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§1. Introduction.

By a well-known theorem of Matiyasevich [8], [9], a recursively enumerable
set is Diophantine (and therefore there is no algorithm deciding whether a
given Diophantine equation is soluble in Z). Moreover, given a recursively
enumerable set S, one can actually construct a polynomial PS(t, ~x) in Z[t, ~x]
such that

S = {a | a ∈ N, ∃ ~b (~b ∈ Z
n & PS(a,~b) = 0)}.

The set of the theorems of a formalised mathematical theory, say T , being
recursively enumerable, is Diophantine (cf. [3, pp. 327-328]); therefore one
can construct a polynomial FT (t, ~x) in Z[t, ~x] such that the Diophantine
equation

FT (a, ~x) = 0

is soluble in Z if and only if a = N (A) for a formula A provable in T , where

N : F → N

is a suitable numbering of the set F of the well-formed formulae of T . Let
P be the predicate calculus with a single binary predicate letter (and no
function letters or individual constants). The goal of this work is to write
down explicitly a polynomial FP(t, ~x) as above. By Kalmár’s theorem [7]
(cf. also [12, p. 223]), analysis of provability in any pure predicate calculus
can be reduced to studying provability in P. Moreover, the Gödel-Bernays
set theory, to be denoted by S, is finitely axiomatisable in P [5], [12, Ch.4];
therefore, loosely speaking, one may say that the polynomial FP(t, ~x) encodes
the content of pure mathematics (as formalised in S). On denoting by A the
conjunction of the proper (non-logical) axioms of S and letting

b = N (A ⊃ B)
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for some (obviously) false in S formula B, one obtains a Diophantine equa-
tion

FP(b, ~x) = 0, (1)

whose insolubility is equivalent to the consistency of S. Thus to prove that
equation (1) has no solutions in Z, one has to employ an additional axiom,
for instance, the axiom asserting existence of an inaccessible ordinal (cf. [4],
where some combinatorial statements have been constructed, whose prov-
ability depends on that axiom).

In Section 2, we describe the language of P, define a numbering

N : P → N,

and give a Diophantine description of three groups of axioms of P. After
recalling the necessary preliminaries on Diophantine coding and proving a few
technical lemmata, we complete our Diophantine description of the axioms
and the rules of inference of P. Finally, in Section 6, we shall write down a
polynomial FP(t, ~x), encoding the predicate of provability in P.

Notation and conventions. As usual, R,Z, and N stand for the field
of real numbers, the ring of rational integers, and the monoid of positive
rational integers respectively. A finite sequence of symbols is denoted by ~x
and L(~x) stands for its length (we write, for instance, ~x := (y1, . . . , yn) and
L(~x) = n); let

~x ∗ ~y := (a1, . . . , an, b1, . . . , bm)

stand for the concatenation of the sequences

~x := (a1, . . . , an) and ~y := (b1, . . . , bm).

The polynomial

p(x1, x2) =
(x1 + x2 − 2)(x1 + x2 − 1)

2
+ x2

defines a bijection

p : N
2 → N, p : ~a 7→ p(~a) for ~a ∈ N

2;

moreover,
p(~a) ≥ max{a1, a2} for ~a ∈ N

2

(cf. [2, p. 237]). Given an arithmetical formula A, let

(∀j ≤ n) A := ∀j ((j ∈ N & j ≤ n) ⇒ A).

For ~a ∈ R
n, ~a := (a1, . . . , an), let

~a 2 :=

n
∑

i=1

a2
i and |~a| := max {|aj| | 1 ≤ j ≤ n}.
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§2. The predicate calculus P .

The predicate calculus P is a first order theory. The alphabet of its language
consists of the set

X := {ti | i ∈ N}

of individual variables, the binary predicate letter ε, the logical connectives:
{¬, ⊃} (”negation” and ”implication”), the universal quantifier ∀, and the
parentheses {(, )}. The set F of the formulae of P is defined inductively. An
expression of the form (x ε y), with {x, y} ⊂ X , is a(n elementary) formula;
if A and B are formulae, then ¬ A, (A ⊃ B), and ∀x A are formulae.

Let us define inductively two functions

n : F → N, m : F → N,

and let N (A) := p(n(A), m(A)).

Definition. Let

n(ti ε tj) = p(i, j), m(ti ε tj) = 1

for {i, j} ⊆ N. For {A, B} ⊆ F and i ∈ N, let

n(¬ A) = 3n(A) − 2, m(¬ A) = m(A) + 1,

n(A ⊃ B) = 3p(n(A), n(B)), m(A ⊃ B) = p(m(A), m(B)) + 1,

and
n(∀ti A) = 3p(i, n(A)) − 1, m(∀ti A) = m(A) + 1.

Proposition 1. The map N : F → N is a bijection.

Proof. It is clear that m(F) = N. For l ∈ N, let

Fl := {A | A ∈ F, m(A) = l}.

We shall prove, by induction on l, that the map n : Fl → N is a bijection.
It then follows that the maps (n,m) : F → N

2 and N (= p ◦ (n,m)) are also
bijective. Since

F1 := {(ti ε tj) | {i, j} ⊆ N},

for l = 1, the assertion follows from the properties of the map p. Let l > 1;
we prove that n(Fl) = N, the injectivety of n being proved by a similar
argument. Let k ∈ N; we have to find a formula A in F with n(A) = k. For
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k = 3k1 − 2, k1 ∈ N, one can find, by the inductive supposition, a (unique)
formula A with n(A) = k1, m(A) = l − 1, A ∈ F; then n(¬ A) = k. If k =
3k1−1, k1 ∈ N, let k1 = p(i, j) with {i, j} ⊆ N; by the inductive supposition,
there is a (unique) formula A in Fl−1 with n(A) = j. Then m(∀ti A) = l
and n(∀ti A) = k. Finally, for k = 3k1, k1 ∈ N, let l = p(i, j) + 1. By the
inductive supposition, there are (uniquely determined) formulae A1 and A2

such that

A1 ∈ Fi, A2 ∈ Fj, n(A1) = i′, n(A2) = j ′, p(i′, j ′) = k1;

then m(A ⊃ B) = l and n(A ⊃ B) = k. Thus n(Fl) = N, as claimed.

