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Introduction

Schur–Weyl duality philosophy in the Hecke algebra setting

In this monograph we consider a phenomenon which occurs in the study of certain classes and categories of
representations of semisimple Lie algebras, groups of Lie type, and the related quantum groups. This phenomenon
is similar to the classical Schur–Weyl duality. However, the relevant classes of representations are quite different
from the finite-dimensional irreducible representations of the general linear group or, more generally, of complex
semisimple Lie groups which appear in the Schur–Weyl setting.

All examples of the above mentioned type are realizations of the following quite general construction a homo-
logical version of which was suggested in [109] (in fact, in the quantum group case the construction presented below
requires some technical modifications; we shall not discuss them in the introduction). Let A be an associative
algebra over a unital ring k, B ⊂ A a subalgebra with a character χ : B → k. Denote by kχ the corresponding
rank one representation of B. Let Qχ = A⊗B kχ be the induced representation of A.

Let Hk(A,B, χ) = EndA(Qχ)opp be the algebra of A–endomorphisms of Qχ with the opposite multiplication.
One says that the algebra Hk(A,B, χ) is obtained from A by a quantum constrained reduction with respect to the
subalgebra B. Hk(A,B, χ) is an algebra of Hecke type. Indeed, if A is the group algebra of a Chevalley group over
a finite field, B the group algebra of a Borel subgroup in it, and χ is the trivial complex representation of the Borel
subgroup one obtains the Iwahori–Hecke algebra this way (see [56]).

For any representation V of A the algebra Hk(A,B, χ) naturally acts in the space

Vχ = HomA(Qχ, V ) ' HomB(kχ, V )

by compositions of homomorphisms and for any Hk(A,B, χ)–module W Qχ ⊗Hk(A,B,χ) W is a left A–module. Let
Hk(A,B, χ) − mod be the category of left Hk(A,B, χ)–modules and A − modχB the category of left A–modules
of the form Qχ ⊗Hk(A,B,χ) W , where W ∈ Hk(A,B, χ) − mod, with morphisms induced by morphisms of left
Hk(A,B, χ)–modules. The point is that in many important examples A − modχB is a full subcategory in the
category of left A–modules, and the functors HomA(Qχ, ·) : A−modχB → Hk(A,B, χ)−mod and Qχ⊗Hk(A,B,χ) · :
Hk(A,B, χ)−mod→ A−modχB yield mutually inverse Schur–Weyl type equivalences of the categories,

A−modχB ' Hk(A,B, χ)−mod. (1)

In these cases for W ∈ Hk(A,B, χ)−mod one has

(Qχ ⊗Hk(A,B,χ) W )χ = HomA(Qχ, Qχ ⊗Hk(A,B,χ) W ) ' HomB(kχ, Qχ ⊗Hk(A,B,χ) W ) 'W,

and for W,W ′ ∈ Hk(A,B, χ)−mod by the formula above

HomA(Qχ ⊗Hk(A,B,χ) W
′, Qχ ⊗Hk(A,B,χ) W ) ' HomHk(A,B,χ)(W

′,HomA(Qχ, Qχ ⊗Hk(A,B,χ) W )) '

= HomHk(A,B,χ)(W
′,W ).

At first sight the category A−modχB looks a bit exotic. But it turns out that in many situations it has alternative
descriptions in terms of the algebra A, its subalgebra B and the character χ only, and actually such categories and
the related algebras of Hecke type played a very important, if not central, role in representation theory for at least
last sixty years.

An important example of equivalences of type (1) was considered in [72]. In this paper Kostant showed that
algebraic analogues of the principal series representations, called irreducible Whittaker modules, for a complex
semisimple Lie algebra g are in one–to–one correspondence with the one–dimensional representations of the center
Z(U(g)) of the enveloping algebra U(g)
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In the situation considered in [72] the algebra Z(U(g)) is isomorphic to Hk(A,B, χ) with A = U(g), B = U(n−),
where n− is a nilradical of g, and χ being a non–singular character of U(n−), i.e. it does not vanish on all simple
root vectors in n−. The category A −modχB in this case can be described as the category of g–modules on which
x− χ(x) acts locally nilpotently for any x ∈ n−.

This correspondence was generalized in [89] and in the Appendix to [97] to a more general categorical setting
and the categorical equivalence established in the Appendix to [97] is called the Skryabin equivalence.

Similar equivalences were obtained in [97] in the case of semisimple Lie algebras over fields of prime characteristic
and in [116] in case of quantum groups associated to complex semisimple Lie algebras for generic values of the
deformation parameter. Various approaches to the proofs of the above mentioned statements have been developed
in [42, 120].

An analogous construction appears also in the case of finite groups of Lie type (see [19], Chapter 10) and
of finite Chevalley groups (see [63, 64]). In the latter case the corresponding modules Qχ are called generalized
Gelfand–Graev representations.

Note that in general the problem of classification of Hk(A,B, χ)–modules is usually very difficult. Sometimes
it is easier to classify irreducible objects in the category A−modχB and then to translate the result to the category
Hk(A,B, χ)−mod (see [76, 77] for the case of algebras Hk(A,B, χ) considered in [97]).

A strategy for establishing Schur–Weyl type equivalences in the Hecke algebra setting
for Lie algebras and quantum groups, and its relation to Zhelobenko operators

In all cases considered in [72, 89, 97, 116] the algebras A and B, the characters χ and the appropriate categories
A − modχB and Hk(A,B, χ) − mod of representations of A and of Hk(A,B, χ) are relatively easy to define. It is
much more difficult to obtain alternative descriptions of the category A −modχB . However, one should note that
the approach to this problem in all papers mentioned above is slightly different: all those papers start with the
description of a category of A–modules in intrinsic terms using the algebra A, its subalgebra B and the character
χ. And then one proves that this category is equivalent to the category Hk(A,B, χ)−mod, the equivalence being
established using the functors HomA(Qχ, ·) and Qχ ⊗Hk(A,B,χ) ·. Finally one deduces that this category actually
coincides with A−modχB .

In the Lie algebra case the most simple proofs of statements of this kind were proposed in the Appendix to
[97] in the zero characteristic case and in [120] in the prime characteristic case. But the phenomenon behind these
proofs is already manifest in [72]. Namely, in the case of Lie algebras over fields of zero characteristic one always
has A = U(g) and B = U(m) for some reductive Lie algebra g and a nilpotent Lie subalgebra m ⊂ g, and the
above mentioned phenomenon amounts to introducing a second U(m)–module structure on Qχ by tensoring with
the one–dimensional representation k−χ and to demonstrating that for k = C a certain “classical limit” of the
U(m)–module Qχ ⊗ k−χ is isomorphic to the algebra of regular functions C[C] on a closed algebraic variety C, and
the “classical limit” of the U(m)–action on Qχ⊗k−χ is induced by a free action of the complex unipotent algebraic
group M corresponding to the Lie algebra m on C. The “classical limits” here are understood in the sense of taking
associate graded objects with respect to suitable filtrations.

The action
M × C → C

has a global cross-section Σ ⊂ C, called a Slodowy slice, so that the action map

M × Σ→ C (2)

is an isomorphism of varieties, and
C[C] ' C[Σ]⊗ C[M ]. (3)

The space W0 = C[Σ] ' C[C]M can be regarded as a “classical limit” of Hk(A,B, χ) which is called a W–algebra
in this case. We can also write C[C] ' W0[M ], where W0[M ] is the algebra of regular functions on M with values
in W0. In fact W0 carries the natural structure of a Poisson algebra. It is called a Poisson W–algebra.

Let A−modχB be the category of left A–modules V for which the U(m)–action on V ⊗k−χ is locally nilpotent.
In the Appendix to [97] it is shown that if one equips V ∈ A − modχB with a second U(m)–module structure by
tensoring with k−χ then, as a U(m)–module, V ⊗ k−χ is isomorphic to homk(U(m), Vχ),

V ⊗ k−χ ' homk(U(m), Vχ) ' Vχ[M ], (4)

where homk stands for the space of homomorphisms vanishing on some power of the augmentation ideal of U(m),
Vχ = HomU(m)(kχ, V ) is called the space of Whittaker vectors in V , and, as above, the latter isomorphism holds
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if k = C. In the Appendix to [97] it is shown that isomorphisms (4) directly imply an equivalence between the
category of left A–modules V for which the U(m)–action on V ⊗ k−χ is locally nilpotent and the corresponding
category A−modχB introduced before formula (1).

Isomorphisms of type (2) occur in the quantum group setting as well (see [113, 114, 116]), and the same idea
is applied in [116] to establish similar categorical equivalences in the quantum group case for generic values of the
deformation parameter.

In [115, 119] it was observed that an isomorphism of type (2) gives rise to a natural projection operator
Π : C[Σ]→ C[C]M ' C[Σ] = W0. Namely, according to (2) any x ∈ C can be uniquely represented in the form

x = n(x) ◦ σ(x), n(x) ∈M,σ(x) ∈ Σ. (5)

If for f ∈ C[C] we define Πf ∈ C[C] by

(Πf)(x) = f(n−1(x) ◦ x) = f(σ(x)) (6)

then Πf is an M–invariant function, and any M–invariant regular function on C can be obtained this way. Moreover,
by the definition Π2 = Π, i.e. Π is a projection onto C[C]M .

In the quantum group setting considered in [113, 114, 116] the “classical limiting” variety C is always a closed
subvariety in a complex semisimple algebraic Lie group G, Σ is an analogue of a Slodowy slice for G introduced in
[113, 118], and M is a unipotent subgroup of G, where the “classical limit” simply corresponds now to the q = 1
specialization of the deformation parameter q. The peculiarity of the quantum group case is that every element
of M can be uniquely represented as an ordered product of elements of some one–parameter subgroups Mi ⊂ G,
i = 1, . . . , c corresponding to roots, i.e. M = M1 . . .Mc. If we denote by ti the parameter in Mi and by Xi(ti) the
element of Mi corresponding to the value ti ∈ C of the parameter then factorizing n(x) in (5) as follows

n(x) = X1(t1(x)) . . . Xc(tc(x)) (7)

one can express the operator Π as a composition of operators Πi,

(Πif)(x) = f(Xi(−ti(x)) ◦ x), (8)

Πf = Π1 . . .Πcf. (9)

ti(x) here can be regarded as regular functions on C ⊂ G.
The first miracle of the quantum group case is that there are explicit formulas for the functions ti(x) in (7)

expressing them in terms of matrix elements of finite-dimensional irreducible representations of G. These formulas
were obtained in [119].

The main objective of this book is to obtain quantum group counterparts of these formulas. This provides
a description of quantum group analogues of W–algebras, called q-W–algebras, as images of operators Πq

c which
are quantum analogues of Π, or more precisely, of operators Πc introduced by formula (3.5.21). This description
implies that q-W–algebras belong to the class of the so-called Mickelsson algebras (see e.g. [133, 136, 137, 138, 140]
and [141], Ch. 4).

Magically, the classical formulas for ti(x) and formulas (8) can be directly extrapolated to the quantum case,
so the operator Πq

c is given in a factorized form similar to (9). Note that no operators similar to Πq
c can be defined

in the Lie algebra setting discussed above.
Using the quantum group analogues Bjk of the functions ti(x) one can also construct natural bases in modules

V from the corresponding category A − modχB and establish isomorphisms similar to (4) in the case when the
deformation parameter is not a root of unity. Recall that in the Lie algebra case with k = C for any V ∈ A−modχB
the Skryabin equivalence provides an isomorphism V ' Qχ⊗Hk(A,B,χ) Vχ. If we denote by V 0

χ the “classical limit”,
i.e. the q = 1 specialization, of Vχ then recalling that the “classical limit” of Qχ is C[C] and the “classical limit” of
Hk(A,B, χ) is C[Σ] we infer from (3) that the “classical limit” of Qχ ⊗Hk(A,B,χ) Vχ ' V is

C[C]⊗C[Σ] V
0
χ ' (C[Σ]⊗ C[M ])⊗C[Σ] V

0
χ ' C[M ]⊗ V 0

χ .

These isomorphisms together with (5) and (7) give a hint how to construct natural bases in modules from the
category V ∈ A−modχB in the quantum group case. Namely, if V is such a module it is natural to expect that if
one picks up a linear basis vp, p ∈ N in the space of Whittaker vectors Vχ then the elements of V given by properly
defined ordered monomials in Bjk applied to vp, p ∈ N form a linear basis in V . We show that this is indeed the
case. These bases are key ingredients for an alternative proof of the Skryabin equivalence for quantum groups.
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Operators conceptually similar to Πq
c appeared in the literature a long time ago as the projection operators onto

subspaces of singular vectors in some modules over a complex finite-dimensional semisimple Lie algebra g the action
of a nilradical n− ⊂ g on which is locally nilpotent. The first example of such operators, called extremal projection
operators, for g = sl2 was explicitly constructed in [78]. In papers [3, 4, 5] the results of [78] were generalized to
the case of arbitrary complex semisimple Lie algebras, and explicit formulas for extremal projection operators were
obtained. A summary of these results can be found in [128]. Later, using a certain completion of an extension
of the universal enveloping algebra of g, Zhelobenko observed in [133] that the existence of extremal projection
operators is an almost trivial fact. In [133] he also introduced a family of operators which are analogues to our
operators Pi. These operators are called now Zhelobenko operators. Properties of extremal projection operators
and of the Zhelobenko operators have been extensively studied in [133]–[140], and the results obtained in these
papers were summarized in book [141].

In our terminology the situation considered in these works corresponds to the case when A = U(g), B = U(n−)
and χ is the trivial character of U(n−). As observed in [115], in this case C = b−, the Borel subalgebra b− ⊂ g
containing n−, and the action of the unipotent group N− corresponding to n− on C is induced by the adjoint action
of a Lie group G with the Lie algebra g on g. This action is not free but is gives rise to a birational equivalence

N− × h→ b−,

where h = b−/n− is a Cartan subalgebra. In [115] it is shown that using this birational equivalence one can still
define operators similar to Πi and Π acting on a certain localization of the algebra of regular functions C[b−] and
these operators are “classical limits” of the Zhelobenko and of the extremal projection operators, respectively.

Kac–Weisfeiler and De Concini–Kac–Procesi conjectures

Remarkably, as observed in [120], the arguments from the Appendix to [97] are applicable to obtain alternative
descriptions of the corresponding categories A−modχB from [97] for Lie algebras over fields of prime characteristic.

Along the same line, formulas for the quantum group analogues Bjk of the functions ti(x) and for the operator
Πq
c can be specialized to the case when q is a primitive odd m-th root of unity ε subject to a few other conditions

depending on the Cartan matrix of the corresponding semisimple Lie algebra g. This provides technical tools for
the proof of a root of unity version of the Skryabin equivalence for quantum groups. Similarly to the case of generic
q one can construct bases in modules V from the corresponding category A − modχB . In case when q is a root
of unity all such irreducible modules are finite-dimensional, and if one picks up a linear basis vp, p = 1, . . . , n in
the space of Whittaker vectors Vχ then the elements of V given by applied to vp, p = 1, . . . , n properly defined
ordered monomials in c variables Bjk powers of which are truncated at the degree m form a linear basis in V . In
particular, the dimension of V is divisible by mc. It turns out that any finite-dimensional module over the standard
quantum group Uε(g), where ε is a primitive odd m-th root of unity subject to the extra conditions mentioned in
the beginning of this paragraph, belongs to one of the categories A −modχB with appropriate A, B and χ, so its
dimension is divisible by b = mc. Moreover, the number b is equal to the number from the De Concini–Kac–Procesi
conjecture on dimensions of irreducible modules over quantum groups at roots of unity suggested in [25]. Thus
our result confirms this conjecture. Due to its importance we are going to discuss the De Concini–Kac–Procesi
conjecture in more detail.

It is very well known that the number of simple modules for a finite-dimensional algebra is finite. However,
often it is very difficult to classify such representations. In some important particular examples even dimensions of
simple modules over finite-dimensional algebras are not known.

One of the important examples of that kind is representation theory of semisimple Lie algebras over algebraically
closed fields of prime characteristic. Let g′ be the Lie algebra of a semisimple algebraic group G′ over an algebraically
closed field k of characteristic p > 0. Let x 7→ x[p] be the p-th power map of g′ into itself. The structure of the
enveloping algebra of g′ is quite different from the zero characteristic case. Namely, the elements xp − x[p], x ∈ g′

are central. For any linear form θ on g′, let Uθ be the quotient of the enveloping algebra of g′ by the ideal generated
by the central elements xp − x[p] − θ(x)p with x ∈ g′. Then Uθ is a finite-dimensional algebra. Kac and Weisfeiler
proved that any simple g′-module can be regarded as a module over Uθ for a unique θ as above (this explains why
all simple g′–modules are finite-dimensional). The Kac–Weisfeiler conjecture formulated in [61] and proved in [98]

says that if the G′–coadjoint orbit of θ has dimension dim Oθ and p is good for the root system of G′ then p
dim Oθ

2

divides the dimension of every finite-dimensional Uθ–module.
One can identify θ with an element of g′ via the Killing form and reduce the proof of the Kac–Weisfeiler

conjecture to the case of nilpotent θ. In that case Premet defines in [98] a subalgebra Uθ(mθ) ⊂ Uθ generated
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by a Lie subalgebra mθ ⊂ g′ such that Uθ(mθ) has dimension p
dim Oθ

2 and every finite-dimensional Uθ–module is
Uθ(mθ)–free. Verification of the latter fact uses the theory of support varieties (see [39, 40, 41, 99]). Namely,
according to the theory of support varieties, in order to prove that a Uθ–module is Uθ(mθ)–free one should check
that it is free over every subalgebra Uθ(x) generated in Uθ(mθ) by a single element x ∈ mθ.

There is a more elementary and straightforward proof of the Kac–Weisfeiler conjecture given in [96]. The
simplest proof of this conjecture follows from the results of [120] on a prime characteristic version of the Skryabin
equivalence which we already discussed above. A proof of the conjecture for p > h, where h is the Coxeter number
of the corresponding root system, using localization of D–modules was presented in [7].

Another important example of finite-dimensional algebras is related to the theory of quantum groups at roots
of unity. Let g be a complex finite-dimensional semisimple Lie algebra. A remarkable property of the standard
Drinfeld-Jimbo quantum group Uε(g) associated to g, where ε is a primitive m-th root of unity, is that its center
contains a large commutative subalgebra. In this book we consider the simply connected version of Uε(g) and
the case when m is odd. In this case the large commutative subalgebra is isomorphic to the algebra ZG of
regular functions on (a finite covering of a big cell in) the connected, simply connected complex algebraic group
corresponding to g.

Consider finite-dimensional representations of Uε(g), on which ZG acts according to non–trivial characters ηg
given by evaluation of regular functions at various points g ∈ G. Note that all irreducible representations of Uε(g)
are of that kind, and every such representation is a representation of the algebra Uηg = Uε(g)/Uε(g)Ker ηg for some
ηg. In [25] De Concini, Kac and Procesi showed that if g1 and g2 are two conjugate elements of G then the algebras
Uηg1 and Uηg2 are isomorphic. Moreover in [25] De Concini, Kac and Procesi formulated the following conjecture.

De Concini–Kac–Procesi conjecture. The dimension of any finite-dimensional representation of the algebra
Uηg is divisible by b = m

1
2 dim Og , where Og is the conjugacy class of g.

This conjecture is the quantum group counterpart of the Kac–Weisfeiler conjecture for semisimple Lie algebras
over fields of prime characteristic.

As it is shown in [24] it suffices to verify the De Concini–Kac–Procesi conjecture in case of exceptional elements
g ∈ G (an element g ∈ G is called exceptional if the centralizer in G of its semisimple part has a finite center). How-
ever, the De Concini–Kac–Procesi conjecture is related to the geometry of the group G which is more complicated
than the geometry of the linear space g′ in case of the Kac–Weisfeiler conjecture.

The De Concini–Kac–Procesi conjecture is known to be true for the conjugacy classes of regular elements (see
[26]), for the subregular unipotent conjugacy classes in type An when m is a power of a prime number (see [14]),
for all conjugacy classes in An when m is a prime number (see [16]), for the conjugacy classes Og of g ∈ SLn when
the conjugacy class of the unipotent part of g is spherical (see [15]), and for spherical conjugacy classes (see [13]).
In [73] a proof of the De Concini–Kac–Procesi conjecture using localization of quantum D–modules was outlined
in case of unipotent conjugacy classes. In contract to many papers quoted above the strategy of the proof of the
De Concini–Kac–Procesi conjecture developed in this book does not use the reduction to the case of exceptional
elements, and all conjugacy classes are treated uniformly.

Namely, following Premet’s philosophy we use certain subalgebras Uηg (m−) ⊂ Uηg introduced in [117]. These
subalgebras have non–trivial characters χ : Uηg (m−) → C. In terms of the previously introduced notation, we
show that for A = Uηg , B = Uηg (m−) and an appropriate χ the category A − modχB can be identified with the
category of finite-dimensional representations of Uηg and equivalence (1) holds if Hk(A,B, χ)−mod is the category
of finite-dimensional representations of the corresponding algebra Hk(A,B, χ).

As observed in [117] every finite-dimensional Uηg–module is also equipped with an action of the algebra Uη1(m−)
corresponding to the trivial character η1 of ZG given by the evaluation at the identity element of G. In the setting
of quantum groups at roots of unity this action is a counterpart of the second U(m)–module structure on objects
V of the category A−modχB which appeared in (4) in the case of Lie algebras over fields of zero characteristic.

Since the De Concini–Kac–Procesi conjecture is related to the structure of the set of conjugacy classes in G it is
natural to look at transversal slices to the set of conjugacy classes. It turns out that the definition of the subalgebras
Uηg (m−) is related to the existence of some special transversal slices Σs to conjugacy classes in G. These slices
Σs associated to (conjugacy classes of) elements s in the Weyl group of g were introduced by the author in [113].
The slices Σs play the role of Slodowy slices in algebraic group theory. In the particular case of elliptic Weyl group
elements these slices were also introduced later by He and Lusztig in paper [52] within a different framework.

A remarkable property of a slice Σs observed in [117] is that if g is conjugate to an element in Σs then the

dimension of the corresponding subalgebra Uηg (m−) ⊂ Uηg is equal to m
1
2 codim Σs . The dimension of the algebra

Uη1(m−) is also equal to m
1
2 codim Σs . If g ∈ Σs (in fact g may belong to a larger variety) then the corresponding
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subalgebras Uηg (m−) and Uη1(m−) can be explicitly described in terms of quantum group analogues of root vectors.
Note that one can also define analogues Ush(m−) of subalgebras Uηg (m−) in the standard Drinfeld–Jimbo quantum
group Uh(g) over the ring of formal power series C[[h]] (see [114]).

In [114], Theorem 5.2 it is shown that for every conjugacy class O in G one can find a transversal slice Σs such
that O intersects Σs and dim O = codim Σs. Using this result we showed in [117] that for every element g ∈ G
one can find a a subalgebra Uηg (m−) in Uηg of dimension m

1
2 dim Og with a non–trivial character χ. The dimension

of the corresponding algebra Uη1(m−) is also equal to m
1
2 dim Og .

Following the strategy outlined in the beginning of this section we show that if m satisfies a certain condition
then every finite-dimensional Uηg–module is free over Uη1(m−). Thus the dimension of every such module is divisible

by m
1
2 dim Og . This establishes the De Concini–Kac–Procesi conjecture.

Note that in the case of restricted representations of a small quantum group similar results were obtained in
[34]. The situation in [34] is rather similar to the case of the trivial character η = η1 in our setting.

We also show that the rank of every finite-dimensional Uηg–module V over Uη1(m−) is equal to the dimension

of the space Vχ and that Uηg is the algebra of matrices of size m
1
2 dim Og over the corresponding q-W–algebra

Hk(A,B, χ) = Hk(Uηg , Uηg (m−), χ) which has dimension mdim Σs . In case of Lie algebras over fields of prime
characteristic similar results were obtained in [97].

Note that the support variety technique used in [98] to prove the Kac–Weisfeiler conjecture can not be transferred
to the case of quantum groups straightforwardly. The notion of the support variety is still available in case of
quantum groups (see [34, 47, 93]). But in practical applications it is much less efficient since in the case of quantum
groups there is no any underlying linear space.

The structure of the book

In conclusion we would like to make a few remarks on the structure of the book. It consists of six chapters. In
this introduction we have given a very superficial and incomplete review of the content of the book which rather
aims to provide the reader with a general guide outlining the main ideas and the strategy of the main proofs. More
technical comments are given in the beginning of each chapter.

In Chapters 1 and 2 we summarize results from [113, 114, 116, 118, 119] on the algebraic group analogues Σs
of the Slodowy slices and the related results on quantum groups and on the subalgebras Ush(m−) ⊂ Uh(g). Chapter
1 also contains some results on combinatorics of Weyl groups and on root systems required for the definition of
the slices Σs, and Chapter 2 contains some advanced results on quantum groups required later for the study of
q-W–algebras.

In Chapter 3, following [114, 116], we recall the definition of q-W–algebras and the description of their classical
Poisson counterparts given in [119] in terms of the Zhelobenko type operators Πjk and Π. The main purpose of
this chapter is to bring this description to a form suitable for quantization. Formulas (3.5.9), (3.5.19) and (3.5.21)
obtained in this chapter for Πjk and Πc have direct quantum analogues (4.2.27), (4.6.1) and (4.7.3) obtained in
Chapter 4 for Pjk and Πq

c . The main result of Chapter 4 (Theorem 4.7.2) is the description of the q-W–algebra as
the image of the operator Πq

c .
In Chapter 5 we prove a version of the Skryabin equivalence of type (1) for equivariant modules over quantum

groups established in [116]. The new proof of this equivalence in Theorem 5.2.1 is based on Corollary 4.6.8 which
allows to construct some nice bases in modules from the category A−modχB (see the discussion in the introduction
above). Theorem 5.2.1 also gives precise values of ε of the deformation parameter q for which the categorical
equivalence holds while in [116] it was established for generic ε only.

Finally in Chapter 6 we apply the results of Chapter 4 to the study of representations of quantum groups at
roots of unity and prove the De Concini–Kac–Procesi conjecture. The strategy of this proof has already been
discussed above.

Citations in the main text are reduced to a minimum. References to proofs which are omitted in the body of
the text and some historic remarks are given in the bibliographic comments after each chapter.
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Chapter 1

Algebraic group analogues of Slodowy
slices

The q-W–algebras are non-commutative deformations of algebras of regular functions on certain algebraic varieties
in algebraic groups transversal to conjugacy classes. In this book these varieties play a role similar to that of the
Slodowy slices in the theory of W–algebras and of generalized Gelfand-Geraev representations of semisimple Lie
algebras. In this chapter we define these varieties and study their properties. We also develop the relevant Weyl
group combinatorics.

1.1 Notation

Fix the notation used throughout the book.
In this book we denote by N the set of non-negative integer numbers, N = {0, 1, . . .}.
Let Gk be a connected finite–dimensional semisimple algebraic group over an algebraically closed field k. Denote

by gk the Lie algebra of Gk. Let Hk ⊂ Gk be a maximal torus in Gk, hk ⊂ gk the corresponding Cartan subalgebra.
If the characteristic exponent of k is p, i.e. p = chark if chark > 0 and p = 1 if chark = 0, we also write

Gk = Gp, Hk = Hp and if k = C we write GC = G, HC = H, gC = g, hC = h. Note that G is also a connected
finite-dimensional complex semisimple Lie group.

Let ∆ = ∆(g, h) be the set of roots of the pair (g, h), Q the corresponding root lattice, and P the weight lattice.
Let Γ = {αi| i = 1, . . . , l}, l = rank(g) be a system of simple roots, ∆+ = {β1, . . . , βD} the set of positive roots,
Q+ = N∆+, P+ the set of the corresponding integral dominant weights, ω1, . . . , ωl the fundamental weights. Let
also H1, . . . ,Hl be the set of simple root generators of h.

Denote by aij the corresponding Cartan matrix, and let d1, . . . , dl, di ∈ {1, 2, 3}, i = 1, . . . , l be coprime positive
integers such that the matrix bij = diaij is symmetric. There exists a unique canonical non–degenerate invariant
symmetric bilinear form (·, ·) on g such that (Hi, Hj) = d−1

j aij . It induces an isomorphism of vector spaces h ' h∗

under which αi ∈ h∗ corresponds to diHi ∈ h. We denote by h∨ the element of h that corresponds to h ∈ h∗ under
this isomorphism. For a root α ∈ ∆ the element α∨ ∈ h is called the corresponding coroot. The induced bilinear
form on h∗ is given by (αi, αj) = bij .

Let W be the Weyl group of the root system ∆. W is the subgroup of GL(h) generated by the fundamental
reflections s1, . . . , sl,

si(h) = h− αi(h)Hi, h ∈ h.

The action of W preserves the bilinear form (·, ·) on h.
For any root α ∈ ∆ we also denote by sα the corresponding reflection.
For every element w ∈ W one can introduce the set ∆w = {α ∈ ∆+ : w(α) ∈ −∆+}, and the number of the

elements in the set ∆w is equal to the length l(w) of the element w with respect to the system Γ of simple roots in
∆+. We also write ∆− = −∆+.

Let hR be the real form of h, the real linear span of simple coroots in h. The set of roots ∆ is a subset of the
dual space h∗R.

For any w ∈ W we denote by hw the fixed point space of w in h, hw = {x ∈ h|wx = x}, and by hwR the fixed
point space of w in hR, hwR = {x ∈ hR|wx = x} = hw ∩ hR.

13
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One can define ∆ as the root system of the pair (G,H), ∆ = ∆(G,H), and if, for some algebraically closed
field k, G and Gk have the same root system then one can also define ∆ as the root system of the pair (Gk, Hk),
∆ = ∆(Gk, Hk).

Similarly, one can define W as the root system of the pair (G,H), W = W (G,H), and if, for some algebraically
closed field k, G and Gk have the same root system then one can also define W as the Weyl group of the pair
(Gk, Hk), W = W (Gk, Hk).

For an arbitrary algebraically closed field k, we denote by ẇ a representative of w ∈ W = W (Gk, Hk) in the
normalizer of Hk in Gk with respect to the conjugation action. If k = C we simply denote this representative by
w. It can also be regarded as a representative of w in the normalizer NG(h) of h in G with respect to the adjoint
action. For w ∈W, g ∈ G we write w(g) = wgw−1.

Let B+ be the Borel subgroup of G corresponding to ∆+ and B− the opposite Borel subgroup of G, N± their
unipotent radicals, respectively.

We denote by b± and n± the Lie subalgebras of g corresponding to B± and N±, respectively.
We identify g and its dual by means of the canonical bilinear form (·, ·). Then the coadjoint action of G on g∗ is

naturally identified with the adjoint one. Using the canonical bilinear form we shall also identify n+
∗ ' n−, b+

∗ '
b−, h ' h∗.

Let gβ be the root subspace corresponding to a root β ∈ ∆, gβ = {x ∈ g|[h, x] = β(h)x for every h ∈ h}. gβ ⊂ g
is a one–dimensional subspace. It is well known that for α 6= −β the root subspaces gα and gβ are orthogonal with
respect to the canonical invariant bilinear form (·, ·). Moreover gα and g−α are non–degenerately paired by this
form.

Let Xα ∈ g be a non–zero root vector corresponding to a root α ∈ ∆. Root vectors Xα ∈ gα satisfy the following
relations:

[Xα, X−α] = (Xα, X−α)α∨.

1.2 Systems of positive roots associated to Weyl group elements

Algebraic group analogues of the Slodowy slices are associated to (conjugacy classes) in the Weyl group. In this
section we recall the relevant combinatorics of the Weyl group and of root systems. We start by defining systems
of positive roots associated to Weyl group elements which play the key role in the definition of the algebraic group
analogues of the Slodowy slices.

Let s be an element of the Weyl group W and denote by h′ the orthogonal complement in h, with respect to the
canonical bilinear form on g, to the subspace hs = {h ∈ h|sh = h} fixed by the natural action of s on h, h′ = (hs)⊥,
so that h′⊥ = hs. Let h′∗ be the image of h′ in h∗ under the identification h∗ ' h induced by the canonical bilinear
form on g. Thus h′∗ embeds into h thanks to the direct vector space decomposition h = hs + h′. By Theorem C in
[18] s can be represented as a product of two involutions,

s = s1s2, (1.2.1)

where s1 = sγ1 . . . sγn , s2 = sγn+1
. . . sγl′ , the roots in each of the sets γ1, . . . , γn and γn+1, . . . , γl′ are positive and

mutually orthogonal, and the roots γ1, . . . , γl′ form a linear basis of h′∗.
The Weyl group elements naturally act on hR as orthogonal transformations with respect to the scalar product

induced by the symmetric bilinear form of g, and one can define the real forms hsR = hs ∩ hR, h
′
R = h′ ∩ hR.

Let f1, . . . , fl′ be the vectors of unit length in the directions of γ1, . . . γl′ , and f̂1, . . . , f̂l′ the basis of h′R dual to
f1, . . . , fl′ . Let O be the l′ × l′ symmetric matrix with real entries Oij = (fi, fj). I − O is also a symmetric real
matrix, and hence it is diagonalizable and has real eigenvalues.

The following proposition gives a recipe for constructing a spectral decomposition for the action of the orthogonal
transformation s on hR.

Proposition 1.2.1. Let λ be a (real) eigenvalue of the symmetric matrix I − O, and u ∈ Rl′ a corresponding
non–zero real eigenvector with components ui, i = 1, . . . , l′. Let au, bu ∈ hR be defined by

au =

n∑
i=1

uif̂i, bu =

l′∑
i=n+1

uif̂i. (1.2.2)

(i) If λ is an eigenvalue of I − O then −λ is also an eigenvalue of I − O, and λ = ±1 are not eigenvalues of
I −O.
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(ii) If λ 6= 0 then the angle θ between au and bu satisfies cos θ = λ, the plane hλ ⊂ hR spanned by au and bu is
invariant with respect to the involutions si, i = 1, 2, s1 acts on hλ as the reflection in the line spanned by bu, and
s2 acts on hλ as the reflection in the line spanned by au. If λ > 0 the orthogonal transformation s = s1s2 acts on
hλ as a rotation through the angle 2θ.

(iii) If λ 6= µ are two positive eigenvalues of I −O then the planes hλ and hµ are mutually orthogonal.

(iv) Let λ 6= 0 be an eigenvalue of I −O of multiplicity greater than 1, and uk ∈ Rl′ , k = 1, . . . , mult λ a basis
of the eigenspace corresponding to λ. If the basis uk is orthonormal with respect to the standard scalar product on
Rl′ then the corresponding planes hkλ defined with the help of uk, k = 1, . . . ,mult λ are mutually orthogonal.

(v) If λ = 0 is an eigenvalue of I − O, then there is a basis uk ∈ Rl′ , k = 1, . . . , mult 0 of the eigenspace
corresponding to 0 orthonormal with respect to the standard scalar product on Rl′ and such that the corresponding
non–zero elements auk , buk are all mutually orthogonal. Moreover, s1auk = −auk , s2auk = auk , s1buk = buk ,
s2buk = −buk for non–zero elements auk , buk . In particular, for non–zero elements auk , buk we have sauk = −auk ,
sbuk = −buk , and non–zero elements auk , buk is a basis of the subspace of hR on which s acts by multiplication by
−1.

Proof. Firstly, we study some general properties of eigenvalues and eigenvectors of the matrix O. By definition the
matrix O can be written in a block form,

O =

(
In A
A> Il′−n

)
, (1.2.3)

where A is an n× (l′−n) matrix, A> is the transpose to A, In and Il′−n are the unit matrices of sizes n and l′−n.
O−1 is also symmetric and has a similar block form,

O−1 =

(
B C
C> D

)
, B = B>, D = D>, (1.2.4)

with the entries O−1
ij = (f̂i, f̂j).

For any vector u ∈ Rl′ we introduce its Rn and Rl′−n components ũ and ˜̃u in a similar way,

u =

(
ũ˜̃u
)
. (1.2.5)

We shall consider both ũ and ˜̃u as elements of Rl′ using natural embeddings Rn,Rl′−n ⊂ Rl′ associated to decom-
position (1.2.5).

If u is a non–zero eigenvector of I −O corresponding to an eigenvalue λ then the equation (I −O)u = λu gives

−A˜̃u = λũ, −A>ũ = λ˜̃u. (1.2.6)

From these equations we deduce that (
−ũ˜̃u

)
is a non–zero eigenvector of I −O corresponding to the eigenvalue −λ This proves the first claim in (i).

λ = 1 is not an eigenvalue of I −O since the matrix O is invertible. Therefore λ = −1 is also not an eigenvalue
of I −O by the first part of part (i) which is already proved. This justifies (i).

Since O−1O = I one has
BA+ C = 0, C> +DA> = 0. (1.2.7)

Multiplying the first and the second equations in (1.2.6) from the left by B and D, respectively, and using (1.2.7)
we obtain that

C˜̃u = λBũ, C>ũ = λD˜̃u. (1.2.8)

Now if u1 and u2 are two non–zero eigenvectors of I − O corresponding to an eigenvalue λ then by (1.2.4) we
have

(au1 , au2) =

n∑
i,j=1

u1
iu

2
j (f̂i, f̂j) =

n∑
i,j=1

u1
iu

2
jBij = ũ1 ·Bũ2, (1.2.9)

where · stands for the standard scalar product in Rl′ .
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Similarly,

(bu1 , bu2) = D˜̃u1
· ˜̃u2

, (au1 , bu2) = ũ1 · C˜̃u2
(1.2.10)

From (1.2.8), (1.2.9) and the first identity in (1.2.10) we also obtain that if λ 6= 0 then

(au1 , au2) = ũ1 ·Bũ2 =
1

λ
ũ1 · C˜̃u2

=
1

λ
C>ũ1 · ˜̃u2

= D˜̃u1
· ˜̃u2

= (bu1 , bu2). (1.2.11)

Similarly, for any real eigenvalue λ we have

(au1 , bu2) = ũ1 · C˜̃u2
= λ(au1 , au2), (bu1 , au2) = ˜̃u1

· C>ũ2 = λ(au1 , au2). (1.2.12)

Therefore if λ 6= 0, taking into account (1.2.11), we obtain for u1 = u2 = u

λ =
(au, bu)

(au, au)
=

(au, bu)√
(bu, bu)

√
(au, au)

= cos θ,

which justifies the first claim in (ii). Note that (bu, bu) = (au, au) 6= 0 for otherwise au = bu = 0, and hence u = 0
which contradicts the choice of u.

Let again u be a non–zero eigenvector of I − O corresponding to an eigenvalue λ. For i = 1, . . . , n by the
definition of the matrices B and C we have

(f̂i, λau − bu) = λ(Bũ)i − (C˜̃u)i = 0,

where at the last step we used the first identity in (1.2.8). From the last identity we deduce that λau − bu is a
linear combination of fn+1, . . . , fl′ , and hence

s2(λau − bu) = −(λau − bu).

However, by the definition of au, s2au = au. Therefore

s2bu = 2λau − bu. (1.2.13)

Let λ 6= 0. Then recalling that by (1.2.11) (au, au) = (bu, bu) we conclude that λau = cos(θ)au is the orthogonal
projection of bu onto the line spanned by au and that s2bu is obtained from bu by the reflection in the line spanned
by au as shown at Figure 1.

==
bu

// au

!!
s2bu

λau //

Fig. 1

Similarly, s1bu = bu, s1au is obtained from au by the reflection in the line spanned by bu.
Thus the plane hλ ⊂ hR spanned by au and bu is invariant with respect to the involutions si, i = 1, 2, s1 acts

on hλ as the reflection in the line spanned by bu, and s2 acts on hλ as the reflection in the line spanned by au.
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Since the angle between au and bu is θ, for λ > 0 the orthogonal transformation s = s1s2 acts on hλ as a rotation
through the angle 2θ which completes the proof of (ii).

From the general theory of orthogonal transformations it follows that if λ 6= µ are two positive eigenvalues of
I −O, λ, µ 6= 1 then the planes hλ and hµ are mutually orthogonal which confirms part (iii).

Now if u1 and u2 are two non–zero eigenvectors of I −O corresponding to an eigenvalue λ 6= 0 then by part (i)
λ 6= ±1, and (1.2.9), (1.2.11), (1.2.12) and the identity O−1u2 = 1

1−λu
2 yield

(au1 + bu1 , au2 + bu2) = 2(au1 , au2)(λ+ 1) = u1 ·O−1u2 =
1

1− λ
u1 · u2.

Thus if λ 6= 0 and u1,2 are mutually orthogonal, au1 , au2 are also mutually orthogonal, and from (1.2.11) and
(1.2.12) we obtain that bu1 and bu2 , au1 and bu2 , au2 and bu1 are mutually orthogonal. Therefore the planes
spanned by au1 , bu1 and by au2 , bu2 are mutually orthogonal. Part (iv) immediately follows from this property.

It remains to prove part (v). If λ = 0 is an eigenvalue of I−O then ũ and ˜̃u are the components of an eigenvector

u of I − O with eigenvalue 0 if and only if A˜̃u = 0 and A>ũ = 0. Therefore using the usual orthogonalization
procedure one can construct a basis uk ∈ Rl′ , k = 1, . . . , mult 0 of the eigenspace corresponding to 0 orthonormal

with respect to the standard scalar product on Rl′ and such that the components ũk and ˜̃uk k = 1, . . . , mult 0 are
all mutually orthogonal.

By (1.2.13) s2buk = −buk . Also by the definition of auk s
2auk = auk . Similarly, s1auk = −auk and s1buk = buk .

Now using the definition of eigenvectors in the form Ouk = uk and (1.2.8) with u = uk we deduce that for the

basis uk the following relations hold: Bũk = ũk, D˜̃uk = ˜̃uk.
From these relations we obtain for k 6= l by (1.2.9)

(auk , aul) = ũk ·Bũl = ũk · ũl = 0

and by (1.2.10)

(buk , bul) = D˜̃uk · ˜̃ul = ˜̃uk · ˜̃ul = 0.

By (1.2.12) we always have

(auk , bul) = λ(auk , aul) = 0.

This completes the proof of part (v).

Using the previous proposition we can decompose hR into a direct orthogonal sum of s–invariant subspaces,

hR =

K⊕
i=0

hi, (1.2.14)

where each of the subspaces hi ⊂ hR, i = 1, . . . ,K is invariant with respect to both involutions si, i = 1, 2 in the
decomposition s = s1s2, and there are the following three possibilities for each hi: hi is two–dimensional (hi = hkλ
for an eigenvalue 0 < λ < 1 of the matrix I − O, and k = 1, . . . ,mult λ) and the Weyl group element s acts on
it as rotation with angle θi, 0 < θi < π or hi = hkλ, λ = 0, k = 1, . . . ,mult λ has dimension 1 and s acts on it by
multiplication by −1 or hi coincides with the linear subspace of hR fixed by the action of s. Note that since s has
finite order, we have θi = 2πni

mi
, ni,mi ∈ {1, 2, . . .}.

Since the number of roots in the root system ∆ is finite one can always choose elements hi ∈ hi, i = 0, . . . ,K,
such that hi(α) 6= 0 for any root α ∈ ∆ which is not orthogonal to the s–invariant subspace hi with respect to the
natural pairing between hR and h∗R.

Now we consider certain s–invariant subsets of roots ∆i, i = 0, . . . ,K, defined as follows

∆i = {α ∈ ∆ : hj(α) = 0, j > i, hi(α) 6= 0}, (1.2.15)

where we formally assume that hK+1 = 0. Note that for some indexes i the subsets ∆i are empty, and that the
definition of these subsets depends on the order of the terms in direct sum (1.2.14).

Now consider the nonempty s–invariant subsets of roots ∆ik , k = 0, . . . ,M . For convenience we assume that
indexes ik are labeled in such a way that ij < ik if and only if j < k.
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Observe also that the root system ∆ is the disjoint union of the subsets ∆ik ,

∆ =

M⋃
k=0

∆ik . (1.2.16)

Now assume that

|hik(α)| > |
∑
l≤j<k

hij (α)|, for any α ∈ ∆ik , k = 0, . . . ,M, l < k. (1.2.17)

Condition (1.2.17) can be always fulfilled by suitable rescalings of the elements hik .
Consider the element

h̄ =

M∑
k=0

hik ∈ hR. (1.2.18)

From definition (1.2.15) of the sets ∆i we obtain that for α ∈ ∆ik

h̄(α) =
∑
j≤k

hij (α) = hik(α) +
∑
j<k

hij (α) (1.2.19)

Now condition (1.2.17), the previous identity and the inequality |x+ y| ≥ ||x| − |y|| imply that for α ∈ ∆ik we have

|h̄(α)| ≥ ||hik(α)| − |
∑
j<k

hij (α)|| > 0.

Since ∆ is the disjoint union of the subsets ∆ik , ∆ =
⋃M
k=0 ∆ik , the last inequality ensures that h̄ belongs to a

Weyl chamber of the root system ∆.
Denote by ∆s

+ the subset of positive roots with respect to the Weyl chamber containing h̄,

∆s
+ = {α ∈ ∆|α(h̄) > 0}. (1.2.20)

From condition (1.2.17) and formula (1.2.19) we also obtain that a root α ∈ ∆ik is positive if and only if

hik(α) > 0. (1.2.21)

We denote by (∆ik)+ the set of positive roots contained in ∆ik , (∆ik)+ = ∆s
+ ∩∆ik .

We also define other s–invariant subsets of roots ∆ik , k = 0, . . . ,M ,

∆ik =
⋃
ij≤ik

∆ij . (1.2.22)

According to this definition we have a chain of strict inclusions

∆iM ⊃ ∆iM−1
⊃ . . . ⊃ ∆i0 , (1.2.23)

such that ∆iM = ∆, ∆i0 = ∆i0 , and ∆ik \∆ik−1
= ∆ik .

The following lemma shows that the subsets of roots ∆ik ⊂ ∆ are root systems of some standard Levi subalgebras
in g.

Lemma 1.2.2. Let Γs be the set of simple roots in ∆s
+. Then Γs ∩∆ik is a set of simple roots in ∆ik .

Proof. Indeed, let α ∈ ∆ik ∩∆s
+, α =

∑l
i=1 niαi, where ni ∈ {0, 1, 2, . . .} and Γs = {α1, . . . , αl}. Assume that α

does not belong to the linear span of roots from Γs∩∆ik and t > ik is maximal possible such that for some αq ∈ ∆t

one has nq > 0. Then by (1.2.15) and (1.2.21) ht(α) =
∑l
i=1 niht(αi) =

∑
αi∈∆t

niht(αi) > 0, and by the choice

of t hr(α) = 0 for r > t. Therefore α ∈ ∆t, and hence α 6∈ ∆ik . Thus we arrive at a contradiction.
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1.3 Algebraic group analogues of Slodowy slices

In this section we define analogues of the Slodowy slices for algebraic groups. As this construction is important
for semisimple algebraic groups over arbitrary algebraically closed fields, especially for the study of the Lusztig
partition in Sections 1.4 and 1.5, we work over an arbitrary algebraically closed field k in this and in the next two
sections. Applications to quantum groups only require k = C.

Let s ∈W = W (Gk, Hk) be a Weyl group element, ∆s
+ a system of positive roots associated to (the conjugacy

class of) s in the previous section, Γs the set of simple roots in ∆s
+. We shall assume in this section that in sum

(1.2.14) h0 is the linear subspace hsR = hs ∩ hR of hR fixed by the action of s pointwise. If hsR is trivial it will be still
convenient to keep the same notation with h0 = 0 and include it into sum (1.2.14).

According to this convention we always have that ∆0 = {α ∈ ∆ : sα = α} is the set of roots fixed by the action
of s elementwise, and ∆0 may be empty. In this case it will be also convenient to add the empty set ∆0 to union
(1.2.16), so that we shall always have i0 = 0 in (1.2.16) and ∆i0 = ∆0.

Denote by Pk the parabolic subgroup of Gk containing the Borel subgroup Bsk,− corresponding to −∆s
+ and

associated to the subset −Γs0 of the set of simple roots in −Γs, where Γs0 = Γs ∩∆0. Let Nk and Lk the unipotent
radical and the Levi factor of Pk, respectively, and Nk the opposite unipotent radical.

Note that we have a natural inclusion Pk ⊃ Nk, and by Lemma 1.2.2 ∆0 is the root system of the reductive
algebraic group Lk, while, by the definition of Pk, its unipotent radical Nk is generated by the one-parameter
subgroups corresponding to the roots from the set (−∆s

+) \∆0.
As in Section 1.1, denote a representative for the Weyl group element s in Gk by ṡ. Let Zk be the connected

subgroup of Gk generated by the semisimple part of the standard Levi subgroup Lk and by the identity component
H0

k of centralizer of ṡ in Hk.
Let Nk,s = {v ∈ Nk|ṡvṡ−1 ∈ Nk}. Observe that Nk,s ⊂ Nk is the algebraic subgroup generated by the one–

parameter subgroups corresponding to the roots from the set −∆s
s, where ∆s

s = {α ∈ ∆s
+ : sα ∈ −∆s

+}, and the
cardinality of the set −∆s

s is equal to l(s), where l(s) is the length of the Weyl group element s ∈W with respect
to the system of simple roots in ∆s

+(see e.g. [17], §2.2, 8.4). Therefore dim Nk,s = l(s).

Denote by pk, nk, nk, lk, and zk the Lie subalgebras of gk corresponding to Pk, Nk, Nk, Lk, and Zk, respectively.
Note that the Lie subalgebra corresponding to H0

k is the fixed point subspace hsk for the action of s on hk.
As in Section 1.1, when k = C we drop the subscript k in the symbols above, so that PC = P , pC = p, NC,s = Ns,

etc. Recall that in this case, according to our convention, we also write ṡ = s.
In the proofs below we shall frequently use the following lemma which is a direct consequence of Proposition

8.1.1, Corollary 8.1.2 and Lemma 8.2.2 in [124].

Lemma 1.3.1. Let Ψ,Ψi ⊂ ∆, i = 1, . . . ,m be additively closed subsets of roots such that

Ψ =

m⋃
i=1

Ψi

is a disjoint union and Ψ does not contain opposite roots. For any additively closed subset Ξ ⊂ ∆ which does not
contain opposite roots, denote by NΞ ⊂ Gk the algebraic subgroup generated by the one–parameter subgroups of Gk

corresponding to the roots from Ξ. Then multiplication in Gk yields an isomorphism of varieties

NΨ ' NΨ1
. . . NΨm ' NΨ1

× . . .×NΨm .

Part (i) of the following Lemma is Corollary in Section 7.4 of [55], part (ii) is Lemma 2.3.3 and 1.6.10(4) in
[124], and part (iii) is Theorem 5.3.2(iii) in [124].

Lemma 1.3.2. (i) Let G1
k and G2

k be algebraic subgroups in an algebraic group Ak over an algebraically closed
field k, and G1

k normalizes G2
k. Then G1

kG
2
k is an algebraic subgroup of Ak and multiplication in Ak defines an

isomorphism of varieties, G1
k ×G2

k → G1
kG

2
k = G2

kG
1
k.

(ii) Let Ak be an algebraic group over an algebraically closed field k. Then any orbit O for a regular algebraic
group action of Ak on a variety V over k is open in its closure. Thus O has the natural structure of an algebraic
variety.

(iii) Let φ : X → Y be an equivariant morphism of homogeneous spaces for an algebraic group Ak over an
algebraically closed field k. Then φ is an isomorphism if and only if it is bijective and induces a bijection of the
tangent spaces at the points x ∈ X and y ∈ Y .

To formulate our main statement in this section we need the following lemma.
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Lemma 1.3.3. Let NkZkṡNk ⊂ Gk be the image in Gk of Nk × Zk ×Nk under the map

Nk × Zk ×Nk → Gk, (n, z, n
′) 7→ nzṡn′ (1.3.1)

induced by the group multiplication in Gk. Then
(i) ZkNk is an algebraic subgroup of Gk and multiplication defines an isomorphism of varieties, Zk × Nk →

ZkNk = NkZk;
(ii) NkZkṡNk is an algebraic subvariety of Gk, and the map

Nk × Zk ×Nk,s → NkZkṡNk,s = NkZkṡNk, (n, z, n
′) 7→ nzṡn′ (1.3.2)

induced by the group multiplication in Gk is an isomorphism of algebraic varieties;
(iii) Moreover,

NkZkṡNk = NkZkṡNk,s = NkṡZkNk,s. (1.3.3)

Proof. The proof of part (i) follows from Lemma 1.3.2 (i) with Ak = Gk, G1
k = Zk and G2

k = Nk.
(ii) The proof is parallel to that of Lemma 8.3.6 in [124] where a similar statement is justified in the case of

Bruhat cells.
Using the isomorphism of part (i) and definition (1.3.1) one can describe the set NkZkṡNk as the orbit of the

element ṡ in Gk for the following regular action of NkZk ×Nk on Gk:

(NkZk ×Nk)×Gk → Gk, ((nz, n
′), g) 7→ nzgn′

−1
.

Now the first claim in part (ii) follows from Lemma 1.3.2 (ii) with Ak = NkZk ×Nk, V = Gk, O = NkZkṡNk.
To establish isomorphism (1.3.2) we introduce the algebraic subgroup N ′k,s = Nk ∩ ṡ−1Nkṡ ⊂ Nk. Applying

Lemma 1.3.1 for Ψ1 = −∆s
s and Ψ2 = −(∆s

+ \ (∆s
s ∪ ∆0)), so that NΨ1 = Nk,s and NΨ2 = N ′k,s, one has an

isomorphism of varieties
Nk = N ′k,sNk,s ' N ′k,s ×Nk,s, (1.3.4)

induced by the group multiplication in Gk. Hence

NkZkṡNk = NkZkṡN
′
k,sNk,s = NkZkṡNk,s, (1.3.5)

as Zk normalizes Nk. This implies that morphism of varieties (1.3.2) is bijective. So in fact one can view NkZkṡNk

as the orbit of the element ṡ in Gk for the following regular action of the algebraic group NkZk ×Nk,s on Gk:

(NkZk ×Nk,s)×Gk → Gk, ((nz, n
′), g) 7→ nzgn′

−1
,

and the action map gives rise to a bijective equivariant morphism

NkZk ×Nk,s → NkZkṡNk,s, (nz, n
′) 7→ nzṡn′

−1
(1.3.6)

of NkZk ×Nk,s and NkZkṡNk,s viewed as homogeneous spaces for NkZk ×Nk,s.
One verifies straightforwardly that this morphism induces an isomorphism of the tangent spaces at the points

(1, 1) and ṡ. Therefore by Lemma 1.3.2 (iii) with X = NkZk×Nk,s, Y = NkZkṡNk,s, Ak = NkZk×Nk,s morphism
(1.3.6) is an isomorphism of varieties. Composing it with the algebraic group isomorphism NkZk ' Nk × Zk

established in part (i) and with the map taking inverse on Nk,s we deduce that (1.3.2) is an isomorphism of
varieties.

(iii) The first identity in (1.3.3) was established in part (ii), the second one follows from the fact that s fixes
the root system ∆0 of Zk, and hence ṡZkṡ

−1 = Zk.

Now we can state the main proposition in this section in which we define transversal slices to conjugacy classes
in algebraic groups.

Proposition 1.3.4. (i) ZkNk,s is an algebraic subgroup in Gk, with the variety structure inherited from Zk×Nk,s

via the bijection ZkNk,s ' Zk×Nk,s induced by the multiplication map in Gk. ṡZkNk,s = ZkṡNk,s with the variety
structure induced from ZkNk,s is a closed subvariety of NkZkṡNk and of Gk, and the conjugation map

Nk × ṡZkNk,s → NkZkṡNk, (n, g) 7→ ngn−1, (1.3.7)

is an isomorphism of varieties;
(ii) The variety Σk,s = ṡZkNk,s = ZkṡNk,s is a transversal slice to the set of conjugacy classes in Gk;
(iii) Assume that k = C and that Gk = G is simply-connected. Then NsZN is a closed subvariety of G.
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Proof. (i) Note first that ZkNk,s is an algebraic subgroup in Gk. Indeed, by the definition s fixes the root system
∆0 of Zk, so ṡZkṡ

−1 = Zk, and also Zk normalizes Nk and Nk. Hence for any ns ∈ Nk,s and any z ∈ Zk one
has znsz

−1 ∈ Nk and ṡznsz
−1ṡ−1 = (ṡzṡ−1)(ṡnsṡ

−1)(ṡzṡ−1)−1 ∈ Nk as ṡzṡ−1 ∈ Zk and ṡnsṡ
−1 ∈ Nk by the

definition of Nk,s. We deduce that Zk normalizes Nk,s in Gk. Thus by Lemma 1.3.2 (i) with Ak = Gk, G1
k = Zk

and G2
k = Nk,s, ZkNk,s is an algebraic subgroup in Gk, with the variety structure inherited from Zk × Nk,s via

the bijection ZkNk,s ' Zk ×Nk,s induced by the multiplication map in Gk.
ṡZkNk,s ' ZkNk,s is a closed subvariety of Gk as the left multiplication by ṡ in Gk is a morphism of varieties.
ṡZkNk,s ' ZkṡNk,s is a closed subvariety of NkZkṡNk due to the closed embedding

Zk ×Nk,s ↪→ Nk × Zk ×Nk,s, (z, n) 7→ (1, z, n)

and isomorphism of varieties (1.3.2).
We show that map (1.3.7) is an isomorphism of varieties. By the definition this map is a morphism of varieties.

We shall define the inverse map and show that it is also a morphism of varieties.
Observe that map (1.3.7) is bijective if and only if for any given ks ∈ Nk,s, u ∈ Nk and z ∈ Zk the equation

uzṡks = nz′ṡnsn
−1 (1.3.8)

has a unique solution n ∈ Nk, ns ∈ Nk,s, z
′ ∈ Zk. In this case the solution defines the inverse map to morphism

of varieties (1.3.7). We shall construct this map explicitly. From this construction it will be clear that the inverse
map is also a morphism of varieties.

First observe that any element uzṡks is uniquely conjugated by ks ∈ Nk,s to vzṡ ∈ NkZkṡ, v = ksu, and hence
we can assume that ks = 1 in (1.3.8),

vzṡ = nz′ṡnsn
−1. (1.3.9)

Using isomorphism (1.3.2) we deduce that the corresponding map

NkZkṡNk,s → Nk,s ×NkZkṡ, uzṡks 7→ (ks, ksuzṡ) (1.3.10)

is an isomorphism of varieties.
Now we show that for any given v ∈ Nk and z ∈ Zk equation (1.3.9) has a unique solution n ∈ Nk, ns ∈ Nk,s, z

′ ∈
Zk which is expressed in terms of vz ∈ NkZk using only a composition of morphisms of algebraic varieties: the
isomorphism of varieties NkZk ' Nk × Zk, algebraic factorization of elements of Nk as products of elements from
one–parameter subgroups, Chevalley commutation relations between one–parameter subgroups of Gk, conjugation
by elements of Zk and by the element ṡ ∈ Gk. This implies that the corresponding map NkZkṡ→ Nk × ṡZkNk,s,
vzṡ 7→ (n, z′ṡns) is an injective morphism of varieties, and hence the composition of this map with isomorphism
(1.3.10) is the inverse to (1.3.7) morphism of varieties.

In order to construct the unique solution to equation equation (1.3.9) we shall use two inductive constructions.
The first induction is over certain ṡ–invariant reductive subgroups in Gk that we are going to define. Using

inclusions (1.2.23) of s–invariant sets of roots and Lemma 1.2.2 we can define the corresponding standard Levi
subgroups Gk with root systems ∆ik , k = 0, . . . ,M . Note that according to the convention introduced in the
beginning of this section we always have ∆i0 = ∆0, so that G0 = Lk. In the case when ∆0 is empty this reduces
to G0 = Hk.

We shall use induction over the reductive subgroups which appear in the chain of strict inclusions

Gk = GM ⊃ GM−1 ⊃ . . . ⊃ G0 = Lk (1.3.11)

corresponding to inclusions (1.2.23).
Note that by Lemma 1.2.2 Gk−1 is also the Levi factor of the parabolic subgroup Pk−1 ⊂ Gk containing the

Borel subgroup Bsk,− ∩Gk ⊂ Gk and associated to the set of simple roots −Γs ∩∆ik−1
. Let Nk−1 be the unipotent

radical of Pk−1. We also denote by Nk−1 the unipotent radical of the opposite parabolic subgroup.
By these definitions the group multiplication in Gk yields the following isomorphisms of subvarieties Gk ⊂ Gk,

Gk := Pk−1Nk−1 = Nk−1Gk−1Nk−1 ' Pk−1 ×Nk−1 ' Nk−1 ×Gk−1 ×Nk−1, (1.3.12)

Note that by the definition Nk−1 is generated by the one–parameter subgroups corresponding to the roots from
the set −∆ik ∩∆s

+, and by (1.2.16) one can represent −∆s
+ \∆0 as the following disjoint union

−∆s
+ \∆0 =

M⋃
k=0,ik 6=0

(−∆ik ∩∆s
+). (1.3.13)
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Since Nk is generated by the one–parameter subgroups corresponding to the roots from the set −∆s
+ \∆0, Lemma

1.3.1 and decomposition (1.3.13) imply that the group multiplication in Gk gives rise to the following isomorphisms
of algebraic varieties

Nk = NM−1NM−2 . . . N0 ' NM−1 ×NM−2 × . . .×N0, (1.3.14)

Nk = N0N1 . . . NM−1 ' N0 ×N1 × . . .×NM−1,

and similar isomorphisms

Nk = NM−1NM−2 . . . N0 ' NM−1 ×NM−2 × . . .×N0, (1.3.15)

Nk = N0N1 . . . NM−1 ' N0 ×N1 × . . .×NM−1.

Note that, since the subsets of roots ∆ik are s–invariant, the subgroups Gk are invariant with respect to the
action of ṡ on Gk by conjugations.

Applying isomorphisms (1.3.12), (1.3.14) and (1.3.15) successively we also obtain the following isomorphisms of

subvarieties G
k ⊂ Gk,

G
k

:= NkGkN
k ' Nk ×Gk ×N

k
, Nk := NM−1NM−2 . . . Nk ' NM−1 ×NM−2 × . . .×Nk, (1.3.16)

N
k

:= NM−1NM−2 . . . Nk ' NM−1 ×NM−2 × . . .×Nk.

Note that NkGk is a parabolic subgroup in Gk, Nk is its unipotent radical, and N
k

the opposite unipotent
radical.

Induction 1.

The first induction we are going to use in order to prove that equation (1.3.9) has a unique solution is over the
reductive subgroups Gk starting with k = 0. At the same time we shall also show that the solution is given by a
map NkZkṡ→ Nk × ṡZkNk,s which is a morphism of varieties.

First we rewrite equation (1.3.9) in a slightly different form,

vzṡnṡ−1 = nz′ṡnsṡ
−1. (1.3.17)

To establish the base of induction we first observe that both the l.h.s. and the r.h.s. of equation (1.3.17) belong

to the subvariety G
0 ⊂ Gk.

Observe that the G0 = Lk–component of equation (1.3.17) with respect to decomposition (1.3.16) for k = 0 is
reduced to

z = z′. (1.3.18)

Indeed, using (1.3.4) we can write

ṡNkṡ
−1 = ṡN ′k,sṡ

−1ṡNk,sṡ
−1 ⊂ NkNk. (1.3.19)

If n = mms is the decomposition of n corresponding to the decomposition Nk = N ′k,sNk,s then recalling that Zk

normalizes both Nk and Nk we deduce that the decompositions of the r.h.s. and of the l.h.s. of equation (1.3.17)

corresponding to the decomposition G
0

= NkLkNk take the form

(vzṡmṡ−1z−1)z(ṡmsṡ
−1) = nz′(ṡnsṡ

−1),

where vzṡmṡ−1z−1, n ∈ Nk and ṡmsṡ
−1, ṡnsṡ

−1 ∈ Nk, z, z′ ∈ Zk ⊂ Lk. This implies (1.3.18) and establishes the
base of induction.

Note also that the map NkZkṡ→ Zk, vzṡ 7→ z is a morphism of varieties.
Now let

n = n0 . . . nM−2nM−1, v = vM−1 . . . v1v0, ns = ns0 . . . nsM−2nsM−1 (1.3.20)

be the decompositions of the elements n, v, ns corresponding to decompositions (1.3.14) and assume that nj and
nsj have already been uniquely defined for j < k − 1 and are given by injective maps NkZkṡ→ Nj and NkZkṡ→
Nj∩Nk,s, j < k−1, which are morphisms of varieties. We shall show that using equation (1.3.17) one can find nk−1

and nsk−1 in a unique way using some injective morphisms of varieties NkZkṡ→ Nk−1 and NkZkṡ→ Nk−1∩Nk,s.
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Observe that both the l.h.s. and the r.h.s. of equation (1.3.17) belong to the subvariety G
k ⊂ G and that the

Gk–component of equation (1.3.17) with respect to decomposition (1.3.16) is reduced to

vk−1(v)k−1zṡ(n)k−1nk−1ṡ
−1 = (n)k−1nk−1zṡ(ns)k−1nsk−1ṡ

−1, (1.3.21)

where (ns)k−1 = ns0 . . . nsk−2 ∈ Gk−1, (n)k−1 = n0 . . . nk−2 ∈ Gk−1, (v)k−1 = vk−2 . . . v0 ∈ Gk−1 and (n)k−1,
(ns)k−1, (u)k−1, vk−1, z are already known. This follows, similarly to the case k = 0, from decompositions (1.3.20),

the facts that that Gk−1 normalizes both Nk−1 and N
k−1

, and that the subgroups Gk are invariant with respect
to the action of ṡ on Gk by conjugations.

The same properties imply that after multiplying by (n)−1
k−1 from the left, equation (1.3.21) takes the form

wz0ṡnk−1ṡ
−1 = nk−1z

′
0ṡnsk−1ṡ

−1, (1.3.22)

with some known w = (n)−1
k−1vk−1(n)k−1 ∈ Nk−1, z0 = (n)−1

k−1(v)k−1zṡ(n)k−1ṡ
−1, z′0 = zṡ(ns)k−1ṡ

−1, z0, z
′
0 ∈

Gk−1, and the compatibility of the equation of type (1.3.21) with k replaced by k − 1 implies that z0 = z′0.
Therefore (1.3.22) takes the form

wz0ṡn̄ṡ
−1 = n̄z0ṡn̄sṡ

−1 (1.3.23)

where we renamed the unknowns n̄ = nk−1, n̄s = nsk−1 to simplify the notation.
Let n̄ = m̄m̄s be the decomposition of the element n̄ corresponding to the factorization

Nk−1 = (Nk−1 ∩N ′k,s)(Nk−1 ∩Nk,s)

which follows from isomorphism of varieties (1.3.4). In terms of this factorization equation (1.3.23) can be rewritten
as follows

wz0ṡm̄ṡ
−1ṡm̄sṡ

−1 = n̄z0ṡn̄sṡ
−1, (1.3.24)

and the Nk−1–component of the last equation with respect to factorization (1.3.12) is

ṡm̄sṡ
−1 = ṡn̄sṡ

−1.

From this relation we obtain that

m̄s = n̄s, (1.3.25)

and hence (1.3.24) yields

wz0ṡm̄ṡ
−1z−1

0 = n̄. (1.3.26)

Now we show that the last equation defines n̄ in a unique way.
First observe that n̄ ∈ Nk−1, and Nk−1 is generated by one–parameter subgroups corresponding to the roots

from the set (∆ik)− = −(∆ik)+, where (∆ik)+ = ∆ik ∩∆s
+.

By the definition of the set ∆s
s each s–orbit in the s–invariant set ∆ik contains a unique element from ∆s

s ∩
∆ik . This observation implies that the set (∆ik)− is the disjoint union of the subsets ∆p

ik
= {α ∈ −(∆ik)+ :

s−1α, . . . , s−(p−1)α ∈ −(∆ik)+, s
−pα ∈ (∆ik)+}, p = 1, . . . , Dk + 1,

(∆ik)− =

Dk+1⋃
p=1

∆p
ik
. (1.3.27)

Here Dk is chosen in such a way that ∆Dk+1
ik

⊂ −∆s
s ∩∆ik , and

∆Dk
ik

= ∆′
Dk
ik
∪∆′′

Dk
ik

(disjoint union), (1.3.28)

where ∆′
Dk
ik

= ∆Dk
ik
∩ −∆s

s, and ∆′′
Dk
ik

= ∆Dk
ik
\∆′

Dk
ik

. The set ∆Dk+1
ik

may be empty.
In the case when hik is a plane, the orthogonal projections of the roots from the subsets ∆p

ik
onto hik are

contained in the interior of the sectors labeled ∆p
ik

at Figure 2. All those sectors belong to the lower half plane and

have the same central angles equal to θik , except for the last sector labeled by ∆Dk+1
ik

, which can possibly have a
smaller angle.
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hik

∆1
ik

∆2
ik

∆3
ik

∆Dk+1
ik

∆Dk
ik

OO

θik

Fig. 2

The vector hik is directed upwards at the picture, and the orthogonal projections of elements from −(∆ik)+ onto
hik are contained in the lower half plane. The element s ∈ W acts on the plane hik by clockwise rotation by the
angle θik .

Now consider the unipotent subgroups Np
k−1, p = 1, . . . , Dk + 1, N ′k−1, N ′′k−1 generated by the one–dimensional

subgroups corresponding to the roots from the sets ∆p
ik

, ∆′
Dk
ik

, ∆′′
Dk
ik

, respectively.

By Lemma 1.3.1 applied to disjoint unions (1.3.27), (1.3.28) and (∆ik)− ∩ (−∆s
s) = ∆′

Dk
ik
∪ ∆Dk+1

ik−1
we have

isomorphisms of varieties

Nk−1 = N1
k−1N

2
k−1 . . . N

Dk+1
k−1 ' N1

k−1 ×N2
k−1 × . . .×N

Dk+1
k−1 , NDk

k−1 = N ′′k−1N
′
k−1, Nk−1 ∩Nk,s = N ′k−1N

Dk+1
k−1 .
(1.3.29)

Let
n̄ = n̄1 . . . n̄Dk+1, n̄Dk = n̄′′n̄′, m̄ = n̄1 . . . n̄Dk−1n̄′′, w = w1w2 . . . wDk+1, m̄s = n̄′n̄Dk+1 (1.3.30)

be the corresponding decomposition of elements n̄, m̄, w and m̄s, respectively.

Induction 2.

We claim that the components n̄p, p = 1, . . . , Dk + 1 can be uniquely calculated by induction starting with n̄1.
Indeed, substituting decompositions (1.3.30) into (1.3.26) we obtain

w1w2 . . . wDk+1z0ṡn̄
1 . . . n̄Dk−1n̄′′ṡ−1z−1

0 = n̄1 . . . n̄Dk+1.

Now comparing the Np
k−1–components of the last equation, with respect to the first factorization in (1.3.29), and

using the fact that ṡNp
k−1ṡ

−1 ⊂ Np+1
k−1 , p = 1, . . . , Dk−1, ṡN ′′k−1ṡ

−1 ⊂ NDk+1
k−1 , and that z0 normalizes the subgroups

Np
k−1, p = 1, . . . , Dk + 1, N ′k−1, N ′′k−1, we obtain

n̄1 = w1, n̄p = (wp . . . wDk+1z0ṡn̄
1 . . . n̄p−1ṡ−1z−1

0 )p, p = 2, . . . , Dk, (1.3.31)

n̄Dk+1 = (wDk+1z0ṡn̄
1 . . . n̄Dk−1n̄′′ṡ−1z−1

0 )Dk+1, (1.3.32)

where n̄′′ is defined from the factorization n̄Dk = n̄′′n̄′, and the subscript (. . .)p stands for the Np
k−1–component

with respect to the first factorization in (1.3.29). From formulas (1.3.31), (1.3.32) one can recursively find the
components n̄p starting from n̄1 = w1, and finally one can find n̄s using (1.3.25).

Note that by the construction and by the induction hypothesis the maps NkZkṡ → Nk−1, vzṡ 7→ nk−1 = n̄ =
n̄1 . . . n̄Dk+1 and NkZkṡ→ Nk−1 ∩Nk,s, vzṡ 7→ nsk−1 = n̄s = m̄s = n̄′n̄Dk+1 are injective morphisms of varieties.
This establishes the induction step.
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Finally, using isomorphisms of varieties (1.3.14) and Lemma 1.3.3 we conclude that the map NkZkṡ → Nk ×
ṡZkNk,s, vzṡ 7→ (n, zṡns), n = n0 . . . nM−2nM−1, ns = ns0 . . . nsM−2nsM−1, is an injective morphism of varieties.
Thus its composition with isomorphism of varieties (1.3.10) is the injective morphism inverse to morphism (1.3.7).
This establishes isomorphism (1.3.7) and completes the proof of part (i).

(ii) Next we have to show that the variety ṡZkNk,s ⊂ Gk is a transversal slice to the set of conjugacy classes in
Gk, i.e. that the differential of the conjugation map

γ : Gk × ṡZkNk,s → Gk (1.3.33)

is surjective.
Note that the set of smooth points of map (1.3.33) is stable under the Gk–action by left translations on the first

factor of Gk × ṡZkNk,s. Therefore it suffices to show that the differential of map (1.3.33) is surjective at points
(1, szns), ns ∈ Nk,s, z ∈ Zk.

In terms of the left trivialization of the tangent bundle TGk and the induced trivialization of T (ṡZkNk,s) the
differential of map (1.3.33) at points (1, ṡzns) takes the form

dγ(1,ṡzns) : (x, (n,w))→ −(Id−Ad(ṡzns)
−1)x+ n+ w, (1.3.34)

x ∈ gk ' T1(Gk), (n,w) ∈ nk,s + zk ' Tṡzns(ṡZkNk,s),

where nk,s ⊂ gk is the Lie algebra of Nk,s.
In order to show that the image of map (1.3.34) coincides with TṡznsGk ' gk we shall need a direct sum

decomposition of the Lie algebra gk as a vector space,

gk = nk + zk + nk + h′k, (1.3.35)

where h′k is a complementary s–invariant subspace to hsk in hk.
We shall use isomorphism (1.3.7), α : Nk × ṡZkNk,s → NkṡZkNk,s = NkṡZkNk. By the definition α is

the restriction of the map γ to the subvariety Nk × ṡZkNk,s ⊂ Gk × ṡZkNk,s. Observe that in terms of the
left trivialization of the tangent bundle TGk the differential of the map α at points (1, ṡzns) ∈ Nk × ṡZkNk,s,
ns ∈ Nk,s, z ∈ Zk is given by

dα(1,szns) : (x, (n,w))→ −(Id−Ad(ṡzns)
−1)x+ n+ w, (1.3.36)

x ∈ n ' T1(Nk), (n,w) ∈ nk,s + zk ' Tṡzns(ṡZkNk,s).

Recall that the conjugation map α : Nk × ṡZkNk,s → NkṡZkNk,s is an isomorphism of varieties, and hence
its differential is a vector space isomorphism of the corresponding tangent spaces at all points. Using the left
trivialization of the tangent bundle TGk the tangent space Tṡzns(NkṡZkNk,s) can be identified with nk,s + zk +
Ad(ṡzns)

−1nk, Tṡznsz(NkṡZkNk,s) ' nk,s+zk+Ad(ṡzns)
−1nk. Therefore using (1.3.36) and the fact that dα(1,ṡzns)

is a vector space isomorphism we deduce that

(Id−Ad(ṡzns)
−1)nk + nk,s + zk = Ad(ṡzns)

−1nk + nk,s + zk. (1.3.37)

Now observe that by the definition the vector subspace (Id − Ad(ṡzns)
−1)nk ⊂ gk is contained in the image

of dα(1,ṡzns), and by (1.3.37) the vector subspace Ad(ṡzns)
−1nk ⊂ gk is also contained in the image of dα(1,ṡzns).

