spaces with isolated conical singularities in [Lud20a,
Section 2.11]. In the case of an even dimensional space with isolated conical singular-
ities the two middle perversities coincide, m = 7. For an odd dimensional space which
does not satisfy the Witt condition, we get two comparison formulas according to the
two middle perversities for intersection cohomology; the two formulas are related by
Poincaré duality. Using the methods of this paper the formula can also be extended
to all mezzo-perversities in the sense of Albin, Banagl, Leichtnam, Mazzeo and Piazza
[ABL*15].

Let us comment on the proof of Theorem I. As in [BZ92]] and in [Lud20a], local index
techniques and the Witten deformation play a major role in this article. Most of the
intermediate results, which are the core of the proof of Theorem I, typically consist of
two steps: localisation and a local computation near the critical points of the Morse
function. The main work which hence remains to be done here, consists in extending the
study of the local model near singular points in [Lud20a], where one now has to deal in
addition with the different ibcs a la Cheeger - this is done in Section 4. Once the local
model is understood, the proofs of most of the intermediate results can be generalised by
following closely the proof of the corresponding results in [Lud20al]. We will not repeat
the details of these proofs here; but instead shortly indicate, why the proofs in [Lud20all
carry through to this more general situation.

In this article we develop a crucial new tool, which consists in a combination of lo-
cal index techniques a la Bismut-Zhang with the Singular Asymptotic Lemma (SAL) of
Briining and Seeley [BS85]. This tool comes into play, when treating the Cheeger type
invariants which appear as the contribution of the singularities of X in the small time
asymptotics of the supertrace of operators related to the heat operator. It is this tool,
which allows to push the analysis beyond what has been done in [Lud20al] and to treat
the more general situation in this article. More concretely this tool is used in the proof
of one of the intermediate results, namely Theorem The proof of the corresponding
result in [Lud20a] in case of an even dimensional space was assuming orientability of
the space, relied on a simple duality argument and does not generalise to the present
situation.

The above mentioned combination of local index techniques and SAL developed here,
indeed allows to replace most of the explicit computations in the local model by abstract
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arguments. We therefore expect that it will be a useful tool in further studies of secondary
invariants in a more general singular setting.

The second aim of this article is to study anomaly formulas for all three terms in the
Bismut-Zhang formula (1.1)), i.e. we study their behaviour under change of the Riemann-
ian conical metric ¢’ and of the Hermitian metric ¢ on the flat bundle. This is done in
Sections 3 and 7.

For a Euclidean vector bundle (F, V¥) with metric connection, we denote by e(E, V¥)
the Euler form in Chern-Weil theory. We denote by p : X x R — X the canonical
projection. The following theorem generalises the smooth anomaly formula for the Ray-
Singer metric in [BZ92| Section IV] to spaces with isolated conical singularities:

Theorem II. Let R 5 1 — (g{*, g7") be a family of metrics on T X, F satisfying the spectral
gap condition (7.1). Then, the variation of the Ray-Singer metric is given by

2
0 log ((‘ Hﬁmg(x,F),l) >

a F
a2y ~[m [@f)l%} (X, VE) 4 [ el X TN f
X X
+ Z (CZ,IJFEE,J’
peSing(X)

where the connection VI on the pull back bundle p*T X is defined in (3.12) and the

contributions of the singularities Cg,z: ¢ p e Sing(X), are the Cheeger type invariants
defined in (7.12).

P

Theorem II generalises the anomaly formula for the Ray-Singer metric in case of a
smooth compact manifold in [BZ92, Theorems 4.14 and 4.20]; the two first terms on
the right hand side of — the interior contribution — appear already in the smooth
formulas.

We also prove an anomaly formula for the Bismut-Zhang metric (see Theorem [7.8)
and a variation formula for the right hand side in the Bismut-Zhang formula (see
Theorem [3.4), the latter generalises the corresponding smooth result in [BZ92, Section
VI]. We do not state these theorems in this introduction, since more notation is required
for their statement. Let us just emphasise that, unlike the Milnor metric of a smooth
compact manifold, the Bismut-Zhang metric of a singular space is in general not a purely
topological invariant of the space, even if the flat bundle is unitary.

The study of anomaly formulas in Section 7 is new, and had not been addressed in
[Lud20a] (or elsewhere). To deal with the change of domains of the operators in a
family, we first adapt a trick used by Cheeger for manifolds with boundary to spaces
with singularities. The above mentioned tool of combining the local index techniques of
Bismut and Zhang with SAL is again key for relating the contribution of the singulari-
ties in the anomaly formulas of the Bismut-Zhang and the Ray-Singer metric, e.g. the
contributions ¢! ,, ¢ , p € Sing(X) in are of this type.

The article is organised as follows: In Section |2| we explain the notation and recall,
for convenience of the reader, some basic definitions and facts on singular spaces with
isolated conical singularities used in the article. In Section (resp. Section [2.9) we
recall from [Dar87] resp. [Lud20a] the definition of the Ray-Singer (resp. the Bismut-
Zhang) metric for a space with isolated conical singularities, the two metrics compared
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in Theorem 1. In Section [3|we study the Berezin integral formalism as well as the Mathai-
Quillen current for singular spaces and anti-radial Morse functions. This will be used
for the proof of the variation formulas of the r.h.s. in (in Section as well as
in the proofs of the anomaly formulas in Section [/l In Section [4| we study the Witten
deformation: We first shortly recall from [Lud17b] the Witten deformation for singular
spaces with isolated conical singularities and anti-radial Morse functions in Section (4.1

In Sections 4.214.3, we study the local model Witten Laplacian and adapt results from
[Lud20b, Lud20a] to the situation, where the space is no longer Witt and the flat bundle
is no longer unitary. In Section |5| we state nine intermediate results, which are the
analogues of the nine intermediate results in [BZ92, Section VII] and [Lud20a, Section
5]. Once the nine intermediate results are achieved in our more general situation, the
proof of the Bismut-Zhang Theorem (Theorem I) is completely analogous to the proof in
[BZ92, Section VII] and in [Lud20a, Section 6], hence we omit it here. Section [§] deals
with the proofs of the nine intermediate results: Once the local model is understood, the
proofs of most of the intermediate results follow closely those of [Lud20al]. We will not
repeat the details of these proofs here but rather explain, why they carry through in this
more general situation. As already pointed out, the proof of Theorem is completely
new both in ideas and technique, and is the only proof of the intermediate results, which
we give in detail here. In the last section, Section |7, we study anomaly formulas for the
Ray-Singer and the Bismut-Zhang metric of a space with isolated conical singularities; in
particular the proof of Theorem II can be found in this section.

Acknowledgements. The author wishes to thank Shu Shen (IMJ-PRG, Paris) for dis-
cussions on local index techniques. The larger part of this work has been done during
the author’s stay at the Max-Planck Institute for Mathematics in Bonn and the author
thanks the institute for its hospitality and the excellent working conditions. The author
acknowledges support and partial funding from DFG under Germany’s Excellence Strat-
egy EXC 2044-390685587, Mathematics Miinster: Dynamics-Geometry-Structure as well
as under the ANR-DFG project Quantization, Singularities and Holomorphic Dynamics
(project number: 490843120).

2. PRELIMINARIES

2.1. Singular spaces with isolated conical singularities. For a smooth manifold L and
0 > 0, we denote by

(2.1) csLi:= ([0,60) x L) /(0,2)~(0.)

the (open) truncated cone over L.

Let X be a connected topological space, Sing(X) — X a finite set of points, such that
Xem 1= X \Sing(X) is a smooth manifold of dimension n > 2. We denote by TX (resp. by
T*X) the tangent bundle (resp. the cotangent bundle) of X,,,. Let ¢’ be a Riemannian
metric on X,,,. We assume that (X, g7%) is a space with isolated conical singularities of
dimension n, i.e.

(1) For p € Sing(X), there exist an open neighbourhood Bj;(p) of p, a smooth compact
connected manifold L, of dimension dim L, = n — 1 and a diffeomorphism ¢, :
Bs(p)\{p} ~ ¢sL,\{0}. The diffeomorphism ¢, extends to a homeomorphism, still
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denoted by ¢,,

(22) Qpp . B(; (p) ~ C(;Lp and g%)j(p)\{p} = QO; (d?“2 + T2gTLp) s
where r is the radial coordinate and ¢”» is a Riemannian metric on the manifold
L, (not depending on 7).
(2) The set

X\ U B

peSing(X)

is a smooth compact manifold of dimension n with boundary U L,.
peSing(X)
The set Sing(.X) is called the singular set of X. For p € Sing(X), the manifold L, is
called the link of X at p. Let us emphasise that the radial coordinate r in is fixed
throughout this article.

2.2. Flat vector bundles over X. Let (F, V¥ ¢"") be a flat vector bundle over X,,, with
canonical flat connection V" and (not necessarily flat) Hermitian metric g*".

We make the following assumption: For p € Sing(X), we denote by (Fy,, Vi, g"»)
the restriction of (F, V¥, g*') to the link L,. We assume that the restriction of (F, V¥, %)
to a punctured neighbourhood of p € Sing(X) can be identified with the pull back bundle
of the vector bundle (Fy , Vi tr, gFtr).

We denote by F'* the flat bundle dual to F, and by F7  its restriction to Ly, p € Sing(X).

Let w(F, ') be the 1-form on X with values in the self-adjoint endomorphisms of F,

(2.3) w(F, g") = (¢") 'V g".

Note that w(F, ¢g'") = 0, in case g is flat. We denote by 0(F, g*") the following closed
1-form on X

(2.4) 0(F,g") = Tr[w(F, g")].

The cohomology class [(F, g*')] measures the obstruction to the existence of a flat
volume form on F. By our assumption, near p € Sing(X), the form 6(F, g*') does not
depend on the radial coordinate r.

2.3. Local model near p € Sing(X). Let p € Sing(X). We denote by cL, := ([0,%0) x
Ly)/(0.5)~(0,) the infinite cone over L,, by 0 the cone tip and by

(2.5) Zy:=cL,\{0} ~R- x L,

the punctured infinite cone. We write x € Z, in its polar coordinates z = (r,y), where r
is the radial coordinate and y is the coordinate on the link. We equip Z, with the conical
metric g7% = dr? + r?g"%». The flat bundle (F;,, V', g"») can be extended in a trivial
way to a flat bundle (Fy,, V%, ¢") over Z,. If no confusion can occur, we still write F
for F,.

Let us denote by V7% the Levi-Civita connection on (7Z,,¢g"%) and by R*% =
(VTZP)2 its curvature. We denote by V’’» the Levi-Civita connection on (7L, g"'r)

and by RTLr = (VTLP)2 its curvature. The curvatures R7%» and R*’» are related by the
Gauss equation (see e.g. [BC90, Proposition 1.2] or [O’'N83| page 210]): Let X, Y,V be
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smooth vector fields on the link manifold L,. We still denote by X, Y, V' their R, -invariant
extension to smooth vector fields on Z,. Then

(2.6) R™% (2

— ) = 0; RT%(X,Y)V = RTl» (X, V)V — gTlo (Y, V)X + ¢"57(X, V)Y,
or

2.4. Intersection cohomology. We denote by m (resp. ) the lower middle (resp. upper
middle) perversity in the sense of Goresky and MacPherson [GM80,/GM83]]. A perversity
7 is a tuple of non negative natural numbers. For a space with isolated singularities
however, the only relevant information is the last entry in this tuple. Hence by slight

abuse of notation we will identify a perversity g with this last entry, more concretely,

2.7) q:{ |2] -1 forg =,

|2%t]  forg=nm.

Note that for n even, the two middle perversities coincide, m = 7.

For g € {m,n} we denote by I H(X, F) the intersection cohomology of X with perver-
sity ¢ and coefficients in the local system associated to the flat bundle F. For an even
dimensional space with isolated singularities lower and upper middle perversity coincide
and hence also the two intersection cohomologies are the same. More generally, if X is
a Witt space, i.e. if H'% (Lyp, F1,) = 0 for all p € Sing(X), then by [Sie83, Theorem 3.4]

(2.8) [H:(X,F) ~ [HY(X, F).

In this paper, we will not assume the Witt condition, and hence in the odd dimensional
case, we have to distinguish two cases.

Let H*(L,, Fy,) denote the singular cohomology of the link manifold L,. For the rel-
ative intersection cohomology of the cone cL,, with values in the flat bundle /', denoted
by I Hz(cLy, Ly, F')), we have, see [GM83), Section 2.4],

HY(L, Fp) fork>=n-—7gq
K _ P 'Ly = ’
(2.9) IHZ (cLy, Ly, F) = { 0 else.

2.5. L2-cohomology.

2.5.1. Maximal and minimal extension of the de Rham complex. Throughout this article,
we use the language of Hilbert complexes as introduced by Briining and Lesch in [BL92].

We denote by ( , ) the L%-inner product on the space of sections of A(T*X) ® F
induced from the metrics g, g*. We denote by Q2(X, F) (resp. by L*(A(T*X) ® F))
the graded vector space of smooth compactly supported sections (resp. of L2-sections) of
A(T*X) ® F. We denote by d. the exterior derivative acting on Q2 (X, F').

The de Rham complex (22(X, F),d.,( , )) admits several closed extensions (in the
Hilbert space of L2-forms) into a Hilbert complex, a choice of which is called an ideal
boundary condition (shortly ibc) by Cheeger. Here we focus on the maximal (resp. min-
imal) extension, denoted by (C:...., dmax, {, )) (xesp. (Coins dmin, {, »)), Where dy,ax (resp.
dmin) denotes the maximal (resp. the minimal) closed extension of d, in L2(A(T*X)® F).
By [BL93, Theorems 3.7 and 3.8],

(2.10) dom(dyyax)/ dom(duin) ~ @ H'T (Ly, Fy,).

peSing(X)
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Hence for a Witt space and in particular for an even dimensional space, the extension of
the de Rham complex (Q2(X, F'),d.,{, )) into a Hilbert complex is unique, dyin = dmax-

The cohomology of the maximal Hilbert complex (C?., dmax,{ , »), is called the L2-
cohomology of X with values in F,

(2.11) H('Q)(X, F):= H('Q)W(X, F):= H'((Gr;lax,dmax,< , >))
We can also define the cohomology of the minimal extension (C?.., dwin, { ; ),
(2.12) Hiy (X, F) := H*((Cooins donins » )

The two cohomologies introduced here only depend on the quasi-isometry class of the

Riemannian metric. From (2.10), we have for a Witt space Hp, (X, F) = Hp, (X, F).

2.5.2. L2-Hodge-de Rham Theorem. By a result of Cheeger, Goresky and MacPherson
[CGM82, Section 3.4], integration of L2-forms over intersection chains induces a de
Rham isomorphism

(2.13) Hpy (X, F) ~ TH(X, F).

This shows in particular, that the minimal and maximal L?-cohomology are indeed topo-
logical invariants of X.

We denote by d. the (formal) adjoint of the operator d. w.r.t. (, ) acting on compactly
supported forms and by iy /max its minimal resp. maximal extension, which is the
adjoint of dpax /min W.LL. (, ). We denote by D™ (resp. D™) the first order self-adjoint
operator associated to the Hilbert complex (C? ., dax, {, ») (resp. (Cos dmin, <, ). We
have

(2.14) D™ = dyax + Omin (r€SP. D™ = dipin + Omax)-

For ¢ € {m,n}, we denote by A7 := (D7)? the Laplace operators associated to the
two Hilbert complexes and by A%( their restriction to i-forms. By a standard result on
Hilbert complexes, the following L.2-Hodge isomorphism holds (see [Che80, Section 1
and Theorem 5.1], [BL92, Lemma 2.2 and Corollary 2.5])

(2.15) ker(A7) =: #y (X, F) ~ Hy (X, F), 7 e {m, 7},

2.6. The Ray-Singer metric on det /H:(X, F'). We denote by A?* the restriction of A7

to (ker Aq)L. We denote by N the number operator acting on sections of the bundle
A(T*X) ® F by multiplication with the form degree. For s € C, i(s) > 7, set

(2.16) (g(s) = —Tr[N(ATH) ]

By a result of A. Dar [Dar87, Section 4], the function (; extends to a meromorphic func-
tion on the whole complex plane, which is holomorphic at s = 0. The result in [Dar87,
Section 4] has been proved in the case of unitary flat vector bundles, but the same proof
also works in the current situation. Incidentally, the holomorphicity of (; at 0 also follows
by using the Mellin transform and Theorem below.

For a complex vector space V of dimension 1 we denote by V! its dual. For a
vector space V' we denote by det V' the maximal exterior power of V. We denote by
det I H3(X, I) the complex line
(2.17) det TH2(X, F) := Q) (det THE (X, F)) "

k=0
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The L2-metric on sections of A(7*X)® F restricts to a metric on the space of 1.>-harmonic
forms E%('QW(X , ). Using the isomorphisms (2.13) and (2.15)) we get an induced metric
on the line det I /3 (X, F'), which we denote by | |5/ (x -

Definition 2.1. The Ray-Singer metric | |}, ,.(x ;) on the line det [ Hz (X, F') is defined
as

1
(2.18) [ HdetIH = | |§e€IHa'(X,F) exXp <§C(;(0)) .

