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AUTOMORPHISMS OF THE MAPPING CLASS GROUP

OF A REAL PROJECTIVE PLANE WITH n−MARKED

POINTS

FERIHE ATALAN

Abstract. Let Mod(N) be the mapping class group of a real projective
plane N with n ≥ 4 marked points. We show that the outer automor-
phism group of Mod(N) is trivial.

1. Introduction

Let N be a connected, compact nonorientable surface of genus g ≥ 1
with n marked points. The mapping class group Mod(N) of N is the group
of isotopy classes of all diffeomorphisms of N → N which take the set of
marked points to itself. Atalan and Szepietowski [5] proved that the outer
automorphism group Out(Mod(N)) is trivial, for g ≥ 5 with n ≥ 0 marked
points. In this note, we will show that this is also true for the genus g = 1
and n ≥ 4 marked points.

Theorem 1.1. The outer automorphism group Out(Mod(N)) is trivial for
the genus g = 1 and n ≥ 4.

Ivanov [10] proved the analogous theorem for the mapping class group
of an orientable surface S of genus g ≥ 3, each automorphism of Mod(S)
is induced by a diffeomorphism of S, not necessarily orientation preserv-
ing. Ivanov and McCarthy [12] proved that any injective endomorphism of
Mod(S) must be an isomorphism. Bell and Margalit [6] prove the analog of
the theorem of Ivanov and McCarthy for genus zero surfaces. Castel [8] and
Aramayona-Souto [1], any nontrivial endomorphism of Mod(S) must be an
isomorphism. Finally, Irmak and Paris [9] proved that if G is a finite index
subgroup of Mod(N) and φ : G → Mod(N) is an injective homomorphism,
then there is f ∈ Mod(N) such that φ(g) = fgf−1 for all g ∈ G, where N
is a nonorientable surface of the genus g ≥ 5 with n ≥ 0.

In this note, our strategy to prove Theorem 1.1 is that an automorphism
Φ of Mod(N) is half-twist preserving and is induced by a diffeomorphism of
N . Similarly as in [6], the main key of our proof of Theorem 1.1 is a half-
twist preserving from which we obtain that any automorphism of Mod(N)
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maps half-twists on half-twists. However, unlike for the sphere, Mod(N)
is not generated by half-twists (see Subsection 2.1). Finally, we finish the
proof of Theorem 1.1 by using the technique of the work in [2].

2. Preliminaries

Hereafter throughout the paper, by N we denote a real projective plane
with n ≥ 4 marked points. A curve a in N is an unoriented simple closed
curve. If a regular neighborhood of a is an annulus (respectively, a Möbius
strip), a is called two-sided (respectively, one-sided). We say that a is trivial
if it bounds either a disc with at most one marked point or a Möbius strip.
Otherwise, we call it nontrivial. Let Na be the surface obtained by cutting
N along the curve a. A curve a is nonseparating if Na is connected and
separating otherwise. We note that all two-sided curves are separating in
this work. If a two-sided curve bounds two marked points, then we call it
a 2-separating curve. By an arc on N is an embedded arc connecting two
different marked points. We note that there is a one-to-one correspondence
between isotopy classes of 2-separating curves and the isotopy classes of arcs
joining two different marked points.

We denote by σa the half-twist defined to be the isotopy class of the
diffeomorphism of N interchanging two marked points along an arc a as
shown on Figure 1, and equal to the identity outside a disc containing these
marked points. Here, σ2

a is equal to the Dehn twist ta about 2-separating
curve a. We notice that ta is not possible to recognize between right- and
left-handed twists on N , so, we should specify the direction of ta for every
two-sided curve a.

a a

Figure 1. Half-twist about an arc a

If a and b are two 2-separating curves such that the corresponding arcs
a′ and b′ can be chosen disjoint with exactly one common endpoint, then
we say that a and b form a simple pair of 2-separating curves and denote it
by 〈a, b〉 (see Figure 2(a)). Similarly, we say that 〈a′, b′〉 is a simple pair of
arcs. We also call their isotopy classes simple pairs.