Since nk = (Id − Ad(ṡzns)
−1)nk + Ad(ṡzns)

−1nk, we deduce that nk is contained in the image of dα(1,ṡzns), and
hence in the image of dγ(1,ṡzns),

nk ⊂ Im dγ(1,ṡzns). (1.3.38)

Next observe that similarly to (1.3.7) one can show that the conjugation map

Nk ×Nk,s−1Zkṡ→ NkZkṡNk = Nk,s−1ZkṡNk, Nk,s−1 = {n ∈ Nk : ṡ−1nṡ ∈ Nk} (1.3.39)

is an isomorphism of varieties.
Interchanging the roles of Nk and Nk in (1.3.39) we immediately obtain that the conjugation map α : Nk ×

Nk,s−1Zkṡ → Nk,s−1ZkṡNk, where Nk,s−1 = ṡNk,sṡ
−1, is an isomorphism of varieties. Observe also that by the

definition the map α is the restriction of γ to the subvariety Nk ×Nk,s−1Zkṡ = Nk × ṡZkNk,s ⊂ Gk × ṡZkNk,s.
Using the differential of the map α we immediately infer, similarly to inclusion (1.3.38), that

nk ⊂ Im dγ(1,ṡzns). (1.3.40)
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Now observe that hk normalizes nk, and Zk is a subgroup of Lk the adjoint action of which has the property
that for any x′ ∈ h′k, l ∈ Lk one has (Ad(l)x′)h′k = x′, where for any element y ∈ gk we denote by (y)h′k the
h′k–component of y with respect to decomposition (1.3.35). Therefore we have for any x′ ∈ h′k(

(Id−Ad(ṡzns)
−1)x′

)
h′k

= (Id−Adṡ−1)x′. (1.3.41)

Since by the definition of h′k the operator Adṡ−1 has no fixed points in it, from formula (1.3.41) it follows that
the operator h′k → h′k, x′ 7→ (Id−Adṡ−1)x′ is invertible, so that h′k is contained in the image of (Id−Ad(ṡzns)

−1),
and hence, by formula (1.3.34), in the image of dγ(1,ṡzns). Recalling also inclusions (1.3.38) and (1.3.40) and taking
into account the obvious inclusion zk ⊂ Im dγ(1,ṡzns) and decomposition (1.3.35) we deduce that the image of the
map dγ(1,ṡzns) coincides with gk ' TṡznsGk. Therefore the differential of the map γ is surjective at all points. This
completes the proof of part (ii).

(iii) Finally we show that NsZN is a closed subvariety in G provided that G is simply–connected.
Recall that by Lemma 1.3.3 (ii) NsZN ' NsZNs ' NZsNs ' N × Z ×Ns is a subvariety of G, and observe

that multiplication by s−1 from the right induces an isomorphiam of varieties, NZsNs ' NZsNss
−1. By the

definition of Ns, NZsNss
−1 is also a subset of NZN .

Lemma 1.3.5. (i) NZN and NZN are subvarieties of G with the variety structure induced from N ×Z×N using
the bijective maps

N × Z ×N → NZN, (n, z, n̄) 7→ nzn̄, (1.3.42)

N × Z ×N → NZN, (n̄, z, n) 7→ n̄zn,

induced by the multiplication in G.
(ii) The varieties NZN and NZN are closed in G.

Proof. (i) We prove the statement for NZN . The other case is treated in a similar way.
By Lemma 1.3.2 (i) with Ak = G, G1

k = Z and G2
k = N , NZ ⊂ G is an algebraic subgroup with the variety

structure induced from N × Z by the multiplication map N × Z → NZ in G.
One can describe the set NZN as the orbit of the element 1 in G for the following regular action of NZ ×N

on G:
(NZ ×N)×G→ G, ((nz, n̄), g) 7→ nzgn̄−1. (1.3.43)

Thus NZN has the natural structure of an algebraic variety by part (ii) of Lemma 1.3.2 with Ak = NZ × N ,
V = Gk, O = NZN .

By definition (1.3.43) with g = 1 gives rise to a bijective NZ ×N -equivariant morphism of NZ ×N and NZN
viewed as homogeneous spaces for NZ ×N ,

NZ ×N → NZN, (nz, n̄) 7→ nzn̄−1. (1.3.44)

One verifies straightforwardly that this morphism induces an isomorphism of the tangent spaces at the points
(1, 1) and 1. Therefore by Lemma 1.3.2 (iii) with X = NZ ×N , Y = NZN , Ak = NZ ×N morphism (1.3.44) is
an isomorphism of varieties. Composing it with the algebraic group isomorphism NZ ' N × Z and with the map
taking the inverse in N we deduce that the first map in (1.3.42) is an isomorphism of varieties.

(ii) We shall prove the statement for NZN . The other case is treated in a similar way. We shall consider the
case when ∆0 is not empty. The other case can be considered in a similar way.

Recall that by the definition h′R and h0 are annihilators of each other with respect to the restriction of the
bilinear form on g to hR. As before, let h′∗R and h∗0 be the images of h′R and h0, respectively, under the isomorphism
hR ' h∗R induced by the bilinear form on g.

Introduce the element

h̄0 =

M∑
k=1

hik ∈ hR. (1.3.45)

By the definition of ∆s
+ for any x ∈ h∗0 one has h̄0(x) = 0 and a root α ∈ ∆ \ ∆0 belongs to ∆s

+ if and only if
h̄0(α) > 0,

∆s
+ \∆0 = {α ∈ ∆|h̄0(α) > 0}, h̄0(x) = 0, x ∈ h∗0. (1.3.46)

Let h̄∗0 ∈ h∗R be the image in hR of the element h̄0 ∈ h′R. Since h̄0 ∈ h′R we actually have h̄∗0 ∈ h′∗R .
Let α1, . . . , αp be the simple roots in Γs which do not belong to ∆0, ω1, . . . , ωp the corresponding fundamental

weights. h′∗R is a linear subspace in the real linear span Π of ω1, . . . , ωp as Π is the annihilator of the subspace of
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h∗R spanned by the roots from ∆0 which is contained in h∗0. The subset Π+ of Π which consists of x satisfying the
condition (x, α) > 0, α ∈ ∆s

+ \∆0 is open in Π and by definition h̄∗0 ∈ Π+ ∩h′∗R . Therefore the intersection Π+ ∩h′∗R
is not empty and open in h′∗R .

The roots γ1, . . . , γl′ form a linear basis of h′∗R . They also span a Z–sublattice Q′ in the Z–lattice generated by
ω1, . . . , ωp as every root is a linear combination of fundamental weights with integer coefficients and γ1, . . . , γl′ form
a linear basis of h′∗R ⊂ Π. Linear combinations of elements of Q′ with rational coefficients are dense in h′∗R , and, in
particular, in the open set Π+ ∩ h′∗R . Since the subset Π+ of Π consists of x satisfying the condition (x, α) > 0,
α ∈ ∆s

+ \∆0, there is a linear basis of h′∗R which consists of linear combinations of ω1, . . . , ωp with positive rational
coefficients. Multiplying the elements of this basis by appropriate positive integer numbers we obtain a linear basis
Ωi, i = 1, . . . , l′ of h′∗R which consists of integral dominant weights of the form Ωi =

∑p
j=1 gijωj , gij ∈ Z, gij > 0.

Recall that by the definition hs = h′⊥ is the orthogonal compliment to h′ in h with respect to the restriction of
the symmetric bilinear form on g to h. hs is the complexification of h0, and hence we deduce that an element x ∈ h
belongs to hs = h′⊥ if and only if Ωi(x) = 0, i = 1, . . . , l′,

x ∈ hs = h′⊥ ⇐⇒ Ωi(x) = 0, i = 1, . . . , l′. (1.3.47)

Let Bs+ be the Borel subgroup of G corresponding to the system ∆s
+ of positive roots, Bs− the opposite Borel

subgroup , Ns
±, their unipotent radicals, respectively.

Next observe that since G is simply–connected, for each integral dominant weight λ with respect to the system
∆s

+ of positive roots there exists an irreducible finite–dimensional representation of G with highest weight λ.
Let VΩi , i = 1, . . . , l′ be the irreducible finite–dimensional representation of G with highest weight Ωi with

respect to the system ∆s
+ of positive roots. Denote by vΩi a nonzero highest weight vector in VΩi and by (·, ·)

the contravariant form on VΩi normalized in such a way that (vΩi , vΩi) = 1. The matrix element g 7→ (vΩi , gvΩi),
g ∈ G can be regarded as a regular function on G whose restriction to the big dense cell Ns

−HN
s
+ is given by the

character Ωi of H,

(vΩi , n−hn+vΩi) = (vΩi , hvΩi) = Ωi(h), n− ∈ Ns
−, h ∈ H,n+ ∈ Ns

+. (1.3.48)

Each fundamental weight ωi can be regarded as a regular function g 7→ (vωj , gvωj ) on G defined similarly to
the regular function g 7→ (vΩi , gvΩi) with VΩi replaced by the irreducible finite–dimensional representation Vωi
with highest weight ωi. By the definition of Ωi the function (vΩi , gvΩi) can be expressed as a product of functions
(vωj , gvωj ),

(vΩi , gvΩi) =

p∏
j=1

(vωj , gvωj )
gij , g ∈ G. (1.3.49)

Consider the closed subvariety in G defined by the equations (vΩi , gvΩi) = 1, i = 1, . . . , l′, g ∈ G. According
to the Bruhat decomposition every element g ∈ G belongs to g ∈ Bs−wB

s
+ for some w ∈ W . In this case g

can be written in the form g = n−whn+ for some n± ∈ Ns
±, h ∈ H. Now by (1.3.48) and (1.3.49) we have

(vΩi , gvΩi) = Ωi(h)(vΩi , wvΩi) = Ωi(h)
∏p
j=1(vωj , wvωj )

gij . As different weight spaces of Vωj are orthogonal with
respect to the contravariant form, the right hand side of the last identity is not zero for all i = 1, . . . , l′ if and only
if w fixes all weights ωi, i = 1, . . . , p, i.e. if and only if w belongs to the Weyl group of the root subsystem ∆0.
Since ∆0 is the root system of the Levi factor L, and (vωi , vωi) = 1, one has (vΩi , wvΩi) 6= 0, i = 1, . . . , l′ if and
only if g ∈ NLN , and in that case (vΩi , gvΩi) = Ωi(h), where g = n−whn+ for some n± ∈ Ns

±, h ∈ H, and w is an
element of the Weyl group of the root subsystem ∆0.

As we already proved in (1.3.47), an element x ∈ h belongs to hs if and only if Ωi(x) = 0, i = 1, . . . , l′. Therefore

the conditions (vΩi , gvΩi) = Ωi(h) = 1, i = 1, . . . , l′ are equivalent to the fact that h belongs to a subgroup H0′

of H with Lie algebra hs. Hence the equations (vΩi , gvΩi) = 1, i = 1, . . . , l′ hold if and only if g ∈ NZ ′N , where
Z ′ ⊂ L is a subgroup of L with the same Lie algebra as Z. Thus NZ ′N is a closed subvariety of G. Its connected
component containing the identity element of G is obviously NZN . Thus NZN is a closed subvariety of G.

Now recall that NZsNs ' NZsNss
−1 is a subset of NZN as by the definition of Ns, sNss

−1 ⊂ N . In fact
sNss

−1 is the algebraic subgroup in N generated by the one–parameter subgroups corresponding to the roots
from the set {α ∈ ∆s

+ : s−1α ∈ −∆s
+}. So by isomorphisms (1.3.2) and (1.3.42), and by Lemma 1.3.5 (i),

NZsNss
−1 ' NZsNs is a closed subvariety of NZN due to the closed embedding

N × Z × sNss−1 ↪→ N × Z ×N.
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Also Lemma 1.3.5 (ii) immediately implies that the closed subvariety NZsNss
−1 ⊂ NZN is also closed in G,

and hence the variety NsZN = NZsNs ' NZsNss−1s ' NZsNss−1 is closed in G.

The subvarieties Σk,s ⊂ Gk are analogues of the Slodowy slices in algebraic group theory.

Remark 1.3.6. In fact, in the construction of the inverse map to morphism (1.3.7) suggested in the proof of
the previous proposition we only used relations in Gk arising from the corresponding Chevalley group over Z.
Therefore isomorphisms similar to (1.3.7) hold in the case when Gk is replaced with the Chevalley group (or even
group scheme) over an arbitrary ring.

1.4 The Lusztig partition

In this section, as before, Gk is a connected finite–dimensional semisimple algebraic group over an algebraically
closed field k. At the same time we shall also consider connected finite–dimensional semisimple algebraic groups
Gp of the same type as Gk, i.e. with the same root system, over algebraically closed fields for all characteristic
exponents p.

In the next section we shall show that for every conjugacy class O in Gk one can find a subvariety Σs,k ⊂ Gk

such that O intersects Σs,k and dim O = codim Σs,k. It turns out that there is a remarkable partition of the group
Gk introduced in [83] the strata of which are unions of conjugacy classes of the same dimension. For each stratum
of this partition there is a Weyl group element s such that all conjugacy classes O from that stratum intersect
Σs,k, and dim O = codim Σs,k. This, in particular, determines the dimensions of the conjugacy classes in each
stratum. In this section, which is rather descriptive, we recall the definition of this partition called the Lusztig
partition. The main property of this partition gives an affirmative answer to an old question about intersection of
the conjugacy classes in Gk with Bruhat cells. The exposition in this section mainly follows paper [83] to which we
refer the reader for technical details.

Note that all objects introduced in this section, except for the map φGp and the Lusztig partition itself, only
depend on the Weyl group of Gk or of Gp, on the characteristic of k and on p. The fundamental reason behind
this phenomenon is that in the definitions of these objects only representation theory of the Weyl group and the
sets of unipotent conjugacy classes in Gk or in Gp are used. These sets only depend on the characteristic of k, on
p and on the Weyl group. The reader may always assume that Gk and all Gp have the same root datum.

For any Weyl group W let Ŵ be the set of isomorphism classes of irreducible representations of W over Q. For
any E ∈ Ŵ let bE be the smallest nonnegative integer such that E appears with non–zero multiplicity in the bE-th
symmetric power of the reflection representation of W . If this multiplicity is equal to 1 then one says that E is
good. If W ′ ⊂W are two Weyl groups, and E ∈ Ŵ ′ is good then there is a unique Ẽ ∈ Ŵ such that Ẽ appears in
the decomposition of the induced representation IndWW ′E, bẼ = bE , and Ẽ is good. The representation Ẽ is called

j-induced from E, Ẽ = jWW ′E.
Let g ∈ Gp, and g = gsgu its decomposition as a product of the semisimple part gs and the unipotent part gu.

Let C = ZGp(gs)
◦ be the identity component of the centralizer of gs in Gp. C is a reductive subgroup of Gp of the

same rank as Gp. Let Hp be a maximal torus of C. Hp is also a maximal torus in Gp, and hence one has a natural
imbedding

W ′ = NC(Hp)/Hp → NGp(Hp)/Hp = W,

where NC(Hp), NGp(Hp) stand for the normalizers of Hp in C and in Gp, respectively, W ′ is the Weyl group of C
and W is the Weyl group of Gp.

Let E be the irreducible representation of W ′ associated with the help of the Springer correspondence to the
conjugacy class of gu and the trivial local system on it. Then E is good, and let Ẽ be the j-induced representation
of W . This gives a well-defined map φGp : Gp → Ŵ . The fibers of this map are called the strata of Gp. By
definition the map φGp is constant on each conjugacy class in Gp. Therefore the strata are unions of conjugacy
classes.

Moreover, by 2.4 in [83] we have the following formula for the dimension of the centralizer ZGp(g) of any element
g ∈ Gp in Gp:

dim ZGp(g) = rank Gp + 2bφGp (g), (1.4.1)

where rank Gp is the rank of Gp.
It turns out that the image R(W ) of φGp only depends on W and not on p or the underlying root datum of Gp.

It can be described as follows. Let N (Gp) be the unipotent variety of Gp and N (Gp) the set of unipotent conjugacy
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classes in Gp. Let X p(W ) be the set of irreducible representations of W associated by the Springer correspondence
to unipotent classes in N (Gp) and the trivial local systems on them. We shall identify X p(W ) and N (Gp). Let
fp : N (Gp)→ X p(W ) be the corresponding bijective map.

Proposition 1.4.1. ([83], Sections 1 and 2) We have

R(W ) = X 1(W ) ∪r prime X r(W ).

If Gp is of type An, (n ≥ 1) or E6 then R(W ) = X 1(W ).
If Gp is of type Bn (n ≥ 2), Cn (n ≥ 3), Dn (n ≥ 4), F4 or E7 then R(W ) = X 2(W ).
If Gp is of type G2 then R(W ) = X 3(W ).
If Gp is of type E8 then R(W ) = X 2(W ) ∪ X 3(W ), and X 2(W ) ∩ X 3(W ) = X 1(W ).

The description of the set R(W ) given in Proposition 1.4.1 and the bijections N (Gp) → X p(W ) yield certain
maps between sets N (Gp) which preserve dimensions of conjugacy classes by (1.4.1). For instance, one always has
an inclusion X 1(W ) ⊂ X r(W ) for any r ≥ 2. The corresponding inclusion N (G1) ⊂ N (Gp) coincides with the
Spaltenstein map πG1

p : N (G1)→ N (Gp) which is a bijection for good p (see [122], Théorème III.5.2).
Now we introduce an alternative description of the strata in terms of intersections of conjugacy classes with

Bruhat cells. Fix a system of positive roots in ∆. Note that ∆ can be regarded as the root system of the pair
(Gp, Hp), ∆ = ∆(Gp, Hp). Let Bp be the Borel subgroup in Gp associated to the corresponding system of negative
roots, Hp ⊂ Bp the maximal torus, and l the corresponding length function on W . Denote by W the set of
conjugacy classes in W . For each w ∈ W = NGp(Hp)/Hp one can pick up a representative ẇ ∈ Gp. If p is the
characteristic exponent of k, we write Bp = Bk, N (Gp) = N (Gk), etc.

Let C be a conjugacy class in W . Pick up a representative w ∈ C of minimal possible length with respect to l.
By Theorem 0.4 in [86] there is a unique conjugacy class O ∈ N (G1) of minimal possible dimension which intersects
the Bruhat cell B1ẇB1 and does not depend on the choice of the minimal possible length representative w in C.
We denote this class by ΦG1

1 (C).
As shown in Section 1.1 in [86], one can always find a representative w ∈ C of minimal possible length with

respect to l which is elliptic in a parabolic Weyl subgroup W ′ ⊂W , i.e. w acts without fixed points in the reflection
representation of W ′. Indeed, by Theorem 3.2.12 in [44] there is a parabolic subgroup W ′ ⊂ W such that C ∩W ′
is an elliptic conjugacy class in W ′, i.e. every element in it is elliptic in W ′. By Lemma 3.1.14 in [44] if w ∈ C ∩W ′
is of minimal possible length in its conjugacy class in W ′ with respect to the restriction of l to W ′ then it is also
of minimal possible length in C with respect to l.

Let P ′p ⊂ Gp be the parabolic subgroup which contains Bp and corresponds to W ′, and M ′p the semi-simple part

of the Levi factor of P ′p, so that W ′ is the Weyl group of M ′p. Let ΦG1
p (C) be the unipotent class in Gp containing the

class π
M ′1
p Φ

M ′1
1 (C). This class only depends on the conjugacy class C, and hence one has a map ΦG1

p : W → N (Gp)
which is in fact surjective by 4.5(a) in [86].

Let C ∈ W , and mC the dimension of the fixed point space for the action of any w ∈ C in the reflection
representation. Then by Theorem 0.2 in [85] for any γ ∈ N (Gp) there is a unique C0 ∈ (ΦG1

p )−1(γ) such that the

function mC : (ΦG1
p )−1(γ)→ N reaches its minimum at C0. We denote C0 by ΨG1

p (γ). Thus one obtains an injective

map ΨG1
p : N (Gp)→W .

Now using identifications fp : N (Gp) → X p(W ) one can define the union N̂ (W ) of the sets N (G1) and of
N (Gr) over all prime r as the union X 1(W ) ∪r prime X r(W ) = R(W ). Thus we have a bijection

F : N̂ (W ) = N (G1) ∪r prime N (Gr)→ X 1(W ) ∪r prime X r(W ) = R(W ). (1.4.2)

Using maps ΦG1
p one can also define a surjective map ΦW : W → N̂ (W ) as described in Section 4.1 in [83]. As

it is observed in Section 4.1 of [83] (see also 0.4 in [85]), if ΦG1
r (C) ∈ N (G1) for all r > 1 then ΦG1

r (C) is independent
of r, and one puts ΦW (C) = ΦG1

r (C) for any r > 1, and if ΦG1
r (C) 6∈ N (G1) for some r > 1 then r is unique, and

one defines ΦW (C) = ΦG1
r (C). By Proposition 1.4.1 and formula (1.4.2) ΦW introduced this way is well defined.

By the definition there is a right-sided injective inverse ΨW to ΦW such that if γ ∈ N (G1) then ΨW (γ) = ΨG1
1 (γ),

and if γ 6∈ N (G1), and γ ∈ N (Gr) then ΨW (γ) = ΨG1
r (γ).

Denote by C(W ) the image of N̂ (W ) in W under the map ΨW , C(W ) = ΨW (N̂ (W )). We shall identify C(W ),

N̂ (W ) and R(W ).
Now the strata of the Lusztig partition can be described geometrically as follows. Let C ∈ C(W ). Pick up a

representative w ∈ C of minimal possible length with respect to l. Denote by Gp the set of conjugacy classes in Gp,
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and by G′C the set of all conjugacy classes in Gp which intersect the Bruhat cell BpẇBp. This definition does not
depend on the choice of the minimal possible length representative w. Let

dC = min
γ∈G′C

dim γ.

Then the stratum GC = φ−1
Gp

(F (ΦW (C))) can be described as follows (see Theorem 5.2, [83]),

GC =
⋃

γ∈G′C, dimγ=dC

γ. (1.4.3)

Thus we have a disjoint union

Gp =
⋃

C∈C(W )

GC .

Note that by the definition of the stratum, for good p, if C ∈ Im(ΨG1
1 ) then GC contains a unique unipotent class,

and if C 6∈ Im(ΨG1
1 ) then GC does not contain unipotent classes.

The maps introduced above are summarized in the following diagram

X 1(W )
f1←− N (G1)

↓ ι ↓ πG1

Gk

φGk−→ R(W )
F←− N̂ (W )

ΦW←−−→
ΨW

W,

(1.4.4)

where ι is an inclusion, bijections f1 and F are induced by the Springer correspondence with the trivial local data,
and the inclusion πG1 is induced by the Spaltenstein map.

For exceptional groups the maps f1 and F can be described explicitly using tables in [123], the maps ΦW and
ΨW can be described using the tables in Section 2 in [85], and the maps ι and πG1 can be described explicitly
using the tables of unipotent classes in [75], Chapter 22 or [123] (note that the labeling for unipotent classes in
bad characteristics in [75] differs from that in [123]). The dimensions of the conjugacy classes in the strata in Gk

can be obtained using dimension tables of centralizers of unipotent elements in case when a stratum contains a
unipotent class (see [19, 75]), the tables for dimensions of the centralizers of unipotent elements in bad characteristic
when a stratum does not contain a unipotent class (see [75]) or formula (1.4.1) and the tables of the values of the
b–invariant bE for representations of Weyl groups (see [19, 44]). Note that formula (1.4.1) implies that if O is any
conjugacy class in GC , O ∈ GC then

dim O = dim ΦW (C). (1.4.5)

In case of classical groups all those maps and dimensions are described in terms of partitions (see [19, 45, 75,
84, 85, 86, 122]). In case of classical matrix groups the strata can also be described explicitly (see [83]). We recall
this description below. By (1.4.5) the dimensions of the conjugacy classes in every stratum of Gk are equal to the

dimension of the corresponding conjugacy class in N̂ (W ). The dimensions of centralizers of unipotent elements in
arbitrary characteristic can be found in [54, 75].

If λ = (λ1 ≥ λ2 ≥ . . . ≥ λm) is a partition we denote by λ∗ = (λ∗1 ≥ λ∗2 ≥ . . . ≥ λ∗m) the corresponding dual
partition. It is defined by the property that λ∗1 = m and λ∗i − λ∗i+1 = li(λ), where li(λ) is the number of times i
appears in the partition λ. We also denote by τ(λ) the length of λ, τ(λ) = m. If a partition µ is obtained from λ
by adding a number of zeroes, we shall identify λ and µ.

An

Gk is of type SL(V ) where V is a vector space of dimension n + 1 ≥ 1 over an algebraically closed field k of
characteristic exponent p ≥ 1. W is the group of permutations of n+ 1 elements. All sets in (1.4.4), except for Gk,
are identified with the set of partitions of n+ 1, and under this identification all the maps, except for φGk

, are the
identity maps.

To describe φGk
for Gk = SL(V ) we choose a sufficiently large m ∈ N. Let g ∈ Gk. For any x ∈ k∗ let Vx be

the generalized x–eigenspace of g : V → V and let λx1 ≥ λx2 ≥ . . . ≥ λxm be the sequence in N whose terms are the
sizes of the Jordan blocks of x−1g : Vx → Vx. Then φGk

(g) is the partition λ(g)1 ≥ λ(g)2 ≥ . . . ≥ λ(g)m given by
λ(g)j =

∑
x∈k∗ λ

x
j .
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If g is any element in the stratum Gλ corresponding to a partition λ = (λ1 ≥ λ2 ≥ . . . ≥ λm), λm ≥ 1, then

dim ZGk
(g) = n+ 2

m∑
i=1

(i− 1)λi. (1.4.6)

The element of W which corresponds to λ is the Coxeter class in the Weyl subgroup of the type

Aλ1−1 +Aλ2−1 + . . .+Aλm−1. (1.4.7)

The summands in diagram (1.4.7) are called blocks. Blocks of type A0 are called trivial.

Cn

Gk is of type Sp(V ) where V is a symplectic space of dimension 2n, n ≥ 2 over an algebraically closed field k of
characteristic exponent p. W is the group of permutations of the set E = {ε1, . . . , εn,−ε1, . . . ,−εn} which also
commute with the involution εi 7→ −εi. Each element s ∈ W can be expressed as a product of disjoint cycles of
the form

εk1 → ±εk2 → ±εk3 → . . .→ ±εkr → ±εk1 .

This cycle is of length r; it is called positive if sr(εk1) = εk1 and negative if sr(εk1) = −εk1 . The lengths of the
cycles together with their signs give a set of positive or negative integers called the signed cycle-type of s. To each
positive cycle of s of length r there corresponds a pair of orbits X,−X, X 6= −X, |X| = r, for the action of the
group 〈s〉 generated by s on the set E = {ε1, . . . , εn,−ε1, . . . ,−εn}, and to each negative cycle of s of length r
there corresponds a negative orbit X, X = −X, |X| = 2r, for the action of 〈s〉 on E. We call orbits of the former
type positive and orbits of the latter type negative. A positive cycle of length 1 is called trivial. It corresponds to
a pair of fixed points for the action of 〈s〉 on E.

Elements of W are parametrized by pairs of partitions (λ, µ) satisfying the following conditions.

• The parts of λ are even (for any w ∈ C ∈ W they are the numbers of elements in the negative orbits X,
X = −X, in E for the action of the group 〈w〉 generated by w);

• µ consists of pairs of equal parts (they are the numbers of elements in the positive 〈w〉–orbits X in E; these
orbits appear in pairs X,−X, X 6= −X);

•
∑
λi +

∑
µj = 2n.

We denote this set of pairs of partitions by A1
2n.

An element of W which corresponds to a pair (λ, µ), λ = (λ1 ≤ λ2 ≤ . . . ≤ λm) and µ = (µ1 = µ2 ≤ . . . ≤
µ2k−1 = µ2k) is the Coxeter class in the Weyl subgroup of the type

Cλ1
2

+ Cλ2
2

+ . . .+ Cλm
2

+Aµ1−1 +Aµ3−1 + . . .+Aµ2k−1−1. (1.4.8)

If the characteristic exponent of k is not equal to 2, elements of N (Gk) are parametrized by partitions λ of 2n
for which lj(λ) is even for odd j. We denote this set of partitions by T2n. In case of Gk = Sp(V ) the parts of λ are
just the sizes of the Jordan blocks in V of the unipotent elements from the conjugacy class corresponding to λ.

In this case N̂ (W ) = N (G2), and G2 is of type Sp(V ) where V is a symplectic space of dimension 2n over an
algebraically closed field of characteristic 2. Elements of N (G2) are parametrized by pairs (λ, ε), where λ = (λ1 ≤
λ2 ≤ . . . ≤ λm) ∈ T2n, and ε : {λ1, λ2, . . . , λm} → {0, 1, ω} is a function such that

ε(k) =


ω if k is odd;
1 if k = 0;
1 if k > 0 is even, lk(λ) is odd;
0 or 1 if k > 0 is even, lk(λ) is even.

(1.4.9)

We denote the set of such pairs (λ, ε) by T 2
2n.

Elements of Ŵ are parametrized by pairs of partitions (α, β) written in non–decreasing order, α1 ≤ α2 ≤ . . . ≤
ατ(α), β1 ≤ β2 ≤ . . . ≤ βτ(β), and such that

∑
αi +

∑
βi = n. By adding zeroes we can assume that the length

τ(α) of α is related to the length of β by τ(α) = τ(β) + 1. The set of such pairs is denoted by Xn,1.
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The maps f1, F can be described as follows. Let λ = (λ1 ≤ λ2 ≤ . . . ≤ λ2m+1) ∈ T2n, and assume that λ1 = 0.
If f1(λ) = ((c′1, c

′
3, . . . , c

′
2m+1), (c′2, c

′
4, . . . , c

′
2m)) then the parts c′i are defined by induction starting from c′1 = 0,

c′i = λi
2 if λi is even and c′i−1 is already defined;

c′i = λi+1
2 if λi = λi+1 is odd and c′i−1 is already defined;

c′i+1 = λi−1
2 if λi = λi+1 is odd and c′i is already defined.

The image of f1 consists of all pairs ((c′1, c
′
3, . . . , c

′
2m+1), (c′2, c

′
4, . . . , c

′
2m)) ∈ Xn,1 such that c′i ≤ c′i+1 + 1 for all

i.

If F (λ, ε) = ((c1, c3, . . . , c2m+1), (c2, c4, . . . , c2m)) then the parts ci are defined by induction starting from c1 = 0,

ci = λi
2 if λi is even, ε(λi) = 1 and ci−1 is already defined;

ci = λi+1
2 if λi = λi+1 is odd and ci−1 is already defined;

ci+1 = λi−1
2 if λi = λi+1 is odd and ci is already defined;

ci = λi+2
2 if λi = λi+1 is even, ε(λi) = ε(λi+1) = 0 and ci−1 is already defined;

ci+1 = λi−2
2 if λi = λi+1 is even, ε(λi) = ε(λi+1) = 0 and ci is already defined.

The image R(W ) of F consists of all pairs ((c1, c3, . . . , c2m+1), (c2, c4, . . . , c2m)) ∈ Xn,1 such that ci ≤ ci+1 + 2
for all i.

The map ΦW is defined by ΦW (λ, µ) = (ν, ε), where the set of parts of ν is just the union of the sets of parts
of λ and µ, and

ε(k) =

 1 if k ∈ 2N is a part of λ;
0 if k ∈ 2N is not a part of λ;
ω if k is odd.

The map ΨW associates to each pair (ν, ε) a unique point (λ, µ) in the preimage (ΦW )−1(ν, ε) such that the
number of parts of µ is minimal possible. This point is defined by the conditions

lk(λ) =

{
0 if k is odd or k is even, lk(ν) ≥ 2 is even and ε(k) = 0;
lk(ν) otherwise,

lk(µ) =

{
lk(ν) if k is odd or k is even, lk(ν) ≥ 2 is even and ε(k) = 0;
0 otherwise.

The map πG1 is given by πG1(λ) = (λ, ε′), where

ε′(k) =

{
ω if k is odd;
1 if k is even.

(1.4.10)

The map πG1 is injective and its image consists of pairs (λ, ε′) ∈ T 2
2n, where ε′ satisfies conditions (1.4.10).

To describe φGk
for Gk = Sp(V ) we choose a sufficiently large m ∈ N. Let g ∈ Gk. For any x ∈ k∗ let Vx be

the generalized x–eigenspace of g : V → V . For any x ∈ k∗ such that x2 6= 1 let λx1 ≥ λx2 ≥ . . . ≥ λx2m+1 be the
sequence in N whose terms are the sizes of the Jordan blocks of x−1g : Vx → Vx.

For any x ∈ k∗ with x2 = 1 let λx1 ≥ λx2 ≥ . . . ≥ λx2m+1 be the sequence in N, where ((λx1 ≥ λx3 ≥ . . . ≥
λx2m+1), (λx2 ≥ λx4 ≥ . . . ≥ λx2m)) is the pair of partitions such that the corresponding irreducible representation of
the Weyl group of type Bdim Vx/2 is the Springer representation attached to the unipotent element x−1g ∈ Sp(Vx)
and to the trivial local data.

Let λ(g) be the partition λ(g)1 ≥ λ(g)2 ≥ . . . ≥ λ(g)2m+1 given by λ(g)j =
∑
x λ

x
j , where x runs over

a set of representatives for the orbits of the involution a 7→ a−1 of k∗. Now φGk
(g) is the pair of partitions

((λ(g)1 ≥ λ(g)3 ≥ . . . ≥ λ(g)2m+1), (λ(g)2 ≥ λ(g)4 ≥ . . . ≥ λ(g)2m)).

If g is any element in the stratum G(λ,ε) corresponding to a pair (λ, ε) ∈ T 2
2n, λ = (λ1 ≥ λ2 ≥ . . . ≥ λm) then

dim ZGk
(g) = n+

m∑
i=1

(i− 1)λi +
1

2
|{i : λi is odd}|+ |{i : λi is even and ε(λi) = 0}|. (1.4.11)
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Bn

Gk is of type SO(V ) where V is a vector space of dimension 2n + 1, n ≥ 2 over an algebraically closed field k of
characteristic exponent p. If p 6= 2 then V is equipped with a non–degenerate symmetric bilinear form. If p = 2
then V is equipped with a bilinear form (·, ·) and a non–zero quadratic form Q such that

(x, y) = Q(x+ y)−Q(x)−Q(y), x, y ∈ V2,

and the restriction of Q to the null space V ⊥ = {x ∈ V2 : (x, y) = 0 ∀ y ∈ V } of (·, ·) has zero kernel.
W is the same as in case of Cn. Therefore we can use the description of the set W in terms of pairs of partitions

introduced in the case of Cn.
An element of W which corresponds to a pair (λ, µ), λ = (λ1 ≥ λ2 ≥ . . . ≥ λm) and µ = (µ1 = µ2 ≥ . . . ≥

µ2k−1 = µ2k) is the class represented by the sum of the blocks in the following diagram (we use the notation of
[18], Section 7 for the conjugacy classes in W )

Aµ1−1 +Aµ3−1 + . . .+Aµ2k−1−1 +

+Dλ1+λ2
2

(aλ2
2 −1

) +Dλ3+λ4
2

(aλ4
2 −1

) + . . .+Dλm−2+λm−1
2

(aλm−1
2 −1

) +Bλm
2

(m is odd), (1.4.12)

Aµ1−1 +Aµ3−1 + . . .+Aµ2k−1−1 +

+Dλ1+λ2
2

(aλ2
2 −1

) +Dλ3+λ4
2

(aλ4
2 −1

) + . . .+Dλm−1+λm
2

(aλm
2 −1) (m is even),

where it is assumed that Dk(a0) = Dk.
If the characteristic of k is not equal to 2, the elements of N (Gk) are parametrized by partitions λ of 2n+ 1 for

which lj(λ) is even for even j. We denote this set of partitions by Q2n+1. In case of Gk = SO(V ) the parts of λ
are just the sizes of the Jordan blocks in V of the unipotent elements from the conjugacy class corresponding to λ.

In this case N̂ (W ) = N (G2), and G2 is of type SO(V ). In fact G2 is isomorphic to a group of type Sp(V ′),
dim V ′ = 2n (see e.g. Section 8.1 in [122]), and hence N (G2) ' T 2

2n.

We also have Ŵ ' Xn,1, and the map F is the same as in case of Cn.
The map f1 can be described as follows. Let λ = (λ1 ≤ λ2 ≤ . . . ≤ λ2m+1) ∈ Q2n+1. If

f1(λ) = ((c′1, c
′
3, . . . , c

′
2m+1), (c′2, c

′
4, . . . , c

′
2m))

then the parts c′i are defined by induction starting from c′1,

c′i = λi−1
2 + i− 1− 2

[
i−1

2

]
if λi is odd and c′i−1 is already defined;

c′i = λi
2 if λi = λi+1 is even and c′i−1 is already defined;

c′i+1 = λi
2 if λi = λi+1 is even and c′i is already defined.

(1.4.13)

The image of f1 consists of all pairs ((c′1, c
′
3, . . . , c

′
2m+1), (c′2, c

′
4, . . . , c

′
2m)) ∈ Xn,1 such that c′i ≤ c′i+1 for all odd

i and c′i ≤ c′i+1 + 2 for all even i.
The image R(W ) of F consists of all pairs ((c1, c3, . . . , c2m+1), (c2, c4, . . . , c2m)) ∈ Xn,1 such that ci ≤ ci+1 + 2

for all i.
The maps ΦW and ΨW are the same as in case of Cn.
The map πG1 is given by πG1(λ) = (ν, ε′), λ = (λ1 ≤ λ2 ≤ . . . ≤ λ2m+1) ∈ Q2n+1, where

νi =

 λi − 1 if λi and i are odd and λi−1 < λi;
λi + 1 if λi is odd, i is even and λi < λi+1;
λi otherwise,

and

ε′(k) =

 ω if k is odd;
0 if k is even, there exists even λi = k with even i such that λi−1 < λi;
1 otherwise.

The map πG1 is injective and its image consists of pairs (ν, ε) ∈ T 2
2n such that ε(k) 6= 0 if ν∗k is odd and for each

even i such that ν∗i is even we have ν∗i−1 = ν∗i , i.e. i−1 does not appear in the partition ν. Here ν∗1 ≥ ν∗2 ≥ . . . ≥ ν∗m
is the partition dual to ν.

To describe φGk
for Gk = SO(V ) we choose a sufficiently large m ∈ N. Let g ∈ Gk. For any x ∈ k∗ let Vx be

the generalized x–eigenspace of g : V → V . For any x ∈ k∗ such that x2 6= 1 let λx1 ≥ λx2 ≥ . . . ≥ λx2m+1 be the
sequence in N whose terms are the sizes of the Jordan blocks of x−1g : Vx → Vx.
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For any x ∈ k∗ with x2 = 1 let λx1 ≥ λx2 ≥ . . . ≥ λx2m+1 be the sequence in N, where ((λx1 ≥ λx3 ≥ . . . ≥
λx2m+1), (λx2 ≥ λx4 ≥ . . . ≥ λx2m)) is the pair of partitions such that the corresponding irreducible representation
of the Weyl group of type B(dim Vx−1)/2 (if x 6= −1 or p = 2) or Ddim Vx/2 (if x = −1 or p 6= 2) is the Springer
representation attached to the unipotent element x−1g ∈ SO(Vx) and to the trivial local data.

Let λ(g) be the partition λ(g)1 ≥ λ(g)2 ≥ . . . ≥ λ(g)2m+1 given by λ(g)j =
∑
x λ

x
j , where x runs over

a set of representatives for the orbits of the involution a 7→ a−1 of k∗. Now φGk
(g) is the pair of partitions

((λ(g)1 ≥ λ(g)3 ≥ . . . ≥ λ(g)2m+1), (λ(g)2 ≥ λ(g)4 ≥ . . . ≥ λ(g)2m)).
If g is any element in the stratum G(λ,ε) corresponding to a pair (λ, ε) ∈ T 2

2n, λ = (λ1 ≥ λ2 ≥ . . . ≥ λm) then
the dimension of the centralizer of g in Gk is given by formula (1.4.11),

dim ZGk
(g) = n+

m∑
i=1

(i− 1)λi +
1

2
|{i : λi is odd}|+ |{i : λi is even and ε(λi) = 0}|. (1.4.14)

Dn

Gk is of type SO(V ) where V is a vector space of dimension 2n, n ≥ 3 over an algebraically closed field k of
characteristic exponent p. If p 6= 2 V is equipped with a non–degenerate symmetric bilinear form. If p = 2 V is
equipped with a non–degenerate bilinear form (·, ·) and a non–zero quadratic form Q such that

(x, y) = Q(x+ y)−Q(x)−Q(y), x, y ∈ V2.

We remind that in this case SO(V ) is the connected component containing the identity of the group of linear
automorphisms of V preserving the quadratic, and hence the bilinear, form.

W is the group of even permutations of the set E = {ε1, . . . , εn,−ε1, . . . ,−εn} which also commute with the
involution εi 7→ −εi. W can be regarded as a subgroup in the Weyl group W ′ of type Cn.

Let W̃ be the set of W ′–conjugacy classes in W . Elements of W̃ are parametrized by pairs of partitions (λ, µ)
satisfying the following conditions.

• The parts of λ are even (for any w ∈ C ∈ W̃ they are the numbers of elements in the negative orbits X,
X = −X, in E for the action of the group 〈w〉 generated by w);

• The number of parts of λ is even;

• µ consists of pairs of equal parts (they are the numbers of elements in the positive 〈w〉–orbits X in E; these
orbits appear in pairs X,−X, X 6= −X);

•
∑
λi +

∑
µj = 2n.

We denote this set of pairs of partitions by A0
2n.

To each pair (−, µ), where all parts of µ are even, there correspond two conjugacy classes in W . To all other
elements of A0

2n there corresponds a unique conjugacy class in W .

An element of W̃ which corresponds to a pair (λ, µ), λ = (λ1 ≥ λ2 ≥ . . . ≥ λm) and µ = (µ1 = µ2 ≥ . . . ≥
µ2k−1 = µ2k) is the class represented by the sum of the blocks in the following diagram (we use the notation of
[18], Section 7)

Aµ1−1 +Aµ3−1 + . . .+Aµ2k−1−1 +Dλ1+λ2
2

(aλ2
2 −1

) +Dλ3+λ4
2

(aλ4
2 −1

) + . . .+Dλm−1+λm
2

(aλm
2 −1). (1.4.15)

Consider now the case p 6= 2. Let G′k be the extension of Gk by the Dynkin graph automorphism of order 2.

Then G′k is of type O(V ). Denote by Ñ (Gk) the set of unipotent classes of G′k. Note that they are all contained

in Gk. The elements of Ñ (Gk) are parametrized by partitions λ of 2n for which lj(λ) is even for even j. Note that
the number of parts of such partitions is even. We denote this set of partitions by Q2n. In case when Gk = SO(V )
the parts of λ are just the sizes of the Jordan blocks in V of the unipotent elements from the conjugacy class
corresponding to λ. If λ has only even parts then λ corresponds to two unipotent classes in Gk of the same
dimension. In all other cases there is a unique unipotent class in Gk which corresponds to λ.

One has N̂ (W ) = N (G2), and G2 is of type SO(V2).
Let G′2 be the extension of G2 by the Dynkin graph automorphism of order 2. Then G′2 is of type O(V ). Denote

by Ñ (G2) the set of unipotent classes of G′2 contained in G2. Since the bilinear form (·, ·) is also alternating in
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characteristic 2 there is a natural injective homomorphism from O(V ) to Sp(V ), dim V = 2n, and Ñ (G2) ' T̃ 2
2n,

where T̃ 2
2n is the set of elements (λ, ε) ∈ T 2

2n such that λ has an even number of parts (see I.2.6 in [122]).

Let
̂̃
W be the set of orbits of irreducible characters of W under the action of W ′. Elements of

̂̃
W are parametrized

by unordered pairs of partitions (α, β) written in non–decreasing order, α1 ≤ α2 ≤ . . . ≤ ατ(α), β1 ≤ β2 ≤ . . . ≤
βτ(β), and such that

∑
αi +

∑
βi = n. By adding zeroes we can assume that the length of α is equal to the length

of β. The set of such pairs is denoted by Yn,0.

Instead of the maps in (1.4.4) we shall describe the following maps

X̃ 1(W )
f̃1←− Ñ (G1)

↓ ι ↓ π̃G1

Gk

φ̃Gk−→ R̃(W )
F̃←− Ñ (G2)

Φ̃W←−−→
Ψ̃W

W̃ ,

(1.4.16)

where f̃1 and F̃ are induced by the restrictions of the maps f1 and F for G′1, G′2 to Ñ (G1), Ñ (G2), respectively,

X̃ 1(W ) and R̃(W ) are their images, φ̃Gk
, Ψ̃W , Φ̃W and π̃G1 are also induced by the corresponding maps for G′1, G′2

and W ′.

The map f̃1 is defined by the same algorithm as in the case of Bn (see (1.4.13)). The image of f̃1 consists of all
pairs ((c′1, c

′
3, . . . , c

′
2m+1), (c′2, c

′
4, . . . , c

′
2m)) ∈ Yn,0 such that c′i ≤ c′i+1 for all odd i and c′i ≤ c′i+1 + 2 for all even i.

If (λ, ε) ∈ T̃ 2
2n, λ = (λ1 ≤ λ2 ≤ . . . ≤ λ2m) and F̃ (λ, ε) = ((c1, c3, . . . , c2m−1), (c2, c4, . . . , c2m)) then the parts ci

are defined by induction starting from c1,

ci = λi−2
2 + 2(i− 1)− 4

[
i−1

2

]
if λi is even, ε(λi) = 1 and ci−1 is already defined;

ci = λi−1
2 + 2(i− 1)− 4

[
i−1

2

]
if λi = λi+1 is odd and ci−1 is already defined;

ci+1 = λi−3
2 + 2i− 4

[
i
2

]
if λi = λi+1 is odd and ci is already defined;

ci = λi
2 + 2(i− 1)− 4

[
i−1

2

]
if λi = λi+1 is even, ε(λi) = 0 and ci−1 is already defined;

ci+1 = λi
2 + 2(i− 1)− 4

[
i−1

2

]
if λi = λi+1 is even, ε(λi) = 0 and ci is already defined.

The image R̃(W ) of F̃ consists of all pairs ((c1, c3, . . . , c2m+1), (c2, c4, . . . , c2m)) ∈ Yn,0 such that ci ≤ ci+1 for
all odd i and ci ≤ ci+1 + 4 for all even i.

The maps Φ̃W and Ψ̃W are defined by the same formulas as in case of Cn.

The map π̃G1 is given by π̃G1(λ) = (ν, ε′), λ = (λ1 ≤ λ2 ≤ . . . ≤ λ2m) ∈ Q2n, where

νi =

 λi − 1 if λi is odd, i is even and λi−1 < λi;
λi + 1 if λi and i are odd, and λi < λi+1;
λi otherwise,

and

ε′(k) =

 ω if k is odd;
0 if k is even, there exists even λi = k with odd i such that λi−1 < λi;
1 otherwise.

The map π̃G1 is injective and its image consists of pairs (ν, ε) ∈ T̃ 2
2n such that ε(k) 6= 0 if ν∗k is odd and for each

even i such that ν∗i is even we have ν∗i−1 = ν∗i , i.e. i−1 does not appear in the partition ν. Here ν∗1 ≥ ν∗2 ≥ . . . ≥ ν∗m
is the partition dual to ν.

To describe φ̃Gk
for Gk = SO(V ) we choose a sufficiently large m ∈ N. Let g ∈ Gk. For any x ∈ k∗ let Vx

be the generalized x–eigenspace of g : V → V . For any x ∈ k∗ such that x2 6= 1 let λx1 ≥ λx2 ≥ . . . ≥ λx2m be the
sequence in N whose terms are the sizes of the Jordan blocks of x−1g : Vx → Vx.

For any x ∈ k∗ with x2 = 1 let λx1 ≥ λx2 ≥ . . . ≥ λx2m be the sequence in N, where ((λx1 ≥ λx3 ≥ . . . ≥
λx2m−1), (λx2 ≥ λx4 ≥ . . . ≥ λx2m)) is the pair of partitions such that the corresponding irreducible representation of
the Weyl group of type Ddim Vx/2 is the Springer representation attached to the unipotent element x−1g ∈ SO(Vx)
and to the trivial local data.

Let λ(g) be the partition λ(g)1 ≥ λ(g)2 ≥ . . . ≥ λ(g)2m+1 given by λ(g)j =
∑
x λ

x
j , where x runs over

a set of representatives for the orbits of the involution a 7→ a−1 of k∗. Now φ̃Gk
(g) is the pair of partitions

((λ(g)1 ≥ λ(g)3 ≥ . . . ≥ λ(g)2m−1), (λ(g)2 ≥ λ(g)4 ≥ . . . ≥ λ(g)2m)).
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The preimage φ̃−1
Gk

(λ, µ) is a stratum in Gk in all cases except for the one when the pair (λ, µ) is of the form

((λ1 ≥ λ3 ≥ . . . ≥ λ2m−1), (λ1 ≥ λ3 ≥ . . . ≥ λ2m−1)). In that case φ̃−1
Gk

(λ, µ) is a union of two strata, and the
conjugacy classes in each of them have the same dimension.

If g is any element in the stratum G(λ,ε) corresponding to a pair (λ, ε) ∈ T̃ 2
2n, λ = (λ1 ≥ λ2 ≥ . . . ≥ λm) then

the dimension of the centralizer of g in Gk is given by the following formula

dim ZGk
(g) = n+

m∑
i=1

(i− 1)λi −
1

2
|{i : λi is odd}| − |{i : λi is even and ε(λi) = 1}|. (1.4.17)

1.5 The strict transversality condition

Recall that the definition of ∆s
+, and hence of Σk,s, depends on the choice of ordering of terms in decomposition

(1.2.14). In this section for every conjugacy class C ∈ C(W ) we define a variety Σk,s, s ∈ C such that every
conjugacy class O ∈ GC intersects Σk,s and

dim O = codim Σk,s. (1.5.1)

It turns out that in order to fulfill condition (1.5.1) the subspaces hi in (1.2.14) should be ordered in such a way
that h0 ⊂ hR is the subspace fixed by the action of s, and if hi = hkλ, hj = hlµ and 0 ≤ λ < µ < 1 then i < j, where λ
and µ are eigenvalues of the corresponding matrix I−O for s. In the case of exceptional root systems this is verified
using a computer program, and in the case of classical root systems this is confirmed by explicit computation based
on a technical lemma. In order to formulate this lemma we recall realizations of classical irreducible root systems.

Let V be a real Euclidean n–dimensional vector space with an orthonormal basis ε1, . . . , εn. The root systems
of types An−1, Bn, Cn and Dn can be realized in V as follows.

An

The roots are εi − εj , 1 ≤ i, j ≤ n, i 6= j, hR is the hyperplane in V consisting of the points the sum of whose
coordinates is zero.

Bn

The roots are ±εi ± εj , 1 ≤ i < j ≤ n, ±εi, 1 ≤ i ≤ n, hR = V .

Cn

The roots are ±εi ± εj , 1 ≤ i < j ≤ n, ±2εi, 1 ≤ i ≤ n, hR = V .

Dn

The roots are ±εi ± εj , 1 ≤ i < j ≤ n, hR = V .
In all these cases the corresponding Weyl group W is a subgroup of the Weyl group of type Cn acting on the

elements of the basis ε1, . . . , εn by permuting the basis vectors and changing the sign of an arbitrary subset of
them.

Now we formulate the main lemma.

Lemma 1.5.1. Let s be an element of the Weyl group of type Cn operating on the set E = {ε1, . . . , εn,−ε1, . . . ,−εn}
as indicated in Section 1.4, where ε1, . . . , εn is the basis of V introduced above. Assume that s has either only one
nontrivial cycle of length k/2 (k is even), which is negative, or only one nontrivial cycle of length k, which is
positive, 1 < k ≤ n. Let ∆ be a root system of type An−1, Bn, Cn or Dn realized in V as above.

(i) If s has only one nontrivial cycle of length k/2, which is negative, then k is even, the spectrum of s in the

complexification VC of V is εr = exp( 2πi(k−2r+1)
k ), r = 1, . . . , k/2, and possibly ε0 = 1, all eigenvalues are simple

except for possibly 1.
(ii) If s only has one nontrivial cycle of length k, which is positive, then the spectrum of s in the complexification

of V is εr = exp( 2πi(k−r)
k ), r = 1, . . . , k − 1, and ε0 = 1, all eigenvalues are simple except for possibly 1.
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In both cases we denote by Vr the invariant subspace in V which corresponds to εr = exp( 2πi([k/2]+1−r)
k ),

r = 1, . . . ,
[
k
2

]
or ε0 = 1 in case of a positive nontrivial cycle and to εr = exp(

2πi(2[ k/2+1
2 ]+1−2r)

k ), r = 1, . . . ,
[
k/2+1

2

]
or ε0 = 1 in case of a negative cycle. For r 6= 0 the space Vr is spanned by the real and the imaginary parts of a
nonzero eigenvector of s in VC corresponding to εr, and V0 is the subspace of fixed points of s in V .

Vr is two–dimensional if εr 6= ±1, one–dimensional if εr = −1 or may have arbitrary dimension if εr = 1.
Let ∆s

+ be a system of positive roots associated to s and defined as in Section 1.2, where we use the decomposition

V =
⊕
i

Vi (1.5.2)

as (1.2.14) in the definition of ∆s
+. Denote by ∆i ⊂ ∆ the corresponding subsets of roots defined as in (1.2.15).

Let ∆s
0 be the root subsystem fixed by the action of s and l(s) the number of positive roots which become negative

under the action of s.
(iii) If s has only one nontrivial cycle of length k, which is positive, we have

1. if ∆ = An−1 then ∆s
0 = An−k−1, l(s) = 2n− k − 1;

2. if ∆ = Bn (resp. Cn) then ∆s
0 = Bn−k (resp. Cn−k), l(s) = 4n − 2k for odd k and l(s) = 4n − 2k + 1 for

even k;

3. if ∆ = Dn then ∆s
0 = Dn−k, l(s) = 4n− 2k − 2 for odd k and l(s) = 4n− 2k − 1 for even k.

(iv) If s has only one nontrivial cycle of length k
2 , which is negative, we have

1. if ∆ = Bn(Cn) then ∆s
0 = Bn−k/2(Cn−k/2), l(s) = 2n− k/2;

2. if ∆ = Dn then ∆s
0 = Dn−k/2, l(s) = 2n− k/2− 1.

(v) If s has only one nontrivial cycle of length k, which is positive, ∆ is of type Bn, Cn or Dn, and k is even
then ∆ = ∆k/2 ∪∆k/2−1 ∪∆s

0 (disjoint union), and all roots in ∆k/2−1 are orthogonal to the fixed point subspace
for the action of s on V .

(vi) In all other cases ∆ = ∆imax
∪∆s

0 (disjoint union), where imax is the maximal possible index i which appears
in decomposition (1.5.2).

Proof. The proof is similar in all cases. We only give details in the most complicated case when s has only one
nontrivial cycle, which is positive, ∆ is of type Bn(Cn), and k is even. Without loss of generality one can assume
that s corresponds to the cycle of the form

ε1 → ε2 → ε4 → ε6 → · · · → εk−2 → εk → εk−1 → εk−3 → · · · → ε3 → ε1 (k > 2), ε1 → ε2 → ε1 (k = 2).

From this definition one easily sees that ∆s
0 = Bn−k(Cn−k) = ∆ ∩ V ′, where V ′ ⊂ V is the subspace generated

by εk+1, . . . , εn. Computing the eigenvalues of s in VC is a standard exercise in linear algebra. The eigenvalues are
expressed in terms of the exponents of the root system of type Ak−1 (see [17], Ch. 10).

The invariant subspace Vr is spanned by the real and the imaginary parts of a nonzero eigenvector of s in VC
corresponding to the eigenvalue εr. If εr 6= ±1 then Vr is two–dimensional, and for εr = −1 Vr is one–dimensional.
In the former case Vr will be regarded as the real form of a complex plane with the orthonormal basis 1, i. Under
this convention the orthogonal projection operator onto Vr acts on the basic vectors εj as follows

ε2j+1 7→ cεjr, j = 0, . . . ,
k

2
− 1, ε2j 7→ cε−jr , j = 1, . . . ,

k

2
, (1.5.3)

where c =
√

2
k . Consider the case when k > 2; the case k = 2 can be analyzed in a similar way.

To compute l(s) using the definition of ∆s
+ given in Section 1.2 one should first look at all roots which have

nonzero projections onto Vk/2 on which s acts by rotation with the angle 2π
k .

From (1.5.3) we deduce that the roots which are not fixed by s and have zero orthogonal projections onto Vk/2
are ±(εj + εk−j+1), j = 1, . . . k2 . The number of those roots is equal to k, and they all have nonzero orthogonal
projections onto Vk/2−1. From (1.5.3) we also obtain that all the other roots which are not fixed by s have nonzero
orthogonal projections onto Vk/2, hence |∆k/2−1| = k. The number of roots fixed by s is 2(n− k)2 since it is equal
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to the number of roots in ∆0 = ∆s
0 = Bn−k(Cn−k). Hence ∆ = ∆k/2 ∪∆k/2−1 ∪∆0 (disjoint union), the number

of roots in ∆k/2 is |∆| − |∆0| − |∆k/2−1| = 2n2 − 2(n− k)2 − k = 4nk − 2k2 − k, |∆k/2| = 4nk − 2k2 − k.
Now using the symmetry of the root system ∆ as a subset of V and the fact that s acts as rotation by the

angles 2π
k and 4π

k in Vk/2 and Vk/2−1, respectively, we deduce that the number of positive roots in ∆k/2 (∆k/2−1)
which become negative under the action of s is equal to the number of roots in ∆k/2 (∆k/2−1) divided by the order
of s in Vk/2(Vk/2−1). Therefore

l(s) =
|∆k/2|
k

+
|∆k/2−1|
k/2

=
4nk − 2k2 − k

k
+

k

k/2
= 4n− 2k + 1.

This completes the proof in the considered case.

Now we are in a position to prove the main statement of this section.

Theorem 1.5.2. Let Gk be a connected semisimple algebraic group over an algebraically closed filed k, and O ∈
N̂ (W ). Let Hk be a maximal torus of Gk, W the Weyl group of the pair (Gk, Hk), and s ∈ W an element from
the conjugacy class ΨW (O). Let ∆ be the root system of the pair (Gk, Hk) and ∆s

+ a system of positive roots in
∆ associated to s and defined in Section 1.2 with the help of decomposition (1.2.14), where the subspaces hi are
ordered in such a way that h0 is the linear subspace of hR fixed by the action of s, and if hi = hkλ, hj = hlµ and
0 ≤ λ < µ < 1 then i < j. In the case of exceptional root systems we assume, in addition, that ∆s

+ is chosen as
in the tables in Appendix 2, so that s = s1s2 is defined by the data from columns three and four in the tables in
Appendix 2. Then all conjugacy classes in the stratum GO = φ−1

Gk
(F (O)) intersect the corresponding variety Σk,s

at some points of the subvariety ṡH0
kNk,s, where H0

k ⊂ Hk is the identity component of the centralizer of ṡ in Hk.

Moreover, if O ∈ N (Gp) ⊂ N̂ (W ) for some p, then for any g ∈ GO

dim ZGk
(g) = codimGp O = dim Σk,s. (1.5.4)

Proof. First note that the first identity in (1.5.4) for the codimensions is equivalent to identity (1.4.5) for the
corresponding dimensions. We shall divide the proof the remaining identity into several lemmas. First we compute
the dimension of the slice Σk,s, s ∈ ΨW (O) and justify that for any g ∈ GO the last equality in (1.5.4) holds.

Lemma 1.5.3. Assume that the conditions of Theorem 1.5.2 are satisfied. Then for any g ∈ GO, where O ∈
N (Gp) ⊂ N̂ (W ) for some p, equality (1.5.4) holds, i.e.

dim ZGk
(g) = dim Σk,s = codimGp O.

Proof. Observe that by the definition of the slice Σk,s

dim Σk,s = l(s) + |∆0|+ dim h0,

where l(s) is the length of s with respect to the system of simple roots in ∆s
+. Hence to compute dim Σk,s we have

to find all numbers in the right hand side of the last equality.
Consider the case of classical groups when each Weyl group element is a product of cycles in a permutation

group. In this case identity (1.5.4) is proved by a straightforward calculation using Lemma 1.5.1.
Let Gk be of type An and s a representative in the conjugacy class of the Weyl group which corresponds to a

partition λ = (λ1 ≥ λ2 ≥ . . . ≥ λm). Recall that s is the product of the cycles which correspond to the parts of λ.
The particular ordering of the invariant subspaces hi in the formulation of this theorem implies that the length l(s)
equal to the number ∆s

s of positive roots in ∆s
+ which become negative under the action of s should be computed

by successive application of Lemma 1.5.1 to the cycles si of s, which correspond to λi placed in a non–increasing
order. We claim that according to this observation one has

l(s) =
∑

l(sk), l(sk) = 2(n−
k−1∑
i=1

λi)− λk + 1, (1.5.5)

where the first sum in (1.5.5) is taken over k for which λk > 1, and we keep the notation of Lemma 1.5.1.
Indeed, recall that according to formula (1.2.16) we have the following disjoint union decomposition

∆ =

M⋃
k=0

∆ik
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which implies another disjoint union decomposition

∆s
s =

M⋃
k=0,ik 6=0

(∆ik ∩∆s
s).

Thus the length l(s) equal to the cardinality of the set ∆s
s can be found as the sum of the cardinalities of the sets

∆ik ∩∆s
s,

l(s) = |∆s
s| =

M⋃
k=0,ik 6=0

|∆ik ∩∆s
s| . (1.5.6)

We find the cardinalities of the sets ∆ik ∩ ∆s
s by successive application of Lemma 1.5.1 to the cycles si of s,

which correspond to λi placed in a non–increasing order.
According to our convention for the ordering of terms in sum (1.2.14) used to define ∆s

+, the cycle s1 of s
which corresponds to the maximal part λ1 is the only cycle of s non-trivially acting on hiM by Lemma 1.5.1
(vi). Applying part (iii) 1. of Lemma 1.5.1 to the cycle s1 we obtain |∆iM ∩∆s

s| = l(s1) = 2n − λ1 + 1 and
∆s1

0 = An−λ1 = ∆ \∆iM . The remaining cycles s2, . . . , sm of s corresponding to λ2 ≥ . . . ≥ λm act on ∆s1
0 and

leave the set ∆iM and its subset ∆s
s ∩ ∆iM invariant, so we can apply Lemma 1.5.1 to s2 acting on ∆s1

0 to get∣∣∆iM−1
∩∆s

s

∣∣ = l(s2) = 2(n − λ1) − λ2 + 1 and ∆s2
0 = An−λ1−λ2

= ∆ \
(
∆iM ∪∆iM−1

)
. Iterating this procedure

and using (1.5.6) we obtain (1.5.5).
The number of roots fixed by s can be represented in a similar form,

|∆0| =
∑

l(sk), l(sk) = 2(n−
k−1∑
i=1

λi)− λk + 1, (1.5.7)

where the sum in (1.5.7) is taken over k for which λk = 1.
Finally the dimension of the fixed point space h0 of s in h is m− 1, dim h0 = m− 1.
Recall now that

dim Σk,s = l(s) + |∆0|+ dim h0, (1.5.8)

and hence

dim Σk,s =

m∑
k=1

l(sk) +m− 1 =

m∑
k=1

(
2(n−

k−1∑
i=1

λi)− λk + 1

)
+m− 1.

Exchanging the order of summation and simplifying this expression we obtain that

dim Σk,s = n+ 2

m∑
i=1

(i− 1)λi

which coincides with (1.4.6).
The computations of dim Σk,s in case of Bn and of Cn are similar. If (ν, ε) ∈ T 2

2n, ν = (ν1 ≥ ν2 ≥ . . . ≥ νm),

corresponds to O ∈ N̂ (W ) = N (G2) then ΨW (ν, ε) = (λ, µ) ∈ A1
2n ' W is defined in Section 1.4, part Cn. λ

consists of even parts νi of ν for which ε(νi) = 1, and µ consists of all odd parts of ν and of even parts νi of
ν for which ε(νi) = 0, the last two types of parts appear in pairs of equal parts. Let s be a representative in
the conjugacy class ΨW (ν, ε). Then each part λi corresponds to a negative cycle of s of length λi

2 , and each pair
µi = µi+1 of equal parts of µ corresponds to a positive cycle of s of length µi. We order the cycles sk of s associated
to the (pairs of equal) parts of the partition ν in a way compatible with a non–increasing ordering of the parts of
the partition ν = (ν1 ≥ ν2 ≥ . . . ≥ νm), i.e. if we denote by sk the cycle that corresponds to an even part νk of ν
for which ε(νk) = 1 or to a pair νk = νk+1 of odd parts of ν or of even parts of ν for which ε(νk) = 0 then sk ≥ sl
if νk ≥ νl.

Similarly to the case of An, by the definition of ∆s
+ and by Lemma 1.5.1 applied iteratively to the cycles sk in

the order defined in the previous paragraph, the length l(s) of s is the sum of the following terms l(sk).
To each even part νk of ν for which ε(νk) = 1 we associate the term

l(sk) = 2(n−
k−1∑
i=1

νi
2

)− νk
2

;
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to each pair of odd parts νk = νk+1 > 1 we associate the term

l(sk) = 4(n−
k−1∑
i=1

νi
2

)− 2νk =

(
2(n−

k−1∑
i=1

νi
2

)− νk
2

)
+

(
2(n−

k∑
i=1

νi
2

)− νk+1

2

)
;

note that the sum of these terms over all pairs νk = νk+1 = 1 gives the number |∆0| of the roots fixed by s;
to each pair of even parts νk = νk+1 for which ε(νk) = 0 we associate the term

l(sk) = 4(n−
k−1∑
i=1

νi
2

)− 2νk + 1 =

(
2(n−

k−1∑
i=1

νi
2

)− νk
2

+
1

2

)
+

(
2(n−

k∑
i=1

νi
2

)− νk+1

2
+

1

2

)
.

The dimension of the fixed point space h0 of s in hR is equal to a half of the sum of the number of all even parts
νk for which ε(νk) = 0 and of the number of all odd parts νk,

dim h0 =
1

2
|{i : νi is odd}|+ 1

2
|{i : νi is even and ε(νi) = 0}|. (1.5.9)

Finally substituting all the computed contributions into formula (1.5.8) we obtain

dim Σk,s =

m∑
k=1

(
2(n−

k−1∑
i=1

νi
2

)− νk
2

)
+

1

2
|{i : νi is even and ε(νi) = 0}|+

+
1

2
|{i : νi is odd}|+ 1

2
|{i : νi is even and ε(νi) = 0}|.

Exchanging the order of summation and simplifying this expression we obtain that

dim Σk,s = n+

m∑
i=1

(i− 1)νi +
1

2
|{i : νi is odd}|+ |{i : νi is even and ε(νi) = 0}| (1.5.10)

which coincides with (1.4.11) or (1.4.14).

In case of Dn the number dim Σk,s can be easily obtained if we observe that the map Ψ̃W is defined by the

same formula as ΨW in case of Cn. In case when Ψ̃W (ν, ε) = (−, µ), where all parts of µ are even, there are two

conjugacy classes in W which correspond to Ψ̃W (ν, ε). However, the numbers l(s), |∆0| and dim h0 are the same

in both cases. They only depend on Ψ̃W (ν, ε) in all cases. Let s ∈W be a representative from the conjugacy class

Ψ̃W (ν, ε), ν = (ν1 ≥ ν2 ≥ . . . ≥ νm).
From Lemma 1.5.1 we deduce that in the case of Dn the contributions of the cycles sk of s to the formula for

dim Σk,s can be obtained from the corresponding contributions in case of Cn in the following way: for each pair of
odd parts νk = νk+1 and for each pair of even parts νk = νk+1 with ε(νk) = 0 the corresponding contribution l(sk)
to l(s) should be reduced by 2 and for each even part νk of ν with ε(νk) = 1 the corresponding contribution l(sk)
to l(s) should be reduced by 1. This observation and formula (1.5.10) yield

dim Σk,s = n+

m∑
i=1

(i− 1)νi +
1

2
|{i : νi is odd}|+ |{i : νi is even and ε(νi) = 0}| −

−|{i : νi is odd}| − |{i : νi is even}| =

= n+

m∑
i=1

(i− 1)νi −
1

2
|{i : νi is odd}| − |{i : νi is even and ε(νi) = 1}|

which coincides with (1.4.17).
In case of root systems of exceptional types dim Σk,s can be found in the tables in Appendix 2. According to

those tables equality (1.5.4) holds in all cases.

Now we show that all conjugacy classes in the stratum GO = φ−1
Gk

(F (O)) intersect the corresponding variety

Σk,s, s ∈ ΨW (O). The strategy of the proof is as follows. We are going to use characterization (1.4.3) the stratum
GO.
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Let ∆s
+ be the system of the positive roots introduced in the statement of Theorem 1.5.2,

hR =

K⊕
i=0

hi (1.5.11)

the corresponding decomposition of hR and hi ∈ hi the corresponding elements of the subspaces hi.
We are going to rearrange the terms in the sum (1.5.11) and define a system of positive roots ∆1

+, using the
rearranged sum as described in Section 1.2, in such a way that s is elliptic in a standard parabolic subgroup
W1 ⊂W with respect to the system of simple roots in ∆1

+.
Let w be a minimal length representative in the conjugacy class of s in W1 with respect to the system of simple

reflections in W1.
Let B1 be the Borel subgroup in Gk corresponding to −∆1

+, L1 the standard Levi subgroup with the Weyl
group W1. Denote by B2 = B1 ∩ L1 the Borel subgroup in L1. One can always find a representative ẇ ∈ L1 of w.

By characterization (1.4.3) any conjugacy class in GO intersects B1ẇB1. In Lemma 1.5.4 we show that in fact
any conjugacy class in GO intersects B2ẇB2 ⊂ B1ẇB1.

Next, in Lemmas 1.5.5 and 1.5.6 we prove that in fact one can take w = s. In Lemma 1.5.7 we verify that
B2ṡB2 ⊂ NkṡHkNk, and hence any conjugacy class in GO intersects NkṡHkNk ⊃ B2ṡB2.

We prove that any element of NkṡHkNk can be conjugated to an element of NkṡH
0
kNk ⊂ NkṡZkNk. By

Proposition 1.3.4 (i) this implies that any conjugacy class in GO also intersects Σk,s. Finally we verify that in fact
any conjugacy class GO intersects Σk,s at some point of ṡH0

kNk,s.
We start realizing this program by defining ∆1

+. Recall that h0 is the subspace of hR fixed by the action of s.
If h0 = 0, let h′i = hi and h′i = hi, i = 0, . . . ,K. Otherwise let h′K = h0, h′i = hi+1, h′i = hi+1, i = 0, . . . ,K − 1 and
choose an element h′K ∈ h′K such that h′K(α) 6= 0 for any root α ∈ ∆ which is not orthogonal to the s–invariant
subspace h′K with respect to the natural pairing between hR and h∗R.

By a suitable rescaling of h′K we can assume that conditions (1.2.17) are satisfied for the elements h′i and roots
α from sets ∆′i defined as in (1.2.22) with hj , hi replaced by h′j , h

′
i. Indeed, observe that

∆′i = {α ∈ ∆ : h′j(α) = 0, j > i, h′i(α) 6= 0} ⊂ {α ∈ ∆ : hj(α) = 0, j > i+ 1, hi+1(α) 6= 0} = ∆i+1, i = 0, . . . ,K−1

by the definition of the elements h′i. Thus, since (1.2.17) is satisfied for hi, i = 0, . . . ,K, it is also satisfied for
h′i = hi if i < K. By a suitable rescaling of h′K we can assume that (1.2.17) is satisfied for h′K as well.

Let ∆1
+ be a system of positive roots in ∆ = ∆(Gk, Hk) which corresponds to the Weyl chamber containing

the element h̄′ =
∑K
i=0 h

′
i. By Lemma 1.2.2 the set of roots annihilating h0 is the root system of a standard Levi

subgroup L1 ⊂ Gk with respect to the system of simple roots in ∆1
+. We denote the root system of the pair

(L1, Hk) by ∆(L1, Hk).
Using formula (1.2.1) and recalling that the roots γ1, . . . γl′ form a linear basis of h′∗, i.e. for i = 1, . . . , l′ γi

annihilate h0, we deduce that for i = 1, . . . , l′ γi ∈ ∆(L1, Hk), and hence s belongs to the Weyl group W1 ⊂ W of
the root system ∆(L1, Hk). Note that, as L1 is a standard Levi subgroup in Gk, W1 is a parabolic subgroup in W
with respect to the system of simple roots in ∆1

+. Since γ1, . . . γl′ form a linear basis of h′∗, the linear span of roots
from ∆(L1, Hk) coincides with h′∗, and hence the element s is elliptic in W1 as s acts without fixed points on h′∗.

Let w be a minimal length representative in the conjugacy class of s in W1 with respect to the system of simple
roots in ∆(L1, Hk)+ = ∆1

+∩∆(L1, Hk). By Lemma 3.1.14 in [44] if w ∈ ΨW (O)∩W1 is of minimal possible length
with respect to the system of simple reflections in W1 then it is also of minimal possible length with respect to the
system of simple reflections in W , where in both cases the simple reflections are the reflections with respect to the
simple roots in ∆1

+. Note that w is elliptic in W1 as well.
Let B1 be the Borel subgroup in Gk corresponding to −∆1

+, P1 ⊃ B1 the parabolic subgroup of Gk corresponding
to W1. Thus L1 is the Levi factor of P1.

Denote by B2 = B1 ∩ L1 the Borel subgroup in L1. One can always find a representative ẇ ∈ L1 of w.

Lemma 1.5.4. Any conjugacy class in GO intersects B2ẇB2 ⊂ B1ẇB1.

Proof. By characterization (1.4.3) the stratum GO consists of all conjugacy classes of minimal possible dimension
which intersect the Bruhat cell B1ẇB1. Denote by U1 the unipotent radical of P1. Then by the definition of
parabolic subgroups one can always find a one parameter subgroup ρ : k∗ → ZGk

(L1) such that

lim
t→0

ρ(t)nρ(t−1) = 1 (1.5.12)
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for any n ∈ U1.
Let γ ∈ GO be a conjugacy class which intersects B1ẇB1 at point bẇb′, b, b′ ∈ B1 such that bẇb′ 6∈ B2ẇB2.

Since by definitions of B2 and U1 we have B1 = B2U1 there are unique factorizations b = un, b′ = u′n′, u, u′ ∈ B2,
n, n′ ∈ U1. By (1.5.12) we have

lim
t→0

ρ(t)bẇb′ρ(t−1) = lim
t→0

uρ(t)nρ(t−1)ẇu′ρ(t)n′ρ(t−1) = uẇu′ ∈ B2ẇB2,

and hence the closure of γ contains a conjugacy class γ′ which intersects B1ẇB1 at some point of B2ẇB2 ⊂
B1ẇB1. In particular, dim γ > dim γ′. This is impossible by characterization (1.4.3) of GO as γ has minimal
possible dimension among the conjugacy classes intersecting B1ẇB1. Hence γ intersects B1ẇB1 at some point of
B2ẇB2 ⊂ B1ẇB1.

Lemma 1.5.5. Let Gk be a connected semisimple algebraic group over an algebraically closed field k of charac-
teristic good for Gk. Let Hk be a maximal torus of Gk, W the Weyl group of the pair (Gk, Hk), and s ∈ W an
elliptic element. Denote by Os the conjugacy class of s in W . Then ΦW (Os) ⊂ N (Gk).

Proof. The statement of this lemma is a consequence of the fact that s is elliptic. Indeed, it suffices to consider the
case when Gk is simple.

In case when Gk is of type An this is obvious since N̂ (W ) consists of the unipotent classes of Gk, N̂ (W ) =
N (Gk). In fact in this case Os is the Coxeter class, and ΦW (Os) is the class of regular unipotent elements.

If Gk is of type Bn, Cn or Dn, formula (1.5.9) implies that if ΦW (Os) corresponds to (ν, ε) ∈ T 2
2n(T̃ 2

2n) then ν
has no odd parts and no even parts νi with ε(νi) = 0. According to the description given in the previous section

the map πG1(π̃G1) is injective and its image consists of pairs (ν, ε) ∈ T 2
2n(T̃ 2

2n) such that ε(k) 6= 0 if ν∗k is odd and
for each even i such that ν∗i is even we have ν∗i−1 = ν∗i , i.e. i − 1 does not appear in the partition ν. We deduce
that ΦW (Os) is contained in the image of πG1(π̃G1), i.e. ΦW (Os) ∈ N (Gk) is a unipotent class in Gk.

In case when Gk is of exceptional type this can be checked by examining the tables in Appendix 2.

Now we show that in fact one can always take w = s.

Lemma 1.5.6. The element s is of minimal length in its conjugacy class in W1 with respect to the system of simple
roots in ∆(L1, Hk)+ = ∆1

+ ∩∆(L1, Hk).

Proof. First observe that the formulation of this lemma only uses root systems which can be described independently
of k. Therefore we can assume in the proof that the characteristic of k is good for Gk.