Notation. For A ∈ F and {x, y} ⊂ X , let [A]f and A[x|y] stand for the
set of the free variables of A and the formula obtained from A on replacing
each of the free occurences of the variable x in A by y.

Definition. Let A ∈ F; the variable y is free for x in A, if the variable x
does not occur in A in the scope of a quantifier ∀y.

There are five groups of axioms in P (cf. [12, pp. 69-70]):

A1 := {A ⊃ (B ⊃ A) | {A, B} ⊆ F};

A2 := {(A ⊃ (B ⊃ C)) ⊃ ((A ⊃ B) ⊃ (A ⊃ C)) | {A, B, C} ⊆ F};

A3 := {(¬ B ⊃ ¬ A) ⊃ ((¬ B ⊃ A) ⊃ B) | {A, B} ⊆ F};

A4 := {∀x (A ⊃ B) ⊃ (A ⊃ ∀x B) | {A, B} ⊆ F, x ∈ X \ [A]f};

A5 := {∀x A ⊃ A[x|y] | A ∈ F, {x, y} ⊆ X ,

the variable y is free for x in A}.

The set T of the theorems of P is defined inductively:
(B0) ∪5

j=1 Aj ⊆ T.
(B1) If {A, (A ⊃ B)} ⊆ T, then B ∈ T (”modus ponens”).
(B2) If A ∈ T, then ∀x A ∈ T (”generalisation”).
In what follows, we shall construct a polynomial F (t, ~x) in Z[t, ~x] such

that
N (T) = {a | a ∈ N, ∃ ~b (~b ∈ Z

L(~x) & F (a,~b) = 0)}.

Our first task is to give a Diophantine description of the predicate ”A is an
axiom of P”; in this section, we describe that predicate for the first three
groups of the axioms.
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Proposition 2. Let g1(u, ~x) :=

(u− p(x1, x2))
2 + (x1 − 3p(x3, 3p(x4, x3)))

2 + (x2 − p(x5, p(x6, x5) + 1) − 1)2

with ~x := (x1, . . . , x6). Then

N (A1) = {u | ∃ ~b (~b ∈ N
6 & g1(u,~b) = 0)}.

Proof. Let

C := (A ⊃ (B ⊃ A)), n(A) = x3, n(B) = x4, m(A) = x5, m(B) = x6.

Then n(B ⊃ A) = 3p(x4, x3) and m(B ⊃ A) = p(x6, x5) + 1. Since
n(C) = 3p(n(A), n(B ⊃ A)) and m(C) = p(m(A), m(B ⊃ A)) + 1, equa-
tion g1(u, ~x) = 0 asserts that N (C) = u. This proves the proposition.

Proposition 3. Let g2(u, ~x) :=

(u− p(x1, x2))
2 + (x1 − 3p(q1(~x), q2(~x)))

2 + (x2 − p(q3(~x), q4(~x)) − 1)2,

where

q1(~x) := 3p(x3, 3p(x4, x5)), q4(~x) := 1 + p(1 + p(x6, x7), 1 + p(x6, x8))

q2(~x) := 3p(p(x3, x4), 3p(x3, x5)), q3(~x) := 1 + p(x6, 1 + p(x7, x8)),

and ~x := (x1, . . . , x8). Then

N (A2) = {u | ∃ ~b (~b ∈ N
6 & g2(u,~b) = 0)}.

Proof. Let

D := ((A ⊃ (B ⊃ C)) ⊃ ((A ⊃ B) ⊃ (A ⊃ C))), n(D) = x1, m(D) = x2;

n(A) = x3, n(B) = x4, n(C) = x5, m(A) = x6, m(B) = x7, m(B) = x8.

An easy calculation shows that, in these notations, g2(u, ~x) = 0 if and only
if N (D) = u. This proves the proposition.

Proposition 4. Let g3(u, ~x) :=

(u− p(x1, x2))
2 + (x1 − 3p(q1(~x), q2(~x)))

2 + (x2 − p(q3(~x), q4(~x)) − 1)2,

where

q1(~x) := 3p(3x4 − 2, 3x3 − 2), q2(~x) := 3p(3p(3x4 − 2, x3), x4),

q3(~x) := 1 + p(x6 + 1, x5 + 1), q4(~x) := 1 + p(1 + p(x6 + 1, x5), x6),

and ~x := (x1, . . . , x6). Then

N (A3) = {u | ∃ ~b (~b ∈ N
6 & g3(u,~b) = 0)}.
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Proof. Let

C := ((¬ B ⊃ ¬ A) ⊃ ((¬ B ⊃ A) ⊃ B)), n(C) = x1, m(C) = x2;

n(A) = x3, n(B) = x4, m(A) = x5, m(B) = x6.

Then equation g3(u, ~x) = 0 is easily seen to assert that N (C) = u.
To give a Diophantine description of the sets of axioms N (A4) and N (A5),

we shall make use of the techniques developed in the works relating to the
tenth Hilbert problem, cf. [10] and references therein.

§3. On Diophantine coding.

In this section, following [2] (see also [10]), we state a few lemmata about
Diophantine coding.

Lemma 1. Let f(t, ~x) ∈ Z[t, ~x] with L(~x) = n and suppose that

S = {a | a ∈ N, ∃ ~b (~b ∈ N
n & f(a,~b) = 0)}.

Then

S = {a | a ∈ N, ∃ ~b (~b ∈ Z
4n & g(a,~b) = 0)},

where

g(t, ~y) := f(t, ~z), ~z := (z1, . . . , zn), zj :=
4

∑

i=1

y2
ji, 1 ≤ j ≤ n.