We will discuss the anomaly formulas for | ||5, He(X, ) L€ the dependence of the
Ray-Singer metric | |, H2(x, 1) O the choices of the metrics ¢’*, g%, in Sectlonl

2.7. Anti-radial Morse functions. Anti-radial Morse functions have been introduced
in [Lud17b]. One inspiration stems from Marie-Hélene Schwartz’s radial vector fields
[Sch86].

Definition 2.2. A continuous function f : X — R is called an anti-radial Morse function,
if the following two conditions hold:
(a) The restriction f,,, := f|x,,. is a smooth Morse function.
(b) Near a singular point p € Sing(X) the function f has the following normal form
in the local coordinates (2.2):

1
(2.19) fry) = flp) = 57
For an anti-radial Morse function f, we denote by Crit(fs,) (resp. by Critg(fsm),
k = 0,...,n) the set of critical points of f,,, (resp. the set of critical points of f,,, of
index k). Set
(2.20) Crit(f) := Crit(fsm) U Sing(X).
Let g’ be a conical metric on X,,. The vector field -V f := —V rx f induces a well-

defined smooth flow on X,,,, which extends to a continuous flow ® : X x R — X. For
p € Crit(f) we denote by W**(p) the unstable resp. stable set of p; their intersection
with X, are submanifolds.

Definition 2.3. We call a pair (f,g”*) consisting of an anti-radial Morse function and a
conical metric

(a) an anti-radial Morse-Smale pair, if the Morse-Smale transversality condition holds
for =V f, i.e. all stable and unstable manifolds w.r.t. the negative gradient flow
® intersect transversally.

(b) an anti-radial standard Morse-Smale pair, if in addition, for p € Crit,(fs,,) in local

Morse coordinates 1, . .., x, of an open neighbourhood U (p),
0 0 0 0
2.21 = - T e T
( ) (VHww ! ox, Tk . + $k+1a$k+l +...+x .
TX

With other words, we assume that the Riemannian metric ¢*** is the standard

Euclidean metric in the Morse coordinates near Crit( fsy,)-

The existence of anti-radial (standard) Morse-Smale pairs on a singular space can
be proved by an adaptation of the smooth proofs, see [Lud20a, Section 2.8] and the
references therein.
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2.8. The singular Morse-Thom-Smale complex computing intersection cohomology.
We recall the singular Morse-Thom-Smale complex defined in [Lud17b, Section 6] and
[Lud17all, which is an important ingredient in the definition of the Bismut-Zhang metric.
For a singular point p € Sing(X), we denote by o(T'L,) the orientation bundle of L,.
Moreover, we have the following notation: Q°*(L,, F} ® o(T'L,)) is the space of smooth
de Rham forms on L, with values in the flat bundle F} ®o(T'L,), H*(L,, F}, ® o(T'Ly,))
is the cohomology of L,. Let

(2.22) 2y < QY(Ly, Ff @ 0(TLy))

be a set of closed forms on L,, whose cohomology classes form a basis of H"(L,, F}; ®
o(T'Ly)), span(Z}) ~ H*(L,, Ff ®o(TLy)).

To a given anti-radial Morse-Smale pair (f,¢"~) and the sets 2%, p € Sing(X), k >
n—{, one can associate a geometric complex, which computes the 1ntersection homology
of X with values in F* and perversity g, I HI(X, F**).

For p, q € Crit( fsm) with ind(p) —ind(q) = 1, by Morse-Smale transversality, the space of
trajectories of ® starting in p and ending in ¢ is a finite set, which we denote by I'(p, q).
Choosing orientations on the unstable manifolds of points in Crit(fs,) and using the
flow ®, induces orientations on I'(p, q) (see [Lau92, Section (c)] for more details). With
other words, to each trajectory v € I'(p, ¢) we can assign n,(p,q) € {£1}. We denote by
7, : Iy — F the map induced from parallel transport w.r.t. the flat connection along the
trajectory .

Definition/Proposition 2.4. We denote by (C4(X, f, g** F*),0,) the following com-
plex:

(2.23)
Cg(Xa f7 gTXa F*)

( @ <[W“(p)]>®F;>@< @ span(Egk)> if k >n—7g,

peCritg (fsm) peSing(X)

D W) FE else.

| PECritg (fsm)

The boundary operator J, is defined as follows: For p € Crity(fon), h € F)':
(2.249)

(W PIeh) = ) >, e W@l @m(h) e CLL(X, g™ F¥).

qeCrity 1(f9m) 'YEF p, q)

For p € Sing(X), k > n — 7, fg_’“ c :;L—k‘:

@25  algt- Y ( | fs;;-’f)-[vv“(q)]ecz1<X,f,gTX,F*>.
(fom) s(g)nLp

qeCrityg_1 (f
The complex (CI(X, f, g™, F*), d,) is well-defined, i.e. 02 = 0.

Remark 2.5. In [Lud17a] the well-definedness of (C9(X, f, g*X, F*), d,) has been proved
for the case, where the pair (f, ) is an anti-radial standard Morse-Smale pair. Using a
perturbation argument in [HS85| Proposition 5.1], we can extend the result to the case
of an anti-radial Morse-Smale pair (f, g?*), which is not necessarily standard. For ¢ > 0
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one can construct an an anti-radial standard Morse-Smale pair (f., g7 ~) coinciding with
(f,9™) on X\(Upecrit(f.)Be(p)) and such that the complexes (CY(X, f, g™ F*),0,) and
(CU(X, f.,gTX, F*),0,) coincide.

The complex defined in Definition computes the intersection homology of X:
(2.26) H, (CUX, f,g" F*),0,) ~ IHI(X, F*).

For an anti-radial standard Morse-Smale pair (f, g’*) this has been proved in [Lud17a),
Theorem 6.2]. By Remark 2.5 the isomorphism (2.26) also holds if the pair is not stan-
dard.

Let (C¢™, 0,) denote the subcomplex of (CY(X, f, g7, F'*), 0,) generated by Crit(fsn)-
There is an exact sequence of complexes

(2.27) 0 — (C5™,0,) — (CUX, f, g% F*),0.) — (CUX, f, g™, F*)/C*™)., 0.) — 0.

By the local calculation for intersection homology (2.9) and Poincaré duality on the link
manifold L,, we have

228)  H.(CUX, f.g"5, F9)/C™)0 00 ~ @ IHIcLy Ly, F*).
peSing(X)
From (2.26), (2.27) and (2.28), we get a natural isomorphism
(2.29)

det H,(CJ™,0,) ® det((JBpesing(X)[H?(ch, L,, F*)) ~ det H,(C¥(X, f, g™ F*),0,)
~ det THI(X, F*) =~ (det IH(X, F)) ™.

2.9. The Bismut-Zhang metric on det / Hﬁ'(X , F). In [Lud20a, Section 2.10] the Bismut-
Zhang metric has been defined for a Witt space equipped with a unitary bundle (i.e. g%
is flat). The definition can be generalised easily to the current situation.

We denote by A% the model Witten Laplacian on the infinite cone (see Section
(@.12)) and by AZ%" its restriction to (ker AR7)L. Using the spectral properties of Ab7,
computed in Section [4.2.3] one can show that, for (s) >> 0, the zeta function

(2.30) s> (PI(s) i= —Tr, [N <A%q’i> S]

is a well-defined holomorphic function. Arguing as in the corresponding statement for
a Witt space equipped with a unitary bundle in [Lud20a, Proposition 4.14], we get that
the function (%%, T > 0, extends to a meromorphic function on C, which is holomorphic
at s = 0.

The L2-metric on sections of A(T*Z,) ® F restricts to a metric on
ker AT ~ IH?(cL,, Ly, F). We denote the induced metric on the line det I H3(cL,, L,, F)
by | |55 1H2 (cLy L. 1)1+ We denote by

1
(2.31) I ”cll%es‘;IH?’(ch,Lp,F),T = | (Ii%efIHﬁ‘(ch,Lp,F),T exp <§(CT’ )/<0)) :

Set (7 := ({7
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Definition 2.6. For p € Sing(.X), the Ray-Singer metric on the line det [ H;(cLy, Ly, F') is
defined as

1 -
(2.32) | Hdet[H (cLp,Ly,F) = [ ”detIH (cLp,Lp,F),1 = | geing(ch,Lp,F)g exp <§(C§)/(O)) .

Remark 2.7. Using the scaling property of the model Witten Laplacian (4.15) and pro-
ceeding as in the proof of [Lud20a, Proposition 4.15], one can prove that the Definition
is independent of the choice of 7' > 0 (here T = 1).

The metrics g*» on the fibre F),, p € Crit( fsn), induce a metric on (C;™, d,). We get an
induced metric on det H,(Hom((C?™, 0, ) C)) (see [Mil66], [BZ92|, Section I (d)]).

Definition 2.8. We denote by || HZG{ f e ry the metric on the line det / Hz (X, F') induced

via the natural isomorphisms (2.29) from the metric on det H ‘(Hom((Cfm, 2.),C)) and
vf gTX F

det TH2 (X, F) the Bismut-Zhang

the metrics | %5, ;. . p € Sing(X). We call | |
metric associated to V f and the pair of metrics g7, g¥.

. . . . . TX F
Remark 2.9. (a) Unlike in the smooth situation, even in case g* flat, | ||dve{’f H:(’g( ) s
q b

not a purely topological invariant in general. Anomaly formulas for the Bismut-
Zhang metric will be discussed in Section

(b) Asremarked in [Lud20a, Remark 2.11 (c)], in case that L, is the standard sphere
S"=1 ie. pis a smooth point, g?¥ is Euclidean near p and ¢ is flat near p,
then the Bismut-Zhang metric is equal to the Milnor metric defined in [BZ92,
Definition 1.9].

3. THE BEREZIN INTEGRAL FORMALISM ON A SPACE WITH ISOLATED CONICAL
SINGULARITIES

In this section we study the Berezin integral formalism and the Mathai-Quillen cur-
rent for a space with isolated conical singularities equipped with an anti-radial Morse
function. We define the third term (the right hand side) in the Bismut-Zhang formula

(Theorem I) and study, in Section its variation with respect to the metrics ¢”* and

q-.

In Sections for convenience of the reader, we recall basic results related to the
Berezin integral formalism and the Mathai-Quillen current. In Section we provide
some explicit formulas for the Berezin integral formalism and the Mathai-Quillen current
on the infinite cone. They will be used in the study of the anomaly formulas in Section
and Section[7]

3.1. The Berezin integral. We shortly recall the definition of the Berezin integral (see
[BZ92, Section III]). Let £ be an oriented Euclidean vector space of dimension n, and
let V' be a finite dimensional vector space. Let ey,...,e, be an oriented orthonormal
basis of I, and let ¢', . .., ¢" be the corresponding dual basis of E*. We denote by & the
Z,-graded tensor product for Z,-graded algebras. The Berezin integral SB is the linear
map SB : A(V*)®A(E*) — A(V*) characterised by the property that for o € A(V*) and
5 e A(EY)

B 0 if deg < n,
(3.1) J af z{ (12t

! ifB=e'A... A€
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In case of a non-oriented Euclidean vector space E with orientation line o(FE), the
Berezin integral is a map SB CAVHRA(E*) — A(V*) ® o(E).

For an antisymmetric endomorphism C of E, we identify C with an element of A?(E*)
given by

.1 .
(3.2) C= 5 Z (e;,Cejye’ ne.

1<i,j<n

3.2. Vector bundles and the Berezin integral formalism: the Mathai-Quillen-Thom
forms. Let 7 : E — X, be a real vector bundle of rank rk(E). Let g¥ be a Euclidean
metric on F and V¥ a Euclidean connection on (E, g¥). We identify the curvature R =
(VE)? with a smooth section R” of the bundle A2(T*X) ® A%(E*). By pullback, we get
the Euclidean bundle 7% (E, g¥) with Euclidean connection 7%5V¥ and curvature 7% RE.
The connection V¥ defines a horizontal subspace T E of TE such that TE = THEQ® E.
We denote by P¥ : TE — E the canonical projection and identify E with E* by the
metric ¢?. Then P¥, which is a section of 7*F ® E, can be identified with a section P¥
of T*E ® E*. Let Y be the generic element of E.
For T > 0, let A7 be the section of A(T*E)®r:A(E*) on E given by

1 . .
(3.3) Ap = §”ERE +VTPE + TV

The Berezin formalism applied to V' = T'FE yields a map from sections of the bundle
A(T*E)@r%:A(E*) to sections of A(T*E)®ho(F). In the following, we usually decorate
with an " elements in the second factor of A(T*E)®m5A(E*).

We define the following differential forms on E with values in 7},0(F):

B B
(3.4) ar = f exp(—Ar), T > 0; by := J %Texp(—AT),T > 0.

For T' > 0 the forms ar are closed forms of degree rk(FE) and their cohomology class does
not depend on 7. For T > 0, the forms b have degree rk(F) — 1, and

1 da
(35) bT = —ﬁbyaT, a—; = —de
The Mathai-Quillen current has been defined in [MQ86, Section 7] (see also [BZ92,
Definition 3.6]). It is the following well-defined current of degree rk(£) — 1 on E with

values in 7},0(F)

(3.6) U(E, V) = JOO brdT.
0

We denote by

RE B RE
EN . - R _
(3.7) e(E,VY) :=Pf < 27T> : J exp ( 5 >

the closed form of degree rk(E) on X with values in o( F) representing the rational Euler
class of £ in Chern-Weil theory. Clearly, in case rk(E) odd, e(E, V) = 0. The following
identity of currents on E holds (see [BZ92, Theorem 3.7]):

(3.8) dU(E, V) = nhe(E,VF) — 0x.
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3.3. The Berezin integral formalism and the Mathai-Quillen current on 7X. We
will mostly consider the Berezin integral formalism and the Mathai-Quillen current for
the tangent space, i.e. we choose, with the notation of the previous section, £ = T'X
equipped with the conical Riemannian metric g7 and its Levi-Civita connection V¥,
We denote by o(TX) the orientation bundle of X. Let ¢;,...,¢, be an orthonormal
basis of TX, and let ¢!, ..., e" be the corresponding dual basis of 7*X. We identify the
curvature R7¥ = (VX ) with a smooth section Z7X of the bundle A (T*X) @AY (T*X).
Let f : X — R be an anti-radial Morse function. We define the following section of
AT*X)®N(T*X), see [BZ92, Proposition 3.10],

TX
(3.9) Br = (Vf)*Ap = R— + fEe A VIXV f + T|df .

The Berezin integral formalism defines a map from smooth sections of A(7* X )®A(T*X)
to smooth sections of A(T*X) ® o(T'X). By [BZ92, Remark 3.8],

(3.10) (VAH*Y(TX, V) = F UB 2% exp(—BT)> dT

is a well-defined locally integrable current on X, with values in o(7X), smooth on
X\Crit(f). Moreover, by [BZ92, (6.1)], we have the following identity of currents on
Xsm

(3.11) AV U(TX, V) =e(TX, V)= Y (-1,

peCrit(fsm)

3.4. Secondary Euler class. Let ¢”X, ¢"X be two conical metricson TX. LetR 5 [ —
g1 X be a family of conical metrics connecting ¢”* = gl and gTx = gTX. We assume
that near p € Sing(X) the metric g/, [ € R, is of the form 95| By = dr® + r2g/ "7, where

R >5[+~ g ™ is a family of Riemannian metrics on L, and r is the radial coordinate. Let
VI¥ denote the Levi-Civita connection on (7'X,V{¥), and R/X the curvature of VI¥.
Let p: X x R — X be the canonical projection. Let g” %t be the metric on p*T X which
coincides with g™ over X x {l}. Let VT%:%! be the connection on p*T'X,

o 1 L Ogl
TX tot TX ogr
(3.12) V =p*V; " +dl (ﬁl (g ) o ) )

Then V¥t preserves the metric g? %%, The curvature RT*%t = (VI¥%4)2 j5 gjven
by (see [BZ92, (4.51)])

(3.13) RTXt0t — ¢ RTX | g ((;)ZVTX 1 [VTX (a7 Q(Zl ]) '
We denote by
1
(3.14) (TX,Vi¥) .= J dlige(p*TX, VI e Q"1 X, o(TX)).
0

Since the Euler form e(p*T X, VT¥:*!) is a closed form on X x R, we get
(3.15) de(TX,VIY) = e(TX, V1Y) —e(TX, V),

hence &(TX, V]™Y) is a secondary Euler class in the sense of Chern-Simons.
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By [BZ92, (3.34)] the following identity holds modulo exact currents
(3.16) U(TX, VT —w(TX, V™) = m8(T X, VIY),
where 7 : TX — X, is the canonical projection.

3.5. The Berezin integral formalism and the Mathai-Quillen current on the infinite
cone. In this section we study in more detail the notions introduced in Sections
locally near a singular point p € Sing(.X), i.e. on the punctured infinite cone Z, equipped
with the conical metric g7% = dr? + r?g"'». We denote by o(T'Z,) the orientation bundle
of Z,.

