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THE SHIFTED PRIME-DIVISOR FUNCTION OVER SHIFTED PRIMES

KAI (STEVE) FAN

Abstract. Let a, b ∈ Z \ {0}. For every n ∈ N, denote by ω∗
a(n) the number of shifted-

prime divisors p− a of n, where p > a is prime. In this paper, we study the moments of ω∗
a

over shifted primes p− b. Specifically, we prove an asymptotic formula for the first moment
and upper and lower bounds of the correct order of magnitude for the second moment. These
results suggest that the average behavior of ω∗

a on shifted primes is similar to its average
behavior on natural numbers. We shall also prove upper bounds for the mean values of
sub-multiplicative functions in a nice class over the least common multiples of the shifted
primes p− a and q− b. Such upper bounds are intimately related to the second moments of
ω∗
a over natural numbers and over shifted primes. Finally, we propose a new conjecture on

the second moment of ω∗
1 over natural numbers and provide a heuristic argument in support

of this conjecture.

1. Introduction

For every n ∈ N, let ω∗(n) denote the number of shifted prime-divisors p− 1 of n, that is,

ω∗(n) :=
∑

(p−1)|n

1.

Equivalently, ω∗(n) counts the number of positive divisors d | n such that d + 1 is prime.
This function has interesting applications in primality testing [1], and a variation of it which
counts the number of positive divisors d | n such that dk + 1 is prime for a given k ∈ N
has been proven useful in the study of the distribution of Carmichael numbers [3]. Although
its definition bears a resemblance to that of the prime divisor function ω(n), which counts
the number of distinct prime factors of n, the behavior of the function ω∗(n) is in some
sense closer to that of the divisor function τ(n), which counts the number of all the positive
divisors of n. This is especially the case when it comes to maximal orders. Indeed, Prachar
[18] showed that for infinitely many n, we have

ω∗(n) > exp

(
c1

log n

(log log n)2

)
(unconditionally),

ω∗(n) > exp

(
(log
√

2− ε) log n

log log n

)
(under GRH),

where c1 > 0 is some absolute constant, and ε > 0 is fixed but otherwise arbitrary. Prachar’s
unconditional lower bound was later improved by Adleman, Pomerance and Rumely [1,

2020 Mathematics Subject Classification. Primary: 11N36, 11N37; Secondary: 11B05.
Key words and phrases. Shifted-prime divisors, moments, sieve methods, mean values of multiplicative

functions.

1



2 KAI (STEVE) FAN

Proposition 10] to

ω∗(n) > exp

(
c2

log n

log log n

)
for infinitely many n, where c2 > 0 is some absolute constant, matching Prachar’s conditional
lower bound under GRH except for the unknown value of c2. On the other hand, it is well
known that

lim sup
x→∞

ω(n)

log n/log log n
= 1,

lim sup
x→∞

log τ(n)

log n/log log n
= log 2,

the second of which is due to Wigert in 1907. Thus, the maximal order of logω∗(n) is
comparable to those of ω(n) and log τ(n).

Another aspect in which ω∗ and τ share similarities concerns moments. For every k ∈ N,
we define the kth moment of ω∗ over natural numbers by

Mk(x) :=
1

x

∑
n≤x

ω∗(n)k.

Like the first moment of ω, the first moment of ω∗ is asymptotically log log x [18]. Indeed, a
quick application of Mertens’ second theorem shows M1(x) = log log x+O(1). However, the
second moment of ω∗ turns out to be much larger than that of ω. The study of M2(x) was
carried out in [18, 15, 5] and culminated in the estimate M2(x) � log x. One may compare
this estimate with

1

x

∑
n≤x

τ(n)2 ∼ 1

π2
(log x)3,

an old result due to Ramanujan. If we start with the asymptotic above and take into account
the fact that there are two primality constraints in the expression of ω∗(n)2 given by

ω∗(n)2 =
∑
p−1|n
q−1|n

1,

then it is natural to predict that the order of magnitude of M2(x) is log x, since the density
of primes in [1, x] is about 1/log x. Murty and Murty [15] conjectured that there exists a
constant C > 0 such that M2(x) ∼ C log x. In [6] Ding, Guo, and Zhang argued that this
conjecture holds with C = 2ζ(2)ζ(3)/ζ(6) = 315ζ(3)/π4 based on the Elliott–Halberstam
conjecture, where ζ is the Riemann zeta function. Unfortunately, it has been pointed out
[8] that there is an error in [15, Equation (4.8)] which is essentially the starting point of
the argument in [6]. Due to this error, the constant obtained by Ding, Guo, and Zhang is
probably incorrect, a conclusion which is also corroborated by the numerical data presented
in [8]. In the same paper [8], Pomerance and the author studied the third moment of ω∗,
proving that M3(x) � (log x)4. They also conjectured that for each integer k ≥ 2 one has

Mk(x) ∼ Ck(log x)2k−k−1 for some constant Ck > 0.
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The material in the rest of the paper is organized as follows. In Section 2, we study the
moments of ω∗a over shifted primes p− b, where a, b ∈ Z \ {0} are fixed, and

ω∗a(n) :=
∑

(p−a)|n
p>a

1

counts the number of shifted-prime divisors p− a of n, with ω∗1 = ω∗. Specifically, we shall
prove an asymptotic formula for the first moment and upper and lower bounds of the correct
order of magnitude for the second moment. These results suggest that the average behavior
of ω∗a on shifted primes is similar to its average behavior on natural numbers.

Intimately related to the second moments of ω∗a over natural numbers and over shifted
primes are mean values of arithmetic functions over the least common multiples of shifted
primes p − a and q − b, where a, b ∈ Z \ {0}. In Section 3, we prove upper bounds for the
mean values of sub-multiplicative functions from a nice class.

In Section 4, we return to the second moment M2(x) of ω∗ over natural numbers which has
been extensively studied in the literature [18, 15, 5, 6, 8]. As mentioned above, the constant
C = 2ζ(2)ζ(3)/ζ(6) ≈ 3.88719 obtained by Ding, Guo, and Zhang [6] is probably incorrect.
Here we propose a new heuristic argument leading to the conjecture C = ζ(2)2ζ(3)/ζ(6) =
105ζ(3)/4π2 ≈ 3.19709, which is supported by the numerical computations conducted in [8].

Finally, we conclude this paper with a brief discussion on the level sets of ω∗ over shifted
primes p− b and possible analogues of the results obtained in [8, Section 3].

Notation. Throughout the paper, the symbols P, N, Z and R stand for the set of prime
numbers, the set of positive integers, the set of integers and the set of real numbers, respec-
tively. For any x ∈ R, we denote the integer part of x by bxc, which is the largest integer
not exceeding x, and the fractional part of x by {x} := x − bxc. The letters p, q, r always
represent prime numbers, and π(x) denotes the number of primes p ≤ x. For any k ∈ N
and a ∈ Z, the function π(x; k, a) counts the number of primes p ≤ x with p ≡ a (mod k).
For m,n ∈ Z \ {0}, we write gcd(m,n) or simply (m,n) when no confusion arises, for the
greatest common divisor of m and n, and [m,n] for their least common multiple. For any
n ∈ N, we denote by rad(n) the radical of n, i.e., rad(n) :=

∏
p|n p. Given p, ν ∈ N and

n ∈ Z \ {0}, the relation pν ‖ n means that pν | n whereas pν+1 - n. We shall also make use
of the identity function id(n) := n, the Möbius function µ, Euler’s totient function ϕ, the
sum-of-divisors function σ, and the κ-fold divisor function τκ for κ ≥ 0 with the abbreviation
τ := τ2. Besides, we denote by ω(n) the number of distinct prime factors of n and by Ω(n)
the total number of prime factors of n counted with multiplicity. In addition, we write 1A
for the characteristic function of the set or condition A, meaning that 1A(n) = 1 if n belongs
to the set A or n satisfies condition A and 1A(n) = 0 otherwise. Finally, we shall not only
use Landau’s big-O notation and Vinogradov’s notation � interchangeably but also adopt
the standard order notations o,�,�,∼ from analytic number theory.

2. Moments of the shifted-prime divisor function over shifted primes

In this section, we investigate the first and second moments of ω∗a over shifted primes
p − b, where a, b ∈ Z \ {0} are fixed. We begin with the following result which provides an
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asymptotic formula for the mean value of id/ϕ over shifted primes p− a with the constraint
gcd(p− a, b) = 1. The case b = 1 is probably well-known.

Proposition 2.1. For any fixed A0 > 0 and a, b ∈ Z \ {0}, we have

∑
a<p≤x

(p−a,b)=1

p− a
ϕ(p− a)

= Ca,b li(x) +O

(
x

(log x)A0

)

for all x ≥ max(a, 2), where

li(y) :=

∫ y

0

dt

log t

is the logarithmic integral, and

Ca,b :=
∏
p-a

(
1 +

1

(p− 1)2

)∏
p-a
p|b

(p− 1)(p− 2)

(p− 1)2 + 1
. (1)

Proof. Without loss of generality, we may assume that b is square-free and that x is suffi-
ciently large. Let xa := x− a. We start with the identity

n

ϕ(n)
=
∑
d|n

µ(d)2

ϕ(d)
.

From this identity it follows that

∑
a<p≤x

(p−a,b)=1

p− a
ϕ(p− a)

=
∑
a<p≤x

(p−a,b)=1

∑
d|p−a

µ(d)2

ϕ(d)
= S1(x; a) + S2(x; a) +O(log x), (2)

where

S1(x; a, b) :=
∑
a<p≤x

(p−a,b)=1

∑
d|p−a

d<
√
p−a

µ(d)2

ϕ(d)
,

S2(x; a, b) :=
∑
a<p≤x

(p−a,b)=1

∑
d|p−a

d>
√
p−a

µ(d)2

ϕ(d)
.

Here we have used the estimate∑
a<p≤x

(p−a,b)=1
p−a=�

µ(
√
p− a)2

ϕ(
√
p− a)

≤
∑
n≤√xa

µ(n)2

ϕ(n)
� log x,
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The contribution from S2(x; a) is easily seen to be negligible. Indeed, we have

S2(x; a, b) =
∑
a<p≤x

(p−a,b)=1

∑
d|p−a

d<
√
p−a

µ((p− a)/d)2

ϕ((p− a)/d)

�
∑
d≤√xa

d
∑

d2+a<n≤x
n≡a (mod d)

log log(3(n− a))

n− a

�
√
x(log x) log log x,

since ϕ(n)� n/log log 3n.
It remains to estimate S1(x; a, b). To this end, we show that

S1(x; a, b) = Ca,b li(x) +O

(
x

(log x)A0

)
, (3)

where A0 > 0 is fixed but otherwise arbitrary. Note that

S1(x; a, b) =
∑
d<
√
xa

(d,a)=1

µ(d)2

ϕ(d)

∑
d2+a<p≤x
p≡a (mod d)
(p−a,b)=1

1 +O(log x).

By the Brun–Titchmarsh inequality, we have∑
d<
√
xa

(d,a)=1

µ(d)2

ϕ(d)

∑
p≤d2+a

p≡a (mod d)
(p−a,b)=1

�
∑
d<
√
xa

µ(d)2

ϕ(d)
· d2

ϕ(d) log 2d

=
∑

d≤ 3
√
xa

µ(d)2d2

ϕ(d)2 log 2d
+

∑
3
√
xa<d<

√
xa

µ(d)2d2

ϕ(d)2 log 2d

�
∑

d≤ 3
√
xa

µ(d)2d2

ϕ(d)2
+

1

log xa

∑
3
√
xa<d<

√
xa

µ(d)2d2

ϕ(d)2

�
√
x

log x
.