Proof. See, for instance, [10, pp. 4-6].

Lemma 2. Let f3(m,n, k; ~x) :=

(x2
1 − (x2

2 − 1)x2
3 − 1)2 + (x2

4 − (x2
2 − 1)x2

5 − 1)2 + (x2
6 − (x2

7 − 1)x2
8 − 1)2+

(x5 − x9x
2
3)

2 + (x7 − 1 − x10x3)
2 + (x7 − x2 − x11x4)

2 + (x6 − x1 − x12x4)
2+

(x8−k−4(x13−1)x3)
2+(x3−k−x14+1)2+(x17−n−x18)

2+(x17−k−x19)
2+

((x1 − x3(x2 − n) −m)2 + (x15 − 1)2(2x2n− n2 − 1)2)2+

(m+ x16 − 2x2 n + n2 + 1)2 + (x2
2 − (x2

17 − 1)(x17 − 1)2x2
20 − 1)2,

where ~x := (x1, . . . , x20). Then m = nk if and only if

∃ ~a (~a ∈ N
20 & f3(m,n, k;~a) = 0).
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Proof. See [2, pp. 244-248].

Lemma 3. Let f4(m,n, k; ~x) :=

f3(x1, 2, n; ~x(1)) + f3(x5, x4, n; ~x(2)) + f3(x6, x3, k; ~x
(3))+

(x1 + x2 − x3)
2 + (x4 − x3 − 1)2 + (x6x7 + x8 − x5)

2+

(x5 + x9 − (x7 + 1)x6)
2 + (x7 −m− (x10 − 1)x3)

2 + (m+ x11 − x3)
2,

where ~x = ~x(0) ∗ · · · ∗ ~x(3) with ~x(0) := (x1, . . . , x11), ~x
(1) := (x12, . . . , x31),

~x(2) := (x32, . . . , x51), ~x
(3) := (x52, . . . , x71). Then

m =
n!

(n− k)!k!

if and only if

∃ ~a (~a ∈ N
71 & f4(m,n, k;~a) = 0).

Proof. See [2, pp. 249-250].

Lemma 4. Let f2(m,n; ~x) :=

f3(x3, x1, x2; ~x
(1)) + f3(x4, x3, n; ~x(2)) + f3(x5, x4, n; ~x(3))+

(x1 − 2n− 1)2 + (x2 − n− 1)2 + (mx5 + x6 − x4)
2 + (x4 + x7 − (m+ 1)x5)

2,

where ~x = ~x(0) ∗ · · · ∗ ~x(3) with ~x(0) := (x1, . . . , x7), ~x
(1) := (x8, . . . , x27),

~x(2) := (x28, . . . , x47), ~x
(3) := (x48, . . . , x118). Then m = n! if and only if

∃ ~a (~a ∈ N
118 & f2(m,n;~a) = 0).

Proof. See [2, pp. 251-252].

Lemma 5. Let f1(m,n, a, b; ~x) :=

(x1−a−bm)2+(x3−bx2−1)2+(bx4−a−x3x5)
2+(m+x8−x3)

2+(x9−x4−n)2+

(m+x3x11 −x6x7x10)
2 + f2(x7, n; ~x(3))+ f3(x6, b, n; ~x(2))+ f4(x10, x9, n; ~x(4)),

where

~x = ~x(0) ∗ · · · ∗ ~x(4), ~x(0) := (x1, . . . , x11), ~x
(1) := (x12, . . . , x31),

~x(2) := (x32, . . . , x51), ~x
(3) := (x52, . . . , x169), ~x

(4) := (x170, . . . , x240).

Then

m =

n
∏

k=1

(a+ bk)

if and only if

∃ ~c (~c ∈ N
240 & f1(m,n, a, b;~c) = 0).
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Proof. See [2, p. 252].

Proposition 5. Let

σ(u, j, w; ~z) := (u− p(z1, z2))
2 + (w+ z3(1 + jz2)− z1)

2 + (w+ z4 − jz2 − 2)2

with ~z := (z1, . . . , z4). There is a function

S : N
2 → N,

satisfying the following conditions:

(i) w = S(j, u) if and only if ∃ ~b (~b ∈ N
4 & σ(u, j, w;~b) = 0);

(ii) ∀j, u (S(j, u) ≤ u);
(iii) if {ak | 1 ≤ k ≤ n} ⊆ N for some n in N, then there is a number u

in N such that ak = S(k, u) for 1 ≤ k ≤ n.

Proof. See [2, p. 237].

Proposition 6. Let P (u1, u2; ~y, ~z) ∈ Z[u1, u2; ~y, ~z], with L(~z) = l, and sup-

pose there is a polynomial R(u1, u2; ~y) in Z[u1, u2; ~y] such that

|P (n, j;~a,~b)| ≤ R(n, T ;~a)

for ~a ∈ N
L(~y), {n, j} ⊆ N, j ≤ n, ~b ∈ N

l, |~b| ≤ T and

R(c1, c2;~a) > max{c1, c2}

for {c1, c2} ⊆ N, ~a ∈ N
L(~y). Write, for brevity,

Hl(~x,~b) := f2(b5, b4; ~x
(2)) + f1(b5, n, 1, b6; ~x

(3)) + (b6 − b1b5 − 1)2+

(b2 − b6b7)
2 + (~x(4) − ~x(1) − ~β)2 +

l
∑

i=1

f1(b6x
(5)
i , b3, x

(4)
i , 1; ~x(5+i)),

where

~b := (b1, . . . , b7), ~β := (β1, . . . , βl) with βi = b3 + 1 for 1 ≤ i ≤ l,

~x = ~x(1) ∗ · · · ∗ ~x(5+l) with ~x(j) := (x
(j)
1 , . . . , x

(j)

L(~x(j))
),

L(~x(1)) = L(~x(4)) = L(~x(5)) = l, L(~x(2)) = 118,

L(~x(3)) = L(~x(5+i)) = 240 for 1 ≤ i ≤ l,

and

L(~x) =
∑

1≤i≤5+l

L(~x(i)) = 244l + 358.
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Then

(∀j ≤ n) ∃ ~c (~c ∈ N
l & P (n, j;~a,~c) = 0) ⇐⇒

∃ ~x,~b (~b ∈ N
7 & ~x ∈ N

L(~x) & (P (n, b1;~a, ~x
(1)) − b2)

2+

(R(n, b3;~a) − b4)
2 +Hl(~x,~b) = 0)) for ~a ∈ N

L(~y).