Let M1 be the semisimple part of L1 and On = ΦW1(Ow) ⊂ M1, where Ow is the conjugacy class of w in the
Weyl group W1 = W (L1, H). By the previous lemma applied to the group M1 and the elliptic element w ∈W1 we
have On ∈ N (M1).

Therefore On is the unipotent class of minimal possible dimension which intersects B2ẇB2. By Theorem 0.7
in [86] the codimension of On in M1 is equal to l1(w), where l1 is the length function in W1 with respect to the
system of simple roots in ∆(L1, Hk)+ = ∆1

+ ∩∆(L1, Hk),

codimM1 On = l1(w). (1.5.13)

Now we show that s has minimal length in the Weyl group W1 with respect to the system of simple roots in
the set of positive roots ∆(L1, Hk)+.

Indeed, let Σ′k,s be the variety in M1 associated to s ∈ W1 and defined similarly to Σk,s ⊂ Gk, where we use
∆(L1, Hk)+ as the system of positive roots in the definition of Σ′k,s.

Formula (1.5.4) confirmed in Lemma 1.5.3 is applicable to the slice Σ′k,s and yields

codimM1
On = dim Σ′k,s.

Formula (1.5.8) and the fact that s is elliptic in W1 imply that

dim Σ′k,s = l1(s),

From the last two formulas we infer

codimM1
On = dim Σ′k,s = l1(s).
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The last formula and (1.5.13) yield l1(w) = l1(s), and hence s has minimal possible length in its conjugacy class
in W1 with respect to the system of simple roots in ∆(L1, Hk)+.

Now we can assume that s = w.

Lemma 1.5.7. Any conjugacy class γ ∈ GO intersects Σk,s at some point of ṡH0
kNk,s.

Proof. Let α ∈ ∆ ∩ h′∗. Then α ∈ ∆i ∩ h′∗ for some i > 0. Observe that by the definition of the subspaces h′k and
by the choice of the elements hk, k = 0, . . . ,K

∆i ∩ h′∗ = {β ∈ ∆ : hj(β) = 0, j > i, hi(β) 6= 0, h0(β) = 0} = {β ∈ ∆ : h′j(β) = 0, j > i− 1, h′i−1(β) 6= 0, } = ∆′i−1,

and hence by (1.2.21) α ∈ (∆i)+ ∩ h′∗ if and only if h′i−1(α) = hi(α) > 0, i.e. α ∈ (∆i)+ ∩ h′∗ if and only if
α ∈ ∆1

+ ∩∆′i. Therefore if we denote B3 = Bk ∩ L1, where Bk is the Borel subgroup corresponding to −∆s
+, then

B3 = B1 ∩ L1 = B2.
By Lemma 1.5.4 applied to the element s ∈W any conjugacy class γ ∈ GO intersects B2ṡB2, and hence it also

intersects B3ṡB3 ⊂ BṡB as B3 = B2. But by the definition of L1 s acts on the root system of the pair (L1, Hk)
without fixed points. Since B3 = B ∩ L1 and s fixes all the roots of the pair (ZkHk, Hk) we have an inclusion
B3 ⊂ HkNk, where Nk is the unipotent radical of the parabolic subgroup Pk associated to s in the beginning of
this section. Hence B3ṡB3 ⊂ NkṡHkNk.

Recall that we denote by H0
k the identity component of the centralizer Hs

k of ṡ in Hk. Next we show that all
elements of NkṡHkNk are conjugate to elements of NkṡH

0
kNk ⊂ NkṡZkNk by elements of Hk.

Observe that by parts (2) and (3) of the proof of the Theorem in Section 18.3 of [55] the set of elements
hṡh−1ṡ−1, h ∈ Hk is a closed subgroup H ′k of Hk, and the map

Hk → H ′k, h 7→ hṡh−1ṡ−1

is a surjectice group homomorphism with the kernel being Hs
k. Thus dim Hk = dim Hs

k + dim H ′k.
Now consider the group homomorphism

φ : Hs
k ×H ′k → Hk

induced by the group multiplication in Hk. By Corollary B in Section 18.1 of [55] its differential at the identity
element of Hs

k×H ′k is a linear isomorphism of the corresponding tangent spaces, i.e. of the Lie algebras of Hs
k×H ′k

and of Hk. Since φ is a group homomorphism, this differential is an isomorphism of the corresponding tangent
spaces at all points of Hs

k ×H ′k. Thus its image must have the dimension equal to dim Hs
k + dim H ′k = dim Hk.

By 4.4, Proposition B in [55] the image of the homomorphism φ is a closed subgroup in Hk. The identity
dim Hs

k + dim H ′k = dim Hk implies that this image contains the identity component of Hk. But Hk is irreducible,
and hence the image of φ coincides with Hk, i.e. φ is surjective.

For the same reason the image of H0
k×H ′k in Hk under φ coincides with Hk, i.e. the restriction of φ to H0

k×H ′k
is surjective.

This implies that for any h ∈ Hk there exist h0 ∈ H0
k and h′ṡh′

−1
ṡ−1 ∈ H ′k (h′ ∈ Hk) such that

h = h0h
′ṡh′

−1
ṡ−1 = h′h0ṡh

′−1
ṡ−1,

or
h′
−1
hṡh′ = h0ṡ. (1.5.14)

Since Hk normalizes Nk, we deduce from the last identity that any element nhṡn′ ∈ NkHkṡNk = NkṡHkNk,
n, n′ ∈ Nk, h ∈ Hk, can be conjugated by an element h′ ∈ Hk to an element h′

−1
nh′h0ṡh

′−1
n′h′ ∈ NkH

0
kṡNk =

NkṡH
0
kNk, where h0 ∈ H0

k and h′ are related to h by (1.5.14).
Finally observe that NkṡH

0
kNk ⊂ NkṡZkNk, and hence any conjugacy class γ ∈ GO intersects NkṡH

0
kNk ⊂

NkṡZkNk. By Proposition 1.3.4 (i) γ also intersects Σk,s. Formula (1.3.18) implies that the Zk–component of
any element from NkṡZkNk is equal to the Zk–component in Σk,s = ṡZkNk,s of its image under the isomorphism
NkṡZkNk ' Nk× ṡZkNk,s. Therefore any conjugacy class γ ∈ GO intersects Σk,s at some point of ṡH0

kNk,s. This
completes the proof.

By the previous lemma the statement of this theorem holds.
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1.6 Some normal orderings of positive root systems associated to Weyl
group elements

For the purpose of quantization we shall need a certain normal ordering on the root system ∆s
+.

An ordering of a set of positive roots ∆+ is called normal if it satisfies the following property.

Property N. For any three roots α, β, γ such that γ = α+ β we have either α < γ < β or β < γ < α.

If
β1, . . . , βD

is a normal ordering of ∆+, any part of it of the form

βh, βh+1, . . . , βh+b

is called a segment and denoted by [βh, βh+b].
If A,B ⊂ ∆+ are two subsets, we write A < B if for any θ ∈ A, and ϑ ∈ B one has θ < ϑ with respect to a

normal ordering < on ∆+.

Proposition 1.6.1. ([133], §3, Proposition 2) Let α1, . . . , αl be the simple roots in ∆+, s1, . . . , sl the corre-
sponding simple reflections. Let w be the element of W of maximal length with respect to the system s1, . . . , sl of
simple reflections. For any reduced decomposition w = si1 . . . siD of w the ordering

β1 = αi1 , β2 = si1αi2 , . . . , βD = si1 . . . siD−1
αiD (1.6.1)

is a normal ordering in ∆+, and there is a one–to–one correspondence between normal orderings of ∆+ and reduced
decompositions of w.

From this proposition and from properties of Coxeter groups it follows that any two normal orderings in ∆+

can be reduced to each other by the so–called elementary transpositions. The elementary transpositions for rank
2 root systems are inversions of the following normal orderings (or the inverse normal orderings):

α, β A1 +A1

α, α+ β, β A2

α, α+ β, α+ 2β, β B2

α, α+ β, 2α+ 3β, α+ 2β, α+ 3β, β G2

(1.6.2)

where it is assumed that (α, α) ≥ (β, β). Moreover, for any rank 2 root system there exist two normal orderings
one of which is contained in the list (1.6.2) and the other is the inverse ordering.

In general an elementary transposition of a normal ordering in a set of positive roots ∆+ is the inversion of an
ordered segment of form (1.6.2) (or of a segment with the inverse ordering) in the ordered set ∆+, where α−β 6∈ ∆.

We shall need the following property of normal orderings.

Lemma 1.6.2. Any root α in any normal ordering of a system of positive roots ∆+ cannot be represented as a
linear combination of roots strictly greater xor strictly less than α with non-negative integer coefficients.

Proof. Let w = si1 . . . siD be the reduced decomposition of the longest element w of W corresponding to a normal
ordering of ∆+, so that the ordering has the form

β1 = αi1 , β2 = si1αi2 , . . . , βD = si1 . . . siD−1
αiD .

Let α = βk for some k and define v = sik . . . si1 . As this decomposition of v is reduced, i.e. has minimal possible
length, being a part of the reduced decomposition of w−1, we have

vα = vβk = sik . . . si1si1 . . . sik−1
αik = −αik ∈ ∆−,

and for n > k
vβn = sik . . . si1si1 . . . siksik+1

. . . sin−1
αin = sik+1

. . . sin−1
αin ∈ ∆+.
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Therefore if we suppose that α = βk =
∑D
n=k+1 cnβn, cn ∈ N then

−αik = vβk = vα =

D∑
n=k+1

cnsik+1
. . . sin−1

αin ∈ ∆+

Thus we arrive at a contradiction, and hence the presentation α = βk =
∑D
n=k+1 cnβn, cn ∈ N is impossible.

The case of similar decompositions of α as linear combinations of roots strictly less than α with non-negative
integer coefficients is treated in a similar way.

We recall some results of §3 and §4 in [133] on normal orderings and reduced decompositions. For w ∈ W a
decomposition w = uv, u, v ∈ W , is called reduced if l(w) = l(u) + l(v), where l(·) is the length function with
respect to the system of simple roots in ∆+. In this case ∆w = ∆v ∪ v−1∆u.

Recall that for w ∈W , a decomposition w = si1 . . . sin is called reduced if it has minimal possible length equal
to l(w). Obviously, if w = uv, u, v, w ∈W is a reduced decomposition then the product of reduced decompositions
of u and v is a reduced decomposition of w.

An ordering of the set ∆w = {α ∈ ∆+|wα ∈ −∆+} is called normal if it coincides with an initial segment of
some normal ordering of ∆+.

Lemma 1.6.3. ([133], §4, Theorem 1) Let w ∈W . Then the following statements are true.
(i) Any simple root in ∆w can be moved to the first position in a normal ordering of ∆w by a composition of

elementary transpositions.
(ii) Any two normal orderings of the set ∆w can be obtained from each other by elementary transpositions within

∆w.
(iii) Any two reduced decompositions of w can be obtained from each other using braid group relations in W .
(iv) If w = sjb . . . sj1 is a reduced decomposition of w then β1 = αj1 , β2 = sj1αj2 . . . , βb = sj1 . . . sjb−1

αjb is a
normal order of the set ∆w, and

w = sβ1
. . . sβb . (1.6.3)

Moreover, there is a one-to-one correspondence between the reduced decompositions of w, the presentations of
w of the form (1.6.3), and the normal orderings of the set ∆w. In particular, any reduced decomposition of w is
an initial part of a reduced decomposition of the longest element w ∈W .

We shall also need the following generalization of the previous lemma.

Lemma 1.6.4. Let α1, . . . , αl be the simple roots in ∆+, s1, . . . , sl the corresponding simple reflections, w =
si1 . . . siD a reduced decomposition of the longest element w of W with respect to the system s1, . . . , sl of its gener-
ators, and

β1 = αi1 , β2 = si1αi2 , . . . , βD = si1 . . . siD−1
αiD (1.6.4)

the corresponding normal ordering in ∆+.
Let βh, βh+1, . . . , βh+b be a segment of this normal ordering, w = sih . . . sih+b the corresponding part of the

reduced decomposition of w.
Let w = sjh . . . sjh+b be another reduced expression of w. Then the following statements are true.
(i)

w = si1 . . . sih−1
sjh . . . sjh+bsih+b+1

. . . siD (1.6.5)

is a reduced expression of w.
(ii) The normal ordering of ∆+ corresponding to reduced decomposition (1.6.5) has the form

β1, β2, βh−1, βh1
, . . . , βhb , βh+b+1 . . . , βD, (1.6.6)

where the segment βh1
, . . . , βhb is obtained from βh, βh+1, . . . , βh+b by applying elementary transpositions to normal

ordering (1.6.4) such that each such transposition does not change the positions of all positive roots, except for
βh, βh+1, . . . , βh+b.

(iii) Let u = si1 . . . sih−1
. Then u∆w−1 = {βh, βh+1, . . . , βh+b}, and the segments βh, βh+1, . . . , βh+b and

βh1
, . . . , βhb correspond to the following two decompositions of the element uw−1u−1,

uw−1u−1 = sβh . . . sβh+b = sβh1 . . . sβhb . (1.6.7)
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Moreover, if a segment βh1
, . . . , βhb is obtained from βh, βh+1, . . . , βh+b by applying elementary transpositions to

normal ordering (1.6.4) such that each such transposition does not change the positions of all positive roots, except
for βh, βh+1, . . . , βh+b, then the corresponding ordering (1.6.6) is normal, and there is a one-to-one correspondence
between reduced decompositions of w, decompositions of the element uw−1u−1 of the form (1.6.7), segments obtained
from βh, βh+1, . . . , βh+b by applying elementary transpositions within the segment, and normal orderings of ∆+ of
type (1.6.6).

Proof. For part (i) we observe that the decompositions u = si1 . . . sih−1
, v = sih+1

. . . siD are reduced being parts
of a reduced decomposition of w. Thus the decomposition w = uwv given by (1.6.5) must be reduced as its length
is equal to the length of w, i.e. to the cardinality of the set ∆+.

To justify (ii) we observe that, according to the definition of the normal ordering given in (1.6.4), after replacing
the part w = sih . . . sih+b of the corresponding reduced decomposition w = si1 . . . siD with w = sjh . . . sjh+b , the
roots at the first h− 1 and the last D− (h+ b) positions will remain at the same places in new ordering (1.6.6) as
for the roots at these positions we still have the same expressions,

βk = si1 . . . sik−1
αik , 1 ≤ k < h,

βk = uwsih+1
. . . sik−1

αik , D ≥ k > h+ b.

Let β′1 = αih , β
′
2 = sihαih+1

. . . , β′b = sih . . . sih+b−1
αih+b be the normal ordering of ∆w−1 associated to the

reduced decomposition w = sih . . . sih+b according to Lemma 1.6.3 (iv). Then the segment βh, βh+1, . . . , βh+b

coincides with uβ′1 = uαih , uβ
′
2 = usihαih+1

. . . , uβ′b = usih . . . sih+b−1
αih+b . As a set this segment copincides with

u∆w−1 .
According to definition (1.6.1) in the new normal ordering (1.6.5) the roots from the set u∆w−1 forming the

segment βh1 , . . . , βhb are placed as follows uαjh , usjhαjh+1
. . . , usjh . . . sjh+b−1

αjh+b . Note that according to Lemma
1.6.3 (iv) the segment αjh , sjhαjh+1

. . . , sjh . . . sjh+b−1
αjh+b is the normal ordering of the set ∆w−1 which is obtained

from the segment β′1 = αih , β
′
2 = sihαih+1

. . . , β′b = sih . . . sih+b−1
αih+b by applying elementary transpositions by

Lemma 1.6.3 (ii). Therefore the segment

βh1
, . . . , βhb = uαjh , usjhαjh+1

. . . , usjh . . . sjh+b−1
αjh+b

is obtained from the segment βh, βh+1, . . . , βh+b = uβ′1, uβ
′
2 . . . , uβ

′
b by applying elementary transpositions. At the

same time part (iv) of Lemma 1.6.3 implies statement (iii) of this lemma. This completes the proof.

To formulate the main statement of this section we shall consider a special type of factorizations of Weyl group
elements introduced in (1.2.1). This type is described in the following lemma.

Lemma 1.6.5. Let s ∈ W be an element of the Weyl group W . There there is a decomposition s = s1s2 of the
form (1.2.1) such that any root α ∈ ∆ fixed by the action of s2 is also fixed by the action of s, i.e.

s2α = α⇒ α ∈ ∆0. (1.6.8)

Proof. Let s = s1s2 be any presentation of the form (1.2.1) of a Weyl group element s ∈W . In the proof we shall
use a decomposition (1.2.14) such that in sum (1.2.14) h0 is the linear subspace hsR = hs ∩ hR of hR fixed by the
action of s pointwise. It will be convenient to put h0 = hsR even in the case when hsR is trivial. According to this
convention ∆0 = {α ∈ ∆ : sα = α} is always the set of roots fixed by the action of s, and ∆0 may be empty.

We shall also assume that the one–dimensional subspaces hi in sum (1.2.14) on which s1 acts by multiplication
by −1 and s2 acts trivially, if there are any non–trivial subspaces of this type, are placed immediately after h0 in
(1.2.14), i.e. they are labeled by indexes forming a set of the type {1, 2, . . . , t}.

Recall that in Section 1.2 we denoted by ∆ik , k = 0, . . . ,M the non–empty sets in the collection ∆i, i = 0, . . . ,K,
and that they are labeled in such a way that ij < ik if and only if j < k.

Suppose that the direct sum
⊕u

k=0,ik>0 hik of the subspaces hik , which correspond to the non–empty sets ∆ik ,

k = 0, . . . ,M and on which s1 acts by multiplication by −1 and s2 acts trivially, is not trivial. Since the one–
dimensional subspaces hi on which s1 acts by multiplication by −1 and s2 acts trivially are placed immediately
after h0 in sum (1.2.14), the roots from the union

⋃u
k=0,ik>0 ∆ik must be orthogonal to all subspaces hik , ik > 0

on which s1 does not act by multiplication by −1 and to all roots from the set γn+1, . . . γl′ as s2 acts trivially on⊕u
k=0 hik . Pick up a root γ ∈

⋃u
k=0,ik>0 ∆ik . Then γ is orthogonal to the roots γn+1, . . . γl′ . Therefore, by the



1.5. NORMAL ORDERINGS OF POSITIVE ROOT SYSTEMS 47

choice of γ, s1
0 := s1sγ is an involution the dimension of the fixed point space of which is equal to the dimension of

the fixed point space of the involution s1 plus one, and s2
0 := sγs

2 is another involution the dimension of the fixed
point space of which is equal to the dimension of the fixed point space of the involution s2 minus one,

dim hs
1
0 = dim hs

1

+ 1,dim hs
2
0 = dim hs

2

− 1.

By the construction we also have a decomposition s = s1
0s

2
0.

Now we can construct decomposition (1.2.14) using the new factorization s = s1
0s

2
0 of s and the conventions

stated in the first two paragraphs of this proof. After that we can also apply the algorithm described in the previous
paragraph. Iterating these two steps we shall eventually arrive at the situation when the direct sum

⊕u
k=0,ik>0 hik

of the subspaces hik on which s1 acts by multiplication by −1 and s2 acts trivially is trivial.
This property also implies that any root fixed by the action of s2 is fixed by the action of s as well,

s2α = α⇒ α ∈ ∆0,

which is property (1.6.8).
Indeed, if s2α = α then by the definition of the subspaces hik ⊂ hR, α annihilates any s-invariant subspace

hik ⊂ hR on which s2 acts in a non–trivial way. Therefore α may not vanish identically only on the direct sum⊕u
k=0,ik>0 hik of the subspaces hik on which s1 acts by multiplication by −1 and s2 acts trivially or on h0. But

the sum
⊕u

k=0,ik>0 hik is trivial by the construction. Therefore α does not vanish identically only on h0 (if h0 is
not trivial) which implies α ∈ ∆0.

Note that condition (1.6.8) is a property of the corresponding decomposition (1.2.1) and that this condition
does not depend on decomposition (1.2.14) used in the arguments in the previous paragraph. This completes the
proof.

From now on we shall make the following assumptions.

1. We shall only consider decompositions (1.2.1) which satisfy property (1.6.8).

2. It will be convenient to use the convention adopted in the proof of the previous lemma and assume that in sum
(1.2.14) h0 is the linear subspace hsR = hs∩hR of hR fixed by the action of s pointwise, and it will be convenient
to put h0 = hsR even in the case when hsR is trivial. According to this convention ∆0 = {α ∈ ∆ : sα = α} is
always the set of roots fixed by the action of s, and ∆0 may be empty.

3. As in the proof of the previous lemma, we shall also always assume that the one–dimensional subspaces hi
in sum (1.2.14) on which s1 acts by multiplication by −1 and s2 acts trivially, if there are any non–trivial
subspaces of this type, are placed immediately after h0 in (1.2.14), i.e. they are labeled by indexes forming a
set of the type {1, 2, . . . , t}.

4. According to the arguments in the proof of the previous lemma, under assumptions 1-3 we can suppose that
the direct sum

⊕u
k=0,ik>0 hik of the subspaces hik on which s1 acts by multiplication by −1, s2 acts trivially,

and which correspond to the non–empty sets in the collection ∆i, i = 0, . . . ,K, is trivial.

Proposition 1.6.6. Let s ∈ W be an element of the Weyl group W of the pair (g, h), ∆ the root system of the
pair (g, h), s = s1s2 a presentation (1.2.1) for s, i.e. s1, s2 are involutions, s1 = sγ1 . . . sγn , s2 = sγn+1

. . . sγl′ , the
roots in each of the sets γ1, . . . , γn and γn+1, . . . , γl′ are positive and mutually orthogonal.

Let ∆s
+ be a system of positive roots defined by (1.2.20) using the presentation s = s1s2 and under assumptions

1-4. For any w ∈W denote ∆s
w = {α ∈ ∆s

+ : wα ∈ −∆s
+}. Then the following statements are true.

(i) The decomposition s = s1s2 is reduced in the sense that l(s) = l(s2) + l(s1), where l(·) is the length function
in W with respect to the system of simple roots in ∆s

+, and ∆s
s = ∆s

s2 ∪ s2(∆s
s1), ∆s

s−1 = ∆s
s1 ∪ s1(∆s

s2) (disjoint
unions).

(ii) If α ∈ ∆s
s1 (resp. α ∈ ∆s

s2 , α ∈ ∆s
s, or α ∈ ∆s

s−1), β ∈ ∆0, and α+β ∈ ∆ then α+β ∈ ∆s
s1 (resp. α+β ∈ ∆s

s2 ,
α+ β ∈ ∆s

s, or α+ β ∈ ∆s
s−1).

(iii) s2(∆s
s1) ⊂ ∆s

+ \
(
∆s
s1 ∪∆s

s2 ∪∆0

)
.
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(iv) There is a normal ordering of the root system ∆s
+ of the following form

β1
1 , . . . , β

1
t , β

1
t+1, . . . , β

1
t+ p−n

2

, γ1, . . . , γ2, . . . , γ3, . . . , γn, β
1
t+p+1, . . . , β

1
l(s1), . . . , (1.6.9)

β2
1 , . . . , β

2
t′ , γn+1, . . . , γn+2, . . . , γn+3, . . . , γl′ , β

2

t′+ q+l′−n
2 +1

, . . . , β2
t′+q, β

2
t′+q+1, . . . , β

2
l(s2), β

0
1 , . . . , β

0
D0
,

where

∆s
s1 = {β1

1 , . . . , β
1
l(s1)} = {β1

1 , . . . , β
1
t , β

1
t+1, . . . , β

1
t+ p−n

2

, γ1, . . . , γ2, . . . , γ3, . . . , γn, β
1
t+p+1, . . . , β

1
l(s1)},

∆−1
s1 := {α ∈ ∆s

+|s1α = −α} = {β1
t+1, . . . , β

1
t+p} = {β1

t+1, . . . , β
1
t+ p−n

2

, γ1, . . . , γ2, . . . , γ3, . . . , γn},

where p = |∆−1
s1 |,

t = |[β1
1 , β

1
t ]| = |[β1

t+p+1, β
1
l(s1)]| =

l(s1)− p
2

, (1.6.10)

so that
2t = |∆s

s1 \∆−1
s1 | = l(s1)− |∆−1

s1 |,

|[β1
t+1, β

1
t+ p−n

2

]| = p− n
2

, |[γ1, . . . , γn]| = p+ n

2
; (1.6.11)

∆s
s2 := {β2

1 , . . . , β
2
l(s2)} = {β2

1 , . . . , β
2
t′ , γn+1, . . . , γn+2, . . . , γn+3, . . . , γl′ , β

2

t′+ q+l′−n
2 +1

, . . . , β2
t′+q, β

2
t′+q+1, . . . , β

2
l(s2)},

∆−1
s2 := {α ∈ ∆s

+|s2α = −α} = {β2
t′+1, . . . , β

2
t′+q} = {γn+1, . . . , γn+2, . . . , γn+3, . . . , γl′ , β

2

t′+ q+l′−n
2 +1

, . . . , β2
t′+q},

where q = |∆−1
s2 |,

t′ = |[β2
1 , β

2
t′ ]| = |[β2

t′+q+1, β
2
l(s2)]| =

l(s2)− q
2

, (1.6.12)

so that
2t′ = |∆s

s2 \∆−1
s2 | = l(s2)− |∆−1

s2 |,

|[β2

t′+ q+l′−n
2 +1

, . . . , β2
t′+q]| =

q − l′ + n

2
, |[γn+1, . . . , γl′ ]| =

q + l′ − n
2

; (1.6.13)

(∆0)+ := {β0
1 , . . . , β

0
D0
} = {α ∈ ∆s

+|s(α) = α} = ∆s
+ ∩∆0.

Moreover, normal ordering (1.6.9) has the following properties.

(v) The length of the ordered segment ∆m+
⊂ ∆ in normal ordering (1.6.9),

∆m+ := {γ1, . . . , γ2, . . . , γ3, . . . , γn, β
1
t+p+1, . . . , β

1
l(s1), . . . , β

2
1 , . . . , β

2
t′ , γn+1, . . . , γn+2, . . . , γn+3, . . . , γl′}, (1.6.14)

is equal to

|∆m+
| = D −

(
l(s)− l′

2
+D0

)
, (1.6.15)

where D is the number of roots in ∆s
+, and D0 is the number of positive roots fixed by the action of s.

(vi) For any two roots α, β ∈ ∆m+
such that α < β the sum α + β cannot be represented as a linear combination∑t

k=1 ckγik , where ck ∈ N and α < γi1 < . . . < γit < β.

(vii) The roots from the set s2(∆s
s1) form a segment in normal ordering (1.6.9) preceding the segment formed by

the roots from the set ∆s
s2 which is, in turn, followed by the final segment (∆0)+ = ∆0 ∩∆s

+. Thus the roots from
the set ∆s

s = ∆s
s2 ∪ s2(∆s

s1) form a segment in ∆s
+ which contains ∆s

s2 .
The roots from the set ∆s

s1 form an initial segment which does not intersect the final segment ∆s
s ∪ (∆0)+.

(viii) For any α ∈ (∆ik)+, ik > 0 such that sα ∈ (∆ik)+ one has sα > α, and if β, γ ∈ ∆ij ∪ {0}, j < k and
sα+ β, α+ γ ∈ ∆ then sα+ β, α+ γ ∈ ∆s

+ and sα+ β > α+ γ.
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In particular, for any α ∈ ∆s
+, α 6∈ ∆0 and any α0 ∈ ∆0 such that sα ∈ ∆s

+ one has sα > α and if sα+α0 ∈ ∆
then sα+ α0 ∈ ∆s

+ and sα+ α0 > α.

(ix) If α, β ∈ ∆ik ∩∆s
+, ik > 0, α ≤ β and sβ ∈ ∆s

+ then hik is two–dimensional, and the orthogonal projection of
sβ onto hik is obtained by a clockwise rotation with a non–zero angle and by a rescaling with a positive coefficient
from the orthogonal projection of α onto hik .

Remark 1.6.7. According to the conditions 1-4 imposed before Proposition 1.6.6 in the decomposition s = s1s2 we
always have s2 6= id provided s 6= id but in the case when s is an involution we have s = s2 and s1 = id. Hence in
this case ∆s

s1 = ∅, conditions 1-4 imply ∆s
+ = ∆s

s2 ∪ (∆0)+ (disjoint union), so that normal ordering (1.6.9) has
the form

β2
1 , . . . , β

2
t′ , γn+1, . . . , γn+2, . . . , γn+3, . . . , γl′ , β

2

t′+ q+l′−n
2 +1

, . . . , β2
t′+q, β

2
t′+q+1, . . . , β

2
l(s2), β

0
1 , . . . , β

0
D0
,

and

∆m+
= {β2

1 , . . . , β
2
t′ , γn+1, . . . , γn+2, . . . , γn+3, . . . , γl′}.

Remark 1.6.8. The most important properties of ordering (1.6.9), which we shall need later, are (v) and (vi).
As ∆m+

is a segment, it is additively closed, and hence the roots subspaces in g corresponding to the roots from it

generate a Lie subalgebra m+ ⊂ n of dimension D −
(
l(s)−l′

2 +D0

)
. We shall define a quantum group counterpart

of its enveloping algebra U(m+), and condition (vi) will ensure that the quantum group counterpart of U(m+) has
a non–trivial character which does not vanish on suitably chosen quantum root vectors corresponding to the roots
γ1, . . . , γl. This subalgebra of the quantum group and the non–trivial character will be used to define q-W–algebras
in the framework of the Hecke algebra philosophy outlined in the Introduction. Formula (1.6.15) for the dimension
of m+ will play a crucial role in the proof of the De Concini-Kac-Procesi conjecture. More precisely, we shall obtain
and use the following relation

2dim m+ + dim Σs = dim G,

where Σs ⊂ G is the transversal slice defined in part (ii) of Proposition 1.3.4 with the help of the same system of
positive roots ∆s

+ as ordering (1.6.9).

Proof. Firstly we describe the set (∆ik)+ = ∆ik ∩ ∆s
+ for ik > 0 and some its subsets. Suppose that the corre-

sponding s–invariant subspace hik is a two–dimensional plane. The case when hik is an invariant line on which s2

acts by reflection and s1 acts trivially can be treated in a similar way. The plane hik is shown at Figure 3.

hikOO

22v
2
k ∆2

ikψk
ψk

iiv1
k∆1

ik
ϕk

ϕk

s1∆1
ik

s2∆1
ik

s1∆2
ik

Fig. 3
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The vector hik is directed upwards at the picture. By (1.2.21) a root α ∈ ∆ik belongs to the set (∆ik)+ if and
only if hik(α) > 0. Identifying hR and h∗R with the help of the bilinear form one can deduce that α ∈ ∆ik is in ∆s

+

if and only if its orthogonal, with respect to the bilinear form, projection onto hik is contained in the upper–half
plane shown at Figure 3.

The involutions s1 and s2 act in hik as reflections with respect to the lines orthogonal to the vectors labeled by
v1
k and v2

k, respectively, at Figure 3, the angle between v1
k and v2

k being equal to π− θik/2. The nonzero projections
of the roots from the set {γ1, . . . γn} ∩∆ik onto the plane hik are proportional to the vector v1

k, and the nonzero
projections of the roots from the set {γn+1, . . . , γl′}∩∆ik onto the plane hik are proportional to the vector v2

k. The
element s acts on hik by clockwise rotation with the angle θik = 2(ϕk + ψk).

Let ik > 0 and ∆
(r)
ik

the subset of roots in (∆ik)+ orthogonal projections of which onto hik are directed along

a ray r ⊂ hik starting at the origin. We call ∆
(r)
ik

the family corresponding to the ray r. Below we shall only

consider rays r which correspond to nonempty sets of the form ∆
(r)
ik

, so that (∆ik)+ =
⋃Mk

j=1 ∆
(rj)
ik

(disjoint union
of non-empty sets).

Lemma 1.6.9. Suppose that ik > 0. The following statements are true.

(i) Each ∆
(r)
ik

is an additively closed set of roots.

(ii) Let ∆
(r1)
ik

and ∆
(r2)
ik

be two families corresponding to rays r1 and r2, and δ1 ∈ ∆
(r1)
ik

, δ2 ∈ ∆
(r2)
ik

two roots such

that δ1 + δ2 = δ3 ∈ ∆. Then the rays r1 and r2 form an angle strictly less than π, and δ3 ∈ ∆
(r3)
ik

, where ∆
(r3)
ik

is
the family corresponding to a ray r3 such that r3 lies inside of the angle formed by r1 and r2.

(iii) Let 0 ≤ j < k, and δ1 ∈ ∆ij , δ2 ∈ ∆
(r)
ik

two roots such that δ1 + δ2 = δ3 ∈ ∆. Then δ3 ∈ ∆
(r)
ik

.

Proof. All statements are simple consequences of the fact that the sum of the orthogonal projections of any two
roots onto hik is equal to the orthogonal projection of the sum.

For part (i) we observe that the orthogonal projections of any two roots α, β from ∆
(r)
ik

onto hik have the same
direction therefore the orthogonal projection of the sum α + β onto hik has the same direction as the orthogonal

projections of α and β, and hence α+ β ∈ ∆
(r)
ik

.
For (ii) it suffices to observe that the sum of the orthogonal projections of δ1 and δ2 onto hik is equal to the

orthogonal projection of the sum, and the sum of the orthogonal projections of δ1 and δ2 onto hik lies inside of the
angle formed by r1 and r2. The rays r1 and r2 form an angle strictly less than π since by (1.2.21) the orthogonal
projections of all roots from (∆ik)+ onto hik belong to an open half plane.

Part (iii) follows from the fact that δ1 has zero orthogonal projection onto hik .

Now we prove properties (i), (ii) and (iii) in the statement of the proposition. Recall that by Theorem C in [18]
the roots γ1, . . . , γl′ form a linear basis in the annihilator h′R

∗
of h0 with respect to the pairing between hR and h∗R.

Therefore s1 = sγ1 . . . sγn and s2 = sγn+1
. . . sγl′ fix all roots from ∆0 ⊂ h0.

Thus, from (1.2.16) with the convention h0 = hs adopted in this section, we have disjoint union decompositions

∆s
s1 =

M⋃
k=0,ik>0

∆1
ik
,∆s

s2 =

M⋃
k=0,ik>0

∆2
ik
,∆s

s =

M⋃
k=0,ik>0

∆s
ik
, (1.6.16)

where ∆1
ik

= ∆ik ∩∆s
s1 , ∆2

ik
= ∆ik ∩∆s

s2 , ∆s
ik

= ∆ik ∩∆s
s.

Lemma 1.6.10. If hik is a plane then the sets ∆1
ik

and ∆2
ik

have empty intersection and are the unions of the sets

∆
(r)
ik

with r belonging to the sectors ∆1
ik

(resp. ∆2
ik

). The set ∆s
ik

is the union of the sets ∆
(r)
ik

with r belonging to
the union of the non-overlapping sectors s2∆1

ik
and ∆2

ik
.

If hik is an invariant line on which s acts by multiplication by −1 the set ∆1
ik

is empty and ∆s
ik

= ∆2
ik

. This

set is the set ∆
(r)
ik

= (∆ik)+, where r is the positive semi-axis in hik .

Proof. Consider the case when hik is a plane. At Figure 3 the elements from the sets ∆1
ik

and ∆2
ik

are orthogonally
projected onto the interiors of the sectors in the plane hik labeled by ∆1

ik
and ∆2

ik
, respectively. Therefore the sets

∆1
ik

and ∆2
ik

have empty intersection and are the unions of the sets ∆
(r)
ik

with r belonging to the sectors ∆1
ik

(resp.
∆2
ik

).
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In the case when hik is a plane the element s acts on hik by clockwise rotation with the angle θik = 2(ϕk +ψk)
(see Figure 3). Therefore the set ∆s

ik
consists of the roots the orthogonal projections of which onto hik belong to

the union of the non-overlapping sectors labeled s2∆1
ik

and ∆2
ik

at Figure 3.
If hik is one–dimensional, we recall that by the assumption 4 made before this proposition there are no one–

dimensional subspaces hik on which s1 acts by multiplication by −1. Thus in this case the set ∆1
ik

is empty, and

hence ∆s
ik

= ∆2
ik

. This set is the set ∆
(r)
ik

= (∆ik)+, where r is the positive semi-axis in hik .

By the previous lemma ∆s
ik

= ∆2
ik
∪s2∆1

ik
(disjoint union), and hence by (1.6.16) ∆s

s =
⋃M
k=1 ∆s

ik
=
⋃M
k=1

(
∆2
ik
∪ s2∆1

ik

)
=(⋃M

k=1 ∆2
ik

)⋃
s2
(⋃M

k=1 ∆1
ik

)
= ∆s

s2 ∪ s2∆s
s1 (disjoint union). In particular, by the results of §3 in [133] the de-

composition s = s1s2 is reduced in the sense that l(s) = l(s1) + l(s2), as l(s), l(s1) and l(s2) are equal to the
cardinalities of the sets ∆s

s, ∆s
s1 and ∆s

s2 , respectively. Similarly, ∆s
s−1 = ∆s

s1 ∪ s1(∆s
s2) (disjoint union). This

proves (i).
Part (ii) immediately follows from Lemma 1.6.9 (iii) with ij = 0, Lemma 1.6.10 and decompositions (1.6.16)

and similar results for s−1.
To justify (iii) we recall that by (1.6.16) for any root α ∈ ∆s

s1 one has α 6∈ ∆0. In fact, in this case α ∈ ∆1
ik

,
where hik is a two–dimensional plane, as by assumption 4 there are no one–dimensional subspaces hik on which
s1 acts by multiplication by −1. Hence using Figure 3 we deduce that the orthogonal projection of s2α onto hik
belongs to the interior of the sector labeled s2∆1

ik
which belongs to the upper half plane and does not overlap with

the sectors ∆1
ik

and ∆2
ik

. Obviously s2α 6∈ ∆0. This implies s2α ∈ ∆s
+ \

(
∆s
s1 ∪∆s

s2 ∪∆0

)
which proves (iii).

Next we construct in several steps normal ordering (1.6.9) satisfying properties (iv)-(ix).

Step 1.

First we construct an auxiliary normal ordering on ∆s
+ satisfying properties summarized in Lemmas 1.6.11 and

1.6.12 below. We do it by induction over the sets (∆ik)+ = ∆ik ∩∆s
+, k = 0, . . . ,M , where the sets ∆ik are defined

by (1.2.22). Note that by Lemma 1.2.2 each ∆ik is the root system of a standard Levi subalgebra in g.
For the base of the induction, consider the set (∆i0)+ = (∆i0)+. If i0 = 0 or hi0 is one–dimensional then we fix

an arbitrary normal order on (∆i0)+ = (∆i0)+.
If hi0 is two–dimensional then we choose a normal ordering in (∆i0)+ in the following way. First fix an initial

arbitrary normal ordering on (∆i0)+. Since by Lemma 1.6.9 each set ∆
(r)
i0

is additively closed we obtain an induced

ordering for ∆
(r)
i0

which satisfies the defining property for the normal ordering.

Now using these induced orderings on the sets ∆
(r)
i0

we define an auxiliary normal ordering on (∆i0)+ such that

on the sets ∆
(r)
i0

it coincides with the induced normal ordering defined in the previous paragraph, and if ∆
(r1)
i0

and

∆
(r2)
i0

are two families corresponding to rays r1 and r2 such that r2 lies on the right from r1 in hi0 then for any

α ∈ ∆
(r1)
i0

and β ∈ ∆
(r2)
i0

one has α < β. By Lemma 1.6.9 the two conditions imposed on the auxiliary normal
ordering in (∆i0)+ are compatible and define it in a unique way for the given initial normal ordering on (∆i0)+.

Since s acts by a clockwise rotation on hi0 we have s(∆
(r)
i0

) = ∆
(s(r))
i0

for s(r) in the upper–half plane, and hence
the new normal ordering satisfies the condition that for any α ∈ (∆i0)+ such that sα ∈ (∆i0)+ one has sα > α.

Now assume that an auxiliary normal ordering has already been constructed for the set ∆ik−1
and define it for

the set ∆ik .
By Lemma 1.2.2 ∆ik−1

is generated by some subset of simple roots of the set of simple roots of (∆ik)+. Therefore

there exists an initial normal ordering on (∆ik)+ in which the roots from the set (∆ik)+ \ (∆ik−1
)+ = (∆ik)+ form

an initial segment and the remaining roots from (∆ik−1
)+ are ordered according to the previously defined auxiliary

normal ordering. As in case of the induction base this initial normal ordering gives rise to an induced ordering on

each set ∆
(r)
ik

.

Now using these induced orderings on the sets ∆
(r)
ik

we define an auxiliary normal ordering on (∆ik)+. We
impose the following conditions on it. Firstly we require that the roots from the set (∆ik)+ form an initial segment
and the remaining roots from (∆ik−1

)+ are ordered according to the previously defined auxiliary normal ordering.

Secondly, on the sets ∆
(r)
ik

the auxiliary normal ordering coincides with the induced normal ordering which is already

defined, and if ∆
(r1)
ik

and ∆
(r2)
ik

are two families corresponding to rays r1 and r2 such that r2 lies on the right from

r1 in hik then for any α ∈ ∆
(r1)
ik

and β ∈ ∆
(r2)
ik

one has α < β. By Lemma 1.6.9 the conditions imposed on the
auxiliary normal ordering in (∆ik)+ are compatible and define it in a unique way.
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Now we can proceed in a similar way by induction which yields an auxiliary normal ordering on ∆s
+ of the

following form:
(∆iM )+, . . . , (∆i0)+, (1.6.17)

where (∆ik)+, k = 0, . . . ,M are disjoint segments placed in the auxiliary normal ordering as in (1.6.17), and for

each k with ik > 0 the segment (∆ik)+ is the disjoint union of the disjoint segments ∆
(rj)
ik

, j = 1, . . . ,Mk which
are placed in the auxiliary normal ordering in the following way

∆
(r1)
ik

, . . . ,∆
(rMk )

ik
, (1.6.18)

where for i < j the ray rj lies on the right from ri in hik .

Since s acts by a clockwise rotation on two-dimensional hik we have s(∆
(r)
ik

) = ∆
(s(r))
ik

for s(r) in the upper–
half plane in hik , and hence the new normal ordering satisfies the condition that for any α ∈ (∆ik)+ such that
sα ∈ (∆ik)+ one has sα > α.

Note also that the roots from ∆ik−1
have zero orthogonal projections onto hik . Therefore if α ∈ ∆

(r)
ik
⊂ (∆ik)+,

β, γ ∈ ∆ik−1
are such that sα ∈ ∆

(s(r))
ik

⊂ (∆ik)+, sα+β, α+γ ∈ ∆ then by (1.2.15) and (1.2.21) sα+β ∈ ∆
(s(r))
ik

⊂
∆s

+∩ (∆ik)+, α+γ ∈ ∆
(r)
ik
⊂ ∆s

+∩ (∆ik)+ and sα+β > α+γ as s(∆
(r)
ik

) = ∆
(s(r))
ik

for s(r) in the upper–half plane.
These properties of the new normal ordering are summarized in the following lemma.

Lemma 1.6.11. (i) Suppose that ik > 0. Then for two-dimensional hik one has s(∆
(r)
ik

) = ∆
(s(r))
ik

if s(r) in the

upper–half plane, and ∆
(r)
ik

< s(∆
(r)
ik

).

(ii) In particular, for any α ∈ ∆
(r)
ik

such that sα ∈ (∆ik)+ one has sα > α and if β, γ ∈ ∆ik−1
∪ {0},

sα+ β, α+ γ ∈ ∆ then α+ γ ∈ ∆
(r)
ik

, sα+ β ∈ ∆
(s(r))
ik

and sα+ β > α+ γ.

Observe that, according to the definition of the auxiliary normal ordering of ∆s
+ we have the following properties

of this normal ordering which can be seen from (1.6.17) and (1.6.18).

Lemma 1.6.12. The auxiliary normal ordering of ∆s
+ =

⋃M
k=0(∆ik)+ (disjoint union) has the following properties.

(i) For any k = 0, . . . ,M the roots from the disjoint sets (∆ik)+ form segments, and for any k = 0, . . . ,M − 1
one has (∆ik)+ > (∆ik+1

)+;

(ii) For any k = 0, . . . ,M with ik > 0 the roots from the sets ∆
(rj)
ik

, j = 1, . . . ,Mk form segments, (∆ik)+ =⋃Mk

j=1 ∆
(rj)
ik

(disjoint union), and the roots from the set (∆0)+ = ∆0 ∩∆s
+, if it is non-empty, form a final segment;

(iii) For any k = 0, . . . ,M such that the corresponding hik is two–dimensional and for any two segments ∆
(r1)
ik

and ∆
(r2)
ik

corresponding to rays r1 and r2 such that r2 lies on the right from r1 in hik one has ∆
(r1)
ik

< ∆
(r2)
ik

.

Step 2.

Now we modify the auxiliary normal ordering in ∆s
+ in such a way that the roots from the set ∆s

s1 will form
an initial segment, the roots from the set s1(∆s

s2) will follow immediately after it, the roots from the set s2(∆s
s1)

will form a segment preceding the segment formed by the roots from the set ∆s
s2 which will, in turn, be followed

by the final segment (∆0)+ = ∆0 ∩∆s
+.

We shall do it with the help of the following lemma.

Lemma 1.6.13. Assume that ∆s
+ is equipped with an arbitrary normal ordering such that the roots from a set

∆
(r)
ik

= {δ1, . . . , δa} for some ray r ⊂ hik form a segment δ1, . . . , δa. Suppose also that for some natural p

such that 0 ≤ p < k, ip 6= 0 the roots from a set ∆
(t)
ip

= {ξ1, . . . , ξb} for some ray t ⊂ hip form a segment
ξ1, . . . , ξb and that δ1, . . . , δa, ξ1, . . . , ξb is also a segment. Then applying elementary transpositions within the seg-
ment δ1, . . . , δa, ξ1, . . . , ξb one can reduce it to the form ξi1 , . . . , ξib , δj1 , . . . , δja .

Proof. The proof is by induction. First consider the segment δ1, . . . , δa, ξ1.

Since the orthogonal projections of the roots from the set ∆ip onto hik are equal to zero, for any ς ∈ ∆
(t)
ip

and

υ ∈ ∆
(r)
ik

such that ς + υ ∈ ∆ we have ς + υ ∈ ∆
(r)
ik

. Assume now that ς and υ are contained in an ordered segment
of form (1.6.2) or in a segment with the inverse ordering. By the previous observation this segment contains no

other roots from ∆
(t)
ip

, and ς is the first or the last element in that segment. For the same reason the other roots
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in that segment must also belong to ∆
(r)
ik

. Therefore applying an elementary transposition, if necessarily, one can
move ς to the first position in that segment.

Applying this procedure iteratively to the segment δ1, . . . , δa, ξ1 we can reduce it to the form ξ1, δk1 , . . . , δka by
applying elementary transpositions within the segment δ1, . . . , δa, ξ1.

Now we can apply the same procedure to the segment δk1 , . . . , δka , ξ2 to reduce the segment ξ1, δk1 , . . . , δka , ξ2
to the form ξ1, ξ2, δl1 , . . . , δla by applying elementary transpositions within the segment δk1 , . . . , δka , ξ2.

Iterating this procedure we obtain the statement of the lemma.

Now observe that according to Lemma 1.6.12 (i) the roots from each of the sets (∆ik)+ form a segment in

the auxiliary normal ordering of ∆s
+, and by Lemma 1.6.12 (ii) the roots from the sets ∆

(r)
ik

form segments inside

(∆ik)+. As we observed in Lemma 1.6.10, the sets ∆1
ik

(resp. ∆2
ik

) are the unions of the sets ∆
(r)
ik

with r belonging
to the sectors ∆1

ik
(resp. ∆2

ik
) at Figure 3, and hence by Lemma 1.6.12 (i) and (ii) (see also (1.6.17), (1.6.18)) the

roots from the sets ∆1
ik

and ∆2
ik

form an initial and a final segment, respectively, inside (∆ik)+.
Therefore we can apply Lemma 1.6.13 to move all roots from the segments ∆1

ik
, k = 0, . . . ,M to the left and to

move all roots from the segments ∆2
ik

, k = 0, . . . ,M to the right to positions preceding the final segment formed
by the roots from (∆0)+. After this modification the roots from the set ∆s

s1 form an initial segment.
Now using similar arguments the roots from the sets s2∆1

ik
, k = 0, . . . ,M forming segments by Lemma 1.6.10

and by Lemma 1.6.12 (i) and (ii) (see also (1.6.17), (1.6.18)) as well can be moved to the right to positions preceding
the final segment formed by the roots from the set ∆s

s2∪(∆0)+. Note that by parts (i) and (iii) ∆s
s1∩s2(∆s

s1) = {∅}
and ∆s

s2 ∩ s2(∆s
s1) = {∅}. So the last modification does not affect the positions of the roots in ∆s

s1 and in ∆s
s2 and

after applying it the roots from the set s2(∆s
s1) will form a segment preceding the segment formed by the roots

from the set ∆s
s2 which is, in turn, be followed by the final segment (∆0)+ = ∆0 ∩∆s

+. Thus the roots from the
set ∆s

s = ∆s
s2 ∪ s2(∆s

s1) form a segment in ∆s
+ which contains ∆s

s2 . By construction the segment ∆s
s1 does not

intersect the final segment ∆s
s ∪ (∆0)+. This proves that property (vii) holds for the ordering constructed at Step

2.
Thus at Step 2 we obtain a normal ordering on ∆s

+ of the following form:

∆s
s1 , (∆iM )′+, . . . , (∆i0)′+, s

2(∆s
s1),∆s

s2 , (∆0)+, (1.6.19)

where (∆ik)′+ = (∆ik)+ \ (∆s
s ∪∆s

s1 ∪ (∆0)+), k = 0, . . . ,M are disjoint segments placed in the normal ordering
as in (1.6.19), and for each k with ik > 0 the segment (∆ik)′+ is the disjoint union of the disjoint segments

∆
′(rj)
ik

= ∆
(rj)
ik
\ (∆s

s ∪∆s
s1) ∪ (∆0)+), j = 1, . . . ,Mk,

(∆ik)′+ =

Mk⋃
j=1

∆
′(rj)
ik

, k = 0, . . . ,M, (1.6.20)

which are placed in the normal ordering in the following way

∆
′(r1)
ik

, . . . ,∆
′(rMk )

ik
, (1.6.21)

where for i < j the ray rj lies on the right from ri in hik .
The segment ∆s

s1 (resp. ∆s
s2) is the disjoint union of the sets ∆1

ik
(resp. ∆2

ik
), k = 0, . . . ,M ,

∆s
s1 =

M⋃
k=0

∆1
ik
,∆s

s2 =

M⋃
k=0

∆2
ik

(1.6.22)

which are placed in the normal ordering obtained at Step 2 in the following way

∆1
iM , . . . ,∆

1
i0 , (resp. ∆2

iM , . . . ,∆
2
i0), (1.6.23)

and the segment s2(∆s
s1) is the disjoint union of the segments s2(∆1

ik
), k = 0, . . . ,M

s2(∆s
s1) =

M⋃
k=0

s2(∆1
ik

) (1.6.24)
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which are placed in the normal ordering obtained at Step 2 in the following way

s2(∆1
iM ), . . . , s2(∆1

i0). (1.6.25)

Note that ∆1
ik

(resp. ∆2
ik

) is the disjoint union of the sets ∆
(r)
ik

with r belonging to the sectors ∆1
ik

(resp. ∆2
ik

)
at Figure 3 (we assume that ∆2

ik
is the positive semiaxis if hik is one–dimensional; for ∆1

ik
this situation does not

occur),

∆1
ik

=
⋃

r∈∆1
ik

at Figure 3

∆
(r)
ik
,∆2

ik
=

⋃
r∈∆2

ik
at Figure 3

∆
(r)
ik
, (1.6.26)

so that for k = 0, . . . ,M

∆
′(r)
ik

= ∆
(r)
ik
\ (∆s

s ∪∆s
s1 ∪ (∆0)+) =

{
∆

(r)
ik

if r 6∈ ∆1
ik
∪ s2(∆1

ik
) ∪∆2

ik
at Figure 3

∅ otherwise
, (1.6.27)

The segments s2(∆1
ik

), k = 0, . . . ,M are non–empty for two–dimensional hik only. They can be represented as
the following disjoint unions of segments

s2(∆1
ik

) =
⋃

r∈s2(∆1
ik

) at Figure 3

∆
(r)
ik
, (1.6.28)

which are placed in the normal ordering in such a way that

∆
(r)
ik

< ∆
(t)
ik
, (1.6.29)

where for any r, t ∈ s2(∆1
ik

) at Figure 3, the ray t lies on the right from r in hik .
The empty sets which may formally appear in the description of the ordering in formulas (1.6.19), (1.6.21),

(1.6.23), (1.6.25), (1.6.28), (1.6.29) should be omitted.
Note that these formulas imply that the ordering defined at this step has the form

∆1,∆2, . . . ,∆R−1,∆R, (1.6.30)

where ∆j , j = 1, . . . , R are disjoint segments, ∆1 = ∆s
s1 , ∆R−1 = ∆s

s2 , ∆R = (∆0)+, and for j = 2, . . . , R − 2 one

has ∆j = ∆
(r)
ik

for some k and r.

In formula (1.6.30) we could partition further the segments ∆1 = ∆s
s1 and ∆R−1 = ∆s

s2 as in (1.6.26). We shall
not do that since at the next step these segments will be reordered.

Note that according to the algorithm given in Lemma 1.6.13 for each fixed k the order of the segments formed

by the roots from the sets ∆
(r)
ik

is preserved after applying that lemma. Therefore the new normal ordering obtained
this way still satisfies the properties stated in Lemma 1.6.11 and 1.6.12 (ii), (iii). In particular, by Lemma 1.6.11
(i) for any j such that ∆j 6⊂ ∆s

s ∪∆0 one has
∆j < s(∆j). (1.6.31)

Step 3.

Now we can apply elementary transpositions to bring the initial segment formed by the roots from ∆s
s1 =

{β1
1 , . . . , β

1
l(s1)} and the segment formed by the roots from ∆s

s2 = {β2
1 , . . . , β

2
l(s2)} and preceding the final segment

(∆0)+ to the form described in (1.6.9).
For this purpose we shall use the following lemma.

Lemma 1.6.14. ([101], Theorem A; [18], Lemma 5; [125], Proposition 3.3) Let z ∈ W = W (g, h) be
an involution. Fix a system of positive roots ∆+ in ∆ = ∆(g, h), and let s1, . . . , sl be the corresponding simple
reflections in W . Then the following statements are true.

(i) There is a Levi subalagbra of g with Cartan subalgebra h and semisimple part mz, which has Cartan subalgebra
hz ⊂ h, such that z is the longest element of the Weyl group W (mz, hz) with respect to the system of simple roots
in ∆+ ∩∆(mz, hz), and z acts by multiplication by −1 on the Cartan subalgebra hz.

(ii) z can be expressed as a product of dim hz reflections from the Weyl group W (mz, hz) of the pair (mz, hz),
with respect to mutually orthogonal roots.
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(iii) There is a reduced decomposition of z, with respect to the system of simple roots in ∆+, of the form

z = xyx−1, (1.6.32)

where x ∈W , and y ∈W ′ is the longest element in a standard parabolic subgroup W ′ of W such that W (mz, hz) =
xW ′x−1, and if y = sj1 . . . sjq is a reduced decomposition of y in W ′ and x = si1 . . . sit is a reduced decomposition
of x then

z = si1 . . . sitsj1 . . . sjpsit . . . si1 (1.6.33)

is a reduced decomposition of z, so that the corresponding normal ordering of the set ∆z−1 = ∆z has the form

β1, . . . , βt, βt+1, . . . , βt+p, βt+p+1, . . . , β2t+p,

where zβj = −βj, j = t+ 1, . . . , t+ p, and {βt+1, . . . , βt+p} = ∆+(mz, hz) = ∆(mz, hz) ∩∆+.

Let si1 . . . sil(s1)
be the initial part of the reduced decomposition of w corresponding to the normal ordering of

∆s
+ obtained at Step 2, so that (s1)−1 = s1 = si1 . . . sil(s1)

= sβ1
l(s1)

. . . sβ1
1
. By parts (i) and (iii) of Lemma 1.6.14

and by parts (ii) and (iii) of Lemma 1.6.4 for z = w = (s1)−1 = s1 = si1 . . . sil(s1)
= sβ1

l(s1)
. . . sβ1

1
and u = 1, using

elementary transpositions within the segment β1
1 , . . . , β

1
l(s1) one can reduce it to the form

β1
1 , . . . , β

1
t , β

1
t+1, . . . , β

1
t+p, β

1
t+p+1, . . . , β

1
l(s1), (1.6.34)

where β1
t+1, . . . , β

1
t+p is a normal ordering of the system ∆s

+(ms1 , hs1) = ∆(ms1 , hs1)∩∆s
+ = ∆−1

s1 of positive roots in

the root system ∆(ms1 , hs1) of the pair (ms1 , hs1), so that p is the number of positive roots in ∆s
+(ms1 , hs1) = ∆−1

s1 .
Note that by (1.6.33) one has t = l(s1)− (t+ p), i. e. there are equal numbers of roots on the left and on the

right from the segment β1
t+1, . . . , β

1
t+p in the segment

β1
1 , . . . , β

1
t , β

1
t+1, . . . , β

1
t+p, β

1
t+p+1, . . . , β

1
l(s1),

and

t =
l(s1)− p

2
. (1.6.35)

This proves (1.6.10).
Observe that in the case of the involution s1, s1 = sγ1 . . . sγn is the expression mentioned in part (ii) of Lemma

1.6.14, and the roots γ1, . . . , γn span the Cartan subalgebra hs1 .
Now according to the results of Appendix 1, applying elementary transpositions we can reduce the ordering

β1
t+1, . . . , β

1
t+p to the form compatible with the decomposition s1 = sγ1 . . . sγn , i.e., we can bring it to the form

β1
t+1, . . . , β

1
t+ p−n

2

, γ1, . . . , γ2, . . . , γ3, . . . , γn, (1.6.36)

where in the last formula we relabeled the roots β1
i in such a way that after reordering β1

i < β1
j if and only if i < j,

and, according to the definition of normal orderings compatible with decompositions of Weyl group involutions
given in Appendix 1, the new ordering has the property that for any two positive roots α, β ∈ ∆s

+(ms1 , hs1) such
that γ1 ≤ α < β the sum α + β cannot be represented as a linear combination

∑q
k=1 ckγik , where ck ∈ N and

α < γi1 < . . . < γik < β. Formula (1.6.11) follows from the definition given in Appendix 1 (see formula (A1.1)).
Note that by Lemma 1.6.4 the elementary transpositions applied to obtain ordering (1.6.36) do not affect the

positions of the roots which do not belong to the set ∆s
+(ms1 , hs1) = ∆−1

s1 .
Now let w = si1 . . . siD be the reduced decomposition w corresponding to the normal ordering of ∆s

+ obtained
so far, w = sih+1

. . . sih+l(s2)
the product of all simple reflections in the reduced decomposition w = si1 . . . siD such

that for k = 1, . . . , l(s2) the position of sih+k in the reduced decomposition of w is the same as the position of the
root β2

k in the segment β2
1 , . . . , β

2
l(s2) of the normal ordering of ∆s

+. We recall that {β2
1 , . . . , β

2
l(s2)} = ∆s

s2 .

Now, similarly to the case of the segment ∆s
s1 , we can apply parts (i) and (iii) of Lemma 1.6.14 and parts (ii)

and (iii) of Lemma 1.6.4 with z = w = sih+1
. . . sih+l(s2)

, u = si1 . . . sih to the segment {β2
1 , . . . , β

2
l(s2)} = ∆s

s2 . In

the notation of Lemmas 1.6.4 and 1.6.14, s2 = (s2)−1 = uwu−1 = uw−1u−1 = sβ2
l(s2)

. . . sβ2
1
. Using also the normal

ordering of the system of positive roots ∆s
+(ms2 , hs2) = ∆(ms2 , hs2) ∩ ∆s

+ in the root system ∆(ms2 , hs2) of the
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pair (ms2 , hs2) inverse to that compatible with the decomposition s2 = sγn+1
. . . sγl′ we finally obtain the following

normal ordering of the set ∆s
+

β1
1 , . . . , β

1
t , β

1
t+1, . . . , β

1
t+ p−n

2

, γ1, . . . , γ2, . . . , γ3, . . . , γn, β
1
t+p+1, . . . , β

1
l(s1), . . . , (1.6.37)

β2
1 , . . . , β

2
t′ , γn+1, . . . , γn+2, . . . , γn+3, . . . , γl′ , β

2

t′+ q+l′−n
2 +1

, . . . , β2
t′+q, β

2
t′+q+1, . . . , β

2
l(s2), β

0
1 , . . . , β

0
D0
,

where
γn+1, . . . , γn+2, . . . , γn+3, . . . , γl′ , β

2

t′+ q+l′−n
2 +1

, . . . , β2
t′+q

is the normal ordering of the system of positive roots ∆s
+(ms2 , hs2) inverse to that compatible with the decomposition

s2 = sγn+1 . . . sγl′ . By construction normal ordering (1.6.37) has the required form (1.6.9). Formulas (1.6.13) and
(1.6.12) are established similarly to (1.6.11) and (1.6.10), respectively. This completes the proof of part (iv).

We claim that normal ordering (1.6.37) has properties (v)-(ix) listed in the statement of this proposition.
Firstly we recall that according to Lemma 1.6.4 the elementary transpositions used at Step 3 do not affect the

positions of the roots which do not belong to ∆s
s1 and ∆s

s2 . We state this property for future references as a lemma.

Lemma 1.6.15. The elementary transpositions used at Step 3 to bring the segments ∆s
s1 and ∆s

s2 to the form
required in (1.6.9) do not affect the positions of the roots which do not belong to ∆s

s1 and ∆s
s2 . Thus the normal

ordering obtained at Step 3 has properties described in (1.6.19)-(1.6.31), except for (1.6.23).

From this lemma we deduce that the normal ordering constructed at Step 3 still has form (1.6.19), and hence
property (vii) holds for normal ordering (1.6.37) as it holds for the ordering constructed at Step 2.

For for α ∈ ∆
(r)
ik

, ik > 0 we still have α ∈ ∆
(s(r))
ik

if sα ∈ ∆s
+ by the definition of the sets ∆

(r)
ik

. We claim that
Lemma 1.6.11 still holds for the normal ordering obtained at Step 3. We shall need a slightly more detailed version
of it which implies property (viii).

Lemma 1.6.16. (i) Suppose that ik > 0. Then for two-dimensional hik one has s(∆
(r)
ik

) = ∆
(s(r))
ik

if s(r) in the

upper–half plane, and ∆
(r)
ik

< s(∆
(r)
ik

).

(ii) In particular, for any α ∈ ∆
(r)
ik

such that sα ∈ (∆ik)+ one has sα > α and if β, γ ∈ ∆ik−1
∪ {0},

sα+ β, α+ γ ∈ ∆ then α+ γ ∈ ∆
(r)
ik

, sα+ β ∈ ∆
(s(r))
ik

and sα+ β > α+ γ.
(iii)

s(∆s
s1) ⊂ ∆s

+, s(∆
s
s1) > ∆s

s1 . (1.6.38)

Proof. First observe that by Proposition 1.6.6 (iii), which has been already proved, s2(∆s
s1) ⊂ ∆s

+\(∆s
s1∪∆s

s2∪∆0).
Since ∆s

s1 = s1(−∆s
s1) we deduce that s(∆s

s1) = s1s2(∆s
s1) ⊂ ∆s

+, and s(∆s
s1) = s1s2(∆s

s1) > ∆s
s1 . This proves

(1.6.38).
Note that by Lemma 1.6.15 the normal ordering obtained at Step 3 still has properties described in (1.6.19)-

(1.6.27), except for (1.6.23). By (1.6.22), (1.6.24) and (1.6.26) formula (1.6.38) also implies that part (i), and hence
(ii), hold for r which belong to the sector ∆1

ik
at Figure 3.

If r belongs to the union of the sectors ∆2
ik

and s2(∆1
ik

) at Figure 3 then ∆
(r)
ik
⊂ ∆s

s, so s(∆
(r)
ik

) ⊂ ∆s
−, and

properties (i) and (ii) are void.

If r 6∈ ∆1
ik
∪ ∆2

ik
∪ s1(∆2

ik
) at Figure 3 then ∆

(r)
ik

= ∆
′(r)
ik
⊂ (∆ik)′+, and properties (i) and (ii) hold for the

normal ordering defined at Step 2 which may only differ by positions of roots in ∆s
s1 and ∆s

s2 from the normal

ordering defined at Step 3 by Lemma 1.6.15. In particular, ∆s
s2 > ∆

(r)
ik

with respect to both the normal ordering
defined at Step 2 and the normal ordering defined at Step 3. Therefore (i) and (ii) hold for the normal ordering
defined at Step 3 as well. This completes the proof.

Parts (i) and (ii) of the previous lemma imply property (viii) since when the corresponding hik is one–dimensional
this property is void.

If α, β ∈ ∆ik ∩∆s
+, α ≤ β and sβ ∈ ∆s

+ then hik must be two dimensional, as otherwise sβ ∈ ∆s
−. We show

that the orthogonal projection of sβ onto hik is obtained by a clockwise rotation with a non–zero angle and by a
rescaling with a positive coefficient from the orthogonal projection of α onto hik .

Indeed, observe that by Lemma 1.6.15 the elementary transpositions which we used at Step 3 to bring the
segments formed by the roots from the sets ∆s

s1 and ∆s
s2 to the form required in normal ordering (1.6.9) do not
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affect the positions of the other roots and after this rearrangement the orthogonal projections of the roots from
∆1
ik

(resp. ∆2
ik

) onto hik still belong to the sectors labeled ∆1
ik

(resp. ∆2
ik

) at Figure 3.
Therefore by Lemma 1.6.12 (iii) if α, β ∈ ∆ik ∩ ∆s

+, β ∈ ∆1
ik

and α ≤ β then the orthogonal projection of α
onto hik belongs to the sector labeled ∆1

ik
at Figure 3. On the other hand since sβ ∈ ∆s

+ the orthogonal projection
of sβ onto hik belongs to the upper half plane and does not belong to the sector labeled ∆1

ik
at Figure 3 as s acts

on hik by clockwise rotation by the angle θik = 2(ϕk + ψk) > 2ϕk. Thus the orthogonal projection of sβ onto hik
is obtained by a clockwise rotation with a non–zero angle and by a rescaling with a positive coefficient from the
orthogonal projection of α onto hik .

The case when β ∈ (∆ik)+, β 6∈ ∆1
ik

, sβ ∈ (∆ik)+ is treated in a similar way with the help of Lemma 1.6.12
(iii). This proves (ix).

By the definition of normal ordering (1.6.9) the number of roots in the segment ∆m+
,

∆m+ = {γ1, . . . , γ2, . . . , γ3, . . . , γn, β
1
t+p+1, . . . , β

1
l(s1), . . . , β

2
1 , . . . , β

2
t′ , γn+1, . . . , γn+2, . . . , γn+3, . . . , γl′}

is
|∆m+

| = D − |[β1
1 , β

1
t+ p−n

2

]| − |[β2

t′+ q+l′−n
2 +1

, β2
l(s2)]| − |[β

0
1 , β

0
D0

]| =

= D −D0 − |[β1
1 , β

1
t ]| − |[β1

t+1, β
1
t+ p−n

2

]| − |[β2

t′+ q+l′−n
2 +1

, β2
t′+q]| − |[β2

t′+q+1, β
2
l(s2)]|,

where D0 = |[β0
1 , β

0
D0

]| is the number of positive roots fixed by the action of s. By formulas (1.6.10), (1.6.11),
(1.6.12) and (1.6.13) the last expression takes the form

|∆m+ | = D −D0 − t−
p− n

2
− t′ − q − (l′ − n)

2
=

= D −D0 −
l(s1)− p

2
− l(s2)− q

2
− p− n

2
− q − (l′ − n)

2
= D −

(
l(s)− l′

2
+D0

)
,

where l(s) = l(s1) + l(s2) is the length of s. This establishes (v).
Now let α, β ∈ ∆m+

, be any two roots such that α < β. We shall show that the sum α+β cannot be represented
as a linear combination

∑q
k=1 ckγik , where ck ∈ N and α < γi1 < . . . < γik < β.

Suppose that such a decomposition exists, α + β =
∑q
k=1 ckγik . Obviously at least one of the roots α, β must

belong to the set ∆+(ms1 , hs1)∩∆m+
or to the set ∆+(ms2 , hs2)∩∆m+

for otherwise the set of roots γik such that
α < γik < β is empty because by the definition of ∆m+ , (∆m+ \ (∆+(ms1 , hs1)∪∆+(ms2 , hs2)))∩ {γ1, . . . , γl′} = ∅.

Suppose that α ∈ ∆+(ms1 , hs1) ∩∆m+
. The other cases are considered in a similar way.

If β 6∈ ∆+(ms2 , hs2) ∩∆m+
then α + β =

∑q
k=1 ckγik , and γik ≤ γn. In particular, since α ∈ hs1 and γik ∈ hs1

if γik ≤ γn, we have β =
∑q
k=1 ckγik − α ∈ hs1 . This is impossible by the definition of the ordering of the set

∆+(ms1 , hs1) compatible with the decomposition s1 = sγ1 . . . sγn .
If β ∈ ∆+(ms2 , hs2) ∩∆m+ then α+ β =

∑q
k=1 ckγik =

∑
ik≤n ckγik +

∑
ik>n

ckγik . This implies

α−
∑
ik≤n

ckγik =
∑
ik>n

ckγik − β.

The l.h.s. of the last formula is an element of hs1 and the r.h.s. is an element hs2 . Since h′ = hs1 + hs2 is a direct
vector space decomposition we infer that

α =
∑

ik≤n,α<γik

ckγik

and
β =

∑
ik>n,γik<β

ckγik .

But this is impossible by Lemma 1.6.2. Therefore the sum α + β, α < β, α, β ∈ ∆m+
cannot be represented as a

linear combination
∑q
k=1 ckγik , where ck ∈ N and α < γi1 < . . . < γik < β. This confirms (vi) and completes the

proof of the proposition.

We shall also need another system of positive roots associated to (the conjugacy class of) the Weyl group
element s. In order to define it we need to recall the definition of a circular normal ordering of the root system ∆.

Let β1, β2, . . . , βD be a normal ordering of a positive root system ∆+. Then one can introduce the corresponding
circular normal ordering of the root system ∆ where the roots in ∆ are located on a circle in the following way
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β1
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−β1

−β2
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-βD

QQs

QQk

Fig. 4

Let α, β ∈ ∆. One says that the segment [α, β] of the circle is minimal if it does not contain the opposite roots
−α and −β and the root β follows after α on the circle above, the circle being oriented clockwise. In that case one
also says that α < β in the sense of the circular normal ordering,

α < β ⇔ the segment [α, β] of the circle is minimal. (1.6.39)

Later we shall need the following property of minimal segments which is a direct consequence of Proposition
3.3 in [69].

Lemma 1.6.17. Let [α, β] be a minimal segment in a circular normal ordering of a root system ∆. Then if α+ β
is a root we have

α < α+ β < β.

This lemma immediately implies the following property of minimal segments.

Lemma 1.6.18. Let Gk be a semisimple connected algebraic group, gk its Lie algebra, hk ⊂ gk a Cartan subalgebra,
∆ the root system of the pair (gk, hk). For any minimal segment [α, β] ⊂ ∆ with respect to any circular normal
ordering of ∆, the linear subspace of gk spanned by the root vectors corresponding to the roots from [α, β] is an
algebraic Lie subalgebra n[α,β] of gk. We denote the subgroup of Gk corresponding to this subalgebra by N[α,β] ⊂ Gk.

Note that any segment in a circular normal ordering of ∆ of length equal to the number of positive roots is a
system of positive roots.

Now consider the circular normal ordering of ∆ corresponding to the system of positive roots ∆s
+ and to its

normal ordering introduced in Proposition 1.6.6. The minimal segment which consists of the roots α satisfying
γ1 ≤ α < −γ1 is a system of positive roots in ∆ as its length is equal to the number of positive roots and it is
closed under addition of roots by Lemma 1.6.17.

Definition 1.6.19. Let ∆+ = {α ∈ ∆ : γ1 ≤ α < −γ1}, where the inequalities are with respect to the circular
normal ordering of ∆ corresponding to the system of positive roots ∆s

+ and to its normal ordering (1.6.9). The
system of positive roots ∆+ equipped with the normal ordering induced by the circular normal ordering is called the
normally ordered system of positive roots associated to the (conjugacy class of) the Weyl group element s ∈W .

Note that for the root system ∆+ introduced in Definition 1.6.19 ∆s
+ ∩ ∆+ = ∆s

+ \ ∆−s1 , where ∆−s1 =
{β1

1 , . . . , β
1
t+ p−n

2

} = ∆s
+ ∩∆−. Therefore

∆+ = (∆s
+ ∩∆+) ∪ {−β1

1 , . . . ,−β1
t+ p−n

2

} = (∆s
+ ∩∆+) ∪ (−∆−s1).

By Lemma 1.6.3 (iv) this implies that ws∆+ = ∆s
+, where ws = sβ1

1
. . . , sβ1

t+
p−n

2

, and if w = si1 . . . si
t+
p−n

2

. . . siD

is the reduced decomposition corresponding to normal ordering (1.6.9) then ws = si
t+
p−n

2

. . . si1 .

We have the following property of the length of s with respect to the sets of simple roots in ∆s
+.
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Proposition 1.6.20. For all systems of positive roots ∆s
+ the lengths l(s) of s with respect to the sets of simple

roots in ∆s
+ are the same, and they are equal to the length of s with respect to the set of simple roots in any system

of positive roots ∆+ associated to s.

Proof. The first statement is a consequence of the definition of ∆s
+.

To prove the second assertion we recall that a root α ∈ ∆ik belongs to the set (∆ik)+ = (∆ik)+ ∩∆s
+ if and

only if hik(α) > 0. Identifying hR and h∗R with the help of the bilinear form one can deduce that α ∈ ∆ik is in ∆s
+

if and only if its orthogonal projection onto hik is contained in the upper–half plane shown at Figure 3.
According to the definition of the set ∆+,

∆ik ∩∆+ = ((∆ik)+ \ {α ∈ (∆ik)+ ∩∆s
s1 : α < γ1}) ∪ {−α : α ∈ (∆ik)+ ∩∆s

s1 , α < γ1}, (1.6.40)

i.e ∆ik ∩∆+ is obtained from (∆ik)+ by removing some roots the orthogonal projections of which onto hik belong
to the sector labeled ∆1

ik
at Figure 3 and by adding the opposite negative roots the orthogonal projections of which

onto hik belong to the sector labeled s1∆1
ik

at Figure 3.
Recall that the involutions s1 and s2 act in hik as reflections with respect to the lines orthogonal to the vectors

labeled by v1
k and v2

k, respectively, at Figure 3, the angle between v1
k and v2

k being equal to π−θik/2. Therefore the
element s acts on hik by clockwise rotation with the angle θik = 2(ϕk + ψk), and hence the set ∆s

s ∩∆ik consists
of the roots the orthogonal projections of which onto hik belong to the union of the sectors labeled s2∆1

ik
and ∆2

ik
at Figure 3. Together with the description of the set ∆ik ∩∆+ given in (1.6.40) it implies that the number of the
roots in the set ∆s ∩∆ik = {α ∈ ∆ik ∩∆+ : sα ∈ ∆−}, where ∆s = {α ∈ ∆+ : sα ∈ ∆−}, is equal to the number
of roots in the set ∆s

s ∩∆ik . From this observation we deduce that the length l(s) of s with respect to the system
of simple roots in ∆s

+ is the same as the length of s with respect to the system of simple roots in ∆+, as both of

them are equal to the cardinality to the set
⋃M
k=0 ∆s

s ∩∆ik (disjoint union) which is the same as the cardinality of

the set
⋃M
k=0 ∆s ∩∆ik (disjoint union).

We shall also need a family of systems of positive roots in ∆ related to the circular normal ordering associated
to (1.6.9). According to Lemma 1.6.15 (see, in particular, formula (1.6.30)) for j = 1, . . . R the minimal segment

∆j ,∆j+1, . . . ,−∆j−1 (1.6.41)

of the circular normal ordering associated to (1.6.9) is a system of positive roots in ∆ as its length is equal to the
number of positive roots and it is closed under addition of roots by Lemma 1.6.17. Denote this system of positive
roots by ∆j

+. Note that by this definition ∆1
+ = ∆s

+.