Let a′1, a
′
2, . . . , a

′
k be embedded pairwise disjoint arcs, zi and zi+1 the

end points of a′i, with zi 6= zj for i 6= j, 0 ≤ i, j ≤ k. We say that
〈a′1, a′2, . . . , a′k〉 is a chain of arcs. Similarly, the corresponding 2-separating
curves a1, a2, . . . , ak is a chain of curves (see Figure 2 (b)).

Throughout the paper, we denote curves, arcs, and their isotopy classes
by the same letter.
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a b

a a a
1 2 k

(a) (b)

Figure 2

2.1. Generators of Mod(N).

Theorem 2.1. Mod(N) is generated by {v1, σa1 , σa2 , · · · , σan−1}.

...
1 2 n

b

Figure 3. A real projective plane with n marked points

In Theorem 2.1 proved by Korkmaz in [13], v1 is the puncture slide ob-
tained by sliding the first marked point once along the one-sided loop b at
the marked point (see Figure 3).

2.2. Canonical reduction systems and Pure Subgroups. Let C be a
collection of isotopy classes of disjoint curves on N . Let NC denote the
surface obtained by cutting N along the representatives for C. Let f be
a mapping class fixing a collection C of isotopy classes of disjoint curves
on N . Then there is a representative diffeomorphism for f fixing a set of
representatives for C. This gives a well-defined element fC of Mod(NC). It
is called the reduction of f along C.

We say that a mapping class f is pure if it has a reduction fC inducing
the trivial permutation on the components of NC , acting as the identity on
the boundary, (fixing marked points), and restricting to either the identity
or a pseudo-Anosov map on every such component. (see [11], [2],[5].) By
Corollary 1.8 in [11], there is a subgroup Γ of finite index in the mapping
class group of the surface consisting entirely of pure elements. For the case
of nonorientable surfaces we recall from [2] (see also [5]) the construction of
finite index pure subgroups Γ(m) of Mod(N) (see Section 2 of [2] for more
details). If m ≥ 3, then Γ(m) is a pure subgroup of Mod(N).

An isotopy class of curve c is in the canonical reduction system for a
pure mapping class f if f(c) = c, and f(d) 6= d whenever the geometric
intersection number i(c, d) is positive. Birman, Lubotzky and McCarthy
in [7] introduced reduction systems, for the case of a nonorientable surface
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see [16]. We note that the centralizer of a pseudo-Anosov mapping class is
virtually cyclic (see [10], for the case of nonorientable surfaces see ([2])).

Let G be a group, H ≤ G a subgroup and f ∈ G an element of G. Then,
C(G), CG(H), CH(f) and rk(G) denote the center of G, the centralizer of
H in G, the centralizer of f in H and the rank of a group G, respectively.
We notice that the maximal rank of a free abelian subgroup of Mod(N) is
n− 2 (see [14], [2], [5]). Also, one can see that any power of a Dehn twist is
contained in an abelian subgroup of maximal rank.

2.3. Relations. Lemma 4.6. in [6] gives the correspondence between Dehn
twist relations and half-twist relations, via a 2-sheeted branched cover over
of surfaces p : S → Dn, where S is an orientable surface with genus n−1

2 (if n

is odd) and one boundary component (an orientable surface with genus n−2
2

and two boundary components, if n is even) and Dn is a disc with n marked
points (the marked points are the branch points). The deck transformation is
an involution ι switching the two sheets. If we blow up the cover p : S → Dn,

the resulting covering pB : Ñ → N is a 2-sheeted branched cover over N with

n marked points by Ñ a nonorientable surface with genus 1 +n (if n is odd)
and one boundary component (a nonorientable surface with genus n and two
boundary components, if n is even). Since p : S → Dn is fully ramified, the

same is true for pB : Ñ → N . Therefore, by Theorem 2.1 and Theorem 1.1
in [3], both coverings have the Birman–Hilden property. Hence, we have