Proof. See [2, pp. 253-256].

§4. A few technical lemmata.

Lemma 6. The variable ti does not occur as a free variable in a formula ϕ
if and only if there is a sequence of formulae {ϕ1, . . . , ϕn} such that ϕn = ϕ
and, for every j in the interval 1 ≤ j ≤ n, one of the following conditions

holds true:

(i) ϕj := (tk ε tl) and i 6∈ {k, l},
(ii) ϕj := ∀ti ψ for some ψ in F,

(iii) ϕj := (ϕk ⊃ ϕl) with 1 ≤ k, l < n,
(iv) ϕj := ¬ϕk with 1 ≤ k < n,
(v) ϕj := ∀tν ϕk with ν ∈ N, 1 ≤ k < n.

Proof. Let m(ϕ) = 1 and suppose that ti is not a free variable of ϕ. Then
ϕ := (tk ε tl) with i 6∈ {k, l} and we may take n = 1, ϕ1 = ϕ. Ifm(ϕ) = 1 and
there is a sequence {ϕ1, . . . , ϕn} as above, then ϕn must satisfy condition (i)
(since m(ϕn) = m(ϕ) = 1) and therefore ti is not a free variable of ϕ (= ϕn).
Let m(ϕ) = l, l > 1 and suppose the assertion be true for any formula ϕ′

with m(ϕ′) < l. If ϕn satisfies condition (ii), then ti is not a free variable of
ϕ (= ϕn). If ϕn satisfies one of the conditions (iii), (iv), (v), then ti is not a
free variable of either ϕk or ϕl, by the inductive supposition, and therefore ti
is not a free variable of ϕ. Suppose that ti is not a free variable of ϕ. Since
m(ϕ) > 1, the formula ϕ must contain one of the logical connectives ¬, ⊃, ∀.
If ϕ ∈ {¬ ψ, ∀tν ψ} and ν 6= i, then ti is not a free variable of ψ, therefore, by
the inductive supposition, there is a sequence of formulae {ϕ1, . . . , ϕµ} with
ϕµ := ψ and we may let n = µ+1, ϕn = ϕ. If ϕ := (ψ1 ⊃ ψ2), then ti is not a
free variable of either ψ1, or of ψ2, and, by the inductive supposition, there are
two sequences of formulae {ϕ1, . . . , ϕµ} and {ϕ′

1, . . . , ϕ
′
ν} with ϕµ := ψ1 and

ϕν := ψ2; in this case, the sequence of formulae {ϕ1, . . . , ϕµ, ϕ
′
1, . . . , ϕ

′
ν, ϕ}

satisfies the conditions of the lemma.

Lemma 7. Let {r1, r2} ⊆ N and {ϕ, ψ} ⊆ F. Then the variable tr2 is free

for tr1 in ϕ and ψ := ϕ[tr1|tr2 ] if and only if there are three sequences

{ϕ1, . . . , ϕn}, {ψ1, . . . , ψn}, {d1, . . . , dn}
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such that

{ϕj, ψj} ⊆ F & dj ∈ {1, 2} for 1 ≤ j ≤ n, ϕn = ϕ, ψn = ψ,

and, for every j in the interval 1 ≤ j ≤ n, one of the following conditions

holds true:

1) ϕj := (tr3 ε tr4) with r1 6∈ {r3, r4}, dj = 2, ψj := ϕj;

2) ϕj := (tr3 ε tr4) with r1 ∈ {r3, r4}, dj = 1, ψj := ϕj[tr1|tr2 ];
3) ϕj := ¬ϕk, dj = dk, ψj := ¬ψk with 1 ≤ k < j,
4) ϕj := (ϕk ⊃ ϕl), ψj := (ψk ⊃ ψl), dj = (dk − 1)(dl − 1) + 1 with

1 ≤ k, l < j;
5) ϕj := ∀tr3 ϕk with r3 6∈ {r1, r2}, ψj := ∀tr3 ϕk, dj = dk, 1 ≤ k < j;
6) ϕj := ∀tr1 ϕk with 1 ≤ k < j, ψj := ϕj, dj = 2;
7) ϕj := ∀tr2 ϕk with r1 6= r2, ψj := ϕj, dj = dk = 2, 1 ≤ k < j.
Moreover,

dj =

{

1 if tr1 ∈ [ϕj]f
2 if tr1 6∈ [ϕj]f

for 1 ≤ j ≤ n.

Proof. Let m(ϕ) = 1, then ϕ := (tr3 ε tr4) with {r3, r4} ⊆ N, so that the
variable tr2 is free for tr1 in ϕ. Let ψ := ϕ[tr1 |tr2], n = 1, and

d1 =

{

1 if r1 ∈ {r3, r4}
2 if r1 6∈ {r3, r4};

the assertion of the lemma is now obvious. Let now m(ϕ) = l, l > 1
and suppose the assertion be true for any formula ϕ′ with m(ϕ′) < l. If
ϕj := ∀tr1 ϕ

′ with ϕ′ ∈ F, then tr1 6∈ [ϕ]f and the assertion is obvious; if
ϕj := ∀tr2 ϕ

′ with ϕ′ ∈ F, then tr2 is free for tr1 in ϕ if and only if tr1 6∈ [ϕ′]f
(and therefore tr1 6∈ [ϕ]f) and the assertion is again obvious. Finally, if

ϕ ∈ {¬ ϕ′, ∀tr3 ϕ
′, ϕ′ ⊃ ϕ′′}, with {ϕ′, ϕ′′} ⊆ F, r3 6∈ {r1, r2},

then one can deduce the assertion from the inductive supposition arguing as
in the proof of Lemma 6.