Lemma 1.6.21. Let Γk ⊂ ∆k
+, k = 1, . . . , R be the set of simple roots. Then Γk ∩∆0 is a set of simple roots in

(∆0)+ ⊂ ∆k
+, so the set of roots ∆k

+ ∪∆0 is parabolic.

Proof. We show first that for any α, β ∈ ∆k
+ such that α or β is not an element of ∆0 one has α+ β 6∈ h0.

Indeed if α, β ∈ ∆k
+ are such that α or β does not belong to ∆0 then α ∈ ∆ip , β ∈ ∆iq for some ip, iq and ip > 0

or iq > 0. If α + β ∈ h0 then the orthogonal projections of α + β onto hiv with any iv > 0 must be equal to zero.

The definition of the sets ∆ik implies now that p = q, ip = iq > 0 and either α ∈ ∆
(r)
ip

, β ∈ −∆
(r)
ip

or α ∈ −∆
(r)
ip

,

β ∈ ∆
(r)
ip

for some ray r. But this is impossible as by the definition of ∆k
+ and by the definition of the sets ∆j in

(1.6.30) the set ∆k
+ only contains elements of one of the sets ∆

(r)
ip

xor −∆
(r)
ip

. Thus α+ β 6∈ h0.

Now if Γk = {α1, . . . , αl} and Γk ∩ ∆0 = {α1, . . . , αu} with u ≤ l then by the first part of the proof for

α =
∑l
i=1 niαi ∈ ∆k

+ with ni > 0 for some i > u one has α 6∈ h0. In particular, α 6∈ ∆0 ⊂ h0. Thus any element of
(∆0)+ ⊂ ∆k

+ is a linear combination of the roots from the set Γk ∩∆0 with non-negative integer coefficients, i.e.
Γk ∩∆0 is a set of sinmple roots in (∆0)+. This completes the proof.

The following lemma will be useful for defining Zhelobenko type operators for q-W–algebras both in the classical
and quantum case.

Lemma 1.6.22. For j = 1, . . . , R− 1 the following statements are true.
(i) s(∆j) ⊂ ∆j+1

+ .

(ii) ∆j ∩ Ns(∆j
+ ∪∆0) = {∅}.

(iii) ∆j ∩ Ns(∆s
s ∪∆0) = {∅}.
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Proof. (i) For j such that ∆j 6⊂ ∆s
s ∪∆0 one has by (1.6.31) ∆j < s(∆j) ⊂ ∆s

+, and hence (i) holds in this case by

the definition of ∆j+1
+ .

If j such that ∆j ⊂ s2∆s
s1 then

s(∆j) ⊂ s1s2s2∆s
s1 = s1∆s

s1 = −∆s
s1 .

Observing that ∆s
s1 < s2∆s

s1 by Proposition 1.6.6 (vii) we deduce again that (i) holds by the definition of ∆j+1
+ .

Finally, if j = R− 1 then ∆R−1 = ∆s
s2 , and

s(∆j) = s1s2∆s
s2 = −s1∆s

s2 ⊂ −(∆s
− \∆0) ⊂ −(∆s

− \∆0) ∪ (∆0)+ = ∆R
+.

This completes the proof of part (i).

(ii) First observe that by Lemma 1.6.21 the set of roots ∆j
+ ∪ ∆0 is parabolic. Therefore to establish (ii) it

suffices to show that ∆j ∩ s(∆j
+ ∪∆0) = {∅}.

Indeed, if α ∈ (∆j
+ ∪∆0) ∩∆s

+ is such that sα ∈ ∆s
+ then α ∈ ∆k 6⊂ ∆s

s, k ≥ j, so s∆k ⊂ ∆s
+, and by (1.6.31)

sα ∈ s∆k > ∆k ≥ ∆j for k 6= R, sα ∈ ∆R > ∆j for k = R, and hence (i) holds in this case.

If α ∈ ∆j
+ ∪∆0 is such that sα ∈ ∆s

− then (ii) obviously holds as ∆j
+ ⊂ ∆s

+.

If α ∈ (∆j
+ ∪∆0) ∩∆s

− is such that sα ∈ ∆s
+ then α ∈ −∆s

s = −(∆s
s2 ∪ s2∆s

s1).

Assume that sα ∈ ∆j . If α ∈ −s2∆s
s1 then sα ∈ ∆s

s1 = ∆1, so j = 1 and ∆j
+ = ∆s

+. Thus we arrive at a
contradiction as by the assumption α ∈ −s2∆s

s1 ⊂ ∆s
−.

If α ∈ −∆s
s2 then α ∈ ∆R

+ by the definition of ∆R
+, and α 6∈ ∆j

+ for any j < R. Thus we again arrive at a

contradiction as by the assumption α ∈ ∆j
+ for j < R. This completes the proof.

(iii) is obvious as s(∆s
s ∪∆0) ⊂ ∆s

− ∪∆0, the set of roots ∆s
− ∪∆0 is parabolic, and ∆j ⊂ ∆s

+ \∆0.

The relative positions of the systems of positive rots ∆s
+, ∆+ and of the minimal segments introduced in

Proposition 1.6.6 are shown at the following picture where all the segments are placed on a circle according to the
circular normal ordering of roots corresponding to normal ordering (1.6.9) of ∆s

+.
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The reader may find this picture useful in combination with Lemma 1.6.17 when adding roots or commuting
roots vectors. This picture can be also useful for deriving some formulas containing q-commutators of quantum
root vectors as explained in the next chapter.

1.7 Bibliographic comments

A uniform classification of conjugacy classes of Weyl group elements from which one can obtain presentation (1.2.1)
was suggested in [18].

The definition of systems of positive roots ∆s
+ associated to (conjugacy classes of) Weyl group elements was

suggested in [113]. It is based on a deep generalization of the results by Coxeter and Steinberg on the properties of
the Coxeter elements. In our notation this corresponds to the case when γ1, . . . , γl′ is a set of simple roots in ∆, so
that according to (1.2.1) s is a product of simple reflections, i.e. a Coxeter element. In this case there is a unique
plane in hR, called a Coxeter plane, on which s acts by rotation by the angle 2π/h, where h is the Coxeter number
of g. This plane was introduced by Coxeter in book [21], and the pictures of root systems of Lie algebras of high
ranks which one can find in many textbooks are obtained using orthogonal projections of roots onto these planes.
The key observation is that all these projections are non–zero. Coxeter originally applied the above mentioned
procedure to construct regular polytopes.

Later in paper [126] Steinberg proved interesting properties of Coxeter elements using the properties of the
action of Coxeter elements on Coxeter planes.

The construction of the spectral decomposition for Weyl group elements in Proposition 1.2.1 suggested in [118]
is a generalization of similar results on the properties of the Coxeter plane which can be found in [17], Section 10.4.

The slices Σk,s introduced in [113] in the case k = C are generalizations of the Steinberg cross-sections to the
set of conjugacy classes of regular elements in Gk suggested in [127]. Σk,s reduces to a Steinberg cross-section when
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γ1, . . . , γl′ is a set of simple roots, i.e. when s is a Coxeter element. In this case isomorphism (1.3.7) is stated in
[127] without proof. The first proof of this result appeared in [107]. However, that proof is not applicable for the
root system of type E6. The proof of isomorphism (1.3.7) given in Proposition 1.3.4 is a refined version of the proof
of this result presented in [113].

Another construction of the slices Σk,s in the case when s are elliptic can be found in [52].
A more general approach to the definition of the transverse slices to conjugacy classes in algebraic groups

generalizing the definition given in this chapter and the results of [52] was given in [91], and the relevant Weyl
combinatorics was developed in [90].

The closedness of the varieties NZsN was justified in [116], Proposition 6.2.
In book [121] Slodowy proved Brieskorn’s conjectures announced in [11] on the realization of simple singularities

using the adjoint quotient of complex semisimple Lie algebras. Although a significant part of Slodowy’s book is
devoted to the study of the conjugation quotient for semisimple algebraic groups and to constructing some its
resolutions, he ended up with a Lie algebra version of the construction of simple singularities and introduced
transverse slices for the adjoint action for this purpose. These slices are called now the Slodowy slices. The slices
Σs can be regarded as algebraic group analogues of the Slodowy slices.

The Lusztig partition was introduced in [83]. Its definition is related to the study of the properties of intersections
of conjugacy classes in Gk with Bruhat cells established in [85, 86] where the map ΦW from the set of Weyl group
conjugacy classes to the set of unipotent classes and its one sided inverse ΨW , which we use in Section 1.4, are
defined using these properties. These properties are also related to the generalized Springer correspondence. We
only briefly discussed the relevant results in this book.

The study of intersections of conjugacy classes in Gk with Bruhat cells was initiated in [127]. Some results
on these intersections were obtained in [35], and another map from nilpotent orbits in a complex semisimple Lie
algebra to conjugacy classes in the Weyl group was defined in [65]. In [85] it is mentioned that this map is likely
to coincide with the map ΨW introduced in [85]. The results of [131] imply that the restriction of ΨW to N (G1)
coincides with the Kazhdan-Lusztig map defined in [65].

The main result of Theorem 1.5.2 on the dimensions of the slices Σk,s is an experimental observation made in
[118], Theorem 5.2. Other results of Section 1.5 can also be found in [118].

Note that the slices Σk,s listed in Appendix 2 are slightly different from those from Appendix B to [118]. The
corresponding slices in both sets have the same dimensions. But in this book the roots γ1, . . . , γl′ in the tables
in Appendix 2 are chosen in such a way that the corresponding root systems ∆s

+ satisfy condition (1.6.8). The
algorithm for constructing the slices Σs listed in the tables in Appendix B to [118] was modified to fulfill this
condition. The description of the original algorithm can be found in [118].

The ordering of the s–invariant planes in hR according to the angles of rotations by which s acts in the planes
as in Theorem 1.5.2 was used in [53] to prove properties of minimal length elements in finite Coxeter groups.

Normal orderings of positive root systems of the form ∆s
+ described in Proposition 1.6.6 were firstly introduced

in [114] where one can also find the construction of normal orderings of positive root systems compatible with
Weyl group involutions from Appendix 1. Later the original definition was refined in [119]. Proposition 1.6.6 is a
modified version of Proposition 5.1 in [114] and Proposition 2.2 in [119].

Circular orderings of root systems were defined in [68] to describe commutation relations between quantum
group analogues of root vectors. In [116] this construction was used to modify the positive root systems ∆s

+ in
order to construct positive root systems associated to (conjugacy classes of) Weyl group elements which appear in
the end of Section 1.6.



Chapter 2

Quantum groups

In this chapter we recall some definitions and results on quantum groups required for the study of q-W–algebras.
Besides the standard definitions and results related to quantum groups we shall need some rather non–standard
realizations of the Drinfeld–Jimbo quantum group in terms of which q-W–algebras are defined. These realizations
are related to the definition of the algebraic group analogues of the Slodowy slices in the previous section. We shall
consider the Drinfeld–Jimbo quantum group Uh(g) defined over the ring of formal power series C[[h]], where h is
an indeterminate, and some its specializations defined over smaller rings.

2.1 The definition of quantum groups

In this section we remind the definition of the standard Drinfeld-Jimbo quantum group Uh(g). We mainly follow
the notation of [20].

Let V be a C[[h]]–module equipped with the h–adic topology. This topology is characterized by requiring that
{hnV | n ≥ 0} is a base of the neighborhoods of 0 in V , and that translations in V are continuous. In this book all
C[[h]]–modules are supposed to be complete with respect to this topology.

A topological Hopf algebra over C[[h]] is a complete C[[h]]–module equipped with a structure of C[[h]]–Hopf
algebra, the algebraic tensor products entering the axioms of the Hopf algebra are replaced by their completions
in the h–adic topology.

The standard quantum group Uh(g) associated to a complex finite-dimensional semisimple Lie algebra g is a
topological Hopf algebra over C[[h]] topologically generated by elements Hi, X

+
i , X

−
i , i = 1, . . . , l, subject to the

following defining relations:

[Hi, Hj ] = 0, [Hi, X
±
j ] = ±aijX±j , X+

i X
−
j −X

−
j X

+
i = δi,j

Ki−K−1
i

qi−q−1
i

,

∑1−aij
r=0 (−1)r

[
1− aij
r

]
qi

(X±i )1−aij−rX±j (X±i )r = 0, i 6= j,

(2.1.1)

where

Ki = edihHi , eh = q, qi = qdi = edih,[
m
n

]
q

=
[m]q!

[n]q![n−m]q!
, [n]q! = [n]q . . . [1]q, [n]q =

qn − q−n

q − q−1
,

with comultiplication defined by

∆h(Hi) = Hi ⊗ 1 + 1⊗Hi, ∆h(X+
i ) = X+

i ⊗K
−1
i + 1⊗X+

i , ∆h(X−i ) = X−i ⊗ 1 +Ki ⊗X−i ,

antipode defined by

Sh(Hi) = −Hi, Sh(X+
i ) = −X+

i Ki, Sh(X−i ) = −K−1
i X−i ,

and counit defined by

εh(Hi) = εh(X±i ) = 0.
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We shall also use the weight–type generators

Yi =

l∑
j=1

dia
−1
ij Hj ,

where a−1
ij are the entries of the matrix inverse to the Cartan matrix aij .

Let L±1
i = e±hYi . These elements commute with the quantum simple root vectors X±i as follows:

LiX
±
j L
−1
i = q

±δij
i X±j . (2.1.2)

We also obviously have
LiLj = LjLi. (2.1.3)

The Hopf algebra Uh(g) is a quantization of the standard bialgebra structure on g in the sense that Uh(g)/hUh(g) =
U(g), ∆h = ∆ (mod h), where ∆ is the standard comultiplication on U(g), and

∆h −∆opp
h

h
(mod h) = −δ.

Here δ : g→ g⊗g is the standard cocycle on g, and ∆opp
h = σ∆h, σ is the permutation in Uh(g)⊗2, σ(x⊗y) = y⊗x.

Recall that
δ(x) = (adx ⊗ 1 + 1⊗ adx)2r±, r± ∈ g⊗ g,

r± = ±1

2

l∑
i=1

Yi ⊗Hi ±
∑
β∈∆+

(Xβ , X−β)−1X±β ⊗X∓β . (2.1.4)

Here X±β ∈ g±β are non–zero root vectors of g. The element r± ∈ g⊗ g is called a classical r–matrix.

2.2 The braid group action

One can define a quantum group analogue of the braid group action on g. The material covered in this section can
be found, e.g., in Section 8.1 of [20]. Let mij , i 6= j be equal to 2, 3, 4, 6 if aijaji is equal to 0, 1, 2, 3, respectively.
The braid group Bg associated to g has generators Ti, i = 1, . . . , l, and defining relations

TiTjTiTj . . . = TjTiTjTi . . .

for all i 6= j, where there are mij T ’s on each side of the equation.
Recall that if X±αi are non–zero simple root vectors of g then one can introduce an action of the braid group

Bg by algebra automorphisms of g defined on the standard generators as follows:

Ti(X±αi) = −X∓αi , Ti(Hj) = Hj − ajiHi,

Ti(Xαj ) =
1

(−aij)!
ad
−aij
Xαi

Xαj , i 6= j, (2.2.1)

Ti(X−αj ) =
(−1)aij

(−aij)!
ad
−aij
X−αi

X−αj , i 6= j.

Similarly, Bg acts by algebra automorphisms of Uh(g) as follows:

Ti(X
+
i ) = −X−i e

hdiHi , Ti(X
−
i ) = −e−hdiHiX+

i , Ti(Hj) = Hj − ajiHi,

Ti(X
+
j ) =

−aij∑
r=0

(−1)r−aijq−ri (X+
i )(−aij−r)X+

j (X+
i )(r), i 6= j, (2.2.2)

Ti(X
−
j ) =

−aij∑
r=0

(−1)r−aijqri (X
−
i )(r)X−j (X−i )(−aij−r), i 6= j,
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where

(X+
i )(r) =

(X+
i )r

[r]qi !
, (X−i )(r) =

(X−i )r

[r]qi !
, r ≥ 0, i = 1, . . . , l.

Recall that action (2.2.1) of the generators Ti is induced by the adjoint action of certain representatives of the
Weyl group elements si in G. Similarly, action (2.2.2) is induced by conjugation by certain elements of a completion
of Uh(g).

To define these elements consider the restricted dual Ch[G] of Uh(g), i.e. the algebra topologically generated by
the matrix elements of finite rank representations of Uh(g), with the multiplication induced by the comultiplication
on Uh(g). Ch[G] is naturally a Hopf algebra with the comultiplication induced by the multiplication on Uh(g) (see
e.g. [20], p. 113).

The topological dual Ch[G]∗ of the Hopf algebra Ch[G] is just an algebra, and there is a natural embedding of
algebras Uh(g) ↪→ Ch[G]∗.

Now define a q-exponential by

exp′q(x) =

∞∑
k=0

q
1
2k(k−1) x

k

[k]q!
. (2.2.3)

Then the automorphism Ti in (2.2.2) is given by the conjugation of elements of Uh(g) ↪→ Ch[G]∗ in Ch[G]∗ by
the invertible element Ti ∈ Ch[G]∗ (see [103])

Ti = exp′
q−1
i

(−q−1
i X−i Ki)exp′

q−1
i

(X+
i )exp′

q−1
i

(−qiX−i K
−1
i )q

Hi(Hi+1)

2
i = (2.2.4)

= exp′
q−1
i

(q−1
i X+

i K
−1
i )exp′

q−1
i

(−X−i )exp′
q−1
i

(qiX
+
i Ki)q

Hi(Hi+1)

2
i .

Note that the right hand side of the previous formula indeed defines an endomorphism for every finite rank repre-
sentation of Uh(g) as the elements X±i act nilpotently on every such representation, and the action of the elements
Hi is semisimple.

The inverse of Ti in (2.2.4) can be found using the identity

exp′q(x)exp′q−1(−x) = 1

which implies

T−1
i = q

−Hi(Hi+1)

2
i exp′qi(qiX

−
i K

−1
i )exp′qi(−X

+
i )exp′qi(q

−1
i X−i Ki) = (2.2.5)

= q
−Hi(Hi+1)

2
i exp′qi(−qiX

+
i Ki)exp′qi(X

−
i )exp′qi(−q

−1
i X+

i K
−1
i ).

From formula (2.2.5) we obtain the following relations in Ch[G]∗

exp′qi(−X
+
i ) = exp′

q−1
i

(−qiX−i K
−1
i )q

Hi(Hi+1)

2
i T−1

i exp′
q−1
i

(−q−1
i X−i Ki) = (2.2.6)

= exp′
q−1
i

(−qiX−i K
−1
i )q

Hi(Hi+1)

2
i exp′

q−1
i

(q−1
i X+

i )T−1
i .

Let

expq(x) = exp′q(qx) =

∞∑
k=0

q
1
2k(k+1) x

k

[k]q!
. (2.2.7)

The multiplication in Ch[G] induces a map of C[[h]]–modules ∆h : Ch[G]∗ → (Ch[G]⊗Ch[G])∗, (∆h(f))(x⊗y) =
f(xy), f ∈ Ch[G]∗, x, y ∈ Ch[G], the restriction of which to Uh(g) coincides with the comultiplication on Uh(g).
With respect to this map we have (see [20], Proposition 8.2.6)

∆h(Ti) = θiTi ⊗ Ti = Ti ⊗ Tiθi, (2.2.8)

θi = expqi [(1− q
−2
i )X+

i ⊗X
−
i ], θi = expqi [(1− q

−2
i )K−1

i X−i ⊗X
+
i Ki],

∆h(T−1
i ) = θi

−1
T−1
i ⊗ T−1

i = T−1
i ⊗ T−1

i θ−1
i , (2.2.9)

θ−1
i = expq−1

i
[(1− q2

i )X+
i ⊗X

−
i ], θi

−1
= expq−1

i
[(1− q2

i )K−1
i X−i ⊗X

+
i Ki], (2.2.10)
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where the right hand sides of these identities are well–defined automorphisms of tensor products of finite rank
representations of Uh(g), so that they can be evaluated on products in Ch[G] of matrix elements of such represen-
tations.

Denote qα = qdi if the positive root α is Weyl group conjugate to the simple root αi. By Proposition 8.1.3 in
[20], for a reduced decomposition w = si1 . . . sik , Tw = Ti1 . . . Tik only depends on w and (2.2.8) implies

∆h(Tw) =

k∏
p=1

θβpTw ⊗ Tw = Tw ⊗ Tw
k∏
p=1

θβ′p , (2.2.11)

where in the products θβp (resp. θβ′p) appears on the left from θβq (resp. θβ′q ) if p < q, and for p = 1, . . . , k

βp = si1 . . . sip−1
αip , β

′
p = sik . . . sip+1

αip ,

X±βp = Ti1 . . . Tip−1X
±
ip
, X

±
β′p

= T−1
ik

. . . T−1
ip+1

X±ip , Kβ′p
= T−1

ik
. . . T−1

ip+1
Kip ,

θβp = expqβp [(1− q−2
βp

)X+
βp
⊗X−βp ], θβ′p = expqβ′p

[(1− q−2
β′p

)K−1
β′p
X
−
β′p
⊗X+

β′p
Kβ′p

].

Note that for a reduced decomposition w = si1 . . . sik one has T−1
i1

. . . T−1
ik

= (Tik . . . Ti1)−1 = T−1
w−1 , and Tw−1

only depends on w. Therefore Tw = T−1
i1

. . . T−1
ik

= T−1
w−1 only depends on w and (2.2.9) yields

∆h(Tw) =

k∏
p=1

θ
′
βpTw ⊗ Tw = Tw ⊗ Tw

k∏
p=1

θ′β′p , (2.2.12)

where in the products θ
′
βp (resp. θ′β′p) appears on the left from θ

′
βq (resp. θ′β′q ) if p < q, and for p = 1, . . . , k

X
±
βp = T−1

i1
. . . T−1

ip−1
X±ip , X

±
β′p

′
= Tik . . . Tip+1

X±ip , Kβp = T−1
i1

. . . T−1
ip−1

Kip ,

θ′β′p = expq−1

β′p
[(1− q2

β′p
)X+

β′p

′ ⊗X−β′p
′
], θ
′
βp = expq−1

βp

[(1− q2
βp)K

−1

βp X
−
βp ⊗X

+

βpKβp ].

If wαi = αj for some i and j then by Proposition 8.1.6. in [20]

TwX
±
i = X±j , TwX

±
i = X±j . (2.2.13)

2.3 Quantum root vectors

In this section we recall the construction of analogues of root vectors for Uh(g) in terms of the braid group action
on Uh(g). Recall that for any reduced decomposition w = si1 . . . siD of the longest element w of the Weyl group
W of g the ordering

β1 = αi1 , β2 = si1αi2 , . . . , βD = si1 . . . siD−1
αiD

is a normal ordering in ∆+, and there is a one–to–one correspondence between normal orderings of ∆+ and reduced
decompositions of w.

Fix a reduced decomposition w = si1 . . . siD of w and define the corresponding quantum root vectors in Uh(g)
by

X±βk = Ti1 . . . Tik−1
X±ik . (2.3.1)

We also define

Kβk = Ti1 . . . Tik−1
Kik .

Note that one can construct root vectors in the Lie algebra g in a similar way. Namely, the root vectors
X±βk ∈ g±βk of g can be defined by

X±βk = Ti1 . . . Tik−1
X±αik , (2.3.2)

where X±αik are as in (2.2.1).
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The root vectors X±β satisfy the following relations:

X±αX
±
β − q

(α,β)X±β X
±
α =

∑
α<δ1<...<δn<β

C(k1, . . . , kn)(X±δ1)
k1

(X±δ2)
k2
. . . (X±δn)

kn
=

=
∑

α<δ1<...<δn<β

C ′(k1, . . . , kn)(X±δ1)
(k1)

(X±δ2)
(k2)

. . . (X±δn)
(kn)

, α < β, (2.3.3)

where for α ∈ ∆+ we put (X±α )
(k)

=
(X±α )k

[k]qα ! , k ≥ 0, qα = qdi if the positive root α is Weyl group conjugate to the

simple root αi, C
′(k1, . . . , kn) ∈ C[q, q−1], C(k1, . . . , kn) ∈ P, and P is the algebra defined by

P =


C[q, q−1] if g is simply-laced
C[q, q−1, 1

[2]q
] if g is of type Bl, Cl or F4

C[q, q−1, 1
[2]q

, 1
[3]q

] if g is of type G2

. (2.3.4)

The fact that the coefficients C(k1, . . . , kn) in the right hand sides of formulas (2.3.3) belong to the algebra P
was noted in [34], Lemma 1.1.1.

If X = c1H1 + . . .+ clHl for some c1, . . . , cl ∈ R then from commutation relations (2.1.1) and from the fact that
the action of the braid group on the elements Hi coincides with the action of the Weyl group on the corresponding
simple root generators of h we obtain

ehXX±α e
−hX = q±α(X)X±α , (2.3.5)

where in the expression α(X) X is regarded as an element of h under the natural identification of the elements
H1, . . . ,Hl with the simple root generators of h.

In particular, (2.3.5) implies that for any k ∈ N

(X±i Ki)
k = q

±k(k−1)
i (X±i )kKk

i . (2.3.6)

Note that by construction

X+
β (mod h) = Xβ ∈ gβ ,

X−β (mod h) = X−β ∈ g−β

(2.3.7)

are root vectors of g.
Define an algebra automorphism τ of Uh(g) by

τ(X±i ) = X∓i , τ(Hi) = −Hi, τ(h) = −h.

It satisfies the relations T−1
i = τTiτ and hence for any α ∈ ∆+

τ(X±α ) = X
∓
α ,

where

X
±
βk

= T−1
i1

. . . T−1
ik−1

X±ik .

By applying τ to relations (2.3.3) one can obtain the following relations for the root vectors X
±
β

X
±
αX
±
β − q−(α,β)X

±
βX
±
α =

∑
α<δ1<...<δn<β

D(k1, . . . , kn)(X
±
δ1)

k1
(X
±
δ2)

k2
. . . (X

±
δn)

kn
=

=
∑

α<δ1<...<δn<β

D′(k1, . . . , kn)(X
±
δ1)

(k1)
(X
±
δ2)

(k2)
. . . (X

±
δn)

(kn)
, α < β, (2.3.8)

where for α ∈ ∆+ we put (X
±
α )

(k)
=

(X
±
α )k

[k]qα ! , k ≥ 0, D(k1, . . . , kn) ∈ P, D′(k1, . . . , kn) ∈ C[q, q−1].

One can also obtain commutation relations between positive and negative root vectors. These relations are
known in some form. For completeness we give a proof of them using (2.3.3) and (2.3.8) only.
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Lemma 2.3.1. Let [−β, α], α, β ∈ ∆+ be a minimal segment with respect to the circular normal ordering of ∆
corresponding to a normal ordering β1, . . . , βD of ∆+. Then

X+
αX

−
β −X

−
β X

+
α =

∑
−β<δ1<...<δn<α

C̄(k1, . . . , kn)(Xδ1)
k1(Xδ2)

k2 . . . (Xδn)
kn =

=
∑

−β<δ1<...<δn<α

C̄ ′(k1, . . . , kn)(Xδ1)
(k1)

(Xδ2)
(k2)

. . . (Xδn)
(kn)

, (2.3.9)

where the inequalities for roots in the sum are with respect to the circular normal ordering in ∆ corresponding to
the normal ordering β1, . . . , βD of ∆+, Xδ = X+

δ for δ ∈ ∆+ and Xδ = X−δ for δ ∈ ∆−, C̄ ′(k1, . . . , kn) ∈ Uq(H),
Uq(H) is the C[q, q−1]–subalgebra of Uh(g) generated by K±1

i , i = 1, . . . , l, C̄(k1, . . . , kn) ∈ P ′, where P ′ is the
P–algebra generated by Uq(H).

Also

X
+

αX
−
β −X

−
βX

+

α =
∑

−β<δ1<...<δn<α

D̄(k1, . . . , kn)(Xδ1)
k1

(Xδ2)
k2
. . . (Xδn)

kn
=

=
∑

−β<δ1<...<δn<α

D̄′(k1, . . . , kn)(Xδ1)
(k1)

(Xδ2)
(k2)

. . . (Xδn)
(kn)

, α < β, (2.3.10)

where the inequalities for roots in the sum are with respect to the circular normal ordering in ∆ corresponding to

the normal ordering β1, . . . , βD of ∆+, Xδ = X
+

δ for δ ∈ ∆+ and Xδ = X
−
δ for δ ∈ ∆−, D̄′(k1, . . . , kn) ∈ Uq(H),

D̄(k1, . . . , kn) ∈ P ′.

Proof. The proof is by induction over the length of the positive part of the segment [−β, α], i.e. over the cardinality
of the set [−β, α] ∩∆+. We shall consider the first identity in the case when α < β. The others are proved in a
similar way.

Let w = si1 . . . siD be the reduced decomposition of the longest element of the Weyl group corresponding to the
normal ordering β1, . . . , βD of ∆+.

First assume that α = β1 = αi1 . Let β = βm = si1 . . . sim−1
αim . Then s−1

i1
β2, . . . , s

−1
i1
βD, αi1 is another normal

ordering of ∆+, and by (2.3.3) for this normal ordering

T−1
i1

(X+
αX

−
β −X

−
β X

+
α ) = T−1

i1
(X+

i1
X−βm −X

−
βm
X+
i1

) =

= K−1
i1

(−X−i1X
−
s−1
i1
βm

+ q−(αi1 ,s
−1
i1
βm)X−

s−1
i1
βm
X−i1 ) =

=
∑

−s−1
i1
βm<δ1<...<δn<−αi1

K−1
i1
C(k1, . . . , kn)(Xδ1)

k1(Xδ2)
k2 . . . (Xδn)

kn ,

where C(k1, . . . , kn) ∈ P, the inequalities for the roots in the sum are with respect to the circular normal ordering
of ∆ associated to the ordering s−1

i1
β2, . . . , s

−1
i1
βD, αi1 of ∆+, and the quantum root vectors are defined using the

ordering s−1
i1
β2, . . . , s

−1
i1
βD, αi1 of ∆+.

Now applying Ti1 to the last identity we get

X+
αX

−
β −X

−
β X

+
α =

∑
−βm<δ1<...<δn≤−βD

Ki1C(k1, . . . , kn)(Xδ1)
k1(Xδ2)

k2 . . . (Xδn)
kn =

=
∑

−β<δ1<...<δn<α

Ki1C(k1, . . . , kn)(Xδ1)
k1(Xδ2)

k2 . . . (Xδn)
kn ,

where the inequalities for the roots in the sum are with respect to the circular normal ordering associated to the
original ordering β1, . . . , βD of ∆+ and the quantum root vectors are defined using the ordering β1, . . . , βD of ∆+.
This establishes the base of the induction.

Now assume that the identity in question is proved for all normal orderings of ∆+ and for all α = βk with k < n
for some n > 0 and for all possible β such that [−β, α], α, β ∈ ∆+ is a minimal segment.

Let α = βn = si1 . . . sin−1
αin , β = βm = si1 . . . sim−1

αim , n < m. Then s−1
i1
β2, . . . , s

−1
i1
βD, αi1 is another

normal ordering of ∆+, and by the induction hypothesis for this normal ordering with s−1
i1
α = si2 . . . sin−1αin ,
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s−1
i1
β = βm = si2 . . . sim−1

αim we have

X+

s−1
i1
α
X−
s−1
i1
β
−X−

s−1
i1
β
X+

s−1
i1
α

=

=
∑

−s−1
i1
βm<δ′1<...<δ

′
n<s

−1
i1
α

C̄(k′1, . . . , k
′
n)(Xδ′1

)
k′1(Xδ′2

)
k′2 . . . (Xδ′n

)
k′n ,

where C̄(k′1, . . . , k
′
n) ∈ P ′, the inequalities for the roots in the sum are with respect to the circular normal ordering

in ∆ associated to the ordering s−1
i1
β2, . . . , s

−1
i1
βD, αi1 of ∆+ and the quantum root vectors are defined using the

ordering s−1
i1
β2, . . . , s

−1
i1
βD, αi1 of ∆+.

Now applying Ti1 to the last identity we get

X+
αX

−
β −X

−
β X

+
α =

∑
−β<δ1<...<δn<α

K
k′q
i1
C̄ ′′(k1, . . . , kn)(Xδ1)

k1(Xδ2)
k2 . . . (Xδn)

kn ,

where k′q is such that δ′q = −αi1 in the previous formula, the inequalities for the roots in the sum are with respect
to the circular normal ordering associated to the original ordering β1, . . . , βD of ∆+, the quantum root vectors are
defined using the ordering β1, . . . , βD of ∆+, and C̄ ′′(k1, . . . , kn) ∈ P ′. This establishes the induction step and
completes the proof.

Define an algebra antiautomorphism ω of Uh(g) by

ω(X±i ) = X∓i , ω(Hi) = Hi, ω(h) = −h. (2.3.11)

It commutes with the braid group action and for any α ∈ ∆+ satisfies

ω(X+
α ) = X−α . (2.3.12)

Define also an algebra antiautomorphism ω0 of Uh(g) by

ω0(X±i ) = X±i , ω0(Hi) = −Hi, ω0(h) = −h. (2.3.13)

It satisfies
ωω0 = ω0ω,

ω0(TiX
±
j ) = (−1)aijq

∓aij
i Ti(ω0X

±
j ) = (−1)aijq

∓aij
i Ti(X

±
j ), i 6= j,

ω0(TiX
+
i ) = q−2

i Ti(ω0X
+
i ) = q−2

i Ti(X
+
i ), ω0(TiX

−
i ) = q2

i Ti(ω0X
−
i ) = q2

i Ti(X
−
i ).

As a consequence we obtain that if X is a homogeneous polynomial in quantum simple root vectors then

Ti(ω0X) = cXω0(TiX),

where cX = εp, ε = ±1, p ∈ qZ, and hence
ω0(X+

α ) = cαX
+
α , (2.3.14)

where cα = εαpα, εα = ±1, pα ∈ qZ. We also have

ω0(X−α ) = ω0ω(X+
α ) = ωω0(X+

α ) = ω(cαX
+
α ) = c−1

α ω(X+
α ) = c−1

α X−α (2.3.15)

2.4 Some subalgebras in quantum groups and their Poincaré–Birkhoff–
Witt bases

Now we shall explicitly describe a topological C[[h]]–basis for Uh(g). We shall also recall the definition of some
rational forms of Uh(g) and of their bases.

Denote by Uh(n+), Uh(n−) and Uh(h) the C[[h]]–subalgebras of Uh(g) topologically generated by the X+
i , by the

X−i and by the Hi, respectively. For any α ∈ ∆+ one has X±α ∈ Uh(n±). From the definition of the quantum root
vectors it also follows that [Hi, X

±
α ] = ±α(Hi)X

±
α , i = 1, . . . , l. Therefore using the uniqueness of the presentation

of any positive root as a sum of simple roots we immediately deduce the following property of the quantum root
vectors.
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Proposition 2.4.1. For β =
∑l
i=1miαi, mi ∈ N X±β is a polynomial in the noncommutative variables X±i

homogeneous in each X±i of degree mi.

Denote by Uresq (g) the subalgebra in Uh(g) generated over C[q, q−1] by the elements

K±1
i , (X±i )(k), i = 1, . . . , l, k ≥ 1.

The elements [
Ki; c
r

]
qi

=

r∏
s=1

Kiq
c+1−s
i −K−1

i qs−1−c
i

qsi − q
−s
i

, i = 1, . . . , l, c ∈ Z, r ∈ N (2.4.1)

belong to Uresq (g). Denote by Uresq (H) the subalgebra of Uresq (g) generated by those elements and by K±1
i ,

i = 1, . . . , l.
The subalgebras Uq(H), Uresq (g) and Uresq (H) of Uh(g) are invariant under the braid group action.
Let UP(n+), UP(n−), (resp. Uresq (n+), and Uresq (n−)) be the P (resp. C[q, q−1])–subalgebras of Uh(g) (resp.

Uresq (g)) generated by the X+
i , by the X−i , i = 1, . . . , l, (resp. by the (X+

i )(r), and by the (X−i )(r), i = 1, . . . , l,
r ≥ 0), respectively. Denote also by Uh(b±) (resp. Uresq (b±)) the C[[h]] (resp. C[q, q−1])–subalgebras of Uh(g)
(resp. Uresq (g)) generated by Uh(n±) and by Uh(h) (resp. by Uresq (n±) and by Uresq (H)).

Using the root vectors X±β , and the elements (X±β )(r) we can construct bases for these subalgebras. Namely,

let (X±)r = (X±β1
)r1 . . . (X±βD )rD , (X±)(r) = (X±β1

)(r1) . . . (X±βD )(rD), r = (r1, . . . rD) ∈ ND, Hk = Hk1
1 . . . Hkl

l ,

k = (k1, . . . , kl) ∈ Nl.
Commutation relations (2.3.3), (2.3.8), (2.3.9) and (2.3.10) between quantum root vectors imply the following

lemma.

Lemma 2.4.2. (i) The elements (X+)r, (X−)t, (X+)(r), and (X−)(t) for r, t ∈ ND form bases of UP(n+),
UP(n−), Uresq (n+), and Uresq (n−), respectively.

(ii) The elements (X+)r, (X−)t and Hk form topological bases of Uh(n+), Uh(n−) and Uh(h), respectively.
(iii) The multiplication defines an isomorphisms of C[q, q−1]–modules:

Uresq (n+)⊗ Uresq (H)⊗ Uresq (n−)→ Uresq (g), (2.4.2)

Uresq (n−)⊗ Uresq (H)⊗ Uresq (n+)→ Uresq (g),

and of complete C[[h]]–modules
Uh(n+)⊗ Uh(h)⊗ Uh(n−)→ Uh(g),

Uh(n−)⊗ Uh(h)⊗ Uh(n+)→ Uh(g),

where the tensor products in the left hand side are completed in the h–adic topology.
(iv) Let [α, β]={βp, . . . , βq} be a minimal segment in ∆+, UP([α, β]), UP([−α,−β]) (resp. Uresq ([α, β]), Uresq ([−α,−β]))

the P (resp. C[q, q−1])–subalgebras of Uh(g) generated by the X+
γ and by the X−γ , γ ∈ [α, β] (resp. by the

(X+
γ )(r) and by the (X−γ )(r), γ ∈ [α, β], r ≥ 0), respectively. Then UP([α, β]) ⊂ UP(n+), UP([−α,−β]) ⊂

UP(n−) (resp. Uresq ([α, β]) ⊂ Uresq (n+), Uresq ([−α,−β]) ⊂ Uresq (n−)), and the elements (X±βp)rp . . . (X±βq )
rq (resp.

(X±βp)(rp) . . . (X±βq )
(rq)), ri ∈ N form bases of UP([α, β]), UP([−α,−β]) (resp. Uresq ([α, β]), Uresq ([−α,−β])).

(v) Let UP([α, β]), UP([−α,−β]) (resp. U
res

q ([α, β]), U
res

q ([−α,−β])) be the P (resp. C[q, q−1])–subalgebras

of Uh(g) generated by the X
+

γ and by the X
−
γ , γ ∈ [α, β] (resp. by the (X

+

γ )(r) and by the (X
−
γ )(r), γ ∈ [α, β],

r ≥ 0), respectively. Then UP([α, β]) ⊂ UP(n+), UP([−α,−β]) ⊂ UP(n−) (resp. U
res

q ([α, β]) ⊂ Uresq (n+),

U
res

q ([−α,−β]) ⊂ Uresq (n−)), and the elements (X
±
βp)rp . . . (X

±
βq )

rq (resp. (X
±
βp)(rp) . . . (X

±
βq )

(rq)), ri ∈ N form

bases of UP([α, β]), UP([−α,−β]) (resp. U
res

q ([α, β]), U
res

q ([−α,−β])).
(vi) Let [α,−β]={βp, . . . , βq}, α, β ∈ ∆+ be a minimal segment in ∆, UP′([α,−β]), UP′([−α, β]) (resp. UresUresq (H)([α,−β]),

UresUresq (H)([−α, β])) the P ′ (resp. Uresq (H))–subalgebras of Uh(g) generated by the Xγ (resp. (Xγ)(r)), where

γ ∈ [α,−β] or γ ∈ [−α, β], respectively, and Xγ = X+
γ if γ ∈ ∆+, Xγ = X−γ if γ ∈ ∆−. Then the elements

(Xβp)rp . . . (Xβq )
rq (resp. (Xβp)(rp) . . . (Xβq )

(rq)), ri ∈ N form bases of UP′([α,−β]) (resp. UresUresq (H)([α,−β])),

and the elements (X−βp)rp . . . (X−βq )
rq (resp. (X−βp)(rp) . . . (X−βq )

(rq)), ri ∈ N form bases of UP′([−α, β]) (resp.
UresUresq (H)([−α, β])).
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(vii) Let UP′([α,−β]), UP′([−α, β]) (resp. U
res

Uresq (H)([α,−β]), U
res

Uresq (H)([−α, β])) be the P ′ (resp. Uresq (H))–

subalgebras of Uh(g) generated by the Xγ (resp. by the (Xγ)(r)), where γ ∈ [α,−β] or γ ∈ [−α, β], respectively, and

Xγ = X
+

γ if γ ∈ ∆+, Xγ = X
−
γ if γ ∈ ∆−. Then the elements (Xβp)rp . . . (Xβq )

rq (resp. (Xβp)(rp) . . . (Xβq )
(rq)),

ri ∈ N form bases of UP′([α,−β]) (resp. U
res

Uresq (H)([α,−β])), and the elements (X−βp)rp . . . (X−βq )
rq (resp.

(X−βp)(rp) . . . (X−βq )
(rq)), ri ∈ N form bases of UP′([−α, β]) (resp. U

res

Uresq (H)([−α, β])).

Proof. The first four statements of this lemma are just Propositions 8.1.7, 9.1.3 and 9.3.3 in [20], and Proposition
40.2.1, Corollary 40.2.2, and Proposition 41.1.4 in [81] from which statement (v) also follows. The proofs of the
other claims are similar to each other. Consider, for instance, the case of the algebra UresUresq (H)([α,−β]).

Let [α,−β]={βp, . . . , βq}, α, β ∈ ∆+ be a minimal segment in ∆, UresUresq (H)([α,−β]) the Uresq (H)–subalgebra of

Uh(g) generated by the (Xγ)(r), where γ ∈ [α,−β], and Xγ = X+
γ if γ ∈ ∆+, Xγ = X−γ if γ ∈ ∆−. We show that

the elements (Xβp)(rp) . . . (Xβq )
(rq), ri ∈ N form a basis of UresUresq (H)([α,−β]).

Consider the algebra Uresq (g) ⊗C[q,q−1] C(q). If x ∈ UresUresq (H)([α,−β]) ⊂ Uq(g) then using commutation re-

lations (2.3.3) and (2.3.9) one can represent x as a Uresq (H) ⊗C[q,q−1] C(q)–linear combination of the elements

(Xβp)(rp) . . . (Xβq )
(rq), ri ∈ N. We can also consider x as an element of Uresq (g)⊗C[q,q−1] C(q) and by the Poincaré–

Birkhoff–Witt theorem for Uresq (g)⊗C[q,q−1] C(q) (see Proposition 9.1.3 in [20]) the above mentioned presentation
of x is unique. Now by the Poincaré–Birkhoff–Witt theorem for Uresq (g) (see Proposition 9.3.3 in [20] or parts (iii)
and (iv) of this lemma) the coefficients in this presentation must belong to Uresq (H). This completes the proof in
the considered case.

A basis for Uresq (H) is a little bit more difficult to describe. We do not need its explicit description.

Remark 2.4.3. The antiautomorphisms ω and ω0 give rise to antiautomorphisms of Uq(g) and Uresq (g) which we
denote by the same letters. Applying the antiautomorphism ω0 to the elements of the bases constructed in Lemma
2.4.2 and using (2.3.14), (2.3.15) we obtain other bases of similar types where the order of the quantum root vectors
in the products defining the elements of the bases is reversed.

For any minimal segment [α, β] ⊂ ∆+, let UresUresq (H)([±α,±β]) (resp. U
res

Uresq (H)([±α,±β])) be the subalgebra in

Uresq (g) generated by Uresq ([±α,±β]) (resp. by U
res

q ([±α,±β])) and by Uresq (H). Note that by this definition

Uresq (b±) = UresUresq (H)([±β1,±βD]) = U
res

Uresq (H)([±β1,±βD]), (2.4.3)

and that
Uresq (n±) = Uresq ([±β1,±βD]) = U

res

q ([±β1,±βD]). (2.4.4)

Using Remark 2.4.3 we obtain from parts (iii)-(vii) of Lemma 2.4.2 the following corollary which is a quantum
group counterpart of the properties of algebraic groups stated in Lemma 3.4.4 below.

Corollary 2.4.4. For any two subalgebras A,B ⊂ C of an algebra C denote by AB ⊂ C the image of the map
A⊗B → C induced by the multiplication in C.

Let [α, β] ⊂ ∆ be any minimal segment, such that [α, β] = [α, γ] ∪ [δ, β] (disjoint union of minimal segments).
Then the following statements are true.

(i)
UresUresq (H)([α, β]) = UresUresq (H)([α, γ])UresUresq (H)([δ, β]) = UresUresq (H)([δ, β])UresUresq (H)([α, γ]),

and
U
res

Uresq (H)([α, β]) = U
res

Uresq (H)([α, γ])U
res

Uresq (H)([δ, β]) = U
res

Uresq (H)([δ, β])U
res

Uresq (H)([α, γ]).

(ii) If [α, β] ⊂ ∆+ or [α, β] ⊂ ∆−, the multiplication in Uresq (g) defines isomorphisms of C[q, q−1]–modules

Uresq ([α, β])⊗ Uresq (H)→ Uresq ([α, β])Uresq (H) = UresUresq (H)([α, β]),

Uresq (H)⊗ Uresq ([α, β])→ Uresq (H)Uresq ([α, β]) = UresUresq (H)([α, β]),

U
res

q ([α, β])⊗ Uresq (H)→ U
res

q ([α, β])Uresq (H) = U
res

Uresq (H)([α, β]),
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Uresq (H)⊗ Uresq ([α, β])→ Uresq (H)U
res

q ([α, β]) = UresUresq (H)([α, β]).

(iii) If [α, β] ⊂ ∆+ or [α, β] ⊂ ∆−, the multiplication in Uresq (g) defines isomorphisms of C[q, q−1]–modules

Uresq ([α, γ])⊗ Uresq ([δ, β])→ Uresq ([α, γ])Uresq ([δ, β]) = Uresq ([α, β]),

Uresq ([δ, β])⊗ Uresq ([α, γ])→ Uresq ([δ, β])Uresq ([α, γ]) = Uresq ([α, β]),

and
U
res

q ([α, γ])⊗ Uresq ([δ, β])→ U
res

q ([α, γ])U
res

q ([δ, β]) = U
res

q ([α, β]),

U
res

q ([δ, β])⊗ Uresq ([α, γ])→ U
res

q ([δ, β])U
res

q ([α, γ]) = U
res

q ([α, β]).

Remark 2.4.5. By part (a) of the Proposition in Section 2.2 of [27], for any minimal segment [α, β] ⊂ ∆ the
algebras UresUresq (H)([α, β]), U

res

Uresq (H)([α, β]), and other algebras of similar type which are defined in parts (iv)-(vii)

of Lemma 2.4.2, only depend on the Weyl group element sα . . . sβ, where the product of reflections is taken over all
roots contained in the segment [α, β] in the order on [α, β] induced by the circular normal ordering of ∆. We shall
not need this result in this book.

We shall also need the following simple lemma.

Lemma 2.4.6. Let w ∈W be the longest element of the Weyl group. Then TwU
res
q (n±) ⊂ Uresq (b∓).

Proof. Let w = si1 . . . siD be a reduced decomposition of the longest element w of the Weyl group W of g,

β1 = αi1 , β2 = si1αi2 , . . . , βD = si1 . . . siD−1
αiD

the corresponding normal ordering in ∆+, and

X
±
βk

= T−1
i1

. . . T−1
ik−1

X±ik , k = 1, . . . , D

the quantum root vectors.
Consider the inverse reduced decomposition of w, w = siD . . . si1 . Since Tw only depends on w, we have for

k = 1, . . . , D, r ∈ N, using commutation relations (2.3.6),

Tw(X
+

βk
)(r) = TiD . . . Ti1T

−1
i1

. . . T−1
ik−1

(X+
ik

)(r) = TiD . . . Tik(X+
ik

)(r) =

=
1

[r]qik !
(−TiD . . . Tik−1

(X−ikKik))r =
(−1)r

[r]qik !
TiD . . . Tik−1

((X−ik)rKr
ik

) =

= (−1)rq
−r(r−1)
ik

TiD . . . Tik−1
(X−ik)(r)TiD . . . Tik−1

Kr
ik
∈ Uresq (b−),

where to justify the last inclusion we used the fact that TiD . . . Tik−1
(X−ik)(r) ∈ Uresq (n−) by part (i) of Lemma 2.4.2.

Since the elements (X
+

βk
)(r), k = 1, . . . , D, r ∈ N generate the algebra Uresq (n+) by Lemma 2.4.2 (v) and by

(2.4.4), we deduce that TwU
res
q (n+) ⊂ Uresq (b−). The other inclusion is established in a similar way. This completes

the proof.

In conclusion we note that the algebras Uresq (g) ⊗C[q,q−1] C(q) and Uresq (g) are graded by the elements of the
root lattice Q. Indeed, one can assign weight −r1β1 − . . .− rDβD + k1β1 + . . .+ kDβD to each element

(X−β1
)(r1) . . . (X−βD )(rD)X(X+

β1
)(k1) . . . (X+

βD
)(kD),

wt((X−β1
)(r1) . . . (X−βD )(rD)X(X+

β1
)(k1) . . . (X+

βD
)(kD)) = −r1β1 − . . .− rDβD + k1β1 + . . .+ kDβD,

where X ∈ Uresq (H), use parts (i) and (ii) of Lemma 2.4.2 to extend the definition of the weight to Uresq (g) and
observe that the relations in Uresq (g) following from (2.1.1) are homogeneous with respect to this grading. Then
one can naturally extend this grading to Uresq (g)⊗C[q,q−1] C(q).

For µ ∈ Q we introduce the C[q, q−1]–submodule (Uresq (g))µ ⊂ Uresq (g), (Uresq (g))µ = {x ∈ Uresq (g) : wt(x) = µ},
and call it the weight subspace of weight µ of Uresq (g). Alternatively, one has

(Uresq (g))µ = {x ∈ Uresq (g) : [h, x] = µ(h)x for all h ∈ h ⊂ Uh(g)}, (2.4.5)
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where the commutator is defined in Uh(g), and h is regarded as a complex vector subspace of Uh(g) spanned by
the elements Hi, i = 1, . . . , l.

By parts (i) and (iii) of Lemma 2.4.2 we have the following direct sum of C[q, q−1]–modules

Uresq (g) =
⊕
µ∈Q

(Uresq (g))µ.

From the definition of the braid group action on Uh(g) and from (2.4.5) it follows that for all w ∈ W one has
Tw((Uresq (g))µ) = (Uresq (g))wµ.

The algebra Uh(g) is, of course, not graded by the elements of the root lattice. But one can still define weights
of the elements of its topological basis introduced in parts (ii) and (iii) of Lemma 2.4.2,

wt((X−β1
)r1 . . . (X−βD )rDX(X+

β1
)k1 . . . (X+

βD
)kD ) = −r1β1 − . . .− rDβD + k1β1 + . . .+ kDβD,

where X ∈ Uh(h).

2.5 The universal R–matrix

Uh(g) is a quasitriangular Hopf algebra, i.e. there exists an invertible element R ∈ Uh(g)⊗Uh(g) (completed tensor
product), called a universal R–matrix, such that

∆opp
h (a) = R∆h(a)R−1 for all a ∈ Uh(g), (2.5.1)

and
(∆h ⊗ id)R = R13R23,

(id⊗∆h)R = R13R12,
(2.5.2)

where R12 = R⊗ 1, R23 = 1⊗R, R13 = (σ ⊗ id)R23, and σ(x⊗ y) = y ⊗ x, x, y ∈ Uh(g).
From (2.5.1) and (2.5.2) it follows that R satisfies the quantum Yang–Baxter equation

R12R13R23 = R23R13R12. (2.5.3)

For every quasitriangular Hopf algebra we also have

(S ⊗ id)R = (id⊗ S−1)R = R−1, (2.5.4)

and
(S ⊗ S)R = R, (2.5.5)

where S is the antipode.
An explicit expression for R may be written by making use of the q–exponential

expq(x) = exp′q(qx) =

∞∑
k=0

q
1
2k(k+1) x

k

[k]q!

in terms of which the element R takes the form

R =
∏
β

expqβ [(1− q−2
β )X−β ⊗X

+
β ]exp

[
h

l∑
i=1

(Yi ⊗Hi)

]
=
∏
β

θβexp

[
h

l∑
i=1

(Yi ⊗Hi)

]
, (2.5.6)

where the product is over all the positive roots of g, and the order of the terms is such that the α–term appears to
the left of the β–term if α < β with respect to the normal ordering

β1 = αi1 , β2 = si1αi2 , . . . , βD = si1 . . . siD−1
αiD

of ∆+ which is used in the definition of the quantum root vectors X±β .

One can calculate the action of the comultiplication on the root vectors X±βk in terms of the universal R–matrix.

For instance for ∆h(X−βk) one has

∆h(X−βk) = θwk−1
(X−βk ⊗ 1 + ehβ

∨
⊗X−βk)θ−1

wk−1
, (2.5.7)

where for wk−1 = si1 . . . sik−1

θwk−1
= θβ1

. . . θβk−1
.

The r–matrix r− = − 1
2h
−1(R− 1 ⊗ 1) (mod h), which is the classical limit of R, coincides with the classical

r–matrix (2.1.4).
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2.6 Realizations of quantum groups associated to Weyl group elements

q-W–algebras will be defined in terms of certain integral forms of non–standard realizations of quantum groups
associated to Weyl group elements.

Let s be an element of the Weyl group W of the pair (g, h), and h′ the orthogonal complement, with respect to
the symmetric bilinear form, to the subspace of h fixed by the natural action of s on h. Let h′∗ be the image of h′

in h∗ under the identification h∗ ' h induced by the symmetric bilinear form on g. The restriction of the natural
action of s on h∗ to the subspace h′∗ has no fixed points. Therefore one can define the Cayley transform 1+s

1−s of
the restriction of s to h′∗. Denote by Ph′∗ the orthogonal projection operator onto h′∗ in h∗, with respect to the
bilinear form.

Let κ ∈ Z be an integer number and Ush(g) the topological algebra over C[[h]] topologically generated by elements
ei, fi, Hi, i = 1, . . . l subject to the relations:

[Hi, Hj ] = 0, [Hi, ej ] = aijej , [Hi, fj ] = −aijfj , eifj − qcijfjei = δi,j
Ki−K−1

i

qi−q−1
i

,

cij = κ
(

1+s
1−sPh′∗αi, αj

)
, Ki = edihHi ,

∑1−aij
r=0 (−1)rqrcij

[
1− aij
r

]
qi

(ei)
1−aij−rej(ei)

r = 0, i 6= j,

∑1−aij
r=0 (−1)rqrcij

[
1− aij
r

]
qi

(fi)
1−aij−rfj(fi)

r = 0, i 6= j.

(2.6.1)

Proposition 2.6.1. For every solution nij ∈ C, i, j = 1, . . . , l of equations

djnij − dinji = cij (2.6.2)

there exists an algebra isomorphism ψ{nij} : Ush(g)→ Uh(g) defined by the formulas:

ψ{nij}(ei) = X+
i

l∏
p=1

Lnipp , ψ{nij}(fi) =

l∏
p=1

L−nipp X−i , ψ{nij}(Hi) = Hi.

Proof. The proof of this proposition is by direct verification of defining relations (2.6.1). The most nontrivial part
is to verify the deformed quantum Serre relations, i.e. the last two relations in (2.6.1). For instance, the defining
relations of Uh(g) imply the following relations for ψ{nij}(ei),

1−aij∑
k=0

(−1)k
[

1− aij
k

]
qi

qk(djnij−dinji)ψ{nij}(ei)
1−aij−kψ{nij}(ej)ψ{nij}(ei)

k = 0,

for any i 6= j. Now using equation (2.6.2) we arrive to the quantum Serre relations for ei in (2.6.1).

The general solution of equation (2.6.2) is given by

nij =
1

2dj
(cij + sij), (2.6.3)

where sij = sji.
We shall only use the solution for which sij = 0 for all i, j = 1, . . . l. Then

nij =
1

2dj
cij (2.6.4)

From now on we assume that solution (2.6.4) is used to identify Ush(g) and Uh(g).
The algebra Ush(g) is called the realization of the quantum group Uh(g) corresponding to the element s ∈ W .

Denote by Ush(n±) the subalgebra in Ush(g) generated by ei (resp. fi), i = 1, . . . , l. Let Ush(h) be the subalgebra in
Ush(g) generated by Hi, i = 1, . . . , l.
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We shall construct analogues of quantum root vectors for Ush(g). It is convenient to introduce an operator
Ks ∈ End h defined by

KsHi =

l∑
j=1

nij
di
Yj . (2.6.5)

From (2.6.4) we obtain that

Ksh =
κ

2

1 + s

1− s
Ph′h, h ∈ h. (2.6.6)

Proposition 2.6.2. Let s ∈ W be an element of the Weyl group W of the pair (g, h), ∆ the root system of the
pair (g, h). Let Ush(g) be the realization of the quantum group Uh(g) associated to s.

For any normal ordering of the root system ∆+ the elements

eβ(s) = ψ−1
{nij}(X

+
β e

hKsβ
∨

) and fβ(s) = ψ−1
{nij}(e

−hKsβ∨X−β ), β ∈ ∆+

lie in the subalgebras Ush(n+) and Ush(n−), respectively.
The elements fβ(s) ∈ Ush(n−), β ∈ ∆m+ defined with the help of the normal ordering (1.6.9) generate a

subalgebra Ush(m−) ⊂ Ush(g) such that
Ush(m−)/hUsh(m−) ' U(m−),

where m− is the Lie subalgebra of g generated by the root vectors X−α, α ∈ ∆m+ .

Proof. Fix a normal ordering of the root system ∆+. Let β =
∑l
i=1miαi ∈ ∆+ be a positive root, X+

β ∈ Uh(g)
the corresponding quantum root vector constructed with the help of the fixed normal ordering of ∆+. Then

β∨ =
∑l
i=1midiHi, and so Ksβ

∨ =
∑l
i,j=1minijYj . Now the proof of the first statement follows immediately

from Proposition 2.4.1, commutation relations (2.1.2) and the definition of the isomorphism ψ{nij}.
The second assertion is a consequence of (2.3.7).

Remark 2.6.3. To simplify the notation we shall often write eβ(s) = eβ and fβ(s) = fβ if it does not cause any
confusion.

The realizations Ush(g) of the quantum group Uh(g) are related to quantizations of some nonstandard bialgebra
structures on g. At the quantum level changing bialgebra structure corresponds to the so–called Drinfeld twist.
The relevant class of such twists is described in the following proposition which is a combination of Propositions
4.2.13, 16.1.5, of formula (15) in §16.1 in [20], and of the results of §1 in [33].

Proposition 2.6.4. Let (A,µ, ı,∆, ε, S) be a Hopf algebra over a commutative ring with multiplication µ, unit ı,
comultiplication ∆, counit ε and antipode S.

(i) Let F be an invertible element of A⊗A such that

(ε⊗ id)(F) = (id⊗ ε)(F) = 1, (2.6.7)

and
F12(∆⊗ id)(F) = F23(id⊗∆)(F). (2.6.8)

Then
v = µ(id⊗ S)(F) (2.6.9)

is an invertible element of A with
v−1 = µ(S ⊗ id)(F−1).

Moreover, if we define ∆F : A→ A⊗A and SF : A→ A by

∆F (a) = F∆(a)F−1, SF (a) = vS(a)v−1, (2.6.10)

then (A,µ, ı,∆F , ε, SF ) is a Hopf algebra denoted by AF and called the twist of A by F .
(ii) Suppose that A and F are as in part (i), but assume in addition that A is quasitriangular with universal

R–matrix R. Then AF is quasitriangular with universal R–matrix

RF = F21RF−1, (2.6.11)
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where F21 = σF .
(iii) If F ,G ∈ A⊗A are invertible elements, G satisfies (2.6.7) and (2.6.8), F satisfies (2.6.7) and (2.6.8) with

∆ replaced by ∆G then FG satisfies (2.6.7) and (2.6.8) and the twist of A by FG is the composition of the twists
of A by F and by G.

Let

Fs = exp(−h
l∑

i,j=1

nij
di
Yi ⊗ Yj) = exp(−h

l∑
i=1

Yi ⊗KsHi) ∈ Uh(h)⊗ Uh(h). (2.6.12)

Then from the definition of the commutative Hopf subalgebra U(h)[[h]] ' Uh(h) ⊂ Uh(g) it immediately follows
that Fs ∈ Uh(g)⊗Uh(g) satisfies (2.6.7) and (2.6.8) (see also [20], Proposition 6.5.8), and according to Proposition
2.6.4 (i)

∆s(a) = (ψ−1
{nij} ⊗ ψ

−1
{nij})Fs∆h(ψ{nij}(a))F−1

s . (2.6.13)

defines a comultiplication on Ush(g).
Let Ph′ be the orthogonal projection operator onto h′ in h with respect to the bilinear form on h. From the

formulas in part (i) of Proposition 2.6.4 it follows that on the generators the comultiplication ∆s is explicitly given
by the following formulas

∆s(Hi) = Hi ⊗ 1 + 1⊗Hi,

∆s(ei) = ei ⊗ e−hdiHi + ehκdi
1+s
1−sPh′Hi ⊗ ei, ∆s(fi) = fi ⊗ 1 + e−hκdi

1+s
1−sPh′Hi+hdiHi ⊗ fi,

the corresponding antipode Ss(x) is given by

Ss(ei) = −e−hκdi
1+s
1−sPh′Hieie

hdiHi , Ss(fi) = −ehκdi
1+s
1−sPh′Hi−hdiHifi, Ss(Hi) = −Hi, (2.6.14)

and the corresponding counit εs is given by

εs(Hi) = εs(ei) = εs(fi) = 0.

We shall always assume that the algebra Ush(g) is equipped with this Hopf algebra structure.
Note that the Hopf algebra Ush(g) is a quantization of the bialgebra structure on g defined by the cocycle

δ(x) = (adx ⊗ 1 + 1⊗ adx)2rs±, rs± ∈ g⊗ g, (2.6.15)

where rs± = r± + 1
2

∑l
i=1 κ

1+s
1−sPh′Hi ⊗ Yi, and r± is given by (2.1.4).

By Proposition 2.6.4 (ii) Ush(g) is a quasitriangular topological Hopf algebra with the universal R–matrix
Rs = (ψ−1

{nij} ⊗ ψ
−1
{nij})(F21RF−1),

Rs =
∏
β expqβ [(1− q−2

β )fβ ⊗ eβe−hκ
1+s
1−sPh′β

∨
]×

×exp
[
h(
∑l
i=1(Yi ⊗Hi)−

∑l
i=1 κ

1+s
1−sPh′Hi ⊗ Yi)

]
=

(2.6.16)

= exp
[
h(
∑l
i=1(Yi ⊗Hi)−

∑l
i=1 κ

1+s
1−sPh′Hi ⊗ Yi)

]
×

×
∏
β expqβ [(1− q−2

β )eh(κ
1+s
1−sPh′−id)β∨fβ ⊗ eβehβ

∨
],

where the order of the terms in the product over the positive roots is such that the α–term appears to the left
of the β–term if α < β in the normal ordering of ∆+ with the help of which the quantum root vectors eβ , fβ are
defined in Proposition 2.6.2.

Similarly to (2.2.11) one obtains that for a reduced decomposition w = si1 . . . sik and Tw = Ti1 . . . Tik only
depending on w one has from (2.2.11) and (2.6.13)

∆s(Tw) =

k∏
p=1

θsβpFs(Tw ⊗ Tw)(F−1
s )Tw ⊗ Tw = (2.6.17)

= Tw ⊗ Tw(Tw−1 ⊗ Tw−1)(Fs)F−1
s

k∏
p=1

θ
s

β′p
,
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where in the products θsβp (resp. θ
s

β′p
) appears on the left from θsβq (resp. θ

s

β′q
) if p < q, and for p = 1, . . . , k

eβp = ψ−1
{nij}(X

+
βp
ehKsβ

∨
p ), fβ = ψ−1

{nij}(e
−hKsβ∨pX−βp), βp = si1 . . . sip−1

αip ,

X±βp = Ti1 . . . Tip−1
X±ip , X

±
β′p

= T−1
ik

. . . T−1
ip+1

X±ip ,

eβ′p = ψ−1
{nij}(X

+

β′p
ehKsβ

′
p
∨

), fβ′p = ψ−1
{nij}(e

−hKsβ′p
∨
X
−
β′p

), Kβ′p
= T−1

ik
. . . T−1

ip+1
Kip , β

′
p = sik . . . sip+1

αip

θsβp = FsθβpF−1
s = expqβp [(1− q−2

βp
)eβpe

−hκ 1+s
1−sPh′β

∨
p ⊗ fβp ],

θ
s

β′p
= Fsθβ′pF

−1
s = expqβ′p

[(1− q−2
β′p

)K−1
β′p
ehκ

1+s
1−sPh′β

′
p
∨
fβ′p ⊗ eβ′pKβ′p ].

In the same way, for Tw = T−1
i1

. . . T−1
ik

only depending on w one has from (2.2.12) and (2.6.13)

∆s(Tw) =

k∏
p=1

θ
s

βp

′
Fs(Tw ⊗ Tw)(F−1

s )Tw ⊗ Tw = (2.6.18)

= Tw ⊗ Tw(Tw−1 ⊗ Tw−1)(Fs)F−1
s

k∏
p=1

θsβ′p
′,

where in the products θ
s

βp

′
(resp. θsβ′p

′) appears on the left from θ
s

βq

′
(resp. θsβ′q

′) if p < q, and for p = 1, . . . , k

eβp = ψ−1
{nij}(X

+

βpe
hKβ∨p ), fβp = ψ−1

{nij}(e
−hKβ∨pX

−
βp),Kβp = T−1

i1
. . . T−1

ip−1
Kip ,

X
±
βp = T−1

i1
. . . T−1

ip−1
X±ip , βp = si1 . . . sip−1

αip ,

e′β′p = ψ−1
{nij}(X

+
β′p

′
ehKβ

′
p
∨

), f ′β′p = ψ−1
{nij}(e

−hKβ′p
∨
X−β′p

′
), β′p = sik . . . sip+1

αip , X
±
β′p

′
= Tik . . . Tip+1

X±ip ,

θsβ′p
′ = Fsθ′β′pF

−1
s = expq−1

β′p
[(1− q2

β′p
)e′β′pe

−hκ 1+s
1−sPh′β

′
p
∨
⊗ f ′β′p ], (2.6.19)

θ
s

βp

′
= Fsθ

′
βpF

−1
s = expq−1

βp

[(1− q2
βp)K

−1

βp e
hκ 1+s

1−sPh′β
∨
p fβp ⊗ eβpKβp ].

2.7 The adjoint action

Next we discuss the properties of the adjoint action of a Hopf algebra on itself with respect to Drinfeld twists.
Define the right adjoint action of a Hopf algebra (A,µ, ı,∆, ε, S) on itself by the formula

Adx(z) = S(x1)zx2, (2.7.1)

and the left adjoint action by
Ad′x(z) = x1zS(x2), (2.7.2)

where we use the abbreviated Sweedler notation for the comultiplication ∆(x) = x1 ⊗ x2, x, z ∈ A.
Note that by Lemma 2.2 in [60]

Adx(wz) = Adx1(w)Adx2(z). (2.7.3)

Proposition 2.7.1. Let (A,µ, ı,∆, ε, S) be a Hopf algebra, F ∈ A ⊗ A an invertible element satisfying condi-
tions (2.6.7) and (2.6.8), (A,µ, ı,∆F , ε, SF ) the twist of A by F . Denote by AdF the right adjoint action of
(A,µ, ı,∆F , ε, SF ) on itself. Then for all x, z ∈ A

AdFx(z) = ψFAdx(ψF )−1(z), (2.7.4)

where ψF : A→ A is an invertible morphism of A, regarded as a module over the commutative ground ring, defined
by

ψF (z) = v
∑
i

S(ci)zdi, (2.7.5)



78 CHAPTER 2. QUANTUM GROUPS

where v is given by (2.6.9), and F−1 =
∑
i ci ⊗ di.

The inverse map (ψF )−1 is given by the formula

(ψF )−1(z) =
∑
i

S(ai)v
−1zbi, (2.7.6)

where F =
∑
i ai ⊗ bi.

Proof. Firstly we check that formula (2.7.6) defines the inverse to ψF . Indeed,

(ψF )−1ψF (z) =
∑
j

S(aj)v
−1v

∑
i

S(ci)zdibj =
∑
i,j

S(ciaj)zdibj = z,

as 1⊗ 1 = F−1F =
∑
i,j ciaj ⊗ dibj .

Similarly,

ψF (ψF )−1(z) = v
∑
j

S(cj)
∑
i

S(ai)v
−1zbidj =

∑
i,j

vS(aicj)v
−1zbidj = vv−1z = z,

as 1⊗ 1 = FF−1 =
∑
i,j aicj ⊗ bidj .

Now by (2.6.10), (2.7.1), (2.7.5) and (2.7.6) we have

AdFx(z) = vS(aix
1cj)v

−1zbix
2dj = vS(cj)S(x1)S(ai)v

−1zbix
2dj = ψFAdx(ψF )−1(z).

This justifies (2.7.4).

Proposition 2.7.2. Let (A,µ, ı,∆, ε, S) be a Hopf algebra, F ∈ A⊗A an invertible element satisfying conditions
(2.6.7) and (2.6.8), v ∈ A given by (2.6.9), and F−1 =

∑
i ci ⊗ di.

Then
∆v = F−1(v ⊗ v)(S ⊗ S)(F−1

21 ), (2.7.7)

and for all z ∈ A
∆ψF (z) = F−1(1⊗ v)

∑
i,j

(ψF (Ad(d1
i cj)(z

1))⊗ S(ci)z
2d2
i dj)F , (2.7.8)

where ψF : A→ A is defined by (2.7.5) and we use the Sweedler notation for the comultiplication.

Proof. First we prove identity (2.7.7). Denote as before F =
∑
i ai ⊗ bi. Then condition (2.6.8) can be written in

the form ∑
i,j

aia
1
j ⊗ bia2

j ⊗ bj =
∑
i,j

ai ⊗ ajb1i ⊗ bjb2i . (2.7.9)

Applying the antipode and the comultiplication to the last factor in the tensor product we obtain∑
i,j

aia
1
j ⊗ bia2

j ⊗ (Sbj)
1 ⊗ (Sbj)

2 =
∑
i,j

ai ⊗ ajb1i ⊗ (S(bjb
2
i ))

1 ⊗ (S(bjb
2
i ))

2.

Multiplying the first and the third, and the second and the fourth tensor factors we deduce∑
i,j

aia
1
j (Sbj)

1 ⊗ bia2
j (Sbj)

2 =
∑
i,j

ai(S(bjb
2
i ))

1 ⊗ ajb1i (S(bjb
2
i ))

2,

or, recalling that ∆ is an algebra homomorphism, and S is an anticoautomorphism,∑
i,j

ai(ajSbj)
1 ⊗ bi(ajSbj)2 =

∑
i,j

aiS((bjb
2
i )

2)⊗ ajb1iS((bjb
2
i )

1).

Now, using the definition of v and the identity F =
∑
i ai ⊗ bi in the left hand aside, and recalling that S is an

algebra antiautomorphism and ∆ is coassociative in the right hand side we have

F∆v =
∑
i,j

aiS(b2jb
3
i )⊗ ajb1iS(b1jb

2
i ) =

∑
i,j

aiS(b3i )S(b2j )⊗ ajb1iS(b2i )S(b1j ).
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Applying the identity S(b3i ) ⊗ b1iS(b2i ) = S(b2i ) ⊗ ε(b1i ) = S(bi) following from the defining properties of the
counit and of the antipode we get

F∆v =
∑
i,j

aiS(b2i )S(b2j ))⊗ ajε(b1i )S(b1j ) =
∑
i,j

aiS(bi)S(b2j )⊗ ajS(b1j ) = (v ⊗ 1)
∑
j

S(b2j )⊗ ajS(b1j ), (2.7.10)

where at the last step we also used the definition of v.
Now we simplify the sum in the right hand side of the last formula. Applying the antipode to the second and

the third factor in the tensor product in (2.7.9) and multiplying the first and the second factors after that we have∑
i,j

aia
1
jS(a2

j )S(bi)⊗ S(bj) =
∑
i,j

aiS(b1i )S(aj)⊗ S(b2i )S(bj).

Using the defining property of the antipode in the left hand side, and the formula F =
∑
i ai⊗ bi in the right hand

side we can rewrite the previous identity in the form∑
i,j

aiε(aj)S(bi)⊗ S(bj) =
∑
i

aiS(b1i )⊗ S(b2i )(S ⊗ S)(F),

or by (2.6.7) and by the definition of v applied in the left hand side

v ⊗ 1 =
∑
i

aiS(b1i )⊗ S(b2i )(S ⊗ S)(F),

which is, by swapping the tensor factors, equivalent to

1⊗ v =
∑
i

S(b2i )⊗ aiS(b1i )(S ⊗ S)(F21),

or ∑
i

S(b2i )⊗ aiS(b1i ) = (1⊗ v)(S ⊗ S)(F−1
21 ).

Substituting this expression into the right hand side of (2.7.10) and multiplying by F−1 from the left we obtain
(2.7.7).

Formula (2.7.8) is established in a similar way. Firstly we rewrite (2.6.8) in the following form

(∆⊗ id)(F−1)F−1
12 = (id⊗∆)(F−1)F−1

23 , (2.7.11)

or explicitly, using the expression F−1 =
∑
i ci ⊗ di,∑

i,j

c1i cj ⊗ c2i dj ⊗ di =
∑
i,j

ci ⊗ d1
i cj ⊗ d2

i dj . (2.7.12)

Applying the antipode to the first and to the second factor of the tensor product and the comultiplication to
the last factor we obtain from this identity∑

i,j

S(cj)S(c1i )⊗ S(dj)S(c2i )⊗ d1
i ⊗ d2

i =
∑
i,j

S(ci)⊗ S(cj)S(d1
i )⊗ (d2

i dj)
1 ⊗ (d2

i dj)
2,

or, recalling that F−1 =
∑
j cj ⊗ dj and swapping the first and the second factors in the tensor product,

((S ⊗ S)(F−1
21 )⊗ 1⊗ 1)

∑
i,j

S(c2i )⊗ S(c1i )⊗ d1
i ⊗ d2

i =
∑
i,j

S(cj)S(d1
i )⊗ S(ci)⊗ (d2

i dj)
1 ⊗ (d2

i dj)
2.

Multiplying this identity by z1 ⊗ z2 ⊗ 1⊗ 1 = ∆(z)⊗ 1⊗ 1 from the right we also have

((S ⊗ S)(F−1
21 )⊗ 1⊗ 1)

∑
i

S(c2i )z
1 ⊗ S(c1i )z

2 ⊗ d1
i ⊗ d2

i =
∑
i,j

S(cj)S(d1
i )z

1 ⊗ S(ci)z
2 ⊗ (d2

i dj)
1 ⊗ (d2

i dj)
2.
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Now we multiply the first and the third, and the second and the fourth factors in the tensor product in this
identity. Together with the coassociativity of the comultiplication in the right hand side this yields

(S ⊗ S)(F−1
21 )

∑
i

S(c2i )z
1d1
i ⊗ S(c1i )z

2d2
i =

∑
i,j

S(cj)S(d1
i )z

1d2
i d

1
j ⊗ S(ci)z

2d3
i d

2
j . (2.7.13)

Applying the identity

∆(
∑
i

S(ci)zdi) =
∑
i

S(c2i )z
1d1
i ⊗ S(c1i )z

2d2
i

in the left hand side of (2.7.13) we obtain

(S ⊗ S)(F−1
21 )∆(

∑
i

S(ci)zdi) =
∑
i,j

S(cj)S(d1
i )z

1d2
i d

1
j ⊗ S(ci)z

2d3
i d

2
j

which implies together with (2.7.5) and (2.7.7)

∆ψF (z) = ∆(v)∆(
∑
i

S(ci)zdi) = F−1(v ⊗ v)(S ⊗ S)(F−1
21 )∆(

∑
i

S(ci)zdi) = (2.7.14)

= F−1(v ⊗ v)
∑
i,j

S(cj)S(d1
i )z

1d2
i d

1
j ⊗ S(ci)z

2d3
i d

2
j .