LMod(N) ∼= SMod(Ñ)/ 〈ι〉. Here, LMod(N) is a finite index subgroup
of Mod(N) formed by mapping classes of N lifting to diffeomorphisms of

Ñ and SMod(Ñ) is the subgroup of Mod(Ñ) formed by fiber preserving

(or symmetric) mapping classes of Mod(Ñ). We note that LMod(N) in
Lemma 4.6 in [6] is Mod(Dn). However, since n ≥ 4, by Theorem 3.2 in
[4], LMod(N) is not isomorphic to Mod(N). On the other hand, using
Lemma 2.3 in [4], we can see that LMod(N) is the subgroup of Mod(N)
generated by the half-twists σai for i = 1, 2, . . . , n − 1. Now, we state the
following analogue of Lemma 4.6 of [6] in our setting, whose proof is omitted
since it is almost identical.

Lemma 2.2. Powers of half-twists σja and σkb satisfy a relation in Mod(N)

if and only if the corresponding powers of Dehn twists tjã and tk
b̃

satisfy the

same relation in in SMod(Ñ) (and hence in Mod(Ñ)).

We notice also that Stukow’s results on Dehn twists on nonorientable
surfaces demonstrate that Dehn twists share the same properties as those
on orientable surfaces ([15], Propositions 4.6–4.8).

Combining Lemma 2.2 with Dehn twists relations, we have Lemmas 2.3-
2.5 on nonorientable surfaces for j and k nonzero and a and b nontrivial:

Lemma 2.3. σja = σkb if and only if a = b and j = k.

Lemma 2.4. [σja, σkb ] = 1 if and only if i(a, b) = 0.
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Lemma 2.5. σjaσkb σ
j
a = σkb σ

j
aσkb if and only if 〈a, b〉 is simple pair and

j = k = ±1.

2.4. Half-twists preserving. Theorem 2.6 below is proved in [12]. It is
also given implicitly in [10], for the case of nonorientable surfaces see [2],
[5], [9].

Theorem 2.6. Let Γ be a finite index subgroup consisting of pure elements
in Mod(N). Suppose that f ∈ Γ has canonical reduction system C. Then
C(CΓ(f)) ∼= Zc+p where c is the number of curves in C and p is the number
of pseudo-Anosov components of fC, where C(CΓ(f)) is the center of the
centralizer of f in Γ.

The following group theoretical lemma is proved by Bell-Margalit in [6].

Lemma 2.7. Let ψ : Γ → Γ′ be an injective homomorphism. Suppose
that rkΓ′ = rkΓ + r < ∞ for some integer r ≥ 0. Let G < Γ be an
abelian subgroup of maximal rank, and let f ∈ G. Then rkC(CΓ′(ψ(f))) ≤
rkC(CΓ(f)) + r.

Let Φ be an automorphism of Mod(N). We define Γ′ = Γ(m) and Γ =
Φ−1(Γ′) ∩ Γ′.

Lemma 2.8. Φ takes a power of a half-twist to a power of a half-twist.

Proof. Let c be a 2-separating curve in N . So, f = σkc ∈ Γ, and it belongs to
a maximal rank free abelian subgroup of Mod(N). We have rkC(CΓ(f)) = 1,
by Theorem 2.6. It follows from Lemma 2.7 that C(CΓ′(Φ(f))) has rank at
most 1. Then, by Theorem 2.6, we obtain that c + p ≤ 1 for a canonical
reduction system of Φ(f). If p = 1, then Φ(f) is pseudo-Anosov, contra-
dicting the fact that CΓ(f) (and so the centralizer of Φ(f)) contains a free
abelian group of rank 2. The case c = p = 0 is not possible, because then
Φ(f) is the identity. Therefore, p = 0 and c = 1. Then, D has at most
one two-sided curve, where D denotes the canonical reduction system for
Φ(f). Now, assume that D has no two-sided curve. Say D = {d}, where d
is a one-sided curve. Then, Nd is connected and the restriction of Φ(f) is
either the identity or pseudo-Anosov. Since Φ(f) is not pseudo-Anosov, the
restriction of Φ(f) would be the identity. However, if the restriction of Φ(f)
is the identity, then Φ(f) must be power of Dehn twist about d which is not
possible since d is one-sided. Then, there is a nontrivial two-sided curve d
on N such that Φ(f) = tmd for some m.