Notation. Let

h0(~j; ~x) := (j2 − j1 +x1)
2 +(j3 − j1 +x2)

2 with ~j := (j1, j2, j3), ~x := (x1, x2).

It is clear that

∃ ~x (~x ∈ N
2 & h0(~j, ~x) = 0) ⇔ max{j2, j3} < j1.

The following lemma is a Diophantine reformulation of Lemma 6.
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Lemma 8. Let Ci := {A | A ∈ F, ti /∈ [A]f}. Then

N (Ci) = {v | B4(i, v)},

where B4(i, v) :=

∃ w, n ({w, n} ⊆ N & (∀j1 ≤ n) ∃ ~y(~y ∈ N
35 & (Q4(n, j1; i, v, w; ~y) = 0)))

with

Q4(n, j1; i, v, w; ~y) :=
3

∑

ν=1

σ(w, jν, xν; ~z
(ν)) + σ(w, n, v; ~z(4))+

h0(~j; x4, x5) +
3

∑

ν=1

(xν − p(x4+2ν , x5+2ν))
2 +

5
∏

ν=1

qν(i, ~x);

q1(i, ~x) := (x7−1)2+(x6−p(x12, x13))
2+((x12−i)

2−x14)
2+((x13−i)

2−x15)
2,

q2(i, ~x) := (x6 − 3p(i, x16) + 1)2 + (x7 − x17 − 1)2,

q3(i, ~x) := (x6 − 3p(x8, x10))
2 + (x7 − p(x9, x11) − 1)2,

q4(i, ~x) := (x6 − 3x8 + 2)2 + (x7 − x9 − 1)2,

q5(i, ~x) := (x6 − 3p(x12, x8) + 1)2 + (x7 − x9 − 1)2;

~j := (j1, j2, j3), ~x := (x1, . . . , x17), ~y := (j2, j3) ∗ ~x ∗ ~z,

~z := ~z(1) ∗ · · · ∗ ~z(4), and ~z(ν) := (z
(ν)
1 , . . . , z

(ν)
4 ) for 1 ≤ ν ≤ 4, so that

L(~y) = 35.

Proof. In view of Proposition 2, the formula

∃ w, ~z(w ∈ N & ~z ∈ N
16 & (

3
∑

ν=1

σ(w, jν, xν; ~z
(ν)) + σ(w, n, v; ~z(4)) = 0))

asserts that there is a sequence of natural numbers {a1, . . . , aN}, satisfying
the following conditions:

{a1, . . . , aN} ⊆ N; ajν
= xν for 1 ≤ ν ≤ 3, an = v,

while the formula ∃ ~x(h0(~j; x4, x5) = 0) asserts that max{j2, j3} < j1. Let
{ϕ1, . . . , ϕn} be a sequence of formulae in F with N (ϕν) = aν for
1 ≤ ν ≤ n. If

3
∑

ν=1

(xν − p(x4+2ν , x5+2ν))
2 = 0,

11



then n(ϕjν
) = x4+2ν and m(ϕjν

) = x5+2ν for 1 ≤ ν ≤ 3. It follows now
that q1(i, ~x) = 0 if and only if m(ϕj1) = 1, ϕj1 := (t12 ε t13) and i 6∈
{12, 13}; q2(i, ~x) = 0 if and only if ϕj1 := ∀tiψ for some ψ in F; q3(i, ~x) = 0
if and only if ϕj1 := (ϕj2 ⊃ ϕj3) with 1 ≤ j2, j3 < j1; q4(i, ~x) = 0 if and only
if ϕj1 := ¬ϕj2 with 1 ≤ j2 < j1; q5(i, ~x) = 0 if and only if ϕj1 := ∀tνϕj2 with
ν ∈ N, 1 ≤ j2 < j1. Thus, in view of Lemma 6, the formula B4(i, v) asserts
that the variable ti does not occur as a free variable in the formula N −1(v).

Corollary 1. Let

A4(u) := ∃ i, v ({i, v} ⊆ N & B4(i, v) & ∃ ~y(~y ∈ N
4 & (h4(u; i, v; ~y) = 0))),

where

h4(u; i, v; ~y) := (u− p(q7(i, ~y), q8(~y)))
2 + (v − p(y3, y4))

2,

q7(i, ~y) := 3p(3p(i, 3p(y1, y3)) − 1, 3p(y1, 3p(i, y3) − 1)),

q8(~y) := p(p(y2, y4) + 2, p(y2, y4 + 1)) + 1; ~y := (y1, . . . , y4).

Then

N (A4) = {u | A4(u)}.

Proof. Let
C := ∀ti (A ⊃ B) ⊃ (A ⊃ ∀ti B)

and let
n(A) = y1, m(A) = y2, n(B) = y3, m(B) = y4.

An easy calculation shows then that

N (C) = p(q7(i, ~y), q8(~y)) and N (B) = p(y3, y4).

The assertion follows now from Lemma 8.
The following lemma is a Diophantine reformulation of Lemma 7.