Hence, we have

S1(x; a, b) =
∑
d<
√
xa

(d,a)=1

µ(d)2

ϕ(d)

∑
p≤x

p≡a (mod d)
(p−a,b)=1

1 +O

( √
x

log x

)

=
∑
c|b

(c,a)=1

µ(c)
∑
d<
√
xa

(d,a)=1

µ(d)2

ϕ(d)
π(x; [c, d], a) +O

( √
x

log x

)

=
∑

n<|b|√xa
(n,a)=1

hn(x; a, b)π(x;n, a) +O

( √
x

log x

)
, (4)
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where

hn(x; a, b) :=
∑
n=[c,d]
c|b

d<
√
xa

(c,a)=(d,a)=1

µ(c)µ(d)2

ϕ(d)
.

Given positive integers n < |b|√xa, c | b with (c, a) = 1, and c′ | c, there is at most one
positive integer d <

√
xa with (d, a) = 1, (c, d) = c′ and [c, d] = n. If such a d exists, then

we must also have d � n. Consequently, we have hn(x; a, b) � 1/ϕ(n) for all n < |b|√xa.
The Bombieri–Vinogradov theorem [4, Theorem, §28] implies that for any fixed A > 0,∑

d≤Q

max
0≤y≤x

max
(a,d)=1

∣∣∣∣π(y; d, a)− li(y)

ϕ(d)

∣∣∣∣� √xQ(log x)4 (5)

holds uniformly for all x ≥ 3 and all
√
x/(log x)A ≤ Q ≤

√
x. Applying (5) with A = A0 + 4

and Q =
√
xa/(log xa)

A0+4, we obtain∑
n≤√xa/(log xa)A0+4

(n,a)=1

|hn(x; a, b)|
∣∣∣∣π(x;n, a)− li(x)

ϕ(n)

∣∣∣∣� x

(log x)A0
. (6)

Since Brun–Titchmarsh implies that∑
√
xa/(log xa)A0+4<n<|b|√xa

(n,a)=1

|hn(x; a, b)|
(

li(x)

ϕ(n)
+ π(x;n, a)

)
� x

log x

∑
n>
√
xa/(log xa)A0+4

1

ϕ(n)2

�
√
x(log x)A0+3,

it follows from (4) and (6) that

S1(x; a, b) = li(x)
∑

n<|b|√xa
(n,a)=1

hn(x; a, b)

ϕ(n)
+O

(
x

(log x)A0

)
.

But ∑
n<|b|√xa
(n,a)=1

hn(x; a, b)

ϕ(n)
=
∑
c|b

(c,a)=1

µ(c)
∑
d<
√
xa

(d,a)=1

µ(d)2

ϕ(d)ϕ([c, d])

=
∑
c|b

(c,a)=1

µ(c)
∑
d≥1

(d,a)=1

µ(d)2

ϕ(d)ϕ([c, d])
+O

 ∑
d≥√xa

µ(d)2

ϕ(d)2


=
∑
c|b

(c,a)=1

µ(c)
∑
d≥1

(d,a)=1

µ(d)2

ϕ(d)ϕ([c, d])
+O

(
1√
x

)
,

whence

S1(x; a, b) = li(x)
∑
c|b

(c,a)=1

µ(c)
∑
d≥1

(d,a)=1

µ(d)2

ϕ(d)ϕ([c, d])
+O

(
x

(log x)A0

)
.
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To complete the proof of (3), it suffices to show that the value of the double sum above is
equal to Ca,b. For simplicity of notation, we denote by Da the first product in the definition
(1) of Ca,b, i.e.,

Da :=
∏
p-a

(
1 +

1

(p− 1)2

)
.

Using the identity

ϕ([c, d]) =
ϕ(c)ϕ(d)

ϕ((c, d))
,

we obtain ∑
c|b

(c,a)=1

µ(c)
∑
d≥1

(d,a)=1

µ(d)2

ϕ(d)ϕ([c, d])
=
∑
c|b

(c,a)=1

µ(c)

ϕ(c)

∑
d≥1

(d,a)=1

µ(d)2ϕ((c, d))

ϕ(d)2
.

If n ∈ N is square-free, then we may write

ϕ(n) =
∑
m|n

ϕ(m)f(m),

where

f(m) :=
∏
p|m

(
1− 1

p− 1

)
.

Applying this identity with n = (c, d) for square-free c and d, we get∑
c|b

(c,a)=1

µ(c)

ϕ(c)

∑
d≥1

(d,a)=1

µ(d)2

ϕ(d)ϕ([c, d])
=
∑
c|b

(c,a)=1

µ(c)

ϕ(c)

∑
m|c

ϕ(m)f(m)
∑
d≥1

(d,a)=1
m|d

µ(d)2

ϕ(d)2

=
∑
c|b

(c,a)=1

µ(c)

ϕ(c)

∑
m|c

f(m)

ϕ(m)

∑
d≥1

(d,ma)=1

µ(d)2

ϕ(d)2

= Da

∑
c|b

(c,a)=1

µ(c)

ϕ(c)

∑
m|c

f(m)

ϕ(m)

∏
p|m
p-a

(
1 +

1

(p− 1)2

)−1

.

Let

g(n; a) :=
∑
m|n

f(m)

ϕ(m)

∏
p|m
p-a

(
1 +

1

(p− 1)2

)−1

.

Then g is multiplicative in n and satisfies

g(p; a) = 1 +
f(p)

ϕ(p)

(
1 +

1

(p− 1)2

)−1

=
p(p− 1)

(p− 1)2 + 1
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for all primes p - a. It follows that∑
c|b

(c,a)=1

µ(c)

ϕ(c)

∑
d≥1

(d,a)=1

µ(d)2

ϕ(d)ϕ([c, d])
= Da

∑
c|b

(c,a)=1

µ(c)

ϕ(c)
g(c; a)

= Da

∏
p|b
p-a

(
1− g(p; a)

p− 1

)

= Da

∏
p|b
p-a

(p− 1)(p− 2)

(p− 1)2 + 1
= Ca,b.

This completes the proof. �

Recall that for any a ∈ Z \ {0}, we define

ω∗a(n) :=
∑

(p−a)|n
p>a

1.

We are now ready to prove the following theorem concerning the first moment of ω∗a over
shifted primes p− b for any fixed a, b ∈ Z \ {0}.

Theorem 2.2. For any fixed a, b ∈ Z \ {0}, we have∑
b<p≤x

ω∗a(p− b) = Ca,b
x log log x

log x
+O

(
x

log x

)
for all x ≥ max(a, b, 3), where Ca,b is as defined in (1).

Proof. It is sufficient to prove the theorem for sufficiently large x. We have∑
b<p≤x

ω∗a(p− b) =
∑
b<p≤x

∑
q−a|p−b

0<q−a<
√
p−b

1 +
∑
b<p≤x

∑
n|p−b

n≥
√
p−b

1P(n+ a). (7)

The first double sum can be estimated by using Brun–Tichmarsh and (5). Note that∑
b<p≤x

∑
q−a|p−b

0<q−a<
√
p−b

1 =
∑

a<q<a+
√
xb

(q−a,b)=1

(
π(x; q − a, b)− π

(
(q − 1)2 + b; q − a, b

))
+O(

√
x),

where we have once again adopted the shorthand notation xb := x−b. By Brun–Titchmarsh
and Proposition 2.1, we have∑

a<q<a+
√
xb

(q−a,b)=1

π
(
(q − a)2 + a; q − 1, b

)
�

∑
a<q<a+

√
xb

(q − a)2

ϕ(q − a) log q

�
√
x

log x

∑
a<q<a+

√
xb

q − a
ϕ(q − a)

� x

(log x)2
.
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It follows that ∑
b<p≤x

∑
q−a|p−b

0<q−a<
√
p−b

1 =
∑

a<q<a+
√
xb

(q−a,b)=1

π(x; q − a, b) +O

(
x

(log x)2

)
. (8)

Taking A = 5 and Q = a+
√
xb/(log xb)

5 in (5), we see that∑
a<q<a+

√
xb/(log xb)

5

(q−a,b)=1

π(x; q − a, b) = li(x)
∑

a<q<a+
√
xb/(log xb)

5

(q−a,b)=1

1

ϕ(q − a)
+O

(
x

log x

)
.

By Proposition 2.1 and partial summation, we obtain∑
a<q<y

(q−a,b)=1

1

ϕ(q − a)
= Ca,b log log y +O(1) (9)

for all y ≥ max(a, 3). Hence, we have∑
a<q<a+

√
xb/(log xb)

5

(q−a,b)=1

π(x; q − a, b) = Ca,b
x log log x

log x
+O

(
x

log x

)
.

Since Brun–Titchmarsh and (9) implies that∑
a+
√
xb/(log xb)

5<q<a+
√
xb

(q−a,b)=1

π(x; q − a, b)� x

log x

∑
a+
√
xb/(log xb)

5<q<a+
√
xb

(q−a,b)=1

1

ϕ(q − a)
� x

log x
,

we conclude that ∑
a<q<a+

√
xb

(q−a,b)=1

π(x; q − a, b) = Ca,b
x log log x

log x
+O

(
x

log x

)
.

Inserting this estimate into (8) yields∑
b<p≤x

∑
q−a|p−b

0<q−a<
√
p−b

1 = Ca,b
x log log x

log x
+O

(
x

log x

)
. (10)

To estimate the second double sum in (7), we write p− b = nd and observe that∑
b<p≤x

∑
n|p−b

n≥
√
p−b

1P(n+ a) ≤
∑
d≤√xb

∑
n≤xb/d

1P(n+ a)1P(dn+ b). (11)

We may restrict our attention to those d ≤ √xb with gcd(d, b) = 1, since the inner sum in
(11) is clearly at most 1 if gcd(d, b) > 1, so that the contribution to (11) from the d’s with
gcd(d, b) > 1 is �

√
x. If d = b/a, then∑

n≤xb/d

1P(n+ a)1P(dn+ b)� 1a=b ·
x

log x
+ 1.
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So the contribution to (11) from d = b/a is � x/log x. Suppose now that d 6= b/a. By
Brun’s or Selberg’s sieve, we have∑
n≤xb/d

1P(n+ a)1P(dn+ b)� x

d(log x)2

∏
p|d(ad−b)

(
1− 1

p

)−1

=
1

ϕ(d)
· |ad− b|
ϕ(|ad− b|)

· x

(log x)2
,

since the assumption that gcd(d, b) = 1 implies that gcd(d, ad− b) = 1. Summing this over
all d ∈ N \ {b/a} yields the contribution

x

(log x)2

∑
d≤√xb
d6=b/a

1

ϕ(d)
· |ad− b|
ϕ(|ad− b|)

. (12)

By the Cauchy–Schwarz inequality, the sum above is

≤

 ∑
d≤√xb

d

ϕ(d)2

 1
2

 ∑
d≤√xb
d 6=b/a

1

d
· (ad− b)2

ϕ(|ad− b|)2


1
2

.

The first factor is easily seen to be �
√

log x. To estimate the second factor, we put
n = ad− b, so that ∑

d≤√xb
d 6=b/a

1

d
· (ad− b)2

ϕ(|ad− b|)2
�

∑
n≤|b|+|a|√xb

n

ϕ(n)2
� log x.

It follows that (12) is � x/log x. Combining the above estimates with (11), we conclude∑
b<p≤x

∑
n|p−b

n≥
√
p−b

1P(n+ a) ≤
∑
d≤√xb

∑
n≤xb/d

1P(n+ a)1P(dn+ b)� x

log x
. (13)

Inserting this bound and (10) into (7) completes the proof of the theorem. �

It may be of interest to compare the asymptotic formula for the first moment of ω∗a
over shifted primes p − b supplied by Theorem 2.2 with those for ω and τ , the latter of
which resolves the well-known Titchmarsh divisor problem. Assuming GRH, Titchmarsh
[22] showed that∑

b<p≤x

τ(p− b) = x
ϕ(|b|)
|b|

∏
p-b

(
1 +

1

p(p− 1)

)
+O

(
x log log x

log x

)
(14)

for every fixed b ∈ Z \ {0}. Using his dispersion method, Linnik [11] provided the first un-
conditional proof of this asymptotic formula. Soon after the Bombieri–Vinogradov theorem
became available, Rodriguez [19] and Halberstam [10] obtained independently quick proofs
of (14). In fact, our proof of Theorem 2.2 leverages some of the ideas in [10], and these ideas
also lead to the asymptotic formula∑

b<p≤x

ω(p− b) =
x log log x

log x
+O

(
x

log x

)
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for any given b ∈ Z \ {0}. Thus, when averaging over shifted primes, ω∗a behaves more like ω
than τ . The Titchmarsh divisor problem and various analogues of it have since been explored
extensively. The interested reader may refer to [2] for some recent generalizations of (14) and
further discussions on this topic, including a uniform version of (14) and an automorphic
analogue of the Titchmarsh divisor problem for the Hecke eigenvalues of cuspidal newforms.