Now we bring the right hand side of this identity to the form indicated in (2.7.8). For this purpose we rewrite
(2.7.12) multiplying it by F23 from the right, by applying the antipode to the first factor in the tensor product,
and by swapping the right hand side and the left hand side,∑

j

S(cj)⊗ d1
j ⊗ d2

j =
∑
j,k

S(ck)S(c1j )⊗ c2jdk ⊗ djF23, (2.7.15)

where we also renamed some summation indexes.
Applying this identity to the expression in the right hand side of (2.7.14) and recalling (2.7.5) we finally obtain

∆ψF (z) = F−1(v ⊗ v)
∑
i,j,k

S(ck)S(c1j )S(d1
i )z

1d2
i c

2
jdk ⊗ S(ci)z

2d3
i djF =

= F−1(1⊗ v)
∑
i,j

(ψF (Ad(d1
i cj)(z

1))⊗ S(ci)z
2d2
i dj)F

which completes the proof.

Apart from Drinfeld twists, there is another natural way for obtaining new comultiplications on a given Hopf
algebra described in the following obvious proposition (see e.g. [67], Proposition 5.2).

Proposition 2.7.3. Let (A,µ, ı,∆, ε, S) be a Hopf algebra, υ : A→ A an algebra automorphism. Then (A,µ, ı,∆υ, ε, Sυ)
is a Hopf algebra, where

∆υ(x) = (υ ⊗ υ)∆(υ−1x), Sυ = υS(υ−1x), x ∈ A. (2.7.16)

If (A,µ, ı,∆, ε, S) is quasitriangular with universal R–matrix R then (A,µ, ı,∆υ, ε, Sυ) is quasitriangular with
universal R–matrix

Rυ = (υ ⊗ υ)R.

We denote the Hopf algebra (A,µ, ı,∆υ, ε, Sυ) by Aυ and call it the twist of A by υ. Denote by Adυ the right
adjoint action of Aυ. One immediately has the following relation between the adjoint actions of A and of Aυ.

Proposition 2.7.4. Let (A,µ, ı,∆, ε, S) be a Hopf algebra, υ : A→ A an algebra automorphism. Then

Adυx(z) = υ(Adυ−1(x)(υ−1(z))), x, z ∈ A. (2.7.17)
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Proof. By (2.7.16) we have

Adυx(z) = υ(S(υ−1υ(υ−1x)1))zυ(υ−1x)2 = υ(S(υ−1x)1υ−1(z)(υ−1x)2) = υ(Adυ−1(x)(υ−1(z))).

This completes the proof.

Now we shall relate the two types of twists in the case when A = Uh(g). The following statements can be found
in [67], Theorem 5.1 and Proposition 5.4.

Proposition 2.7.5. Let w = si1 . . . sik be any reduced decomposition of an element w ∈ W , Tw = Ti1 . . . Tik .

Denote θw =
∏k
p=1 θβp , where θβp are defined in (2.2.11), and in the product θβp appears on the left from θβq if

p < q. Then the following statements are true.

(i) The element θ−1
w ∈ Uh(g)⊗ Uh(g) satisfies (2.6.7) and (2.6.8), and ∆

θ−1
w

h is a comultiplication on Uh(g).

(ii) One has ∆
θ−1
w

h = ∆Tw
h .

Proof. (i) The proof is by induction over the length of w. When w = si is a simple reflection condition (2.6.7) for
θ−1
w = θ−1

i is clear from its definition and from the definition of the counit εh, and condition (2.6.8) is the statement
of Proposition 4.2.4 in [81], up to some change of the notation and different conventions on the comultiplication.
The second claim in (i) for θ−1

w = θ−1
i follows from the first one and from part (i) of Proposition 2.6.4.

Now assume that the statement is true for all elements w of length k and for some w = si1 . . . sik and 1 ≤ i ≤ l
the element w′ = siw has length k + 1. Then by the definitions of θw and θsiw one has

θsiw = θi(Ti ⊗ Ti)(θw),

so
θ−1
siw = (Ti ⊗ Ti)(θ−1

w )θ−1
i . (2.7.18)

Condition (2.6.7) for θ−1
siw is again clear from its definition and from the definition of the counit εh.

To check condition (2.6.8) for θ−1
siw we write using (2.7.18)

(θ−1
siw)12(∆h ⊗ id)(θ−1

siw) = (Ti ⊗ Ti ⊗ id)(θ−1
w )12(θ−1

i )12(∆h ⊗ id)(Ti ⊗ Tiθ−1
w T−1

i ⊗ T−1
i )(∆h ⊗ id)(θ−1

i ).

Observe that by (2.2.8) ∆h(Ti) = θiTi ⊗ Ti, so ∆h(Ti(x)) = θi(Ti ⊗ Ti)(∆h(x))θ−1
i , x ∈ Uh(g), and that Ti is

an algebra automorphism. Hence the previous identity can be rewritten as follows

(θ−1
siw)12(∆h ⊗ id)(θ−1

siw) =

= (Ti ⊗ Ti ⊗ Ti)(θ−1
w )12(θ−1

i )12(θi)12(Ti ⊗ Ti ⊗ Ti)((∆h ⊗ id)(θ−1
w ))(θ−1

i )12(∆h ⊗ id)(θ−1
i ) =

= (Ti ⊗ Ti ⊗ Ti)(θ−1
w )12(Ti ⊗ Ti ⊗ Ti)((∆h ⊗ id)(θ−1

w ))(θ−1
i )12(∆h ⊗ id)(θ−1

i ) =

= (Ti ⊗ Ti ⊗ Ti)(θ−1
w )12(Ti ⊗ Ti ⊗ Ti)((∆h ⊗ id)(θ−1

w ))(θ−1
i )12(∆h ⊗ id)(θ−1

i ) =

= (Ti ⊗ Ti ⊗ Ti)((θ−1
w )12(∆h ⊗ id)(θ−1

w ))(θ−1
i )12(∆h ⊗ id)(θ−1

i ). (2.7.19)

Now recall that by the induction assumption θi and θw satisfy (2.6.8), so that after applying (2.6.8) in the right
hand side of the previous identity we have

(θ−1
siw)12(∆h ⊗ id)(θ−1

siw) = (Ti ⊗ Ti ⊗ Ti)((θ−1
w )23(id⊗∆h)(θ−1

w ))(θ−1
i )23(id⊗∆h)(θ−1

i ).

Finally repeating in the opposite order arguments similar to those which lead us to (2.7.19) we arrive at

(θ−1
siw)12(∆h ⊗ id)(θ−1

siw) =

= (Ti ⊗ Ti)((θ−1
w ))23(θ−1

i )23(θi)23(Ti ⊗ Ti ⊗ Ti)((id⊗∆h)(θ−1
w ))(θ−1

i )23(id⊗∆h)(θ−1
i ) =

= (θ−1
siw)23(id⊗∆h)((Ti ⊗ Ti)(θ−1

w ))(id⊗∆h)(θ−1
i ) = (θ−1

siw)23(id⊗∆h)(θ−1
siw)

which confirms (2.6.8) for θ−1
siw and establishes the induction step. Thus the first claim in (i) is proved.

The second claim in (i) for θ−1
w with arbitrary w follows from the first one and from part (i) of Proposition

2.6.4.
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(ii) Observe that by (2.2.11) ∆h(T−1
w ) = T−1

w ⊗ T−1
w θ−1

w , and hence

∆h(T−1
w (x)) = (T−1

w ⊗ T−1
w )(θ−1

w ∆h(x)θw), x ∈ Uh(g), (2.7.20)

or, by the definitions of ∆Tw
h and of ∆

θ−1
w

h ,

∆Tw
h (x) = (θ−1

w ∆h(x)θw) = ∆
θ−1
w

h (x), x ∈ Uh(g).

This completes the proof.

We shall need the following proposition which is a version of Proposition 2.7.5 for the algebras Ush(g). To
simplify the notation we shall identify Ush(g) with Uh(g) as algebras using the isomorphisms from Proposition 2.6.1
with nij given by (2.6.4), and omit ψ{nij} in all formulas.

Proposition 2.7.6. Let w = si1 . . . sik be any reduced decomposition of an element w ∈ W , Tw = Ti1 . . . Tik .

Denote θsw =
∏k
p=1 θ

s
βp

, where θsβp are defined in (2.6.17), and in the product θsβp appears on the left from θsβq if
p < q. Then the following statements are true.

(i) The element θsw
−1 ∈ Ush(g) ⊗ Ush(g) satisfies (2.6.7) and (2.6.8), for ε = εs and ∆ = ∆s, and ∆

θsw
−1

s is a
comultiplication on Ush(g).

(ii) One has ∆
θsw
−1

s = ∆Tw
w−1sw.

Proof. (i) Firstly by (2.6.17)
FsθwF−1

s = θsw. (2.7.21)

From the definition of the commutative Hopf subalgebra U(h)[[h]] ' Uh(h) ⊂ Uh(g) ' Ush(g) it immediately

follows that F−1
s ∈ Ush(g)⊗Ush(g) satisfies (2.6.7) and (2.6.8) for ε = εs and ∆ = ∆s, so ∆

F−1
s

s is a comultiplication
on Ush(g) according to Proposition 2.6.4 (i). In fact by formula (2.6.13)

∆
F−1
s

s = ∆h. (2.7.22)

By Proposition 2.7.5 (i) and (ii) the element θ−1
w ∈ Uh(g)⊗ Uh(g) satisfies (2.6.7) and (2.6.8) with ε = εh and

∆ = ∆h, ∆
θ−1
w

h is a comultiplication on Uh(g), and ∆
θ−1
w

h = ∆Tw
h . Using this identity and (2.7.22) we obtain

(∆
F−1
s

s )θ
−1
w = ∆

θ−1
w

h = ∆Tw
h . (2.7.23)

Finally note that on the subalgebra Uh(h) ⊂ Uh(g) one has ∆Tw
h = ∆h and from the definition of the commutative

Hopf subalgebra U(h)[[h]] ' Uh(h) ⊂ Uh(g) ' Ush(g) it immediately follows that Fs ∈ Uh(g)⊗Uh(g) satisfies (2.6.7)

and (2.6.8) for ε = εh and ∆ = ∆Tw
h , so (∆Tw

h )Fs is a comultiplication on Uh(g) according to Proposition 2.6.4 (i).
Using this observation together with (2.7.23) and Proposition 2.6.4 (iii) twice we deduce that Fsθ−1

w F−1
s = θsw

−1

satisfies (2.6.7) and (2.6.8) for ε = εs and ∆ = ∆s, ∆
θsw
−1

s is a comultiplication on Ush(g), and

∆
θsw
−1

s = ((∆
F−1
s

s )θ
−1
w )Fs = (∆Tw

h )Fs . (2.7.24)

(ii) Observe that by (2.6.18) and by the definition (2.6.12) of Fs one has ∆s(T
−1
w ) = T−1

w ⊗ T−1
w (Tw ⊗

Tw)(Fs)F−1
s θsw

−1, and hence by the definition of ∆Tw
s we obtain

∆Tw
s (x) = (Tw ⊗ Tw)(Fs)F−1

s θsw
−1∆s(x)θswFs(Tw ⊗ Tw)(F−1

s ), x ∈ Ush(g).

Using the definition of ∆Tw
s and conjugating by Fs(Tw ⊗ Tw)(F−1

s ) one can rewrite this identity as follows

Fs(Tw ⊗ Tw)(F−1
s )(Tw ⊗ Tw)(∆s(T

−1
w x))(Tw ⊗ Tw)(Fs)F−1

s = θsw
−1∆s(x)θsw.

Using (2.6.13) and the definition of the braid group action on the generators of Uh(h) we can further transform the
left hand side and obtain

(Tw ⊗ Tw)((T−1
w ⊗ T−1

w )(Fs)F−1
s Fs∆h(T−1

w x)F−1
s Fs(T−1

w ⊗ T−1
w )(F−1

s )) = θsw
−1∆s(x)θsw,
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or
(Tw ⊗ Tw)((T−1

w ⊗ T−1
w )(Fs)∆h(T−1

w x)(T−1
w ⊗ T−1

w )(F−1
s )) = θsw

−1∆s(x)θsw. (2.7.25)

By definition (2.6.12) (T−1
w ⊗ T−1

w )(Fs) = Fw−1sw, and hence by (2.6.13)

(T−1
w ⊗ T−1

w )(Fs)∆h(T−1
w x)(T−1

w ⊗ T−1
w )(F−1

s ) = Fw−1sw∆h(T−1
w x)F−1

w−1sw = ∆w−1sw(T−1
w x).

Using this expression in the left hand side of (2.7.25) and recalling the definitions of ∆
θsw
−1

s and of ∆Tw
w−1sw we

derive ∆Tw
w−1sw = ∆

θsw
−1

s . This completes the proof.

Rewriting the identity in part (ii) of the previous proposition in the form

∆w−1sw = (∆
θsw
−1

s )T
−1
w

and applying formulas (2.7.4) and (2.7.17) we obtain the following corollary.

Corollary 2.7.7. Denote by Ads and Ad′s the right and the left adjoint action of the Hopf algebra Ush(g), respec-
tively. Then

Adw−1swx = (Adθ
s
w
−1

s )T
−1
w (x) = T−1

w ψθ
s
w
−1

Ads(Twx)(ψθ
s
w
−1

)−1Tw, (2.7.26)

where ψθ
s
w
−1

is defined by (2.7.5) with the help of the antipode Ss and of the multiplication in the Hopf algebra
Ush(g).

From (2.7.8) and (2.6.17) we also obtain the following proposition which will be crucial for the definition of the
Zhelobenko type operators.

Proposition 2.7.8. Let w = si1 . . . sik be any reduced decomposition of an element w ∈W , Tw = Ti1 . . . Tik . Then

∆w−1sw(T−1
w ψθ

s
w
−1

(z)Tw) = T−1
w ⊗ T−1

w (1⊗ v)
∑
i,j

(ψθ
s
w
−1

(Ads(d
1
i cj)(z

1))⊗ Ss(ci)z2d2
i dj)Tw ⊗ Tw, (2.7.27)

where θsw
−1 =

∑
i ai ⊗ bi, v =

∑
i aiSs(bi), θ

s
w =

∑
i ci ⊗ di, ∆sz = z1 ⊗ z2, ∆sdi = d1

i ⊗ d2
i .

Proof. From (2.7.8) with ∆ = ∆s, F = θsw
−1, S = Ss we obtain

∆s(ψ
θsw
−1

(z)) = θsw(1⊗ v)
∑
i,j

(ψθ
s
w
−1

(Ads(d
1
i cj)(z

1))⊗ Ss(ci)z2d2
i dj)θ

s
w
−1, (2.7.28)

where θsw
−1 =

∑
i ai ⊗ bi, v =

∑
i aiSs(bi), θ

s
w =

∑
i ci ⊗ di, ∆sz = z1 ⊗ z2.

By (2.6.17) and (2.6.6)

∆s(Tw) =

k∏
p=1

θsβpFs(Tw ⊗ Tw)(F−1
s )Tw ⊗ Tw = θswFs(Tw ⊗ Tw)(F−1

s )Tw ⊗ Tw = (2.7.29)

= θswTw ⊗ Tw(T−1
w ⊗ T−1

w )(Fs)F−1
s = θswTw ⊗ TwFw−1swF−1

s .

Now (2.7.28) and (2.7.29) imply

∆s(T
−1
w ψθ

s
w
−1

(z)Tw) = ∆s(T
−1
w )∆s(ψ

θsw
−1

(z))∆s(Tw) =

= FsF−1
w−1swT

−1
w ⊗ T−1

w θsw
−1θsw(1⊗ v)

∑
i,j

(ψθ
s
w
−1

(Ads(d
1
i cj)(z

1))⊗ Ss(ci)z2d2
i dj)θ

s
w
−1θswTw ⊗ TwFw−1swF−1

s =

= FsF−1
w−1swT

−1
w ⊗ T−1

w (1⊗ v)
∑
i,j

(ψθ
s
w
−1

(Ads(d
1
i cj)(z

1))⊗ Ss(ci)z2d2
i dj)Tw ⊗ TwFw−1swF−1

s .

Conjugating this formula by Fw−1swF−1
s and observing that by the definition of ∆s one has

Fw−1swF−1
s ∆s(·)FsF−1

w−1sw = Fw−1swF−1
s Fs∆h(·)F−1

s FsF−1
w−1sw =

= Fw−1sw∆h(·)F−1
w−1sw = ∆w−1sw(·)

we obtain

∆w−1sw(T−1
w ψθ

s
w
−1

(z)Tw) = T−1
w ⊗ T−1

w (1⊗ v)
∑
i,j

(ψθ
s
w
−1

(Ads(d
1
i cj)(z

1))⊗ Ss(ci)z2d2
i dj)Tw ⊗ Tw.

This completes the proof.
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2.8 Some forms and specializations of quantum groups

In order to define q-W–algebras we shall actually need not the algebras Ush(g) themselves but some their forms
defined over certain rings. They are similar to the rational form and the restricted integral form for the standard
quantum group Uh(g). The motivations of the definitions given below will be clear in Section 3.2. The results
below are slight modifications of similar statements for Uh(g).

We start with a very important technical lemma which will play the key role in the definition of q-W–algebras.
Below we keep the notation introduced in Section 1.2.

Let s ∈ W be an element of the Weyl group. By formula (1.2.1), s can be represented as a product of two
involutions, s = s1s2, where s1 = sγ1 . . . sγn , s2 = sγn+1 . . . sγl′ , and the roots γ1, . . . , γl′ form a basis of a subspace
h′
∗ ⊂ h∗ on which s acts without fixed points. We shall study the matrix elements of the Cayley transform of the

restriction of s to h′
∗

with respect to this basis.

Lemma 2.8.1. Let Ph′∗ be the orthogonal projection operator onto h′
∗

in h∗, with respect to the bilinear form.
Then the matrix elements of the operator 1+s

1−sPh′∗ in the basis γ1, . . . , γl′ are of the form(
1 + s

1− s
Ph′∗γi, γj

)
= εij(γi, γj), (2.8.1)

where

εij =

 −1 i < j
0 i = j
1 i > j

.

Proof. First we calculate the matrix of the element s with respect to the basis γ1, . . . , γl′ . We obtain this matrix
in the form of the Gauss decomposition of the operator s : h′

∗ → h′
∗
.

Let zi = sγi. Recall that sγi(γj) = γj −Aijγi, Aij = (γ∨i , γj). Define

yi = sγ1 . . . sγi−1
γi. (2.8.2)

Using this definition the elements zi may be represented as

zi = sγ1 . . . sγl′γi = sγ1 . . . sγl′−1
(γi −Al′iγl′) = sγ1 . . . sγl′−1

γi −Al′iyl′ = . . . = yi −
∑
k≥i

Akiyk.

Using the matrix notation we can rewrite the last formula as follows

zi =

l′∑
k=1

(I − V )kiyk, where Vki =

{
Aki k ≥ i
0 k < i

(2.8.3)

To calculate the matrix of the operator s : h′
∗ → h′

∗
with respect to the basis γ1, . . . , γl′ we have to express the

elements yi via γ1, . . . , γl′ . Applying the definition of reflections to (2.8.2) we obtain

yi = sγ1 . . . sγi−1
γi = sγ1 . . . sγi−2

γi −Ai−1iyi−1 = . . . = γi −
∑
k<i

Akiyk.

Therefore

γi =

l′∑
k=1

(I + U)kiyk , where Uki =

{
Aki k < i
0 k ≥ i

Thus

yk =

l′∑
k=1

(I + U)−1
jk γj . (2.8.4)

Summarizing (2.8.4) and (2.8.3) we obtain

sγi =

l′∑
k=1

(
(I + U)−1(I − V )

)
ki
γk. (2.8.5)
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This implies

1 + s

1− s
Ph′∗γi =

l′∑
k=1

(
2I + U − V
U + V

)
ki

γk. (2.8.6)

Observe that (U +V )ki = Aki and (2I +U −V )ij = −Aijεij . Substituting these expressions into (2.8.6) we get(
1 + s

1− s
Ph′∗γi, γj

)
= −(A−1)kpεpiApi(γj , γk) = εij(γi, γj). (2.8.7)

This completes the proof of the lemma.

Let γ∗i , i = 1, . . . , l′ be the basis of h′∗ dual to γi, i = 1, . . . , l′ with respect to the restriction of the bilinear form

(·, ·) to h′∗. Since the numbers (γi, γj) are integer, each element γ∗i has the form γ∗i =
∑l′

j=1mijγj , where mij ∈ Q.

Therefore by Lemma 2.8.1 and using for simple roots αi the decomposition of the form Ph′∗αi =
∑l′

p=1(αi, γp)γ
∗
p =∑l′

p,q=1(αi, γp)mpqγq we deduce that the numbers

pij =
1

2dj

(
1 + s

1− s
Ph′∗αi, αj

)
= (2.8.8)

=
1

2dj

l′∑
k,l,p,q=1

(γk, αi)(γl, αj)

(
1 + s

1− s
Ph′∗γp, γq

)
mkpmlq, i, j = 1, . . . , l

are rational, pij ∈ Q, as all factors in the products in the sum in the right hand side are rational. Denote by d an
integer number divisible by all the denominators of the rational numbers pij , i, j = 1, . . . , l.

Let r ∈ N be such that a−1
ij ∈ 1

rZ, i, j = 1, . . . , l. Let Usq (g) be the C(q
1
dr2 )-algebra generated by the elements

ei, fi, L
±1
i , t±1

i , i = 1, . . . , l with the same relations as the relations in Ush(g) for the generators denoted by the same

symbols, where we assume that t±1
i = exp(±hκd Yi). The coefficients of these relations indeed belong to C(q

1
dr2 ),

where q
1
dr2 = eh

1
dr2 .

Let Uq(g) be the C(q
1
dr2 )-algebra generated by the elements X±i , L

±1
i , t±1

i , i = 1, . . . , l subject to the same
relations as the relations in Uh(g) for the generators denoted by the same symbols, where we assume that t±1

i =

exp(±hκd Yi). The coefficients of these relations indeed belong to C(q
1
dr2 ), where q

1
dr2 = eh

1
dr2 .

Note that by the choice of d we have qcij ∈ C[q
κ
d , q−

κ
d ].

The second form of Ush(g) is a subalgebra UsA(g) in Usq (g) over the ring A = P[q
1
dr2 , q−

1
dr2 ]. UsA(g) is the

subalgebra in Usq (g) generated over A by the elements

L±1
i , t±1

i ,
Ki −K−1

i

qi − q−1
i

, ei, fi, i = 1, . . . , l.

Denote also by UA(g) the subalgebra in Uq(g) generated over A by the elements

L±1
i , t±1

i ,
Ki −K−1

i

qi − q−1
i

, X±i , i = 1, . . . , l.

For the solution nij = 1
2dj

cij to equations (2.6.2) the root vectors eβ , fβ belong to all the above introduced

specializations of Uh(g).

For any normal ordering of ∆+ we denote e
(k)
β =

ekβ
[k]qα ! , f

(k)
β =

fkβ
[k]qα ! , where eβ , fβ are the corresponding quantum

root vectors from Proposition 2.6.2. Let Us,resB (g) be the subalgebra in Usq (g) generated over B = C[q
1
dr2 , q−

1
dr2 ]

by the elements

L±1
i , t±1

i , e
(k)
i , f

(k)
i , i = 1, . . . , l, k ≥ 1.

Denote also by UresB (g) the subalgebra in Uq(g) generated over B by the elements

L±1
i , t±1

i , (X±i )(k), i = 1, . . . , l, k ≥ 1.



86 CHAPTER 2. QUANTUM GROUPS

Let ε ∈ C∗. Fix a root of ε of degree r2d, ε
1
dr2 and if ε = 1 put ε

1
r2d = 1. Then we define the specialization

Usε (g) of UsA(g), Usε (g) = UsA(g)/(q
1
dr2 − ε

1
dr2 )UsA(g), and

Us,resε (g) = Us,resB (g)/(q
1
dr2 − ε

1
dr2 )Us,resB (g)

Usq (g), UsA(g), Us,resB (g), Us,resε (g) and Usε (g) are Hopf algebras with the comultiplication given on generators

by the same formulas as in Ush(g) with q
1
dr2 = eh

1
dr2 .

The elements ti and Li are central in the algebra Us1 (g), and the quotient of Us1 (g) by the two–sided ideal
generated by ti − 1 and Li − 1 is isomorphic to U(g). Note that none of the specializations of Ush(g) introduced
above is quasitriangular. Similarly, the quotient of Us,res1 (g) by the two–sided ideal generated by ti − 1 and Li − 1
is isomorphic to U(g), and the quotient of Ures1 (g) by the two–sided ideal generated by and Ki − 1 is isomorphic
to U(g) (see [20], Proposition 9.3.10).

The algebra isomorphism ψ{nij} with nij = 1
2dj

cij induces isomorphisms of Uh(g) and Ush(g) and of the forms

and specializations of Uh(g) and Ush(g) with the superscript s defined above and of their counterparts with the
superscript s dropped. We shall always identify them using these isomorphisms. To simplify the notation we shall
also write, if it does not cause confusion, eβ = X+

β e
hKsβ

∨
, fβ = e−hKsβ

∨
X−β , β ∈ ∆+.

Note that the structure constants in the commutation relations for UsA(g) = UA(g) actually belong to P[q
κ
d , q−

κ
d ],

so if κ is divisible by d the specialization Usε (g) actually depends on ε ∈ C∗ but not on its root ε
1
dr2 . As we shall see

below one can define an action of the universal R-matrix Rs on tensor products of finite rank Us,resB (g)–modules.
This action will play a crucial role in subsequent considerations.

UA(g), UresB (g), UsA(g) and Us,resB (g) can be also regarded as subalgebras of Ush(g) ' Uh(g), and Uresq (g) can be
regarded as a C[q, q−1]–subalgebra in Us,resB (g) ' UresB (g).

Denote by Usq (n+), Usq (n−) and Usq (h) the subalgebras of Usq (g) generated by the ei, fi and by the ti, Li,
respectively, and let Usq (b±) be the subalgebra in Usq (g) generated by Usq (n±) and by Usq (h), Usq (b±) = Usq (n±)Usq (h).

Let UsA(n+), UsA(n−) (Us,resB (n+), Us,resB (n−)) be the subalgebras of UsA(g) (Us,resB (g)) generated by the ei and

by the fi, i = 1, . . . , l (by the e
(r)
i and by the f

(r)
i , i = 1, . . . , l, r ≥ 0), respectively, and UA(h) = UsA(h) the

subalgebra in UA(g) = UsA(g) generated by ti, Li, i = 1, . . . , l.

The elements [
Ki; c
r

]
qi

=

r∏
s=1

Kiq
c+1−s
i −K−1

i qs−1−c
i

qsi − q
−s
i

, i = 1, . . . , l, c ∈ Z, r ∈ N

belong to Us,resB (g). Denote by Us,resB (h) the subalgebra of Us,resB (g) generated by those elements and by t±1
i , L±1

i ,
i = 1, . . . , l.

Let Us,resB (b±) be the subalgebra in Us,resB (g) generated by Us,resB (n±) and by Us,resB (h), Us,resB (b±) = Us,resB (n±)Us,resB (h).

The algebra antiautomorphism ω of Uh(g) defined by (2.3.11) gives rise to an algebra antiautomorphism of
Ush(g) ' Uh(g). we denote it by the same letter. By (2.3.12) for any α ∈ ∆+ it satisfies

ω(fα) = eα, ω(eα) = fα. (2.8.9)

The algebra antiautomorphism ω0 of Uh(g) also induces an algebra antiautomorphism of Ush(g) ' Uh(g) which
we denote by the same letter. From (2.3.13) we deduce that it satisfies

ω0(ei) = ei, ω0(fi) = fi.

Formula (2.3.14) implies

ω0(eα) = cαeα, (2.8.10)

where cα = εαpα, εα = ±1, pα ∈ qZ. We also have

ω0(fα) = ω0ω(eα) = ωω0(eα) = ω(cαeα) = c−1
α ω(eα) = c−1

α fα (2.8.11)

One can check straightforwardly that ω0 is a coalgebra homomorphism of Ush(g).

The antiautomorphisms ω and ω0 give rise to antiautomorphisms of Usq (g), Us,resB (g) and UsA(g) which we denote
by the same letters.

Using the root vectors eβ and fβ we can construct bases for the algebras introduced above.
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Lemma 2.8.2. Fix a normal ordering of the system of positive roots ∆+ and let eβ , fβ be the corresponding
quantum root vectors defined in Proposition 2.6.2. Then the following statements are true.

(i) The elements fβ satisfy the following commutation relations

fαfβ − q(α,β)+κ( 1+s
1−sPh′∗α,β)fβfα =

∑
α<δ1<...<δn<β

C(p1, . . . , pn)f
(p1)
δ1

f
(p2)
δ2

. . . f
(pn)
δn

= (2.8.12)

=
∑

α<δ1<...<δn<β

C ′(p1, . . . , pn)fp1δ1 f
p2
δ2
. . . fpnδn , α < β,

where C(p1, . . . , pn) ∈ B, C ′(p1, . . . , pn) ∈ A.
(ii) The elements er = er1β1

. . . erDβD , f t = f tDβD . . . f
t1
β1

, for r = (r1, . . . rD), t = (t1, . . . tD) ∈ ND, form bases of
Usq (n+), Usq (n−), respectively.

(iii) The multiplication defines an isomorphism of C(q
1
dr2 )–modules:

Usq (n−)⊗ Usq (h)⊗ Usq (n+)→ Usq (g).

(iv) The elements er, f t (resp. e(r) = e
(r1)
β1

. . . e
(rD)
βD

, f (t) = f
(tD)
βD

. . . f
(t1)
β1

) for r, t ∈ ND form bases of

UsA(n+), UsA(n−) (resp. Us,resB (n+), Us,resB (n−)), respectively.
(v) The multiplication defines an isomorphisms of B–modules:

Us,resB (n−)⊗ Us,resB (h)⊗ Us,resB (n+)→ Us,resB (g).

(vi) Let [α, β] = {βp, . . . , βq} be a minimal segment in ∆+, UsA([α, β]), UsA([−α,−β]) (resp. Us,resB ([α, β]),
Us,resB ([−α,−β])) the A(B)–subalgebras of Ush(g) generated by the eγ and by the fγ , γ ∈ [α, β] (resp. by the (eγ)(r)

and by the (fγ)(r), γ ∈ [α, β], r ∈ N), respectively. Then the elements (eβp)rp . . . (eβq )
rq , (fβq )

rq . . . (fβp)rp (resp.

(eβp)(rp) . . . (eβq )
(rq), (fβq )

(rq) . . . (fβp)(rp)), ri ∈ N form bases of UsA([α, β]), UsA([−α,−β]) (resp. Us,resB ([α, β]),
Us,resB ([−α,−β])), respectively.

(vii) The elements f t (resp. f (t) = f
(tD)
βD

. . . f
(t1)
β1

) for t ∈ ND with ti > 0 for at least one i ≥ p form a basis in

the right ideal Yp of UsA(n−) (resp. Us,resB (n−)) generated by fγ , γ ∈ [βp, βD] (resp. by (fγ)(r), γ ∈ [βp, βD], r > 0).
(viii) For any n > 0, p = 1, . . . , D − 1 one has

f
(n)
βp
Us,resB ([−βp+1,−βD]) ⊂

n−1∑
i=0

(Us,resB ([−βp+1,−βD]))0f
(i)
βp

+ Us,resB ([−βp+1,−βD])f
(n)
βp
,

where (Us,resB ([−βp+1,−βD]))0 = Yp+1 ∩ Us,resB ([−βp+1,−βD]).
(ix) Let [α, β] ⊂ ∆+ or [α, β] ⊂ ∆− be any minimal segment, such that [α, β] = [α, γ] ∪ [δ, β] (disjoint union of

minimal segments). Then the multiplication in Us,resB (g) defines isomorphisms of B–modules

Us,resB ([α, γ])⊗ Us,resB ([δ, β])→ Us,resB ([α, γ])Us,resB ([δ, β]) = Us,resB ([α, β]),

Us,resB ([δ, β])⊗ Us,resB ([α, γ])→ Us,resB ([δ, β])Us,resB ([α, γ]) = Us,resB ([α, β]).

Proof. Commutation relations (2.8.12) follow from commutation relations (2.3.3), (2.1.2), (2.1.3), Proposition 2.4.1,
the definition of the elements eβ , fβ and the definition of the isomorphism ψ{nij}. This proves (i).

Statements (ii)-(vi) of this lemma follow straightforwardly from parts (i), (iii) and (iv) of Lemma 2.4.2 and
Propositions 2.6.1 and 2.6.2.

For (vii), using commutation relations (2.8.12) we can represent any element of the right ideal of UsA(n−)
generated by fγ , γ ∈ [βp, βD] as an A–linear combination of the elements f t for t ∈ ND with ti > 0 for at least one
i ≥ p. This presentation is unique by the Poincaré–Birkhoff–Witt decomposition for UsA(n−) stated in (vi).

Note that a similar result holds for the algebra Usq (n−) = UsA(n−)⊗A C(q
1
dr2 ) for the same reasons.

We can apply it to represent any element of the right ideal Yp of Us,resB (n−) ⊂ Usq (n−) generated by (fγ)(r),

γ ∈ [βp, βD], r > 0 as a C(q
1
dr2 )–linear combination of the elements f (t) for t ∈ ND with ti > 0 for at least

one i ≥ p. This presentation is unique and by the uniqueness of the Poincaré–Birkhoff–Witt decomposition for
Us,resB (n−) stated in (vi) the coefficients in this decomposition belong to B. This completes the proof of part (vii).

(viii) is justified using similar arguments, commutation relations (2.8.12) and induction over n.
(ix) follows from Corollary 2.4.4 (iii) and Propositions 2.6.1 and 2.6.2.
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A basis for Us,resB (h) is a little bit more difficult to describe. We do not need its explicit description.

Remark 2.8.3. Applying the antiautomorphism ω0 to the elements of the bases constructed in Lemma 2.8.2 and
using (2.8.10) and (2.8.11) we obtain other bases of similar types where the order of the quantum root vectors in
the products defining the elements of the bases is reversed.

By specializing the above constructed bases for q
1
rd2 = ε

1
rd2 one can obtain similar bases and similar subalgebras

for Usε (g) and Us,resε (g).

Similarly to the case of Uresq (g), using parts (ii), (iii), (iv) and (v) of Lemma 2.8.2 one can introduce Q–gradings
on the algebras Usq (g), UsA(g), Us,resB (g), Us,resε (g) and Usε (g). For instance, we have

Us,resB (g) =
⊕
µ∈Q

(Us,resB (g))µ,

where
(Us,resB (g))µ = {x ∈ Us,resB (g) : [h, x] = µ(h)x for all h ∈ h ⊂ Uh(g) ' Ush(g)}.

Using formulas (2.5.7) and (2.6.13) one can also find that

∆s(fβk) = θswk−1
(e−hκ

1+s
1−sPh′β

∨
k +hβ∨k ⊗ fβk + fβk ⊗ 1)(θswk−1

)−1 = (2.8.13)

= G−1
βk
⊗ fβk + fβk ⊗ 1 +

∑
i

yi ⊗ xi,

where
Gβ = ehκ

1+s
1−sPh′β

∨−hβ∨ , yi = e−hκ
1+s
1−sPh′γ

∨
xi

+hγ∨xi yi,

yi ∈ UsA([−βk+1,−βD]) ∩ Us,resB ([−βk+1,−βD]),

xi ∈ UsA([−β1,−βk−1]) ∩ Us,resB ([−β1,−βk−1]),

yi, xi belong to weight subspaces and have non-zero weights, γxi is the weight of xi (see [34], Corollary 4.3.2), for
wk−1 = si1 . . . sik−1

θswk−1
= θsβ1

. . . θsβk−1
, θsβr = expqβr [(1− q−2

βr
)eβre

−hκ 1+s
1−sPh′β

∨
⊗ fβr ], (2.8.14)

and
(θswk−1

)−1 = (θsβk−1
)−1 . . . (θsβ1

)−1, (θsβr )
−1 = expq−1

βr

[(1− q2
βr )eβre

−hκ 1+s
1−sPh′β

∨
⊗ fβr ]. (2.8.15)

From (2.8.13) we also obtain

∆s(f
(n)
βk

) =
1

[n]qβk !
θswk−1

(G−1
βk
⊗ fβk + fβk ⊗ 1)n(θswk−1

)−1 = (2.8.16)

= θswk−1
(

n∑
k=0

q
k(n−k)
βk

G−kβk f
(n−k)
βk

⊗ f (k)
βk

)(θswk−1
)−1 =

=

n∑
k=0

q
k(n−k)
βk

G−kβk f
(n−k)
βk

⊗ f (k)
βk

+
∑
i

y
(n)
i ⊗ x(n)

i ,

where

y
(n)
i = e

−hκ 1+s
1−sPh′γ

∨
x
(n)
i

+hγ∨
x
(n)
i y

(n)
i ,

y
(n)
i ∈ I>k , x

(n)
i ∈ I<k belong to weight subspaces and have non-zero weights, γ

x
(n)
i

is the weight of x
(n)
i , I>k is the

ideal in Us,resB ([−βk,−βD]) generated by f
(p)
βi

, i = k + 1, . . . , D, p > 0, and I<k is the ideal in Us,resB ([−β1,−βk])

generated by f
(p)
βi

, i = 1, . . . , k − 1, p > 0.
Similarly

∆s(eβk) = θswk−1
(eβk ⊗ e−hβ

∨
k + ehκ

1+s
1−sPh′β

∨
k ⊗ eβk)(θswk−1

)−1 = (2.8.17)
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= eβk ⊗ e−hβ
∨
k + ehκ

1+s
1−sPh′β

∨
k ⊗ eβk +

∑
i

x′i ⊗ y′i,

where
y′i ∈ UsA([βk+1, βD])UsA(h) ∩ Us,resB ([βk+1, βD])Us,resB (h),

x′i ∈ UsA([β1, βk−1])UsA(h) ∩ Us,resB ([β1, βk−1])Us,resB (h),

and y′i, x
′
i belong to weight subspaces and have non-zero weights.

From these formulas we deduce

Ss(fβ) = −Gβfβ −
∑
i

Ss(yi)xi = −Gβ(fβ +
∑
i

yiSs(xi)), (2.8.18)

S−1
s (fβ) = −(fβ +

∑
i

S−1
s (xi)yi)Gβ = −fβGβ −

∑
i

xiS
−1
s (yi). (2.8.19)

We also have
ω0S

−1
s (fβ) = −Gβ(ω0fβ +

∑
i

ω0(yi)ω0S
−1
s (xi)) =

= −Gβω0fβ −
∑
i

ω0S
−1
s (yi)ω0(xi),

ω0fβ = −G−1
β (ω0S

−1
s (fβ) +

∑
i

ω0S
−1
s (yi)).

As usual, one can define highest weight, Verma and finite-dimensional modules for all forms and specializations of
the quantum group Ush(g) introduced above. We recall that by Propositions 6.5.5 and 6.5.7 in [20] Uh(g) ' U(g)[[h]],
and this isomorphism of algebras restricts to the identity map on U(h) and induces a canonical isomorphism of the
center of Uh(g) and of Z(U(g))[[h]], where Z(U(g)) is the center of U(g). Therefore if V is a Uh(g)–module free and
of finite rank over C[[h]] then V1 = V/hV is a finite-dimensional U(g)–module which is completely reducible, and
its irreducible components are highest weight irreducible finite-dimensional representations of U(g). By Corollary
6.5.6 in [20], one has an isomorphism of Uh(g)–modules, V ' V1[[h]], where the action of Uh(g) on V1[[h]] is defined
using the algebra isomorphism Uh(g) ' U(g)[[h]].

Using the algebra isomorphism Uh(g) ' U(g)[[h]], which restricts to the identity map on U(h), one can define
weight vectors in V by requiring that v ∈ V has weight λ ∈ P if hv = λ(h)v for any h ∈ h ⊂ U(h) ⊂ U(g)[[h]] '
Uh(g). For λ ∈ P one also defines the corresponding weight subspace (V )λ = {v ∈ V : hv = λ(h)v for all h ∈ h}.

If V1 is the highest weight irreducible representation of U(g) with highest weight λ ∈ P+ we call the corresponding
representation V = Vλ the highest weight indecomposable representation of highest weight λ. Vλ is generated by
a highest weight vector with respect to the action of h ⊂ Uh(h). All indecomposable Uh(g)–modules free and of
finite rank over C[[h]] can be obtained this way.

Let V be a topologically free finite rank Uh(g)–module. Recall that there is a contravariant non–degenerate
form (·, ·) on V such that (u, xv) = (ω(x)u, v) for any u, v ∈ V , x ∈ Uh(g). Different weight spaces are orthogonal
with respect to this form.

The definition (2.3.11) of the antiautomorphism ω implies that the ω maps elements of negative weights to
elements of positive weights. From this remark we obtain the following obvious corollary which will be often used
later.

Lemma 2.8.4. Let V be a topologically free finite rank Uh(g)–module. Let u, v ∈ V , x, y ∈ Uh(g).
(i) If u is a highest weight vector and x ∈ Uh(g) has a weight which is not non–negative then (u, xyv) = 0.
(ii) If v is a highest weight vector and y ∈ Uh(g) has a weight which is not non–positive then (u, xyv) = 0.

Recall that Us,resB (g) ' UresB (g) can be regarded as a subalgebra of Ush(g) ' Uh(g). Let V be a Uh(g)–module
topologically free and of finite rank over C[[h]] (for brevity we shall call such modules finite rank Uh(g)–modules).
Then a Us,resB (g)–module V res is called a Us,resB (g)–lattice in V if V res ⊗B C[[h]] ' V .

For any Uh(g)–module V topologically free and of finite rank over C[[h]] a Us,resB (g)–lattice V res exists. Indeed,
by the above discussion it suffices to consider the case of indecomposable V = Vλ generated by a highest weight
vector v. In this case, similarly to the proof of Proposition 4.2 in [88] (see also Proposition 10.1.4 in [20]) one
can show that V resλ = Us,resB (g)v is a Us,resB (g)–lattice, V resλ is the direct sum of its intersections with the weight
spaces of Vλ and each such intersection is a finitely generated free B–module of finite rank. Moreover, using the
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arguments from the proof of Proposition 4.2 in Section 4.9 of [88] one can see that the last two properties hold for
any Us,resB (g)–lattice in any topologically free Uh(g)–module V of finite rank over C[[h]]. Together cwith the results
of Section 10.1 in [20] this yields the following statement.

Proposition 2.8.5. (i) For any Uh(g)–module V topologically free and of finite rank over C[[h]] V res is the direct
sum of its intersections with the weight spaces of V and each such intersection is a finitely generated free B–module
of finite rank

V res =
⊕
λ∈P

(V res)λ, (V
res)λ = V res ∩ (V )λ.

(ii) The specialization of V res at q
1
dr2 = 1 is naturally a finite–dimensional U(g)–module.

For any Uh(g)–module V topologically free and of finite rank over C[[h]], one can equip the module V res with
a natural action of h, where h ∈ h acts on the weight subspace of V res of weight λ by multiplication by λ(h).

From the explicit formulas and the results in [81], Section 5.2 it follows that the braid group elements given by
(2.2.4) and (2.2.5) act in Uh(g)–modules topologically free and of finite rank over C[[h]] and leave Us,resB (g)–lattices
in them.

More generally, if Tw is the braid group element corresponding to w ∈ W then Tw(V )λ = (V )wλ. This action
satisfies the property Twxv = Tw(x)Twv for any x ∈ Uh(g) and v ∈ V . The Us,resB (g)–submodule V res ⊂ V is
invariant under the action of the elements Tw.

The following lemma will be useful for some calculations later.

Lemma 2.8.6. Let V be a Uh(g)–module V topologically free and of finite rank over C[[h]]. Then the elements of
the subalgebra Uresq (H) act on weight vectors of V by multiplication by elements of C[q, q−1], and the elements of
the subalgebra Us,resB (h) ⊂ Us,resB (g) ⊂ Ush(g) ' Uh(g) act on weight vectors of V by multiplication by elements of
B. Moreover,

(V )λ = {v ∈ V : Kiv = q
λ(Hi)
i v, i = 1, . . . , l}, (V res)λ = {v ∈ V res : Kiv = q

λ(Hi)
i v, i = 1, . . . , l}. (2.8.20)

Proof. By the definition of the action of h on V the elements[
Ki; c
r

]
qi

=

r∏
s=1

Kiq
c+1−s
i −K−1

i qs−1−c
i

qsi − q
−s
i

, i = 1, . . . , l, c ∈ Z, r ∈ N

act on a vector of weight λ by multiplication by
∏r
s=1

q
λ(Hi)+c+1−s
i −q−λ(Hi)+s−1−c

i

qsi−q
−s
i

=
∏r
s=1(−[λ(Hi) + c+ 1]q−si

), and

K±1
i , i = 1, . . . , l, act by multiplication by q

±λ(Hi)
i . Also for v ∈ V the condition Kiv = q

λ(Hi)
i v, i = 1, . . . , l is

equivalent to hv = λ(h)v for any h ∈ h ⊂ Uh(g). This implies (2.8.20).
The case of the generators t±1

i , L±1
i , i = 1, . . . , l of the algebra Us,resB (h) is considered in a similar way.

The specialization of V resλ at q
1
dr2 = ε

1
dr2 is a highest weight Us,resε (g)–module. In general this module is not

irreducible even if V is indecomposable.
The R-matrix Rs acts in tensor products of Us,resB (g)–lattices in Uh(g)–modules topologically free and of finite

rank over C[[h]]. Namely, recalling (2.6.16) we can represent Rs in the form Rs = EsRs0 = Rs0Es1 , where

Rs0 = exp

[
h

(
l∑
i=1

(Yi ⊗Hi)−
l∑
i=1

κ
1 + s

1− s
Ph′Hi ⊗ Yi

)]
, (2.8.21)

Es =
∏
β

( ∞∑
k=0

q
k(k+1)

2

β (1− q−2
β )kf

(k)
β ⊗ ekβe−khκ

1+s
1−sPh′β

∨

)
=

=
∏
β

( ∞∑
k=0

q
k(k+1)

2

β (1− q−2
β )kfkβ ⊗ e

(k)
β e−khκ

1+s
1−sPh′β

∨

)
,

Es1 =
∏
β

( ∞∑
k=0

q
k(k+1)

2

β (1− q−2
β )kekh(κ

1+s
1−sPh′−id)β∨f

(k)
β ⊗ ekβekhβ

∨

)
=

=
∏
β

( ∞∑
k=0

q
k(k+1)

2

β (1− q−2
β )kekh(κ

1+s
1−sPh′−id)β∨fkβ ⊗ e

(k)
β ekhβ

∨

)
,
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and for β =
∑l
i=1 ciαi

e−khκ
1+s
1−sPh′β

∨
= e
−kh

∑l
i,j=1

cij
dj
ciYj ∈ Us,resB (h) ∩ UsA(h).

We can define the action of Rs0 on tensor products of modules of the form V res, where V is a highest weight
finite rank Uh(g)–module as follows. If V res, W res are two such modules and vλ ∈ V res, wµ ∈W res are vectors of
weights λ and µ then we define

Rs0vλ ⊗ wµ = q(λ,µ)−(κ 1+s
1−sPh′∗µ,λ)vλ ⊗ wµ,

and q(λ,µ)−(κ 1+s
1−sPh′∗µ,λ) ∈ B.

Since for any β ∈ ∆+ and any module of the form V res, where V is a finite rank Uh(g)–module, f
(k)
β and ekβ

belong to Us,resB (g) and act as zero operators on V res for k large enough, and for any k

e−khκ
1+s
1−sPh′β

∨
∈ Us,resB (h) ∩ UsA(h),

Es naturally acts on tensor products of such modules.
For two modules of the form V res,W res, where V and W are highest weight finite rank Uh(g)–modules, we

denote by RVW the operator corresponding to the action of Rs in V res ⊗W res.
With this definition the identity

∆opp
s (x) = Rs∆s(x)Rs−1, x ∈ Us,resB (g)

still holds being evaluated in tensor products of modules of the form V res, where V is a finite rank Uh(g)–module.
We shall also need the following technical lemma regarding the action of the elements Tw and Tw on finite rank

indecomposable modules.

Lemma 2.8.7. Let V be a finite rank Uh(g)–module. If T, T ′ are two elements of the braid group Bg which act as
the same transformation on h ⊂ Uh(h) and v is a highest weight vector in V then Tv = tT ′v, where t is a non–zero
multiple of a power of q.

Proof. Since v generates a highest weight indecomposable submodule Vλ ⊂ V of highest weight λ equal to the
weight of v, and Vλ is invariant under the braid group action, we can assume without loss of generality that
V = Vλ.

First observe that similarly to the proof of Proposition 4.2 in [88] (see also Proposition 10.1.4 in [20]) one can
show that V ′ = Uresq (g)v is a Uresq (g)–lattice in Vλ in the sense that V ′⊗C[q,q−1] C[[h]] ' Vλ. This module coincides
with the one defined in Section 4.1 in [88] (see also Proposition 10.1.4 in [20]).

It is well known that any element T of the braid group acts as an invertible linear automorphism of V ′ which
can be specialized to any non–zero numeric value of q in the sense that for any ε ∈ C∗ T gives rise to a linear
automorphism of Uresq (g)/(q−ε)Uresq (g)–module V ′ε = V ′/(q−ε)V ′. It suffices to verify this statement when T = Ti
for i = 1, . . . , l, and in this case it follows from the explicit formulas and the results in [81], Section 5.2.

Recall that elements of the braid group act as Weyl group elements on h ⊂ Uh(h). Assume that the action
of T and T ′ on h ⊂ Uh(h) coincides with the action of a Weyl group element w. Since the C[q, q−1]–submodule
of V ′ which consists of elements of weight wµ has rank one and Tv and T ′v must belong to this submodule, the
relation Tv = t(q)T ′v must hold for some rational function t(q) of q with poles or zeroes only at zero and infinity.
Indeed, if t(q0) = 0, q0 6= 0,∞ then in V ′q0 we have Tv = 0, i.e. T does not induce an automorphism of V ′q0 , and if
t−1(q′0) = 0, q′0 6= 0,∞ then in V ′q′0

we have T ′v = 0, i.e. T ′ does not induce an automorphism of V ′q′0
. In both cases

we arrive at a contradiction. Thus t(q) must be a non–zero multiple of a power of q.

2.9 Bibliographic comments

The material presented in Sections 2.1, 2.2, 2.3, 2.4 and 2.5 is mostly standard and we refer to books [20, 58, 81]
for more details and omitted proofs. Formula (2.2.4) can be found in [103].

Realizations of quantum groups associated to Weyl group elements were introduced in [108] in the case of
Coxeter elements and in [114] in general.

The results of Section 2.7 are new, except for Propositions 2.7.3 and 2.7.5 the statements of which can be found
in [67] as Proposition 5.2, Theorem 5.1 and Proposition 5.4.

Lemma 2.8.1 is a generalization of the result of Exercise 3 in Chapter V, §6, [10].
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Specializations of quantum groups similar to those which appear in this book were considered in [116]. In this
book we introduce slightly different specializations of quantum groups in order to use restricted specializations as
well.



Chapter 3

q-W–algebras

In this chapter we introduce q–W–algebras and study the structure of their the quasi–classical versions, Poisson
q-W–algebras. In the next chapter similar results will be obtained for q-W–algebras.

As we briefly mentioned in the introduction the naive definition of q-W–algebras as Hecke type algebras
Hk(A,B, χ) requires some modification. In fact the main ingredient of the definition of q-W–algebras is the
adjoint action of the quantum group on itself, and they are defined using a B–subalgebra CsB[G∗] of the quantum
group the restriction of the adjoint action to which is locally finite. When q is specialized to ε ∈ C∗ which is not a
root of unity the algebra CsB[G∗] becomes the locally finite part of the quantum group with respect to the adjoint
action which was introduced and studied by Joseph.

The algebra CsB[G∗] is a quantization of the algebra of regular functions on a Poisson manifold G∗ which is
isomorphic to G as a manifold and the Poisson structure of which is closely related to that of the Poisson–Lie group
G∗ dual to a quasitriangular Poisson–Lie group G.

After recalling basic facts on Poisson–Lie groups in Section 3.1 we introduce an algebra C[G∗] of functions on
G∗ in Section 3.2, its quantization CsB[G∗] ⊂ Ush(g) and the subalgebra CsB[G∗] ⊂ CsB[G∗].

A special choice of the bialgebra structure entering the definitions of C[G∗], CsB[G∗] ⊂ Ush(g) and CsB[G∗] is
crucial for the definition of q-W–algebras. It depends on the choice of a Weyl group element s ∈ W and ensures
that one can define a subalgebra CsB[M+] ⊂ CsB[G∗] equipped with a non–trivial character, so that the q-W–algebra
W s
B(G) can be defined as the result of a quantum constrained reduction with respect to the subalgebra CsB[M+].

Next, in Section 3.4 we proceed with the study of the specialization W s(G) of the algebra W s
B(G) at q

1
rd2 = 1.

We recall that W s(G) is naturally a Poisson algebra which can be regarded as the algebra of regular functions on
a reduced Poisson manifold which is also an algebraic variety. Poisson reduction works well for differential Poisson
manifolds. Therefore it is easier firstly to describe the reduced Poisson structure on the algebra of C∞–functions
on the reduced Poisson manifold and then to recover the structure of the algebraic variety on it. This is done in
Proposition 3.4.3 and Theorem 3.4.5.

In Section 3.5 we define a projection operator Π into the algebra W s(G). In Theorem 3.5.7, which is central in
this chapter, we obtain a formula for the operator Π suitable for quantization. This formula plays the key role in
the proof of Theorem 4.7.2 describing a localization of the algebra W s

B(G) in terms of a quantum counterpart of
the operator Π. Miraculously the formula for Π from Theorem 3.5.7 can be directly extrapolated to the quantum
case.

3.1 Some facts on Poisson–Lie groups

In this section, following [20], Ch. 1, we recall some notions related to Poisson–Lie groups. These facts will be
needed for the study of Poisson q-W–algebras.

Let G be a finite-dimensional Lie group equipped with a Poisson bracket, g its Lie algebra. G is called a
Poisson–Lie group if the multiplication G × G → G is a Poisson map. A Poisson bracket satisfying this axiom is
degenerate and, in particular, is identically zero at the unit element of the group. Linearizing this bracket at the
unit element defines the structure of a Lie algebra in the space T ∗eG ' g∗. The pair (g, g∗) is called the tangent
bialgebra of G.

Lie brackets in g and g∗ satisfy the following compatibility condition:

93
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Let δ : g → g ∧ g be the dual of the commutator map [, ]∗ : g∗ ∧ g∗ → g∗. Then δ is a 1-cocycle on g (with
respect to the adjoint action of g on g ∧ g).

Let ckij , f
ab
c be the structure constants of g, g∗ with respect to the dual bases {ei}, {ei} in g, g∗. The compatibility

condition means that

csabf
ik
s − ciasf

sk
b + ckasf

si
b − ckbsf

si
a + cibsf

sk
a = 0.

This condition is symmetric with respect to exchange of c and f . Thus if (g, g∗) is a Lie bialgebra, then (g∗, g) is
also a Lie bialgebra.

The following proposition shows that the category of finite-dimensional Lie bialgebras is isomorphic to the
category of finite-dimensional connected simply connected Poisson–Lie groups.

Proposition 3.1.1. ([20], Theorem 1.3.2) If G is a connected simply connected finite-dimensional Lie group,
every bialgebra structure on g is the tangent bialgebra of a unique Poisson structure on G which makes G into a
Poisson–Lie group.

Let G be a finite-dimensional Poisson–Lie group, (g, g∗) the tangent bialgebra of G. The connected simply
connected finite-dimensional Poisson–Lie group corresponding to the Lie bialgebra (g∗, g) is called the dual Poisson–
Lie group and denoted by G∗.

(g, g∗) is called a factorizable Lie bialgebra if the following conditions are satisfied (see [100]):

1. g is equipped with a non–degenerate invariant scalar product (·, ·).
We shall always identify g∗ and g by means of this scalar product.

2. The dual Lie bracket on g∗ ' g is given by

[X,Y ]∗ =
1

2
([rX, Y ] + [X, rY ]) , X, Y ∈ g, (3.1.1)

where r ∈ End g is a skew symmetric linear operator (classical r-matrix).

3. r satisfies the modified classical Yang-Baxter identity:

[rX, rY ]− r ([rX, Y ] + [X, rY ]) = − [X,Y ] , X, Y ∈ g. (3.1.2)

Define operators r± ∈ End g by

r± =
1

2
(r ± id) .

We shall need some properties of the operators r±. Denote by b± and n∓ the image and the kernel of the operator
r±:

i± = Im r±, k∓ = Ker r±. (3.1.3)

Proposition 3.1.2. ([8], Lemma 6.6; [104], Sect. 4) Let (g, g∗) be a factorizable Lie bialgebra. Then
(i) i± ⊂ g is a Lie subalgebra, the subspace k± is a Lie ideal in i±, i⊥± = k±.
(ii) k± is an ideal in g∗.
(iii) i± is a Lie subalgebra in g∗. Moreover i± = g∗/k±.
(iv) (i±, i

∗
±) is a subbialgebra of (g, g∗) and (i±, i

∗
±) ' (i±, i∓). The canonical paring between i∓ and i±is given

by
(X∓, Y±)± = (X∓, r

−1
± Y±), X∓ ∈ i∓; Y± ∈ i±. (3.1.4)

The classical Yang–Baxter equation implies that r± , regarded as a mapping from g∗ into g, is a Lie algebra
homomorphism (see [104], Proposition 7). Moreover, r∗+ = −r−, and r+ − r− = id.

By Proposition 9 in [104], the mapping

g∗ → g⊕ g : X 7→ (X+, X−), X± = r±X, (3.1.5)

is a Lie algebra embedding (Here g⊕ g is the Lie algebra direct sum of two copies of g). Thus we may identify g∗

with the image of this embedding in g⊕ g.
Naturally, embedding (3.1.5) extends to a group homomorphism

G∗ → G×G, L 7→ (L+, L−).

In the situations considered later in this book this homomorphism will be always an embedding. In such situations
we shall identify G∗ with the corresponding subgroup in G×G.
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3.2 Quantization of algebraic Poisson–Lie groups and the definition of
q-W–algebras

In this section we introduce the main object of this book, q-W–algebras. We start by defining the relevant Poisson–
Lie groups and their quantizations. We consider algebras defined over the ring B since later in our construction
the restricted specialization of the quantum group Ush(g) defined over B will play the key role.

Let g be a finite-dimensional complex semisimple Lie algebra, h ⊂ g its Cartan subalgebra. Let s ∈ W be an
element of the Weyl group W of the pair (g, h) and ∆+ the system of positive roots associated to s. Observe that
cocycle (2.6.15) equips g with the structure of a factorizable Lie bialgebra, where the scalar product is given by the
symmetric bilinear form. Using the identification End g ∼= g⊗ g the corresponding r–matrix may be represented as

rs = P+ − P− + κ
1 + s

1− s
Ph′ ,

where P+, P− and Ph′ are the orthogonal projection operators onto the nilradical n+ corresponding to ∆+, the
opposite nilradical n−, and h′, respectively, in the direct sum

g = n+ + h′ + h′⊥ + n−,

and h′⊥ = hs is the orthogonal complement to h′ in h with respect to the symmetric bilinear form.
Let G be the connected simply–connected semisimple Poisson–Lie group with the tangent Lie bialgebra (g, g∗),

G∗ the dual Poisson–Lie group.
Observe that G is a connected simply–connected semisimple complex algebraic group (see e.g. §104, Theorem

12 in [132]). Note also that

rs+ = P+ +
κ

2

1 + s

1− s
Ph′ +

1

2
Ph, rs− = −P− +

κ

2

1 + s

1− s
Ph′ −

1

2
Ph,

where Ph is the orthogonal projection operator onto h ⊂ g with respect to the symmetric bilinear form, and hence
the subspaces i± and k± defined by (3.1.3) coincide with the Borel subalgebras b± in g corresponding to ∆± and
their nilradicals n±, respectively. Therefore every element (L+, L−) ∈ G∗ ⊂ G×G may be uniquely written as

(L+, L−) = (n+, n−)(h+, h−), (3.2.1)

where n± ∈ N±, h+ = exp((κ2
1+s
1−sPh′ +

1
2 id)x), h− = exp((κ2

1+s
1−sPh′ − 1

2 id)x), x ∈ h. In particular, G∗ is a solvable
subgroup in G×G. In general G∗ is not algebraic.

Our main object will be a certain algebra of functions on G∗, C[G∗]. This algebra may be explicitly described
as follows. Let πV be a finite-dimensional representation of G. Then matrix elements of πV (L±) are well–defined
functions on G∗, and C[G∗] is defined as the subalgebra in C∞(G∗) generated by the matrix elements of πV (L±),
where V runs through all finite–dimensional representations of G. The elements L±,V = πV (L±) may be viewed

as elements of the space C[G∗]⊗EndV . If we fix a basis in V , L±,V can be regarded as matrices with entries L±,Vij

being elements of C[G∗].
For every two finite–dimensional g–modules V and W we denote rs±

VW = (πV ⊗ πW )rs± ∈ EndV ⊗ EndW ,
where rs± is regarded as an element of g⊗ g.

Proposition 3.2.1. ([106], Section 2) C[G∗] is a Poisson subalgebra in the Poisson algebra C∞(G∗), the Poisson
bracket on C[G∗] is given by

{L±,V1 , L±,W2 } = −2[rs±
VW , L±,V1 L±,W2 ],

{L−,V1 , L+,W
2 } = −2[rs±

VW , L−,V1 L+,W
2 ],

(3.2.2)

where

L±,V1 = L±,V ⊗ IW , L±,W2 = IV ⊗ L±,W , L±,V1 , L±,W2 ∈ C[G∗]⊗ EndV ⊗ EndW,

IX ∈ EndX is the identity endomorphism of a vector space X, rs±
VW is regarded as an element of C[G∗]⊗EndV ⊗

EndW via the embedding

EndV ⊗ EndW → C[G∗]⊗ EndV ⊗ EndW,a⊗ b 7→ 1⊗ a⊗ b,
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in the left hand sides in (3.2.2) the Poisson brackets of L±,V1 , L±,W2 ∈ C[G∗] ⊗ EndV ⊗ EndW are taken with
respect to the Poisson structure on C[G∗], and the composition endomorphisms is taken in EndV ⊗EndW , and the
commutators in the right hand sides of (3.2.2) are taken in C[G∗]⊗ EndV ⊗ EndW .

Moreover, the map ∆ : C[G∗]→ C[G∗]⊗ C[G∗] dual to the multiplication in G∗,

∆(L±,Vij ) =
∑
k

L±,Vik ⊗ L±,Vkj , (3.2.3)

is a homomorphism of Poisson algebras, and the map S : C[G∗]→ C[G∗] dual to taking inverse in G∗,

S(L±,Vij ) = ((L±,V )−1)ij

is an antihomomorphism of Poisson algebras.

Remark 3.2.2. Recall that a Poisson–Hopf algebra is a Poisson algebra which is also a Hopf algebra such that
the comultiplication is a homomorphism of Poisson algebras and the antipode is an antihomomorphism of Poisson
algebras. According to Proposition 3.2.1 C[G∗] is a Poisson–Hopf algebra.

Now we define a quantization of the Poisson–Hopf algebra C[G∗]. For any finite rank representation πV :
Us,resB (g) → V res, where V is a finite rank representation of Uh(g), one can define an action of elements Hi,
i = 1, . . . , l on V res by requiring that Hi acts on weight vectors of weight λ by multiplication by λ(Hi). Then from
the definition of the R–matrix Rs and from formula (2.8.21) it follows that qL±,V given by

qL−,V = (id⊗ πV )Rs21
−1 = (id⊗ πV Ss)Rs21,

qL+,V = (id⊗ πV )Rs.

are well–defined invertible elements of Ush(g)⊗ EndB(V res).
If we fix a basis in V res, qL±,V may be regarded as matrices with matrix elements (qL±,V )ij being elements of

Ush(g).
We denote by CsB[G∗] the B–Hopf subalgebra in Ush(g) generated by the matrix elements of (qL+,V )±1 and of

(qL−,V )±1, where V runs through all finite rank representation of Uh(g).
Let CsB[G] be the restricted Hopf algebra dual to Us,resB (g) which is generated by the matrix elements of finite

rank representations of Us,resB (g) of the form V res, where V is a finite rank representation of Ush(g). By Proposition
2.8.5 (i) CsB[G] is naturally P × P–graded. Note that for different s the Hopf algebras CsB[G] are isomorphic as
coalgebras.

We shall use the following notation for elements of CsB[G]. Let V res be a Us,resB (g)–lattice in a finite rank Uh(g)–
module V . Recall that there is a contravariant non–degenerate form (·, ·) on V such that (u, xv) = (ω(x)u, v) for
any u, v ∈ V , x ∈ Uh(g). Assume that u is such that (u,w) ∈ B for any w ∈ V res. Then (u, ·) is an element of
the dual module V res∗. Since V and V res are of finite ranks and (·, ·) is non–degenerate all elements of V res∗ can
be obtained this way. Clearly, for any v ∈ V res (u, ·v) ∈ CsB[G], and by the definition CsB[G] is generated by such
elements.

If V is a complex algebraic variety, we denote by C[V ] the algebra of regular functions on V . By the definition
of CsB[G] we have the following lemma.

Lemma 3.2.3. The quotient CsB[G]/(q
1
dr2 −1)CsB[G] is isomorphic to C[G] as an algebra, CsB[G]/(q

1
dr2 −1)CsB[G] '

C[G].

We also have the following description of CsB[G∗].

Lemma 3.2.4. CsB[G∗] is the B–subalgebra in Ush(g) generated by the elements q±(Yi−κ 1+s
1−sPh′Yi), q±(−Yi−κ 1+s

1−sPh′Yi),

i = 1, . . . , l, f̃β = (1− q−2
β )fβ, ẽβ = (1− q2

β)eβe
hβ∨ , β ∈ ∆+.

Proof. This lemma is analogous to the results obtained in Section 1.4 and Theorem 3.2 of [29], and in Proposition
4.2 and Theorem 4.6 in [28], in the case of the quantum group associated to the standard bialgebra structure.

We only briefly outline the main steps in the proof as the arguments used in the case of the standard bialgebra
structure can be applied verbatim in the setting of this lemma.

Let ωi, i = 1, . . . , l be the fundamental weights of g. Then from the definition of the elements qL±,V and from

formula (2.8.21) it follows that qYi−κ
1+s
1−sPh′Yi is equal to the matrix element (id⊗ gi)Rs, where gi(·) = (vωi , ·vωi),

and vωi is a highest weight vector of V resωi normalized in such a way that (vωi , vωi) = 1. Other elements from the

set q±(Yi−κ 1+s
1−sPh′Yi), q±(−Yi−κ 1+s

1−sPh′Yi), i = 1, . . . , l are obtained in a similar way.
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The fact that f̃β = (1 − q−2
β )fβ , ẽβ = (1 − q2

β)eβe
hβ∨ , β ∈ ∆+ belong to CsB[G∗] follows, e.g, from a slight

modification of Theorem 3.2 in [48] (one should just replace the quantum R-matrix associated with the stan-
dard bialgebra structure with R-matrix (2.8.21)). This theorem along with the description of the generators

q±(Yi−κ 1+s
1−sPh′Yi), q±(−Yi−κ 1+s

1−sPh′Yi), i = 1, . . . , l as matrix elements also imply that the elements listed in the
statement of the lemma generate CsB[G∗].

We refer the reader to [29], Section 4 of [28], Section 3.6 in [48] or Section 2.8 of [130] for a more precise relation
between the algebras CsB[G] and CsB[G∗]. We shall not need these results in this book.

From the quantum Yang–Baxter equation (2.5.3) for Rs we get relations between qL±,V ,

RVW qL±,W2
qL±,V1 = qL±,V1

qL±,W2 RVW , (3.2.4)

RVW qL+,W
2

qL−,V1 = qL−,V1
qL+,W

2 RVW , (3.2.5)

where by qL±,W1 , qL±,V2 we understand the following elements of Ush(g)⊗ EndB(V res)⊗ EndB(W res),

qL±,V1 = qL±,V ⊗ IW res , qL±,W2 = IV res ⊗ qL±,W ,

IX is identity endomorphism of X, and RVW ∈ EndB(V res) ⊗ EndB(W res) is regarded as an element of Ush(g) ⊗
EndB(V res)⊗ EndB(W res) via the embedding

EndB(V res)⊗ EndB(W res)→ Ush(g)⊗ EndB(V res)⊗ EndB(W res), a⊗ b 7→ 1⊗ a⊗ b.

From (2.5.2) we can obtain the action of the comultiplication on qL±,V :

∆s(
qL±,Vij ) =

∑
k

qL±,Vik ⊗ qL±,Vkj (3.2.6)

and the antipode,
Ss(

qL±,Vij ) = ((qL±,V )−1)ij . (3.2.7)

Since Rs = 1⊗1 (mod h) relations (3.2.4) and (3.2.5) imply that the quotient algebra CsB[G∗]/(q
1
dr2 −1)CsB[G∗]

is commutative, and one can equip it with a Poisson structure given by

{x1, x2} =
1

dr2

[a1, a2]

q
1
dr2 − 1

(mod (q
1
dr2 − 1)), (3.2.8)

where a1, a2 ∈ CsB[G∗] reduce to x1, x2 ∈ CsB[G∗]/(q
1
dr2 − 1)CsB[G∗] mod (q

1
dr2 − 1).

Obviously, the comultiplication and the antipode in CsB[G∗] induce a comultiplication and an antipode in

CsB[G∗]/(q
1
dr2 − 1)CsB[G∗] compatible with the introduced Poisson structure, and the quotient CsB[G∗]/(q

1
dr2 −

1)CsB[G∗] becomes a Poisson–Hopf algebra.

Proposition 3.2.5. The Poisson–Hopf algebra CsB[G∗]/(q
1
dr2 −1)CsB[G∗] is isomorphic to C[G∗] as a Poisson–Hopf

algebra.

Proof. In the case when the underlying bialgebra structure is the standard one used in the definition of the Drinfeld–
Jimbo quantum group this proposition is the Theorem in Section 12.1 in [30]. The arguments in the proof given
there can be used verbatim to prove this proposition. Note, however, that our approach to the definition of the
algebra CsB[G∗], which follows the ideas of [36], §2, is different from the one adapted in [30]. The two approaches
are equivalent. But in our framework one can give a more straightforward and shorter proof of this proposition
which is presented below.

Denote by p : CsB[G∗] → CsB[G∗]/(q
1
dr2 − 1)CsB[G∗] := C[G∗]′ the canonical projection. We also denote by the

same letter the canonical projection p : Us,resB (g)→ Us,resB (g)/(q
1
dr2 − 1)Us,resB (g) := Ures(g).

If V is a free over C[[h]] of finite rank Uh(g)–module, πV the corresponding representation of Us,resB (g) in the
space V res equipped also with the natural action of h with respect to which elements Hi, i = 1, . . . , l act on weight

vectors of weight λ by multiplication by λ(Hi), then V := V res/(q
1
dr2 − 1)V res is a finite–dimensional module over

Ures(g) equipped also with the natural action of h with respect to which elements Hi, i = 1, . . . , l act on weight
vectors of weight λ by multiplication by λ(Hi). We denote by πV the corresponding representation of U(g).
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Let pV : V res → V = V res/(q
1
dr2 −1)V res be the projection of V res onto V . Then any element T ∈ EndB(V res)

gives rise to an element ν(T ) ∈ End(V ) defined by ν(T )v̄ = pV Tv, where v ∈ V res is any representative of

v̄ ∈ V = V res/(q
1
dr2 − 1)V res. If x ∈ Us,resB (g) then according to this definition ν(πV (x)) = πV (px).

Let
L̃±,V = (p⊗ ν)(qL±,V ) ∈ C[G∗]′ ⊗ EndV . (3.2.9)

Then the map
ı : C[G∗]′ → C[G∗]

defined by

(ı⊗ id)L̃±,V = L±,V (3.2.10)

is a well–defined algebra isomorphism. Indeed, consider, for instance, element L̃+,V . From (2.6.16) it follows that

L̃+,V =
∏
β exp[p((1− q−2

β )fβ)⊗ πV (Xβ)]×
×(p⊗ id) exp

[∑l
i=1 hHi ⊗ πV ((κ 1+s

1−sPh′ + id)Yi)
]
.

(3.2.11)

On the other hand (3.2.1) implies that every element L+ may be uniquely represented in the form

L+ =
∏
β

exp[bβXβ ] exp

[
l∑
i=1

bi(κ
1 + s

1− s
Ph′ + id)Yi

]
, bi, bβ ∈ C,

and hence
L+,V =

∏
β exp[bβπV (Xβ)]exp

[∑l
i=1 biπV ((κ 1+s

1−sPh′ + id)Yi)
]
,

where the order of the terms in the product over the positive roots is the same as in formula (2.8.21) for the R–
matrix. Comparing this with (3.2.11) and recalling the definition of ı we deduce that ı is an algebra isomorphism.
We have to prove that ı is an isomorphism of Poisson–Hopf algebras.

Observe that Rs = 1 ⊗ 1 − 2hrs− (mod h2). Therefore from commutation relations (3.2.4), (3.2.5) it follows

that C[G∗]′ is a commutative algebra, and the Poisson brackets of matrix elements L̃±,Vij (see (3.2.8)) are given by

(3.2.2), where L±,V are replaced by L̃±,V . The factor 1
dr2 in formula (3.2.8) normalizes the Poisson bracket in such

a way that bracket (3.2.8) is in agreement with (3.2.2).

From (3.2.6) we also obtain that the action of the comultiplication on the matrices L̃±,V is given by (3.2.3),

where L±,V are replaced by L̃±,V . This completes the proof.

We shall call the map p : CsB[G∗]→ CsB[G∗]/(q
1
dr2 − 1)CsB[G∗] = C[G∗] the quasiclassical limit.

From the definition of the elements qL±,V and from formula (3.2.6) it follows that the matrix elements of
qL+,V ±1

(resp. qL−,V
±1

) form a Hopf subalgebra CsB[B+] ⊂ CsB[G∗] (resp. CsB[B−] ⊂ CsB[G∗]), and that CsB[G∗]

contains the subalgebra CsB[N+] generated by the elements f̃β = (1− q−2
β )fβ , β ∈ ∆+.

Next we define the algebra CsB[G∗]. For any finite rank representation V of Uh(g), let qLV = qL−,V
−1qL+,V =

(id⊗πV )Rs21Rs. Let CsB[G∗] be the B–subalgebra in CsB[G∗] generated by the matrix entries of qLV , where V runs
over all finite rank representations of Ush(g). From the definition of Rs we have

Rs21Rs =
∏
β

∑∞
k=0 q

k(k+1)
2

β [(1− q−2
β )ekβe

−hkκ 1+s
1−sPh′β

∨
⊗ f (k)

β ]×

× exp
[
2h
∑l
i=1 Yi ⊗Hi

]∏
β

∑∞
k=0 q

k(k+1)
2

β [(1− q−2
β )ehkκ

1+s
1−sPh′β

∨−hkβ∨fkβ ⊗ e
(k)
β qkβ

∨
].