We will show that d is a 2-separating curve. We consider a maximal collec-
tion of disjoint 2-separating curves on N , {c = c1, . . . , cbn

2
c}. The half-twists

σci give a basis for a free abelian group of rank bn2 c, all of whose genera-
tors are conjugate in Mod(N). Since Φ is an automorphism, by Lemma 2.4,
Φ(σkci) is a set of bn2 c powers of Dehn twists about disjoint curves bounding
the same number of marked points; that is, all these curves are 2-separating
curves. �
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Proposition 2.9. Then Φ is a half-twist preserving.

Proof. Let c be a 2-separating curve. Then, by Lemma 2.8 we have Φ(σmc ) =
tnc′ , where c′ is a 2-separating curve. Since [σc, σ

m
c ] = 1, we have [Φ(σc),Φ(σmc )]

= [Φ(σc), t
n
c′ ] = 1. Hence, Φ(σc)(c

′) = c′. We consider Nc′ = N1 ∪N2, where
N1 denotes the disc with two marked points and N2 is a Möbius strip with
n− 2 marked points. As Φ(σc) fixes c′, there exist well-defined restrictions
of Φ(σc) denoted by f1 and f2 to N1 and N2, respectively. These restrictions
must be finite order mapping classes because Φ(σmc ) = tnc′ . Since N1 is a
disk with two marked points, f1 is a power of a half-twist. Now, we will
show that f2 is the identity. To show this, let us take a 2-separating curve a
disjoint from c (n ≥ 4). Then, by Lemma 2.8 we have Φ(σka) = tsa′ , where a′

is a 2-separating curve. Moreover, by commutativity, Φ(σc) fixes the curve
a′, so f2 fixes it. If N ′2 is the complement of the interior of a′ on N2, then f2

which is restricted to N ′2 is the identity. It follows that f2 is identity. Then,
we obtain that Φ(σc) = σmc′ .

Let a be a 2-separating curve such that 〈a, c〉 is a simple pair. Since σa
and σc are conjugate, we have Φ(σa) = σma′ . Then, we have σmc′ σ

m
a′σ

m
c′ =

σma′σ
m
c′ σ

m
a′ . By Lemma 2.5, m = ±1.

This finishes the proof of the proposition. �

3. The Proof of Theorem 1.1

In this section, we closely follow the proof of Theorem 4.1 in [2].
Let Φ : Mod(N) → Mod(N) be an automorphism. Let D denote the

maximal chain of arcs from Figure 4. We will abuse notation and denote by
the same Figure 4 the corresponding chain of half-twists. By Theorem 2.1,
the half-twists σai , i = 1, · · · , n−1 and a puncture slide, say v, generate the
mapping class group Mod(N).

...
1 2 n

Figure 4

The image of D is again a maximal chain by the results of the previous
section. Let Φ(σai) = σa′i for each i, where a′i is the unique geodesic in the

homotopy class of an arc corresponding to the half-twist Φ(σai). Let µ be
the tubular neighborhood of the chain D. Then µ is a disc with n-marked
points. Let us choose an orientation on µ and on every 2-separating ai
corresponding to each of arcs ai such that the intersection {ai, aj} (i ≤ j)
is compatible with the orientation. Let µ′ be a tubular neighborhood of the
chain {a′1, · · · , a′n−1}. Now, choose an orientation of µ′ and a diffeomorphism
of a1 onto a′1. We can extend this diffeomorphism to all D by following the
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orientations, and so to a neighborhood of D. This diffeomorphism extends
to a diffeomorphism of the surface.