Given a, b ∈ Z \ {0} such that 2 - a and 2 | b do not occur simultaneously, Theorem 2.2
implies that ω∗a is about Ca,b log log p on average over the shifted primes p − b. One may
compare this result with the easy fact that ω∗a is about log log n on average over the positive
integers n. This analogy becomes more illuminating when we examine the second moments
of ω∗a over the positive integers and over the shifted primes, respectively. The arguments in
[5, 15] show that

1

x

∑
n≤x

ω∗a(n)2 =
∑

[p−a,q−a]≤x
p,q>a

1

[p− a, q − a]
+O(1) � log x (15)

for any fixed a ∈ Z\{0}, see [8] also. We shall prove an analogue of this result concerning the
second moment of ω∗a over shifted primes p− b, where 2 | a or 2 - b are fixed integers. Here
the divisibility constraint on a, b is only necessary for obtaining a nontrivial lower bound.

We start with the following (stronger) variant of a theorem of Erdős and Prachar [7]. A
generalization of this result will be given in Section 3.

Proposition 2.3. For any fixed a ∈ Z \ {0}, we have

∑
[p−a,q−a]≤x

p,q>a

[p− a, q − a]

ϕ([p− a, q − a])
= O(x).

Proof. Let us write p−a = uw and q−a = vw with w = gcd(p−a, q−a). Then gcd(u, v) = 1
and [p− a, q− a] = uvw. Using the inequality ϕ(mn) ≥ ϕ(m)ϕ(n) for all m,n ∈ N, we have

∑
[p−a,q−a]≤x

p,q>a

[p− a, q − a]

ϕ([p− a, q − a])
≤
∑
uvw≤x
(u,v)=1

uvw

ϕ(uv)ϕ(w)
1P(uw + a)1P(vw + a)

=
∑
uvw≤x

(u,v)=(uvw,a)=1

uvw

ϕ(uv)ϕ(w)
1P(uw + a)1P(vw + a) +O(x)

=
∑
uvw≤x
u6=v

(u,v)=(uvw,a)=1

uvw

ϕ(uv)ϕ(w)
1P(uw + a)1P(vw + a) +O(x), (16)

where we observe that the contribution from the terms with u = v is clearly O(x/log x) by
Proposition 2.1.
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Consider first the contribution to (16) from the terms with the additional constraint uv ≤√
x. By the inequality n/ϕ(n)� σ(n)/n, we have∑

w≤x/uv

w

ϕ(w)
1P(uw + a)1P(vw + a)�

∑
w≤x/uv

σ(w)

w
1P(uw + a)1P(vw + a)

≤ 2
∑

w≤x/uv

1P(uw + a)1P(vw + a)
∑
d|w

d≤
√
w

1

d

= 2
∑

d≤
√
x/uv

1

d

∑
w≤x/uv
d|w

1P(uw + a)1P(vw + a)

= 2
∑

d≤
√
x/uv

1

d

∑
m≤x/uvd

1P(udm+ a)1P(vdm+ a).

Since uvd ≤
√
xuv ≤ x3/4, Brun’s or Selberg’s sieve yields∑

m≤x/uvd

1P(udm+ a)1P(vdm+ a)� x

uvd(log x)2

∏
p|uvd

(
1− 1

p

)−2 ∏
p|u−v
p-uvd

(
1− 1

p

)−1

.

It follows that∑
w≤x/uv

w

ϕ(w)
1P(uw + a)1P(vw + a)�

(
uv

ϕ(uv)

)2 |u− v|
ϕ(|u− v|)

· x

uv(log x)2
.

Hence, the contribution to (16) from the terms with uv ≤
√
x is

� x

(log x)2

∑
uv≤
√
x

u6=v

1

uv

(
uv

ϕ(uv)

)3 |u− v|
ϕ(|u− v|)

≤ x

2(log x)2

∑
uv≤
√
x

u6=v

1

uv

((
uv

ϕ(uv)

)6

+

(
u− v

ϕ(|u− v|)

)2
)
.

It is easy to see that∑
uv≤
√
x

u6=v

1

uv

(
uv

ϕ(uv)

)6

≤
∑
n≤
√
x

τ(n)

n

(
n

ϕ(n)

)2

� (log x)2.

Moreover, we have, by putting n = v − u, that∑
uv≤
√
x

u6=v

1

uv

(
u− v

ϕ(|u− v|)

)2

≤ 2
∑

u<v≤
√
x

1

uv

(
v − u

ϕ(v − u)

)2

≤ 2
∑
u≤
√
x

1

u

∑
n≤
√
x

1

n

(
n

ϕ(n)

)2

� (log x)2.
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Therefore, the contribution to (16) from the terms with uv ≤
√
x is O(x).

Now we estimate the contribution to (16) from the terms with uv >
√
x. In this case, we

must have w <
√
x. Without loss of generality, we may also assume that u < v, so that

u <
√
x/w and uw <

√
xw < x3/4. By Brun–Titchmarsh, we have∑

v≤x/uw
(v,a)=1

v

ϕ(v)
1P(vw + a)�

∑
d≤
√
x/uw

(d,a)=1

1

d
π(x/u;wd, a)

� x

u log(2x/uw)

∑
d≤
√
x/uw

1

dϕ(wd)

� x

uϕ(w) log x
.

It follows that the contribution to (16) from the terms with uv >
√
x is

� x

log x

∑
w<
√
x

(w,a)=1

w

ϕ(w)2

∑
u<
√
x/w

1

ϕ(u)
1P(uw + a).

Recall that p = uw + a, so that the expression above is

≤ x

log x

∑
w<
√
x

w

ϕ(w)2

∑
a<p≤a+

√
xw

p≡a (modw)

1

ϕ((p− a)/w)

=
x

log x

∑
w<
√
x

w2

ϕ(w)2

∑
a<p≤a+

√
xw

p≡a (modw)

1

p− a
· (p− a)/w

ϕ((p− a)/w)

≤ x

log x

∑
w<
√
x

w2

ϕ(w)2

∑
a<p≤a+

√
xw

p≡a (modw)

1

ϕ(p− a)

≤ x

log x

∑
a<p≤a+x

h(p− a)

ϕ(p− a)
,

where

h(n) :=
∑
d|n

d2

ϕ(d)2

for every n ∈ N, and the third inequality is an immediate consequence of the fact that the
function n/ϕ(n) is increasing on the divisor lattice on N. By [17, Theorem 1], we have∑

a<p≤a+x3/4

h(p− a)
p− a

ϕ(p− a)
� x,

from which it follows that ∑
a<p≤a+x

h(p− a)

ϕ(p− a)
� log x.
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Hence, we conclude that the contribution to (16) from the terms with uv >
√
x is O(x).

Combining this with the contribution to (16) from the terms with uv ≤
√
x finishes the

proof of Proposition 2.3. �

We are now in a position to prove the following analogue of (15) on the second moment
of ω∗a on shifted primes p− b. Notably, we shall not only apply Proposition 2.3 to handle the
upper bound but also recycle the ideas used in its proof presented above. An easy variant
of (5) that we shall use is∑

d≤Q

τκ(d) max
0≤y≤x

max
(a,d)=1

∣∣∣∣π(y; d, a)− li(y)

ϕ(d)

∣∣∣∣� x3/4
√
Q(log x)(κ2+3)/2 (17)

uniformly for all x ≥ 3 and all
√
x/(log x)A ≤ Q ≤

√
x, where κ,A > 0 are fixed. It is not

hard to see that (17) follows readily from (5). Indeed, if we write

∆(y; d, a) := π(y; d, a)− li(y)

ϕ(d)
,

then Cauchy–Schwarz implies that

∑
d≤Q

τκ(d) max
0≤y≤x

max
(a,d)=1

|∆(y; d, a)|≤

(∑
d≤Q

τκ(d)2

ϕ(d)

) 1
2
(∑
d≤Q

ϕ(d) max
0≤y≤x

max
(a,d)=1

∆(y; d, a)2

) 1
2

.

The first factor on the right-hand side is � (log x)κ
2/2, whereas the second factor on the

right-hand side is

�

(
x

log x

∑
d≤Q

max
0≤y≤x

max
(a,d)=1

|∆(y; d, a)|

) 1
2

� x3/4
√
Q(log x)3/2

by (5), since Brun–Titchmarsh implies that

∆(y; d, a)� 1>y(d) + 1≤y(d) · y

ϕ(d) log(2y/d)
� x

ϕ(d) log x

for y ∈ [0, x] and d ≤ Q. Thus (17) follows.

Theorem 2.4. For any fixed a, b ∈ Z \ {0} such that 2 | a or 2 - b, we have

1

π(x)

∑
b<p≤x

ω∗a(p− b)2 � log x

for all x ≥ max(a, b, 3).

Proof. We may assume that x is sufficiently large. The starting point of the proof of the
asserted lower bound is the simple observation that∑

b<r≤x

ω∗a(r − b)2 =
∑

[p−a,q−a]≤x
p,q>a

(π(x; [p− a, q − a], b)− π(b; [p− a, q − a], b))

≥
∑

[p−a,q−a]≤x1/3
p,q>a

π(x; [p− a, q − a], b) +O
(
x1/3

)
, (18)
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where we have used the fact that

#
{

(p, q) ∈ (N ∩ (a,∞))2: [p− a, q − a] ≤ x
}

= O(x), (19)

which is a direct consequence of Proposition 2.3. Let

βa(n) := #
{

(p, q) ∈ (N ∩ (a,∞))2: [p− a, q − a] = n
}

for every n ∈ N. Then we have∑
[p−a,q−a]≤x1/3

p,q>a

π(x; [p− a, q − a], b) =
∑
n≤x1/3

βa(n)π(x;n, b). (20)

Since βa(n) ≤ τ3(n), it follows that

∑
n≤x1/3

βa(n)π(x;n, b) =
∑
n≤x1/3
(n,b)=1

βa(n)π(x;n, b) +O

 ∑
n≤x1/3

τ3(n)


=
∑
n≤x1/3
(n,b)=1

βa(n)π(x;n, b) +O
(
x1/3(log x)2

)
. (21)

To estimate the sum above, we appeal to (17) with κ = 3, A = 14, and Q =
√
x/(log x)14 to

obtain

∑
n≤x1/3
(n,b)=1

βa(n)

∣∣∣∣π(x;n, b)− li(x)

ϕ(n)

∣∣∣∣� x

log x
.

Hence, we find that∑
n≤x1/3
(n,b)=1

βa(n)π(x;n, b) = li(x)
∑
n≤x1/3
(n,b)=1

βa(n)

ϕ(n)
+O

(
x

log x

)

≥ li(x)
∑
n≤x1/3
(n,b)=1

βa(n)

n
+O

(
x

log x

)

= li(x)
∑

[p−a,q−a]≤x1/3
p,q>a

(p−a,b)=(q−a,b)=1

1

[p− a, q − a]
+O

(
x

log x

)
.