Let ey,...,e, be an orthonormal basis of 77, with ¢; = ¢, := a%' Let e!,... ¢e" be
the corresponding dual basis of 7*Z,. We denote by V7%» the Levi-Civita connection on
(TZ,, g"%). We again identify the curvature R7% = (V7%»)? with a smooth section R7%
of AX(T*Z,)QN*(T*Z,).

We denote by V* the Levi-Civita connection on (7'Z,, g = dr? + g'*»). We denote
by e(TZ,, V%) (resp. by e(TZ,, V*P)) the Euler form associated with (T'Z,, V%) (resp.
with (T'Z,, V*?)). We denote by &(TZ,, V% V*P) the Chern-Simons class of smooth
forms on Z, with values in o(7'Z,) of degree n — 1, which is defined modulo exact forms,
such that

(3.17) de(TZ,, N % N*P) = e(TZ,,NV*?) — e(TZ,, V%),
In case n odd, clearly,
(3.18) e(TZ,, V') =0, e(TZ,, V) =0 and &(TZ, V% V*)=0.

In case n even, due to the flat radial direction on the cone (more precisely from (2.6)))
resp. since V*? is the product connection, the first two identities in also hold,
hence &(TZ,, V1% V*) is a closed form.

We denote by f?: Z, — R, fP(r,y) = f(p) — %7”2, the model anti-radial Morse function
on the infinite cone Z,. For T' > 0, as in (3.9), we have the following smooth section of
NT*Z,)R®N(T*Z,) over Z,,

RTZ,,

2

(3.19) BP = (VfP)* AP, = ~VTY el nel+ T
=1
We can define the Mathai-Quillen current on the infinite cone ¥(7Z,, VI%) as in (3.6).

The Berezin integral formalism gives a map SB’p from smooth sections of A(T* Z,)QA(T*Z,)
to smooth sections of A(T*Z,) ® o(T'Z,). Hence

—~

(vfp)*‘I/(TZp,VTZP) _ wa P (2\];; exp(—B§)> dT

_LOC JB’p (fﬁ exp(—Bg)) dT.

Since TZ, ~ R x TL, and fixing the orientation by " := 2 on the first factor, we get
an identification of the orientation lines o(7'Z,) and o(T'L,). We denote by e(L,, V') €
Q"Y(L,,o(TL,)) the Euler form of (T'L,, V), which by the above identification can be
seen as a form in Q" (Z,,0(TZ,)).

(3.20)

Proposition 3.1. Let p € Sing(X).
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(@) The form (V fP)*V(TZ,, V%) is an (n—1)-form on Z, not depending on the radial
coordinate. Moreover the following identity holds modulo exact currents,
—e(TZ,, V1% N*F) if nis even,

. P * TZy, =
(3.21) np = (V7)) WU(T'Z,, V') { Le(TL,, VTtr) if n is odd.

(b) Let h: Z, — R, (r,y) — h(y), be a function not depending on the radial coordinate
r. Then the following integral is well-defined and does not depend on T' > 0:

B,p
(3.22) | #) | exe-p).
Zp
Moreover
B.p
(3.23) | v | st = [ ntn,
Zp Lp
(c) Setting h = 1 in (b), we have the following well-defined integral, not depending on
T > 0:
B,p
(3.24) a, = J f exp(—BF).
ZP
Moreover
B B SLp e(T2,, N2 V) for n even,
(3.25) e Lp E { —1x(Ly, C) for n odd.

Proof. For a > 0, let h, be the radial scaling » — ar. We have the following scaling
properties (see [Lud20b, Lemma 6.5]):

B,p d/\p Bp d/\p
hzf (% eXp(—B§)> = CLQJ (ﬁ? eXP(_BS2T)) ’

B,p B,p
hZf exp(—Bh) = J exp(—B%,.).

(a) Using and the change of variables T' «~~ T'r? in the integral we get the
first claim. The second claim has been proved in [Lud20b, Proposition 6.6].

(c) The statement is a consequence of part (a) and (b), and has been proved in
[Lud20b, Theorem 6.7]. (b) The fact that the integral does not depend on 7' > 0
follows from the scaling property (3.26). Well-definedness of the integral at r = oo fol-
lows due to the Gaussian factor exp(—77r?) in SB’p exp(—B}.); well-definedness at r = 0
follows using (2.6), (3.19). For the proof of (3.23)), we use a transgression argument
very similar to [Lud20b, Theorem 6.7]: here it is crucial that the function / does not
depend on the radial coordinate.

(3.26)

O

Starting with two conical metrics g”%», 7% and a family R 5 | — g, ** connecting

them, we can define all the notions introduced in Section[3.4} p, : Z, x R — Z,,, g7%»tet,
V7ot E(TZ,, ¥V, "), etc. We hereby apply the formalism introduced in Section 3.2 to

the Euclidean vector bundle (p;T*Z,, g"7»**") over Z, x R, with Euclidean connection
VTZp,tot.
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We denote by ?fp = —ra—‘i the section on p3TZ, induced from V fP. Set
1
(3.27) eu(Z,, V) = f dliy,(V fP) U (p*T Z,, V170 e O"2(Z,,0(T Z,)).
0

Similarly to Proposition one can see that €y (Z,, VZTZP) does not depend on the radial
coordinate.
We define, for 7' > 0, the following smooth section of A(T™(Z, x R))@A(p;T*Zp),

- _— RTZp,tot noo o
(3.28) By o= (V) Ay = —— - VT e Ael+Tr?,
i=1
and
B,p -
(3.29) e (0T 7y, V7o) f exp (~B}) € (2, x Roolp}TZ,)):

in particular eq(p;TZ,, V' 7*") = e(piT Z,, V7',

Proposition 3.2. Let p € Sing(X).
(a) We have the following refinement of (3.16)), locally near p,

(3.30) (VfP)"U(TZ,, V%) — (V)" W(TZ, V%) = —&(TZ,, V|7 — dey(Z,, V] 7).
(b) The form

(3.31) (VI YU (p* T Z,, VT Zrtot)

is an (n — 1)-form on Z, x R not depending on the radial coordinate r. Moreover,
we have the following identity
(3.32)

f O(F, %) A ts,e1(p"T 2y, V7700 = f O(F.g") n 16, (T TP W(p*T 2y, VT 700).
Zp Lp

Proof. (a) Since VAJfP is nowhere vanishing on Z, x R, we get from [BZ92, Remark 3.8]
(3:33) A (T T 2, V5 = (T2, T 50%),

By comparing the coefficients of dl in (3.33]), and integrating over [ € [0,1], we get
(3.30).
(b) Using [BCI0, Proposition 1.2], and (3.13) we have

(3.34) RT#r*te, ) = 0.

For a > 0, let again h, be the radial scaling » — ar; then using @.6), (3.13), (3.34),
we have h} RTZptt = RTZptot Hence, together with (3.28)), we get the following scaling
property

I d?p ~p 2 (77 Cﬁp P
(3.35) haf 2\/Texp(—BT) =a f 2a\/TeXp(—BaQT)

Using ([3.35) we can now argue as in the proof of Proposition (a) to prove the first
claim.
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In view of (3.34) and the definition of the Berezin integral, the n-form on Z, x R

B,p RTZp tot
(3.36) e(p, T2y, VTZ”tOt)zj exp | ———

does not contain e". Since, as seen in Section the form 6(F, ¢") on Z, does not
depend on the radial coordinate, the form 6(F, g*') A tae(piT Z,, V' #»'*") is an n-form on
Z, (depending on the parameter /) not containing e”. Hence

(3.37) O(F.g") ~wae(piTZ,, V70t = 0.
From (3.5) we get

B,p rer

TZptot\ _ 1ZpxR D
(3.38) orer(piT Zy, V7t = d J ; ﬁexp( B%i).

Using (3.35) and ([3.38)) we get
1 (ppTZ vTZp tot) ( *TZ vTZp,tot)

deXR(J dTJBp re exp §§;>>
:dsz[re(jo i ([ 22 e (- §p>>|r_1>

=:dZ®(dl A (1, 7,y) + Y2(l, 7, y)).

Using (3.34) and the definition of the Berezin integral, one sees that -, (resp. ) is a
form of degree n — 2 (resp. of degree n — 1) on Z, x R not containing e". Therefore

1 Bp . 0r
2y xR re B T o, 0%
(3.40) 1pd (L dT( Nia exp( BT)> (r, y)) APy —e" A o + L
Since 0(F, g'') does not depend on the radial coordinate and is a closed form, we get
using (3.35)), (3.37), (3.39), (3.40) and Stokes’ Theorem
omn

Q(F, gF> A l’alel(p;TZp?vTZP’tOt) == Q(Fag ) NeT A ——
Zp Zp 57“

= — Q(F, gF) A Lﬁl(?f”)*\l’(p*TZp, vTZp,tot)'

Ly

(3.39)

(3.41)

O

3.6. Variation formula for the integral —§{, 0(F, ¢")(Vf)*¥(TX,V'¥). The current
(VF)*U(TX,VTX) has been defined in Section and is a locally integrable current
with values in o(7'X), smooth on X\Crit(f). We have

(3.42) O(F, g")(V)*¥(TX,V'¥) = 0 near Sing(X),
since it is a form of top degree not containing e¢". The integral

(3.43) - f 6(F, ¢")(V )" U(TX, V")

appearing in as the right hand side in the Bismut-Zhang formula in Theorem I is hence
well-defined.



BISMUT-ZHANG THEOREM AND ANOMALY FORMULAS 19

The aim of this section is to study the dependence of the integral with respect
to the metrics ¢ and ¢”~.

We denote by ¢7¥ a second conical metric on X, and by ¢'* a second metric on F
satisfying the assumption explained in Section[2.2] The Levi-Civita connection associated
to ¢7¥ is denoted by V'7X and we denote by V'f the gradient vector field of f with
respect to the conical metric g7~. Let R 5 [ — ¢/X be a family of conical metrics on X
connecting 7%, ¢'7¥ as explained in Section [3.4]

For ¢ > 0 small enough, we denote by X, := X\(Upesing(x)Be(p)). We identify the
orientation bundle of X, and the orientation bundle of 60X, using the Stokes’ convention.
Note that the Stokes’ convention and the convention on orientation at the beginning of
Proposition differ by a sign.

The next proposition generalises [BZ92, Theorem 6.1] to our singular setting:

Proposition 3.3. The following identity holds:

(3.44) Lem g") (V)" (TX, V7Y = Lem g") (V' ) U(TX, V),

Proof. We denote by V, f the gradient of f w.r.t. the metric g/ *; we have for [ € [0, 1],
(3.45) Vif = —rd, loc. near Sing(X).
We define the homotopy H : X x [0,1] - TX, H; = V,f. Then

(VH*U(TX, V) = (V) U(TX, V')

(3.46) 1 1
=d U dlg, H* V(T X, VTX)) + f dleg, H*dU (T X, V).
0 0

By (3.8) and (3.45), the last term on the right hand side of (3.46)) vanishes. By (3.45)),
we also have 15, H*W(TX,VT¥) = 0 near Sing(X). Therefore we get from (3.46)), that
(VF*U (X, VIX) — (V' f)* (X, VIX) is an exact current and can be written as

(3.47) (VAH* (X, V) — (V' H* (X, V) = do,

for a form o which vanishes near Sing(X). Since 0(F, g") is closed, we get using (3.47)
and Stokes’ Theorem, for ¢ > 0 small enough,

L 6(F. g")(V )" U(TX, V") - j 6(F. g")(V' ) U(TX, VT =

(3.48) e
:J O(F,gF)/\daz—f O(F,g") n o =0.
Xe 0Xe
The claim of the proposition follows by taking the limit € X\ 0 in (3.48)). O

Recall that n,, €y (Z,, VZTZP), p € Sing(X), have been defined in (3.21), (3.27). The
following theorem generalises [BZ92, Theorem 6.3] to our situation:
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Theorem 3.4. The following identity holds

L O(F, g")(V )" U(TX, V"¥) - L O(F.g")(V' )" (TX,V'TX)

= f log (‘ |detF> G(TX, vTX) - (_1>ind(p) IOg H Hdet Fp
X H HdctF peCrit(fem) H Hdot Fp

- | oy X,
X

o 3 (], Lier) oo, - [ org") n ez, 91%) )
H HdetF Ly

Remark 3.5. (a) The only difference between and the corresponding smooth
formula in [BZ92, Theorem 6.3] are the last two terms on the right hand side,

which are the contribution of the singularities of X.
(b) Note that the two integrals over X on the right hand side of are well-
defined: The first integrand vanishes near Sing(X) by (3.18), the second inte-

grand vanishes near Sing(.X) by (3.14), (3.37).

(3.49)

Proof. We have, by definition of §(F, g*'),

(3.50) Q(F, gF> _ Q(F, g’F) = —dlog ( ‘detF) .

| We

Using the identity of currents (3.11)), as well as ([3.18)), (3.21), (3.42), (3.50) and Stokes’
Theorem, we get

L(em g") — O(F. 4 7)) (V) U(TX, V)
- L (B(F.g") — 6(F.g"™)(V )" T(TX, V")

2
f lo (| ”detF) G(TX,VTX)— Z (_1)ind(p)10g H SEtFp
| e : | Set 5,

peCrit(fsm)
(3-51) B | 3er : rx
log AVH(TX, V')
| 1 Zee
J lo (’ detF) €(TX, VTX) . Z (_1)ind(p) lOg H ”detFp
H HdetF peCrit(fom) || ||detFp

+ Z J ( detF) A Ty
HdctF

peSing(X
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Using Proposition [3.2) 3:16), (3:42), df(F, ¢*") = 0 and Stokes’ Theorem, we get, for
¢ > (0 small enough,

LH(F, g (V) (TX, V%) (V) WX, V7))

_ f 0(F,g™) (V) W(TX, V) = (V) 0(TX, V')

€

(3.52) , /
- _f O(F,g")e(TX,ViX) - Z J O(F,g") A eu(Z,, V] 7
Xe peSing(X) ¥ Lr
= - f 0(F,g"TX, VX))~ ) f O(F,g") A (2, V] ™).
X peSing(X) Ly
The claim of Theorem follows from Proposition (3.51)) and (3.52)). O

4. WITTEN DEFORMATION FOR SINGULAR SPACES WITH ISOLATED CONICAL SINGULARITIES
USING ANTI-RADIAL MORSE FUNCTIONS

An important role in the extension of the Cheeger-Miiller theorem by Bismut and
Zhang [BZ92] is played by the Witten deformation. The Witten deformation is an an-
alytic proof of the Morse inequalities proposed by [Wit82]. Rigorous proofs have been
given by Helffer and Sjostrand in [HS85]] using semi-classical analysis. In [BZ94, Section
6] Bismut and Zhang gave a different proof of the hard part of Witten’s program using a
result of Laudenbach [Lau92]. For singular spaces with iterated conical singularities and
anti-radial Morse functions the easy part of the Witten deformation has been generalised
in [AC17] and [Lud17b], the hard part — which is a crucial ingredient in the proof of the
Cheeger-Miiller theorem - has been adressed in [Lud17b].

Section 4] is organised as follows: In Section we shortly recall from [Lud17b] the
Witten deformation for singular spaces with isolated conical singularities and anti-radial
Morse functions. Most of the proofs of the intermediate results of Section consist of
two steps: localisation and a local computation near p € Crit(f). In Sections 4.2H4.3| we
deal with the second step for p € Sing(.X). To this purpose, we generalise the study of the
spectral properties and the local index techniques for the local model Witten Laplacian
in [Lud20b] and [Lud20a, Section 4] to the present situation.

4.1. Witten deformation. Let f : X — R be an anti-radial Morse function and 7" > 0.
The de Rham complex (22(X, F'),d.,(, )) can be deformed by deforming the differential
d. via

(4.1) dr. = e d.e"’.

The complex (2(X, F),dr.,{, )) admits a maximal and a minimal extension denoted
by (C3 A7 max /mins { ; ). The Hilbert complex <Gimax /min’dTvmaX Jmin, { , ) still

compavtrzle/ﬁ?gm(X , F) (resp. H(,) (X, F')). We denote by dr. the (formal) adjoint of dr,
w.rt. the Lz-iglner product ( , ). We again have the first order operator DIV := dp max +
07 min (x€SPp. D7 := dp min + 07.max) associated to the Hilbert complex (CF max> AT max; <))
(resp. (Cfnims drmin:C , »)). We denote by AZ := (D)%, g € {7, 7}, the second order
operators associated to the two Hilbert complexes.
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We denote by ¢(V f) the Clifford multiplication acting on sections o of A(7*X) ® F' by
(4.2) A(VHla=df na +Vf_la.
We denote by Ly, the Lie derivative in direction of V f and by L% ; its adjoint with respect
to the L*-inner product { , ). The operator Ly + L%, acting on L*(A(T*X) ® F) is a
bounded operator of order 0. This follows from the smooth theory combined with the
local model near Sing(.X), see Section for more details.
We have, see [BZ92, Proposition 5.5], [Lud17b, Propositions 3.8 and 5.1],
DI = D7+ TE(Vf), dom(D%) = dom(DY),
AL = AT+ T(Lys + L)) + TV %, dom(AZ) = dom(AT).
Using the local model form of the Witten Laplacian ﬁqT near p € Sing(X) (see (4.12)),
one can show inductively, that for g e {m,n}, [ e N, T = 0:
(4.4) dom((A7))) = dom((AT)Y).