(3.2.12)

Using this formula one immediately checks that actually CsB[G∗] ⊂ UsA(g) ∩ CsB[G∗].
Define the right adjoint action Ads of Usq (g) on Usq (g) by formula (2.7.1) and the left adjoint action Ad′s of

Usq (g) on Usq (g) by formula (2.7.2).
Recall that CsB[G] is the restricted Hopf algebra dual to Us,resB (g) which is generated by the matrix elements

of finite rank representations of Us,resB (g) of the form V res, where V is a finite rank representation of Ush(g). The
action Ad′s induces a right adjoint action Ads of Us,resB (g) on CsB[G] defined by

(Adsxf)(w) = f(Ad′sx(w)), f ∈ CsB[G], x, w ∈ Us,resB (g). (3.2.13)
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One can also equip finite rank representations of Us,resB (g) of the form V res, where V is a finite rank represen-
tation of Ush(g), with a natural action of CsB[G∗], for which the elements

q±(Yi−κ 1+s
1−sPh′Yi), q±(−Yi−κ 1+s

1−sPh′Yi), i = 1, . . . l

act on a weight vector vλ of weight λ by multiplication by the elements

q±((Yi,λ
∨)−κ( 1+s

1−sPh′Yi,λ
∨)), q±(−(Yi,λ

∨)−κ( 1+s
1−sPh′Yi,λ

∨)) ∈ B, i = 1, . . . l,

respectively, and all the other generators of CsB[G∗] belonging to Us,resB (g) act in a natural way. Therefore adjoint
action (3.2.13) can be extended to an action of CsB[G∗], where elements x ∈ CsB[G∗] act by the same formula
(3.2.13).

For ε ∈ C∗ we define Cε[G] = CsB[G]/(q
1
dr2 − ε

1
dr2 )CsB[G], Csε[G∗] = CsB[G∗]/(q

1
dr2 − ε

1
dr2 )CsB[G∗], where ε

1
dr2 is

a root of ε of degree 1
dr2 .

Recall that by Lemma 3.2.3 CsB[G]/(q
1
dr2 − 1)CsB[G] ' C[G], and denote the canonical projections CsB[G] →

CsB[G]/(q
1
dr2 − 1)CsB[G] ' C[G], CsB[G∗]→ CsB[G∗]/(q

1
dr2 − 1)CsB[G∗] := C[G∗] by the same symbol p.

Proposition 3.2.6. (i) The map

φB : CsB[G]→ CsB[G∗], φB(f) = (id⊗ f)(Rs21Rs) (3.2.14)

is an isomorphism of Us,resB (g) and CsB[G∗]–modules with respect to the adjoint actions Ads defined by (3.2.13) and
(2.7.1), respectively. In particular, CsB[G∗] is stable under the adjoint action of Us,resB (g) and CsB[G∗].

(ii) Let G∗ ⊂ G be the image of G∗ ⊂ G × G under the map q : G∗ → G, q(L+, L−) = L−1
− L+ (see (3.2.1)

for the description of G∗ in terms of G×G). Then G∗ = B−B+ is the big Bruhat cell in G, the algebra C[G∗] is
generated by the restrictions of elements of C[G] to G∗ = B−B+, the restriction map induces an isomorphism of
algebras φ1 : C[G]→ C[G∗], and φ1p = pφB.

(iii) If ε is not a root of unity the algebra Csε[G∗] can be identified with the Ads locally finite part Usε (g)fin of
Usε (g),

Usε (g)fin = {x ∈ Usε (g) : dim(AdsU
s
ε (g)(x)) < +∞},

where the adjoint action of the algebra Usε (g) on itself is defined by formula (2.7.1).

Proof. Firstly, we prove (i) and (ii). From the definitions of the algebras CsB[G] and CsB[G∗] it follows that (3.2.14)
is surjective.

Recall that by Lemma 3.2.3 we have the following algebra isomorphism C1[G] = CsB[G]/(q
1
dr2 −1)CsB[G] ' C[G].

By (3.2.1) G∗ = B−B+ is the big Bruhat cell in G, and by the definition the algebra C[G∗] = C1[G∗] =

CsB[G∗]/(q
1
dr2 − 1)CsB[G∗] is generated by the restrictions of elements of C[G] ' CsB[G]/(q

1
dr2 − 1)CsB[G] to G∗ =

B−B+. As the big Bruhat cell is dense in G, we have an isomorphism of algebras φ1 : C[G] → C[G∗] induced by
the restriction map.

Now observe that by the definition of map (3.2.14) one has φ1p = pφB.

Let h ∈ CsB[G], h 6= 0 be such that φB(h) = 0. Dividing by an appropriate power of (q
1
dr2 − 1) we can assume

without loss of generality that p(h) 6= 0. Then φ1p(h) = pφB(h) = 0 which implies p(h) = 0 as φ1 is an algebra
isomorphism. Thus we arrive at a contradiction, and hence φB is injective. We conclude that φB an isomorphism
of B–modules.

By Proposition 11(ii) in [70], Section 10.1.3, (3.2.14) is a morphism of Us,resB (g) and CsB[G∗]–modules with
respect to the adjoint actions Ads defined by (2.7.1) and (3.2.13), respectively.

(iii) It remains to establish the isomorphism Csε[G∗] = Usε (g)fin which can be done similarly to the proof of
Proposition 1.7 in [71]. Let Vωi , i = 1, . . . , l be the finite rank representation of Uh(g) with highest weight ωi,
i = 1, . . . , l. Below we use the notation introduced in the proof of Lemma 3.2.4. From formula (3.2.12) and
from the definition of qLV = (id ⊗ πV )Rs21Rs it follows that the matrix element (id ⊗ gi)Rs21Rs of qLVωi , where
gi(·) = (vi, ·vi), and vi is the highest weight vector of V resωi normalized in such a way that (vi, vi) = 1, coincides
with L2

i . This implies that L2
i are elements of the algebra Cε[G∗] ⊂ Usε (g) as well.

Denote by H ⊂ Csε[G∗] ⊂ Usε (g) the subalgebra generated by the elements L2
i ∈ Csε[G∗], i = 1, . . . , l. Similarly

to Theorem 7.1.6 and Lemma 7.1.16 in [59] one can obtain that Usε (g)fin = AdsU
s
ε (g)H. Since Csε[G∗] is stable

under the adjoint action we have an inclusion, Usε (g)fin ⊂ Csε[G∗].
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On the other hand the adjoint action of Usε (g) on Csε[G] is locally finite by the definition of Csε[G] and of the
adjoint action. Using isomorphism (3.2.14) we deduce that the adjoint action of Usε (g) on Csε[G∗] is locally finite
as well. Hence Csε[G∗] ⊂ Usε (g)fin, and Csε[G∗] = Usε (g)fin.

We shall need the following property of the algebras CB[G∗], CsB[G∗] and CsB[G].

Proposition 3.2.7. (i) Let CsB[H] ⊂ CsB[G∗] be the subalgebra generated by the elements q±(Yi−κ 1+s
1−sPh′Yi), q±(−Yi−κ 1+s

1−sPh′Yi),
i = 1, . . . , l. Then CsB[H] is B–free with a countable basis Vi, i ∈ N.

(ii) The algebra CB[G∗] is free over B, and the elements

ẽn1

β1
. . . ẽnDβDVif̃

kD
βD

. . . f̃k1β1

with nj , kj , i ∈ N, j = 1, . . . , D form a B–basis in CsB[G∗].

(iii) The algebra CsB[N+] is free over B, and the elements f̃kDβD . . . f̃
k1
β1

(or f̃k1β1
f̃k2β2

. . . f̃kDβD ) with kj ,∈ N is a
B–basis of CsB[N+].

(iv) The subalgebra CsB[G∗] ⊂ CB[G∗], and the algebra CsB[G] are free B–modules.

Proof. (i) Recall that by Lemma 3.2.4 CsB[G∗] is the B–subalgebra in Ush(g) generated by the elements q±(Yi−κ 1+s
1−sPh′Yi),

q±(−Yi−κ 1+s
1−sPh′Yi), i = 1, . . . , l, f̃β = (1 − q−2

β )fβ , ẽβ = (1 − q2
β)eβe

hβ∨ , β ∈ ∆+. The subalgebra CsB[H] of

CsB[G∗] generated by the elements q±(Yi−κ 1+s
1−sPh′Yi), q±(−Yi−κ 1+s

1−sPh′Yi), i = 1, . . . , l is in turn a subalgebra of the

B–subalgebra U ′B(h) ⊂ Ush(g) generated by the elements Ui = q
1
dr2

Yi , U−1
i , i = 1, . . . , l. The last algebra is obviously

B–free with a basis consisting of the products Un1
1 . . . Unll , n1, . . . , nl ∈ Z. Since B is a principal ideal domain the

subalgebra in CsB[H] ⊂ U ′B(h) is also B–free by Theorem 6.5 in [102]. We denote by Vi, i ∈ N the elements of some
B–basis of this subalgebra.

(ii) From Step 1 of the proof of the Theorem in Section 12.1 in [30] it follows that the elements

ẽn1

β1
. . . ẽnDβDVif̃

kD
βD

. . . f̃k1β1

with nj , kj , i ∈ N, j = 1, . . . , D form a B–basis in CsB[G∗].

(iii) By Step 1 of the proof of the Theorem in Section 12.1 in [30] the products f̃kDβD . . . f̃
k1
β1

with kj ,∈ N is a

B–basis of CsB[N+]. Applying the algebra antiautomorphism ω0 to these elements we obtain that f̃k1β1
f̃k2β2

. . . f̃kDβD
with kj ,∈ N is also a B–basis of CsB[N+].

(iv) Since B is a principal ideal domain, and the algebra CB[G∗] is B–free by part (ii), the subalgebra CsB[G∗] ⊂
CB[G∗] is also B–free by Theorem 6.5 in [102], and isomorphism (3.2.14) implies that CsB[G] is B–free.

Suppose that the positive root system ∆+ and its ordering are associated to s as in Definition 1.6.19. Denote
by CsB[M+] the subalgebra in CsB[N+] generated by the elements f̃β , β ∈ ∆m+

.
By Lemma 1.6.18 the linear subspace of g generated by the root vectors Xα (resp. X−α), α ∈ ∆m+

is in fact a
Lie subalgebra m+ ⊂ g (resp. m− ⊂ g). By definition ∆m+

⊂ ∆+, and hence m± ⊂ n±.
Note that one can consider n+ and m± as Lie subalgebras in g∗ via embeddings

n+ → g∗ ⊂ g⊕ g, x 7→ (x, 0),

m+ → g∗ ⊂ g⊕ g, x 7→ (x, 0),

m− → g∗ ⊂ g⊕ g, x 7→ (0, x),

where g∗ is regarded as a Lie subalgebra of g⊕ g using the embedding (3.1.5).
Using these embeddings the algebraic subgroups N+,M± ⊂ G corresponding to the algebraic Lie subalgebras

n+,m± ⊂ g can be regarded as Lie subgroups in G∗ corresponding to the Lie subalgebras n+,m± ⊂ g∗.
From this observation and from Proposition 3.2.5 (see especially formula (3.2.10) we obtain the following prop-

erties of the algebras CsB[N+] and CsB[M+].

Proposition 3.2.8. The algebra CsB[N+] is a deformation of the algebra of regular functions on the subgroup
N+ ⊂ G∗, and CsB[M+] is a deformation of the algebra of regular functions on the subgroup M+ ⊂ G∗ in the

sense that p(CsB[N+]) ' C[N+] and p(CsB[M+]) ' C[M+]. Thus C[N+] ' CsB[N+]/(q
1
dr2 − 1)CsB[N+] and C[M+] '

CsB[M+]/(q
1
dr2 − 1)CsB[M+] are naturally Poisson subalgebras of C[G∗] ' CsB[G∗]/(q

1
dr2 − 1)CsB[G∗].
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Note that M− can also be regarded as a subgroup in G∗ corresponding to the Lie subalgebra m− ⊂ g∗.
The following proposition gives the most important property of the subalgebra CsB[M+] which plays the key

role in the definition of q-W–algebras.

Proposition 3.2.9. (i) The defining relations in the subalgebra CsB[M+] for the generators f̃β = (1 − q−2
β )fβ,

β ∈ ∆m+ := {β1, . . . , βc} are of the form

f̃αf̃β − q(α,β)+κ( 1+s
1−sPh′∗α,β)f̃β f̃α =

∑
α<δ1<...<δn<β

C(k1, . . . , kn)f̃k1δ1 f̃
k2
δ2
. . . f̃knδn , α < β, (3.2.15)

where C(k1, . . . , kn) ∈ B.
(ii) The products f̃k1β1

f̃k2β2
. . . f̃kcβc form a B–basis of CsB[M+].

(iii) If κ = 1 then for any ki ∈ B, i = 1, . . . , l′ the map χsq : CsB[M+]→ B,

χsq(f̃β) =

{
0 β 6∈ {γ1, . . . , γl′}
ki β = γi

, (3.2.16)

is a character of CsB[M+] vanishing on the r.h.s. and on the l.h.s. of relations (3.2.15).
(iv) Assume that ε2di 6= 1, and ε4 6= 1 if g is of type G2. Suppose also that there exists n ∈ Z such that

εnd−1 = 1. Let κ = nd. Then the algebra Csε[M+] = CsB[M+]/(q
1
dr2 − ε

1
dr2 )CsB[M+], where ε

1
dr2 is a root of ε of

degree 1
dr2 , is isomorphic to Usε (m−).

(v) Under the assumptions of part (iv), the elements fr = fr1β1
. . . frcβc , ri ∈ N, i = 1, . . . d form a linear basis of

Usε (m−).
(vi) Under the assumptions of part (iv), for any ci ∈ C, i = 1, . . . , l′ the map χsε : Usε (m−)→ C,

χsε(fβ) =

{
0 β 6∈ {γ1, . . . , γl′}
ci β = γi

, (3.2.17)

is a character of Usε (m−).

Proof. (ii) By Lemma 2.8.2 and Remark 2.8.3 any element of CsB[M+] can be uniquely represented as a C(q
1
dr2 )–

linear combination of the elements f̃k1β1
f̃k2β2

. . . f̃kcβc . By Proposition 3.2.7 (ii) the coefficients of this decomposition
must belong to B.

(i) From (2.8.12) we also obtain commutation relations (3.2.15) with C(k1, . . . , kn) ∈ C(q
1
dr2 ). As we already

proved the products f̃k1β1
f̃k2β2

. . . f̃kcβc form a B–basis of CsB[M+]. Therefore the coefficients C(k1, . . . , kn) in (3.2.15)
belong to B.

(iii) Assume that κ = 1. In order to prove that the map χsq : CsB[M+]→ B defined by (3.2.16) is a character we

show that all relations (3.2.15) for f̃α, f̃β with α, β ∈ ∆m+ , which are obviously defining relations in the subalgebra
CsB[M+], belong to the kernel of χsq. By the definition the only generators of CsB[M+] on which χsq may not vanish

are f̃γi , i = 1, . . . , l′. By part (vi) of Proposition 1.6.6 for any two roots α, β ∈ ∆m+
such that α < β the sum α+β

cannot be represented as a linear combination
∑t
k=1 ckγik , where ck ∈ N and α < γi1 < . . . < γit < β. Hence for

any two roots α, β ∈ ∆m+
such that α < β the value of the map χsq on the right hand side of the corresponding

commutation relation (3.2.15) is equal to zero.
Therefore it suffices to prove that

χsq(f̃γi f̃γj − q(γi,γj)+( 1+s
1−sPh′∗γi,γj)f̃γj f̃γj ) = kikj(1− q(γi,γj)+( 1+s

1−sPh′∗γi,γj)) = 0, i < j.

The last identity holds provided (γi, γj) + ( 1+s
1−sP

∗
h′γi, γj) = 0 for i < j which is indeed the case by Lemma 2.8.1.

(iv) Assume now that ε2di 6= 1, and ε4 6= 1 if g is of type G2. Suppose also that there exists n ∈ Z such that
εnd−1 = 1. Let κ = nd.

Under these conditions imposed on ε the map Csε[M+]→ Usε (m−), f̃α 7→ (1− q−2
α )fα, α ∈ ∆m+

is obviously an
algebra isomorphism.

(v) By Lemma 2.8.2 and Remark 2.8.3 the elements fr = fr1β1
. . . frcβc , ri ∈ N, i = 1, . . . d form a linear basis of

Usε (m−).
From (2.8.12) we obtain the following commutation relations

fαfβ − ε(α,β)+nd( 1+s
1−sPh′∗α,β)fβfα =

∑
α<δ1<...<δn<β

D(k1, . . . , kn)fk1δ1 f
k2
δ2
. . . fknδn , α < β, (3.2.18)
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where D(k1, . . . , kn) ∈ C.
(vi) In order to show that the map χsε : Usε (m−)→ C defined by (3.2.17) is a character we verify that all relations

(3.2.18) for fα, fβ with α, β ∈ ∆m+
, which are obviously defining relations in the subalgebra Usε (m−), belong to the

kernel of χsε. By the definition the only generators of Usε (m−) on which χsε may not vanish are fγi , i = 1, . . . , l′. By
part (vi) of Proposition 1.6.6 for any two roots α, β ∈ ∆m+ such that α < β the sum α+β cannot be represented as

a linear combination
∑t
k=1 ckγik , where ck ∈ N and α < γi1 < . . . < γit < β. Hence for any two roots α, β ∈ ∆m+

such that α < β the value of the map χsε on the right hand side of the corresponding commutation relation (3.2.15)
is equal to zero.

Therefore it suffices to prove that

χsε(fγifγj − ε(γi,γj)+nd( 1+s
1−sPh′∗γi,γj)fγjfγj ) = cicj(1− ε(γi,γj)+nd( 1+s

1−sPh′∗γi,γj)) = 0, i < j.

By Lemma 2.8.1 ( 1+s
1−sP

∗
h′γi, γj) = −(γi, γj) for i < j, and hence

χsε(fγifγj − ε(γi,γj)+nd( 1+s
1−sPh′∗γi,γj)fγjfγj ) = cicj(1− ε(γi,γj)(1−nd)) = 0

for i < j as by the assumption εnd−1 = 1. This completes the proof.

Now we are ready to define q-W–algebras. In the rest of this section we assume that κ = 1. Denote by IB the
left ideal in CsB[G∗] generated by the kernel of χsq, and by ρχsq the canonical projection CsB[G∗]→ CsB[G∗]/IB := Q′B.
Let QB be the image of CsB[G∗] ⊂ CsB[G∗] under the projection ρχsq , QB = ρχsq (C

s
B[G∗]).

We shall need the following properties of Q′B and QB.

Proposition 3.2.10. Q′B and QB are free B–modules.

Proof. Using the B–basis
ẽn1

β1
. . . ẽnDβDVif̃

kD
βD

. . . f̃k1β1

with nj , kj , i ∈ N, j = 1, . . . , D of CsB[G∗] from Proposition 3.2.7 (ii) and the definition of CsB[G∗]/IB one immedi-

ately sees that the classes of the elements ẽn1

β1
. . . ẽnDβDVif̃

kD
βD

. . . f̃
kc+1

βc+1
with nj , km, i ∈ N, j = 1, . . . , D, m = c+1, . . . , D

form a B–basis in CsB[G∗]/IB.
Since B is a principal ideal domain the B–submodule QB ⊂ CsB[G∗]/IB is B–free.

Lemma 3.2.11. The adjoint action of CsB[M+] on CsB[G∗] induces an action on Q′B and on QB.

Proof. Observe that we have an inclusion [CsB[M+],Kerχsq] ⊂ Kerχsq. Using this inclusion, formula (2.7.1), the fact
that ∆s(CsB[M+]) ⊂ CsB[B+] ⊗ CsB[M+] (see formula (2.8.13)) we deduce that the adjoint action of CsB[M+] on
CsB[G∗] induces an action on Q′B and on QB.

We call the action of CsB[M+] on Q′B and on QB the adjoint action as well and denote it by Ad.
Let Bεs be the trivial representation of CsB[M+] given by the counit. Consider the B–submodule W s

B(G) of
Ad–invariants in QB,

W s
B(G) = HomCsB[M+](Bεs , QB). (3.2.19)

Proposition 3.2.12. (i) W s
B(G) is isomorphic to the B–submodule of all v + IB ∈ QB such that mv ∈ IB (or

[m, v] ∈ IB) in CsB[G∗] for any m ∈ IB, where v ∈ CsB[G∗] is any representative of v + IB ∈ QB.
(ii) Multiplication in CsB[G∗] induces a multiplication on W s

B(G).

Proof. (i) For the proof we shall firstly derive the formula for the adjoint action of the generators f̃β . From (2.8.13)
using linear independence of weight components and the fact that CsB[B+] is a Hopf algebra we obtain

∆s(f̃βk) = G−1
βk
⊗ f̃βk + f̃βk ⊗ 1 +

∑
i

ỹi ⊗ x̃i, (3.2.20)

where
Gβ = ehκ

1+s
1−sPh′β

∨−hβ∨ ∈ CsB[B+], ỹi = e−hκ
1+s
1−sPh′γ

∨
xi

+hγ∨xi ỹi,
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ỹi ∈ CB([−βk+1,−βD]),

x̃i ∈ CB([−β1,−βk−1]),

ỹi, x̃i belong to weight components and have non-zero weights, γxi is the weight of x̃i,

CB([−βk+1,−βD]) (resp. CB([−β1,−βk−1]))

is the subalgebra in CB[N+] generated by f̃βk+1
, . . . , f̃βD (resp. f̃β1

, . . . , f̃βk−1
).

By (3.2.20) we also have

Ss(f̃β) = −Gβ f̃β −
∑
i

Ss(ỹi)x̃i.

Combining this formula with (3.2.20) and using (2.7.1) we deduce

Adsf̃βkw = −Gβk [f̃βk , w]−
∑
i

Ss(ỹi)[x̃i, w]

The induced action of the elements f̃βk ∈ CsB[M+], βk ∈ ∆m+
, on Q′B takes the form

Adsf̃βkv = −Gβk(f̃βk − χsq(f̃βk))v −
∑
i

Ss(ỹi)(x̃i − χsq(x̃i))v, βk ∈ ∆m+
. (3.2.21)

We have to show that W s
B(G) is isomorphic to the B–submodule of all v ∈ QB ⊂ Q′B such that mv = 0 in Q′B

for any m ∈ IB.
The left ideal IB is generated by elements x − χsq(x), x ∈ CsB[M+]. Therefore by (3.2.21) if for some v ∈ QB

mv = 0 in Q′B for any m ∈ IB then v is invariant with respect to the adjoint action of all generators f̃βk of CsB[M+],
and hence v ∈W s

B(G).
Now assume that v ∈W s

B(G). We shall prove that mv = 0 in Q′B for any m ∈ IB.
Since the left ideal IB is generated by elements x−χsq(x), x ∈ CsB[M+] it suffices to show that (x−χsq(x))v = 0 for

any x ∈ CsB[M+]. We shall prove this statement by induction using the subalgebras CB([−β1,−βk]), k = 1, . . . , c,
so that CB([−β1,−βc]) = CsB[M+].

Observe that β1 is a simple root, and hence from (3.2.21) we obtain

0 = Adsf̃β1
v = −Gβ1

(f̃β1
− χsq(f̃β1

))v.

Since the element Gβ1
∈ CB[N+] is invertible this implies

(f̃β1
− χsq(f̃β1

))v = 0,

i.e. (x− χsq(x))v = 0 in Q′B for any x ∈ CB([−β1,−β1]) as the subalgebra CB([−β1,−β1]) is generated by f̃β1 .
Now suppose that for some 1 < k ≤ c (x−χsq(x))v = 0 in Q′B for any x ∈ CB([−β1,−βk−1]). Then from (3.2.21)

we obtain

0 = Adsf̃βkv = −Gβk(f̃βk − χsq(f̃βk))v −
∑
i

Ss(ỹi)(x̃i − χsq(x̃i))v = −Gβk(f̃βk − χsq(f̃βk))v

since x̃i ∈ CB([−β1,−βk−1]). The previous identity and the fact that the element Gβk ∈ CB[N+] is invertible yield

(f̃βk − χsq(f̃βk))v = 0.

Now observe that by Proposition 3.2.9 any element x of CB([−β1,−βk]) can be uniquely represented in the form
x = f̃βkz + z′, where z, z′ ∈ CB([−β1,−βk−1]). Therefore

xv = (f̃βkz + z′)v = (f̃βkχ
s
q(z) + χsq(z

′))v = (χsq(f̃βk)χsq(z) + χsq(z
′))v = χsq(f̃βkz + z′)v = χsq(x)v.

This establishes the induction step and proves the first claim of this proposition.
(ii) From the description of W s

B(G) obtained in part (i) it follows that if v1, v2 ∈ CsB[G∗] are any representatives
of elements v1 + IB, v2 + IB ∈W s

B(G) then the formula

(v1 + IB)(v2 + IB) = v1v2 + Iq

defines a multiplication in W s
B(G). This completes the proof.
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The B–module W s
B(G) equipped with the multiplication opposite to the one defined in the previous proposition

is called the q-W–algebra associated to (the conjugacy class of) the Weyl group element s ∈W .

In conclusion we obtain some results on the structure of QB. Consider the Lie algebra LB associated to the
associative algebra CsB[M+], i.e. LB is the Lie algebra which is isomorphic to CsB[M+] as a B–module, and the Lie
bracket in LB is given by the usual commutator of elements in CsB[M+].

Note that since χsq is a character of CsB[M+] the ideal IB is stable under the action of CsB[M+] on CsB[G∗] by
commutators. Therefore one can define an action of the Lie algebra LB on Q′B = CsB[G∗]/IB:

m · (x+ IB) = ρχsq ([m,x]). (3.2.22)

where x ∈ CsB[G∗] is any representative of x + IB ∈ CsB[G∗]/IB and m ∈ CsB[M+]. The algebra W s
B(G) can be

described now as the intersection of the B–module of invariants (CsB[G∗]/IB)LB with respect to action (3.2.22) with
QB ⊂ CsB[G∗]/IB,

W s
B(G) ' (CsB[G∗]/IB)LB ∩QB. (3.2.23)

Denote by Bχsq the rank one representation of the algebra CsB[M+] defined by the character χsq. Using the
description of the algebra W s

B(G) in terms of action (3.2.22) and the isomorphism CsB[G∗]/IB = CsB[G∗]⊗CsB[M+]Bχsq
one can also define the algebra W s

B(G) as the intersection

W s
B(G) = HomCsB[M+](Bχsq ,C

s
B[G∗]⊗CsB[M+] Bχsq ) ∩QB.

Using Frobenius reciprocity we also have

HomCsB[M+](Bχsq ,C
s
B[G∗]⊗CsB[M+] Bχsq ) = EndCsB[G∗](CsB[G∗]⊗CsB[M+] Bχsq ).

Hence the algebra W s
B(G) acts on CsB[G∗]⊗CsB[M+]Bχsq from the right by operators commuting with the natural left

CsB[G∗]–action on CsB[G∗]⊗CsB[M+]Bχsq . By the definition of W s
B(G) this action preserves QB ⊂ Q′B = CsB[G∗]⊗CsB[M+]

Bχsq = CsB[G∗]/IB and by the arguments of this paragraph it commutes with the natural left CsB[G∗]–action on QB.

Thus QB is a CsB[G∗]–W
s
B(G) bimodule equipped also with the adjoint action of CsB[M+]. By (2.7.3) the adjoint

action satisfies

Adsx(yv) = Adsx
1(y)Adsx

2(v), x ∈ CsB[M+], y ∈ CsB[G∗], v ∈ QB, (3.2.24)

and ∆s(x) = x1 ⊗ x2.

Denote by 1 ∈ QB the image of the element 1 ∈ CsB[G∗] in the quotient QB under the canonical projection
CsB[G∗] → QB. Obviously 1 is the generating vector for QB as a module over CsB[G∗]. Using formula (3.2.24) and
recalling that QB is a CsB[G∗]–W

s
B(G) bimodule, for x ∈ CsB[M+], y ∈ CsB[G∗], and for a representative w ∈ Csε[G∗]

of an element w + IB ∈W s
B(G) we have

Adsx(wy1) = Adsx(yw1) = Adsx1(y)Adsx2(w1) =

= Adsx1(y)εs(x2)w1 = Adsx(y)w1 = wAdsx(y1).

Since QB is generated by the vector 1 over CsB[G∗] the last relation implies that the action of W s
B(G) on QB

commutes with the adjoint action.

We can summarize the results of the discussion above in the following proposition.

Proposition 3.2.13. The B–module QB is naturally equipped with the structure of a left CsB[G∗]–module, a right
CsB[M+]–module via the adjoint action and a right W s

B(G)–module in such a way that the left CsB[G∗]–action and
the right CsB[M+]–action commute with the right W s

B(G)–action and compatibility condition (3.2.24) is satisfied.

Finally we remark that by specializing q to a particular value ε ∈ C, ε 6= 0, one can define a complex associative

algebra Cε[G∗] = CsB[G∗]/(q
1
dr2 − ε

1
dr2 )CsB[G∗], its subalgebra Cε[M+] with a nontrivial character χsε and the

corresponding W–algebra

W s
ε (G) = HomCsε[M+](Cεs , Qε), (3.2.25)

where Cεs is the trivial representation of the algebra Csε[M+] induced by the counit, Qε = QB/QB(q
1
dr2 − ε

1
dr2 ).

Obviously, for generic ε we have W s
ε (G) = W s

B(G)/(q
1
dr2 − ε

1
dr2 )W s

B(G).
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3.3 Poisson reduction

In this section we recall basic facts on Poisson reduction. They will be used in the next section to describe Poisson
q-W–algebras as reduced Poisson algebras.

Let M, B, B′ be Poisson manifolds. Two Poisson submersions

M
π′

↙
π

↘
B′ B

onto B′ and B form a dual pair if the pullback π′
∗
C∞(B′) is the centralizer of π∗C∞(B) in the Poisson algebra

C∞(M). In this case the sets B′b = π′
(
π−1(b)

)
, b ∈ B are Poisson submanifolds in B′ called reduced Poisson

manifolds (see [129], §8).
Fix an element b ∈ B. Then the algebra of functions C∞(B′b) may be described as follows. Let Ib be the ideal

in C∞(M) generated by elements π∗(f), f ∈ C∞(B), f(b) = 0. Denote Mb = π−1(b). Then the algebra C∞(Mb)
is simply the quotient of C∞(M) by Ib. Denote by Pb : C∞(M)→ C∞(M)/Ib = C∞(Mb) the canonical projection
onto the quotient.

Lemma 3.3.1. Suppose that the map f 7→ f(b) is a character of the Poisson algebra C∞(B). Then one can define
an action of the Poisson algebra C∞(B) on the space C∞(Mb) by

f · ϕ = Pb({π∗(f), ϕ̃}), (3.3.1)

where f ∈ C∞(B), ϕ ∈ C∞(Mb) and ϕ̃ ∈ C∞(M) is a representative of ϕ in C∞(M) such that Pb(ϕ̃) = ϕ.
Moreover, C∞(B′b) is the subspace of invariants in C∞(Mb) with respect to this action.

Proof. Let ϕ ∈ C∞(Mb). Choose a representative ϕ̃ ∈ C∞(M) such that Pb(ϕ̃) = ϕ. Since the map f 7→ f(b) is a
character of the Poisson algebra C∞(B), b ∈ B is a Poisson submanifold of B with the zero Poisson structure, and
hence the right hand side of (3.3.1) only depends on ϕ but not on the representative ϕ̃.

Indeed, if f, g ∈ C∞(B), g(b) = 0 and h ∈ C∞(M), so that hπ∗(g) ∈ Ib, then we have

{π∗(f), hπ∗(g)} = h{π∗(f), π∗(g)}+ π∗(g){π∗(f), h} = hπ∗{f, g}+ π∗(g){π∗(f), h}. (3.3.2)

Next, hπ∗{f, g} ∈ Ib since the map f 7→ f(b) is a character of the Poisson algebra C∞(B), and hence {f, g}(b) = 0.
Clearly, by the definition of Ib, π

∗(g){π∗(f), h} ∈ Ib. We deduce that the right hand side of (3.3.2) belongs to Ib.
Therefore for any f ∈ C∞(B) one has {f, Ib} ⊂ Ib, and hence formula (3.3.1) defines an action of the Poisson

algebra C∞(B) on the space C∞(Mb).
Note that at the same time this proves that Hamiltonian vector fields of functions π∗(f), f ∈ C∞(B) are

tangent to the submanifold Mb.
Using the definition of the dual pair we obtain that ϕ = π′

∗
(ψ) for some ψ ∈ C∞(B′b) if and only if

Pb({π∗(f), ϕ̃}) = 0 for every f ∈ C∞(B). This implies that C∞(B′b) is exactly the subspace of invariants in
C∞(Mb) with respect to action (3.3.1).

The algebra C∞(B′b) is called a reduced Poisson algebra. We also denote it by C∞(Mb)
C∞(B).

Remark 3.3.2. Note that the description of the algebra C∞(Mb)
C∞(B) obtained in Lemma 3.3.1 is independent of

both the manifold B′ and the projection π′. Observe also that the Hamiltonian vector fields of functions π∗(f), f ∈
C∞(B) are tangent to Mb, and hence the reduced space B′b may be identified with a cross–section of the action of
the Poisson algebra C∞(B) on Mb by Hamiltonian vector fields in the case when this action is free. In particular,
in this case B′b may be regarded as a submanifold in Mb.

In the case when the map f 7→ f(b) is a character of the Poisson algebra C∞(B), the Poisson structure on
the algebra C∞(B′b) can be explicitly described as follows. Let ϕ1, ϕ2 ∈ C∞(Mb)

C∞(B). Choose representatives
ϕ̃1, ϕ̃2 ∈ C∞(M) such that Pb(ϕ̃1) = ϕ1, Pb(ϕ̃2) = ϕ2. Then

{ϕ1, ϕ2} = {ϕ̃1, ϕ̃2} mod Ib. (3.3.3)

By Lemma 3.3.1 the class in C∞(M)/Ib = C∞(Mb) of the function in right hand side of this formula is C∞(B)–
invariant and independent of the choice of the representatives ϕ̃1, ϕ̃2 ∈ C∞(M).
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An important example of dual pairs is provided by Poisson–Lie group actions. We say that a Lie group A
with Lie algebra a locally acts on a manifold M if there is a Lie algebra homomorphism X 7→ X̂ from a to the
Lie algebra of vector fields on M . In this case, by the existence and uniqueness theorem for solutions to ordinary
differential equations, this homomorphism can be integrated to a local group action of A on M in the sense that
for every point m ∈ M there exists an open neighborhood U of m and an open neighborhood V of the identity
element in A such that there is a smooth map V × U → U , (a, u) 7→ a ◦ u, and if a1, a2 ∈ V and a1a2 ∈ V then
(a1a2) ◦ u = a1 ◦ (a2 ◦m). Moreover, if we denote by Θm the differential of the map V → U , a → a ◦m at the

identity of A then Θm(X) = X̂(m) for any X ∈ a, m ∈M .
Note that in this case the Lie algebra a acts on C∞(M) by

X ◦ ϕ = X̂ϕ, X ∈ a, ϕ ∈ C∞(M).

We shall denote the space of invariants for this action by C∞(M)A.

Right local Lie group actions are defined in a similar way, X 7→ X̂ being a Lie algebra anti-homomorphism in
this case.

If all vector fields X̂, X ∈ a are complete then by the existence and uniqueness theorem for solutions to ordinary
differential equations U = M and V = A, i.e. there is a Lie group action of A on M .

Recall that a (local) left Poisson–Lie group action of a Poisson–Lie group A on a Poisson manifold M is a (local)
left Lie group action A×M →M which is also a (locally defined) Poisson map (as usual, we suppose that A×M
is equipped with the product Poisson structure). If in this situation the space M/A is a smooth manifold, there
exists a unique Poisson structure on M/A such that the canonical projection M → M/A is a Poisson map (see
Proposition 3.3.5 below for a more general statement).

Right Poisson–Lie group actions are defined in a similar way.
Note that the property for a map to be Poisson is a local property, so it makes sense to consider locally defined

Poisson maps.
Denote by 〈·, ·〉 the canonical paring between a∗ and a. A map µ : M → A∗ is called a moment map for a (local)

left Poisson group action M ×A→M if

LX̂ϕ = 〈µ∗(θA∗), X〉(ξϕ), (3.3.4)

where θA∗ is the universal left–invariant Maurer–Cartan form on A∗, X ∈ a, X̂ is the corresponding vector field on
M and ξϕ is the Hamiltonian vector field of ϕ ∈ C∞(M).

Proposition 3.3.3. ([79], Theorem 4.9) Let A×M →M be a left (local) Poisson group action of a Poisson–Lie
group A on a Poisson manifold M with moment map µ : M → A∗. Denote by ΠA∗ the Poisson tensor of A∗. Then
there exists a right invariant bivector field Λ on A∗ such that Πµ = ΠA∗ + Λ is a Poisson tensor on A∗ and the
map µ : M → A∗µ is Poisson, where A∗µ is the manifold A∗ equipped with the Poisson structure associated to Πµ.

From the definition of the moment map it follows that if M/A is a smooth manifold then the canonical projection
M →M/A and the moment map µ : M → A∗ form a dual pair.

The main example of Poisson–Lie group actions is the so–called dressing action. The dressing action may be
described as follows (see [105], §3; [80], Theorem 2.4; Example 4.3 in [79]; and formula (2.24) in [106]).

Proposition 3.3.4. Let G be a connected simply connected Poisson–Lie group with factorizable tangent Lie bial-
gebra, G∗ the dual group. Then there exists a unique left local Poisson–Lie group action

G×G∗ → G∗, ((L+, L−), g) 7→ g ◦ (L+, L−),

such that the identity mapping µ : G∗ → G∗ is the moment map for this action.
Moreover, let q : G∗ → G be the map defined by

q(L+, L−) = L−1
− L+.

Then
q(g ◦ (L+, L−)) = gL−L

−1
+ g−1. (3.3.5)

The notion of Poisson–Lie groups may be generalized as follows.
Let (a, a∗) be the tangent Lie bialgebra of a Poisson–Lie group A. A connected Lie subgroup K ⊂ A with Lie

algebra k ⊂ a is called admissible if the annihilator k⊥ of k in a∗ is a Lie subalgebra k⊥ ⊂ a∗.
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Proposition 3.3.5. ([105], Theorem 6; [79], §2) Let A×M →M be a Poisson–Lie group action of a Poisson–

Lie group A on a Poisson manifold M . If K ⊂ A is an admissible subgroup of A then the space C∞ (M)
K

of
K-invariants in C∞ (M) is a Poisson subalgebra in C∞ (M).

If M/K is a smooth manifold, there exists a Poisson structure on M/K such that the canonical projection

M →M/K is a Poisson map, and C∞(M/K) ' C∞ (M)
K

as Poisson algebras.

We shall need the following particular example of dual pairs arising from Poisson group actions.
Let A ×M → M be a left (local) Poisson group action of a Poisson–Lie group A on a manifold M . Suppose

that this action possesses a moment map µ : M → A∗. Let K be an admissible subgroup in A. Denote by k the
Lie algebra of K. Assume that k⊥ ⊂ a∗ is a Lie subalgebra in a∗. Suppose also that there is a splitting a∗ = t+ k⊥

(direct sum of vector spaces), and that t is a Lie subalgebra in a∗. Then the vector space k∗ is naturally identified
with t.

Assume that A∗ = TK⊥ as a manifold, where K⊥, T are the Lie subgroups of A∗ corresponding to the Lie
subalgebras k⊥, t ⊂ a∗, respectively. For any a∗ = tk⊥ ∈ A∗ with k⊥ ∈ K⊥, t ∈ T denote πK⊥(a∗) = k⊥,
πT (a∗) = t. This defines maps πK⊥ : A∗ → K⊥, πT : A∗ → T .

Proposition 3.3.6. Suppose that for any k⊥ ∈ K⊥ the transformation

t→ t, (3.3.6)

t 7→ (Ad(k⊥)t)t,

where the subscript t stands for the t–component with respect to the decomposition a∗ = t + k⊥, is invertible.
Define a map µ : M → T by

µ = πTµ.

Then
(i) µ∗ (C∞ (T )) is a Poisson subalgebra in C∞ (M), and hence one can equip T with a Poisson structure such

that µ : M → T is a Poisson map;
(ii) The algebra C∞ (M)

K
is the centralizer of µ∗ (C∞ (T )) in the Poisson algebra C∞ (M). In particular, if

M/K is a smooth manifold the maps
M

π

↙
µ

↘ ,
M/K T

(3.3.7)

form a dual pair.

Proof. (i) We claim that multiplication in A∗ gives rise to a right Poisson–Lie group action A∗µ×A∗ → A∗µ. Indeed,
for g ∈ A∗ denote by lg, rg the left (right) translation by g on A∗. By the definition of Πµ

Πµ(gh) = ΠA∗(gh) + Λ(gh) = lg∗ΠA∗(h) + rh∗ΠA∗(g) + rh∗Λ(g) = lg∗ΠA∗(h) + rh∗Πµ(g), (3.3.8)

where we used the fact that ΠA∗(gh) = lg∗ΠA∗(h) + rh∗ΠA∗(g) as A∗ is a Poisson–Lie group and that Λ is right
invariant. By the definition of Poisson–Lie group actions and Poisson maps, identity (3.3.8) is equivalent to the
fact that multiplication in A∗ gives rise to a right Poisson–Lie group action A∗µ ×A∗ → A∗µ.

Since k ⊂ a is a Lie subalgebra and k⊥
⊥

= k the subgroup K⊥ ⊂ A∗ is admissible. Therefore restricting the

action A∗µ × A∗ → A∗µ to K⊥ we deduce that C∞(A∗µ)K
⊥

is a Poisson subalgebra in C∞(A∗µ), where the action of

K⊥ is induced by the action of K⊥ ⊂ A∗ on A∗ by right translations.

Now recall that A∗ = TK⊥ as a manifold, and hence C∞(A∗µ)K
⊥

= C∞(T ). Thus T naturally becomes a
Poisson manifold and the map πT : A∗µ → T becomes Poisson. We deduce that the map µ = πTµ is Poisson as the
composition of the Poisson maps µ : M → A∗µ and πT : A∗µ → T .

(ii) By the definition of the moment map we have

LX̂ϕ = 〈µ∗(θA∗), X〉(ξϕ), (3.3.9)

where X ∈ a, X̂ is the corresponding vector field on M and ξϕ is the Hamiltonian vector field of ϕ ∈ C∞(M).
Since A∗ = TK⊥, the pullback of the left–invariant Maurer–Cartan form µ∗(θA∗) may be represented as follows

µ∗(θA∗) = Ad(πK⊥µ)−1(µ∗θT ) + (πK⊥µ)∗θK⊥ ,
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where (πK⊥µ)∗θK⊥ ∈ k⊥.
Now let X ∈ k. Then 〈(πK⊥µ)∗θK⊥), X〉 = 0 and formula (3.3.9) takes the form

LX̂ϕ = 〈Ad(πK⊥µ)−1(µ∗θT ), X〉(ξϕ) =

= 〈Ad(πK⊥µ)−1(θT ), X〉(µ∗(ξϕ)).
(3.3.10)

Since by the assumption transformation (3.3.6) is invertible, LX̂ϕ = 〈Ad(πK⊥µ)−1(θT ), X〉(µ∗(ξϕ)) = 0 for any
X ∈ k if and only if µ∗(ξϕ) = 0. Thus the function ϕ ∈ C∞(M) is K–invariant if and only if {ϕ, µ∗(ψ)} = 0 for
any ψ ∈ C∞(T ). This completes the proof.

From the previous proposition, from Lemma 3.3.1 and Remark 3.3.2 we immediately obtain the following
corollary.

Corollary 3.3.7. Suppose that the conditions of Proposition 3.3.6 are satisfied. Let t ∈ T be such that the map
f 7→ f(t) is a character of the Poisson algebra C∞(T ). Then the action of K on M induces a (local) action on
µ−1(t) and a (local) action on C∞(µ−1(t)) given by

X ◦ ϕ = 〈Ad(πK⊥µ)−1(θT ), X〉(µ∗(ξϕ̃)), X ∈ k, ϕ ∈ C∞(µ−1(t)),

where ϕ̃ is any representative of ϕ ∈ C∞(µ−1(t)) = C∞(M)/It in C∞(M). The algebra C∞(µ−1(t))K of invariants
with respect to this action is isomorphic to the reduced Poisson algebra C∞(µ−1(t))C

∞(T ).

3.4 Poisson reduction and q-W–algebras

In this section we realize the quasiclassical limit of the algebra W s
B(G) as the algebra of functions on a reduced

Poisson manifold. In this section we always assume that κ = 1 and use the notation and conventions introduced in
Section 3.2. In particular, we always assume that the system of positive roots ∆+ is associated to the Weyl group
element s as in Definition 1.6.19.

By Proposition 3.2.8 one can define a character χs of the Poisson algebra C[M+] such that χs(p(x)) = χsq(x)

mod (q
1
dr2 − 1) for every x ∈ CsB[M+].

Recall that the image of the algebra CsB[G∗] under the projection p : CsB[G∗] → CsB[G∗]/(1 − q
1
dr2 )CsB[G∗] is a

certain subalgebra of C[G∗] that we denoted by C[G∗] in Section 3.2. By part (ii) of Proposition 3.2.6 C[G∗] ' C[G]
as algebras. Let I = p(IB) be the ideal in C[G∗] generated by the kernel of χs. Then by formula (3.2.23) the Poisson

algebra W s(G) = W s
q (G)/(q

1
dr2 − 1)W s

q (G) is the subspace of all x + I ∈ Q1, Q1 = QB/(1− q
1
dr2 )QB ⊂ C[G∗]/I,

such that {m,x} ∈ I for any m ∈ C[M−], and the Poisson bracket in W s(G) takes the form {(x + I), (y + I)} =
{x, y}+ I, x+ I, y + I ∈ W s(G). Using the Poisson analogues of formulas (3.2.22) and (3.2.23) we can also write
W s(G) = (C[G∗]/I)C[M+] ∩Q1, where the action of the Poisson algebra C[M+] on the space C[G∗]/I is defined as
follows

x · (v + I) = ρχs({x, v}), (3.4.1)

v ∈ C[G∗] is any representative of v + I ∈ C[G∗]/I and x ∈ C[M+].
One can describe the space of invariants (C[G∗]/I)C[M+] with respect to this action by analyzing the related

underlying manifolds and varieties. First observe that the algebra (C[G∗]/I)C[M+] is a particular example of the
reduced Poisson algebra introduced in Lemma 3.3.1 .

Indeed, recall that according to (3.2.1) any element (L+, L−) ∈ G∗ may be uniquely written as

(L+, L−) = (n+, n−)(h+, h−), (3.4.2)

where n± ∈ N±, h+ = exp(( 1
1−sPh′ + 1

2Ph′⊥)x), h− = exp(( s
1−sPh′ − 1

2Ph′⊥)x), x ∈ h.
Formula (3.2.1) and a decomposition of elements of N+ into products of elements which belong to one–

dimensional subgroups corresponding to roots also imply that any element L+ can be represented in the form

L+ =
∏
β exp[bβXβ ]×

exp
[∑l

i=1 bi(
1

1−sPh′ + 1
2Ph′⊥)Hi

]
, bi, bβ ∈ C, (3.4.3)
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where the product over roots is taken according to the normal ordering associated to s.
Now define a surjective submersion µM− : G∗ →M+ by

µM−(L+, L−) = m+, (3.4.4)

where for L+ given by (3.4.3) m+ is defined as follows

m+ =
∏

β∈∆m+

exp[bβXβ ],

and the product over roots is taken according to the normal order in the segment ∆m+
.

Note that by definition C[M+] = {ϕ ∈ C[G∗] : ϕ = ϕ(m+)}. Therefore C[M+] is generated by the pullbacks of
regular functions on M+ with respect to the map µM− . Since C[M+] is a Poisson subalgebra in C[G∗], and regular
functions on M+ are dense in C∞(M+) on every compact subset, we can equip the manifold M+ with the Poisson
structure in such a way that µM− becomes a Poisson mapping.

Let u ∈M+ be the element defined by

u =

l′∏
i=1

exp[tiXγi ], ti = ki (mod (q
1
dr2 − 1)), (3.4.5)

where the product over roots is taken according to the normal order in the segment ∆m+ and ki, i = 1, . . . , l′ are
defined in formula (3.2.16).

By Proposition 3.2.5 (see formulas (3.2.9) and (3.2.10)) the elements L̃±,V = (p⊗ν)(qL±,V ) belong to the space
C[G∗]⊗ EndV , and the map

ı : CsB[G∗]/(q
1
dr2 − 1)CsB[G∗]→ C[G∗], (ı⊗ id)L̃±,V = L±,V

is an isomorphism of Poisson–Hopf algebras. In particular, from (2.6.16) it follows that

L̃+,V =
∏
β exp[p((1− q−2

β )fβ)⊗ πV (Xβ)]×
(p⊗ id)exp

[∑l
i=1 hHi ⊗ πV (( 2

1−sPh′ + Ph′⊥)Yi)
]
.

(3.4.6)

From (3.4.6) and the definition of χs we obtain that χs(ϕ) = ϕ(u) for every ϕ ∈ C[M+]. χs naturally extends
to a character of the Poisson algebra C∞(M+).

Now applying Lemma 3.3.1 we can define a reduced Poisson algebra C∞(µ−1
M−

(u))C
∞(M+) as follows. Denote by

Iu the ideal in C∞(G∗) generated by elements µ∗M−ψ, ψ ∈ C
∞(M+), ψ(u) = 0. Let Pu : C∞(G∗)→ C∞(G∗)/Iu =

C∞(µ−1
M−

(u)) be the canonical projection. Define the action of C∞(M+) on C∞(µ−1
M−

(u)) by

ψ · ϕ = Pu({µ∗M−ψ, ϕ̃}), (3.4.7)

where ψ ∈ C∞(M−), ϕ ∈ C∞(µ−1
M−

(u)) and ϕ̃ ∈ C∞(G∗) is a representative of ϕ such that Puϕ̃ = ϕ. The reduced

Poisson algebra C∞(µ−1
M−

(u))C
∞(M+) is the algebra of C∞(M+)–invariants in C∞(µ−1

M−
(u)) with respect to action

(3.4.7). The reduced Poisson algebra is naturally equipped with a Poisson structure induced from C∞(G∗) as
described in (3.3.3).

Lemma 3.4.1. Let q(µ−1
M−

(u)) be the closure of q(µ−1
M−

(u)) in G with respect to Zariski topology. Then Q1 '
C[q(µ−1

M−
(u))], and the algebra W s(G) is isomorphic to the algebra of regular functions on q(µ−1

M−
(u)) pullbacks of

which under the map q are invariant with respect to the action (3.4.7) of C∞(M+) on C∞(µ−1
M−

(u)), i.e.

W s(G) = C[q(µ−1
M−

(u))] ∩ C∞(µ−1
M−

(u))C
∞(M+),

where C[q(µ−1
M−

(u))] is regarded as a subalgebra in C∞(µ−1
M−

(u)) using the map q∗ : C∞(q(µ−1
M−

(u)))→ C∞(µ−1
M−

(u))

and the imbedding C[q(µ−1
M−

(u))] ⊂ C∞(q(µ−1
M−

(u))).
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Proof. First observe that by the definition µ−1
M−

(u) is a submanifold in G∗ and that I = C[G∗] ∩ Iu. Therefore

by the definition of the algebra C[G∗] and of the map µM− the quotient C[G∗]/I is identified with the algebra of

functions on µ−1
M−

(u) generated by the restrictions of elements of C[G∗] to µ−1
M−

(u).

Also by the definition Q1 ⊂ C[G∗]/I is the algebra generated by the restrictions to µ−1
M−

(u) of the pullbacks of

elements from the algebra of regular functions C[G] under the map q : G∗ → G. Therefore Q1 = C[q(µ−1
M−

(u))].

From these observations we deduce that W s(G) = (C[G∗]/I)C[M−] ∩Q1 = (C[G∗]/I)C[M−] ∩ C[q(µ−1
M−

(u))].

Since C[M−] is dense in C∞(M−) on every compact subset in M− we have

C∞(µ−1
M+

(u))C
∞(M−) ' C∞(µ−1

M+
(u))C[M−].

Now observe that action (3.4.7) of elements from C[M−] coincides with action (3.4.1) when restricted to ele-

ments from C[G∗]/I, and hence W s(G) = (C[G∗]/I)C[M−] ∩ C[q(µ−1
M−

(u))] = C∞(µ−1
M+

(u))C[M−] ∩ C[q(µ−1
M−

(u))] =

C∞(µ−1
M−

(u))C
∞(M−) ∩ C[q(µ−1

M+
(u))]. This completes the proof.

We shall realize the algebra C∞(µ−1
M−

(u))C
∞(M+) as the algebra of functions on a reduced Poisson manifold. In

this construction we use the dressing action of the Poisson–Lie group G on G∗.
Consider the restriction of the (local) dressing action G×G∗ → G∗ to the subgroup M− ⊂ G. We shall describe

the reduced Poisson algebra C∞(µ−1
M−

(u))C
∞(M−) in terms of the dressing action.

Lemma 3.4.2. The preimage µ−1
M−

(u) ⊂ G∗ is locally invariant under the (locally defined) dressing action of M−,

and the algebra C∞(µ−1
M−

(u))M− is isomorphic to C∞(µ−1
M−

(u))C
∞(M+).

Proof. The proof will be based on Corollary 3.3.7.
First observe that according to part (iv) of Proposition 3.1.2 (i−, i+) = (b−, b+) is a subbialgebra of (g, g∗).

Therefore B− is a Poisson–Lie subgroup in G.
By Proposition 3.3.4, by part (iv) of Proposition 3.1.2, and by the definition of the moment map we have for

any X ∈ b−, ϕ ∈ C∞(G∗)

LX̂ϕ(L+, L−) = (θG∗(L+, L−), X)(ξϕ) = (r−1
+ µ∗B−(θB+), X)(ξϕ), (3.4.8)

where X̂ is the corresponding vector field on G∗, ξϕ is the Hamiltonian vector field of ϕ ∈ C∞(G∗), and the map
µB− : G∗ → B+ is defined by µB−(L+, L−) = L+. Now from Proposition 3.1.2 (iv) and the definition of the
moment map it follows that µB− is a moment map for the restriction of the dressing action to the subgroup B−.

Next observe that the complementary subset to ∆m+ in ∆+ is a minimal segment ∆0
m+

. Now using Proposition

3.1.2 (iv) the subspace m⊥− in b+ can be identified with the linear subspace in b+ spanned by the Cartan subalgebra
h and by the root subspaces corresponding to the roots from the minimal segment ∆0

m+
. Using the fact that the

adjoint action of h normalizes root subspaces and Lemma 1.6.17 we deduce that m⊥− ⊂ b+ is a Lie subalgebra, and
hence M− ⊂ B− is an admissible subgroup.

Moreover, the dual group B+ can be uniquely factorized as B+ = M+M
⊥
− , where M⊥− ⊂ B+ is the Lie subgroup

corresponding to the Lie subalgebra m⊥− ⊂ b+, and M+ ⊂ B+ is the Lie subgroup corresponding to the Lie
subalgebra m+.

Now observe that m⊥− = h+m⊥−0
⊂ b+ (direct sum of vector spaces), where m⊥−0

is the Lie subalgebra generated
by the root vectors corresponding to the roots from the minimal segment ∆0

m+
. The Lie subalgebra m+ is generated

by the root subspaces corresponding to the roots from the minimal segment ∆m+
. Since all root subspaces are

invariant under the adjoint action of h and the restriction of the adjoint action of the root vectors corresponding
to the roots from the minimal segment ∆0

m+
is nilpotent we deduce that for any m+ ∈ m+, k⊥ ∈M⊥− , k⊥ = hk⊥0 ,

h ∈ H, k⊥0 = exp(x), x ∈ m⊥−0
one has

(Ad(hk⊥0 )(m+))m+
= Adh((Adk⊥0 (m+))m+

) = Adh((exp(adx)(m+))m+
) = Adh((Id + V )(m+)),

where the subscript m+ stands for the m+–component in the direct vector space decomposition b+ = m+ + m⊥−,
and V is a linear nilpotent transformation of m+.

The maps Adh and Id + V are obviously invertible. Hence for any k⊥ ∈M⊥− the map

m+ → m+,m+ 7→ (Ad(hk⊥0 )(m+))m+
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is invertible as well.
We conclude that all the conditions of Corollary 3.3.7 are satisfied with A = B−,K = M−, A

∗ = B+, T =
M+,K

⊥ = M⊥− , µ = µB− . It follows that the preimage µ−1
M−

(u) ⊂ G∗ is locally stable under the (locally defined)

dressing action of M−, and the algebra C∞(µ−1
M−

(u))M− is isomorphic to C∞(µ−1
M−

(u))C
∞(M+). This completes the

proof.

Observe that by (3.3.5) under the map q : G∗ → G, q(L+, L−) = L−1
− L+ the dressing action becomes the

action of G on itself by conjugations. Consider the restriction of this action to the subgroup M+. Denote by
πq : G → G/M− the canonical projection onto the quotient with respect to this action. We shall see that

πq(q(µ
−1
M−

(u))) is an algebraic variety and C[πq(q(µ
−1
M−

(u)))] 'W s(G). We shall also obtain an explicit description

of the variety q(µ−1
M−

(u)) and of the quotient πq(q(µ
−1
M−

(u))).

First we describe the image of the level surface µ−1
M−

(u) of the map µM− under the map q. Let Xα(t) =

exp(tXα) ∈ G, t ∈ C be the one–parameter subgroup in G corresponding to root α ∈ ∆. Recall that for any
α ∈ ∆+ and any t 6= 0 the element

sα(t) = Xα(t)X−α(−t−1)Xα(t) ∈ G (3.4.9)

is a representative for the reflection sα corresponding to the root α. Denote by s ∈ G the following representative
of the Weyl group element s ∈W ,

s = sγ1(t1) . . . sγl′ (tl′), (3.4.10)

where the numbers ti are defined in (3.4.5), and we assume that ti 6= 0 for any i.
We shall also use the following representatives for s1 and s2

s1 = sγ1(t1) . . . sγn(tn), s2 = sγn+1(tn+1) . . . sγl′ (tl′).

The following Proposition is an improved version of Proposition 7.2 in [117] suitable for the purposes of quan-
tization.

Proposition 3.4.3. Let q : G∗ → G be the map defined by

q(L+, L−) = L−1
− L+.

Suppose that the numbers ti defined in (3.4.5) are not equal to zero for all i. Then

q(µ−1
M−

(u)) ⊂ N−sH0Z+M− = N−sH
0M−Z+ = (N− ∩N)Z−sH

0M−Z+ = (3.4.11)

= (N− ∩N)Z−sH
0Z+M− ⊂ NsZN,

where H0 is the connected subgroup of H corresponding to the Lie subalgebra hs = h′⊥ ⊂ h, Z± = Z ∩N±.

The closure q(µ−1
M−

(u)) of q(µ−1
M−

(u)) in G with respect to the Zariski topology is also contained in NsZN .

Proof. Using definition (3.4.4) of the map µM− we can describe the preimage µ−1
M−

(u) as follows

µ−1
M−

(u) = {(uyh+, n−h−)|n− ∈ N−, h± = er
s
±x, x ∈ h, y ∈ N∆+\∆m+

}, (3.4.12)

where, as in Section 1.3, for any additively closed subset of roots Ξ ⊂ ∆ which does not contain opposite roots we
denote by NΞ the subgroup in G generated by the one–parameter subgroups corresponding to the roots from Ξ.
Therefore

q(µ−1
M−

(u)) = {h−1
− n−1

− uyh+|n− ∈ N−, h± = er
s
±x, x ∈ h, y ∈ N∆+\∆m+

}. (3.4.13)

First we show that for any y ∈ N∆+\∆m+
and n− ∈ N− the element n−1

− uy belongs to N−sH
0Z+M−. Fix the

circular normal ordering on ∆ corresponding to the normal ordering of ∆+ associated to s as in Definition 1.6.19.
In the proof we shall frequently use the following lemma.

Lemma 3.4.4. Let [α, β] ⊂ ∆ be a minimal segment and assume that [α, β] = [α, γ] ∪ [δ, β], where the segments
[α, γ] and [δ, β] are disjoint and minimal as well. Then any element m ∈ N[α,β] can be uniquely factorized as
m = g1g2 = g′2g

′
1, g1, g

′
1 ∈ N[α,γ], g2, g

′
2 ∈ N[δ,β]. Moreover, if δ = β then for any m′ ∈ N[α,γ] and any t ∈ C one

has m′Xβ(t) = Xβ(t)m′′, where m′′ ∈ N[α,γ].
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Proof. The proof is obtained by straightforward application of Lemmas 1.3.1 and 1.6.18.

Since the roots γ1, . . . , γn are mutually orthogonal the adjoint action of sγi(ti), i = 1, . . . , n on each of the root
subspaces gγj , j = 1, . . . , n, j 6= i is given by multiplication by a non–zero constant. Therefore there are non–zero

constants c1, . . . , cn such that Xγk(ck)sγ1 . . . sγk−1
= sγ1 . . . sγk−1

Xγk(−t−1
k ), k = 2, . . . , n, and we define c1 = −t−1

1 .
Obviously we have

Xγ1(t1) . . . Xγn(tn) = X−γ1(−c1) . . . X−γn(−cn)X−γn(cn) . . . X−γ1(c1)Xγ1(t1) . . . Xγn(tn) =

= n1X−γn(cn) . . . X−γ1(c1)Xγ1(t1) . . . Xγn(tn), n1 = X−γ1(−c1) . . . X−γn(−cn) ∈ N∆n
−
,

where ∆n
− = {α ∈ ∆− : −γ1 ≤ α ≤ −γn}.

Using the relation X−γ1(−t−1
1 )Xγ1(t1) = Xγ1(−t1)sγ1 one can rewrite the last identity as follows

Xγ1(t1) . . . Xγn(tn) = n1X−γn(cn) . . . X−γ2(c2)Xγ1(−t1)sγ1Xγ2(t2) . . . Xγn(tn). (3.4.14)

Now we can write
X−γn(cn) . . . X−γ2(c2)Xγ1(−t1) =

= X−γn(cn) . . . X−γ2(c2)Xγ1(−t1)X−γ2(−c2) . . . X−γn(−cn)X−γn(cn) . . . X−γ2(c2).

The product X−γn(cn) . . . X−γ2(c2)Xγ1(−t1)X−γ2(−c2) . . . X−γn(−cn) belongs to the subgroup of G generated
by the one–parameter subgroups corresponding to roots from the set ∆1 = {α ∈ ∆ : −γ2 ≤ α ≤ γ1, s

1α =
−α}. By Lemma 1.6.17 the minimal segment {α ∈ ∆ : −γ2 ≤ α ≤ γ1} is additively closed and the set of
roots on which s1 acts by multiplication by −1 is also additively closed. Hence ∆1 is additively closed, and
X−γn(cn) . . . X−γ2(c2)Xγ1(−t1)X−γ2(−c2) . . . X−γn(−cn) ∈ N∆1 .

Let ∆1
+ := ∆1 ∩∆+ = {α ∈ ∆+ : α ≤ γ1, s

1α = −α}, and ∆1
− := ∆1 ∩∆− = {α ∈ ∆− : −γ2 ≤ α, s1α = −α}.

Then ∆1 = ∆1
+ ∪∆1

− (disjoint union), and, using Lemma 1.3.1, the element

X−γn(cn) . . . X−γ2(c2)Xγ1(−t1)X−γ2(−c2) . . . X−γn(−cn) ∈ N∆1 = N∆1
−
N∆1

+

can be uniquely factorized as follows

X−γn(cn) . . . X−γ2(c2)Xγ1(−t1)X−γ2(−c2) . . . X−γn(−cn) = n′2x
′
1,

where n′2 ∈ N∆1
−
, x′1 ∈ N∆1

+
.

Substituting the last relation into (3.4.14) and using the definition of c2 and the orthogonality of roots γ1 and
γ2 we obtain

Xγ1(t1) . . . Xγn(tn) = n2x
′
1X−γn(cn) . . . X−γ3(c3)sγ1X−γ2(−t−1

2 )Xγ2(t2) . . . Xγn(tn),

where n2 = n1n
′
2 ∈ N∆s1

−
, ∆s1

− := {α ∈ ∆− : s1α = −α}.
Now we can use the relation X−γ2(−t−1

2 )Xγ2(t2) = Xγ2(−t2)sγ2 , the orthogonality of roots γ1 and γ2, and
apply similar arguments to get

Xγ1(t1) . . . Xγn(tn) = n2x
′
1X−γn(cn) . . . X−γ3(c3)Xγ2(a2)sγ1sγ2Xγ3(t3) . . . Xγn(tn), a2 6= 0. (3.4.15)

We can also write
X−γn(cn) . . . X−γ3(c3)Xγ2(a2) =

= X−γn(cn) . . . X−γ3(c3)Xγ2(a2)X−γ3(−c3) . . . X−γn(−cn)X−γn(cn) . . . X−γ3(c3).

The product X−γn(cn) . . . X−γ3(c3)Xγ2(a2)X−γ3(−c3) . . . X−γn(−cn) belongs to the subgroup of G generated by
the one–parameter subgroups corresponding to the roots from the set ∆2 = {α ∈ ∆ : −γ3 ≤ α ≤ γ2, s

1α =
−α}. By Lemma 1.6.17 the minimal segment {α ∈ ∆ : −γ3 ≤ α ≤ γ2} is additively closed and the set of
roots on which s1 acts by multiplication by −1 is also additively closed. Hence ∆2 is additively closed, and
X−γn(cn) . . . X−γ3(c3)Xγ2(a2)X−γ3(−c3) . . . X−γn(−cn) ∈ N∆2 .

Let ∆2
+ := ∆2 ∩∆+ = {α ∈ ∆+ : α ≤ γ2, s

1α = −α} and ∆2
− := ∆2 ∩∆− = {α ∈ ∆− : s1α = −α,−γ3 ≤ α}.
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Then ∆2 = ∆2
+ ∪∆2

− (disjoint union), and, using Lemma 1.3.1, the element

X−γn(cn) . . . X−γ3(c3)Xγ2(a2)X−γ3(−c3) . . . X−γn(−cn) ∈ N∆2 = N∆2
−
N∆2

+

can be represented as follows

X−γn(cn) . . . X−γ3(c3)Xγ2(a2)X−γ3(−c3) . . . X−γn(−cn) = n′3x
′′
2 , (3.4.16)

where n′3 ∈ N∆2
−
, x′′2 ∈ N∆2

+
.

Substituting the last relation into (3.4.15) and using the definition of c3 and the orthogonality of roots γ1, γ2

and γ3 we obtain

Xγ1(t1) . . . Xγn(tn) = n2x
′
1n
′
3x
′′
2X−γn(cn) . . . X−γ4(c4)sγ1sγ2Xγ3(−t−1

3 )Xγ3(t3) . . . Xγn(tn). (3.4.17)

Since ∆1
+ ⊂ ∆2

+, N∆1
+
⊂ N∆2

+
, and we deduce that x′1n

′
3x
′′
2 ∈ N∆2 . Therefore using Lemma 1.3.1 and the

decomposition N∆2 = N∆2
−
N∆2

+
we get x′1n

′
3x
′′
2 = n′′3x

′
2, x′2 ∈ N∆2

+
, n′′3 ∈ N∆2

−
. Now (3.4.17) takes the form

Xγ1(t1) . . . Xγn(tn) = n3x
′
2X−γn(cn) . . . X−γ4(c4)sγ1sγ2X−γ3(−t−1

3 )Xγ3(t3) . . . Xγn(tn),

where n3 = n2n
′′
3 ∈ N∆s1

−
.

We can proceed in a similar way to obtain the following representation

Xγ1(t1) . . . Xγn(tn) = nx̃sγ1 . . . sγn = nx̃s1, n ∈ N
∆s1
−
, x̃ ∈ N∆n

+
, (3.4.18)

where ∆n
+ := {α ∈ ∆+ : α ≤ γn, s1α = −α} = {α ∈ ∆+ : γ1 ≤ α ≤ γn}.

Note that s1 acts by multiplication by −1 on the roots from ∆n
+, so ∆n

− := −∆n
+ = s1(∆n

+). Therefore
N∆n

−
= (s1)−1N∆n

+
s1 ⊂ N

∆s1
−

and (3.4.18) can be rewritten in the following form

Xγ1(t1) . . . Xγn(tn) = ns1(s1)−1x̃s1 = ns1n′, n ∈ N
∆s1
−
, n′ = (s1)−1x̃s1 ∈ N∆n

−
. (3.4.19)

Similarly one has

X−γn+1
(tn+1) . . . X−γl′ (tl′) = n′′sγn+1

. . . sγl′n
′′′ = n′′s2n′′′, n′′ ∈ N

∆s2
−
, n′′′ ∈ N∆l′

−
, (3.4.20)

where ∆s2

− := {α ∈ ∆− : s2α = −α}, and ∆l′

− := {α ∈ ∆− : −γn+1 ≤ α ≤ −γl′}.
Combining (3.4.19) and (3.4.20), using the definition of the circular normal ordering of the root system ∆

associated to s, Lemmas 1.3.1, 1.6.18 and 3.4.4 one can obtain

n−1
− uy = n−1

− ns1n′n′′s2n′′′y = ks1gs2n′′′y, g ∈ N∆s
−\∆0

, k ∈ N−. (3.4.21)

By Proposition 1.6.6 (iii)
s2∆s

s1 ⊂ ∆s
+ \ (∆s

s1 ∪∆s
s2 ∪∆0) ⊂ ∆m+

. (3.4.22)

Now the minimal segment ∆s
+ \∆0 can be represented as the following disjoint union

∆s
+ \∆0 =

(
∆s

+ \ (∆s
s1 ∪∆0)

)
∪∆s

s1 . (3.4.23)

Note that by the definition of ∆s
s1 we have

s1(∆s
+ \ (∆s

s1 ∪∆0)) ⊂ ∆s
+ \ (∆s

s1 ∪∆0) ⊂ ∆+ \∆0. (3.4.24)

Observe that the segments ∆s
s1 , ∆s

+ \ (∆s
s1 ∪∆0) are minimal with respect to the circular normal ordering on

∆ associated to s. Thus from (3.4.23) and Lemma 3.4.4 we deduce that the element g ∈ N∆s
−\∆0

from formula

(3.4.21) can be uniquely decomposed as the product g = g′g′′, where g′ ∈ N−(∆s
+\(∆s

s1
∪∆0)), and g′′ ∈ N−∆s

s1
. By

(3.4.22), (3.4.24) we have (s2)−1g′′s2 ∈M− and s1g′(s1)−1 ∈ N−, and (3.4.21) takes the form

n−1
− uy = ks1g′g′′s2n′′′y = ks1g′(s1)−1s(s2)−1g′′s2n′′′y = k′sn̂y, n̂ = (3.4.25)

= (s2)−1g′′s2n′′′ ∈M−, k′ = ks1g′(s1)−1 ∈ N−.
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The element n̂y belongs to the subgroup N∆′ , ∆′ := {α ∈ ∆ : γl′ < α ≤ −γl′}. We have the following disjoint
union of minimal segments (see Figure 5)

∆′ = (∆′ ∩∆s
s2) ∪ (∆′ ∩ (−∆s

s1)) ∪ (∆0 ∩∆+) ∪ (−∆m+
).

Therefore by Lemmas 1.3.1 and 1.6.18 we obtain N∆′ = N∆′∩∆s
s2
N∆′∩(−∆s

s1
)N∆0∩∆+

M−. Note that by the

definition of Z, N∆0∩∆+
= Z+ = Z ∩N+. Therefore we have a unique factorization n̂y = y′z+m, where z+ ∈ Z+,

y′ ∈ N∆′∩∆s
s2
N∆′∩(−∆s

s1
), m ∈M−. The images of all roots from the set (∆′∩∆s

s2)∪(∆′∩(−∆s
s1)) = (∆′\∆0)∩∆+

under the action of s belong to ∆− by Proposition 1.6.6 (vii), (iii) and (i). Hence sN∆′∩∆s
s2
N∆′∩(−∆s

s1
)s
−1 ⊂ N−,

and sy′s−1 ∈ N−. Thus substituting the factorization n̂y = y′z+m into (3.4.25) we obtain

n−1
− uy = k′′sz+m = k′′z′+sm,m ∈M−, k′′ = k′sy′s−1 ∈ N−, z+, z

′
+ = sz+s

−1 ∈ Z+. (3.4.26)

Hence
n−1
− uy ∈ N−sZ+M−. (3.4.27)

Next we prove that for any n− ∈ N−, x ∈ h and y ∈ N∆+\∆m+
we have h−1

− n−1
− uyh+ ∈ N−sH0Z+M−, where

h± = er
s
±x, i.e. q(µ−1

M−
(u)) ⊂ N−sH0Z+M−.

Let H ′ ⊂ H be the subgroup corresponding to the Lie subalgebra h′ ⊂ h. We obviously have H = H ′H0. From
the definition of rs± it follows that for any h0 ∈ H0 and h′ ∈ H ′ the elements h+ = h0h

′ and h− = h−1
0 s(h′) are of

the form h± = er
s
±x for some x ∈ h and all elements h± are obtained in this way.

Next observe that the set N−sH
0Z+M− is invariant with respect to the following action of the subgroup of

H ×H formed by elements of the form (h+, h−) = (h0h
′, h−1

0 s(h′)):

(h+, h−) ◦ L = h−1
− Lh+, h = h+ = h0h

′, h− = h−1
0 s(h′). (3.4.28)

Indeed, let L = vskz+w, v ∈ N−, w ∈M−, z+ ∈ Z+, k ∈ H0 be an element of N−sH
0Z+M−. Then

(h+, h−) ◦ L = h−1
− vh−h

−1
− skh+h

−1
+ z+wh+ = h−1

− vh−skh
2
0h
−1
+ z+wh+ (3.4.29)

since s−1h−1
− sh+ = h0h

′−1h0h
′ = h2

0. The right hand side of the last equality belongs to N−sH
0Z+M− because H

normalizes N−, M− and Z+.
Comparing action (3.4.28) with (3.4.13) and recalling that by (3.4.27) for any n− ∈ N− and y ∈ N∆+\∆m+

one

has n−1
− uy ∈ N−sZ+M− ⊂ N−sH0Z+M− we deduce

q(µ−1
M−

(u)) ⊂ N−sH0Z+M−. (3.4.30)

Now we show that

N−sZ+M− = N−sM−Z+ = (N− ∩N)Z−sM−Z+ = (N− ∩N)Z−sZ+M− = (N− ∩N)sZ−Z+M−. (3.4.31)

First observe that we have the following disjoint union of minimal segments (see Figure 5)

∆− = ((∆s
− \∆0) ∩∆−) ∪ (∆0 ∩∆−) ∪ (∆s

s1 ∩∆−).

Therefore by Lemmas 1.3.1 and 1.6.18 we obtain a unique factorization

N− = N(∆s
−\∆0)∩∆−N∆0∩∆−N∆s

s1
∩∆− = (N ∩N−)Z−(N− ∩N)

as N(∆s
−\∆0)∩∆− = N ∩N−, N∆0∩∆− = Z− = Z ∩N−, N∆s

s1
∩∆− = N− ∩N .

Note that the elements of the subgroup N− ∩N = N∆s
s1
∩∆− are transformed to M− by the conjugation by s−1

as by part (iii) of Proposition 1.6.6

s−1(∆s
s1) = s2s1(∆s

s1) = −s2(∆s
s1) ⊂ −(∆s

+ \ (∆s
s1 ∪∆s

s2 ∪∆0)) ⊂ −∆m+
.

We deduce that any k′′ ∈ N− can be uniquely represented in the form k′′ = nz−k
′′′, n ∈ N ∩N−, z− ∈ Z− =

Z ∩N−, k′′′ ∈ N− ∩N , s−1k′′′s ∈M−. Therefore for any m ∈M−, z+ ∈ Z+, we have

k′′smz+ = nz−sm
′z+, n ∈ N ∩N−,m′ = s−1k′′′sm ∈M−, z− ∈ Z−,
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and hence N−sM−Z+ ⊂ (N ∩ N−)Z−sM−Z+. The opposite inclusion is obvious. Thus N−sM−Z+ = (N ∩
N−)Z−sM−Z+.

Similarly one obtains N−sZ+M− = N−sM−Z+ = (N ∩ N−)Z−sZ+M− = (N ∩ N−)Z−sZ+M− = (N ∩
N−)sZ−Z+M−. This proves (3.4.31).

Since the conjugation action of H0 normalizes N−, (N− ∩N), Z±, and H0 is fixed by the conjugation by s, one
immediately obtains from (3.4.31)

H0N−sZ+M− = N−sH
0Z+M− = N−sH

0M−Z+ = (N− ∩N)Z−sH
0M−Z+ =

= (N− ∩N)Z−sH
0Z+M− = (N ∩N−)sZ−H

0Z+M− ⊂ NsZN,

where the last inclusion follows from the inclusions Z−H
0Z+ ⊂ Z, M− ⊂ N . This proves the identities in (3.4.11)

and together with inclusion (3.4.30) establishes (3.4.11) completely.