Combining this estimate with (18)–(21), we see that the lower bound asserted in the theorem
will follow if we can show ∑

[p−a,q−a]≤x
p,q>a

(p−a,b)=(q−a,b)=1

1

[p− a, q − a]
� log x. (22)
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This lower bound, which is slightly more general than the one supplied by (15), can be easily
verified by adapting the proof of [8, Eq. (29)]. Assume that b is square-free. As in the proof
of [8, Eq. (29)], we start by observing that∑

[p−a,q−a]≤x
p,q>a

(p−a,b)=(q−a,b)=1

1

[p− a, q − a]
�

∑
d≤xδ/4/|b|
(d,ab)=1

µ(d)2ϕ(d)
∑

x1/4<p,q≤
√
x+a

p,q≡a (mod d)
(p−a,b)=(q−a,b)=1

1

pq

≥
∑

c∈(Z/bZ)×

a+c∈(Z/bZ)×

∑
d≤xδ/4/|b|
(d,ab)=1

µ(d)2ϕ(d)


∑

x1/4<p≤
√
x+a

p≡a (mod d)
p≡a+c (mod b)

1

p


2

uniformly for all sufficiently large x and all δ ∈ (0, 1). Our assumption that 2 | a or
2 - b ensures that there exists c ∈ (Z/bZ)× with a + c ∈ (Z/bZ)×. Indeed, by the Chinese
Remainder Theorem, it suffices to prove this when b = pν is a prime power. If p > 2, then any
c ∈ Z that avoids the residue classes 0 and −a (mod p) works. If p = 2, then our assumption
implies that 2 | a, so that we can take c to be any odd integer. This verifies our claim. Now
if we denote by k(a, b, c, d) the unique element of (Z/bdZ)× satisfying k(a, b, c, d) ≡ a (mod d)
and k(a, b, c, d) ≡ a+ c (mod b), then

∑
[p−a,q−a]≤x

p,q>a
(p−a,b)=(q−a,b)=1

1

[p− a, q − a]
�

∑
c∈(Z/bZ)×

a+c∈(Z/bZ)×

∑
d≤xδ/4/|b|
(d,ab)=1

µ(d)2ϕ(d)

 ∑
x1/4<p≤

√
x+a

p≡k(a,b,c,d) (mod bd)

1

p


2

.

Applying [8, Corollary 1] as in the proof of [8, Eq. (29)], one finds that∑
x1/4<p≤

√
x+a

p≡k(a,b,c,d) (mod bd)

1

p
� 1

ϕ(b)ϕ(d)

for some suitable choice of δ, provided that bd is not divisible by a certain prime s(x1/4) >
(1/4) log log x. It follows that∑

[p−a,q−a]≤x
p,q>a

(p−a,b)=(q−a,b)=1

1

[p− a, q − a]
�

∑
d≤xδ/4/|b|

(d,s(x1/4)ab)=1

µ(d)2

ϕ(d)
� log x,

completing the proof of (22).
Now we prove the asserted upper bound. We have∑

b<r≤x

ω∗a(r − b)2 =
∑
b<r≤x

∑
[p−a,q−a]|r−b

p,q>a
[p−a,q−a]≤

√
r−b

1 +
∑
b<r≤x

∑
n|r−b

n>
√
r−b

βa(n). (23)
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To estimate the first double sum, we apply Brun–Titchmarsh to get∑
b<r≤x

∑
[p−a,q−a]|r−b

p,q>a
[p−a,q−a]≤

√
r−b

1 ≤
∑

[p−a,q−a]≤√xb
(p−a,q−a,b)=1

p,q>a

π(x; [p− a, q − a], b) +O
(√

x
)

� x

log x

∑
[p−a,q−a]≤√xb

p,q>a

1

ϕ([p− a, q − a])
+O

(√
x
)
� x, (24)

where we have also used (19) in the first inequality and Proposition 2.3 in the last inequality.
For the second double sum, we have, by writing r − b = nd, that∑

b<r≤x

∑
n|r−b

n>
√
r−b

βa(n) ≤
∑
d<
√
xb

∑
n≤xb/d

βa(n)1P(dn+ b)

=
∑
d<
√
xb

(d,b)=1

∑
n≤xb/d
(n,b)=1

βa(n)1P(dn+ b) +O
(
x1/2+o(1)

)
,

since βa(n) ≤ τ3(n) = no(1). Furthermore, Brun–Titchmarsh and the inequality βa(n) � 1
for all n ∈ N with gcd(n, a) > 1 imply that∑

d<
√
xb

(d,b)=1

∑
n≤xb/d
(n,b)=1
(n,a)>1

βa(n)1P(dn+ b)� x

log x

∑
d<
√
xb

1

ϕ(d)
� x.

It follows that ∑
b<r≤x

∑
n|r−b

n>
√
r−b

βa(n) ≤
∑
d<
√
xb

(d,b)=1

∑
n≤xb/d
(n,ab)=1

βa(n)1P(dn+ b) +O(x).

Recalling the definition

βa(n) =
∑
uvw=n
(u,v)=1

1P(uw + a)1P(vw + a),

we arrive at∑
b<r≤x

∑
n|r−b

n>
√
r−b

βa(n) ≤
∑
d<
√
xb

(d,b)=1

∑
uvw≤xb/d

(u,v)=1
(uvw,ab)=1

1P(uw + a)1P(vw + a)1P(duvw + b) +O(x). (25)

There are three boundary cases: u = v, adu = b, and adv = b. In fact, the latter two cases
simplify to d = u = 1 and d = v = 1, respectively, due to the constraint gcd(duv, b) = 1. By
(13), the contribution to (25) from the boundary case u = v is bounded above by∑

d<
√
xb

∑
w≤xb/d

1P(w + a)1P(dw + b) +O(x)� x. (26)
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On the other hand, we see from (19) that the total contribution to (25) from the boundary
cases adu = b and adv = b is at most

2
∑
vw≤xb

1P(w + a)1P(vw + a) +O(x) ≤ 2
∑
n≤xb

βa(n) +O(x)� x. (27)

With the boundary cases handled, we proceed to estimate (25) in the non-boundary case
where u 6= v, adu 6= b, and adv 6= b. In this case, we have

D = D(a, b, d, u, v) := aduv(u− v)(adu− b)(adv − b) 6= 0.

First of all, we consider the contribution to (25) from the terms subject to the constraint

uv ≤ (xb/d)2/3, so that uvd ≤ x
2/3
b d1/3 ≤ x

5/6
b . Brun’s or Selberg’s sieve shows that this

contribution is

� x

(log x)3

∑
d<
√
xb

(d,b)=1

∑
uv≤(xb/d)2/3

u6=v, (u,v)=1
(uv,ab)=1
D 6=0

1

uvd

∏
p|D

(
1− 1

p

)−2

. (28)

Taking advantage of the symmetry between u and v, we find that the double sum above is

�
∑
d<xb

(d,b)=1

∑
uv≤xb/d
u6=v,D 6=0

1

uvd

(
uvd

ϕ(uvd)

)2(
v − u

ϕ(v − u)

)2(
adu− b

ϕ(|adu− b|)

)2(
adv − b

ϕ(|adv − b|)

)2

≤ 1

4

∑
d<xb

(d,b)=1

∑
uv≤xb/d
u6=v, adu6=b

1

uvd

((
uvd

ϕ(uvd)

)8

+

(
v − u

ϕ(v − u)

)8

+ 2

(
adu− b

ϕ(|adu− b|)

)8
)
. (29)

We first note that∑
d<xb

(d,b)=1

∑
uv≤xb/d
u6=v, adu6=b

1

uvd

(
uvd

ϕ(uvd)

)8

≤
∑
n≤xb

τ3(n)

n

(
n

ϕ(n)

)8

� (log x)3. (30)

Next, we have, by putting n = v − u, that∑
uv≤xb/d
u6=v

1

uv

(
v − u

ϕ(v − u)

)8

= 2
∑

uv≤xb/d
u<v

1

uv

(
v − u

ϕ(v − u)

)8

≤ 2
∑
u≤√xb

1

u

∑
n≤xb

1

n

(
n

ϕ(n)

)8

� (log x)2,

which implies that∑
d<xb

(d,b)=1

∑
uv≤xb/d
u6=v, adu6=b

1

uvd

(
v − u

ϕ(v − u)

)8

� (log x)2
∑
d≤xb

1

d
� (log x)3. (31)
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Finally, a similar argument shows that∑
d<xb

(d,b)=1

∑
uv≤xb/d
u6=v, adu6=b

1

uvd

(
adu− b

ϕ(|adu− b|)

)8

� log x
∑
d<xb

(d,b)=1

∑
u≤xb/d
adu6=b

1

ud

(
adu− b

ϕ(|adu− b|)

)8

≤ log x
∑
n≤xb
n6=b/a

τ(n)

n

(
an− b

ϕ(|an− b|)

)8

.

By [16, Corollary 3] with F1(n) = τ(n), F2(n) = (n/ϕ(n))8, Q1(t) = t and Q2(t) = at − b,
we find that∑

y<n≤2y
n6=b/a

τ(n)

(
an− b

ϕ(|an− b|)

)8

� y
∏
p≤y

(
1− 2

p

)(∑
n≤y

τ(n)

n

)(∑
n≤y

(
n

ϕ(n)

)8
)
� y log y

for all y ≥ y0 := max(b/a, 2). Applying this inequality with y = xb/2
j for each j ∈

N ∩ [1, log(xb/y0)/log 2] and summing up the resulting estimates, we obtain∑
n≤xb
n6=b/a

τ(n)

(
an− b

ϕ(|an− b|)

)8

� x log x.

It follows by partial summation that∑
d<xb

(d,b)=1

∑
uv≤xb/d
u6=v, adu6=b

1

uvd

(
adu− b

ϕ(|adu− b|)

)8

� log x
∑
n≤xb
n6=b/a

τ(n)

n

(
an− b

ϕ(|an− b|)

)8

� (log x)3. (32)

Combining (28)–(32), we conclude that the contribution to (25) in the non-boundary case
from the terms with the additional constraint uv ≤ (xb/d)2/3 is O(x).

It remains to estimate the contribution to (25) in the non-boundary case from the terms

when uv > (xb/d)2/3. In this case, we must have w < 3
√
xb/d. By symmetry, we may also add

the constraint that u < v, so that u <
√
xb/d as well. Again, since duw ≤ x

5/6
b d1/6 ≤ x

11/12
b ,

classical results from sieve theory yield∑
v≤xb/(duw)
v 6=u, (v,u)=1
adv 6=b, (v,ab)=1

1P(vw + a)1P(duvw + b)� x

duw(log x)2

∏
p|w

(
1− 1

p

)−2 ∏
p|du(dua−b)

p-w

(
1− 1

p

)−1

.

Thus, the contribution to (25) in the non-boundary case from the terms with the constraint
uv > (xb/d)2/3 is

� x

(log x)2

∑
d<
√
xb

(d,b)=1

∑
u<
√
xb/d

adu 6=b, (u,ab)=1

1

du
· du|dua− b|
ϕ(du|dua− b|)

∑
w< 3
√
xb/d

(w,ab)=1

1

w

(
w

ϕ(w)

)2

1P(uw + a).
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Since ∑
w< 3
√
xb/d

(w,ab)=1

1

w

(
w

ϕ(w)

)2

1P(uw + a)� u
∑

a+u<p<a+u 3
√
xb

p≡a (modu)

1

p

(
(p− a)/u

ϕ((p− a)/u)

)2

≤ u
∑

a<p≤a+xb
p≡a (modu)

1

p

(
p− a

ϕ(p− a)

)2

,

the sieve bound above is

� x

(log x)2

∑
a<p≤a+xb

τ(p− a)

p

(
p− a

ϕ(p− a)

)2 ∑
n<xb

n6=b/a, (n,b)=1

1

n
· n

ϕ(n)
· |an− b|
ϕ(|an− b|)

.