There is a second, equivalent way of describing the Witten deformation: The de Rham
complex (Q2(X, F),d.,{ , )) can also be deformed by deforming the L2-inner product

(, yvia
(4.5) {a, Byr = J <Oé’B>A(T*X)®F($>e_2Tf($)dVOlX(x>§
X

(4.3)

here dvoly denotes the Riemannian volume form on (X, g”¥).

The deformed complex (Q2 (X, F),d.,{, )r) also admits a maximal and minimal exten-
sion into a Hilbert complex (G}’max / min> Qmasx /min; {, 7). We denote by &7 . the (formal)
adjoint of d. w.rt. the twisted L*-inner product ( , )r and by &}, .. Jmin its Maximal

resp. its minimal extension. The first order operator associated to the Hilbert complex
(Gimax/min’ dmax/mim < ) >T) (reSP- (Gimax/min’ dmax/min; < y >T>) is given by

(46) D? = dmax + 5&“,min (resp' D? = dmin + 5&“,max)'

We denote by A% := (DZ)2, g e {m,n} the second order self-adjoint operator associated
to the two Hilbert complexes.

4.2. The model Witten Laplacian A»?, p e Sing(X), g € {m,n}, T = 0. We now study
the situation locally near p € Sing(X), i.e. on the punctured infinite cone Z,. As in
Section we denote by f7 : cL, — R, (r,y) — f(p) — 3r? the model anti-radial Morse
function on the infinite cone.

4.2.1. A useful unitary transformation. Let = : Z, ~ R.y x L, — L, be the projection
into the second factor. We denote by L?(A*(T*L,) ® Fy,) the space of L2-sections of
A¥(T*L,) ® Fy, with respect to the L2-metric induced from ¢”*» and ¢"*». We denote by
L2(A*(T*Z,) ® F) the space of L?-sections of A*(T*Z,) ® F with respect to the L2-metric
(, ) induced from ¢g7%» and ¢*".
For k = 0, ...n, the bijective maps
Up: CP(Rao, Ly, Fr,) ®Q*(Ly, Fr,)) — Q(Z,, F)
I e A e [

extend to unitary maps from L?(R..q, L*((A*~1(T* L, )®A*(T*L,))®F],)) to L*(A(T*Z,)®
F).

4.7)
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We denote by d;, the exterior derivative on Q°*(L,, Fy), and by §,, its adjoint with
respect to the L2-metric on Q°(L,, F;,) induced from the metrics ¢’*» and g, We
denote by S, the following self-adjoint elliptic operator on the link L,:

Co 6Lp 0 cee 0
de C1 R . n—1
(4.8) S,=1 0 0 | where ¢, := (—1)" (k - ) :
B Cn—2 5L
0 ... 0 de Cn—1

For the Laplace operator AP°¥/°dd on the infinite cone acting on compactly supported
even (resp. odd) forms we have (see e.g. [BS87, Section 5]):

(4 9) UflAp,ev/oddU _ _a_2 + 7,,72 S+ 1 ? . 1

' or? 2 4
4.2.2. Definition of the model Witten Laplacian A%, p € Sing(X), g € {m,n}. We denote
by ey, ...,e, an orthonormal basis of TZ,, by ¢!, ..., ¢ the dual basis of 7*Z,. We denote
by
(4.10) cleg) == e* — 1, Cleg) =€ + 10,k =1,....n,

the Clifford operators. Let us denote again by N the number operator acting by multipli-
cation with the form degree. We have (see [BZ92, (11.1)]):

(4.11) N = %;c(ei)ﬁ(ei) +

SIE

The action of the Witten Laplacian ﬁ?, T > 0, on forms with support in a neighbour-
hood of p € Sing(X) can be identified with the action of the model Witten Laplacian A%?
on the infinite cone Z,, which we now define: Let A’. denote the following operator
acting on compactly supported forms on Z, with values in the bundle F*:

(4.12) Al = AP+ T(n —2N) + T = AP = T Y c(e;)ele;) + T,
=1

where for the last identity we have used (4.11).

We denote by (Q22(Z,, F),dr.), where dp.w := dw + Tdf? A w = dew — Trdr A w, the
deformed de Rham complex of smooth compactly supported forms on the infinite cone
Z,. We consider the maximal extension (C7 ,..(Zp, F), drmax,{ , ) resp. the minimal
extension (C1. . (Zp, F), drmin, ( , ) of the deformed de Rham complex on the infinite
cone. The model Witten Laplacian AL™ (resp. AL™) is the closed self-adjoint extension
of the operator A7, associated to the Hilbert complex (C7. .. (Z,, F), drmax, { , ) (resp.
(GC.F,min(ZIH F)v dT,min7< ) >))

For ' > 0, we denote by A7, .. the maximal extension of A%. The domain of the
model Witten Laplacian can be described as follows:

(4.13)

dom(AL™) = {w e dom(A}

T ,max

) ’ w € dom (5T,mindT7max)mdom (dT,maX(ST,min) loc. atr = 0}
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resp.
4.14)
dom(AZ") = {w e dom(A%max) | w e dom (67, maxd7min) NAOM (A7 mindOT.max) lOC. at r = 0}.

The boundary conditions in (4.13)), at r = 0 are inherited from the boundary
condition near p € Sing(X) for the Witten Laplacian A?. By completeness of the infinite
cone, at r = o0 we do not need to specify boundary conditions.

For a > 0, let h, be the operator acting on sections w of A(T*Z,) ® F by radial scaling,
how(r,y) = w(ar,y). For g € {m,n}, T > 0 from (4.12)), and we get the

following scaling property for the model Witten Laplacian

(4.15) h, AL, = > AN

T/a?"

4.2.3. Spectral data for the model Witten Laplacian A%". The separation of variables for
the Laplacian A?? on the infinite cone has first been used by Cheeger (see e.g. [Che83,
Section 3]) to split the computations of the spectral data of AP according to the spec-
trum of the transversal Laplacian A 1, In [Ver09] the analytic torsion of a truncated cone
has been computed also using the separation of variables trick. In view of (4.9),
we can apply here the same principle to study the spectral properties of ALY,

We denote by Spec (A(k) ), k = 0,...,n — 2, the co-closed spectrum of A(Lkp) For

Lyp,ccl

1 € Spec (A(L?,ccl) we denote by

(4.16) HE o (Ly, Fr,) 1= {1 € Q(Ly, Fr,) | APW = pp, 6,0 = 0}

the space of co-closed eigenforms of A(L’? to the eigenvalue . In particular #f ., (Ly, Fr,) =

#*(L,, Fyr,) is the space of harmonic k-forms on the link Z,. We have the following or-
thogonal decomposition

L? (A(T*Ly) ® F1,)

417) = (Té_glge’f(Lp,FLp» P ( @ (%5,ccl(Lp7FLp) CJBdeWﬁ,ccz(LpaFLp))).

k=0 0sk<n—2
k
HeSpec (Aip),cd)\{()}

Fork=—1,...,n— 2, set
(4.18) ap = (k+1—n/2).

For k =0,...,n—2, and p € Spec (A(L’?’CCJ \{0}, set

(4.19) Bu) = Br(p) =4/ o} + .

We can split all spectral computations for A%? into computations on subcomplexes of
the Hilbert complexes (CF. . /i (Zp: F), d7.max /min: 5 ))-



BISMUT-ZHANG THEOREM AND ANOMALY FORMULAS 25

Subcomplex of type 1: Let ;1 € Spec (A(L?’Cd) \{0}. For 0 + ¢ € #) . (Lp, F1,), W
denote by

&1 =6(0) = (0,9) e Q7HLy, Fr,) @ Q" (Ly, F1,),

4.20) & = &) == (¢,0) € Q"(Ly, Fr,) @ WHY(Ly, Fu),
& = &) == (0, 2dy, ) € (L, Fr,) ® Q" (L, FL,),
& = &) == (uPdy b, 0) e QYL Fr )@ Q2 (L, Fr).

We still denote by & € C*(R.q, ¥~ (L,, F1,)®Q*(L,, Fr,)) the constant function with
value &. Similarly for &,& € CP(Ruo, Q¥(Ly, Fr,) @ Q*'(L,, Fr,)) and & €
C*(Rsg, (L, Fr,) ® Q**2(L,, Fr,)). The subcomplex of type 1 associated to 0 + 1 €

H i(Ly, Fr,) is the subcomplex:
(4.21) 0 — (Uk(€2)) 5> Wi (&), Ui () 5> Unsal&a)) = 0.

By the proof of [Lud17b, Theorem 4.2] it is known already that the subcomplex (4.21)
does not yield any contribution to ker(A%?). Therefore, by the Hodge theorem, to study
the eigenequation

(4.22) AN = \w, A £ 0,

on the subcomplex (4.21) it is sufficient to study the eigenequation (4.22) on (Ux(&))
and on (Ug,2(&)). On (U(&1), Urs2(&4)), using the unitary transformation (4.7), the
action of the model Witten Laplacian can be identified with the action of the following
regular singular operator on L?(R~):

1
(4.23) L,:=—0>+r"? (ﬁk(u)Q — Z) +T(n—2N) + T%?,

where N is the degree operator on (U(&;(v))), i = 1,4. The operator L, is in the limit
point case at co. Moreover, at = 0, the operator L, is in the limit point case iff 3} (u)? >
1. If 0 < By (u)* < 1 however, one has to choose boundary conditions. Hence, we have to
study the eigenequation on the half-line R-:

(4.24) L,g= <—(9T2 + 2 <6k(,u)2 — i) +T(n—2N)+ T2r2) g = \g,

imposing appropriate boundary conditions at » = 0, induced from the boundary condi-
tions (4.13), (4.14) for A%?. Arguing as in [Ver09, Section 4.1], the boundary conditions
(4.13), (4.14) can both be translated into the following boundary condition for g:

(4.25) g(r) = O(r'/?)asr — 0, and g(r) € L*(R.o).

It is at this stage of the computation, where we profit from the fact that we have to
study the eigenequation (4.22) only on (U (&), Ux+2(&4)), where one can translate the

boundary conditions (4.13)), (4.14) easily, namely into (4.25).
We denote by Lf the Laguerre polynomial. The subcomplex of type 1 corresponding

to 0 & ¢ € #H* i ea(Lps F,), v 0, yields the following eigenvalues and eigenforms of the
model W1tten Laplacian A%? (each of multiplicity 1), j € Np:
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eigenvalue of ALY eigenform of ALY

(4 +n— 2k +2B+2)T | ¢y := P73 exp ( =) L)1) - Uk(r) € Q4(Z, F)

(45 +n— 2k +28—2)T | ¢y 1= 1773 exp ( ) Tr2) - Upya(&a) € O42(Z,, F)

(47 +n—2k+28+2)T | dpor € (Ups1(&2), U1 (&3)) € OFF(Z,, F)

(45 +n —2k + 28 — 2)T | 57¢4 € Ups1(£2), Uks1(&3)) < QFY(Z,, F)
Subcomplex of type 2: Let 0 + 1 € #*(L,, Fr,), k = — 1, be a harmonic

form on L,. As before, (0,1) € C*(R.o, Q"' (L,, Fy, Q"“(Lp, FL )) denotes the constant

)®
function w1th value (0,7), and similarly for (n,0) € eC” (Rsg, QF (Lp, Fr) @O (L,, F1,)).
We have the following subcomplex of type 2:

(4.26) 0 — <U(0,7)) 2> (Uyar(n,0)) — 0.

On {(0,7n)) (resp. on {(n,0))), using the unitary transformation (4.7)), the action of the
model Witten Laplacian can be identified with the action of the following regular singular
operator on L?(R.)

(4.27) (=2 +77%(c; = (=1)Fck) + T(n — 2N) + T*r*)g = Ag,

with the boundary conditions induced from (4.13)), (4.14).
Case 1: Let us first consider the case, where either n is even, or n is odd and & + |n/2].
By [Ver09, Proposition 7.1], we have to study the equation (4.27)) with the boundary
condition

(4.28) g=0(@"?)asr — 0, and g(r) € L?(R.).
Hence, the same computation as in [Lud20b, Section 4] shows, that the subcomplex of

type 2 corresponding to 0 + 1 € #*(L,, F} ), yields the following eigenvalues (each of
multiplicity 1) and eigenforms of the model Witten Laplacian, j € Ny:

L
L

eigenvalue of ALY eigenform of A%?

(4 =200 + 4+ 20)T |12 exp (S22) 1(102)0,((0,m) € 942, F)

(45 — 204 + 2(|apr| + 1)) T | rlos1l+12 exp ( 112 ) L= (T2 U (0, 0)) € Q42 F)

Case 2: For n = 2v + 1 odd and k = v, the two boundary conditions in (4.13),
do differ on a subcomplex of type 2.

Case 2 (a): Let g = .. For k = v, on {(0, 7)), by (4.8), and [Ver09, Propositions
7.1 and 7.3], one is reduced to study the eigenequation on L?(R.)

(4.29) (=2 + T+ T*%g = Mg,
with boundary condition
(4.30) g=0(@"*) and (0, — Tr)g = O(1) as r — 0; g(r) € L*(R=y).

The only solutions of (@.29) in L*(R.,) occur for \; = 257,j € N, with eigenfunction
g», = exp(—Tr%/2)H;_;(v/Tr), where H; denotes the Hermite polynomial. The following
recurrence relation of Hermite polynom1als holds H} = 2rH; — H;,,. Moreover, as 7 — 0,
we have H;(r) = O(1) if j is even, and H;(r) = O(r) ifj is odd. Hence, taking into
account the boundary conditions at » — 0 in (4.30), only the eigenvalues \; = 2;7T',j € N,
j even, appeatr.
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On ((n,0)) one is reduced to study the eigenequation on L*(R-)
(4.31) (=02 =T +T%*?%g = Mg,
with boundary condition
(4.32) g=0(1)and (6, — Tr)g = O(r'/?) as r — 0; g(r) € L*(R~y),

and argue similarly. The above arguments show that the subcomplex of type 2 corre-
sponding to 0 + n € #"(L,, Fy,), yields the following eigenvalues (each of multiplicity
1) and eigenforms of the model Witten Laplacian:

eigenvalue of A" | eigenform of AL"

4T, j €N exp (=5 )sz (VTP ((0,m) € (2, F)
- exp( =) LA (Tr)UL((0,m)

44T, j € Ny exp (=5 )HQJM PUpa((0,0) € Q4(Z,, F)
— exp ( =2) L VAT U, (0.0))

Case 2 (b): Let ¢ = m. This time we have the boundary condition (4.32) on {(0,7))
(resp. (4.30) on {(n,0))).

Arguing similarly as in Case 2 (a), this time we get

eigenvalue of AL | eigenform of AL™

(4 +2)T.jeNo | exp (22) Hoy(VTN)U((0,m) € (2, F)

- exp( =12 L ), ((0,m)
(4j+2)T.jeNg | exp (52 ) Hyj(VTT)Ua((1,0)) € Q7*1(Z,, F)
~ exp ( =) r LA (Tr) U (0,0))

Remark 4.1. (a) From the above computation together with the local calculation for
the relative intersection cohomology of a cone (recalled in (2.9)), we get
(4.33) ker ARPW ~ [HE(cL,, L, F), k=0,...,n.

Note that only harmonic forms on the link L, do contribute to ker AL,

(b) Note that for n odd, the only difference in the spectral data of AL™ and A%"
stems from the harmonic forms on L, of degree |n/2|.

(c) Under the Witt and spectral Witt assumptions made in [Lud20b], the model Wit-
ten Laplacian is the Friedrichs extension of and the boundary condition
at r — 0 always translates into (4.28]). Also, for an odd dimensional Witt space,
case 2 in the above discussion does not appear.

4.2.4. Heat kernel of the model Witten Laplacian.

Definition 4.2. Let g € {m, 7} the lower middle (resp. upper middle) perversity.
(a) For (t,T) € R.y x Rsg, we denote by QV%(z,2'), x,2' € Z,, the kernel of the
operator exp ( — tAR?) with respect to dvoizp. Set QV(z,2') := QVd(w,2/), z, 2" €
Z,. We denote by QV%" (z,2"), z,2’ € Z,, the kernel of the operator exp (—tAL7)
restr1cted to k-forms, k € {0,...,n}.
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(b) For (t,T) € R.o x R, we denote by Ulf(z,2'), z,2' € Z,, the kernel of the
operator exp ( — t*A},) with respect to dvoly, .
Note that, for (¢,T) € R. x R, we have directly from Definition [4.2]
(4.34) Uf’g(az, 1) = foT/t(x,x’), z, 2’ € Z,.
Using the computation of the spectral data for A%:? we can generalise [Lud20al, Propo-

sition 4.5]. The heat kernel of the model operator for 7" > 0 and for 7" = 0 are related as
follows:

Proposition 4.3. Let (t,T) € R2,, (r,y), (r',y') € Z,. Then

QVEN ((r,y), (. y))

(4.35) . r2 1 g2
— o~ (n=2k)tTrpm/ exp (—Ttanh(tT) 5 ) smh 2tT)/2 ((\ﬁr y) <ﬁr/,y')> )

Remark 4.4. The heat kernel on the infinite cone Q}'(x, 2’), x,2' € Z,, can be expressed
in terms of the spectral data of the transversal Laplacian A and involves the modified
Bessel functions, see [Che83]], [Les97, Proposition 2.3.11].