Lemma 9. Let

C(~r) :=

{~v | v1 = N (ϕ), v2 = N (ψ), ϕ ∈ F, ψ := ϕ[tr1 |tr2], tr2 is free for tr1 in ϕ},

where ~r := (r1, r2) and ~v := (v1, v2). Then

C(~r) = {~v | ~v ∈ N
2 & B5(~v, ~r)},

where B5(~v, ~r) := ∃ ~w, n (~w ∈ N
3 & n ∈ N &

(∀j1 ≤ n) ∃ ~y(~y ∈ N
72 & (Q5(n, j1;~v, ~r, ~w; ~y) = 0))

12



with

Q5(n, j1;~v, ~r, ~w; ~y) :=
∑

1≤i,ν≤3

σ(wi, jν, x3(i−1)+ν , ~z
(ν)
i ) +

∑

i∈{1,2}

σ(wi, n, vi, ~z
(4)
i )+

h0(~j; x13, x14) +

6
∑

i=1

(xi − p(xi1, xi2))
2 +

9
∑

i=7

(xi − 1)2(xi − 2)2 +

7
∏

i=1

qi(~r, ~x),

where

q1(~r, ~x) :=

(x12−1)2+(x7−2)2+(x4−x1)
2+(x11−p(r3, r4))

2+((r3−r1)
2(r4−r1)

2−x10)
2,

q2(~r, ~x) := q′2(~r, ~x)q
′′
2 (~r, ~x)

with

q′2(~r, ~x) := (x12−1)2+(x7−1)2+(x42−1)2+(x11−p(r1, r4))
2+(x41−p(r2, r4))

2

and

q′′2 (~r, ~x) := (x12−1)2+(x7−1)2+(x42−1)2+(x11−p(r3, r1))
2+(x41−p(r3, r2))

2,

q3(~r, ~x) := (x11 − 3x21 + 2)2 + (x12 − x22 − 1)2 + (x7 − x8)
2+

(x41 − 3x51 + 2)2 + (x42 − x52 − 1)2,

q4(~r, ~x) := (x7 − (x8 − 1)(x9 − 1) − 1)2 + (x11 − 3p(x21, x31))
2+

(x12 − p(x22, x32) − 1)2 + (x41 − 3p(x51, x61))
2 + (x42 − 3p(x52, x62) − 1)2,

q5(~r, ~x) := (x11 − 3p(r3, x21) + 1)2 + (x12 − x22 − 1)2 + (x7 − x8)
2+

(x41 − 3p(r3, x51) + 1)2 + (x42 − x52 − 1)2 + ((r3 − r1)
2(r3 − r2)

2 − x10)
2,

q6(~r, ~x) := (x11 − 3p(r1, x21) + 1)2 + (x12 − x22 − 1)2 + (x7 − 2)2 + (x4 − x1)
2,

q7(~r, ~x) := (x11 − 3p(r2, x21) + 1)2 + (x12 − x22 − 1)2 + (x7 − 2)2+

(x8 − 2)2 + (x4 − x1)
2 + ((r2 − r1)

2 − x10)
2;

~w := (w1, w2, w3), ~j := (j1, j2, j3), ~z
(ν) := ~z

(ν)
1 ∗ ~z(ν)

2 ∗ ~z(ν)
3 for 1 ≤ ν ≤ 3,

~z(4) := ~z
(4)
1 ∗~z(4)

2 , with L(~z
(ν)
i ) = 4 for 1 ≤ i ≤ 3, 1 ≤ ν ≤ 4, ~z := ~z(1)∗· · ·∗~z(4);

~x := (r3, r4) ∗ (x1, . . . , x14) ∗ (x21, x22, . . . , x61, x62), ~y := (j2, j3) ∗ ~x ∗ ~z,

so that L(~y) = 72.

13



Proof. In view of Proposition 2, the formula

∃ ~w, ~z (~w ∈ N
3 & ~z ∈ N

44 &

(
∑

1≤i,ν≤3

σ(wi, jν , x3(i−1)+ν , ~z
(ν)
i ) +

∑

i∈{1,2}

σ(wi, n, vi, ~z
(4)
i ) = 0))

asserts that there are three sequences

{ϕ1, . . . , ϕn}, {ψ1, . . . , ψn}, {d1, . . . , dn}

such that

N (ϕjν
) = xν , N (ψjν

) = xν+3, djν
= xν+6 for 1 ≤ ν ≤ 3,

N (ϕn) = v1, N (ψn) = v2

and the formula

∃ x13, x14({x13, x14} ⊆ N & (h0(~j; x13, x14) = 0))

asserts that max{j2, j3} < j1. Under the assumption

6
∑

i=1

(xi − p(xi1, xi2))
2 = 0,

the formula
∃ ~x(~x ∈ N

34 & qi(~r, ~x) = 0)

is equivalent to the condition i), 1 ≤ i ≤ 7, in Lemma 7. On the other hand,
equation

9
∑

i=7

(xi − 1)2(xi − 2)2 = 0

asserts that dj ∈ {1, 2}, for every j in the interval 1 ≤ j ≤ n. Lemma 9
follows now from Lemma 7.

Corollary 2. Let

A5(u) := ∃ ~v, ~r ({~v, ~r} ⊆ N
2 & B5(~v, ~r) & ∃ ~s(~s ∈ N

4 & (h5(u;~v, ~r, ~s) = 0))),

where

h5(u;~v, ~r, ~s) := (u−p(q9(~r, ~s), q10(~s)))
2+(v1−p(s11, s12))

2+(v2−p(s21, s22))
2,

q9(~r, ~s) := 3p(3p(r1, s11) − 1, s21), q10(~s) := p(s12 + 1, s22),

and ~s := (s11, s12, s21, s22). Then

N (A5) = {u | A5(u)}.

14



Proof. Let C := (∀tr1 D ⊃ D[tr1 |tr2]) and let

N (D) = v1 = p(s11, s12), N (D[tr1|tr2]) = v2 = p(s21, s22).

An easy calculation shows then that N (C) = p(q9(~r, ~s), q10(~s)). The assertion
follows now from Lemma 9.

§5. Elimination of universal quantifiers.

It follows from Proposition 6 that formulae A4(u) and A5(u) define Diophan-
tine predicates. In this section, we shall explicitly write down polynomials
g4(u, ~x) and g5(u, ~x) such that

{u | Aν(u)} = {u | ∃ ~b (~b ∈ N
L(~x) & gν(u,~b) = 0)}

for ν = 4, 5.