Applying [16, Corollary 3] with F1(n) = F2(n) = n/ϕ(n), Q1(t) = t and Q2(t) = at− b and
arguing as in the proof of (32), we have∑

n<xb
n 6=b/a, (n,b)=1

1

n
· n

ϕ(n)
· |an− b|
ϕ(|an− b|)

� log x.

Hence, the contribution to (25) in the non-boundary case from the terms with the constraint
uv > (xb/d)2/3 is

� x

log x

∑
a<p≤a+xb

τ(p− a)

p

(
p− a

ϕ(p− a)

)2

� x,

where the sum above is easily seen to be O(log x) by [17, Theorem 1] together with partial
summation.

In conclusion, we have shown that the entire contribution to (25) in the non-boundary
case is O(x). Adding up this contribution and the contributions to (25) in the boundary
cases supplied by (26) and (27) shows that (25) is O(x). Theorem 2.4 follows upon inserting
this and (24) into (23). �

In view of (15) and Theorem 2.4, it is natural to conjecture that if a, b ∈ Z \ {0} are fixed
such that 2 | a or 2 - b, then

1

π(x)

∑
b<r≤x

ω∗a(r − b)2 ∼
∑

[p−a,q−a]≤x
p,q>a

1

ϕ([p− a, q − a])
∼ c(a, b) log x

for some constant c(a, b) > 0. More generally, we conjecture that for any fixed a, b ∈ Z \ {0}
such that 2 | a or 2 - b and for any k ≥ 2 , there exists a constant ck(a, b) > 0 such that

1

π(x)

∑
b<r≤x

ω∗a(r − b)k ∼ ck(a, b)(log x)2k−k−1.

As mentioned earlier, a similar conjecture on the kth moment of ω∗ over natural numbers
was made in [8].
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3. Mean values of sub-multiplicative functions over shifted primes

In this section, we study ∑
[p−a,q−b]≤x
p>a,q>b

f([p− a, q − b]),

which may be viewed as a two-dimensional analogue of the following sum over shifted primes:∑
a<p≤x

f(p− a),

where f is a nonnegative-valued arithmetic function, and a, b ∈ Z \ {0} are fixed. As we
have seen, this sum is intimately related to the second moments of ω∗a over natural numbers
and over shifted primes. We shall prove a uniform upper bound valid for a nice class of sub-
multiplicative functions, generalizing Proposition 2.3. Our main tool is a variant of Shiu’s
theorem due to Pollack [17] on the mean values of nonnegative-valued sub-multiplicative
functions over a sifited set. We state his result as follows. An arithmetic function f :N→ R
is called sub-multiplicative if f(mn) ≤ f(m)f(n) whenever gcd(m,n) = 1. Let A1 > 0 be an
absolute constant, and let A2:R>0 → R>0 be any function. Denote by Ms(A1, A2) the class
of sub-multiplicative functions f :N→ R≥0 satisfying the following two conditions:

(i) f(n) ≤ A
Ω(n)
1 for all n ∈ N.

(ii) Given every ε > 0, one has f(n) ≤ A2(ε)nε for all n ∈ N.

Then [17, Theorem 1] (together with Remark (ii) in [17]) asserts that1 if α ∈ (0, 1/2),
k ∈ Z≥0, and f ∈ Ms(A1, A2), and if N is the subset of N ∩ (x − y, x] of integers whose
reductions modulo p avoid a subset Ep ⊆ Z/pZ of cardinality #Ep = ν(p) ≤ k for every
prime p ≤ x, where xα < y ≤ x, then∑

n∈N

f(n)�α,k,A1,A2 Cf,Q
y

log 2x
exp

(∑
p≤x

f(p)− ν(p)

p

)
(33)

for all x ≥ 1, where Q := {A1 < p ≤ x: 0 ∈ Ep} and

Cf,Q :=
∏
p∈Q

(
1− f(p)

p

)(
1− 1

p

)−1

.

We deduce from (33) the following extension.

Lemma 3.1. Let α, δ0 ∈ (0, 1), k ∈ Z≥0, η0, A1 > 0, A2:R>0 → R>0, and f ∈Ms(A1, A2).
If N is a subset of N ∩ (x − y, x] of integers whose reductions modulo p avoid a subset
Ep ⊆ Z/pZ of cardinality #Ep = ν(p) ≤ k for every prime p ≤ x, where xα < y ≤ x, then∑

n∈N

f(mn)�α,k,δ0,η0,A1,A2 Cf,Q(m)m
y

log 2x
exp

(∑
p≤x

f(p)− ν(p)

p

) ∏
pv‖m

∑
ν≥v

f(pν)

pν
+ yδ0

1Although [17, Theorem 1] is stated for multiplicative functions, its proof shows that sub-multiplicativity
suffices. In addition, the theorem is still valid if one assumes only that (ii) holds for a particular value of ε
depending on α. The same observations have also been made in [16] on Shiu’s theorem.
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for all x ≥ 1 and all m ∈ N ∩ [1, xη0 ], where

Cf,Q(m) := Cf,Q
∏

p>max(A1,k)
p|m,p/∈Q

(
1− f(p)

p

)(
1− ν(p)

p

)−1

.

Proof. It suffices to prove the lemma for sufficiently large x depending on α, k, δ0, η0, A1, A2.
In the proof, all the implicit constants will also depend at most on these parameters. Let
ε := αδ0/(10 + 2η0) ∈ (0, α/10), and put z := (y/xε)1/(1−ε) and PE :=

∏
p:0∈Ep

p. Then

∑
n∈N

f(mn) ≤
∑
n1≤x

rad(n1)|m

f(mn1)
∑

n1n2∈N
(n2,m)=1

f(n2) =
∑
n1≤x

rad(n1)|m
(n1,PE )=1

f(mn1)
∑

n1n2∈N
(n2,m)=1

f(n2),

since the inner sum over n2 vanishes if there exists p | n1 such that 0 ∈ Ep. If n1 < z, then
we have y/n1 > (x/n1)ε. By (33), the inner sum over n2 is

� y

n1 log(2x/n1)

∏
A1<p≤x/n1

p|m or p∈Q

(
1− f(p)

p

)(
1− 1

p

)−1

exp

 ∑
p≤x/n1

f(p)− ν(p, n1;m)

p



� y

n1 log 2x

∏
p≤x/n1

p-n1,p∈Q

(
1− 1

p

)−1

exp

 ∑
p≤x/n1

f(p)1p-m,p/∈Q − ν(p)1p-n1

p



≤ y

n1 log 2x

∏
p∈Q

(
1− 1

p

)−1

exp

 ∑
p≤x/n1

f(p)1p-m,p/∈Q − ν(p)1p-n1

p

 , (34)

where

ν(p, n1;m) :=


ν(p), if p - m,
ν(p) + 10/∈Ep , if p | m and p - n1,

1, if p | n1.

By condition (i) and the constraint gcd(n1, PE ) = 1, we see that the exponential in (34) is

�
∏

A1<p≤x
p|m or p∈Q

(
1− f(p)

p

)∏
p>k
p|n1

(
1− ν(p)

p

)−1

exp

(∑
p≤x

f(p)− ν(p)

p

)

≤
∏
p>A1

p|m,p/∈Q

(
1− f(p)

p

)∏
p∈Q

(
1− f(p)

p

) ∏
p>k

p|m,p/∈Q

(
1− ν(p)

p

)−1

exp

(∑
p≤x

f(p)− ν(p)

p

)
,
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which implies that∑
n1<z

rad(n1)|m
(n1,PE )=1

f(mn1)
∑

n1n2∈N
(n2,m)=1

f(n2)� Cf,Q(m)
y

log 2x
exp

(∑
p≤x

f(p)− ν(p)

p

) ∑
n1≥1

rad(n1)|m

f(mn1)

n1

≤ Cf,Q(m)m
y

log 2x
exp

(∑
p≤x

f(p)− ν(p)

p

) ∏
pv‖m

∑
ν≥v

f(pν)

pν
.

On the other hand, if z ≤ n1 ≤ x, then we use the trivial upper bound∑
n1n2∈N
(n2,m)=1

f(n2)�
(x
z

)ε ∑
(x−y)/n1<n2≤x/n1

1 ≤
(x
z

)ε y
z

=

(
x

y

)2ε/(1−ε)

< x4ε

implied by condition (ii) and the fact that 0 < ε < 1/2. It follows that∑
z≤n1≤x

rad(n1)|m
(n1,PE )=1

f(mn1)
∑

n1n2∈N
(n2,m)=1

f(n2)� x4ε
∑
n1≤x

rad(n1)|m

(mn1)ε ≤ yδ0/2
∑
n1≤x

rad(n1)|m

1.

The sum in the last inequality above is maximized when rad(m) = p1 · · · p` is the product of
the first ` primes p1 < · · · < p` with ` = ω(m). Since ` ≤ (η0 + o(1)) log x/log log x, we have∑

n1≤x
rad(n1)|m

1 ≤ Ψ(x, p`) ≤
eO(`)

`!

∏̀
i=1

log x

log pi
≤ eO(`)

∏̀
i=1

log x

` log pi

by [21, Theorem III.5.3] and Stirling’s formula, where Ψ(x, p`) counts the number of p`-
smooth numbers n ≤ x. If ` ≤ (αδ0/4) log x/log log x, then we have∑

n1≤x
rad(n1)|m

1� eO(`)(log x)` ≤ xαδ0/2 < yδ0/2

for sufficiently large x. If ` ≥ (αδ0/4) log x/log log x, then∏̀
i=1

log pi = exp

(∑
p≤p`

log log p

)
= exp

(
(1 + o(1))

p` log log p`
log p`

)
= (log `)(1+o(1))`,

which implies that∑
n1≤x

rad(n1)|m

1 ≤ eO(`)

(
log x

`(log `)1+o(1)

)`
= eO(`)(log log x)o(`) = xo(1).

In either case, we can ensure that∑
z≤n1≤x

rad(n1)|m
(n1,PE )=1

f(mn1)
∑

n1n2∈N
(n2,m)=1

f(n2)� yδ0

for sufficiently large x. This completes the proof of the lemma. �
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We say that a collection {(ai, bi)}1≤i≤k, where ai ∈ Z \ {0} and bi ∈ Z for every 1 ≤ i ≤ k,
is admissible if ρ(p) := #{n ∈ Z/pZ: (a1n+ b1) · · · (akn+ bk) ≡ 0 (mod p)} < p for all primes
p. The singular series S associated to an admissible collection {(ai, bi)}1≤i≤k is defined by

S :=
∏
p

(
1− ρ(p)

p

)(
1− 1

p

)−k
.

The following simple but useful corollary of Lemma 3.1 is immediate.

Lemma 3.2. Let α, δ0 ∈ (0, 1), k ∈ Z≥0, η0, A1 > 0, A2:R>0 → R>0, and f ∈Ms(A1, A2).
Then we have∑

x−y<n≤x

f(mn)1P(a1n+ b1) · · · 1P(akn+ bk)

�α,k,δ0,η0,A1,A2 Cf,b(m)m
Sy

(log 2x)k+1
exp

(∑
p≤x

f(p)

p

) ∏
pv‖m

∑
ν≥v

f(pν)

pν
+ yδ0

�k Cf,b(m)m
y

(log 2x)k+1
exp

(∑
p≤x

f(p)

p

)∏
p|D

(
1− 1

p

)ρ(p)−k ∏
pv‖m

∑
ν≥v

f(pν)

pν
+ yδ0

for all x ≥ 1, xα < y ≤ x, m ∈ N∩ [1, xη0 ], and all admissible collections {(ai, bi)}1≤i≤k with

D = D ({(ai, bi)}1≤i≤k) :=
k∏
i=1

ai
∏

1≤j<i

(aibj − ajbi) 6= 0,

where

Cf,b(m) :=
∏

p>max(A1,k)
p|m

p-b1···bk

(
1− f(p)

p

)(
1− ρ(p)

p

)−1 ∏
A1<p≤x
p|b1···bk

(
1− f(p)

p

)(
1− 1

p

)−1

.