4.3. The Cheeger invariant and a local index theorem for the infinite cone.

4.3.1. The Cheeger invariant. The Cheeger invariant of X at p € Sing(X) is the contri-
bution of the singularity p to Cheeger’s Chern-Gauss-Bonnet theorem for spaces with
isolated conical singularities [Che83, Theorem 5.1].

Definition/Lemma 4.5. Let g € {7n, 71}, t > 0. The following integral expression

VI(F) = f Tr, [QV7((r,y), (r.))] dvolz,
-5 f T, [QU((1,y), (1, )] dvols,

is well-defined and will be called the Cheeger invariant of X at p.

(4.36)

Proof. In this proof we follow arguments in [[Che83, Section 2], [BC90, Section 1(f)],
[Les97, Lemma 2.2.4], [Lud20b, Section 7]. We recall these arguments in some detail
here, since similar arguments will play an important role in the study of all Cheeger-type
invariants appearing in this paper (see in particular Sections[6.2|and [7).

We first prove the equality of the two integral expressions in (4.36)), for ¢t > 0: The
scaling properties of AP7 on the infinite cone imply (see e.g. [Che80, Section 2]
and [BC90, Proposition 1.7])

_ 1
(4.37) Q" ((ry): (ry)) = ZQ((Ly). (Ly)).
The equality of the two integrals in (4.36)) follows from (4.37) using the change of vari-
ables u = t/r?.

It is now enough to prove the well-definedness of the second integral in (4.36). Using
local index techniques we get the following asymptotic expansion, as u \ 0,

(4.38) Tr, [Qﬁ’q((r, y), (r, y))] dvoly, = tk(F) - e(TZ,, V) + O(y/u);
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the expansion is uniform on compact sets of Z,. By the constant term in the
asymptotic expansion (4.38)) vanishes and therefore, as u \, 0, Tr, [Q%7((1,), (1,4))] =
O(y/u). This gives well-definedness of the second integral in at 0.

Using the characterisation of dom(AP7) near the cone point (see e.g. [Les97, Lemma
2.2.4]), there exists a > 0 such that, as u — o

(4.39) f Tr, [Q77((1,y), (1,y))] dvolz, = O(u™).
Ly
This gives well-definedness of the second integral in (4.36)) at co. O

4.3.2. An index formula for the infinite cone. The invariant «,, has been defined in (3.24)
and studied further in Section The following theorem generalises the index theorem
for the infinite cone [Lud20b, Theorem II] to the current situation.

Theorem 4.6. For (t,T) € R?

>0

Ix%(cL,, L,, F) = Trq [exp(—tAl}’q)] = J Tr, [Qfg((r, y), (r, y))] dvolyz,
(4.40) . -
ek (F) L J exp(—B) + 71(F) = tk(F)ay + 71(F).

Remark 4.7. On the right hand side of two terms appear: the interior contribu-
tion rk(F)«a, does not depend on the perversity g € {7, iz}, while the contribution of the
singular point (/') does. On spaces with conical singularities, this is a general phenom-
enon in the study of the asymptotic behaviour of the supertrace of the heat and related
operators. We also encounter it e.g. in Cheeger’s Chern-Gauss-Bonnet Theorem [Che83,
Theorem 5.1] (recalled in (6.12))) as well as in the anomaly formulas in Section [7}

Proof The theorem has been proved under the Witt and a spectral Witt condition for
unitary flat vector bundles in [Lud20b, Theorem II]; this proof relies on local index
techniques. In the present situation, we can give a prove by using a combination of
local index techniques and the Singular Asymptotic Lemma (SAL) of Briining and Seeley
[BS85], similarly to the proofs of Theorem and Proposition O

5. BISMUT-ZHANG THEOREM (THEOREM I): THE NINE INTERMEDIATE RESULTS

The core of the proof of the Bismut-Zhang Theorem (Theorem I) are the nine inter-
mediate results, which we state in this section. Once the nine intermediate results are
achieved in our more general situation, the proof of the Bismut-Zhang Theorem is com-
pletely analogous to the proof in [BZ92, Section VII] and in [Lud20a, Section 6], and we
omit to repeat it here.

5.1. Simplifying assumption. Using the anomaly formulas of Theorems II, as
well as Proposition[3.3|and Remark[2.5] it is clear that to establish Theorem I, it is enough
to establish it for the case, where g% = g™, ¢ is flat near Crit(f,,,) and moreover the

pair (f, g7%) is an anti-radial standard Morse-Smale pair.
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5.2. Nine intermediate results. We denote the intersection Euler characteristic of X
with perversity ¢ and coefficients in F' by

n

(5.1) Ing = Ixg(X, F) Z " dim THE(X, F).

O

For p € Sing(X), we denote by bv*(L,, F;,) := dim H*(L,, Fy,), k = 0,...,n — 1, the
Betti numbers for the link L,,. For k = 0, ..., n, we denote by ¢ (fsn) := #Crity(fsn) and
we define the “number of critical points of the anti-radial Morse function f” by

cZ(f) = cZ(f, F):=1k(F) - cr(fsm) + Z ]Hg(ch, L, F)

peSing(X)
(>-2) tk(F) - ex(fom) + Y5 V7L Fy,) fork>n-7,
= peSing(X)
rk(F) - cx(fom) else.

For p € Sing(X), we denote by by Ixz(cL,, L,, F') the relative intersection Euler char-
acteristic of the cone. From the Spectral Gap Theorem [Lud17b, Theorem I], we get the
following Poincaré-Hopf formula

(5.3)  Ixg=rtk(F Z Ver(fam) + D0 Ixg(cLy, Ly, F) = ) (=

k=0 peSing(X) k=0

We denote by

I, == IX,(X, F) Z )¥k dim THE(X, F),

Zn: DFkCL(f)

Tn[f, F.q] = rk(F) 2 (1O f )+ Y 1) el Ly ).

peCrit(fsm) peSing(X

5.4 Iy =

Moreover

n n

(5.5) Xsm = rk(F) Z(—l)kck(fsm), and Y., :=rk(F Z Yokcr(fom).
k=0 k=0
Let T > 0. We denote by ng]l’”[ the orthogonal projection w.r.t. { , )7 to the space of
eigenforms of the Laplacian A% = (D%)? to eigenvalues in |1, oo[ . We denote by D?Q’]O’l]
(resp. D?Q’[O’l]) the restriction of A% to the eigenspace of Af associated to eigenvalues
in the interval ]0, 1] (resp. in the interval [0, 1]). By the Hodge theorem for the complex
(& dmax /min, { ; )r) and the Cheeger-Goresky-MacPherson Theorem (2.13), we

T,max / min’

have canonical isomorphisms

(5.6) ker AT > H*(CF s/ mins Gimax /min: » 1) = TH (X, F).

The twisted L2-metric ( , )r restricted to ker AL ~ IH:(X, F) induces a metric on the
line det T H3(X, F), which we denote by | ﬁ]Hg(X,F),T

The following intermediate results are the analogues of [BZ92, Theorems 7.6-7.14]
resp. [Lud20a, Theorems 5.4-5.12]. Compared to [Lud20a, Theorems 5.4-5.12], in
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case n odd, we take into account the two perversities g € {m,n}. Moreover, since here g’
is not assumed to be flat, an additional term appears in Theorem |5.7

Theorem 5.1. The following identity holds, for T'— oo,

(5.7)
I IS \
= et (X,
Tr, [Nlog (D%Q’]O’l]ﬂ—log s {0 N 9T [f, F ]

det TH3(X,F),T
+ (51— 1%) 108(T) = (5 Xom = X ) log(m) + ESZ(X) (1) (0) = O(exp(—T)).
PESIng

Theorem 5.2. Given ¢, Awith 0 < ¢ < A < o, there exists C > 0 such that, for t € [e, A],
T=>=1,

(5.8) | Trg[N exp(—t(D)?)] — IX| < <

Theorem 5.3. For any t > 0,

(5.9) Jim Tr, | N exp(~4(DR)?) PR < 0.
—00
0

(5.10) ’TrS [N exp(—t(D?)z)P%;w[” < Cexp(—ct).
We denote by (87 . /min-
(&

T,max / min’

dmax /min, { , )r) the Witten complex, i.e. the subcomplex of

/T

dmax /min, { , )7) generated by the eigenforms of A" to eigenvalues in [0, 1].

Theorem 5.4. For T > 0 large enough and k = 0, ..., n,

(511) dim CS)éf,max = Ckm(f)7 dim Slli,min = CZ(f)

Moreover lim Tr [D?’Z’[O’l]] = 0.
T—o0

Let eq,...,e, be an orthonormal basis of TX, e!,..., e" the dual basis of T*X. Let W
be the smooth section of A(T*X)®A(T*X) defined by
1 < P
(5.12) W:=§;e A €et.
Note that W does not depend on the choice of orthonormal basis e, . .., e,.

Theorem 5.5. The following asymptotic expansion holds, as t \, 0,
(5.13)

B B RTX B
Tr[ N exp(—t(D7)?)] = rk(F)J f W exp (T Vi 4 g Ixg(X, F) + O(WV1).
X
Note, that the leading coefficient in the expansion ((5.13]) vanishes in case n even. This
is due to the fact, that the integrand in the Berezin integral (W exp (—@) is a sum
of forms of degree (k, k), with k£ odd.
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Theorem 5.6. Let 0 < t < 1 be small enough. Then there exists ¢ > 0 such that, as T'— oo,

614 Tuffen(-tDD] = Tuls Rl + (i - 51%) 7+ Olexp(-eT))

Theorem 5.7. For any d > 0, there exists C > 0 such that, for 0 <t <1, 0< T <

i

J

‘TrS [f exp ( — (tD7 + T/C\(Vf))Q)] — rk(F) fx f JB exp(—Br2)
+ %L 0(F,g") JBC@”eXp (=Br2) — ), f PIVI(F ( < Ct?,

peSing(X

where vI(F), p € Sing(X), is the Cheeger invariant deﬁned in (4.36).
Theorem 5.8. For any T > 0, the following identity holds,

lg%tl (TrS [fexp (— (th+ §E(Vf)) >] — Trg[ f, F,@]) =

_(n 1., 1
A\ 2N T 9 Xem | Panh(T)

_ % Z (TI“S[N exp(—ALTH)] — Z (—1)* (g a k> bkl(Lp,FLp))

peSing(X) k=n—q

Theorem 5.9. There exist ty > 0, ¢ > 0, C' > 0, such that, for t €]0,ty] and T > 1

2 2
- (Trs [feXp (— (e07+ Fawn) )] “wlrral - g (a5 )

< Cexp(—cT).

6. PROOF OF THE NINE INTERMEDIATE RESULTS

In this section we deal with the proofs of the nine intermediate results of Section
For most of the proofs of the intermediate results we will just recall the main arguments
of the proofs in [Lud20a, Section 7] and explain, why they carry through to the more
general situation treated in this article. The bigger part of this section is devoted to
the proof of Theorem for even dimensional spaces, here the corresponding proof in
[Lud20a] cannot be adapted to the present situation.

In Section we give a sketch of the proofs of Theorems Section is
devoted to the proof of Theorem In Section we comment on the proofs of

Theorems 5.9

6.1. Proof of Theorems The proofs of Theorems rely on the Witten
deformation.

Proof of Theorem The main ingredient of the proof of Theorem is the
hard part of the Witten deformation, i.e. the comparison result of the Witten complex
(ST max /mins maxmin, (s )r) and the singular Morse-Thom-Smale complex
(CUX, f, g™ F*),0.), defined in Definition This comparison result has been es-
tablished in [Lud17b, Theorem II], without assuming the Witt condition, for the lower
middle perversity 7, the case of the upper middle perversity m being similar. The proof
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of Theorem follows precisely the proof of the corresponding statement in [Lud20a,
Theorem 5.6]. For n odd and the upper middle perversity m we have only to additionally
take into account in all computations the contribution of H"~Y/2(L,, F} ), p € Sing(X).
]
Proof of Theorems Using the Witten deformation for the anti-radial Morse
function f : X — R, more precisely [Lud17b, Section 5], one can proceed as in the proof
of [BZ92|, Theorems 7.7 and 7.8] to get the claims of Theorems and|[5.3] The proofs in
[Lud17b, Section 5] are only given for the lower middle perversity 7, but for deformation
parameter 7' € R. The Hodge star operator " : A¥(T*X)® F — A" *(T*X)® F* ®

~

o(T'X) induces isomorphisms of Hilbert complexes (C(X, F))%. ../ mins ATmax /min, s )) =
(é' (X, F* ®o(TX)), d-1min /max,{ ; »). Using this duality, the easy part of the

—T,min / max
Witten deformation (in particular the Spectral Gap Theorem, [Lud17b), Theorem I]) hold
for the perversity m as well.

The claim of Theorem [5.4] follows from the Spectral Gap Theorem [Lud17b|, Theorem

I1. L]

6.2. Proof of Theorem [5.5} The asymptotics of Tri[NV exp(—tA7)] as ¢ \, 0. Theorem
5.5|generalises the corresponding statement [Lud20a, Theorem 5.8] to the more general
situation of this article. In case n odd, the proof in [Lud20a]] generalises directly. In case
n even, in [Lud20a] the space was assumed to be oriented and (F, V¥, g%') is unitary. The
proof of [Lud20a, Theorem 5.8] relies on a Poincaré duality argument, which fails here.

In this section we give a proof of Theorem|5.5]in case n even. For the rest of this section
we always assume that n is even. Recall that for n even, the two middle perversities
coincide m = 7. We will therefore omit the sub- and superscipt g.

Definition 6.1. Let ¢ > 0.

(a) We denote by S,(z,2’), z,2' € X, the kernel of the operator N exp(—tA) with
respect to dvoly.

(b) Let p € Sing(X). For T' > 0, we denote by S} ,(z,7'), z,2’ € Z,, the kernel of
the operator N exp(—tAY,) with respect to dvoly, . For T' = 0, we have S{(z,2") =
Sto(x,").

Proof of Theorem |5.5/ in case n even: We proceed very similarly to the proof of
Cheeger’s Chern-Gauss-Bonnet Theorem for spaces with isolated conical singularities
[Che83, Theorem 5.1]. Using local index techniques as in the proofs of [BZ92, Theo-
rem 4.20 and Theorem 7.10] and (4.11)), one has the following pointwise asymptotic
expansion, as t ™\, 0,

Trs[Si(z, z)]dvolyx

ST X

(6.1) = (grk(F)e(TX, v+ % f ’ W exp (—RT> vIXO(F, gF)> (z) + O(t)
=. ao(a:)dvolx + @(t)

The asymptotic expansion (6.1)) is uniform on compact sets, the coefficients depend only
on local geometrical data of X,,.
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Since V¥ is torsionfree, we have VX = (. Hence, using [BGV04, Proposition
1.50] and the Bianchi identity,

f W exp (—
(6.2) =d ( BWeXp (—RTTX) é\(F’ VF>> _ JB (VTXw) exp (_RTTX> é\(F, VF>

= d( BWeXp (—RTTX> g(F,gF)) :

Recall that, near Sing(X), the form §(F, g*') does not depend on the radial coordinate.
Using (2.6), (3.18), (5.12) and (6.2) we get that locally near p € Sing(X):

TX N
VIXO(F, Vvh)

STX

1 B ~
(6.3) ao(r,y)dvoly = §d ( W exp <—RT> O(F, gF)> =d, By A7 dr,

with 3, € Q"?(L,, Fi,) a smooth form not depending on the radial coordinate r.