Since by Proposition 1.3.4 NsZN is Zariski closed in G, the Zariski closure q(µ−1
M−

(u)) of q(µ−1
M−

(u)) ⊂ NsZN
in G is contained in NsZN .

Now we are in a position to describe the closure q(µ−1
M−

(u)), the quotient πq(q(µ
−1
M−

(u))) and the algebra W s(G).

Theorem 3.4.5. Suppose that the numbers ti defined in (3.4.5) are not equal to zero for all i. Let Ns ⊂ N− ∩Ns
be the subgroup generated by one–parameter subgroups corresponding to the roots from the minimal segment −∆s,
where ∆s = ∆s

s \∆m+
= {α ∈ ∆s

+ \∆0 : γl′ < α}, Ns = N−∆s , and Ms
− = M− ∩Ns. Then

(i) the variety q(µ−1
M−

(u)) is invariant under conjugations by elements of M−, the conjugation action of M− on

q(µ−1
M−

(u)) is free, and the quotient πq(q(µ
−1
M−

(u))) is a smooth variety;

(ii) q(µ−1
M−

(u)) = N−sZM− = N−sZM
s
−;

(iii) πq(q(µ
−1
M−

(u))) ' NssZMs
− ' Σs = sZNs, the conjugation action

M− ×NssZMs
− → N−sZM− (3.4.32)

is an isomorphism of varieties, and hence the algebra C[q(µ−1
M−

(u))] = C[N−sZM−] is isomorphic to C[M−] ⊗
C[NssZMs

−];

(iv) The algebra W s(G) is isomorphic to the algebra of regular functions on NssZMs
−, W s(G) ' C[πq(q(µ

−1
M−

(u)))] '
C[NssZMs

−] ' C[Σs] ' C[N−sZM−]M− . Thus the algebra W s
B(G) is a non–commutative deformation of the algebra

of regular functions on the transversal slice Σs ' NssZMs
−.

Proof. (i) Firstly, as we observed in Lemma 3.4.2 the preimage µ−1
M−

(u) is locally stable under the (locally defined)

dressing action of M−. On the other hand by Proposition 3.4.3 q(µ−1
M−

(u)) ⊂ NsZN , so by Proposition 1.3.4 (i) and

Proposition 3.3.4, q(µ−1
M−

(u)) is (locally) stable under the action of M− ⊂ N on NsZN by conjugations. Since the

conjugation action of N on NsZN is free the (locally defined) conjugation action of M− on q(µ−1
M−

(u)) is (locally)
free as well.

Now recall that by Proposition 3.4.3 q(µ−1
M−

(u)) ⊂ NsZN . Since by Proposition 1.3.4 (i) the conjugation action

of N on NsZN is free and regular, sZNs being a cross–section for this action, and q(µ−1
M−

(u)) is closed, the local

action of M− on q(µ−1
M−

(u)) ⊂ NsZN by conjugations extends by continuity to the genuine regular action of

M− ⊂ N on q(µ−1
M−

(u)) which is free as well. Therefore the quotient πq(q(µ
−1
M−

(u))) is a smooth variety.

(ii) We show now that the closure of q(µ−1
M−

(u)) contains N−sZM−. Recall that by (3.4.11) q(µ−1
M−

(u)) ⊂
N−sH

0Z+M− = N−H
0Z+sM−. From (3.4.13) it follows that q(µ−1

M−
(u)) is closed with respect to the right

multiplication by arbitrary elements from Z+ and with respect to the left multiplication by arbitrary elements from
N−, as Z+ ⊂ N∆+\∆m+

, and q(µ−1
M−

(u)) is closed with respect to the right multiplication by arbitrary elements

from N∆+\∆m+
. q(µ−1

M−
(u)) is also closed with respect to the restriction of action (3.4.28) to the subgroup of H×H

which consists of elements of the form (h0, h
−1
0 ), h0 ∈ H0. Thus by (3.4.29), and since Z+ normalizes M− and s

centralizes H0, q(µ−1
M−

(u)) contains elements of the form ksn for some n ∈M− ⊂ N and arbitrary k ∈ N−H0Z+.

Now recall that h̄0(α) > 0 for α ∈ ∆s
+ \∆0 and h̄0(α) = 0 for α ∈ ∆0 (see formula (1.3.45) and the discussion

after it), and hence the C∗–action on G induced by conjugations by the elements h(t) from the one–parameter
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subgroup generated by h̄0 ∈ h′ is contracting on N and fixes all elements of Z. Applying action (3.4.28) with
h = h(t) to the elements ksn with arbitrary k ∈ N−H0Z+ we immediately deduce, with the help of (3.4.28), that
the M−–component n can be contracted to the identity element using the above defined contracting action, and
hence the closure of q(µ−1

M−
(u)) contains the variety N−Zs as Z− ⊂ N−, and the closure of Z−H

0Z+ is Z.

By (3.4.13) q(µ−1
M−

(u)) is closed with respect to the left multiplication by arbitrary elements from N−. Recall

also that M− ⊂ N freely acts on q(µ−1
M−

(u)) by conjugations by part (i). Therefore q(µ−1
M−

(u)) also contains the
set N−ZsM− = N−sZM−.

Note that

N−sH
0Z+M− ⊂ N−ZsM− ⊂ q(µ−1

M−
(u)) ⊂ N−sH0Z+M−,

where the last inclusion follows from (3.4.11), and all Zariski closures are taken in G. This implies, after taking
Zariski closures in G, that

N−ZsM− = q(µ−1
M−

(u)) = N−sH0Z+M−. (3.4.33)

Lemma 3.4.6. N−ZsM− is a closed irreducible subvariety of G of dimension dim Σs + dim M−.

Proof. First note that ∆− = ((∆s
− \∆0) ∩∆−) ∪ (∆s

+ ∩∆−) ∪ (∆− ∩∆0) (disjoint union of minimal segments).
Now by lemma 3.4.4 there is a unique factorization

N− = N∆− = N(∆s
−\∆0)∩∆−N∆s

+∩∆−N∆−∩∆0 = (N− ∩N)N∆s
+∩∆−Z−

as N(∆s
−\∆0)∩∆− = N− ∩N and N∆−∩∆0

= Z ∩N− = Z−. We deduce

N−ZsM− = (N− ∩N)N∆s
+∩∆−Z−ZsM− = (N− ∩N)N∆s

+∩∆−ZsM−. (3.4.34)

From the definition of ∆+ and ∆s
+ (see formula 1.6.9 and Definition 1.6.19) it follows that ∆s

+ ∩ ∆− ⊂ ∆s
s1 .

Therefore

N∆s
+∩∆− ⊂ N∆s

s1
. (3.4.35)

Recall that Z is generated by H0 and by the one-parameter subgroups corresponding to the roots from ∆0.
Note that H0 normalizes N∆s

s1
, and by Proposition 1.6.6 (ii), the one-parameter subgroups corresponding to the

roots from ∆0 also normalize N∆s
s1

. Therefore Z normalizes N∆s
s1

, and we deduce using (3.4.35)

N∆s
+∩∆−Z ⊂ N∆s

s1
Z = ZN∆s

s1
(3.4.36)

By part (iii) of Proposition 1.6.6

s−1(∆s
s1) = s2s1(∆s

s1) = −s2(∆s
s1) ⊂ −(∆s

+ \ (∆s
s1 ∪∆s

s2 ∪∆0)) ⊂ −∆m+
,

and hence, recalling (3.4.36), we obtain

N∆s
+∩∆−Zs ⊂ Zss−1N∆s

s1
s = ZsNs−1(∆s

s1
) ⊂ ZsM−.

Together with (3.4.34) this implies (compare with (3.4.11))

N−ZsM− = (N− ∩N)ZsM−.

Now consider the group N(∆s
−\∆0)∩∆− = N− ∩ N . By the definition of ∆+ and ∆s

+ (see formula 1.6.9 and

Definition 1.6.19) (∆s
− \∆0)∩∆− = ((−∆s

s−1)∩∆−)∪ (∆s
− \ ((−∆s

s−1)∪∆0)) (disjoint union of additively closed
subsets of roots).

Now by lemma 1.3.1 there is a unique factorization

N− ∩N = N(∆s
−\∆0)∩∆− = N(−∆s

s−1 )∩∆−N∆s
−\((−∆s

s−1 )∪∆0).

We deduce

N−ZsM− = (N− ∩N)N∆s
+∩∆−Z−ZsM− = N(−∆s

s−1 )∩∆−N∆s
−\((−∆s

s−1 )∪∆0)ZsM−. (3.4.37)
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Recall that Z is generated by H0 and by the one-parameter subgroups corresponding to the roots from ∆0. Note
that H0 normalizes N∆s

−\((−∆s
s−1 )∪∆0), and by Proposition 1.6.6 (ii), the one-parameter subgroups corresponding

to the roots from ∆0 also normalize N∆s
−\((−∆s

s−1 )∪∆0). Therefore Z normalizes N∆s
−\((−∆s

s−1 )∪∆0), and we deduce

N−ZsM− = N(−∆s
s−1 )∩∆−ZN∆s

−\((−∆s
s−1 )∪∆0)sM− (3.4.38)

By the definition of the sets ∆s
s−1 , ∆s

s and ∆0 we have

s−1(∆s
− \ ((−∆s

s−1) ∪∆0)) = ∆s
− \ ((−∆s

s) ∪∆0),

and hence, recalling (3.4.38), we obtain

N−ZsM− = N(−∆s
s−1 )∩∆−Zss

−1N∆s
−\((−∆s

s−1 )∪∆0)sM− = N(−∆s
s−1 )∩∆−ZsNs−1(∆s

−\((−∆s
s−1 )∪∆0))M− =

= N(−∆s
s−1 )∩∆−ZsN∆s

−\((−∆s
s)∪∆0)M− = N(−∆s

s−1 )∩∆−sZN−[β1
1 ,γl′ ]

,

where N∆s
−\((−∆s

s)∪∆0)M− = N−[β1
1 ,γl′ ]

⊂ N , and [β1
1 , γl′ ] = {α ∈ ∆s

+ : α ≤ γl′} (we use the notation of Proposition

1.6.6 (iv)).
Note that N(−∆s

s−1 )∩∆− = Ns−1 ∩N−, where Ns−1 = {n ∈ N : s−1ns ∈ N}, so we have

N−ZsM− = (Ns−1 ∩N−)sZN−[β1
1 ,γl′ ]

.

Finally observe that

s−1N−ZsM− = s−1(Ns−1 ∩N−)sZN−[β1
1 ,γl′ ]

⊂ NZN.

Therefore by Lemma 1.3.5 s−1N−ZsM− is a closed subvariety of NZN as

NZN ' N × Z ×N,

s−1(Ns−1 ∩N−)s ⊂ N , N−[β1
1 ,γl′ ]

⊂ N are closed algebraic subgroups, and s−1N−ZsM− is the image in NZN of

s−1(Ns−1 ∩N−)s× Z ×N−[β1
1 ,γl′ ]

under the product map. In particular,

N−ZsM− ' s−1(Ns−1 ∩N−)s× Z ×N−[β1
1 ,γl′ ]

. (3.4.39)

The variety NZN is closed in G by Lemma 1.3.5, and hence s−1N−ZsM− is a closed subvariety of G. Thus
N−ZsM− is a closed subvariety of G.

From the isomorphism of varieties (3.4.39) using Theorem 1.5.4 in [124] it follows that N−ZsM− is also irre-
ducible as s−1(Ns−1 ∩N−)s, Z, and N−[β1

1 ,γl′ ]
are irreducible.

To find the dimension of N−ZsM− we observe that by formula 1.6.9, by Definition 1.6.19 and by part (vii) of
Proposition 1.6.6 (−∆s

s−1)∩∆− = (−∆s
s−1)\{α ∈ ∆s

− : α < −γ1}, and −[β1
1 , γl′ ] = (−∆m+

)∪{α ∈ ∆s
− : α < −γ1}

(disjoint union). Note also that {α ∈ ∆s
− : α < −γ1} ⊂ −∆s

s−1 Thus

dim Ns−1 ∩N− = dim N(−∆s
s−1 )∩∆− = |(−∆s

s−1) \ {α ∈ ∆s
− : α < −γ1}| = | −∆s

s−1 | − |{α ∈ ∆s
− : α < −γ1}|,

and

dim N−[β1
1 ,γl′ ]

= |{α ∈ ∆s
− : α < −γ1}|+ | −∆m+

|

Now using isomorphism (3.4.39) we obtain

dim N−ZsM− = dim Ns−1 ∩N− + dim Z + dim N−[β1
1 ,γl′ ]

=

= | −∆s
s−1 | − |{α ∈ ∆s

− : α < −γ1}|+ |{α ∈ ∆s
− : α < −γ1}|+ | −∆m+

|+ dim Z =

= |∆s
s−1 |+ dim Z + dim M− = dim Ns + dim Z + dim M− = dim Σs + dim M−.

This completes the proof of the lemma.
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Now from (3.4.33) and Lemma 3.4.6 we infer

N−ZsM− = q(µ−1
M−

(u)) = N−sH0Z+M−.

Now we show that N−ZsM− = N−ZsM
s
−. Observe that M− = N−∆m+

, and by the definition of ∆m+
(see

part (v) of Proposition 1.6.6), and by part (vii) of Proposition 1.6.6, ∆m+ = ∆s
m+
∪ (∆m+ \∆s

s) (disjoint union of
minimal segments), where ∆s

m+
= ∆m+ ∩∆s

s.
Using Lemma 3.4.4 we have a unique decomposition

M− = N−(∆m+
\∆s

s)
N−∆s

m+
= N−(∆m+

\∆s
s)
Ms
− (3.4.40)

as by the definition Ms
− = M− ∩ Ns = N−∆s

m+
. If α ∈ ∆m+ \∆s

s then sα ∈ ∆s
+ by the definition of ∆s

s, and by

Proposition 1.6.6 (viii) we have sα > α, and if sα + α0 ∈ ∆ for α0 ∈ ∆0 then sα + α0 ∈ ∆s
+ and sα + α0 > α,

so in both cases sα, sα + α0 ∈ ∆s
+ and sα, sα + α0 > α. This implies sα, sα + α0 6∈ ∆s

s. In particular, from the
definition (1.6.19) of the root system ∆+ it follows that in both cases sα, sα + α0 ∈ ∆+. Observing also that
Z is generated by the one–parameter subgroups corresponding to roots from ∆0 and by the centralizer of s in
H which normalizes all one–parameter subgroups corresponding to roots, we deduce sN−(∆m+

\∆s
s)
s−1 ⊂ N− and

zsN−(∆m+
\∆s

s)
s−1z−1 ⊂ N− for any z ∈ Z. Thus by (3.4.40)

N−ZsM− = N−ZsN−(∆m+
\∆s

s)
Ms
− = N−ZsN−(∆m+

\∆s
s)
s−1sMs

− ⊂ N−sZMs
−.

The opposite inclusion is obvious. So we obtain that N−ZsM− = N−ZsM
s
−.

(iii) We show that NsZsMs
− is a cross–section for the free conjugation action of M− on N−ZsM− = q(µ−1

M−
(u)).

Note that by the definition NssZMs
− ⊂ N−ZsM− = q(µ−1

M−
(u)).

From Figure 5 and Proposition 1.6.6 (i), (iii), (vii) we obtain −∆s
s = (−∆s) ∪ −(∆s

m+
) (disjoint union of

minimal segments). By the definition Ns = N−∆s
s
, Ns = N−∆s , Ms

− = N−∆s
m+

. Therefore Lemma 3.4.4 implies

the following unique factorization Ns = Ms
−N

s. Thus if szns ∈ sZNs, z ∈ Z, ns ∈ Ns then ns can be uniquely
factorized as ns = msns, ms ∈Ms

−, ns ∈ Ns and we have

szns = szmsns.

Conjugating this element by ns we deduce that szns is uniquely conjugated to the element

nsszms ∈ NssZMs
−

and hence NssZMs
− ' sZNs = Σs is a cross–section for the conjugation action of N on NsZN as well. At the same

time by construction the bijection NssZMs
− ' sZNs is an isomorphism of varieties, where the variety structure on

NssZMs
− is induced from Ns × Z ×Ms

− using the product map

Ns × Z ×Ms
− → NssZMs

−, (ns, z,ms) 7→ nsszms.

Observe that any two points of NsZsMs
− are not M−–conjugate. Indeed, we have an inclusion NsZsMs

− ⊂
q(µ−1

M−
(u)), and two points of q(µ−1

M−
(u)) can not be M−-conjugate if they are not N–conjugate in NsZN ⊃

q(µ−1
M−

(u)) as M− ⊂ N . But NsZsMs
− ' Σs is a cross–section for the conjugation action of N on ZsZN by

Proposition 1.3.7 (i). Thus any two points of NsZsMs
− are not N–conjugate, and hence they are not M−–conjugate.

Therefore the closed variety πq(q(µ
−1
M−

(u))) must contain the closed variety NsZsMs
− ' Σs.

From formula (1.6.15) for the cardinality |∆m+ | of the set ∆m+ and from the definitions of q(µ−1
M−

(u)) and of

NsZsMs
− we deduce that the dimension of the quotient πq(q(µ

−1
M−

(u))) is equal to the dimension of the variety
NsZsMs

−,

dim πq(q(µ
−1
M−

(u))) = dim G− 2dim M− = 2D + l − 2|∆m+
| = 2D + l − 2

(
D − l(s)− l′

2
−D0

)
=

= l(s) + 2D0 + l − l′ = dim Ns + dim Z = dim sZNs = dim Σs = dim NsZsMs
−.
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Since πq is a morphism of varieties and the conjugation action of M− on q(µ−1
M−

(u)) = N−ZsM− is free

by part (i), π−1
q (NsZsMs

−) is a closed smooth subvariety of the smooth variety N−ZsM− = q(µ−1
M−

(u)), and

dim π−1
q (NsZsMs

−) = dim NsZsMs
− + dim M− = dim Σs + dim M−.

Now recall that by Lemma 3.4.6N−ZsM− = q(µ−1
M−

(u)) is irreducible and has the same dimension, dimN−ZsM− =

dim Σs + dim M− = dim π−1
q (NsZsMs

−). By [50], Ex. 1.10(c) the identity for the dimensions and the closed in-
clusion π−1

q (NsZsMs
−) ⊂ N−ZsM− imply π−1

q (NsZsMs
−) = N−ZsM−.

Therefore πq(q(µ
−1
M−

(u))) ' NsZsMs
−, NsZsMs

− is a cross–section for the action of M− on q(µ−1
M−

(u)), and the
conjugation action

M− ×NsZsMs
− → N−ZsM−

is an isomorphism of varieties. We conclude that the algebra C[q(µ−1
M−

(u))] is isomorphic to C[M−]⊗C[NsZsMs
−],

C[q(µ−1
M−

(u))] ' C[M−]⊗ C[NsZsMs
−].

(iv) Now recall that by Lemma 3.4.1

W s(G) = C[q(µ−1
M−

(u))] ∩ C∞(µ−1
M−

(u))C
∞(M+),

where C[q(µ−1
M−

(u))] is regarded as a subalgebra in C∞(µ−1
M−

(u)) using the map q∗ : C∞(q(µ−1
M−

(u)))→ C∞(µ−1
M−

(u))

and the imbedding C[q(µ−1
M−

(u))] ⊂ C∞(q(µ−1
M−

(u))).

By Lemma 3.4.2 the algebra C∞(µ−1
M−

(u))M− is isomorphic to C∞(µ−1
M−

(u))C
∞(M+), and hence

W s(G) = C[q(µ−1
M−

(u))] ∩ C∞(µ−1
M−

(u))C
∞(M+) = C[q(µ−1

M−
(u))] ∩ C∞(µ−1

M−
(u))M− . (3.4.41)

As we already proved the variety q(µ−1
M−

(u)) is stable under the conjugation action of M−, and the map

πq : q(µ−1
M+

(u))→ πqq(µ
−1
M+

(u)) is a morphism of varieties. Moreover, under the map q : G∗ → G the local dressing
action of M− on G∗ becomes the conjugation action on G. Therefore the map

C[πqq(µ
−1
M−

(u))]→ C[q(µ−1
M−

(u))] ∩ C∞(µ−1
M−

(u))M− , ψ 7→ π∗qψ (3.4.42)

is an algebra isomorphism, where C[q(µ−1
M−

(u))] is regarded as a subalgebra in C∞(µ−1
M−

(u)) using the map

q∗ : C∞(q(µ−1
M+

(u)))→ C∞(µ−1
M−

(u))

and the imbedding C[q(µ−1
M−

(u))] ⊂ C∞(q(µ−1
M−

(u))).

Combining (3.4.41) and (3.4.42) we obtain that W s(G) ' C[πqq(µ
−1
M−

(u))] ' C[N−sZM−]M− . This completes
the proof.

3.5 Zhelobenko type operators for Poisson q-W–algebras

In this section we present the main result of this chapter, a formula for a projection operator Π : C[N−ZsM−]→
C[N−ZsM−]M− onto the subspace of invariants C[N−ZsM−]M− which is isomorphic to W s(G) as an algebra
according to Theorem 3.4.5 (iv). This formula has a direct quantum analogue which will be introduced in the next
chapter.

The operator Π can be defined following the philosophy of [119] where a similar projection operator onto
the subspace C[NZsN ]N ⊂ C[NZsN ] was defined and studied. More precisely, according to Theorem 3.4.5 any
g ∈ N−ZsM− can be uniquely represented in the form

g = nnszsmsn
−1, n ∈M−, ns ∈ Ns,ms ∈Ms

−, z ∈ Z. (3.5.1)

If for f ∈ C[N−ZsM−] we define Πf ∈ C[N−ZsM−] by

(Πf)(g) = f(n−1gn) = f(nszsms) (3.5.2)
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then Πf is an M−–invariant function, and any M−–invariant regular function on N−ZsM− can be obtained this
way. Moreover, by the definition Π2 = Π, i.e. Π is a projection onto C[N−ZsM−]M− .

To obtain an explicit formula for the operator Π we firstly find an explicit formula for n in terms of g in
(3.5.1). Denote by ω the Chevalley anti–involution on g which is induced by the antiautomorphism ω of Ush(g) on
U(g) ' Ush(g)/hUsh(g). We also denote the corresponding anti–involution of G by the same letter.

An explicit formula for Π suitable for quantization will be given in terms of matrix elements of finite–dimensional
irreducible representations of G. Let H ⊂ G be a maximal torus, ∆+ ⊂ ∆ = ∆(G,H) a system of positive roots,
P+ the corresponding set of integral dominant weights, B+ the corresponding Borel subgroup, B− the opposite
Borel subgroup, N± the unipotent radicals of B±, respectively. For any µ ∈ P+ we denote by vµ a non–zero highest
weight vector in the irreducible highest weight G–module Vµ of highest weight µ, and by (·, ·) the contravariant
non–degenerate form on Vµ such that (v, xw) = (ω(x)v, w) for any v, w ∈ Vµ, x ∈ g and (vµ, vµ) = 1.

Let β1, . . . , βN be a normal order on ∆+, X±β1 , . . . , X±βD ∈ g the corresponding root vectors defined in (2.3.2).
We shall need some special matrix elements of finite-dimensional irreducible representations of G. These matrix
elements can be defined by specializing the results of Lemma 2.3 in [29] at q = 1. By this lemma there are integral
dominant weights µp ∈ P+, p = 1, . . . , D and elements vp ∈ Vµp such that

(vp, X
(nD)
−βD . . . X

(n1)
−β1

vµp) =

{
1 if X

(nD)
−βD . . . X

(n1)
−β1

= X−βp
0 otherwise

, (3.5.3)

where for α ∈ ∆, k ∈ N we define X
(k)
α =

Xkα
k! .

Since by this definition (vp, X−βpvµp) = (ω(X−βp)vp, vµp) = 1, (vµp , vµp) = 1, and the highest weight subspace
in Vµp is one–dimensional, we deduce that ω(X−βp)vp = vµp .

We shall need the following properties of the matrix elements (vp, ·vµp).

Lemma 3.5.1. (i) For any 1 ≤ q < p ≤ D, any y = X
(nD)
−βD . . . X

(np)
−βp ∈ U(g), where ni ∈ N, y 6= 1, one has

ω(y)vq = 0. In particular, for any u ∈ U(g)
(vq, yuvµq ) = 0. (3.5.4)

(ii) For any 1 ≤ p ≤ D, any y = X
(nD)
−βD . . . X

(np)
−βp ∈ U(g), where ni ∈ N, y 6= 1, X−βp , one has ω(y)vq = 0. In

particular, for any u ∈ U(g)
(vp, yuvµp) = 0. (3.5.5)

We shall later prove Lemma 4.2.2 which is a quantum group analogue of this Lemma. Lemma 3.5.1 follows

from Lemma 4.2.2 by specializing at q
1
dr2 = 1.

Corollary 3.5.2. (i) For any 1 ≤ q < p ≤ D and any g ∈ N[−βp,−βD] one has ω(g)vq = vq.
(ii) For any 1 ≤ p ≤ D and X−βp(u) ∈ N{−βp}, u ∈ C one has ω(X−βp(u))vp = vp + uvµp .
(iii) For any 1 ≤ p ≤ D and n1 ∈ N[−βp+1,−βD], n2 ∈ N[−βp−1,−β1], X−βp(u) ∈ N{−βp}, u ∈ C one has

(vp, n1X−βp(u)n2vµp) = u.

Proof. Using the unique factorization N− = N{−βD} . . . N{−β1} introduced in Lemma 1.3.1 and the exponential
map in the one–parameter subgroups N{−βD}, . . . , N{−β1} one reduces the proof of parts (i) (ii) and (iii) of this
corollary to the statements of parts (i) and (ii) of the previous lemma, and to the definition of the matrix elements
(vp, ·vµp), respectively.

Let G0 := N−HN+ ⊂ G be the big Bruhat cell. Recall that by Lemma 1.3.2 (iii) we have an isomorphism of
verieties N−HN+ ' N− ×H ×N+ as N−HN+ is the orbit of the unit element in G for the following action

(N− ×B+)×G→ G, (n−, b+) ◦ g = n−gb
−1
+ ,

and B+ ' N+ ×H as a variety Lemma 1.3.2 (i) (see also Lemma 8.3.6 in [124]).
The big Bruhat cell can be defined in G as the compliment of the common zero locus of the regular functions

(vµ, ·vµ), µ ∈ P+, µ 6= 0. These functions together with the constant function equal to 1 = (v0, ·v0) form a
multiplicatively closed set S, and the localization of C[G] by this set is isomorphic to C[N−HN+] (see e.g. [132],
§9 and §100).

For any complex algebraic variety V and any subset X ⊂ V we denote by VV (X) ⊂ C[V ] the vanishing ideal of
X in C[V ].



3.5. ZHELOBENKO TYPE OPERATORS FOR POISSON Q-W–ALGEBRAS 121

Lemma 3.5.3. Let ϕp ∈ C(G) be the rational function on G defined by

ϕp(g) =
(vp, gvµp)

(vµp , gvµp)
.

Then the following statements are true.
(i) ϕp ∈ C[N−HN+]. Moreover, there are unique factorizations N± = N{±βD} . . . N{±β1} which induce the

isomorphism of varieties
N−HN+ ' CD ×H × CD (3.5.6)

Under this isomorphism the function ϕp becomes the p-th coordinate function on CD on the first factor in (3.5.6)
(ii) ϕp and VG0(N[−βp,−βD]HN+) generate VG0(N[−βp+1,−βD]HN+).
(iii) ϕq, q = 1, . . . , p generate VG0(N[−βp+1,−βD]HN+).

Proof. (i) ϕp ∈ C[N−HN+] as (vµp , ·vµp) ∈ S, ϕp ∈ C[G][S−1], and the localization of C[G] by S is isomorphic to
C[N−HN+].

By Lemma 1.3.1 there are unique factorizations N± = N{±βD} . . . N{±β1} which imply the isomorphism of
varieties (3.5.6) using the exponential maps for the one–parameter subgroups, where for convenience we inverse the
order of factors in CD, i.e. the k-th factor in N{±βD} . . . N{±β1} corresponds to the D − k + 1 factor in CD.

In particular, if n−hn+ ∈ N−HN+, n− ∈ N−, h ∈ H, n+ ∈ N+ then n− = n1X−βp(u)n2, n1 ∈ N[−βp+1,−βD],
n2 ∈ N[−βp−1,−β1], X−βp(u) ∈ N{−βp}, u ∈ C. Since vµp is a highest weight vector (vp, n−hn+vµp) = µp(h)(vp, n−vµp)
and (vµp , n−hn+vµp) = µp(h) 6= 0. By Corollary 3.5.2 (iii) one has (vp, n−vµp) = (vp, n1X−βp(u)n2vµp) = u. Using
these identities in the definition of ϕp we obtain

ϕp(n−hn+) =
(vp, n−hn+vµp)

(vµp , n−hn+vµp)
= u.

Thus under isomorphism (3.5.6) ϕp becomes the p-th coordinate function on CD on the first factor in (3.5.6).
This proves part (i).

(ii) Under isomorphism (3.5.6) N[−βp,−βD]HN+ ' CD−p+1 × H × CD, and ϕp becomes the first coordinate

function on CD−p+1. We deduce that the ideal generated by ϕp and by VG0(N[−βp,−βD]HN+) is the vanishing ideal

of VG0(N[−βp+1,−βD]HN+) ' CD−p ×H × CD. This proves part (i).
Part (iii) follows from part (ii) using induction over p.

Next, we shall need to consider some normal orderings on ∆+ associated to s in Definition 1.6.19. We label the
roots in the initial segment ∆m+

⊂ ∆+ of the system ∆+ ordered as in Definition 1.6.19 as follows

β11, . . . , β1n1
, β21, . . . , β2n2

, . . . , βR−11 . . . βR−1nR−1
,

where {β11, . . . , β1n1
} = ∆1 ∩∆m+

, {βR−11 . . . βR−1nR−1
} = ∆R−1 ∩∆m+

, and for 1 < j < R− 1 {βj1, . . . , βjnj} =
∆j .

Let
si11 . . . si1n1

si21 . . . si2n2
. . . siR−11

. . . siR−1nR−1

be the corresponding initial part of the reduced decomposition of the longest element of the Weyl group associated
to the normal ordering introduced in Definition 1.6.19.

Let wj = sij1 . . . sijnj . Note that since

∆(w1...wj−1)−1 = ∆1 ∩∆m+
∪∆2 ∪ . . . ∪∆j−1 (3.5.7)

for j = 2, . . . , R− 1 one has
(w1 . . . wj−1)−1∆j

+ = ∆+ (3.5.8)

by the definition of ∆j
+.

Remark 3.5.4. Note that each root system ∆j
+ inherits a normal ordering from the circular normal ordering

associated to (1.6.9). Therefore for each j = 2, . . . , R− 1 the corresponding isomorphism (3.5.8) induces a normal
ordering on ∆+ with respect to which the images of the roots from the segment βj1, . . . , βjnj form an initial segment.
We denote the roots in this segment by δj1, . . . , δjnj , δjk = (w1 . . . wj−1)−1βjk, k = 1, . . . , nj, and the remaining
roots by δjk, k = nj + 1, . . . D in the increasing order according to the values of k. To keep the notation uniform
we also write δ1k = β1k, k = 1, . . . , D.
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For j = 1, . . . , R− 1 define ŝj = (w1 . . . wj−1)−1s(w1 . . . wj−1), where we assume that w0 = 1, so ŝ0 = s.
For each j = 1, . . . , R − 1, k = 1, . . . , nj we define matrix elements (vjk, ·vµjk) by condition (3.5.3), where for

j = 1 the normal ordering on ∆+ introduced in Definition 1.6.19 is used, and for j > 1 the normal ordering on ∆+

induced by the normal ordering on ∆j
+ with the help of isomorphism (3.5.8) is used, and βp = δjk. Let

ϕjk(g) =
(vjk, gŝ

−1
j vµjk)

(vµjk , gŝ
−1
j vµjk)

. (3.5.9)

Let Gj = N−HN+ŝj , j = 1, . . . , R− 1. Multiplication by ŝ−1
p in G from the right yields the isomorphism of Gp

with the open dense Bruhat cell G0 = N−HN+ ⊂ G,

Gp → G0, g 7→ gŝ−1
j . (3.5.10)

G0 can be defined in G as the compliment of the common zero locus of the regular functions (vµ, ·vµ), µ ∈ P+,
µ 6= 0. These functions together with the constant function equal to 1 = (v0, ·v0) form a multiplicatively closed set,
and the localization of C[G] by this set is isomorphic to C[N−HN+] (see e.g. [132], §9 and §100).

Thus if we introduce the multiplicatively closed sets Sj = {(vµ, ·ŝ−1
j vµ), µ ∈ P+}, j = 1, . . . , R− 1 then

Gj = {g ∈ G : (vµ, gŝ
−1
j vµ) 6= 0 ∀µ ∈ P+}, (3.5.11)

and

C[Gj ] = C[G][S−1
j ]. (3.5.12)

By Lemma 1.6.21 the set of roots (w1 . . . wj−1)−1(−∆j
+ ∪∆0) is parabolic. Let P j ⊂ G be the corresponding

parabolic subgroup, N j
− its unipotent radical, and Ps ⊂ G the subgroup generated by the one–parameter subgroups

corresponding to the roots from the additively closed set (w1 . . . wj−1)−1(−∆s
s ∪∆0). The semisimple part Lj of

P j is (w1 . . . wj−1)−1Lw1 . . . wj−1 as −(−∆j
+ ∪∆0) ∩ (−∆j

+ ∪∆0) = ∆0.

Lemma 3.5.5. (i) For any j = 1, . . . , R − 1, k = 1, . . . , nj, and g = n−zŝjn ∈ N[−δjk,−δjD]ŝjG, where n− ∈
N[−δjk,−δjD], z ∈ Lj, and n ∈ N j

− or n ∈ N(w1...wj−1)−1(−∆s
s)

one has

(vjk, gŝ
−1
j vµjk) = u(vµjk , zvµjk), (3.5.13)

and

(vµ, gŝ
−1
j vµ) = (vµ, zvµ), (3.5.14)

where u ∈ C is defined from the unique factorizations n− = X−δjk(u)n′ = n′′X−δjk(u), n′, n′′ ∈ N[−δjk+1,−δjD] with
the help of Lemma 3.4.4. Thus

ϕjk(g) = u. (3.5.15)

(ii) Let Zj± = (w1 . . . wj−1)−1Z±w1 . . . wj−1, M j
− = N j

− ∩ (w1 . . . wj−1)−1M−w1 . . . wj−1, j = 1, . . . , R − 1.

Then for any j = 1, . . . , R − 1, k = 1, . . . , nj one has N[−δjk,−δjD]Z
j
−HZ

j
+ŝjN

j
− ⊂ Gj. Moreover, for k =

1, . . . , nj the function ϕjk ∈ C[Gj ] and the ideal Jjk
loc

:= VGj (N[−δjk,−δjD]Z
j
−HZ

j
+ŝjM

j
−) generate Jjk+1loc :=

VGj (N[−δjk+1,−δjD]Z
j
−HZ

j
+ŝjM

j
−).

(iii) For any j = 1, . . . , R − 1, k = 1, . . . , nj the functions ϕjm, m = 1, . . . , k and the ideal Jj1
loc

generate

Jjk+1loc.

Proof. By Corollary 3.5.2 (i) and (ii) we have

(vjk, gŝ
−1
j vµjk) = (vjk, n

′′X−δjk(u)zŝjnŝ
−1
j vµjk) = (vjk, zŝjnŝ

−1
j vµjk) + u(vµjk , zŝjnŝ

−1
j vµjk). (3.5.16)

If n ∈ N j
− the weight components of the vector zŝjnŝ

−1
j vµjk belong to −(w1 . . . wj−1)−1s(∆0 ∪∆j

+) + µjk by

the definition of P j , and by Lemma (1.6.22) (i) this set empty intersection with −(w1 . . . wj−1)−1∆j +µjk. On the
other hand the weight of vjk is equal to µjk − δjk ∈ −(w1 . . . wj−1)−1∆j + µjk. Since different weight subspaces
are orthogonal with respect to the contravariant form, the first term in (3.5.16) vanishes in this case.

The same conclusion can be obtained if n ∈ N(w1...wj−1)−1(−∆s
s)

with the help of part (ii) of Lemma 1.6.22.
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In both cases the µjk–weight component of zŝjnŝ
−1
j vµjk can give a nontrivial contribution to the right hand side

of (3.5.16). If n ∈ N j
− we note that the set of roots−(w1 . . . wj−1)−1s(∆0∪∆j

+) is parabolic and−(w1 . . . wj−1)−1s(∆0∪
∆j

+) ∪ (w1 . . . wj−1)−1s(∆0 ∪ ∆j
+) = (w1 . . . wj−1)−1∆0. Therefore the µjk–weight component of zŝjnŝ

−1
j vµjk is

equal to the µjk–weight component of zvµjk , and we obtain (3.5.13).
The case when n ∈ N(w1...wj−1)−1(−∆s

s)
can be treated in a similar way noting that LjN(w1...wj−1)−1(−∆s

s)
⊂

(w1 . . . wj−1)−1(P ), and the semisimple part of the parabolic subgroup (w1 . . . wj−1)−1(P ) is Lj .
Formula (3.5.14) is established using the same arguments.
Formula (3.5.15) follows from the definition of ϕjk, formula (3.5.13) and (3.5.14) with µ = µjk.

(ii) Note that Zj± = (w1 . . . wj−1)−1Z±w1 . . . wj−1 ⊂ N± as ∆(w1...wj−1)−1 ∩ ∆0 = {∅} by (3.5.7). Thus for

g = n−z−hz+ŝjn ∈ N[−δjk,−δjD]Z
j
−HZ

j
+ŝjN

j
−, where n− ∈ N[−δjk,−δjD], z± ∈ Zj±, h ∈ H and n ∈ N j

− one has
from (3.5.14)

(vµ, gŝ
−1
j vµ) = (vµ, z−hz+vµ) = (vµ, hvµ) 6= 0.

From (3.5.11) it follows that N[−δjk,−δjD]Z
j
−HZ

j
+ŝjN

j
− ⊂ Gj .

By the definition ϕjk ∈ C[Gj ] ' C[G][S−1
j ].

Now let I be the ideal in C[Gj ] generated by the function ϕjk and the ideal Jjk
loc

From formula (3.5.15) it follows that an element g ∈ N[−δjk,−δjD]Z
j
−HZ

j
+ŝjM

j
− belongs toN[−δjk+1,−δjD]Z

j
−HZ

j
+ŝjM

j
−

if and only if ϕjk(g) = 0. Therefore the zero locus of I coincides with the closure of N[−δjk+1,−δjD]Z
j
−HZ

j
+ŝjM

j
−.

It remains to show that I is radical.
Indeed, let c ∈ C[Gp] be such that cn ∈ I for some n ∈ N, n > 0, i.e. cn = f + g, f = ϕmjkρ for some

m ∈ N, m > 0 and ρ ∈ C[Gp], g ∈ Jjkloc. Then the restriction of cn to N[−δjk,−δjD]Z
j
−HZ

j
+ŝjM

j
− coincides with

the restriction of f to N[−δjk,−δjD]Z
j
−HZ

j
+ŝjM

j
−. In particular, the restriction of cn to N[−δjk,−δjD]Z

j
−HZ

j
+ŝjM

j
−

vanishes on N[−δjk+1,−δjD]Z
j
−HZ

j
+ŝjM

j
−. This implies that the restriction of c to N[−δjk,−δjD]Z

j
−HZ

j
+ŝjM

j
− must

also vanish on N[−δjk+1,−δjD]Z
j
−HZ

j
+ŝjM

j
−.

By Lemma 3.5.3 (i) the composition of the isomorphisms (3.5.6) and (3.5.10) yield an isomorphism of varieties

Gj ' CD ×H × CD, (3.5.17)

and under this isomorphism the function ϕjk becomes the k-th coordinate function on CD on the first factor in
(3.5.17).

Now formula (3.5.15) and simple induction over k imply that under isomorphism (3.5.17)N[−δjk,−δjD]Z
j
−HZ

j
+ŝjM

j
−

becomes a subset of CD ×H × CD of the form

0× . . .× 0︸ ︷︷ ︸
k − 1 factors

×C×Xjk ,

where the factor C in the last product corresponds to the k-th component in CD in the first factor in the right hand
side of (3.5.17), Xjk is a subset of all the remaining factors in the right hand side of (3.5.17), and the function ϕjk
becomes the coordinate function on the factor C.

From formula (3.5.15) it follows that an element g ∈ N[−δjk,−δjD]Z
j
−HZ

j
+ŝjM

j
− belongs toN[−δjk+1,−δjD]Z

j
−HZ

j
+ŝjM

j
−

if and only if ϕjk(g) = 0. Hence Xjk ' N[−δjk+1,−δjD]Z
j
−HZ

j
+ŝjM

j
−, and under isomorphism (3.5.17) we have

N[−δjk+1,−δjD]Z
j
−HZ

j
+ŝjM

j
− ' 0× . . .× 0× 0×Xjk .

We conclude that if c vanishes on N[−δjk+1,−δjD]Z
j
−HZ

j
+ŝjM

j
−, its restriction to N[−δjk,−δjD]Z

j
−HZ

j
+ŝjM

j
−

coincides with the restriction to this subset of the function ϕpjkψ for some p ∈ N, p > 0 and ψ ∈ C[Gp]. Thus

c = ϕpjk(ψ + ψ′) + ψ′′, where ψ′, ψ′′ ∈ Jjkloc, and hence c ∈ I by the definition of I.

We deduce that I is radical. This implies I = Jjk+1loc and completes the proof of part (ii).
Part (iii) follows from (ii) using induction over k.

Now we come back to the description of the projection operator Π.

Proposition 3.5.6. Let g = nnszsmsn
−1 be the unique presentation (3.5.1) for an element g ∈ N−ZsM−.

Then n can be uniquely factorized as n = X−β11(u11) . . . X−βR−1nR−1
(uR−1nR−1

) where we assume that the root
vectors X−βjk used in the definition of the one–parameter subgroups are related to the root vectors X−δjk used in
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the definition of the functions ϕjk as follows X−βjk = Ad(w1 . . . wj−1)X−δjk , and the numbers ujk can be found
inductively by the following formula

ujk = ϕjk((w1 . . . wj−1)−1gjk(w1 . . . wj−1)), (3.5.18)

where gjk = n−1
jk gnjk, njk = X−β11

(u11) . . . X−βjk−1
(ujk−1), j = 1, . . . , R− 1, k = 1, . . . , nj and it is assumed that

n10 = 1 and X−βj0(uj0) = X−βj−1nj−1
(ujnj−1).

Proof. The numbers ujk can be found by induction starting with u11. We shall establish the induction step. The
case of u11 corresponding to the base of the induction can be considered in a similar way.

Assume that u11, . . . , ujk−1 have already been found. Then

gjk = n−1
jk gnjk = X−βjk(ujk) . . . X−βR−1nR−1

(uR−1nR−1
)nszsmsX−βR−1nR−1

(−uR−1nR−1
) . . . X−βjk(−ujk).

Now (w1 . . . wj−1)−1gjk(w1 . . . wj−1) has the form of g from Lemma 3.5.5 with u = ujk. Therefore we obtain
(3.5.18) by formula (3.5.15).

For a representative w ∈ G of a Weyl group element w ∈ W we denote the operator on C(G) induced by the
conjugation by w on G by the same letter,

(wf)(g) = f(wgw−1), f ∈ C(G).

Observing that in the notation of Proposition 3.5.6 for g = nnszsmsn
−1 ∈ N−ZsM− we have n−1gn = nszsms

and recalling the definition of the operator Π in (3.5.2) we infer the following theorem from Proposition 3.5.6.

Theorem 3.5.7. Let Πjk be the operator on the space of rational functions C(G) on G induced by conjugation by
the element exp(−ϕjkX−δjk),

(Πjkf)(g) = f(exp(−ϕjk(g)X−δjk)g exp(ϕjk(g)X−δjk)). (3.5.19)

Then the restriction of the composition

Π11 . . .Π1n1
◦ w−1

1 ◦Π21 . . .Π2n2
◦ w−1

2 . . . ◦ w−1
R−2 ◦ΠR−11 . . .ΠR−1nR−1

◦ w1 . . . wR−2

to C[N−ZsM−] is equal to the projection operator Π onto the subspace C[N−ZsM−]M− of M−–invariant regular
functions on N−ZsM−, Π : C[N−ZsM−]→ C[N−ZsM−]M− ,

Π = Π11 . . .Π1n1
◦ w−1

1 ◦Π21 . . .Π2n2
◦ w−1

2 . . . ◦ w−1
R−2 ◦ΠR−11 . . .ΠR−1nR−1

◦ w1 . . . wR−2. (3.5.20)

Corollary 3.5.8. The operator Πc : C[(w1 . . . wR−2)−1N−ZsM−(w1 . . . wR−2)]→ C[N−ZsM−]M− defined by

Πc = Π11 . . .Π1n1 ◦ w−1
1 ◦Π21 . . .Π2n2 ◦ w−1

2 . . . ◦ w−1
R−2 ◦ΠR−11 . . .ΠR−1nR−1

= Π ◦ (w1 . . . wR−2)−1. (3.5.21)

is surjective.

This corollary has a quantum counterpart which will be formulated and proved in the next chapter. The
operator Πc has a direct quantum analogue.

3.6 Vanishing ideals

Let ι : C[G]→ C[Gj ] = C[G][S−1
j ] be the canonical ring homomorphism, Jjk := ι−1Jjk

loc
.

By this definition
Jjk = VG(N[−δjk,−δjD]Z

j
−HZ

j
+ŝjM

j
−). (3.6.1)

Lemma 3.6.1. (i) Jjk
loc

= Jjk[S−1
j ].

(ii) Jjk
loc

= Jjk
′
[S−1
j ], where Jjk

′ ⊂ C[G] is the ideal generated by Jj1 and by (vjm, ·ŝ−1
j vµjm), m = 1, . . . , k−1,

where we assume that Jj1
′

= Jj1.
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Proof. (i) If f ∈ Jjkloc then f = g/g′, g ∈ C[G], g′ ∈ Sj and f vanishes on N[−δjk,−δjD]Z
j
−HZ

j
+ŝjM

j
−. Since by

Lemma 3.5.5 (ii)

N[−δjk,−δjD]Z
j
−HZ

j
+ŝjM

j
− ⊂ Gj ,

and by (3.5.11) g′ does not vanish on Gj we obtain that g vanishes on N[−δjk,−δjD]Z
j
−HZ

j
+ŝjM

j
−, i.e. g ∈ Jjk. We

deduce that Jjk
loc ⊂ Jjk[S−1

p ]. The opposite inclusion is obvious.
(ii) Note that by the definition of ϕjm one has

(vjm, gŝ
−1
j vµjk) = ϕjm(g)(vµjm , gŝ

−1
j vµjm),

and (vµjm , ·ŝ−1
j vµjm) ∈ Sj . Therefore the statement in part (ii) follows from Lemma 3.5.5 (iii).

Next we give several descriptions of the ideals Jjk. Lemma 3.5.5 (ii) and (iii), Corollary 3.5.8 and the statements
of this section are the only results of this chapter which will be used in Chapter 4 for the purposes of quantization.

Proposition 3.6.2. (i) For j = 1, . . . , R − 1, k = 1, . . . , nj let njk, z
j
±,m

j
− ⊂ g be the Lie subalgebras of the

subgroups N[−δjk,−δjD], Z
j
±, and M j

− of G, respectively. Then the ideal Jjk consists of the matrix elements of the
form (w, ·v) ∈ C[G], where w, v ∈ V , V is a finite-dimensional representation of g, and (w, yŝjhz+xv) = 0 for any

y ∈ U(njk), h ∈ U(h), z+ ∈ U(zj+), x ∈ U(mj−).
(ii) The ideal Jj1 is generated by the matrix elements of the form (u, ·v) ∈ C[G], where u is a highest weight

vector in a finite-dimensional representation V of g, and v ∈ V satisfies, and (v, ŝpz+xv) = 0 for any z+ ∈ U(zj+),

x ∈ U(mj−).

The proof of this proposition follows from the following lemma.

Lemma 3.6.3. Let G1, . . . , Gk ⊂ G be the Lie subgroups corresponding to Lie subalgebras g1, . . . , gk ⊂ g, respec-
tively, and g ∈ G. The following statements are true.

(i) The ideal VG(G1gG2 . . . Gk) ⊂ C[G] consists of the matrix elements of the form (w, ·v) ∈ C[G], where w, v ∈
V , V is a finite-dimensional representation V of g, and (w, x1gx2 . . . xkv) = 0 for any xi ∈ U(gi), i = 1, . . . , k.

(ii) If G1 = B− the ideal VG(G1gG2 . . . Gk) ⊂ C[G] is generated by the matrix elements of the form (u, ·v) ∈
C[G], where u is a highest weight vector in a finite-dimensional representation V of g, and v ∈ V is such that
(u, gx2 . . . xkv) = 0 for any xi ∈ U(gi), i = 2, . . . , k.

Proof of Proposition 3.6.2. Since s fixes all roots from ∆0, Z+ is generated by one-parameter subgroups corre-
sponding to roots from (∆0)+, and any representative of any Weyl group element normalizes H, we have

HZj+ŝj = H(w1 . . . wj−1)−1Z+sw1 . . . wj−1 = H(w1 . . . wj−1)−1sZ+w1 . . . wj−1) =

= (w1 . . . wj−1)−1sHZ+w1 . . . wj−1 = HŝjZ
j
+ = ŝjHZ

j
+.

Therefore we can write

Jjk = VG(N[−δjk,−δjD]Z
j
−HZ

j
+ŝjM

j
−) = VG(N[−δjk,−δjD]Z

j
−ŝjHZ

j
+M

j
−). (3.6.2)

Since for j = 1, . . . , R − 1, k = 1, . . . nj (∆0)− ⊂ [−βjk,−βD] we deduce that (w1 . . . wj−1)−1((∆0)−) ⊂
(w1 . . . wj−1)−1([−βjk,−βD]) ⊂ [−δjk,−δjD], and hence Zj− ⊂ N[−δjk,−δjD] ⊂ N−. Thus N[−δjk,−δjD]Z

j
− =

N[−δjk,−δjD], and (3.6.2) takes the form

Jjk = VG(N[−δjk,−δjD]ŝjHZ
j
+M

j
−) = VG(N[−δjk,−δjD]HŝjZ

j
+M

j
−). (3.6.3)

Now part (i) of Proposition 3.6.2 follows from part (i) of Lemma 3.6.3, with k = 4, G1 = N[−δjk,−δjD], G2 = H,

G3 = Zj+, G4 = M j
−, and g = ŝj .

Part (ii) of Proposition 3.6.2 follows from parts (ii) of Lemma 3.6.3 with k = 3, G1 = N[−δjk,−δjD]H = B−,

G2 = Zj+, G3 = M j
−, and g = ŝp.

Proof of part (i) of Lemma 3.6.3.
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Since for any j = 1, . . . , k, i, ij = 1, 2, . . ., rij ∈ R, xij ∈ gj one has

er
1
1x

1
1 . . . er

i1
1 x

i1
1 ger

1
2x

1
2 . . . er

i2
2 x

i2
2 . . . er

1
kx

1
k . . . er

ik
k x

ik
k ∈ G1gG2 . . . Gk,

we obtain that for every element (w, ·v) ∈ VG(G1gG2 . . . Gk)

0 =
dn∏k

j=1

∏ij
i=1 dr

i
j

∣∣∣rji=0(w, er
1
1x

1
1 . . . er

i1
1 x

i1
1 ger

1
2x

1
2 . . . er

i2
2 x

i2
2 . . . er

1
kx

1
k . . . er

ik
k x

ik
k v) =

= (w, x1
1 . . . x

i1
1 gx

1
2 . . . x

i2
2 . . . x1

k . . . x
ik
k v),

where n =
∑k
j=1

∑ij
i=1 1 =

∑k
j=1

(ij+1)ij
2 . Thus (w, x1gx2 . . . xkv) = 0 for any xj ∈ U(gj), j = 1, . . . , k of the form

xj = x1
j . . . x

ij
j as in the previous formula. By linearity (w, x1gx2 . . . xkv) = 0 for any xj ∈ U(gj), j = 1, . . . , k.

Conversely, let (w, ·v) be any element of C[G] such that (w, x1gx2 . . . xkv) = 0 for any xj ∈ U(gj), j = 1, . . . , k.
Observe that the Lie groups Gj , j = 1, . . . k are connected, so that each Gj is generated by exp(gj). Thus any

element of G1gG2 . . . Gk can be written in the form g1gg2 . . . gk, where gj = ex
1
j . . . ex

ij
j , j = 1, . . . , k, ij ∈ {1, 2, . . .},

xij ∈ gj , i = 1, . . . , ij . Now we have

(w, g1gg2 . . . gkv) = (w, ex
1
1 . . . ex

i1
1 gex

1
2 . . . ex

i2
2 . . . ex

1
k . . . ex

ik
k v) =

=
∑
nij∈N

1∏k
j=1

∏ij
i=1 n

i
j !

(w, (x1
1)n

1
1 . . . (xi11 )n

i1
1 g(x1

2)n
1
2 . . . (xi22 )n

i2
2 . . . (x1

k)n
1
k . . . (xikk )n

ik
k v) = 0.

Thus (w, ·v) ∈ VG(G1gG2 . . . Gk). This completes the proof.

The proof of part (ii) of Lemma 3.6.3 is based on the description of closed subvarieties in B− \ G in terms of
the so–called generalized Plücker coordinates.

Recall that matrix elements of the form (u, ·v), where u is a highest weight vector in a finite-dimensional
representation V of g, and v ∈ V , can be viewed as sections of line bundles on B− \ G (see [38], Section 3.1).
They are also called generalized Plücker coordinates on B− \ G. More precisely if V has highest weight λ then
(u, ·v) is a section of the line bundle on B− \G associated to the one–dimensional representation of B+ = ω(B−)
corresponding to λ.

Lemma 3.6.4. Any closed subvariety in B− \G is the zero locus of a finite set of generalized Plücker coordinates.

Proof. Indeed, the flag variety B− \G can be realized as the G–orbit O of the line [u] defined by a non–zero lowest
weight vector u in the projectivisation P (V ∗µ ) of a finite-dimensional irreducible representation V ∗µ of G dual to a
highest weight irreducible representation Vµ with a regular dominant highest weight µ (see e.g. [9], Section 2 or
[46], §4). Note that B− \ G is a projective complete variety (see [124], Section 6.2, in particular, Lemma 6.2.2),
and hence by Proposition 6.1.2 (iv) in [124] it is closed in P (V ∗µ ).

If we identify Vµ with V ∗µ using the contravariant form then a highest weight vector u of Vµ becomes a lowest
weight vector in V ∗µ and the class [g] ∈ B− \G of an element g ∈ G corresponds to ω(g)[u] = [ω(g)u] ∈ O ⊂ P (V ∗µ ).

Now let v ∈ Vµ. Then

(u, gv) = (ω(g)u, v) = (x, v), x = ω(g)u ∈ V ∗µ , (3.6.4)

so that [x] = [ω(g)u] ∈ O ⊂ P (V ∗µ ).

Any y ∈ V ∗µ can be written in the form y =
∑S
n=1 cnen ∈ V ∗µ , where en, n = 1, . . . , S is a weight basis of V ∗µ .

The functions φn(y) = cn are linear coordinates on V ∗µ . Moreover, since Vµ ' V ∗µ one can find elements vn ∈ Vµ
such that φn(y) = (y, vn). In particular, φn generate the algebra of polynomial functions on V ∗µ , and any closed
subvariety in P (V ∗µ ), and hence in O, which is closed in P (V ∗µ ), is the zero locus of a finite collection of some
polynomials homogeneous in φn (see [50], Ch. 1, §2).

If f(φ1, . . . φS) is such a polynomial of degree d then the equation f(φ1(y), . . . φS(y)) = 0 is well–defined in
P (V ∗µ ), i.e. if y ∈ V ∗µ is its solution then any element of the line [y] ∈ P (V ∗µ ) is also its solution. Now using (3.6.4),
the definition of φn and the homogeneity of f we deduce that for [x] ∈ O f(φ1(x), . . . φS(x)) = 0 if and only if
f((u, gv1), . . . , (u, gvS)) = 0 for any g ∈ G, where [g] ∈ B−\G corresponds to [x] under the isomorphismO ' B−\G.
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Note also that using algebraic rules for matrix elements we immediately obtain that f((u, ·v1), . . . , (u, ·vS)) is a
generalized Plücker coordinate defined using the representation V ⊗dµ and the highest weight vector

u⊗d = u⊗ . . .⊗ u︸ ︷︷ ︸
d times

∈ V ⊗dµ ,

i.e. f((u, ·v1), . . . , (u, ·vS)) = (u⊗d, ·v) for some v ∈ V ⊗dµ . The last two facts imply that any closed subvariety in
B− \G is the zero locus of a finite set of generalized Plücker coordinates.

Proof of part (ii) of Lemma 3.6.3.
Observe that the projection p : G→ B−\G is an open map by Theorem 5.5.5 in [124], so that for any U ⊂ B−\G

p−1(U) = p−1(U). In particular,

p−1(B− \B−gG2 . . . Gk) = p−1(B− \B−gG2 . . . Gk) = B−gG2 . . . Gk. (3.6.5)

By Lemma 3.6.4 the closure B− \B−gG2 . . . Gk is the zero locus of a finite set of generalized Plücker coordinates.
Therefore by (3.6.5) h ∈ B−gG2 . . . Gk if and only if all generalized Plücker coordinates from this set vanish on the
class [h] of h in B− \G. But if (u, ·v) is the matrix element corresponding to one of these Plücker coordinates then
by the definition this Plücker coordinate vanishes on [h] ∈ B− \G if and only if (u, hv) = 0. Therefore the matrix
elements (u, ·v) corresponding to the Plücker coordinates the common zero locus of which is B− \B−gG2 . . . Gk
generate VG(B−gG2 . . . Gk) = VG(B−gG2 . . . Gk).

If (u, ·v) ∈ VG(B−gG2 . . . Gk), where u is a highest weight vector in a finite-dimensional representation V of
g, and v ∈ V then by part (i) of Lemma 3.6.3 (u, x1gx2 . . . xkv) = 0 for any xi ∈ U(gi), i = 1, . . . , k, where
g1 = b−. Since ω(U(b−))v = ω(U(b+))v = Cv the last condition is equivalent to (u, gx2 . . . xkv) = 0 for any
xi ∈ U(gi), i = 2, . . . , k. Thus the ideal VG(B−gG2 . . . Gk) ⊂ C[G] is generated by the matrix elements of the form
(u, ·v) ∈ C[G], where u is a highest weight vector in a finite-dimensional representation V of g, and v ∈ V satisfies
(u, gx2 . . . xkv) = 0 for any xi ∈ U(gi), i = 2, . . . , k. This completes the proof.

3.7 Bibliographic comments

The results on Poisson–Lie groups used in this book can be found in [20], [32], [100], [106].
Proposition 3.1.1 is stated in [20] as Theorem 1.3.2 and Proposition 3.1.2 and the relevant properties of classical

r-matrices can be found in [8], [104].
The result stated in Proposition 3.2.1 can be found in [106], Section 2.
Q-W–algebras for realizations of quantum groups associated to Weyl group elements were introduced in [110, 111]

in the case of Coxeter elements and in [114] in the general situation. However, in the definitions given in those
papers other forms of the quantum group are used. The definition of q-W–algebras in this book is more close to
the one given in [116]; it uses the Ad locally finite part of the quantum group (see [59], Chapter 7) which reduces
to the algebra of regular functions on G when q = 1. However, in this book we define all algebras over slightly
different rings.

The exposition in Sections 3.2 and 3.4 follows [114, 116] with some appropriate modifications.
The presentation of the results on Poisson reduction in Section 3.3 is close to [112], Section 2.3. More details on

the notion and the properties of dual pairs and Poisson reduction can be found in [105], and for statements related
to the moment map for Poisson–Lie group actions the reader is referred to [79].

The original definition of the Poisson algebras W s(G) using the classical Poisson reduction only was given in
[113].

The definition of the classical Zhelobenko type operator Π in Section 3.5 is a modified version of the definition
given in [119].
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Chapter 4

Zhelobenko type operators for
q-W–algebras

In this chapter we define a quantum analogue Πq
c of the operator Πc and apply it to describe q-W–algebras. Observe

that the operator Π is defined using the conjugation action and operators of multiplication by the functions ϕjk.
The conjugation action has a natural quantum group analogue, the adjoint action. But multiplication by functions
in C[G] is quite far from the multiplication in the algebra CsB[G∗] which is used in the definition of q-W–algebras.
However, using isomorphism (3.2.14) of Ad–modules CsB[G∗] and CsB[G] we can try to describe q-W–algebras in
terms of the space CsB[G] multiplication in which is more closely related to that of C[G]. Therefore it is natural
to expect that a quantum analogue of the operator Πc, if it exists at all, should be defined in terms of the adjoint
action and of operators of multiplication in CsB[G] using appropriate quantum analogues of formulas (3.5.19) and
(3.5.21). We shall see that this conjecture is almost correct. In fact CsB[G] should be replaced with a certain
localization. More precisely, recall that the operator Πc is defined using the functions ϕjk given by (3.5.9). Natural
analogues of matrix elements which appear in formula (3.5.9) can be defined. But formula (3.5.9) contains some
artificial denominators zeroes of which do not correspond to any singularities of the functions ϕjk, which are in fact
regular, in the formula for Πc. It turns out that in the quantum case formulas similar to (3.5.9) make sense but
the denominators in them are not canceled in the formula for Πq

c , and we are forced to use localizations containing

all such denominators. This will also force us to replace the algebra W s
B(G) with a certain localization W s,loc

B (G)
of it.

The main difficulty in defining a quantum analogue Πq
c of the operator Πc is that the proof of the fact that

the operator defined by (3.5.20) is a projection operator onto W s(G) is based on isomorphism (3.4.32) a quantum
counterpart of which does not make sense. Recall that W s

B(G) is the space of invariants with respect to the adjoint
action of CsB[M+] on QB. Although quantum analogues of operators (3.5.19) can be defined the proof of the fact

that their composition similar to (3.5.21) is an with the image being the localization W s,loc
B (G) of W s

B(G) should
only use the algebra structure of CsB[G], the properties of the adjoint action of CsB[M+] on QB, and the structure
of QB. These are the only technical tools in our disposal.

Thus our first task is to describe in terms of CsB[G] the CsB[M+]–module QB originally defined using CsB[G∗].
In the classical case this would correspond to describing the vanishing ideal of the closed subvariety N−ZsM− '
N−ZsM

s
− ⊂ G as by Lemma 3.4.1 and by Theorem 3.4.5 QB/(q

1
dr2 − 1)QB ' C[N−ZsM

s
−]. It turns out that not

all elements of C[G] generating the vanishing ideal of N−ZsM
s
− have nice quantum counterparts in CsB[G]. Recall

that C[G] is P × P–graded via the left and the right regular action of H on G. The subvariety N−ZsM
s
− ⊂ G is

closed and some generators of its vanishing ideal belong to the graded components and some do not. It turns out
that at least some of the generators of the latter type have no nice quantum counterparts. But for our purposes
it suffices to replace N−ZsM

s
− with a larger set N−LsM

s
− the vanishing ideal of which has a nice quantum

counterpart I11
B in CsB[G]. This counterpart is described in Proposition 4.1.2 and its image under the natural map

CsB[G] ' CsB[G∗]→ QB is zero.
After recollecting some facts on the algebra CsB[G] and on the adjoint action in Section 4.2 we study properties

of I11
B in Section 4.3.

In order to show that Πq
c is an operator with the image W s,loc

B (G) we shall need some relations which resemble

relations in the algebras C[Gj ]/Jjk
loc

.
In Section 4.5 we introduce the localizations mentioned above and study their properties and the relevant

129
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properties of the adjoint action. The results obtained in Sections 4.1, 4.2, 4.3, 4.4 and 4.5 are prerequisites for the
study of the properties of the quantum analogues Pjk of the operators Πjk and of their compositions in Section 4.6,
the main properties being summarized in Proposition 4.6.1. In Proposition 4.6.7 we also define quantum analogues
of monomials in variables ϕjk which play a crucial role in the study of equivariant modules over a quantum group
and in the proof of the De Concini–Kac–Procesi conjecture.

Finally in Section 4.7 we prove that the image of the operator Πq
c almost coincides with the localization W s,loc

B (G)
of the algebra W s

B(G).

4.1 A quantum analogue of the level surface of the moment map for
q-W–algebras

In this section we describe a quantum counterpart I11
B ⊂ CsB[G] of the vanishing ideal J11. As we mentioned in the

introduction to this chapter isomorphism (3.2.14) of Ads–modules CsB[G∗] and CsB[G] plays a central role in the
description of I11

B . Note that since both ω0 and the antipode Ss are algebra antiautomorphisms, the compositions
ω0S

−1
s and Ssω0 are algebra automorphisms. For technical reasons we shall replace the adjoint action of Us,resB (g)

on CsB[G] with the twisted adjoint action defined by

(Ad0
sxf)(w) = f(ω0S

−1
s (Ad′sx(Ssω0w))), (4.1.1)

where f ∈ CsB[G], x, w ∈ Us,resB (g). Since ω0 is an algebra antiautomorphism and a coalgebra automorphism we
can also write

(Ad0
sxf)(w) = f((ω0S

−1
s )(x1)wω0(x2)) = f(Ss(ω0x

1)wω0(x2)) = f(Adsω0(x)(w)). (4.1.2)

Consider isomorphism (3.2.14) twisted by the automorphism ω0S
−1
s ,

ϕ : CsB[G]→ CsB[G∗], f 7→ (id⊗ f)(id⊗ ω0S
−1
s )(Rs21Rs). (4.1.3)

If κ = 1, by the definition of QB = ρχsq (C
s
B[G∗]), where ρχsq : CsB[G∗] → CsB[G∗]/IB := Q′B is the canonical

projection, and by Lemma 3.2.11 ϕ induces a homomorphism of CsB[M+]–modules

φ : CsB[G]→ QB, φ(f) = ϕ(f)1, (4.1.4)

where CsB[G] is equipped with the restriction of action (4.1.1) to CsB[M+], QB with the action induced by the adjoint
action Ad of CsB[M+], and 1 is the image of 1 ∈ CsB[G∗] in QB under ρχsq .

Now we make some preparations to state a quantum counterpart of Proposition 3.4.3. The proof of Proposition
3.4.3 was based on the Chevalley commutation relations between one–parameter subgroups in G as described in
Lemma 3.4.4 and on formula (3.4.9) for representatives of Weyl group elements in G. In the quantum case instead
of the Chevalley commutation relations we have commutation relations between quantum root vectors, and the
Weyl group is replaced with the corresponding braid group generators of which are also expressed in terms on
generators of the quantum group by formula (2.2.4). However, in the quantum case the generators of the braid
group do not square to identity automorphisms of the quantum group and we are only allowed to use the braid
group relations. The action of the braid group on quantum root vectors is also very difficult to control. It is much
more complicated than the conjugation action of representatives in G of Weyl group elements on root vectors in g.
All this brings additional complications to the proof of Proposition 4.1.2 below which is a quantum counterpart of
Proposition 3.4.3.

As before we assume that a Weyl group element s ∈ W and a normally ordered system of positive roots ∆+

associated to s are fixed as in Definition 1.6.19, and denote by β1, . . . , βD the ordered roots in ∆+. So if α1, . . . , αl
are the simple roots in ∆+ and w = si1 . . . siD the corresponding decomposition of the longest element w ∈W then

β1 = αi1 , β2 = si1αi2 , . . . , βD = si1 . . . siD−1
αiD .

Unless explicitly stated otherwise, we shall assume that all quantum root vectors are defined using this normal
ordering of ∆+.

Let Uresq (w′(b+)) = UresUresq (H)([βkl′+1,−βkl′ ]) be the subalgebra in Uresq (g) generated by the elements

(X−β1
)(n1), . . . , (X−βk

l′
)(nk

l′
), (X+

βk
l′+1

)(nk
l′+1), . . . , (X+

βD
)(nD), ni ∈ N, i = 1, . . . , D,
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where βkl′ = γl′ , and by Uresq (H). The reason for the use of the symbol Uresq (w′(b+)) for this subalgebra will be
clear later from the definition of w′ ∈W in formula (4.1.73) and Remark 4.1.10.

Below we denote the multiplication in the algebra CsB[G] by ⊗. We recall the notation introduced in Section
3.2 for elements of CsB[G]. Let V res be a Us,resB (g)–lattice in a finite rank Uh(g)–module V . Recall that there is a
contravariant non–degenerate form (·, ·) on V such that (u, xv) = (ω(x)u, v) for any u, v ∈ V , x ∈ Uh(g). Assume
that u is such that (u,w) ∈ B for any w ∈ V res. Then (u, ·) is an element of the dual module V res∗. Since V and
V res are of finite ranks and (·, ·) is non–degenerate all elements of V res∗ can be obtained this way. Clearly, for any
v ∈ V res (u, ·v) ∈ CsB[G], and by the definition CsB[G] is generated by such elements.

Let cβ ∈ B, β ∈ ∆m+ be elements such that

cβ =

{
ki ∈ B if β = γi, i = 1, . . . , l′

0 otherwise
.

As we observed in Proposition 3.2.7 (ii) the elements ẽn1

β1
. . . ẽnDβDVif̃

mD
βD

. . . f̃m1

β1
with nj ,mj , i ∈ N, j = 1, . . . , D

form a B–basis in CsB[G∗].

Clearly, the elements ẽn1

β1
. . . ẽnDβDVif̃

mD
βD

. . . f̃
mc+1

βc+1
(f̃βc − cβc)mc . . . (f̃β1

− cβ1
)m1 with nj ,mj , i ∈ N, j = 1, . . . , D

also form a B–basis in CsB[G∗]. Let IkB be the B–submodule in CsB[G∗] generated by the elements

ẽn1

β1
. . . ẽnDβDVif̃

mD
βD

. . . f̃
mc+1

βc+1
(f̃βc − cβc)mc . . . (f̃β1

− cβ1
)m1

with nj ,mj , i ∈ N, j = 1, . . . , D, and where at least one mj > 0 for j < c + 1. Since these elements are linearly
independent they form a B–basis in IkB.

Proposition 4.1.1. Let J11
B
′

be the left ideal in CsB[G] generated by the elements (u, ·v) ∈ CsB[G], where u is a
highest weight vector in a finite rank representation V of Uh(g), and v ∈ V res is such that (u, Tsxv) = 0 for any

x ∈ Uresq (w′(b+)). Denote I11
B = (J11

B
′ ⊗B C(q

1
dr2 )) ∩ CsB[G]. Let Qk

B be the image of CsB[G∗] ⊂ CsB[G∗] under the

canonical projection CsB[G∗] → CsB[G∗]/IkB. Denote by 1 ∈ Qk
B the image of 1 ∈ CsB[G∗] in CsB[G∗]/IkB. Then the

following statements are true.
(i) ϕ(J11

B
′
) ⊂ IkB ∩ CsB[G∗] and ϕ(I11

B ) ⊂ IkB ∩ CsB[G∗].
(ii) If u is a highest weight vector in a finite rank indecomposable representation Vλ of Uh(g) of highest weight

λ such that (u, u) = 1 then for any f ∈ CsB[G] we have

ϕ(f ⊗ (u, ·T−1
s u))1 = cλϕ(Ad0

s(q
−(κ 1+s

1−sPh′+id)λ∨)(f))q(s−1+id)(id−κPh′ )λ
∨

1 = (4.1.5)

= cλq
(s−1+id)(id−κPh′ )λ

∨
ϕ(Ad0

s(q
(−κ 1+s

1−s s
−1Ph′+s

−1)λ∨)(f))1 ∈ Qk
B,

where cλ = c
∏l′

i=1 k
ni
i , c ∈ B∗ is an invertible element of B which only depends on λ, γ1, . . . γl′ , and ni = λ∨(γi) ≥ 0

for i = 1, . . . , n, ni = λ∨(s1γi) ≥ 0 for i = n+ 1, . . . , l′. The classes in the quotient CsB[G∗]/IkB of the elements of
CsB[G∗] in the right hand side of (4.1.5) belong to Qk

B ⊂ CsB[G∗]/IkB.
In particular,

ϕ((u, ·T−1
s u))1 = cλq

(s−1+id)(id−κPh′ )λ
∨

1 ∈ Qk
B.

q(s−1+id)(id−κPh′ )λ
∨

1 should be understood as the class of the element q(s−1+id)(id−κPh′ )λ
∨
∈ CsB[G∗] in the quotient

CsB[G∗]/IkB. This class belongs to Qk
B.

Proof. The proof of this proposition is based on Lemma 4.1.8 which will be proved in the end of this section.
(i) We start proving this proposition by obtaining a useful expression for (id⊗ ω0S

−1
s )(Rs21Rs). In order to do

that we recall some properties of universal R-matrices (see (2.5.4), (2.5.5)),

(Ss ⊗ id)Rs = (id⊗ S−1
s )Rs = Rs−1, (Ss ⊗ Ss)Rs = Rs, (4.1.6)

Using the first identity above we can write

Rs21Rs = Rs21(id⊗ Ss)(Rs−1) = (id⊗ S−1
s )(Rs21

−1)(id⊗ Ss)(Rs−1) = (id⊗ Ss)((id⊗ S−2
s )(Rs21

−1) ◦ Rs−1),

where

(a⊗ b) ◦ (c⊗ d) = ac⊗ db.
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Now since ω0 an algebra antiautomorphism we have

(id⊗ ω0S
−1
s )(Rs21Rs) = (id⊗ ω0)((id⊗ S−2

s )(Rs21
−1) ◦ Rs−1) = (id⊗ ω0S

−2
s )(Rs21

−1)(id⊗ ω0)(Rs−1). (4.1.7)

Recalling the definition (2.6.16) of Rs and (2.8.14), (2.8.15) we obtain

Rs−1 = exp

[
−h(

l∑
i=1

Yi ⊗Hi −
l∑
i=1

κ
1 + s

1− s
Ph′Hi ⊗ Yi)

]
× (4.1.8)

×
∏
β∈∆+

expq−1
β

[(1− q2
β)fβ ⊗ eβe−hκ

1+s
1−sPh′β

∨
] =

=
∏
β∈∆+

expq−1
β

[(1− q2
β)eh(κ 1+s

1−sPh′−id)β∨fβ ⊗ eβqβ
∨

]×

×exp

[
−h(

l∑
i=1

Yi ⊗Hi −
l∑
i=1

κ
1 + s

1− s
Ph′Hi ⊗ Yi)

]
,

where the order of the terms in the products over the positive roots is opposite to the normal ordering in ∆+.
Let ρ be a half of the sum of the positive roots. Using the fact that

S−2
s = Ads q

2ρ∨ ,

which can be derived straightforwardly from the definition (2.6.14) of Ss, we also deduce

(id⊗ S−2
s )(Rs21

−1) =
∏
β∈∆+

expq−1
β

[(1− q2
β)q−2β(ρ∨)eβq

β∨ ⊗ eh(κ
1+s
1−sPh′−id)β∨fβ ]× (4.1.9)

exp

[
−h(

l∑
i=1

(Yi ⊗Hi) +

l∑
i=1

κ
1 + s

1− s
Ph′Hi ⊗ Yi)

]
.

The order of the terms in the products in the formulas above is such that the α–term appears to the left of the
β–term if α > β with respect to the normal ordering of ∆+.

Substituting (4.1.8) and (4.1.9) into (4.1.7) we arrive at the following expression for (id⊗ ω0S
−1
s )(Rs21Rs)

(id⊗ ω0S
−1
s )(Rs21Rs) =

←∏
→

expq−1
β

[(1− q2
β)q−2β(ρ∨)eβq

β∨ ⊗ ω0(eh(κ
1+s
1−sPh′−id)β∨fβ)]×

×exp

[
h(

l∑
i=1

(Yi ⊗Hf
i ) +

l∑
i=1

κ
1 + s

1− s
Ph′Hi ⊗ Y fi )

]
× (4.1.10)

×exp

[
h(

l∑
i=1

(Yi ⊗Hr
i )−

l∑
i=1

κ
1 + s

1− s
Ph′Hi ⊗ Y ri )

]
×

×
←∏
→

expq−1
β

[(1− q2
β)fβ ⊗ ω0(eβe

−hκ 1+s
1−sPh′β

∨
)],

where in the product
←∏
→

the upper (the lower) arrow indicates the order of the terms in the first (the second) factor of the tensor product
relative to the normal ordering of ∆+, and superscripts f (resp. r) indicate that the corresponding term appears
in the front (resp. in the rear) of all the other terms in the product.