Proof. The proof is essentially the same as that of the classical result for f = 1 from sieve
theory. In particular, the second asserted upper bound follows from the first and the well-
known upper bound for S. To prove the first asserted upper bound, we assume that x is
sufficiently large depending on α, k, δ0, η0, A1, A2. In the proof, all the implicit constants will
depend at most on these parameters. Let P (y) :=

∏
p≤yδ0/2 p, Q(n) := (a1n+b1) · · · (akn+bk),

and N := {x− y < n ≤ x: gcd(Q(n), P (y)) = 1}. Then

ν(p) =

{
ρ(p) if p ≤ yδ0/2,

0 otherwise,

and Q = {A1 < p ≤ yδ0/2: p | b1 · · · bk} in this particular case. By condition (ii) we see that∑
n≤x

0<ain+bi≤yδ0/2 for some i

f(mn)1P(a1n+ b1) · · · 1P(akn+ bk)� (mx)
αδ0

2(1+η0)

∑
0<ain+bi≤yδ0/2 for some i

1

� yδ0 .
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On the other hand, we have by Lemma 3.1 and condition (i) that

∑
n∈N

f(mn)� Cf,Q(m)m
y

log 2x
exp

(∑
p≤x

f(p)− ν(p)

p

) ∏
pv‖m

∑
ν≥v

f(pν)

pν
+ yδ0

� Cf,b(m)m
y

log 2x
exp

(∑
p≤x

f(p)− ρ(p)

p

) ∏
pv‖m

∑
ν≥v

f(pν)

pν
+ yδ0

� Cf,b(m)m
Sy

(log 2x)k+1
exp

(∑
p≤x

f(p)

p

) ∏
pv‖m

∑
ν≥v

f(pν)

pν
+ yδ0 .

Adding up the two estimates above yields the first asserted upper bound. �

Lemma 3.2 allows us to obtain instantly a generalization of Proposition 2.3 for sub-
multiplicative functions satisfying the conditions (i) and (ii). Before proving such a gen-
eralization, we establish the following technical lemma.

Lemma 3.3. Let a, b ∈ Z \ {0}, A1 > 0, A2:R>0 → R>0, and f ∈Ms(A1, A2). Then

∑
uv≤x

(u,av)=(v,bu)=1
av 6=bu

f(uv) · |av − bu|
ϕ(|av − bu|)

�a,b,A1,A2

x

log x
exp

(
2
∑
p≤x

f(p)

p

)

for all x ≥ 2.

Proof. It is sufficient to consider the case where x is sufficiently large depending on a, b, A1, A2.
All the implicit constants appearing in the proof will depend at most on these parameters. In
view of the fact that id/ϕ is completely sub-multiplicative, we may assume that gcd(a, b) = 1.
Using the inequalities n/ϕ(n)� σ(n)/n and

σ(n)

n
≤ 2

∑
d|n

d≤
√
n

1

d
,

we find that ∑
uv≤x

(u,av)=(v,bu)=1
av 6=bu

f(uv) · |av − bu|
ϕ(|av − bu|)

�
∑
d≥1

1

d

∑
uv≤x

av 6=bu,(av,bu)=1
av≡bu (mod d)√
|av−bu|≥d

f(uv).

It suffices to consider the case u ≤ v, since the antithetical case v ≤ u is similar. Now the
conditions u ≤ v and d ≤

√
|av − bu| imply that d�

√
x and v � d2. Since gcd(av, bu) = 1,

we know that gcd(abu, d) = 1 and the congruence av ≡ bu (mod d) is thus equivalent to
v ≡ ādbu (mod d), where ād is the inverse of a in (Z/dZ)×. By Shiu’s theorem [20, Theorem



26 KAI (STEVE) FAN

1], we obtain

∑
u≤v≤x/u

v�d2,av 6=bu
(v,bu)=1

av≡bu (mod d)

f(v) ≤
∑
v≤x/u

v≡ādbu (mod d)

f(v)� 1

uϕ(d)
· x

log x
exp

 ∑
p≤x,p-d

f(p)

p



whenever x/u� d2, which actually follows from d2 � v ≤ x/u. Hence, we have∑
uv≤x

(u,av)=(v,bu)=1
av 6=bu

f(uv) · |av − bu|
ϕ(|av − bu|)

� x

log x
exp

(∑
p≤x

f(p)

p

)∑
d≥1

1

dϕ(d)

∑
u≤
√
x

f(u)

u

� x

log x
exp

(
2
∑
p≤x

f(p)

p

)
,

completing the proof of the lemma. �

We are now in a position to prove the following generalization of Proposition 2.3.

Theorem 3.4. Let a, b ∈ Z \ {0}, A1 > 0, A2:R>0 → R>0, and f ∈Ms(A1, A2). Then∑
[p−a,q−b]≤x
p>a,q>b

f([p− a, q − b])�a,b,A1,A2 Ef (x)
x

(log x)2

∫ x

1

Ef (t)
2

t(log 2t)2
dt

for all x ≥ 2, where

Ef (x) := exp

(∑
p≤x

f(p)

p

)
.

Proof. The proof is analogous to that of Proposition 2.3. Before embarking on the proof, we
introduce the multiplicative function

f̃(n) := n
∏
pv‖n

∑
ν≥v

f(pν)

pν
,

and observe that f̃(pv) = f(pv) + O(1/p) for all prime powers pν and that f̃ ∈Ms(Ã1, Ã2)

for some Ã1 > 0 and Ã2:R>0 → R>0 depending on A1 and A2.
In what follows, we assume that x is sufficiently large depending on a, b, A1, A2, and all

the implicit constants appearing below depend at most on these parameters. Let p−a = uw
and q − b = vw with w = gcd(p − a, q − b), so that gcd(u, v) = 1 and [p − a, q − b] = uvw.
Then the sum to be estimated becomes∑

uvw≤x
(u,v)=1

f(uvw)1P(uw + a)1P(vw + b). (35)

As before, we handle the boundary cases first. Let us start with the contribution to (35)
from the terms with gcd(w, a) > 1 or gcd(w, b) > 1. By symmetry, it suffices to consider
the contribution from the terms with gcd(w, a) = d > 1. Clearly, these terms vanish unless
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uw + a = d is prime. Assuming that d − a ≥ 1, we see that the contribution from these
terms is at most ∑

w|d−a

∑
v≤x/(d−a)

f((d− a)v)1P(vw + b)� Ef (x)
x

(log x)2

by Lemma 3.2 and condition (i). Similarly, one shows that this is also an upper bound for
the contribution from the terms with gcd(u, a) > 1 or gcd(v, b) > 1. Hence, we may assume
now that gcd(uw, a) = gcd(vw, b) = 1. The remaining boundary case is av = bu. However,
since gcd(u, a) = gcd(v, b) = gcd(u, v) = 1, this is impossible unless a = b and u = v = 1.
Thus, the contribution from the terms in this case is also at most∑

w≤x

f(w)1P(w + a)� Ef (x)
x

(log x)2
.

This settles all the boundary cases.
From now on, we shall concentrate on the case where gcd(uw, a) = gcd(vw, b) = 1 and

av 6= bu. Fix any ε0 ∈ (0, 1/3), whose exact value will be of little importance. We start by
estimating the contribution to (35) from the terms in this case with uv ≤ x2/3. By Lemma
3.2 with δ0 = 3ε0 we see that∑

w≤x/uv
(w,ab)=1

f(uvw)1P(uw + a)1P(vw + b)

� f̃(uv)

uv

(
uv

ϕ(uv)

)2 |av − bu|
ϕ(|av − bu|)

· Ef (x)
x

(log x)3
+
( x
uv

)3ε0
.

Summing this over uv ≤ x2/3 with gcd(u, av) = gcd(v, bu) = 1 yields the contribution

Ef (x)
x

(log x)3

∑
uv≤x2/3

(u,av)=(v,bu)=1
av 6=bu

f̃(uv)

uv

(
uv

ϕ(uv)

)2 |av − bu|
ϕ(|av − bu|)

+ x
2
3

+ε0 log x,

which, by Lemma 3.3 with f replaced by f̃(id/ϕ)2 and partial summation, is

� Ef (x)
x

(log x)3

(
Ef (x)2

log x
+

∫ x

1

Ef (t)
2

t log 2t
dt

)
.

It remains to consider the contribution to (35) from the terms with uv > x2/3. Without

loss of generality, we may assume u ≤ v. In this case, we have w < x1/3 and u ≤
√
x/w, so

that uw ≤
√
wx < x2/3. By Lemma 3.2 with δ0 = 3ε0 we have

∑
v≤x/uw

f(uvw)1P(vw + b)� f̃(uw)

uw
· uw

ϕ(uw)
· w

ϕ(w)
· Ef (x)

x

(log x)2
+
( x

uw

)3ε0
.
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It follows that the contribution from the present case is

� Ef (x)
x

(log x)2

∑
uw<x2/3

f̃(uw)

uw

(
uw

ϕ(uw)

)2

1P(uw + a) + x
2
3

+ε0

� Ef (x)
x

(log x)2

∑
n<x

f̃(n)τ(n)

n

(
n

ϕ(n)

)2

1P(n+ a) + x
2
3

+ε0 .

By Lemma 3.2, we have∑
n<x

f̃(n)τ(n)

(
n

ϕ(n)

)2

1P(n+ a)� Ef (x)2 x

(log x)2
.

By partial summation, we see that the contribution from the present case is

� Ef (x)
x

(log x)2

(
Ef (x)2

(log x)2
+

∫ x

1

Ef (t)
2

t(log 2t)2
dt

)
.

Since ∫ x

1

Ef (t)
2

t(log 2t)2
dt ≥

∫ x

1

1

t(log 2t)2
dt� 1,∫ x

1

Ef (t)
2

t(log 2t)2
dt� 1

log x

∫ x

1

Ef (t)
2

t log 2t
dt,∫ x

1

Ef (t)
2

t(log 2t)2
dt� Ef (x)2

∫ x

√
x

1

t(log 2t)2
dt� Ef (x)2

log x
,

the desired upper bound follows upon collecting the estimates for the contributions to (35)
from all of the cases above. �

The following special case of Theorem 3.4 when f = τκ with κ ≥ 0 is immediate.

Corollary 3.5. Let a, b ∈ Z \ {0} and κ ≥ 0. Then∑
[p−a,q−b]≤x
p>a,q>b

τκ([p− a, q − b])�a,b,κ x(log x)max(κ−2,3κ−3)(log log x)1κ=1/2

for all x ≥ 3.

Corollary 3.5 shows that if we define the natural probability measure induced by τκ on
N ∩ [1, x] by

Prob(n = n0) =
τκ(n0)∑
m≤x τκ(m)

for every n0 ∈ N∩ [1, x], then with respect to this probability measure, the expected number
of representations of n ∈ N∩ [1, x] of the form n = [p− a, q− b] with some primes p > a and
q > b is �a,b,κ (log x)max(−1,2κ−2)(log log x)1κ=1/2 .

More generally, it may be of interest to estimate∑
[p1−a1,...,pk−ak]≤x

pi>ai

f([p1 − a1, ..., pk − ak]),
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where k ≥ 2, a = (a1, ..., ak) ∈ (Z \ {0})k, and f ∈Ms(A1, A2). Perhaps we have∑
[p1−a1,...,pk−ak]≤x

pi>ai

f([p1 − a1, ..., pk − ak])�a,A1,A2 Ef (x)
x

(log x)2

∫ x

1

Ef (t)
2k−2

t(log 2t)k
dt

for all x ≥ 2. In particular, if a1 = · · · = ak = a, then the above estimate applied to f = 1
would imply

1

x

∑
n≤x

ω∗a(n)k �k,a (log x)2k−k−1,

yielding an upper bound of the conjectured order of magnitude for Mk(x).