Unlike in the case of a smooth manifold, it is not enough to just integrate the pointwise
asymptotic expansion to get Trg[N exp(—tA)]; indeed the integrals over the local
coefficients are not always defined and we have to take the finite part of these integrals
instead. For 0 < ¢ < ¢, denote by X, := X\(Upesing(x)Bc(p)). The finite part of the
integral over the constant coefficient in the expansion (6.1)) is just given by

(6.4) J ao(r)dvoly.
Xe
Using (3.18)), (6.1)-(6.4) and Stokes’ Theorem we get
(6.5) f ag(x)dvoly = grk(F)f e(TX, V).
; X

In addition, there will also be contributions to Trs[ N exp(—tA)] coming from the sin-
gularities p € Sing(X'), which we now explain: From the pointwise asymptotic expansion
and from (6.3)), we get for the kernel of the operator N exp(—tAP) on Z,, as u \, 0,

(6.6) f Tr[SE((1,9), (1,y))]dvol,, = f ao(1,y)dvoly, + O(u) = O(u).
Lp Lp
Using the scaling property (4.15),
6.7 SE(r. ). (r.9) = ,((1,0). (1.0)).
Using (6.6)), (6.7) and arguing as in Sectlon_the following integral is well-defined:
1 (*d
6.8) W (F) = J du J Tr[SP((L, ), (1, )]dvols, .
o U Jr,

From (6.6), (6.7), (6.8) and using the change of variable u = t/r?, as t \, 0,

Tr[SP((r,), (r,))]dvol, = J“’ du J Tr[SE((1, ), (1,y))]dvoly,

—2¢ u

(6.9) fL
— tors )+@( )
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Using Duhamel’s principle and the singular elliptic estimates of Lesch [Les97, Section
1.4, more precisely Theorem 1.4.11], one has that, for [ > 0, there exists an L?-integrable
function p : X — R, such that for z € Z, n {r < ¢} ~ B.(p)\{p},

(6.10) |St(a:,x) SP(z, 1) < p*(x)t.
Using (6.1)), (6.5), (6.9) and (6.10) we get, as ¢t \, 0,

Trs[ N exp(—tA)] = J Trg[ S (2, z)]dvolx + Z J Trs[St(z, x)]dvolx

€ peSing(X

_ J e[S (z, 2)]dvoly + Y f Tr,[S? (2, 2)]dvol, + O(t)
(611) € peSing(X ceLp

_ J o(x)dvoly + 17 (F) + (1)

— grk(F) f e(TX, V') + 47 (F) + O(t).
X
Cheeger’s Chern-Gauss-Bonnet Theorem for spaces with isolated conical singularities
[Che83, Theorem 5.1] states that

(6.12) Ix(X,F) = rk(F) J e(TX, VX)) +~,(F),

X
where the Cheeger invariant v,(F') has been defined in (4.36). Comparing (6.11) and
(6.12)) and using the below Proposition (b) we get the claim.

[

Remark 6.2. (a) In the asymptotic expansions, as t \, 0, of Tr[exp(—tA®)], k =
0,...,n, there are logarithmic terms log(¢) appearing, which by taking the alter-
nating weighted sum do cancel out. More precisely, the coefficient of log(#) in the
expansion of Trg[N exp(—tA)] is

(6.13) > f ao(1, y)dvoly,,
peSing(X
which vanishes by (6.3).

(b) Note that using the asymptotic expansion in Theorem and the Mellin trans-
form one can show that the torsion zeta function (2.16) extends to a meromor-
phic function on C, which is holomorphic at 0. For this latter result, it is crucial
that no logarithmic term appears in the asymptotic expansion of Trs[ N exp(—tA)].

Proposition 6.3. Let n be even and p € Sing(X).
(a) We have, for T > 0 fixed, as t \_ 0,

(6.14) .
Trg[N exp(—tAL)] =t 'tk(F) Lp W exp(—Bf.) + 7,7 (F) + grk(F)ap + O(tY?).
(b) We have the following relation between the Cheeger invariant and the torsion Cheeger
invariant:
(6.15) 7S(F) = S,(F).

2
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Proof. The proof relies on a combination of local index techniques as developed in [BZ92]
with the Singular Asymptotic Lemma (SAL) of Briining and Seeley [BS85]]; here we use
the version given in [Les97, Theorem 2.1.11].

Preliminaries on local index techniques: In the following we will apply local index tech-
niques as in [BZ92, Theorem 13.4] and in [Lud20b, Theorem II], which we shortly recall
here for further use: We fix a point z = (r,y) € Z,. For ¢ > 0 small enough, we identify
Bc(z) with B/*?7(0) using geodesic coordinates centred at z. For z € B.(z) ~ B/*”"(0),
we identify T, Z,, F, with T, Z,, F, by parallel transport along the geodesic ¢ € [0, 1] — tx

with respect to the connections V74>, V', The operator tQA’}’?t is now seen as an oper-

ator acting on sections of (A(T*Z,) ® F). over B{*?”(0). We consider the operator we

get from tQAZ;}It by rescaling via x+ — z/t and then replacing the Clifford operators c(ey),
c(ey), defined in (4.10), with

~

k k
(6.16) cler) = f/_z — Ve, Cley) = j_i + Ve,

fork=1,...,n.
As in [BZ92, Theorem 13.4 and Theorem 13.5], we get for T" € [0,1/t] as t ~\, 0,
uniformly on compact subsets of Z, the following pointwise asymptotic expansion

(6.17)
Tr, [UPE((r,y), (r,y))] dvoly,

_ k() f " ok (“BL) + ¢ ( J o (%v% ; Lﬁf> a(F, vF)exp(—Bg2)) L o)

2
=: ao(T,7)dr + ta (T, r)dr + O(t?).

_ 1k (F) f " kb (CBL) + Lt ( J v exp(_3;2>> L O)

Moreover, asymptotic expansions for the derivatives both with respect to ¢ and (r, y) are
obtained by differentiating (6.17).

The coefficients in the asymptotic expansion have exponential decay. Moreover,
from the scaling properties of the Berezin integral and the fact, that (F, V¥) does
not depend on the radial coordinate, we have

(6.18) ao(T,r) = r~tag(Tr, 1), ay(T,r) =r2a(Tr,1) = dr,B(T,r),

where f is an (n — 2)-form on the link L,, depending smoothly on the radial coordinate
r>0andon T > 0.

(a) Let T" > 0 be fixed. N

Step 1: Splitting the integral: Let us denote by S{r(v,y) = Sf;,T/t(x7y)’ T,y € Z,, the

kernel of N exp(—t*A?, /t) w.r.t. dvolz,. The scaling property (4.15) of the model Witten
Laplacian implies

(6.19) Str((r), (r.) = 257, (Viry), (Viry)).
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Let ¢ : R>y — [0,1] be a cut-off function, with suppy < [0,1] and ¢ = 1 in [0, 1/2].
From (6.19) and using the change of variables r» — \/tr, we get

(6.20)
Trs [N exp(—tAL)] = JZ Trs [SP((r,y), (r,y)) | dvolyg,

P

(s ) -

Zp

T |82 (). 9)) | dvol,

= [ otrrte [ (). 00 v, + |

Z (1 —(r))Trg [ng((r, y), (r, y))] dvoly, .

Step 2: We establish a pointwise asymptotic expansion, which will be used in Step 3 and
Step 4: We use local index techniques as in the preliminaries; i.e. we apply to the op-
erator t*A”. sthe (local) scaling  — ¢z and replace the Clifford variables c(e), c(ex) by
ciler), Gler) (see (6.16). We denote by C; the operator we get from 3 3 ¢(e;)¢(e;) by the
above scaling. We have

t\0 1 - i ~j
(6.21) tCt—>W=§Ze A

i=1

Using (4.11)), (6.21) and proceeding as in [BZ92, Theorem 13.4 and Theorem 13.5], we
get the following pointwise asymptotic expansion as ¢ N\, 0 and 7" € [0, 1/¢], uniformly on
compact sets of Z,,,

Tr, [ 822 (), (r,) | dvoly,

1 o D oo Loz ) F D
= grk(F) W exp(—Br.) + W §V P+ ipey | 0(F, g7) exp(—Byz)
n Bp
+ 5(P) [ exp(-BL.) + O(0)
(6.22) . Bip By

1
= ;rk(F) Wexp(—BY,) + §d < Wo(F, gF)eXp(—ng))
n Bp
+ Drk(F) J exp(—Bl,) + O(1)
1
=: ;5,1(T, r)dr + ao(T,r)dr + O(t),

where for the last equality we have used [BZ92, (3.23)], [BGV04, Proposition 1.50],
VT W = 0 and the fact that ¢ does not contain er.
The (n — 1)-form SB’p WO(F, g*') exp(—Bp,) contains e”, hence we have

B, ~ ~
(6.23) d ( ’ WO(F, g") eXp(—Bgz)) =e" Ad,B(r,T),

for an (n — 2)-form 3 on the link L,, which depends on the radial coordinate r.
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For a > 0, we denote by h, the radial scaling » — ar. We have the following scaling
properties

B,p B.,p
h; Wexp(—BY.) = a Wexp(—=B, ),
(6.24) By Bp

he | WOE.g")exp(=Ba) = | WH(F,g") exp(~Blaya),
which, together with (3.26) imply
(6.25) a1 (T,r) =a_1(Tr,1), ao(T,r) = ra(Tr,1).

The coefficients appearing in the asymptotic expansion have exponential decay
as r — oo. Together with Proposition (c) and (6.24), this shows that a_(T, —)dr,
ao(T, —)dr are integrable over the infinite cone.

Step 3: We study the first integral on the right hand side of as t N\, 0 using SAL:
The scaling property of the model Witten Laplacian implies,

(6.26) Str((r), (rw)) = 18P, 1, (L), (Ly)).
Using ([6.26]), we get for the first integral on the right hand side of (6.20):

(6.27)
L PV T [ S2r (r.). (r.)) | dvoly, =f %(r)f Tr, | 37,7, (1), (1) | dvoly,

o T Ly
Q0
= ZJ p(r)o(r,rz)dr,
0
where 2 := ¢! and

1 N
(6.28) 5.6 = ¢ L T, 3214, (L), (L)) | dvols,.
We have, using (6.8), 5(0,¢) € L'(Rxo),

[ a0, = [ [ a3 (). (100 dvol,

0

_ f"df Trs[sg o (1,9, (1)) dvoly,

(6.29)
f du f Trs u (17 y))] dVOlLP
— ,ylt)ors
We define
(630) &0(7”) = f 571<T7”, 1), 5',1<7’) = J ao(T’F, 1)
L L

p P

From the discussion in Step 2, we have &y(r),r'5_(r) € L'(Rso). Moreover

6.31) J " (1) (r)dr = rk(F) L o) [ W exp(—BL).

0 P
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and, using also (6.23)),

(6.32) J " o(r)r % (r)dr = P rk(F) L o(r) J " exp(—=B2,) and 5_1(0) = 0.

0 P

From (6.22), we get,as { > wand0<r<1,5=0,1,
(6.33) |02[G(r,€) = Go(r) — £7'51(r)]] = O(E7?).

Using the explicit expression for the heat kernel exp(—tA%7) in Proposition [4.3] Re-
mark [4.4] and the asymptotic behaviour of the modified Bessel functions, one can prove
the following integrability condition for &:

1 1
(6.34) J J 50,5 (0st, s)|dsdt = O(67Y?),  for0 <6 < 1.
0 Jo

The assumptions in SAL [Les97, Theorem 2.1.11] are hence fulfilled. Applying SAL, as
z — o,

(6.35)
zJ o(r,rz)dr

0
0

— JOOO (0,£)d¢ + LOO @(r)oo(r)drz + L o(r)F_y(r)r~tdr + 5_1(0) log z + O(z~1/?),

where we have also used that, as discussed in (6.29), (6.31) and (6.32), the infinite
integrals appearing in (6.35) are well-defined.

From (6.27), (6.28), (6.31), (6.32) and (6.35), as ¢ \, 0,

JZ o(r)Trg [ng((r, y), (r, y))] dvoly,

B,p

(636 ~tk(F) [ el [ Wesp(-Bp)

Zp

+ W;OTS(F) + grk(F) JZ o(r) J ! exp(—Bg2)dr + O(tY?)

Step 4: We study the second integral on the right hand side of (6.20) as t ™\, 0: Using

and the scaling properties of the Berezin integral (3.26)), the pointwise asymptotic
expansion (6.22) - which is uniform on compact sets of Z, and for 0 < 7" < 1, and the
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change of variables u = t/r, we get
(6.37)

fz (1 —p(r))Trg [gﬁT((T, ), (r, y))] dvoly,
- LDW}XL (1 —(r))Trg [ggT((T, y), (r, y))] dvoly,

- 02t % L (1 — o(t/u))Trs [55% ((1,y), (Ly))] dvoly,

y
Lwl o () a(2)

. B,p 77, B,p
=t"'rk(F) JZ (1 —(r)) W exp(—Bh,) + tk(F 5 Jz (1-— J exp(—Bl.)
+ O(t).
Step 5: We finish the proof: By putting together (6.20), and (6.37), we get the
claim in part (a) of the proposition.
(b) Step 1: We study Try[r? exp(—t*Al, )] by applying SAL: Let T' > 0 be fixed; in this

step we proceed similarly to part (a). Using a cut-off function ¢ : R>, — [0, 1] as in part
(a), we write

Try[r? exp(—t* A% ,)] =J o(r)r*Trg [UFy ((r,y), (r,y))] dvolyg,
(6.38) Zp
# [ 0= )T 02y (), ()] vl

P

The scaling property (4.15) of the model Witten Laplacian implies

(6.39) U ((ry), (ry)) = v Uy, (1Ly), (1,9)).

For the first integral in (6.38)), using (6.39), we get

(6.40)

|| et vz vy, = [ prdr [ i[5, (). (100 v,
=z JOO o(r)o(r,rz)dr,

where 2 := ¢! and 0

(6.41) o(r &) i= Z—QL T, [ U2, (1 y), (1y))| dvol,.

With the notations introduced in , we define

(6.42) o_1(r) = rQL ao(Tr,1), o o(r) :=1? L a;(Tr,1) =0,

where the vanishing of o_, follows from the second identity in (6.18)). From (6.17), we
get,asé > wand0<r<1,j=0,1,2,

(6.43) |00[o(r,§) = € oi(r) = oa(r)]| = O(E?).
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Using the explicit expression for the heat kernel exp(—tA%?) in Proposition and
the asymptotic behaviour of the modified Bessel functions, one can prove the following
integrability condition for o(r, &):

1 1
(6.44) J f s%|020(Ost, s)|dsdt = O(6Y?), for0 <6 < 1.
0 JoO

Application of SAL, in a combined version of [Les97, Theorem 2.1.11] and [BS85],
gives, as z — o,

JZ o(r)r*Trg [Usr ((r, y), (r, v))] dvoly, = z JOO o(r)o(r,rz)dr

p 0

_ J " (0.6)de + J " ¢0.0(0,)de !
0 0

(6.45) + JOO o(ryo_i(r)rtdr + J o(r)o_o(r)r2drzt

0 0
+0_1(0)1logz + 0,0 2(0)z ' log z + O(z7?)

=rk(F) L o(r)r? JBJD exp(—BY,) + O(t?).

P

Proceeding as in Step 4 of part (a), we get for the second integral on the right hand

side of (6.38)),

| 1= ety Uz () ) dvoly,
(6.46) ” .
= 1k(F) JZ (1-— @(T))TQJ exp(—BY,) + O(t?).

P

Putting together (6.38)), (6.45), (6.46) and using the scaling properties of the Berezin
integral (3.26), we get

Tr,[r? exp(—tQAl}/t)] = J 72 Tr, [Ut’?T ((r,y), (r,y))] dvol,
z

B,
(6.47) = rk(F)J T2f pexp(—Bgz) + O(t?)
Zp

_ fka ) Lp r? f o exp(—BP) + O(#?).

Step 2: Deriving a second asymptotic expansion for Trg [N exp(—tAY)]: As in the proof
of [BZ92|, Theorem 5.6], one can show that the form
dt

2
(6.48) gTrS [N exp(—tA”)] — dTTr, [—% exp(—tAI})]

is a closed form on R2 ,, from which we deduce

>0

2
-~ YN _AAPY]
(6.49) Trs[ - exp tAT)]— — <TrS[Nexp( tAR)] 2[X(ch,Lp,F)).
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Using (6.47) (with ¢ = 1), (6.49) and the fact, that Tr, [N exp(—tA%)] is symmetric w.r.t.
interchanging (¢, T'), we get the following asymptotic expansion as ¢ \ 0:

1 By
(6.50) Trg[Nexp(—tAl)] = ;rk(F)J TQJ exp(—BY) + gfx(ch, L, F)+O(t).
Zp

Using Theorem and comparing the constant coefficient in the asymptotic expan-
sions (6.14) and (6.50) we get the claim. (Equality of the leading coefficients in the two
expansions is a consequence of (3.5)).) O

6.3. Proof of Theorems The proofs of Theorems [5.6/{5.9 consist of two steps:
a localisation argument and an explicit computation using the local model operator near
Crit(f); the latter has been taken care of in Section The localisation argument in
the proofs of Theorems do mostly rely on the singular elliptic estimates of Lesch
[Les97, Section 1.4] for A7, the Spectral Gap Theorem, Theorem [Lud17bl, Theorem I],
for the operator A7, and the fact that dom(A7)! = dom(A%)!, I € N (see (#.4)). All these
ingredients hold without assuming the Witt condition and without assuming that g” is
flat; the singular elliptic estimates of Lesch are available for every closed extension of a
symmetric elliptic differential operator of Fuchs type.

Hence the proofs of Theorems follow by a direct generalisation of the proofs
of the corresponding statements in [Lud20a].

7. ANOMALY FORMULAS

In Section we prove, for § € {m,n}, the anomaly formulas for the Ray-Singer

metric | |55 ;. (x p Stated in Theorem II of the introduction. In Section [7.3|we prove
q )
. . TX F
anomaly formulas for the Bismut-Zhang metric || deéi’ rHe(x.p)- The anomaly formula
q 7

for the Ray-Singer metric | ||}, e (x.r) generalises the anomaly formula of Bismut and
q k)

Zhang in the smooth setting [BZ92, Section 4]. In Remark[7.9| we show that the Bismut-
Zhang formula in Theorem I and the three anomaly formulas for the three terms in it
(Theorems II, and are compatible, as it should be!