Lemma 10. Let

R4(z1, z2; i, v, w) := 8w2 + 4v2 + 100z4
1 + 1010(i16 + z28

2 ).

Then

Q4(n, j1; i, v, w; ~y) ≤ R4(n, T ; i, v, w) for j1 ≤ n, |~y| ≤ T,

~y ∈ N
35, {i, v, w, n, j1} ⊆ N.

Proof. Under the conditions

j1 ≤ n, |~y| ≤ T, ~y ∈ N
35, {i, v, w, n, j1} ⊆ N,

it follows that

h0(~j; x4, x5) ≤ 16T 2 + 4n2,

3
∑

ν=1

(xν − p(x4+2ν , x5+2ν))
2 ≤ 50T 4,

σ(w, jν, xν, ~z
(ν)) ≤ 2w2 +60T 6 for ν = 2, 3, σ(w, j1, x1, ~z

(1)) ≤ 2w2 +72T 4n2,

and σ(w, n, v, ~z(4)) ≤ 2w2 + 4v2 + 70T 4n2. Moreover, under the same condi-
tions, we have

q1(i, ~x) ≤ 16i4 + 60T 4, q2(i, ~x) ≤ 4i4 + 270T 4, q3(i, ~x) ≤ 125T 4,

q4(i, ~x) ≤ 45T 2, and q5(i, ~x) ≤ 130T 4. The assertion of the lemma follows
from these estimates and the definition of the polynomial Q4(n, j1; i, v, w; ~y)
in Lemma 8.
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Lemma 11. Let

R5(z1, z2;~v, ~r, ~w) := 8~w2 +4~v2 +2 ·104z4
1 +3 ·1026z64

2 +5 ·1017r64
1 +5 ·1017r64

2 ).

Then

Q5(n, j1;~v, ~r, ~w; ~y) ≤ R5(n, T ;~v, ~r, ~w) for j1 ≤ n, |~y| ≤ T,

~y ∈ N
72, {n, j1} ⊆ N, {~v, ~r} ⊆ N

2, ~w ∈ N
3.

Proof. Under the conditions

j1 ≤ n, |~y| ≤ T, ~y ∈ N
72, {n, j1} ⊆ N, {~v, ~r} ⊆ N

2, ~w ∈ N
3,

it follows that h0(~j; x13, x14) ≤ 16T 2 + 4n2,

6
∑

i=1

(xi − p(xi1, xi2))
2 +

9
∑

i=7

(xi − 1)2(xi − 2)2 ≤ 100T 4,

∑

1≤i≤3

σ(wi, jν, x3(i−1)+ν , ~z
(ν)
i ) ≤ 2~w2 + 180T 6 for ν = 2, 3,

∑

1≤i≤3

σ(wi, j1, x3i−2, ~z
(1)
i ) ≤ 2~w2 + 108T 8 + 108n4,

and
∑

i∈{1,2}

σ(wi, n, vi, ~z
(4)
i ) ≤ 2~w2 + 4~v2 + 70T 8 + 70n4.

Moreover, under the same conditions, we have q1(~r, ~x) ≤ 200T 8 + 200r8
1,

q′2(~r, ~x) ≤ 40T 4 + 2r4
1 + 2r4

2, q
′′
2(~r, ~x) ≤ 20T 4 + 8r4

1 + 8r4
2,

q3(~r, ~x) ≤ 100T 2, q4(~r, ~x) ≤ 250T 4, q5(~r, ~x) ≤ 500T 8 + 50r8
1 + 50r8

2,

q6(~r, ~x) ≤ 150T 4 + 20r4
1, q7(~r, ~x) ≤ 150T 4 + 4r4

1 + 4r4
2.

The assertion of the lemma follows from these estimates and the definition
of the polynomial Q5(n, j1;~v, ~r, ~w; ~y) in Lemma 9.

Notation. Let

P4(n, j1; i, v, w; ~y) := 28Q4(n, j1; i, v, w; ~y),

R′
4(z1, z2; i, v, w) := 28R4(z1, z2; i, v, w),

P5(n, j1;~v, ~r, ~w; ~y) := 214Q5(n, j1;~v, ~r, ~w; ~y),
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R′
5(z1, z2;~v, ~r, ~w) := 214R5(z1, z2;~v, ~r, ~w).

Since 2p(x, y) ∈ Z[x, y], it follows that

P4(n, j1; i, v, w; ~y) ∈ Z[n, j1; i, v, w; ~y]

and
P5(n, j1;~v, ~r, ~w; ~y) ∈ Z[n, j1;~v, ~r, ~w; ~y].

Therefore one concludes as follows.

Proposition 7. Let g4(u, ~z
(1)) :=

h4(u; i, v, ~y)+H35(~x,~b)+(P4(n, b1; i, v, w; ~x(1))−b2)
2+(R′

4(n, b3; i, v, w)−b4)
2,

where ~z(1) = ~x ∗~b ∗ ~y ∗ (i, v, w, n), L(~z(1)) = 8913; then

N (A4) = {u | ∃ ~b (~b ∈ N
9013 & g4(u,~b) = 0)}.

Let g5(u, ~z
(2)) :=

h5(u;~v, ~r, ~s)+H72(~x,~b)+(P5(n, b1;~v, ~r, ~w; ~x(1))−b2)
2+(R′

5(n, b3;~v, ~r, ~w)−b4)
2,

where ~z(2) = ~x ∗~b ∗ ~v ∗ ~r ∗ ~s ∗ ~w ∗ (n), L(~z(2)) = 17945; then

N (A5) = {u | ∃ ~b (~b ∈ N
17945 & g5(u,~b) = 0)}.

Proof. In view of the estimates obtained in Lemmata 10 and 11, the asser-
tion follows from Corollary 1, Corollary 2, and Proposition 6.

§6. The main theorem.