4. A conjecture on the second moment of ω∗

In this section, we discuss a possible asymptotic formula for the second moment of ω∗ of
the form

M2(x) =
1

x

∑
n≤x

ω∗(n)2 ∼ C log x,

where C > 0 is some constant. We define the related quantity

S2(x) :=
1

x
·#{(p, q): [p− 1, q − 1] ≤ x} =

1

x

∑
n≤x

β1(n),

where β1(n) was first introduced in the proof of Theorem 2.4. It can be shown by partial
summation that S2(x) ∼ C implies M2(x) ∼ C log x. Based on the Elliott–Halberstam con-
jecture, Ding, Guo, and Zhang [6] argued that C = 2ζ(2)ζ(3)/ζ(6) = 315ζ(3)/π4 ≈ 3.88719.
However, Pomerance and the author [8] discovered an error in [15, Equation (4.8)] on which
their heuristic argument is based. As discussed in [8, Section 2], numerical computations
seem to suggest that C ≈ 3.2. Here we propose a crude heuristic argument leading us to the
following conjecture.

Conjecture 4.1. We have

S2(x) ∼ 105

4π2
ζ(3),

M2(x) ∼ 105

4π2
ζ(3) log x.

In other words, we conjecture that

C =
105

4π2
ζ(3) = 3.1970879911....

In contrast to the constant 2ζ(2)ζ(3)/ζ(6) obtained in [6], the constant that we derived is
actually equal to ζ(2)2ζ(3)/ζ(6). Our heuristic argument relies on the following variation of
the uniform Bateman–Horn conjecture for linear polynomials:∑

n≤x

1P(an+ 1)1P(bn+ 1) = S(a, b)
x

log(2ax) log(2bx)
+ E(x; a, b) (36)
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for all a, b ∈ N with ab ≤ x, a 6= b and gcd(a, b) = 1, where the error E(x; a, b) is expected
to be negligible on average compared to the main term. Here

S(a, b) :=
∏
p

(
1− νp(a, b)

p

)(
1− 1

p

)−2

= 2C2

∏
p>2

p|ab(a−b)

(
1 +

1

p− 2

)

is the singular series corresponding to the linear polynomials an + 1 and bn + 1, where
νp(a, b) := #{n ∈ Z/pZ: (an+ 1)(bn+ 1) ≡ 0 (mod p)}, and

C2 :=
∏
p>2

(
1− 1

(p− 1)2

)

is the twin prime constant. Using (36) we expect to have

S2(x) =
π(x+ 1)

x
+

1

x

∑
ab≤x
a6=b

(a,b)=1

∑
n≤x/ab

1P(an+ 1)1P(bn+ 1)

∼
∑
ab≤x
a6=b

(a,b)=1

S(a, b)

ab log(2x/a) log(2x/b)

=
∑
k,l≥0

1

(log 2x)k+l+2

∑
ab≤x
a6=b

(a,b)=1

S(a, b)

ab
(log a)k(log b)l.

Instead of dealing with the infinite product in the original definition of S(a, b) given above,
we rewrite it as an infinite series. For every integer ν ≥ 0 and every prime p, we write

s(p, ν) :=

(
1− ν

p

)(
1− 1

p

)−2

− 1 =
(2− ν)p− 1

(p− 1)2
, (37)

and put

sa,b(n) :=
∏
p|n

s(p, νp(a, b))

if n is square-free and sn(a, b) := 0 otherwise. Then we have

S(a, b) =
ab

ϕ(ab)

∑
(n,ab)=1

sa,b(n) =
ab

ϕ(ab)

 ∑
n≤y

(n,ab)=1

sa,b(n) +O

(
3ω(|a−b|)

y

)
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for y ≥ 2 and a, b ∈ N with a 6= b and gcd(a, b) = 1, where the second equality follows from∑
n>y

(n,ab)=1

|sa,b(n)| ≤
∑
n>y

(n,ab)=1

µ(n)2ϕ((n, a− b))
ϕ(n)2

=
∑
d|a−b

µ(d)2

ϕ(d)

∑
m>y/d

(m,ab(a−b))=1

µ(m)2

ϕ(m)2

� 1

y

∑
d|a−b

µ(d)2d

ϕ(d)
≤ 3ω(|a−b|)

y

by (37). Thus, we expect

S2(x) ∼
∑
k,l≥0

1

(log 2x)k+l+2

∑
ab≤x
a6=b

(a,b)=1

∑
n≤y

(n,ab)=1

sa,b(n)

ϕ(a)ϕ(b)
(log a)k(log b)l

for some suitable choice of y in terms of x. Given any square-free n ∈ N and any sequence
{νp}p|n ⊆ {1, 2}ω(n), let

An := {(an, bn) ∈ (Z/nZ)× × (Z/nZ)× : νp(an, bn) = νp for all p | n}.

Then the inner sum over ab ≤ x above becomes∑
n≤y

µ(n)2
∑

{νp}p|n⊆{1,2}ω(n)

∏
p|n

s(p, νp(a, b))
∑

(an,bn)∈An

∑
a≤x

a≡an (modn)

(log a)k

ϕ(a)

∑
b≤x/a
b 6=a

(b,a)=1
b≡bn (modn)

(log b)l

ϕ(b)
.

Since ∑
b≤z
b6=a

(b,a)=1
b≡bn (modn)

b

ϕ(b)
=

∑
d≤z

(d,an)=1

µ(d)2

ϕ(d)

∑
b≤z/d
bd 6=a

(b,a)=1
bd≡bn (modn)

1

= ϕ(a)
∑
d≤z

(d,an)=1

µ(d)2

ϕ(d)

( z

dan
+O(1)

)

= B0
ϕ(a)

an
z
∏
p|an

(
1 +

1

p(p− 1)

)−1

+O(ϕ(a) log z),

where

B0 :=
∏
p

(
1 +

1

p(p− 1)

)
=
ζ(2)ζ(3)

ζ(6)
,
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we expect ∑
b≤x/a
b 6=a

(b,a)=1
b≡bn (modn)

(log b)l

ϕ(b)
∼ B0

l + 1
· ϕ(a)g(a)g(n)

an

(
log

x

a

)l+1

,

where

g(n) :=
∏
p|n

(
1 +

1

p(p− 1)

)−1

.

Thus, we expect∑
a≤x

a≡an (modn)

(log a)k

ϕ(a)

∑
b≤x/a
b 6=a

(b,a)=1
b≡bn (modn)

(log b)l

ϕ(b)
∼ B0

l + 1
· g(n)

n

∑
a≤x

a≡an (modn)

g(a)

a
(log x)k

(
log

x

a

)l+1

.

Since g = 1 ∗ g1 with

g1(n) = µ(n)
∏
p|n

1

p2 − p+ 1
,

we have ∑
a≤x

a≡an (modn)

g(a) =
∑
d≤x

(d,n)=1

g1(d)
( x
dn

+O(1)
)

= A0x
∏
p|n

p2 − p+ 1

(p− 1)(p2 + 1)
+O(1),

where

A0 :=
∏
p

(
1− 1

p(p2 − p+ 1)

)
=

ζ(6)

ζ(3)ζ(4)
.

Hence, we expect ∑
a≤x

a≡an (modn)

g(a)

a
(log x)k ∼ A0

k + 1
(log x)k+1

∏
p|n

p2 − p+ 1

(p− 1)(p2 + 1)

and∑
a≤x

a≡an (modn)

g(a)

a
(log x)k

(
log

x

a

)l+1

∼ A0(l + 1)

k + 1

∏
p|n

p2 − p+ 1

(p− 1)(p2 + 1)

∫ x

1

(log t)k+1
(

log
x

t

)l dt
t

=
A0(l + 1)B(k + 1, l + 1)

k + l + 2
(log x)k+l+2

∏
p|n

p2 − p+ 1

(p− 1)(p2 + 1)
,

where we have made the substitution t = xu and taken advantage of the beta function

B(α, β) :=

∫ 1

0

uα−1(1− u)β−1 du
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for any α, β > 0. Therefore, we expect∑
a≤x

a≡an (modn)

(log a)k

ϕ(a)

∑
b≤x/a
b6=a

(b,a)=1
b≡bn (modn)

(log b)l

ϕ(b)
∼ A0B0B(k + 1, l + 1)

k + l + 2
η(n)(log x)k+l+2,

where

η(n) :=
g(n)

n

∏
p|n

p2 − p+ 1

(p− 1)(p2 + 1)
=
∏
p|n

1

p2 + 1
.

At this point, we anticipate

S2(x) ∼ A0B0

∑
k,l≥1

B(k, l)

k + l

∑
n≤y

µ(n)2η(n)
∑

{νp}p|n⊆{1,2}ω(n)

∏
p|n

s(p, νp(a, b))
∑

(an,bn)∈An

1.

Since ∑
(an,bn)∈An

1 =
∏
p|n
νp=1

(p− 1)
∏
p|n
νp=2

(p− 1)(p− 2),

it follows from (37) that∏
p|n

s(p, νp(a, b))
∑

(an,bn)∈An

1 =
∏
p|n
νp=2

(
1

p− 1
− 1

)
,

whence ∑
{νp}p|n⊆{1,2}ω(n)

∏
p|n

s(p, νp(a, b))
∑

(an,bn)∈An

1 =
∏
p|n

(
1 +

(
1

p− 1
− 1

))
=

1

ϕ(n)

for square-free n ∈ N. On the other hand, it is easy to see that∑
k,l≥1

B(k, l)

k + l
=

∫ 1

0

∫ 1

0

∑
k,l≥1

tk+l−1uk−1(1− u)l−1 dtdu

=

∫ 1

0

∫ 1

0

t

1− ut
· 1

1− (1− u)t
dudt

=

∫ 1

0

∫ t

0

1

1− z
· 1

1− t+ z
dzdt

=

∫ 1

0

∫ 1

t

1

1− z
· 1

1− t+ z
dtdz

= −
∫ 1

0

log z

1− z
dz

=
∑
n≥1

1

n

∫ 1

0

(1− z)n−1 dz = ζ(2).
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Hence, we anticipate

S2(x) ∼ A0B0ζ(2)
∑
n≥1

µ(n)2 η(n)

ϕ(n)
=
ζ(2)2

ζ(4)

∑
n≥1

µ(n)2 η(n)

ϕ(n)
.

But ∑
n≥1

µ(n)2 η(n)

ϕ(n)
=
∏
p

(
1 +

1

(p− 1)(p2 + 1)

)
=
∏
p

1− p−1 + p−2

(1− p−1)(1 + p−2)
=
ζ(3)ζ(4)

ζ(6)
.

Therefore, we expect to have

S2(x) ∼ ζ(2)2ζ(3)

ζ(6)
=

105

4π2
ζ(3),

which is Conjecture 4.1. It is possible to obtain heuristics for the kth moment Mk(x) for all
k ≥ 2 by generalizing the above argument.

Admittedly, we have ignored in the above argument all the possible error terms in the
asymptotics, especially when handling the technicalities arising from various sums over arith-
metic progressions where the moduli in consideration may be very large. Nonetheless, it is
probable that the total contributions from these error terms do not affect the above asymp-
totic for S2(x). Furthermore, numerical computations seem to support our conjecture.

Despite the incorrect value of the constant C obtained in [6], the argument given there
does seem to suggest that ∑

p,q≤x

1

[p− 1, q − 1]
∼ 2ζ(2)ζ(3)

ζ(6)
log x.

It is observed in [8, Section 8] that

1

log x

∑
p,q≤x

[p−1,q−1]>x

1

[p− 1, q − 1]
≈ 0.69,

based on numerical computations. Note that

2ζ(2)ζ(3)

ζ(6)
− ζ(2)2ζ(3)

ζ(6)
= 0.6901048825....