In this section we will always consider a family of metrics [ € R — (¢!, g/) on T X, F
depending smoothly on the parameter [. We assume moreover that the metrics g/~ are
conical, i.e. for p € Sing(X), there is a family of Riemannian metrics [ € R — ngL”, such
that g7 = dr? + r2g/ ™ near p. Similarly, we assume that near p € Sing(X), the metric
gf is of the form explained in Section

In the following we use a sub- resp. a superscript [ to characterise operators associated

to the pair (¢! %, gf").

7.1. Spectral gap condition. In this section we explain an additional assumption on the
metrics (g7, g'), which will be in place for most of the results in Section |7, It is used
in particular in the proof of Proposition to deal with the boundary terms appearing
near p € Sing(X) when applying Stokes’ Theorem.

For p € Sing(X), the following spectral gap condition for the first order differential

operator S, on the link L, defined in (4.8)), will be assumed:

(7.1) Spec(S,)  (—1/2,1/2) = {0}.
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By [BL93, Corollary 2.3] condition (7.1) is equivalent to the following spectral gap con-
dition for the transversal Laplacian A, on the link L,:

(7.2)
Spec(A(L"fC)l) 0,1) = if n = 2v is even,
(Spec(Aé cc)l) (0, 3/4)) <Spec(A(L)Ccl) (0, 3/4)) =g ifn=2v+1isodd.

Condition (7.I) (and hence (7.2)) can be achieved by a rescaling of the metric ¢g”%» into
c2gTt» with ¢ > 0 sufficiently small.
We denote by D,;, (resp. D...x) the minimal (resp. the maximal) closed extension of
the first order operator D, = d. + .. By [BS88, Theorem 3.2 and Lemma 3.2] we have

N U1 (W) ez acrr,yor = o(r'/?*logr|'?)
(7:3) dom (Duin) = {w € dom(Drmax) locally near p € Sing(X) ’

where U is the unitary transformation defined in Section Also by [BS88, Theorem
3.2 and Lemma 3.2], in case n even, assuming the spectral gap condition (7.1) the
operator D, is essentially self-adjoint, hence

(7.4) D™ = D" = Dyin = Dinax.
In case n = 2v + 1 odd, assuming (7.1), we have

(7.5) dom(Dg,, )/ dom(D ) ~ @@ H(Ly, Fr,).

max min
peSing(X)

By [BS88, Lemma 3.2], [ALMP18| Section 5], there are continuous linear functionals
a,b : dom(Dumax) = Dpesing(x) H" (Lp, Fr,) such that, for w € dom(Dax), locally near

p € Sing(X),
(7.6) w — a(w) — b(w) A dr € dom(Dyyin)-

Moreover using [ALMP18, Lemma 5.2] we can characterise the extensions DY, g € {m, 1},
by

77 dom(D™) = {w € dom(Dyay) | b(w) = 0},
' dom(D") = {w € dom(Dyay) | a(w) = 0}.
7.2. Anomaly formula for the Ray-Singer metric | |7, ,. x - Proof of Theorem

II. Letey,...,e, be an ONB of (TX, g™). We denote by =, = the Hodge star operators
associated to the metrics g/, (g%, gf'). By [BZ92, Proposition 4.15], we have

(7.8) . @:_5 3 < og, e“ej> clenaley)

1<i,j<n 9;

Set

. g7 o
(7.9) wit = — < ) %l e,,ej> e néel.
1<z J<n ngX
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Similarly to (7.9) we define, for p € Sing(X),

TZ)p

_ 199, i d
= —= ol €i, €j e N €

1<z JS<n ngZP

(7.10) Iy

(g7 %7) 109, " N
= —= Z l €i, €5 e N e,

2<z J<n TZp

9

Note that the coefficients in the above sum do not depend on the radial coordinate.
The characteristic class e(p*T X, VIXt°!) associated to the family of conical Riemann-
ian metrics (g/¥); has been defined in Section [3.4and is vanishing in case n odd.

Theorem 7.1. Let R 5 | — (g} %, g7") be a family of metrics on TX, F as explained at the
beginning of Section [/} Then we have the following asymptotic expansion as t \, 0:

0% _, ogFf -
[ (5 + ) ) exnl-e07) |
F
- [ e[ e v
. ol

(7.11) ) B .
+ —rk(F)J J Wit exp (——RZTX) + f Lo, e(p*TX, VI N9(F, gf)
X
+ Z ) + O(t?),
peSing(X

where the contributions of the singularities cp P p » D € Sing(X), are given by the following
well-defined integrals:

Joo duJ Trs[ . gl szq((l y), (1, y))] dvolg,,,

= — OOd_u 71_ ,0,q
B QJO U JLp Tl"sl Lol Qv (1, y), (1,y)) dvolg,.

Remark 7.2. (a) The first three terms on the right hand side of the formula (7.11))
are the interiour contribution, familiar from the anomaly formula for the Ray-
Singer metric on a smooth compact manifold [BZ92, Theorem 4.14, Theorem
4.20]. They do not depend on the chosen extension of ch = d. + d1c. The
contributions of the singularities of X to the formula (7.11)), Cy 1> Cops P € Sing(X),

do depend on the chosen extension D.
(b) One can establish a corresponding formula for every other closed self-adjoint
extension of the Laplacian, which is invariant under radial scaling near Sing(X).
(c) Note the following vanishing properties for the coefficients in (7.11)): If n is even,

(7.12)

{7 WX exp (—%RlTX ) = 0 since the integrand is a sum of forms of type (k, k), k

odd. If n is odd, clearly from their definition, e(T'X, VI¥) = 0, e(p*T X, VI¥:t) =
0.

Proof. In the following we fix 0 < ¢ < § and set X, := X\(Upesing(x)Bc(p)). We identify a
neighbourhood of a singular point p € Sing(X) with a neighbourhood of the tip point in
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the infinite cone over L,. We denote by exp(—t(D{)?)(z,y), 7,y € Xun, t > 0, the kernel
of the heat operator exp(—t(DJ)?).

Step 1: Variation of the metric on F. Using local index techniques as in [BZ92|, The-
orem 4.20] (more precisely [BZ92, (4.61)]), we get the following pointwise asymptotic
expansion as ¢ ™\ 0:

T, [ () S exp(-e( D] . 0) | ol

(7.13) - (Tr l(gf)lagﬂ JB exp (—%RZTX» (z) + O(tY?)
(

(o) L erx, 7)) 0 + 0072

The expansion (7.13) is uniform on compact sets; the coefficients do only depend on
local geometric data and do not depend on the chosen extension of D,;. := d. + 6.
Since by (8.18), e(T X, VIX) vanishes near p € Sing(X), the coefficient of t° in the above
pointwise asymptotic expansion vanishes near the singularities of X.

For p € Sing(X), we define

G 1= Jm T, [< P2 griae ,y>,<r,y>>] dvoly,
TV J{o<r<e}x Ly
® g
(7.14) _111%2 “J Trs[ -1 gl (s ,y),(l,y))] dvol,,

f’ i | Trs[ 2 (1., 1, y))] dvols,.

To prove the well-definedness of the integrals in (7.14) we use the same arguments as
in the proof of the well-definedness of the Cheeger invariant (/") in Section |4.3.1]; For
the first identity in (7.14) we have used the change of variables v = t/r?, the scaling
property (4.37) for the heat kernel on the infinite cone and the fact that, on Z,, the
operator ((gl ) L gl ) does not depend on the radial coordinate. From (3.18)) and (7.13] -

we have, as u \, O,

F
7.15) o |6 Q1) ()| ~ ()

which shows the well-definedness of the last integral in at u = 0. The well-

definedness at u = oo follows using the characterisation of dom(AP!9), see (4.39).
Proceeding with Cheeger’s strategy [Che83, Section 2] (which has already been used

in the proof of Theorem in Section [6.2)), we get from (7.13), and Duhamel’s
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principle, as ¢ \, 0:

[ [@f)—lag—fexp(—t<D?>2><x,x>] dvoly

(7.16) P
Try [(QZF)I%Q?I’(](SC, x)] dvolz, + O(t)

F
= f Tr [(gf)—l aagé ] e(TX,V{¥)+ > +0(t?).
X peSing(X)

Note that it is due to the vanishing of the Euler form e(7'X, V]*) near Sing(X), that the
first integral on the right hand side of is well-defined and moreover no logarithmic
term log(¢) appears in the asymptotic expansion (7.16).

Step 2: Variation of the metric on T X. Using local index techniques as in [BZ92| The-
orem 4.20], we get the following pointwise asymptotic expansion uniformly on compact
sets, as t \, 0,

Trg l*flaT? exp(— (Df)Q)(x,x)] dvoly =

B
(7.17) 3 <J exp (—%RZTX> WXV O(F, glF)) () + O(t) ifniseven,

B
\/izrk(F) (J Wt exp <—%RITX)> (z) + O(t1/?) if n is odd.

Indeed the above asymptotics has been worked out in [BZ92, Theorem 4.20] for n even.
As remarked in [BMO06, (4.23b)], proceeding as in [BZ92, (4.55)-(4.63)] one gets
for the case n odd as well. Note that the leading coefficients in the above expansions
vanish near Sing(X): Using [BC90, Proposition 1.2], (2.6), and the fact
that 0(F, g*') does not depend on the radial coordinate, one has that the integrands in
the Berezin integrals appearing in (7.17), near Sing(X), are a sum of summands not

containing either e” or &”. Similarly, also the (n — 1)-form {” exp <—%RZTX ) WXO(F, gF)
vanishes near Sing(X).

From the above discussion, using Stokes’ Theorem, the Bianchi identity and [BZ92),
(4.74)-(4.86)] we have, for ¢ > 0 small enough,

(7.18)

1 B 1. 0

- J J exp (——fo> SVIRO(F g) = J f exp (——RTX) W Vit O(F,g))

— - f f exp (——RTX> (VIXoX)O(F, gF') + §J f exp (—iRlTX) WX O(F, g7
. 0Xe

- _ §f J exp <—§RITX) (VlTleX)é\(F, glF) + f Loe(p*TX, VTX’tOt)Q(F, glF)
X X

Recall that, in (3.37]), we have seen that the integrand on the right hand side of (7.18)
vanishes near Sing(X).
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We now define

2, i lim T |7 S (0). () v,
’ t=0 {O<r<e}><Lp
© du _10 l l
(7.19) ~ lim = Trs = @ ((1,y),(1,y)) | dvoly,
t—0 2 e—2¢ u P

_1 d_u —1_ D,0,q
B QJO U pr Trsl Lol QY ((1,y), (1,y)) dVOle,

The well-definedness of the term follows with analogous arguments as for the
well-definedness of the integral in (7.14). Again, to get well-definedness of the inte-
gral on the right hand side of at u = 0 the vanishing of the leading term in the
asymptotic expansion near Sing(X) is crucial.

Using (7.17), (7.18), (7.19) and Duhamel’s principle and proceeding with Cheeger’s
strategy as in Section we get

o2+ X[ m[ PG e s 00

peSing(X

:—rk J J Wit exp (——RTX) f Lo, e(p*TX, VI N9(F, g
+ ), o).

peSmg(X)

Note again that the fact that there is no term in log(¢) appearing in (7.20), is due to
the vanishing of the coefficient of ¢° in the pointwise asymptotic expansion (7.17) near
Sing(X). All integrals in (7.20) are well-defined by the proceeding discussion.

O

In the next proposition we adapt a trick explained by Cheeger in [Che79, Theorem
3.10] for manifolds with boundary (and absolute or relative boundary conditions at the
boundary) to our situation. We decompose the action of the Laplacian according to the
Hodge decomposition for the complex (Cpax /min, @max /min, { ; )) iNtO its action on exact,
coexact and harmonic forms

(721) Aq = Aq + AZex + Aharm
We denote by
OxF O ogF
22 N e S L Y L
(7 ) (o2} ( 1 ) ol l 2l + (gl ) ol

Proposition 7.3. Let R 5 | — (g%, g7') be a family of metrics on T X, F as explained at the
beginning of Section [/]and such that the spectral gap condition ([7.1)) is satisfied.



BISMUT-ZHANG THEOREM AND ANOMALY FORMULAS 48

(a) The following holds:

%Tr [exp(— tAla’(k) )]

=—1t {TI‘[A?’UH_I) eXp( Aq (k1) ) l] - TI‘[A?(]C) eXp( tA?cea:) ]

lex

l,cex

(7.23) +Tr[ AP exp(—tATH) g, — Tr[ATFD exp(—tATH 1)01]}

d
~t = { Telexp(—tAL )] = Trlexp(~tAL o]

+Trfexp(—tALY)or] — Tr[exp(—tA7 S )]}
(b) The following holds:

(7.24) %TI”S[N exp(—tAl)] = —t%TrS[exp(—tA?)al].
Remark 7.4. We have
(7.25) A=ds+éd, &=—0b+do.

For a smooth compact manifold, since the operators d and §, commute with exp(—tAl(k)),
the first identity in (7.23)) is equivalent to

d .
(7.26) aTr[exp( tAl(k))] = —tTr[Al(k) exp(—tAl(k))].

In the presence of singularities the commutation property only holds on the domain of
the Laplacian A}, which however is not invariant under o;.

Proof. (a) Denote by 715 : X x X — X the two projections. We denote by (17 = 0, + Af
the heat operator on X. We denote by P"(x,y), t > 0, the fundamental solution for
the heat equation associated to A?’(k). The fundamental solution P}?(xz,y) is a smooth
double form in 7} (A*(T*X) ® F) @ 75 (A*(T* X ) ® F') satisfying the heat equation in each
variable. We denote simply by P/(x,), etc. the operators associated to [ = 0.

For o > 0, we denote by X, := X\ Upcsing(x) Ba(p). In the following we use the
following abbreviating notation, for two double forms w, w’:

(7.27) (w(z, 2),w (2,2))g = f w(z,2) AW (2, 2).

In the following all operations are applied to the variable z and correspond to [ = 0. We
have

<P€l@(w7 Z)’ Ptq—e(zv x>>a - <Ptl7—ae(x7 Z)a Pg(zv x)>04
= | (P (x,2), PI(z,2))a)ds

t—e t—e
(7.28) = J (0P (2, 2), PU(2, x))ads + J (P (x,2),0,P(z, x))ads

t—e t—e
_ f <DqPZfs<x,z>,P§<z,x>>ads+f (ATPI (2, 2), PT(=, 2))ads

f (P (2, 2), (TP (2, 2))ads J (P (2, 2), ATPI(z, 2))ods.
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Applying Stokes’ Theorem and using [17P7 = 0 in (7.28), we have
(P (x,2), P2z, 0))a — (PEU(, 2), PL(2,2))a
t—e
- [ @ w2, I )puds

t—e
—J {J SPM (2, 2) A+ qux}ds
€ 0Xa

t—e

7.29
(7.29) s

H-

J FdP (x,2) A PI(z, z)

KXo

—

-+

J
J

t—e
{J L PY (2, 2) A 6PI(z,2) ¢ ds
0Xa

t—e
- f {J PH(z,2) A *FdPg(z,x)} ds.
€ 0Xa

We now consider the second boundary integral in (7.29): Let n be odd. We have
dP (z,—) € dom(D"?) and P,(—,z) € dom(D7?). Therefore, by and (7.7), locally
near p € Sing(X ), we have expansions

(7.30) dPM. = a; + by A dr + wy, Pl=a+bnadr+uw,

with a,b,q;,b, as in (7.7) and w € dom (D), w; € dom(Dymin); @i, b, w; depending
smoothly on the parameter /. For the leading term of [«"dP/% (x,2) A P¥(z,z)]ox, We

hence have, using (7.7)) and (7.30),
(7.31) [+ (a; + by A dr) A (a+badr)]ox, =% b Ara=0,

where ¥ denotes the Hodge star operator on the link L, associated to the metrics
g gFe
)

From (7.3), (7.4), (7.30) and (7.31) we get, for both n even or odd,

(7.32) J AP (2, 2) A PI(z, ) = o(a'/?|log a|'?).
0Xa

By similar arguments, the third and fourth boundary integral in are also
o(a’?|log a|'/?). Note that, since dom duin/max F dOM & min /max, WE €an not argue in
the same fashion for the first boundary integral in (7.29), but we will treat this term
later in (7.36)).
Differentiating [, P/"? = 0 in I, we get

(7.33) [P + 7P = 0.
Thus differentiating (7.29) in [, setting [ = 0 and using (7.32) and (7.33)), we get
(PL (%, 2), PX(2,2))a — (PX(z, 2), PL (2,2))a + o(a'?|log o] /?)

t—e t—e
—J TP (x,2), P1(2,2))ads — f {J SPL (z,2) A *FPsq(z,:c)} ds.
€ 0Xa

€

(7.34)
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Using (7.25) and applying Stokes’ Theorem we get from (7.34)
(PL(,2), PI(2,2))a — (P(x,2), PL.(2,2))a + o(a'?|log a|/?)