Proposition 8. Let

G1(~u; ~x) := (u1 − p(x1, x2))
2 + (u2 − p(x3, x4))

2+

(u3 − p(x5, x6))
2 + (x5 − 3p(x3, x1))

2 + (x6 − p(x4, x2) − 1)2,

where ~u := (u1, u2, u3), ~x := (x1, . . . , x6). A formula A1 follows from formu-

lae A2 and A3 by the rule (B1) if and only if

∃ ~b (~b ∈ N
6 & G1(~u;~b) = 0)
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with ui := N (Ai) for 1 ≤ i ≤ 3. Let

G2(~u; r, ~x) := (u1 − p(x3, x2 + 1))2 + (u2 − p(x1, x2))
2 + (x3 − 3p(r, x1)− 1)2,

where ~u := (u1, u2), ~x := (x1, x2, x3). A formula A1 follows from a formula

A2 by the rule (B2) if and only if

∃ ~b, r (~b ∈ N
3 & r ∈ N & G2(~u; r,~b) = 0)

with ui := N (Ai) for i = 1, 2.

Proof. The assertion follows from the definition of the inference rules (B1)
and (B2) since the formula

∃ ~b (~b ∈ N
6 & G1(~u;~b) = 0)

asserts that A3 := A2 ⊃ A1 and the formula

∃ ~b, r (~b ∈ N
3 & r ∈ N & G2(~u; r,~b) = 0)

asserts that A2 := ∀tr A1.
The following lemma is a Diophantine reformulation of the definition of

the set T of the theorems of P.

Lemma 12. Let

Q(n, j1; v, u; ~w) :=
3

∑

i=1

σ(u, jν, xi; ~z
(i)) + σ(u, n, v; ~z(4))+

h0(~j; x4, x5) +G1(x1, x2, x3; ~y
(6))G2(x1, x2; ~y

(7))

5
∏

i=1

gi(x1, ~y
(i)),

where

~j := (j1, j2, j3), ~x := (x1, . . . , x5), ~w := (j2, j3) ∗ ~x ∗ ~z ∗ ~y, ~z := ~z(1) ∗ · · · ∗ ~z(4),

~y(5) = ~y := (y1, . . . , y17945), ~y
(6) = ~y(3) = ~y(1) := (y1, . . . , y6),

~y(2) := (y1, . . . , y8), ~y
(4) := (y1, . . . , y9013), ~y

(7) := (y1, . . . , y4),

L(~z(i)) = 4 for 1 ≤ i ≤ 4, so that L(~w) = 17968. Then

N (T) = {v | ∃ u, n ({u, n} ⊆ N & A(v; u, n))},

where

A(v; u, n) := (∀j1 ≤ n) ∃ ~w(Q(n, j1; v, u; ~w) = 0).
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Proof. The formula ∃ u, n ({u, n} ⊆ N & A(v; u, n)) can be easily seen to
assert that v ∈ N (T).

Lemma 13. Let

R(z1, z2; v, u) := 8u2 + 4v2 + 104z4
1 + 10133z232

2 .

Then

Q(n, j1; v, u; ~w) ≤ R(n, T ; v, u) for j1 ≤ n, |~w| ≤ T, ~w ∈ N
l, l := 17968,

with {v, u, n, j1} ⊆ N.

Proof. Under the conditions

j1 ≤ n, |~w| ≤ T, ~w ∈ N
l, {v, u, n, j1} ⊆ N,

it follows that
3

∑

i=1

σ(u, jν, xi; ~z
(i))+σ(u, n, v; ~z(4))+h0(~j; x4, x5) ≤ 8u2 +4v2 +104n4 +104T 8

and

G1(x1, x2, x3; ~y
(6))G2(x1, x2; ~y

(7))g1(x1, ~y
(1))g2(x1, ~y

(2))g3(x1, ~y
(3))

≤ 2 · 1042T 48.

Moreover, one can show that

g4(x1, ~y
(4)) ≤ 1027T 56 and g5(x1, ~y

(5)) ≤ 1063T 128.

The assertion of the lemma follows from these estimates and the definition
of the polynomial Q(n, j1; v, u; ~w).

Notation. Let

P (n, j1; v, u; ~w) := 282Q(n, j1; v, u; ~w) and R′(z1, z2; v, u) := 282R(z1, z2; v, u).

Theorem 1. In notations of Proposition 6, let

F (v, ~z) := (P (n, b1; v, u; ~x
(1)) − b2)

2 + (R′(n, b3; v, u) − b4)
2 +Hl(~x,~b)

with l := 17968 and ~z := (u, n) ∗ ~x, so that L(~z) = 244l + 360 = 4384552.
Then

N (T) = {a | a ∈ N, ∃ ~b (~b ∈ Z
L(~z) & F (a,~b) = 0)}.

Proof. As in Section 5, one can show that P (n, j1; v, u; ~w) ∈ Z[n, j1; v, u; ~w].
Therefore, in view of Lemma 13, the assertion follows from Proposition 6 and
Lemma 12.
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§7. Concluding remarks.

In accordance with Lemma 1, let f(v,~t) := F (v, ~z), where ~z := (z1, . . . , zn),
zj :=

∑4
i=1 t

2
ji for 1 ≤ j ≤ n, ~t := (t11, . . . , t14, . . . , tn1, . . . , tn4), n := 4384308.

Then
N (T) = {a | a ∈ N, ∃ ~b (~b ∈ Z

4n & f(a,~b) = 0)}. (2)

The universal polynomial f(v,~t), constructed in this paper, is rather com-
plicated, compared to the ”combinatorially” universal polynomials of Yu.V.
Matiyasevich and J.P. Jones, [6], [10, p. 70]; a somewhat more simple univer-
sal polynomial will be found in the forthcoming work [1]. It is an interesting
unsolved problem to construct substantially more simple polynomials, satis-
fying condition (2).

Acknowledgement. We are indebted to Professor Yu.V. Matiyasevich for
a private communication [11], relating to this work.
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