This provides further evidence for the truthfulness of Conjecture 4.1.
Finally, it has also been conjectured in a footnote in [8] that

S2(x)−1

 ∑
[p−1,q−1]≤x

1

[p− 1, q − 1]
−M2(x)

 ∼ 1− γ, (38)

where γ = 0.57722... is the Euler–Mascheroni constant. Accepting the conjecture that
S2(x) ∼ C for some constant C > 0, one would not be surprised if this conjecture turns out
to be true as well. Indeed, we have∑

[p−1,q−1]≤x

1

[p− 1, q − 1]
−M2(x) =

1

x

∑
[p−1,q−1]≤x

{
x

[p− 1, q − 1]

}
=

1

x

∑
n≤x

β1(n)
{x
n

}
. (39)



THE SHIFTED PRIME-DIVISOR FUNCTION OVER SHIFTED PRIMES 35

By partial summation, we expect that the last expression in (39) is equal to

1

x

∫ x

1−

{x
t

}
d(tS2(t)) ∼ C

x

∫ x

1−

{x
t

}
dt ∼ C

∫ ∞
1

{t}
t2

dt = C(1− γ).

As intuitive as this argument is, making the first asymptotic above rigorous would require a
careful treatment of the technicalities resulting from the Stieltjes integral involving the error
term in tS2(t). Rather than try to overcome these technicalities, we give an argument which
is based on a general principle and circumvents such technicalities.

Proposition 4.1. The conjectured asymptotic formula (38) holds if there exists an absolute
constant C > 0 such that S2(x) ∼ C as x→∞.

Proof. The proof is simple. Let an := β1(n)− C for n ∈ N. Then∑
n≤x

an = o(x),∑
n≤x

|an| = O(x).

Applying Axer’s theorem [14, Theorem 8.1] to {an}n≥1 and F (x) = {x}, we have∑
n≤x

an

{x
n

}
= o(x).

Since ∑
n≤x

{x
n

}
= x

∑
n≤x

1

n
−
∑
n≤x

⌊x
n

⌋
= x

∑
n≤x

1

n
−
∑
n≤x

τ(n) = (1− γ)x+O
(√

x
)
,

we obtain
1

x

∑
n≤x

β1(n)
{x
n

}
=

1

x

∑
n≤x

an

{x
n

}
+
C

x

∑
n≤x

{x
n

}
= C(1− γ) + o(1),

which, in view of (39), completes the proof of the proposition. �

5. Concluding remarks

Given any arithmetic function f :N → N and any nonempty subset S ⊆ N, we define the
k-level set Lk(f, S) of the restriction f |S by

Lk(f, S) := {n ∈ S: f(n) = k}
for each k ∈ N. The natural density δk(f, S) of Lk(f, S) relative to S is then given by

δk(f, S) := lim
x→∞

#(Lk(f, S) ∩ [1, x])

#(S ∩ [1, x])
,

provided that this limit exists. Despite the similarities between ω∗ and τ suggested by
their maximal orders and moments, the natures of the level sets Lk(ω∗,N) and Lk(τ,N) are
quite different. It is well-known that both Lk(τ,N) and Lk(ω,N) have natural density 0
for every k ∈ N. However, Pomerance and the author [8, Theorem 2] recently proved that
δk(ω

∗,N) > 0 for every k ∈ N and that
∑

k≥1 δk(ω
∗,N) = 1.
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It is also of interest to examine these densities with N replaced by the set Pb := {p− b: p ∈
P∩(b,∞)}, where b ∈ Z\{0}. For the sake of simplicity, we stick with ω∗ rather than pursue
the more sophisticated function ω∗a studied in Section 2. A general result of the Erdős–Kac
type due to Halberstam [9, Theorem 3] implies that δk(ω,Pb) = δk(τ,Pb) = 0 for every
k ∈ N. The situation on δk(ω

∗,Pb) is somewhat complicated. If b is even, then we clearly
have δ1(ω∗,Pb) = 1 and δk(ω

∗,Pb) = 0 for all k ≥ 2. If b is odd, then δ1(ω∗,Pb) = 0. In the
special case b = 1, we also have δ2(ω∗,Pb) = 0. Nevertheless, we expect that the densities
δk(ω

∗,Pb) all exist and add up to 1 and that δk(ω
∗,Pb) is positive for sufficiently large k.

For x, y ≥ 1, let N(x, y;N) := #{n ≤ x:ω∗(n) ≥ y}. Then we have

N(x, y;N) =
∑
k≥y

#(Lk(ω∗,N) ∩ [1, x]).

It has been shown [8, Theorem 1] that there exists a suitable constant c > 0 such that⌊
x

yc log log y

⌋
≤ N(x, y;N)� x log y

y

for all x ≥ 1 and all sufficiently large y. Here we consider the analogue of this counting
function defined by N(x, y;Pb) := #{b < p ≤ x:ω∗(p− b) ≥ y} for any b ∈ Z\{0}. A simple
adaptation of the proof of [8, Theorem 1] yields the following theorem.

Theorem 5.1. For any b ∈ Z\2Z, there exist constants c1, c2 > 0 depending on b, such that

π(x)

yc1 log log y
< N(x, y;Pb)�

π(x) log y

y

for all sufficiently large x and y ≤ xc2/log log x, where the implied constant in “�” as well as
the threshold for “sufficiently large” may depend on b.

Here the hypothesis y ≤ xc2/log log x is required only for the lower bound to hold. The key
ingredients in the proof of the upper bound are [12, Theorem 3], which serves as a substitute
for [13, Theorem 1.2] employed in the proof of [8, Theorem 1], and the estimate∑

b<p≤x

∑
q−1|p−b
q−1≤z

1 ≤
∑
q≤z+1

π(xb; q − 1, b) =
∑
q≤z+1

(q−1,b)=1

π(xb; q − 1, b) +O(z)

� x

log x

∑
q≤z+1

(q−1,b)=1

1

ϕ(q − 1)
+ z � π(x) log log z

for all 3 ≤ z ≤ x with log z/log x bounded away from 1, where we have used Brun–
Titchmarsh and Proposition 2.1. For the proof of the lower bound in Theorem 5.1, we
would like to follow the proof of [8, Theorem 1] as well. This is where the hypothesis 2 - b
enters the picture. To achieve this, however, we need to upgrade [1, Proposition 10] to the
following result.

Proposition 5.2. Let b ∈ Z \ 2Z. There exist constants c = c(b) > 0 and x0 = x0(b) ≥ 3
with the property that for any integer N > 2, one can find a square-free M ∈ N∩ [1, x2) such
that gcd(M, b) = 1, N -M , and ω∗(M) ≥ ec log x/log log x whenever x ≥ x0.
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Let us accept Proposition 5.2 for the moment and see how the lower bound in Theorem
5.1 may be derived from it. We apply [1, Proposition 8] with ε = 1/2, which gives us some
δ ∈ (0, 1) and k0(x) ∈ N ∩ ((log x)3/2,∞) when x is sufficiently large. By Proposition 5.2,
there exists an absolute constant c > 0 such that we can find a square-free M ∈ N ∩ [1, z2)
with gcd(M, b) = 1, k0(x) - M and ω∗(M) ≥ ec log z/log log z for all sufficiently large z. Take
z = y(c1/3) log log y with some suitable constant c1 > 0 depending on c and choose c2 > 0 small
enough depending on c1 and δ, so that we have M < z2 ≤ xδ and ω∗(M) ≥ y whenever
y ≤ xc2/log log x is sufficiently large. Moreover, according to [1, Proposition 8], we have

N(x, y;Pb) ≥
∑
p≤x

p≡b (modM)

1 ≥ 1

log x

∑
p≤x

p≡b (modM)

log p >
x

2ϕ(M) log x
>
π(x)

3z2
,

which yields the desired lower bound. Now we outline the proof of Proposition 5.2 below.

Proof sketch of Proposition 5.2. Note that it suffices to consider the case where b and N are
both square-free. We modify the proof of [1, Proposition 10]. In what follows, we shall
adopt the set-up and notation used there. Firstly, we fix a small ε > 0 whose value will be
determined later (its original value is 1/4 in the proof of [1, Proposition 10]) and replace the
original k1 by k′1 which is the product of primes ≤ U := max((1/4)δ log x, T ) coprime to b,
where δ ∈ (0, 1/3) and T > 0 originate from [1, Proposition 9]. This will give us a new k′

in place of the original k. Following the proof of [1, Proposition 10], we have k0(x) - (k′b)2.
Next, we count the number A(k′, b, N) of m ≤ x and p ≤ x with p− 1 square-free, satisfying

m(p− 1) ≡ 0 (mod k′), gcd(m(p− 1), b) = 1 and N - m(p− 1).

We define A(k′, b,∞) to be the number of m, p ≤ x satisfying the same conditions above
except for N - m(p− 1). The proof of [1, Proposition 10] yields

A(k, 1,∞) >
x2

20k log x

∑
d|k

ϕ(d)

d
≥ x2

k log x

(
3

2

)ω(k)

>
x2

k log x

(
3

2

)(1/4)δ log x/log log x

.

To complete the proof, it suffices to prove an inequality for A(k′, b, N) similar to this. It is
not hard to see that the same argument yields

A(k′, b,∞)� x2

k′ log x

∑
d|k′

ϕ(d)

d
≥ x2

k′ log x

(
3

2

)ω(k′)

>
x2

k′ log x

(
3

2

)(1/6)δ log x/log log x

, (40)

as long as ε is sufficiently small. This is where we need the assumption that 2 - b, which
ensures that ∑

d|b

µ(d)
ψ(d)

d
=
∏
p|b

p(p− 2)

p2 − p− 1
> 0,

where the definition of ψ(d) is given in [1, Proposition 9].
Suppose first that N ≥ xδ/3. Then the number of m ≤ x and p ≤ x with p− 1 square-free

such that m(p− 1) ≡ 0 (modN) is at most∑
uv=N

∑
m≤x
u|m

∑
p≤x

p≡1 (mod v)

1 ≤ 2ω(N)

N
x2 = o

(
x2

k′ log x

(
3

2

)(1/6)δ log x/log log x
)

= o(A(k′, b,∞)).
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It follows from (40) that

A(k′, b, N)� x2

k′ log x

(
3

2

)(1/6)δ log x/log log x

. (41)

Next, we suppose that N < xδ/3 has a prime factor q ∈ (U, xδ/3). Then we have q - k′. For
any d | k′q, the number of primes p ≤ x with p− 1 square-free and d | p− 1 is∑

p≤x
p≡1 (mod d)

µ(p− 1)2 =
∑

n≤(x−1)/d

µ(dn)21P(dn+ 1) =
∑

n≤(x−1)/d

µ(n)21(n,d)=11P(dn+ 1),

which, by Lemma 3.2 and the fact that d ≤
√
x, is � x/(d log x). In addition, the number

of m ≤ x with gcd(m, k′q) = k′q/d is� (x/k′q)ϕ(d). Thus, the number of m ≤ x and p ≤ x
with p− 1 square-free such that m(p− 1) ≡ 0 (mod k′q) is

� x2

k′q log x

∑
d|k′q

ϕ(d)

d
<

2x2

k′q log x

∑
d|k′

ϕ(d)

d
= o

 x2

k′ log x

∑
d|k′

ϕ(d)

d

 = o(A(k′, b,∞)),

since q > (1/4)δ log x. Hence, we have (41) in this case as well.
Finally, we consider the case where N < xδ/3 and all of the prime factors of N are ≤ U .

If gcd(N, b) > 1, then A(k′, b, N) ≥ A(k′, b,∞). So we may assume gcd(N, b) = 1. Then we
have N | k′. Since N > 2 is square-free, it has a prime factor 2 < q ≤ U . If we replace k′

by k′′ = k′/q, then the same argument in the proof of [1, Proposition 10] still works. Hence,
it suffices to prove a lower bound for A(k′′, b, N). It is clear that A(k′′, b, N) ≥ A(k′′, bq,∞).
A lower bound for A(k′′, bq,∞) uniform in 2 < q ≤ U that is analogous to (40) can be
established in the same fashion. This completes the proof. �
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