- Lt—e {<5de:s(a77 2), P12, 7)) + <5PE_S(I, z), 0 PY(z, :c)>a} ds
I [ O o2) 4 8PE 2) 2 PG 0) s
_i 0Xa
[ B 2, PE 4 P52, 0P 0 s

(7.35) t—e _ _ _ _
+ J {<06Ptq_s(x, 2),0Pd(z,x))q — (o P (x,2),dOPI(z, x)>a} ds

l—e ( r L . B
- { (SPT (,2) + 6T ,(2,2)) *FP5<z,x>} s

0Xa

t—e r _ B
+ J { odPl (2,2) A Psq(z,x)} ds
€ JoX,

t—e r _ B
+ J { FoPT (z,2) A (5Psq(z,x)} ds
€ J

0Xa

We now treat the first boundary integral on the right hand side of (7.35): Since §; P e
dom(D{) and arguing as in (7.30)-(7.32), we have

(7.36) J S P (x,2) A «F PI(z, 1) = o(a'/?|log a|Y?).
0Xa

Differentiating (7.36) and setting [ = 0, we get

(7.37) J (0P (x,2) + 6P (x,2)) » +" PI(z,2) = o(a"?|log a|/?).
0Xa

We now treat the second boundary integral in (7.35): Let n = 2v + 1 be odd. Since
dP/ ,, P71 e dom(D7) we have, locally near p € Sing(X),
(7.38) PI—(a+bndr),dPL,—(a +b Adr)edom(Dpp).

with a,d’,b,b" as in (7.7). By the assumption on the metrics explained at the beginning
of Section |7} the operator o is an operator on the link (not depending on 7). Hence from

(73D, (7.38) we get that
(7.39) |UH(odPL, = (f(a') + f(') A dr))|earyor,) = o(r?[logr|?),

where f : #"(L,, Fr,) — Q(Ly, F1,) is a C-linear map. Using (7.7), (7.38), (7.39) the
leading term in the expansion of [+"cd P (z,2) A P(2,7)]ax, 18

(7.40) L (f(a) + fO) Adr) A (a+badr)]ox, =3 f) na=0.
Hence from (7.3)), (7.4), (7.38), (7.39) and (7.40) we get, for both n even or odd,

(7.41) J *FUdPE_S(.CE, 2) A Pl(z,x) = 0(041/2] log 04\1/2).
0Xa

We can argue similarly for the third boundary term in (7.35).
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Using (7.37) and (7.41), by taking the limit « — 0 in (7.35] we get:
(PL(w,2),Pl(z,2))y — (P(x,2), PL (2 x))

t—e

(7.42) = {(o0dP! (x,2), PI(z,x)) — {odP (2, 2),dP(z,x))} ds

€

+ J B {<0§PE_S($, 2),0PY(z,2)) — (o P (x,2),d6PI(z, x)>} ds.

Taking the trace with respect to = and the limit ¢ — 0 on the left hand side of (7.42),
and using the semi-group property for exp(—tA%), we get the left hand side of (7.23)).
On the right hand side of we do reverse the order of integration (w.r.t. x and z)
and take the limit ¢ — 0; we get the right hand side of (7.23).

(b) The statement follows from (a) by taking the alternating weighted sum. O

Proof of Theorem II: Let R 5 | — (g/*X,g/") be a family of metrics on TX, F as
explained at the beginning of Section [7| and such that the spectral gap condition
is satisfied. Using Proposition (b) we can proceed as in the smooth situation (see
[BGS88| (1.114)-(1.122)]) to get that, the variation

2
(7.43) i log <<| |‘§e€1H5(X,F),l> )

is given by the coefficient of ¢° in the asymptotic expansion for ¢ X\, 0 of

Ox ogf”
7,44 [ (75 + 6 ) (- (01|

The claim of Theorem II then follows from Theorem N

Remark 7.5. Let X be an even dimensional oriented space with isolated conical singu-
larities and (F, V¥, g'') a unitary flat vector bundle on X. It has been proved in [Dar87],
by the usual Poincaré duality argument, that in this case the Ray-Singer torsion is trivial.
Let R 51 — g/X be a family of conical metrics on 7X. Then, clearly by Dar’s result

2
7.45) aog (I 1)) =0

The result (7.45)) can be recovered using Theorem II, since in this case, again by a duality
argument,

O 7
(7.46) Trs l*l_la—ll exp(—(qu)2)] =0.
7.3. Anomaly formula for the Bismut-Zhang metric | Hi{?;g& )+ The aim of this
section is the study of anomaly formulas for the Bismut-Zhang metric (see Theorem
7.8). The next two theorems give anomaly formulas for the metric | [} /40 o0, 1, 5);

p € Sing(X), which has been introduced in Definition and is the contribution of the
singular points of X to the Bismut-Zhang metric.

Theorem 7.6. Let p € Sing(X). Let | € R — (¢"%», g}') be a family of metrics on TZ,, F,
as explained at the beginning of Section[7} g"%» = dr? + r?g""» being a fixed conical metric.
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We assume that the spectral gap condition (7.1)) is satisfied. Then

2 . 1895 q
d log (H HdetIH' (cLp,Lyp, F)l) :ll_{%Trs (gz) ol exp(—tAj)
_ . dgF
g [ e
Ly g

where 7, (resp. Cg,l) is as defined in (3.21)) (resp. (7.12)).

(7.47)

F
Proof. The operator (gi )_1% on the infinite cone Z, does not depend on the radial

coordinate. Proceeding as in the proof of Proposition [6.3| and using Proposition (b),
we getast N\, 0,

(7.48)

Theorem 7.7. Let p € Sing(X). Let [ € R — ( [77 = dr? +r2g] " g™") be a family of conical

metrics on the infinite cone Z,; the metric g* on the flat bundle F is fixed. We assume that
the spectral gap condition (7.1)) holds. Then

(7.49)
2 q ~—
al ].Og <<’ HdetIH CprLp,F),l> > = EZJ + JL 6<F’ VF) A L@z<vfp)*\11(p*TZp, VTZZNtOt)7

P

with E‘ZJ as defined in (7.12).

Proof. Step 1: Proceeding as in the proof of Theorem II we can prove that

2
(7.50) i log ((” ”det]H ch,Lp,F),l> )

is given by the coefficient of ¥ in the asymptotic expansion of Tr, [ ! Oa*zl exp(— tAff’l’q)]

as t \, 0. In Step 2-Step 6 we compute this asymptotic expansion proceeding as in the

proof of Proposition )
Step 2: Splitting the integral: Let T' > 0 be fixed. We denote by Ufj%’q(a:, x), x,x' € Z,,

the heat kernel of the operator tzAp lq w.rt. dvoly,. Let ¢ : Ryy — [0,1] be a cut-off

function, with supp ¢ < [0,1] and ¢ = 1 in [0, 1/2]. Using the scaling properties of the
model Witten Laplacian (4.15) and the fact that the operator *‘la*l on the infinite cone
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Z, does not depend on the radial coordinate, we write

Tr, [*z_ (}a—lexp( A%l’q)] :f Trs[ ~100 lQplq(( y), (r, y))] dvoly,
Z,
0% -
:f Tr, [*f 16—; PR (), (r, y))] dvoly,
Zp

(7.51) sz ()T [ l_lﬁalthqu((T y), (r, ))} dvoly,

+ L (1- @(T))Trs[ l ‘Z—ZUW((T, y), (r, y))] dvoly,.

P

Step 3: We establish a pointwise asymptotic expansion, which will be used in Step 4 and
Step 5: We use local index techniques as in the proof of Proposition i.e. we apply
to t2A’}jtq the (local) scaling x+ — tx and replace the Clifford variables c(e), ¢(ex) by

ci(ex), ¢ (e). We denote by C; the operator we get from «; ! a*l by the above scaling. We
have

(7.52) tCy, 20 o7,

where wfp has been defined in (7.10). Using (7.52) and proceeding as in [BZ92, Theo-
rem 13.4], we get the following pointwise asymptotics as ¢ \, 0, uniformly on compact
sets and for 7" € [0, 1/t],

(7.53)
O
Tr, {*1—1 allUf%q((r y), (r, ))] dvoly,

k(F) (PP By 1 A
S [Tt entng [ ol (G907 4 g ) 0F.05) expl-B) + 000

1
=: ;a,l(T, rYdr + ao(T,r)dr + O(t).

Recall that the form er(p*TZ,, VI %»*") has been defined in (3.29). From (7.10) and
ngZp f? = —r0,, we have Lrg} fpwlz 0. Hence, using [BGV04, Proposition 1.50], [BZ92,
Theorem 3.2], [BZ92, Theorem 3.13] and proceeding as in [BZ92, (4.74)-(4.86)] we get

(7.54)
Yo ((Lore AF,o")) expl(—B]
Wy o Vi Tl (F,g") | exp(— T2>

1 rB.p 1 _ ~
= 5d (J O0(F, g") exp(—BY )) - <(§VlTZp + Lﬁ\fp) sz”) O(F, g") exp(—Bj»)
1 B.p Z , rB.p 1 AR P »
= 5d J W (F, g" )exp(—B7,) - §Vl w, ") O(F,g") exp(—Bj.)
1 b Zp D (o7 F 1 IT/Z;\ZP D
= 5d J w; O(F, g") exp( B7,) - 0(F,g") _§Vz w; " ) exp(—B7.)
1 Bp D F * TZp,tot
= §d f W p9 F,g")exp(—BEy) | — 0(F, g" tarer=(p*T Z,, VT 7rtob).
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The form SB”’ wlZ »h (F, g")exp(—Bh,) is an (n — 1)-form containing e”. Hence

B, ~
(7.55) d (f pa;lZ”Q(F, ") exp(—B§2)> =e" Adp,B(r,T),

for an (n — 2)-form /5 on L,,, which depends on the radial coordinate.

The coefficients in the asymptotic expansion in have exponential decay as r —
oo and enjoy scaling properties analogous to those described in (6.24)), (6.25)).

Step 4: We study the first integral on the right hand side of ast ™\, 0: LetT > 0 be
fixed. Using and the fact, that the operator *l’l% does not depend on the radial
coordinate, we get for the first integral on the right hand side of (7.51)):

[ et |- S (0 ) | vl

P

@ dr _1 O * p,1,G
(7.56) = . 7g0(r) . Trg | % 3 — Ui, (Ly), (1,y)) | dvoly,
" P
= zf p(r)o(r,rz)dz,
0
where z := ¢! and
1 O
(7.57) o(r,§) = ) Tr, l a1 ll Ug_llqﬂ (1,y), (1,y))] dvoly,.

We have, using (7.19), 0(0,¢) € L'(R,),
J (0,€)d¢ = f dgf Trs[ ‘101U”lq ((1,9), (1,y))] dvoly,
0

:L%qu*“wl« 0.0, | dvol,

(7.58)
=1fod—“f Te, [+ Z00n0 (1, ), (1, ) | dvol
2 0 U L S l ﬁl u Y Y Ly
We define
(7.59) oo(r) = f a_1(Tr,1), o_1(r) :=J aog(Tr, 1),
Ly Ly

with ag, a_; as defined in (7.53).
From the discussion in Step 3, we have oy(r),rto_,(r) € L'(Rs,). Moreover

(7.60) L " o (r)oo(r)dr = rk(F) L o(r) f " P exp(—BLL),

and, using also (7.54), p

(7.61) J r)yrto_i(r)dr = — JZ o(MO(F, g™ Veaer=(p*T Z,, V7' and o_(0) = 0.
From ([7.53), we get, as§—>oca;1d0 <r<l1,j=01,

(7.62) |07 [o(r,€) — oo(r) = € o1 (r)]] = O(E72).
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The operator *‘“*l does not depend on the radial coordinate, hence as in (6.34) we

can prove the 1ntegrab111ty condition for o(r, {). The asymptions in SAL [Les97, Theorem
2.1.11] are hence satisfied. Applying SAL, as z — oo,

(7.63)
zJ p(r)o(r,rz)dz

0

— Jw 0'(0, €>d€ + J:O @(T)Uo(T‘)dT z + JOO SD(T)O'_l(T‘)’I“_ldT =+ 0._1(0) logz + (9(2_1/2)’

0 0

where we have also used that, as discussed before, the infinite integrals appearing in

(7.63) exist.

From now on, set 7' = 1. Using (7.58)), (7.60), (7.61) and (7.63), we get for the first
integral on the right hand side of (7.51) as ¢ \, 0,

(7.64)
LP ()T [ z %Uplq((ﬁ y), (1, y))} dvolg, = rk(tF) Lp p(r) JB’p w7 exp(—BY)

+ Eg,l - JZ §0<T)0(F, QF)Lal€1(p*TZp, VTZPvtOt) + @(tl/Q)

Step 5: We study the second integral on the right hand side of (7.51) as t \, 0: Us-
ing the scaling properties of the model Witten Laplacian and the Berezin integrals, the
asymptotic expansion (7.53)), as well as the change of variables u = t/r, we get

| a=eonm] o Guna e, ) | avty

P

B J{r>1/2}><Lp<1 A l : aall U™ ((ry), y))] olz,

[t [ [ G, ) | aon,

0

- f:t %“(1 — o(t/u)) {u‘l JL,, a_y G 1) + Lp ag (5 1) + @(U)}

MO g [ et epim)

P

(7.65)

- | =)0 g e (772, 9T + ().

P
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Step 6: We finish the proof: Using Proposition (b), (7.51), (7.64) and (7.65) we get
ast ™\, 0,

(7.66)

_1 0% - _ 0%
Tr, [*l 15 exp(— Al’l’vlvq)] - JZ Try [ ; 1 g Utpllq((r y), (r, ))} dvolyz,

rk(F) Bp P\ |~ F * TZp ot 1/2
|, 7 exp(—BY) + ey~ Z O(F, g )aer(p*TZ,, V"7 + O(t77)
rk(F BP B O(F oF TPV () T T Zwtot
), 7 exp( )+pl+L (F.g7) Ao (V[P) U (p*T Z), )

From we get that the coefficient of ¢° in the asymptotic expansion as ¢ \, 0 of
Tr, [*l‘laof‘ll exp(—tA{”l’q)], is given by

(7.67) ggl + J o(F, gF) A Lal(ﬁ\ﬁ’)*\l’(p*TZp, VTZp,tot>.
LP

The claim of the theorem follows putting together Step 1 and (7.67).
0

Letl e R — (g%, glF ) be a family of metrics on T'X, F as at the beginning of Section
I We denote by | |} dot1 H. 'xr the associated Bismut-Zhang metric.

Theorem 7.8. Let R 5 1 — (g{/~, g/") be a family of metrics on TX, F as explained at the
beginning of Section [7|and sattsﬁ/mg the spectral gap condition (7.1)). Then

(7.68)
Y, in
atog (1 i) = X ™ Parion(l s,
peCrit(fsm)
ag 7 7
+ Z <—J Trl( Fy-1 qé}/\npl—l—cg’ﬁ-agjl)
peSing(X Lyp

+ Z f Fgl /\Lal(ﬁ))*@(p*sz’vTZp,tot),

peSing(X

where 1, (resp. c? 1, and ¢ l) is as defined in (3.21)) (resp. (7.12)).

Proof. The proof follows from the definition of the Bismut-Zhang metric (Definition |[2.8)),
and Theorems [7.6] and O

Remark 7.9. Putting together Theorems II and we have
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2

(s TH2(X,F),l Fro1 591F TX
0[ log Y, gIX gF = Tr (gl ) &l (TX V )
| oot rere(x ) X

+ | taelr T 90, o)
X

(7.69)
i (
=Y (C)Mal0g( Bar)+ D) jT[ 2
peCrit(fsm) pESng L
. f (FgF) n 10 (TTP) U (0" T Z,, V700,
peSing(X

Integrating (7.69) over [ € [0, 1] and comparing with (3.49) we have

'RS 2
| [let IH‘(X ) [ [H2(X,F)
08 Y,g'TX g 08 Y,gTX,gF -
(7.70) I et IH'(X ) I et [H2(X,F)

. fX0<F,gF><V'f>*w<TX, v Lem §") (V)" (TX, V),

which shows that the variations of the three terms in the Bismut-Zhang formula w.r.t. the

two metrics (g7, g*') are consistent with the Bismut-Zhang formula.

The result in [BZ92, Theorem 16.1] can also be generalised to this setting: Let us fix

a flat Hermitian vector bundle (F, V¥, ¢"). Let (f, gt %), ( f’ T'X) be anti-radial Morse-

Smale pairs, we assume that the conical metrics g1, g, c01nc1de in an open neigh-

bourhood of Sing( ). We denote by Y = Vrxf, V' = Vrx f' the gradient vector
90" X 9"

fields. Let || Hdet THs (X, F)> [
det TH2(X, F).
Let g7 be a further arbitray conical Riemannian metric on X, which does also coincide

with the conical metrics g%, g,/¥ in an open neighbourhood of Sing(X); we denote by
VT¥ the Levi-Civita connection of (T'X, g™¥).

Y,ggx,gp . . .
det T2 (X F) denote the associated Bismut-Zhang metrics on

Theorem 7.10. In the situation described above we have

(7.71)
| Lesnier
et hd
log | et 2 J B(F, g™ (Y')* U (T X, VTX) - J 8(F, g"\Y*U(TX, VT¥).
| oo rere .y

Proof. The theorem is a consequence of the Bismut-Zhang theorem, Theorem I. It can be
proved independently by an easy generalisation of [BZ92, Section XVI]. O
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