Let φ : N → N be one such a diffeomorphism. Composing Φ with φ−1
∗ , we

can suppose that Φ fixes σai for all i. Let v′ = Φ(v), where v is a puncture
slide. v′ commutes with all σai for i ≥ 2, because v commutes with all σai
for i ≥ 2. Let A be a two-sided curve as in Figure 5. Then, because a power
of the Dehn twist tA commutes with σai ’s, i ≥ 2, v′ also commutes with tA.
Now, we may isotope v′ to fix A pointwisely. Here, v′ cannot interchange
the two sides of a tubular neighborhood of the curve A. Thus, v′ can be
assumed to be identity on a tubular neighborhood of the curve A. Then, v′

induces a diffeomorphism on N \ A the disjoint union of disc with (n − 1)
marked points and Möbius strip with one marked point.

...

1 2 n

A

Figure 5. The curve A on N

v′ commutes with all σai ’s, i ≥ 2, with tA, and the center of the mapping
class group of disc with (n − 1) marked points is 〈tA〉. Because of this,
we may assume that v′ is identity on the disc with (n − 1) marked points,
after an isotopy. Thus, it is supported on Möbius strip with one marked
point. On the other hand, the mapping class group of Möbius strip with
one marked point is generated by v so that v2 = tA (see [13].) Any element
of the mapping class group of Möbius strip with one marked point has the
form vk for some k. In particular, Φ(v) = vk for some k. Since Φ(v2) = v2,

we see that v2 = (vk)2 = vkvk = vkv(k−2)v2 = v(2k−2)v2. So, v(2k−2) = id.
Then, k = 1.

In conclusion, by composing Φ with an inner automorphism (the auto-
morphism φ−1

∗ induced from the diffeomorphism φ−1 of the surface obtained
from Φ in a unique way up to isotopy) we obtain that Φ is inner.

This concludes the proof of the theorem.

acknowledgement

The author completed the final version of this work during her stay at
the Max Planck Institute for Mathematics in Bonn. She is grateful to the
Max Planck Institute for Mathematics in Bonn for its hospitality, excellent
working conditions, and financial support. The author would like to thank
E. Medetogulları for helpful discussions and B. Szepietowski for his valuable
comments and suggestions on the previous version of this paper. Finally, the
author dedicates this paper to her brother, Y. Atalan, with infinite gratitude
for his financial support.



8 FERIHE ATALAN

References

[1] J. Aramayona, and J. Souto, Homomorphisms between mapping class groups, Geom.
Topol. 16, (2012) 2285–2341

[2] F. Atalan, Outer automorphisms of mapping class groups of nonorientable surfaces,
Internat. J. Algebra Comput. 20(3) (2010) 437-456.

[3] F. Atalan and E. Medetogullari, Birman-Hilden property of covering spaces for nonori-
entable surfaces, Ukrainian Mathematical Journal 72(3) (2020), 348-357.

[4] F. Atalan, E. Medetogullari and Y. Ozan, Liftable homeomorphisms of cyclic and
rank two finite abelian branched covers over the real projective plane, Topology and
its Applications 288 (2021), 107479.

[5] F. Atalan and B. Szepietowski, Automorphisms of the mapping class group of a nonori-
entable surface, Geom. Dedicata 189 (2017), 39-57.

[6] R. W. Bell and D. Margalit, Braid groups and the co-Hopfian property, J. of Algebra
303 (2006), 275-294.

[7] J. S. Birman, A. Lubotzky and J. McCarthy, Abelian and solvable subgroups of the
mapping class groups, Duke Math. J. 50(4) (1983), 1107-1120.

[8] F. Castel, Geometric representations of the braid groups, Astérisque, 378, (2016) pp.
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