Assume now that u ∈ V has highest weight λ and v ∈ V res is any vector of weight µ such that g(·) := (u, ·v) ∈
CsB[G]. Observe that by (2.3.13) and (2.8.11) all elements zβ = ω0(eh(κ

1+s
1−sPh′−id)β∨fβ) in the first product of the

q-exponentials in (4.1.10) have strictly negative weights. As u has the highest possible weight in V , we deduce by
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Lemma 2.8.4 (i) that only constant terms in the expansions (2.2.7) of the q-exponentials in the first product in
(4.1.10) will contribute to the formula for ϕ(g) = (id ⊗ g)(id ⊗ ω0S

−1
s )(Rs21Rs). Using also the definition of the

action of the generators Hr
i , Hf

i , Y ri , Y fi on u and v we obtain from (4.1.10)

ϕ((u, ·v)) = (id⊗ g)(id⊗ ω0S
−1
s )(Rs21Rs) = qλ

∨+κ 1+s
1−sPh′λ

∨+µ∨−κ 1+s
1−sPh′µ

∨
×

×(id⊗ g)(

←∏
→

expq−1
β

[(1− q2
β)fβ ⊗ ω0(eβe

−hκ 1+s
1−sPh′β

∨
)]).

Using the definition (2.2.7) of the q-exponential and formulas (2.3.13) and (2.8.10) this can be rewritten as
follows

ϕ((u, ·v)) = qλ
∨+κ 1+s

1−sPh′λ
∨+µ∨−κ 1+s

1−sPh′µ
∨
×

×
∑
mi ∈ N

i = 1, . . . D

d̄(m1, . . . ,mD)f̃mDβD
. . . f̃m1

β1
(u, e−m1hκ

1+s
1−sPh′β

∨
1 e

(m1)
β1

. . . e−mDhκ
1+s
1−sPh′β

∨
De

(mD)
βD

v), (4.1.11)

where d̄(m1, . . . ,mD) ∈ B∗, and the sum is finite as the elements e
(n)
β act by zero on V for large enough n.

Recalling that according to the definition in Proposition 2.6.2 e
(n)
β = (X+

β )(n)qnKsβ
∨

, where qnKsβ
∨

= enh
κ
2

1+s
1−sPh′β

∨
,

and using commutation relations (2.3.5) we can write

e−m1hκ
1+s
1−sPh′β

∨
1 e

(m1)
β1

. . . e−mDhκ
1+s
1−sPh′β

∨
De

(mD)
βD

=

= e−m1hκ
1+s
1−sPh′β

∨
1 (X+

β1
)(m1)qm1Ksβ

∨
1 . . . e−mDhκ

1+s
1−sPh′β

∨
D (X+

βD
)(mD)qmDKsβ

∨
D =

= b(m1, . . . ,mD)(X+
β1

)(m1) . . . (X+
βD

)(mD)q−Ks(m1β
∨
1 +...+mDβ

∨
D), (4.1.12)

where b(m1, . . . ,mD) ∈ B∗.
Next, since v has weight µ, we can rewrite (4.1.11) using (4.1.12) as follows

ϕ((u, ·v)) = qλ
∨+κ 1+s

1−sPh′λ
∨+µ∨−κ 1+s

1−sPh′µ
∨
×

×
∑
mi ∈ N

i = 1, . . . D

d̄′(m1, . . . ,mD)f̃mDβD
. . . f̃m1

β1
(u, (X+

β1
)(m1) . . . (X+

βD
)(mD)v), (4.1.13)

where d̄′(m1, . . . ,mD) = d̄(m1, . . . ,mD)b(m1, . . . ,mD)q−µ(Ks(m1β
∨
1 +...+mDβ

∨
D)) ∈ B∗.

Now using the definitions of IkB and of Qk
B = Im(CsB[G∗]→ CsB[G∗]/IkB) we have in Qk

B

ϕ((u, ·v))1 = qλ
∨+κ 1+s

1−sPh′λ
∨+µ∨−κ 1+s

1−sPh′µ
∨
× (4.1.14)

×
∑

ni,mj ∈ N
i = 1, . . . , l′

j = c + 1, . . . , D

c(n1, . . . , nl′ ,mc+1, . . . ,mD)

l′∏
i=1

knii f̃
mD
βD

. . . f̃
mc+1

βc+1
(u, (X+

γ1)(n1) . . . (X+
γl′

)(nl′ )(X+
βc+1

)(mc+1) . . . (X+
βD

)(mD)v)1,

where c(n1, . . . , nl′ ,mc+1, . . . ,mD) ∈ B∗, and the sum is finite.
Lemma 4.1.8 applied to the products (X+

γ1)(n1) . . . (X+
γl′

)(nl′ ) in the previous formula and the fact that by the

definition of the algebra Uresq (w′(b+)) one has (X+
βc+1

)(mc+1) . . . (X+
βD

)(mD) ∈ Uresq (w′(b+)), imply that in Qk
B

ϕ((u, ·v))1 = qλ
∨+κ 1+s

1−sPh′λ
∨+µ∨−κ 1+s

1−sPh′µ
∨
× (4.1.15)

×
∑

ni,mj ∈ N
i = 1, . . . , l′

j = c + 1, . . . , D

c(n1, . . . , nl′ ,mc+1, . . . ,mD)

l′∏
i=1

knii f̃
mD
βD

. . . f̃
mc+1

βc+1
(u, TsX(n1, . . . , nl′)(X

+
βc+1

)(mc+1) . . . (X+
βD

)(mD)v)1 =

=
∑
i

xi(u, Tsyiv)1,

where xi ∈ CsB[G∗], X(n1, . . . , nl′), yi ∈ Uresq (w′(b+)).
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Since every element of V res is the sum of its weight components a formula similar to that which appears in the
last line of (4.1.15) holds for ϕ((u, ·v))1 with arbitrary (u, ·v) ∈ CsB[G], where u is a highest weight vector.

If v is chosen in such a way that (u, Tsxv) = 0 for any x ∈ Uresq (w′(b+)) we deduce from (4.1.15) that

(u, Tsyiv) = 0. Thus ϕ((u, ·v))1 = 0 in Qk
B. This implies ϕ((u, ·v)) ∈ IkB ∩ CsB[G∗], as ϕ((u, ·v)) ∈ CsB[G∗] by the

definition of ϕ.
Now using the properties (see formulas (2.5.2))

(∆s ⊗ id)Rs = Rs13Rs23, (id⊗∆s)Rs = Rs13Rs12,

and the fact that ω0 is a coalgebra automorphism (see Section 2.8) and Ss is an anti-coautomorphism we get

(id⊗∆s)(id⊗ ω0S
−1
s )(Rs21Rs) = (id⊗ ω0S

−1
s ⊗ ω0S

−1
s )(id⊗∆opp

s )(Rs21Rs) =

= (id⊗ ω0S
−2
s ⊗ ω0S

−2
s )(Rs31

−1Rs21
−1)(id⊗ ω0 ⊗ ω0)(Rs12

−1Rs13
−1).

In the case when v has weight µ, from this identity we obtain, similarly to (4.1.14), that for any f ∈ CsB[G] in
Qk
B

ϕ(f ⊗ (u, ·v))1 = (id⊗ f ⊗ (u, ·v))((id⊗∆s)(id⊗ ω0S
−1
s )(Rs21Rs))1 = (4.1.16)

= q(κ 1+s
1−sPh′+id)λ∨ϕ(f)q(−κ 1+s

1−sPh′+id)µ∨×

×
∑

ni,mj ∈ N
i = 1, . . . , l′

j = c + 1, . . . , D

c(n1, . . . , nl′ ,mc+1, . . . ,mD)

l′∏
i=1

knii f̃
mD
βD

. . . f̃
mc+1

βc+1
(u, (X+

γ1)(n1) . . . (X+
γl′

)(nl′ )(X+
βc+1

)(mc+1) . . . (X+
βD

)(mD)v)1 =

= q(κ 1+s
1−sPh′+id)λ∨ϕ(f)q(−κ 1+s

1−sPh′+id)µ∨×

×
∑

ni,mj ∈ N
i = 1, . . . , l′

j = c + 1, . . . , D

c(n1, . . . , nl′ ,mc+1, . . . ,mD)

l′∏
i=1

knii f̃
mD
βD

. . . f̃
mc+1

βc+1
(u, TsX(n1, . . . , nl′)(X

+
βc+1

)(mc+1) . . . (X+
βD

)(mD)v)1,

which implies, similarly to (4.1.15), that for arbitrary v

ϕ(f ⊗ (u, ·v))1 =
∑
i

x′iϕ(f)x′′i (u, Tsy
′
iv)1,

where x′i, x
′′
i ∈ CsB[G∗], y

′
i ∈ Uresq (w′(b+)). Hence ϕ(f ⊗ (u, ·v))1 = 0 in Qk

B by the choice of v, i.e. ϕ(J11
B
′
) ⊂

IkB ∩ CsB[G∗] as ϕ(f ⊗ (u, ·v)) ∈ CsB[G∗] by the definition of ϕ.
In order to show that ϕ(I11

B ) ⊂ IkB ∩ CsB[G∗] we naturally extend ϕ to and Ad–module isomorphism ϕ :

Cq[G]→ Cq[G∗], where Cq[G] = CsB[G]⊗B C(q
1
dr2 ), Cq[G∗] = CsB[G∗]⊗B C(q

1
dr2 ). By the definition of I11

B we have

ϕ(I11
B ) ⊂ (IkB ⊗B C(q

1
dr2 ))∩CsB[G∗] as obviously ϕ(J11

B
′ ⊗B C(q

1
dr2 )) ⊂ IkB ⊗B C(q

1
dr2 ) since we already proved that

ϕ(J11
B
′
) ⊂ IkB ∩ CsB[G∗], and ϕ(CsB[G]) ⊂ CsB[G∗].

We also have (IkB ⊗B C(q
1
dr2 )) ∩ CsB[G∗] ⊂ (IkB ⊗B C(q

1
dr2 )) ∩ CsB[G∗] as CsB[G∗] ⊂ CsB[G∗].

Recall that by the definition the elements ẽn1

β1
. . . ẽnDβDVif̃

mD
βD

. . . f̃
mc+1

βc+1
(f̃βc−cβc)mc . . . (f̃β1

−cβ1
)m1 with nj ,mj , i ∈

N, j = 1, . . . , D, and where at least one mj > 0 for j < c+ 1 form a B–basis in IkB, and this basis can be completed

to a B–basis of CsB[G∗] which consists of the elements ẽn1

β1
. . . ẽnDβDVif̃

mD
βD

. . . f̃
mc+1

βc+1
(f̃βc−cβc)mc . . . (f̃β1−cβ1)m1 with

nj ,mj , i ∈ N, j = 1, . . . , D.

This implies (IkB⊗BC(q
1
dr2 ))∩CsB[G∗] = IkB, and hence ϕ(I11

B ) ⊂ (IkB⊗BC(q
1
dr2 ))∩CsB[G∗] = ((IkB⊗BC(q

1
dr2 ))∩

CsB[G∗]) ∩ CsB[G∗] = IkB ∩ CsB[G∗]. This completes the proof of part (i).
(ii) Consider formula (4.1.16) with v = T−1

s u,

ϕ(f ⊗ (u, ·T−1
s u))1 = (4.1.17)

= q(κ 1+s
1−sPh′+id)λ∨ϕ(f)qs

−1(−κ 1+s
1−sPh′+id)λ∨×

×
∑

ni,mj ∈ N
i = 1, . . . , l′

j = c + 1, . . . , D

c(n1, . . . , nl′ ,mc+1, . . . ,mD)

l′∏
i=1

knii f̃
mD
βD

. . . f̃
mc+1

βc+1
(u, (X+

γ1)(n1) . . . (X+
γl′

)(nl′ )(X+
βc+1

)(mc+1) . . . (X+
βD

)(mD)T−1
s u)1 =
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= q(κ 1+s
1−sPh′+id)λ∨ϕ(f)qs

−1(−κ 1+s
1−sPh′+id)λ∨×

∑
ni,mj ∈ N
i = 1, . . . , l′

j = c + 1, . . . , D

c(n1, . . . , nl′ ,mc+1, . . . ,mD)

l′∏
i=1

knii f̃
mD
βD

. . . f̃
mc+1

βc+1
(u, TsX(n1, . . . , nl′)(X

+
βc+1

)(mc+1) . . . (X+
βD

)(mD)T−1
s u)1.

Observe that the roots −β1, . . . ,−βkl′ , βkl′+1, . . . , βD corresponding to the elements

(X−β1
)(n1), . . . , (X−βk

l′
)(nk

l′
), (X+

βk
l′+1

)(nk
l′+1), . . . , (X+

βD
)(nD),

which generate together with Uresq (H) the subalgebra Uresq (w′(b+)), form a minimal segment {α ∈ ∆,−β1 ≤ α <
γl′} which is, in fact, a system of positive roots (see Figure 5). Therefore if an element of Uresq (w′(b+)) has a
non-zero weight, the product of this element and of any other element of Uresq (w′(b+)) has also a non-zero weight.

On the other hand, from the expression in the last line of (4.1.17) it follows that only terms with

X(n1, . . . , nl′)(X
+
βc+1

)(mc+1) . . . (X+
βD

)(mD) ∈ Uresq (w′(b+))

of zero weight may give non-trivial contributions to the right hand side of (4.1.17). Since the elements (X+
β )(n),

β ∈ {α ∈ ∆+ : α > γl′} ⊂ {α ∈ ∆,−β1 ≤ α < γl′} have non-zero weights if n > 0, only the terms with
mc+1 = . . . = mD = 0 will give non-trivial contributions to the right hand side of (4.1.17).

Now the second expression for ϕ(f ⊗ (u, ·T−1
s u))1 in (4.1.17) yields

ϕ(f ⊗ (u, ·T−1
s u))1 = (4.1.18)

= q(κ 1+s
1−sPh′+id)λ∨ϕ(f)qs

−1(−κ 1+s
1−sPh′+id)λ∨

∑
ni ∈ N

i = 1, . . . , l′

d(n1, . . . , nl′)

l′∏
i=1

knii (u, (X+
γ1)(n1) . . . (X+

γl′
)(nl′ )T−1

s u)1,

where d(n1, . . . , nl′) ∈ B∗.
Now observe that since u has weight λ, and different weight spaces in V are orthogonal with respect to the

contravariant form (·, ·), only elements

(X+
γ1)(n1) . . . (X+

γl′
)(nl′ )T−1

s u ∈ V res

of weight λ can contribute to the right hand side of formula (4.1.18).
Because the roots γ1, . . . , γl′ are linearly independent, for n1, . . . , nl′ ∈ N the element

(X+
γ1)(n1) . . . (X+

γl′
)(nl′ )T−1

s u ∈ V res

has weight λ if and only if n1γ1 + . . . + γl′nl′ = λ− s−1λ =
∑n
i=1 λ

∨(γi)γi +
∑l′

i=n+1 λ
∨(s1γi)γi, where to obtain

the last expression we also used the fact that the roots γ1, . . . γn are mutually orthogonal and the roots γn+1, . . . γl′

are also mutually orthogonal. This implies ni = λ∨(γi), i = 1, . . . , n, and ni = λ∨(s1γi), i = n + 1, . . . , l′. Note
that for i = n+ 1, . . . , l′, by Proposition 1.6.6 (i) one has s1γi ∈ s1(∆s

s2) ⊂ ∆s
+ \∆s

s1 ⊂ ∆+, so ni = λ∨(s1γi) ≥ 0
as λ ∈ P+. Also, for the last reason ni = λ∨(γi) ≥ 0 for i = 1, . . . , n.

By Proposition B.6. from [2], in this case we have (X+
γ1)(n1) . . . (X+

γl′
)(nl′ )T−1

s u = εc0u, where ε ∈ {±1} and

c0 ∈ qZ only depend on γ1, . . . , γl′ and λ. Therefore formula (4.1.18) takes the form

ϕ(f ⊗ (u, ·T−1
s u))1 = c

l′∏
i=1

knii q
(κ 1+s

1−sPh′+id)λ∨ϕ(f)qs
−1(−κ 1+s

1−sPh′+id)λ∨1,

where c ∈ B∗ is an invertible element of B which only depends on λ, γ1, . . . γl′ , and ni = λ∨(γi), i = 1, . . . , n,
ni = λ∨(s1γi), i = n+ 1, . . . , l′.

The last formula can also be rewritten as follows

ϕ(f ⊗ (u, ·T−1
s u))1 = c

l′∏
i=1

knii q
(κ 1+s

1−sPh′+id)λ∨ϕ(f)qs
−1(−κ 1+s

1−sPh′+id)λ∨1 =
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= c

l′∏
i=1

knii q
(s−1+id)(id−κPh′ )λ

∨
Ads(q

(−κ 1+s
1−s s

−1Ph′+s
−1)λ∨)(ϕ(f))1 =

= c

l′∏
i=1

knii q
(s−1+id)(id−κPh′ )λ

∨
ϕ(Ad0

s(q
(−κ 1+s

1−s s
−1Ph′+s

−1)λ∨)(f))1 =

= c

l′∏
i=1

knii Ads(q
−(κ 1+s

1−sPh′+id)λ∨)(ϕ(f))q(s−1+id)(id−κPh′ )λ
∨

1 =

= c

l′∏
i=1

knii ϕ(Ad0
s(q
−(κ 1+s

1−sPh′+id)λ∨)(f))q(s−1+id)(id−κPh′ )λ
∨

1.

In particular, in Qk
B

ϕ((u, ·T−1
s u))1 = c

l′∏
i=1

knii q
(s−1+id)(id−κPh′ )λ

∨
1.

This completes the proof.

Now consider the case when κ = 1 and ki ∈ B, i = 1, . . . , l′ are defined in (3.2.16). Recall that the elements
ẽn1

β1
. . . ẽnDβDVif̃

mD
βD

. . . f̃
mc+1

βc+1
(f̃βc − cβc)mc . . . (f̃β1

− cβ1
)m1 with nj ,mj , i ∈ N, j = 1, . . . , D form a B–basis in CsB[G∗]

and observe that when κ = 1 the elements (f̃βc − cβc)mc . . . (f̃β1 − cβ1)m1 with nj ,mj , i ∈ N, j = 1, . . . , D, and
where at least one mj > 0 for j < c+ 1, form a B–basis of Kerχsq. Therefore, if κ = 1, we have IkB = IB, and hence

Qk
B = QB, so we can apply the previous proposition to get the following statement.

Proposition 4.1.2. Assume that κ = 1 and ki ∈ B are defined in (3.2.16). Then the following statements are
true.

(i) J11
B
′
, I11
B ⊂ Ker φ.

(ii) If u is a highest weight vector in a finite rank indecomposable representation Vλ of Uh(g) of highest weight
λ such that (u, u) = 1 then for any f ∈ CsB[G]

φ(f ⊗ (u, ·T−1
s u)) = cλϕ(Ad0

s(q
−( 1+s

1−sPh′+id)λ∨)(f))q2P
h′⊥λ

∨
1 = (4.1.19)

= cλq
2P

h′⊥λ
∨
φ(Ad0

s(q
(− 1+s

1−s s
−1Ph′+s

−1)λ∨)(f)) ∈ QB,

where cλ = c
∏l′

i=1 k
ni
i , c ∈ B∗ is an invertible element of B which only depends on λ, γ1, . . . γl′ , and ni = λ∨(γi) ≥ 0,

i = 1, . . . , n, ni = λ∨(s1γi) ≥ 0, i = n+ 1, . . . , l′. Here the classes in the quotient CsB[G∗]/IB = Q′B of the elements
of CsB[G∗] in the right hand side of (4.1.19) belong to QB ⊂ CsB[G∗]/IB = Q′B.

In particular,

φ((u, ·T−1
s u)) = cλq

2P
h′⊥λ

∨
1 ∈ QB.

q2P
h′⊥λ

∨
1 should be understood as the class of the element q2P

h′⊥λ
∨
∈ CsB[G∗] in the quotient CsB[G∗]/IB = Q′B.

This class belongs to QB.

The rest of this section will be devoted to the proof of Lemma 4.1.8. This proof is in turn split into several
other lemmas.

Lemma 4.1.3. Let V be a finite rank representation of Uh(g), u, v ∈ V weight vectors. Let w = si1 . . . siD be a
reduced decomposition of the longest element of the Weyl group W . Then for any β = si1 . . . sik−1

αik ∈ ∆+ and
k ∈ N

(u, (X+
β )(k)v) =

∑
p,p′

(u,Kp,p′(X
−
β )(p)(X+

β )(p′)Tβv), (4.1.20)

where the sum in the right hand side is finite, X±β = Ti1 . . . Tik−1
X±ik , Kp,p′ ∈ C[q, q−1], and

Tβ = Ti1 . . . Tik−1
T−1
ik
T−1
ik−1

. . . T−1
i1
. (4.1.21)

If v has weight λ then identity (4.1.20) is not trivial if and only if u has weight λ+ kβ. In this case the finite sum
in (4.1.20) is taken over p and p′ subject to the condition p′−p−β∨(λ) = k, so all terms Kp,p′(X

−
β )(p)(X+

β )(p′)Tβv
have also weight λ+ kβ.
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Proof. Assume that v is a weight vector of weight λ. Then the left hand side of (4.1.20) is not zero if u is of weight
λ+ kβ as different weight subspaces of V are orthogonal with respect to the bilinear form (·, ·), so we can assume
that u has weight λ+ kβ.

Conjugating (2.2.6) by Ti1 . . . Tik−1
we get

exp′qi(−X
+
β ) = exp′

q−1
i

(−qiX−β K
−1
β )q

Hβ(Hβ+1)

2
i exp′

q−1
i

(q−1
i X+

β )Tβ , (4.1.22)

where Kβ = qβ
∨

= q
Hβ
β , Hβ = Ti1 . . . Tik−1

Hik .
Evaluating this identity on the matrix element (u, ·v) and using (2.2.3) we obtain

−q
1
2k(k−1)
i (u, (X+

β )(k)v) = (u,

∞∑
p=0

q
− 1

2p(p−1)
i

(−qiX−β K
−1
β )p

[p]qi !
q
Hβ(Hβ+1)

2
i

∞∑
p′=0

q
− 1

2p
′(p′−1)

i

(q−1
i X+

β )p
′

[p′]qi !
v)

Observing that the elements Hβ act on weight spaces of V by multiplication by integer numbers, that the

elements (X−β )p and (X+
β )p

′
map weight spaces of V to weight spaces and for large enough p and p′ they act on

V by zero endomorphisms, we obtain (4.1.20) for v of weight λ, where the sum in the right hand side is such that
all terms Kp,p′(X

−
β )(p)(X+

β )(p′)Tβv have weight λ+ kβ, i.e. p′ − p− β∨(λ) = k, and the number of these terms is
finite. This completes the proof.

Next we obtain some useful relations in the Weyl group which lead to important formulas for the action of braid
group elements on quantum root vectors. Recall that according to Lemma 1.6.14 (i) s1 is the longest element in
the Weyl group W (ms1 , hs1) of the semisimple part ms1 of a Levi subalgebra of g, the Cartan subalgebra of ms1 is
denoted by hs1 .

The system of positive roots ∆+(ms1 , hs1) := ∆+∩∆(ms1 , hs1) of the root system ∆(ms1 , hs1) = ∆−1
s1

⋃
(−∆−1

s1 )
is the set (we use the notation of (1.6.9))

∆+(ms1 , hs1) = {γ1, . . . , γ2, . . . , γ3, . . . , γn,−β1
t+1, . . . ,−β1

t+ p−n
2

} (4.1.23)

and s1 acts on the elements of this set by multiplication by −1. According to (1.6.9) the number of roots in
∆+(ms1 , hs1) is equal to p. The roots in (4.1.23) are ordered as in the normal ordering of ∆+ associated to s. With
respect to this normal ordering the set (4.1.23) is the disjoint union of an initial segment and a final segment in
the normal ordering of ∆+. Therefore ms1 is in fact the semisimple part of a standard Levi subalgebra of g, for
otherwise by Lemma 1.6.14 (iii) there would be some roots preceding those from the set (4.1.23) in the normal
ordering of ∆+. Thus by Lemma 1.6.14 (iii)

∆+(ms1 , hs1) = {α ∈ ∆+ : s1α ∈ ∆−} = {α ∈ ∆+ : s1α = −α}. (4.1.24)

This also implies that one can define the subalgebra Uh(ms1) ⊂ Uh(g) generated by the elements X±i and Hi for
αi ∈ ∆+(ms1 , hs1) and its restricted specialization Uresq (ms1) ⊂ Uresq (g).

Let

s1 = si1 . . . sip = sik1 . . . sik2 . . . sikn sikn+1
. . . sip , ik1 = i1, (4.1.25)

be the reduced decomposition of s1 in W (ms1 , hs1) corresponding to (4.1.23) as described in Lemma 1.6.14 (iii),
where si = sαi , αi are simple roots in ∆+(ms1 , hs1),

γm = sik1 . . . sik2 . . . sikm−1
αikm , m = 1, . . . , n. (4.1.26)

Since s1 is an involution we also have the following reduced decomposition

s1 = sip . . . si1 = sip . . . sikn+1
sikn . . . sik2 . . . sik1 . (4.1.27)

Let γ1 ≤ βq ≤ γn, βq = si1 . . . siq−1αiq , q = 1, . . . , kn. Note that according to (4.1.23) (see also (1.6.11))

kn = p− p− n
2

=
p+ n

2
. (4.1.28)
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Since s1 = −1 in W (ms1 , hs1)

s1 = siq . . . si1s
1si1 . . . siq = siq . . . si1si1 . . . sipsi1 . . . siq = siq+1

. . . sipsi1 . . . siq ,

and in the right hand side we obtain a reduced decomposition of s1 as the number of simple reflections in it is equal
to p, i.e. to the length of s1.

Now by the previous formula

s1αiq = −αiq = siq+1
. . . sipsi1 . . . siqαiq = −siq+1

. . . sipsi1 . . . siq−1
αiq ,

and hence
siq+1

. . . sipsi1 . . . siq−1
αiq = αiq . (4.1.29)

Form the expressions γm = sik1 . . . sik2 . . . sikm−1
αikm , m = 1, . . . , n we deduce

sγ1 . . . sγq−1
= (4.1.30)

= sik1 (sik1 . . . sik2−1
sik2 s

−1
ik2−1

. . . s−1
ik1

)(sik1 . . . sik3−1
sik3 s

−1
ik3−1

. . . s−1
ik1

) . . . (sik1 . . . sik2 . . . sikq−1−1
sikq−1

s−1
ikq−1−1

. . . s−1
ik1

) =

= sik1+1
. . . sik2−1

sik2+1
. . . sikq−1−1

sikq−1
sikq−1−1

. . . sik1 .

In particular, in the right hand sides of the following formulas we have reduced decompositions

s1 = sγ1 . . . sγn = sik1+1
. . . sik2−1

sik2+1
. . . sikn−1

sikn sikn−1
. . . sik1 (4.1.31)

and
s1 = sikn . . . si1s

1si1 . . . sikn = sikn sikn−1
. . . sik1 sik1+1

. . . sik2−1
sik2+1

. . . sikn−1
(4.1.32)

as by (4.1.28) the number of simple reflections in them is equal to kn + kn − n = 2kn − n = p+ n− n = p, i.e. to
the length of s1.

Multiplying (4.1.31) and (4.1.27) by (sikn sikn−1
. . . sik1 )−1 on the right we obtain the following identity for

reduced decompositions
sik1+1

. . . sik2−1
sik2+1

. . . sikn−1
= sip . . . sikn+1

. (4.1.33)

As the roots γm, m = 1, . . . , n are mutually orthogonal we deduce using (4.1.30) and (4.1.26)

sγ1 . . . sγq−1γq = sik1+1
. . . sik2−1

sik2+1
. . . sikq−1−1

sikq−1
sikq−1−1

. . . sik1 sik1 . . . sikq−1
αikq =

= sik1+1
. . . sik2−1

sik2+1
. . . sikq−1−1

sikq−1+1
. . . sikq−1

αikq = γq = sik1 . . . sikq−1
αikq . (4.1.34)

Therefore
sikq−1

. . . sik1 sik1+1
. . . sik2−1

sik2+1
. . . sikq−1−1

sikq−1+1
. . . sikq−1

αikq = αikq ,

where
sikq−1

. . . sik1 sik1+1
. . . sik2−1

sik2+1
. . . sikq−1−1

sikq−1+1
. . . sikq−1

is a reduced decomposition since it is a part of reduced decomposition (4.1.32).
The last two properties and (2.2.13) imply

Tikq−1
. . . Tik1Tik1+1 . . . Tik2−1

Tik2+1
. . . Tikq−1−1

Tikq−1+1
. . . Tikq−1

X±ikq = X±ikq ,

or
Tik1+1 . . . Tik2−1

Tik2+1
. . . Tikq−1−1

Tikq−1+1
. . . Tikq−1

X±ikq = T−1
ik1

. . . T−1
ikq−1

X±ikq . (4.1.35)

Using the definition of Tγi (see (4.1.21)) we obtain

Tγ1 . . . Tγq−1
= (4.1.36)

T−1
ik1

(Tik1 . . . Tik2−1
T−1
ik2
T−1
ik2−1

. . . T−1
ik1

)(Tik1 . . . Tik3−1
T−1
ik3
T−1
ik3−1

. . . T−1
ik1

) . . . (Tik1 . . . Tikq−1−1
T−1
ikq−1

T−1
ikq−1−1

. . . T−1
ik1

) =

= Tik1+1 . . . Tik2−1
Tik2+1

. . . Tikq−1−1
T−1
ikq−1

T−1
ikq−1−1

. . . T−1
ik1
.

Recalling also that X±γq = Tik1 . . . Tikq−1
X±ikq and applying formula (4.1.35) we arrive at

Tγ1 . . . Tγq−1
X±γq = Tik1+1 . . . Tik2−1

Tik2+1
. . . Tikq−1−1

T−1
ikq−1

T−1
ikq−1−1

. . . T−1
ik1
Tik1 . . . Tikq−1

X±ikq =

= Tik1+1 . . . Tik2−1
Tik2+1

. . . Tikq−1−1
Tikq−1+1

. . . Tikq−1
X±ikq = T−1

ik1
. . . T−1

ikq−1
X±ikq = X

±
γq . (4.1.37)
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Lemma 4.1.4. Let V be a finite rank representation of Uh(g), u, v ∈ V weight vectors. Then for any m1, . . . ,mn ∈
N the following statements are true.

(i)

(u, (X+
γ1)(m1) . . . (X+

γn)(mn)v) = (u,K(m1, . . . ,mn)Tγ1 . . . Tγnv), (4.1.38)

where K(m1, . . . ,mn) ∈ Uresq (m−s1)U
res

q ([γ1, γn]), Uresq (m−s1) ⊂ Uresq (g) is the subalgebra generated by (X−β )(k) for
simple roots β ∈ ∆+(ms1 , hs1) and k ≥ 0. Moreover, K(m1, . . . ,mn) belongs to a weight subspace of Uresq (g).

(ii) If u ∈ V is a highest weight vector then

(u, (X+
γ1)(m1) . . . (X+

γn)(mn)v) = (u,K ′(m1, . . . ,mn)Tγ1 . . . Tγnv), (4.1.39)

where K ′(m1, . . . ,mn) ∈ Uresq ([γ1, γn]). Moreover, K ′(m1, . . . ,mn) belongs to a weight subspace of Uresq (g).

Proof. By Lemma 4.1.3

(u, (X+
γ1)(m1) . . . (X+

γn)(mn)v) =

=
∑

c1, . . . , cn
c′1, . . . , c

′
n

Kc1,...,cn
c′1,...,c

′
n

(u, (X−γ1)(c1)(X+
γ1)(c′1)Tγ1(X−γ2)(c2)(X+

γ2)(c′2)Tγ2 . . . (X
−
γn)(cn)(X+

γn)(c′n)Tγnv),

where the sum in the right hand side is finite and Kc1,...,cn
c′1,...,c

′
n
∈ C[q, q−1] .

Using (4.1.37) and observing that X±γ1 = X
±
γ1 , as γ1 the first simple root in the normal ordering of ∆+ associated

to s, we obtain

(u, (X+
γ1)(k1) . . . (X+

γn)(kn)v) = (4.1.40)

=
∑

c1, . . . , cn
c′1, . . . , c

′
n

Kc1,...,cn
c′1,...,c

′
n

(u, (X
−
γ1)(c1)(X

+

γ1)(c′1)(X
−
γ2)(c2)(X

+

γ2)(c′2) . . . (X
−
γn)(cn)(X

+

γn)(c′n)Tγ1 . . . Tγnv).

Now to justify (4.1.38) we show that all monomials

(X
−
γ1)(c1)(X

+

γ1)(c′1)(X
−
γ2)(c2)(X

+

γ2)(c′2) . . . (X
−
γn)(cn)(X

+

γn)(c′n) (4.1.41)

belong to Uresq (m−s1)U
res

q ([γ1, γn])Uresq (H).

Indeed, denote by βp the last root in normal ordering (4.1.23). Then (X
+

γn−1
)(c′n−1)(X

−
γn)(cn) ∈ UresUresq (H)([−γn, γn−1]),

where here and in this proof below we consider only minimal segments [α, β] of the circular ordering of ∆(ms1 , hs1)
corresponding normal ordering (4.1.23) of ∆+(ms1 , hs1), and the corresponding subalgebras of Uresq (ms1), so, in

particular, [−γn, γn−1] ⊂ ∆(ms1 , hs1), and U
res

Uresq (H)([−γn, γn−1]) ⊂ Uresq (ms1).

Then by Corollary 2.4.4 (i) we obtain

(X
+

γn−1
)(c′n−1)(X

−
γn)(cn)(X

+

γn)(c′n) ∈ UresUresq (H)([−γn, γn−1])(X
+

γn)(c′n) = (4.1.42)

= U
res

Uresq (H)([−γn,−βp])U
res

Uresq (H)([γ1, γn−1])(X
+

γn)(c′n) ⊂ UresUresq (H)([−γn,−βp])U
res

Uresq (H)([γ1, γn]).

Next, (X
+

γn−2
)(c′n−2)(X

−
γn−1

)(cn−1) ∈ UresUresq (H)([−γn−1, γn−2]), and by (4.1.42) and by Corollary 2.4.4 (i) one has

(X
+

γn−2
)(c′n−2)(X

−
γn−1

)(cn−1)(X
+

γn−1
)(c′n−1)(X

−
γn)(cn)(X

+

γn)(c′n) ∈

∈ UresUresq (H)([−γn−1, γn−2])U
res

Uresq (H)([−γn,−βp])U
res

Uresq (H)([γ1, γn]) =

= U
res

Uresq (H)([−γn−1,−βp])U
res

Uresq (H)([γ1, γn−2])U
res

Uresq (H)([−γn,−βp])U
res

Uresq (H)([γ1, γn]) =

= U
res

Uresq (H)([−γn−1,−βp])U
res

Uresq (H)([−γn, γn−2])U
res

Uresq (H)([γ1, γn]) =

= U
res

Uresq (H)([−γn−1,−βp])U
res

Uresq (H)([−γn,−βp])U
res

Uresq (H)([γ1, γn−2])U
res

Uresq (H)([γ1, γn]) ⊂

⊂ UresUresq (H)([−γn−1,−βp])U
res

Uresq (H)([γ1, γn]).
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One can proceed by induction in a similar way to get

(X
−
γ1)(c1)(X

+

γ1)(c′1)(X
−
γ2)(c2)(X

+

γ2)(c′2) . . . (X
−
γn)(cn)(X

+

γn)(c′n) ∈ UresUresq (H)([−γ1,−βp])U
res

Uresq (H)([γ1, γn]). (4.1.43)

Next, Corollary 2.4.4 (ii) implies

U
res

Uresq (H)([−γ1,−βp])U
res

Uresq (H)([γ1, γn]) = U
res

q ([−γ1,−βp])Uresq (H)U
res

q ([γ1, γn])Uresq (H) =

= U
res

q ([−γ1,−βp])U
res

q ([γ1, γn])Uresq (H) = Uresq (m−s1)U
res

q ([γ1, γn])Uresq (H),

where at the last step we also used the fact that by the definition U
res

q ([−γ1,−βp]) = Uresq (m−s1).
Now (4.1.43) takes the form

(X
−
γ1)(c1)(X

+

γ1)(c′1)(X
−
γ2)(c2)(X

+

γ2)(c′2) . . . (X
−
γn)(cn)(X

+

γn)(c′n) ∈ Uresq (m−s1)U
res

q ([γ1, γn])Uresq (H). (4.1.44)

Thus, recalling that v is a weight vector we deduce (4.1.38) from (4.1.40) and (4.1.44) using Lemma 2.8.6.
Finally note that u and Tγ1 . . . Tγnv are weight vectors, and different weight subspaces of V are orthogonal with

respect to the bilinear form (·, ·). Therefore we can assume also that K(m1, . . . ,mn) in (4.1.38) belongs to a weight
subspace of Uresq (g), so that the weight of u is equal to that of K(m1, . . . ,mn)Tγ1 . . . Tγnv.

(4.1.39) follows from (4.1.38) by Lemma 2.8.4 (i) because the only elements of Uresq (m−s1), whose weights are
not strictly negative, belong to C[q, q−1]. This completes the proof.

Lemma 4.1.5. Let V be a finite rank representation of Uh(g), u, v ∈ V . Suppose that u is a highest weight vector,
and v is a weight vector. Then for any m1, . . . ,mn ∈ N

(u, (X+
γ1)(m1) . . . (X+

γn)(mn)v) = (u, Tγ1 . . . TγnU(m1, . . . ,mn)v), (4.1.45)

where U(m1, . . . ,mn) ∈ Uresq ([−γ1,−γn]) belongs to a weight subspace of Uresq (g).

Proof. Since u is a highest weight vector, Lemma 4.1.4 (ii) implies

(u, (X+
γ1)(m1) . . . (X+

γn)(mn)v) = (u,K ′(m1, . . . ,mn)Tγ1 . . . Tγnv), (4.1.46)

where K ′(m1, . . . ,mn) ∈ Uresq ([γ1, γn]).

Denote T 1 = Tγ1 . . . Tγn . We find the action of (T 1)−1 on the generators of the algebra U
res

q ([γ1, γn]).
Consider reduced decomposition (4.1.25) of s1,

s1 = si1 . . . sip = sik1 . . . sik2 . . . sikn sikn+1
. . . sip , ik1 = i1, (4.1.47)

and the roots βq = si1 . . . siq−1
αiq , q = 1, . . . , kn forming the segment [γ1, γn].

From (4.1.36) with q − 1 = n and (4.1.33) we obtain

T 1 = Tγ1 . . . Tγn = Tik1+1 . . . Tik2−1
Tik2+1

. . . Tikn−1
T−1
ikn
T−1
ikn−1

. . . T−1
i1

= (4.1.48)

= Tip . . . Tikn+1
T−1
ikn
T−1
ikn−1

. . . T−1
ik1
.

Therefore for the generators (X
+

βq )
(k) = T−1

i1
. . . T−1

iq−1
(X+

iq
)(k), q = 1, . . . , kn, k ∈ N, of the algebra U

res

q ([γ1, γn]) we
obtain

(T 1)−1(X
+

βq )
(k) = Ti1 . . . TiknT

−1
ikn+1

. . . T−1
ip
T−1
i1

. . . T−1
iq−1

(X+
iq

)(k) = (4.1.49)

= Tw1
T−1
ikn+1

. . . T−1
ip
T−1
i1

. . . T−1
iq−1

(X+
iq

)(k),

where Tw1 = Ti1 . . . Tikn for the reduced decomposition w1 = si1 . . . sikn which is an initial part of reduced decom-
position (4.1.47).

By (4.1.29), (2.2.13)
T−1
iq+1

. . . T−1
ip
T−1
i1

. . . T−1
iq−1

(X+
iq

)(k) = (X+
iq

)(k),

and hence
T−1
ikn+1

. . . T−1
ip
T−1
i1

. . . T−1
iq−1

(X+
iq

)(k) = Tikn . . . Tiq+1
(X+

iq
)(k).
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Substituting this into (4.1.49) we infer

(T 1)−1(X
+

βq )
(k) = Tw1

Tikn . . . Tiq+1
(X+

iq
)(k) = Tw1

(X+
δq

)(k), (4.1.50)

where for q = 1, . . . , kn we denote δq = sikn . . . siq+1
αiq , and X+

δq
= Tikn . . . Tiq+1

X+
iq

.

Let Uresq (m+
s1) be the subalgebra of Uresq (ms1) generated by (X+

β )(k) for simple roots β ∈ ∆+(ms1 , hs1) and

k ≥ 0. We show that for q = 1, . . . , kn and k ≥ 0 one has (X+
δq

)(k) ∈ Uresq (m+
s1).

Indeed, observe that sikn . . . si1sip . . . sikn+1
is the reduced decomposition of s1, with respect to the system of

simple roots in ∆+(ms1 , hs1), obtained according to (4.1.32) in the following way

s1 = sikn . . . si1s
1si1 . . . sikn = sikn . . . si1sip . . . si1si1 . . . sikn = sikn . . . si1sip . . . sikn+1

. (4.1.51)

sikn . . . si1 is an initial part of this reduced decomposition.

Now by Lemma 2.4.2 (i) we deduce that for q = 1, . . . , kn X+
δq

= Tikn . . . Tiq+1
X+
iq
∈ Uresq (m+

s1), and also
obviously

(X+
δq

)(k) ∈ Uresq (m+
s1) (4.1.52)

for any k ≥ 0. Since for q = 1, . . . , kn and k ≥ 0 the elements (X
+

βq )
(k) generate U

res

q ([γ1, γn]), we deduce from
(4.1.52) and (4.1.50) that

(T 1)−1(U
res

q ([γ1, γn])) ⊂ Tw1
(Uresq (m+

s1)).

By this inclusion (T 1)−1(K ′(m1, . . . ,mn)) ∈ Tw1(Uresq (m+
s1)), and (4.1.46) takes the form

(u, (X+
γ1)(m1) . . . (X+

γn)(mn)v) = (u,K ′(m1, . . . ,mn)Tγ1 . . . Tγnv) = (4.1.53)

= (u, Tγ1 . . . Tγn(T 1)−1(K ′(m1, . . . ,mn))v) = (u, Tγ1 . . . TγnK
′′(m1, . . . ,mn)v),

where K ′′(m1, . . . ,mn) = (T 1)−1(K ′(m1, . . . ,mn)) ∈ Tw1
(Uresq (m+

s1)).

Now we factorize Uresq (m+
s1) in an appropriate way to bring (4.1.53) to form (4.1.45). Observe that using reduced

decomposition (4.1.51) one can define the corresponding normal ordering of ∆+(ms1 , hs1),

φkn = αikn , . . . , φ1 = sikn . . . si2αi1 , φp = sikn . . . si1αip , . . . , φkn+1 = sikn . . . si1sip . . . sikn+2
αikn+1

,

and the elements
Yφkn = X+

ikn
, . . . ,

Yφ1
= T−1

ikn
. . . T−1

i2
X+
i1
,

Yφp = T−1
ikn

. . . T−1
i1
X+
ip
, . . . ,

Yφkn+2
= T−1

ikn
. . . T−1

i1
T−1
ip

. . . T−1
ikn+3

X+
ikn+2

,

Yφkn+1
= T−1

ikn
. . . T−1

i1
T−1
ip

. . . T−1
ikn+2

X+
ikn+1

,

which belong to Uresq (m+
s1) by Lemma 2.4.2 (v).

Let U
res

q ([φkn , φ1]) ⊂ Uresq (m+
s1) be the subalgebra generated by (Yφi)

(k), i = 1, . . . kn, k ∈ N , and U
res

q ([φp, φkn+1]) ⊂
Uresq (m+

s1) the subalgebra generated by (Yφi)
(k), i = kn + 1, . . . p, k ∈ N.

Now by Corollary 2.4.4 (iii),

Uresq (m+
s1) = U

res

q ([φp, φkn+1])U
res

q ([φkn , φ1]). (4.1.54)

We find the action of the automorphism Tw1 = Ti1 . . . Tikn on U
res

q ([φp, φkn+1]) and U
res

q ([φkn , φ1]).
By the definition of the elements Yφr , for r = kn + 1, . . . p

Tw1
(Yφr )

(k) = (Ti1 . . . Tikn )(Yφr )
(k) = (T−1

ip
. . . T−1

ir+1
)(X+

ir
)(k). (4.1.55)

Since u is a highest weight vector, by Lemma 2.8.7 we have Tγn . . . Tγ1u = ω(c)Tip . . . Ti1u, where c ∈ C[q, q−1]∗.
Therefore for any element w ∈ V we can write

(u, Tγ1 . . . Tγnw) = c(u, Ti1 . . . Tipw) = c(u, Ts1w), (4.1.56)
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where Ts1 = Ti1 . . . Tip is the braid group element corresponding to reduced decomposition (4.1.47). Now by
(4.1.55), using the definition (2.2.2) of the braid group action and commutation relations (2.3.6), we obtain for all
generators (Yφr )

(k), r = kn + 1, . . . p, k ∈ N of U
res

q ([φp, φkn+1])

Ts1Tw1(Yφr )
(k) = Ti1 . . . TipTi1 . . . Tikn (Yφr )

(k) = Ti1 . . . TipT
−1
ip

. . . T−1
ir+1

(X+
ir

)(k) =

= Ti1 . . . Tir (X
+
ir

)(k) =
1

[k]qir !
Ti1 . . . Tir−1(−X−irKir )

k =
1

[k]qir !
(−X−βrKβr )

k =

= (−1)kq
−k(k−1)
βr

(X−βr )
(k)Kk

βr ∈ U
res
Uresq (H)([−βkn+1, . . . ,−βp]),

where Kβr = Ti1 . . . Tir−1Kir . Thus

Ts1Tw1(U
res

q ([φp, φkn+1])) ⊂ UresUresq (H)([−βkn+1, . . . ,−βp]). (4.1.57)

On the other hand by the definition of the elements Yφr , for r = 1, . . . kn we have for all generators (Yφr )
(k),

r = 1, . . . kn, k ∈ N of U
res

q ([φkn , φ1])

Tw1(Yφr )
(k) = Ti1 . . . Tikn (Yφr )

(k) =
1

[k]qir !
Ti1 . . . Tir (X

+
ir

)k =
1

[k]qir !
Ti1 . . . Tir−1(−X−irKir )

k = (4.1.58)

=
1

[k]qir !
(−X−βrKβr )

k =

= (−1)kq
−k(k−1)
βr

(X−βr )
(k)Kk

βr ∈ U
res
Uresq (H)([−γ1,−γn]),

where Kβr = Ti1 . . . Tir−1
Kir , and we also used the definition (2.2.2) of the braid group action and commutation

relations (2.3.6).
Thus

Tw1
(U

res

q ([φkn , φ1])) ⊂ UresUresq (H)([−γ1,−γn]). (4.1.59)

Now recall that in (4.1.53) K ′′(m1, . . . ,mn) ∈ Tw1(Uresq (m+
s1)), and hence we can write K ′′(m1, . . . ,mn) = Tw1A,

A ∈ Uresq (m+
s1).

Factorizing A according to (4.1.54),

A =
∑
i

aibi, ai ∈ U
res

q ([φp, φkn+1]), bi ∈ U
res

q ([φkn , φ1]),

we obtain
K ′′(m1, . . . ,mn) = Tw1

(A) =
∑
i

(Tw1
(ai))(Tw1

(bi)) =
∑
i

(Tw1
(ai))ci,

where ci = Tw1(bi) ∈ UresUresq (H)([−γ1,−γn]) by (4.1.59).

Now recalling (4.1.56), (4.1.53) can be rewritten as follows

(u, (X+
γ1)(m1) . . . (X+

γn)(mn)v) = c(u, Ti1 . . . TipK
′′(m1, . . . ,mn)v) =

= c
∑
i

(u, Ts1((Tw1
)(ai))civ) = c

∑
i

(u, ((Ts1Tw1
)(ai))Ts1civ) =

= c
∑
i

(u, giTs1civ),

where gi = (Ts1Tw1)(ai) ∈ UresUresq (H)([−βkn+1, . . . ,−βp]) by (4.1.57).

Observe that the only elements of the algebra UresUresq (H)([−βkn+1, . . . ,−βp]) whose weights are not strictly

negative belong to Uresq (H), and hence by Lemma 2.8.4 (i) the last formula takes the form

(u, (X+
γ1)(m1) . . . (X+

γn)(mn)v) = c(u, Ts1K
′′(m1, . . . ,mn)v) = c

∑
i

(u, g′iTs1civ) =
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= c(u, Ts1U
′v) = (u, Tγ1 . . . TγnU

′v), (4.1.60)

where g′i ∈ Uresq (H), and U ′ =
∑
i(Ts1)−1(g′i)ci ∈ UresUresq (H)([−γ1,−γn]).

Recall finally that by Corollary 2.4.4 (ii) we have UresUresq (H)([−γ1,−γn]) = Uresq ([−γ1,−γn])Uresq (H) and that

according to Lemma 2.8.6 elements of Uresq (H) act on weight vectors by multiplication by elements of C[q, q−1].
Therefore (4.1.60) immediately implies (4.1.45).

Finally note that v and Tγn . . . Tγ1u are weight vectors, and different weight subspaces of V are orthogonal with
respect to the bilinear form (·, ·). Therefore we can assume also that U(m1, . . . ,mn) in (4.1.45) belongs to a weight
subspace of Uresq (g), so that the weight of Tγn . . . Tγ1u is equal to that of U(m1, . . . ,mn)v. This completes the
proof.

Now we obtain an analogue of Lemma 4.1.4 for s2. We argue in the way similar to the previous discussion
in the case of s1. According to Lemma 1.6.14 (i) s2 is the longest element in the Weyl group W (ms2 , hs2) of the
semisimple part ms2 of a Levi subalgebra of g, the Cartan subalgebra of ms2 is denoted by hs2 .

The system of positive roots ∆+(ms2 , hs2) := ∆+∩∆(ms2 , hs2) of the root system ∆(ms2 , hs2) = ∆−1
s2

⋃
(−∆−1

s2 )
is the set (we again use the notation of (1.6.9))

∆+(ms2 , hs2) = {γn+1, . . . , γn+2, . . . , γn+3, . . . , γl′ , β
2

t′+ q+l′−n
2 +1

, . . . , β2
t′+q},

which is in fact a segment, and s2 acts on the elements of this set by multiplication by −1. The roots in (4.1.61)
are ordered as in the normal ordering of ∆+ associated to s. Note that, in fact, ∆+(ms2 , hs2) = ∆s

+(ms2 , hs2) =

∆(ms2 , hs2) ∩∆s
+ = ∆−1

s2 .

As before if w = si1 . . . siD is the reduced decomposition of the longest element w ∈ W corresponding to ∆+,
we write γm = si1 . . . sikn+1

. . . sikm−1
αikm for m = n+ 1, . . . , l′.

Let w = si1 . . . sikn+1−1
, Tw = Ti1 . . . Tikn+1−1

. Then ∆̃+(ms2 , hs2) = w−1(∆+(ms2 , hs2)) is the set of positive

roots of the semisimple part m̃s2 = Adw−1(ms2) of a standard Levi subalgebra of g. Indeed, by part (iv) of Lemma
1.6.3 the reduced decomposition sikn+1

. . . siD , which is a part of the reduced decomposition w = si1 . . . siD , can
be completed to a reduced decomposition of w, w = sikn+1

. . . siDsj1 . . . sjkn+1−1
, and by the definition the roots

from the set ∆̃+(ms2 , hs2) = w−1(∆+(ms2 , hs2)) form an initial segment in the corresponding normal ordering of
∆+. Therefore, if m̃s2 was not the semisimple part of a standard Levi subalgebra of g, by Lemma 1.6.14 (iii) there
would be some roots preceding those from the set w−1(∆+(ms2 , hs2)) in this normal ordering.

Therefore one can define the subalgebra Uh(m̃s2) ⊂ Uh(g) generated by the elements X±i and Hi for αi ∈
∆̃+(ms2 , hs2) and its restricted specialization Uresq (m̃s2) ⊂ Uresq (g).

Lemma 1.6.14 (i) also implies that s̃2 = w−1s2w is the longest element in the Weyl group W̃ (ms2 , hs2) =
w−1W (ms2 , hs2)w with respect to the system of simple roots in w−1(∆+(ms2 , hs2)).

For any root β ∈ ∆+ denote

X̃±β = T−1
w (X±β ), X̃

±
β = T

−1

w (X
±
β ), T̃β = T−1

w TβTw. (4.1.61)

Denote by βr := β2
t′+q the greatest root in the segment ∆+(ms2 , hs2) with respect to ordering (4.1.61). Then

by the definition T−1
w (Uresq ([−γn+1,−βr])) := Uresq (m̃−s2) is the subalgebra in the algebra Uresq (m̃s2) generated by

(X−β )(k) for simple roots β ∈ ∆̃+(ms2 , hs2) and k ≥ 0.

Similarly to Lemma 4.1.4 we have the following lemma.

Lemma 4.1.6. Let V be a finite rank representation of Uh(g), u, v ∈ V weight vectors. Then for any mn+1, . . . ,ml′ ∈
N one has

(u, (X̃+
γn+1

)(mn+1) . . . (X̃+
γl′

)(ml′ )v) = (u, K̃(mn+1, . . . ,ml′)T̃γn+1
. . . T̃γl′ v), (4.1.62)

where K̃(mn+1, . . . ,ml′) ∈ T−1
w (Uresq ([−γn+1,−βr]))T

−1

w (U
res

q ([γn+1, γl′ ])) = Uresq (m̃−s2)T
−1

w (U
res

q ([γn+1, γl′ ])), and

K̃(mn+1, . . . ,ml′) belongs to a weight subspace of Uresq (g).

From Lemmas 4.1.5 and 4.1.6 we obtain the following statement.
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Lemma 4.1.7. Let V be a finite rank representation of Uh(g), u, v ∈ V weight vectors. Suppose that u is a highest
weight vector. Then for any m1, . . . ,ml′ ∈ N

(u, (X+
γ1)(m1) . . . (X+

γn)(mn)(X+
γn+1

)(mn+1) . . . (X+
γl′

)(ml′ )v) =

= (u, Tγ1 . . . TγnTγn+1
. . . Tγl′Tw′X(m1, . . . ,ml′)T

−1
w′ v), (4.1.63)

where X(m1, . . . ,ml′) ∈ Uresq (n+), Tw′ = Ti1 . . . Tik
l′

for w′ = si1 . . . sik
l′

, and X(m1, . . . ,ml′) belongs to a weight

subspace of Uresq (g).

Proof. By Lemmas 4.1.5 and 4.1.6 we have, using the notation introduced in these lemmas,

(u, (X+
γ1)(m1) . . . (X+

γn)(mn)(X+
γn+1

)(mn+1) . . . (X+
γl′

)(ml′ )v) =

= (u, (X+
γ1)(m1) . . . (X+

γn)(mn)Tw(X̃+
γn+1

)(mn+1) . . . (X̃+
γl′

)(ml′ )T−1
w v) =

= (u, Tγ1 . . . TγnU(m1, . . . ,mn)TwK̃(mn+1, . . . ,ml′)T̃γn+1
. . . T̃γl′T

−1
w v), (4.1.64)

where U(m1, . . . ,mn) ∈ Uresq ([−γ1,−γn]), K̃(mn+1, . . . ,ml′) ∈ T−1
w (Uresq ([−γn+1,−βr]))T

−1

w (U
res

q ([γn+1, γl′ ])), so

we can write K̃(mn+1, . . . ,ml′) =
∑
j T
−1
w (aj)bj , aj ∈ Uresq ([−γn+1,−βr]), bj ∈ T

−1

w (U
res

q ([γn+1, γl′ ])). Substitut-
ing this into (4.1.64) we obtain

(u, (X+
γ1)(m1) . . . (X+

γn)(mn)(X+
γn+1

)(mn+1) . . . (X+
γl′

)(ml′ )v) = (4.1.65)

= (u, Tγ1 . . . TγnU(m1, . . . ,mn)Tw
∑
j

T−1
w (aj)bj T̃γn+1

. . . T̃γl′T
−1
w v) =

=
∑
j

(u, Tγ1 . . . TγnU(m1, . . . ,mn)ajTwbj T̃γn+1
. . . T̃γl′T

−1
w v),

where U(m1, . . . ,mn)aj ∈ Uresq ([−γ1,−γn])Uresq ([−γn+1,−βr]) ⊂ Uresq ([−γ1,−βr]).
Observe that by Corollary 2.4.4 (iii) Uresq ([−γ1,−βr]) = Uresq ([−βkn+1,−βr])Uresq ([−γ1,−γn]), so U(m1, . . . ,mn)aj =∑
i c
j
io
j
i for some cji ∈ Uresq ([−βkn+1,−βr]), oji ∈ Uresq ([−γ1,−γn]).

Now (4.1.65) takes the form

(u, (X+
γ1)(m1) . . . (X+

γn)(mn)(X+
γn+1

)(mn+1) . . . (X+
γl′

)(ml′ )v) = (4.1.66)

=
∑
i,j

(u, Tγ1 . . . Tγnc
j
io
j
iTwbj T̃γn+1 . . . T̃γl′T

−1
w v) =

∑
i,j

(u, (Tγ1 . . . Tγn(cji ))Tγ1 . . . Tγno
j
iTwbj T̃γn+1 . . . T̃γl′T

−1
w v).

If γn < β ≤ βr then by (4.1.24) we have β 6∈ ∆+(ms1 , hs1) = {α ∈ ∆+ : s1α ∈ ∆−}. This implies s1β ∈ ∆+,
and hence by the definition of the braid group action, for γn < β ≤ βr, k ∈ N the element Tγ1 . . . Tγn(X−β )(k) has

weight −ks1β < 0. Since the elements (X−β )(k) for γn < β ≤ βr, k ∈ N generate Uresq ([−βkn+1,−βr]), we deduce
that the only elements of Tγ1 . . . Tγn(Uresq ([−βkn+1,−βr])) which do not have strictly negative weights belong to
C[q, q−1]. Thus by Lemma 2.8.4 (i) the right hand side of (4.1.66) takes the form

(u, (X+
γ1)(m1) . . . (X+

γn)(mn)(X+
γn+1

)(mn+1) . . . (X+
γl′

)(ml′ )v) = (4.1.67)

=
∑
i,j

(u, (Tγ1 . . . Tγn(c′
j
i ))Tγ1 . . . Tγno

j
iTwbj T̃γn+1

. . . T̃γl′T
−1
w v) =

∑
j

(u, Tγ1 . . . TγnpjTwbj T̃γn+1
. . . T̃γl′T

−1
w v),

where c′
j
i ∈ C[q, q−1], pj =

∑
i c
′j
io
j
i ∈ Uresq ([−γ1,−γn]).

Now we proceed as in the proof of Lemma 4.1.5. Namely, denote T̃ 2 = T̃γn+1
. . . T̃γl′ . We find the action of

(T̃ 2)−1 on the generators of the algebra T
−1

w (U
res

q ([γn+1, γl′ ])).
For γn+1 ≤ βq ≤ γl′ we have by the definition βq = wskn+1

. . . siq−1
αiq , q = kn+1, . . . , kl′ , where we use the

reduced decomposition w = si1 . . . siD , and w = si1 . . . sikn+1
−1.

Similarly to (4.1.50) we infer

(T̃ 2)−1X̃
+

βq = Tikn+1
. . . Tik

l′
Tik

l′
. . . Tiq+1

X+
iq
. (4.1.68)
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Denote for q = kn+1, . . . , kl′ , δq = sik
l′
. . . siq+1

αiq , and

X̂+
δq

= Tik
l′
. . . Tiq+1X

+
iq
. (4.1.69)

We show that X̂+
δq
∈ Uresq (n+) for q = kn+1, . . . , kl′ .

Indeed, the element w−1
2 = sik

l′
. . . skn+1

is a part of the reduced decomposition

w = siD . . . sik
l′+1

sik
l′
. . . sikn+1

. . . si1 (4.1.70)

inverse to that corresponding to the normal ordering in ∆+ associated to s. Therefore by part (iv) of Lemma
1.6.3 we can consider it as an initial part of another reduced decomposition of the longest element w ∈ W . Now
by Lemma 2.4.2 (i) one has X̂+

δq
∈ Uresq (n+) for q = kn+1, . . . , kl′ which obviously implies that for the generators

(X̃
+

βq )
(k), q = kn+1, . . . , kl′ , k ∈ N of the algebra T

−1

w (U
res

q ([γn+1, γl′ ])) we have by (4.1.68)

(T̃ 2)−1(X̃
+

βq )
(k) = Tikn+1

. . . Tik
l′

(X̂+
δq

)(k) = Tw2
(X̂+

δq
)(k) ∈ Tikn+1

. . . Tik
l′

(Uresq (n+)) = Tw2
(Uresq (n+)),

where Tw2
= Tikn+1

. . . Tik
l′

. Thus

(T̃ 2)−1(T
−1

w (U
res

q ([γn+1, γl′ ]))) ⊂ Tw2(Uresq (n+)). (4.1.71)

Now, from (4.1.67) and (4.1.71) we obtain

(u, (X+
γ1)(m1) . . . (X+

γn)(mn)(X+
γn+1

)(mn+1) . . . (X+
γl′

)(ml′ )v) = (4.1.72)

=
∑
j

(u, Tγ1 . . . TγnpjTwT̃γn+1 . . . T̃γl′ ((T̃
2)−1(bj))T

−1
w v) =

∑
j

(u, Tγ1 . . . TγnpjTwT̃γn+1 . . . T̃γl′ (Tw2(b′j))T
−1
w v) =

=
∑
j

(u, Tγ1 . . . TγnpjTwT̃γn+1
. . . T̃γl′Tw2

b′jT
−1
w2
T−1
w v) =

∑
j

(u, Tγ1 . . . TγnpjTb
′
jT
−1
w′ v),

where (T̃ 2)−1(bj) = Tw2(b′j), b
′
j ∈ Uresq (n+),

T = TwT̃γn+1
. . . T̃γl′Tw2

,

and

Tw′ = TwTw2 = Ti1 . . . Tik
l′
,

for

w′ = ww2 = si1 . . . sik
l′
. (4.1.73)

We find the action of T−1 on the algebra Uresq ([−γ1,−γn]). First we obtain a convenient expression for T . If

w = si1 . . . sikn+1
. . . sik

l′
sik

l′+1
. . . sir . . . siD (4.1.74)

is the reduced decomposition of the longest element of the Weyl group corresponding to the normal ordering in
∆+ associated to s, so that s̃2 = sikn+1

. . . sik
l′
sik

l′+1
. . . sir is the corresponding reduced decomposition of s̃2, then,

similarly to (4.1.48), we have

T̃γn+1
. . . T̃γl′ = Tir . . . Tik

l′+1
T−1
ik
l′
T−1
ik
l′−1

. . . T−1
ikn+1

,

and hence

T̃γn+1
. . . T̃γl′Tw2

= T̃γn+1
. . . T̃γl′Tikn+1

. . . Tik
l′

= Tir . . . Tik
l′+1

. (4.1.75)

This identity together with the definition of Tw imply

T = TwT̃γn+1
. . . T̃γl′Tw2

= Ti1 . . . Tikn+1−1
Tir . . . Tik

l′+1
. (4.1.76)
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Observe that T is the braid group element corresponding to the reduced decomposition

si1 . . . sikn+1−1
sir . . . sik

l′+1
(4.1.77)

which is a part of the reduced decomposition

w = si1 . . . sikn+1−1
sir . . . sik

l′+1
sik

l′
. . . sikn+1

. . . siD

obtained from reduced decomposition (4.1.74),

w = si1 . . . sikn+1−1
sikn+1

. . . sik
l′
sik

l′+1
. . . sir . . . siD ,

by inverting the part s̃2 = sikn+1
. . . sik

l′
sik

l′+1
. . . sir . This inversion gives a reduced decomposition again because

s̃2 = −1 is the longest element in W̃ (ms2 , hs2).
Now for β1 ≤ βt ≤ βkn , βt = si1 . . . sit−1

αit , X
−
βt

= Ti1 . . . Tit−1
X−it , t = 1, . . . , kn, we have by (4.1.76), by

commutation relations (2.3.6), and by the definition of the braid group action (see (2.2.1)), for all generators
(X−βt)

(k), t = 1, . . . , kn, k ∈ N, of the algebra Uresq ([−γ1,−γn])

T−1(X−βt)
(k) =

1

[k]qit !
T−1
ik
l′+1

. . . T−1
ir
T−1
ikn+1−1

. . . T−1
it+1

T−1
it

. . . T−1
i1
Ti1 . . . Tit−1

(X−it )k = (4.1.78)

=
1

[k]qit !
(T−1
ik
l′+1

. . . T−1
ir
T−1
ikn+1−1

. . . T−1
it+1

T−1
it
X−it )k =

1

[k]qit !
(−T−1

ik
l′+1

. . . T−1
ir
T−1
ikn+1−1

. . . T−1
it+1

X+
it
Kit)

k =

=
1

[k]qit !
(−T−1

ik
l′+1

. . . T−1
ir
T−1
ikn+1−1

. . . T−1
it+1

(X+
it

)Rt)
k = (−1)kq

k(k−1)
it

T−1
ik
l′+1

. . . T−1
ir
T−1
ikn+1−1

. . . T−1
it+1

((X+
it

)(k))Rkt ,

where
Rt = T−1

ik
l′+1

. . . T−1
ir
T−1
ikn+1−1

. . . T−1
it+1

(Kit).

Since sik
l′+1

. . . sirsikn+1−1
. . . si1 is a reduced decomposition by (4.1.77), by part (iv) of Lemma 1.6.3 we can

consider it as an initial part of a reduced decomposition of the longest element w ∈W , and hence by Lemma 2.4.2
(v)

Z
(k)
t = T−1

ik
l′+1

. . . T−1
ir
T−1
ikn+1−1

. . . T−1
it+1

(X+
it

)(k) ∈ Uresq (n+). (4.1.79)

Therefore for β1 ≤ βt ≤ βkn using (4.1.79) one has from (4.1.78) for all generators (X−βt)
(k), t = 1, . . . , kn,

k ∈ N, of the algebra Uresq ([−γ1,−γn])

T−1(X−βt)
(k) = (−1)kq

k(k−1)
it

Z
(k)
t Rkt ∈ Uresq (b+). (4.1.80)

This implies
T−1(Uresq ([−γ1,−γn])) ⊂ Uresq (b+),

and hence (4.1.72) takes the form

(u, (X+
γ1)(m1) . . . (X+

γn)(mn)(X+
γn+1

)(mn+1) . . . (X+
γl′

)(ml′ )v) = (4.1.81)

=
∑
j

(u, Tγ1 . . . TγnTp
′
jb
′
jT
−1
w′ v) = (u, Tγ1 . . . TγnTX

′T−1
w′ v),

where p′j = T−1(pj) ∈ Uresq (b+), so that X ′ =
∑
j p
′
jb
′
j ∈ Uresq (b+).

We also have by the definitions of T̃γn+1
. . . T̃γl′ = T−1

w (Tγn+1
. . . Tγl′ ) and of Tw′ = TwTw2

that

Tγ1 . . . TγnT = Tγ1 . . . TγnTwT̃γn+1 . . . T̃γl′Tw2 = Tγ1 . . . TγnTγn+1 . . . Tγl′TwTw2 =

= Tγ1 . . . TγnTγn+1
. . . Tγl′Tw′ .

Therefore we can rewrite (4.1.81) as follows

(u, (X+
γ1)(m1) . . . (X+

γn)(mn)(X+
γn+1

)(mn+1) . . . (X+
γl′

)(ml′ )v) = (u, Tγ1 . . . TγnTγn+1
. . . Tγl′Tw′X

′T−1
w′ v). (4.1.82)
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Now recall that by Corollary 2.4.4 (ii) X ′ ∈ Uresq (b+) = Uresq (n+)Uresq (H). Observe also that T−1
w′ v ∈ V is

a weight vector, and by Lemma 2.8.6 elements of Uresq (H) act on it by multiplication by elements of C[q, q−1].
Therefore (4.1.82) immediately implies (4.1.63).

Finally note that T−1
w′ v and T−1

w′ Tγl′ . . . Tγ1u are weight vectors, and different weight subspaces of V are orthog-
onal with respect to the bilinear form (·, ·). Therefore we can assume also that X(m1, . . . ,ml′) in (4.1.63) belongs
to a weight subspace of Uresq (g), so that the weight of T−1

w′ Tγl′ . . . Tγ1u is equal to that of X(m1, . . . ,ml′)T
−1
w′ v.

This completes the proof.

Lemma 4.1.8. Let V be a finite rank representation of Uh(g), u, v ∈ V weight vectors. Suppose that u is a highest
weight vector. Then for any m1, . . . ,ml′ ∈ N

(u, (X+
γ1)(m1) . . . (X+

γn)(mn)(X+
γn+1

)(mn+1) . . . (X+
γl′

)(ml′ )v) =

= (u, Tγ1 . . . TγnTγn+1 . . . Tγl′Y v) = c(u, TsY v),

where

Y =
∑

n1,...,nD

Fn1,...,nD (X−βk
l′

)(nk
l′

) . . . (X−β1
)(n1)(X+

βk
l′+1

)(nk
l′+1) . . . (X+

βD
)(nD) ∈ Uresq (w′(b+)),

Fn1,...,nD ∈ C[q, q−1], the sum is finite, and c ∈ C[q, q−1]∗ is an integer power of q up to a numeric factor.

Proof. We bring the right hand side of formula (4.1.63) to the form stated in this lemma. Firstly, using part (iv) of
Lemma 1.6.3 we complete the final part sik

l′
. . . si1 of reduced decomposition (4.1.70) to a reduced decomposition

w = sik
l′
. . . si1spk

l′+1
. . . spD , and consider the corresponding normal ordering β′kl′ , . . . , β

′
1, β
′
pk
l′+1

, . . . , β′pD of ∆+.

Define the corresponding quantum root vectors

X
+

β′q
=

{
T−1
ik
l′
. . . T−1

iq−1
X+
iq

1 ≤ q ≤ kl′
T−1
w′ T

−1
pk
l′+1

. . . T−1
pq−1

X+
pq kl′ + 1 ≤ q ≤ D ,

and the basis of Uresq (n+) as in Lemma 2.4.2 (v),

(X
+

β′k
l′

)(nk
l′

) . . . (X
+

β′1
)(n1)(X

+

β′k
l′+1

)(nk
l′+1) . . . (X

+

β′D
)(nD). (4.1.83)

Similarly, we also complete the final segment sik
l′+1

. . . siD of reduced decomposition (4.1.74) to another reduced

decomposition w = sik
l′+1

. . . siDsp1 . . . spk
l′

, and consider the corresponding normal ordering β′′kl′ , . . . , β
′′
1 , β

′′
pk
l′+1

, . . . , β′′pD
of ∆+. Define the corresponding quantum root vectors

X+
β′′q

=

{
Tw′′Tp1 . . . Tpq−1X

+
pq 1 ≤ q ≤ kl′

Tik
l′+1

. . . Tiq−1
X+
iq

kl′ + 1 ≤ q ≤ D ,

where Tw′′ = Tik
l′+1

. . . TiD for w′′ = sik
l′+1

. . . siD , and the basis of Uresq (n+) as in Lemma 2.4.2 (i),

(X+
β′′k
l′+1

)(nk
l′+1) . . . (X+

β′′D
)(nD)(X+

β′′1
)(n1) . . . (X+

β′′k
l′

)(nk
l′

). (4.1.84)

We can represent the monomials (X
+

β′k
l′+1

)(nk
l′+1) . . . (X

+

β′D
)(nD) using basis (4.1.84),

(X
+

β′k
l′+1

)(nk
l′+1) . . . (X

+

β′D
)(nD) = (4.1.85)

=
∑

q1,...,qD

Cq1,...qD (X+
β′′k
l′+1

)(qk
l′+1) . . . (X+

β′′D
)(qD)(X+

β′′1
)(q1) . . . (X+

β′′k
l′

)(qk
l′

),

where Cq1,...qD ∈ C[q, q−1]. Applying Tw′ to this identity we get

(X̂
+

β′k
l′+1

)(nk
l′+1) . . . (X̂

+

β′D
)(nD) = (4.1.86)
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=
∑

q1,...,qD

Cq1,...qD (X+
βk
l′+1

)(qk
l′+1) . . . (X+

βD
)(qD)(X̌+

β′′1
)(q1) . . . (X̌+

β′′k
l′

)(qk
l′

),

where by Lemma 2.4.2 (v) for kl′ + 1 ≤ q ≤ D

X̂
+

β′q
= Tw′X

+

β′q
= T−1

pk
l′+1

. . . T−1
pq−1

X+
pq ∈ U

res
q (n+), (4.1.87)

and for 1 ≤ q ≤ kl′

X̌+
β′′q

= Tw′X
+
β′′q

= Tw′Tw′′Tp1 . . . Tpq−1
X+
pq = TwTp1 . . . Tpq−1

X+
pq ∈ U

res
q (b−), (4.1.88)

where we used the fact that Tp1 . . . Tpq−1
X+
pq ∈ Uresq (n+) by Lemma 2.4.2 (i) and TwU

res
q (n+) ⊂ Uresq (b−) by

Lemma 2.4.6.
Observe that for 1 ≤ q ≤ kl′ , sp1 . . . spq−1αpq ∈ ∆+ by Lemma 1.6.3 (iv) as sp1 . . . spk

l′
is a reduced decomposition

being a part of the reduced decomposition w = sik
l′+1

. . . siDsp1 . . . spk
l′

. Therefore wsp1 . . . spq−1
αpq ∈ ∆−.

Thus the elements X̌+
β′′q
∈ Uresq (b−), 1 ≤ q ≤ kl′ have strictly negative weights, wtX̌+

β′′q
= wsp1 . . . spq−1

αpq < 0.

Now by (4.1.87) and (4.1.88) we have that in (4.1.86)

(X̂
+

β′k
l′+1

)(nk
l′+1) . . . (X̂

+

β′D
)(nD) ∈ Uresq (n+),

(X+
βk
l′+1

)(qk
l′+1) . . . (X+

βD
)(qD) ∈ Uresq (n+),

and the elements
(X̌+

β′′1
)(q1) . . . (X̌+

β′′k
l′

)(qk
l′

) ∈ Uresq (b−) = Uresq (H)Uresq (n−)

have strictly negative weights unless q1 = . . . = qkl′ = 0.
By the uniqueness of the Poincaré–Birkhoff–Witt decomposition (2.4.2) in Lemma 2.4.2 we deduce that (4.1.86)

takes the form

(X̂
+

β′k
l′+1

)(nk
l′+1) . . . (X̂

+

β′D
)(nD) =

=
∑

qk
l′+1,...,qD

Cqk
l′+1,...qD (X+

βk
l′+1

)(qk
l′+1) . . . (X+

βD
)(qD),

where Cqk
l′+1,...,qD ∈ C[q, q−1].

Applying T−1
w′ to this identity we obtain that (4.1.85) takes the form

(X
+

β′k
l′+1

)(nk
l′+1) . . . (X

+

β′D
)(nD) =

∑
qk
l′+1,...,qD

Cqk
l′+1,...qD (X+

β′′k
l′+1

)(qk
l′+1) . . . (X+

β′′D
)(qD). (4.1.89)

Recalling basis (4.1.83) we infer that every element of Uresq (n+) is a C[q, q−1]–linear combination of monomials
of the form

(X
+

β′k
l′

)(nk
l′

) . . . (X
+

β′1
)(n1)(X+

β′′k
l′+1

)(nk
l′+1) . . . (X+

β′′D
)(nD). (4.1.90)

Kostant’s formula shows that they form a C[q, q−1]–basis of Uresq (n+).
Now for 1 ≤ q ≤ kl′ we have

Tw′X
+

β′q
= Tw′T

−1
ik
l′
. . . T−1

iq−1
X+
iq

= Ti1 . . . TiqX
+
iq

= −Ti1 . . . Tiq−1X
−
iq
Kiq = −X−βqKβq , (4.1.91)

where
Kβq = Ti1 . . . Tiq−1

Kiq ,

and for kl′ + 1 ≤ q ≤ D
Tw′X

+
β′′q

= Tw′Tik
l′+1

. . . Tiq−1
X+
iq

= X+
βq
. (4.1.92)

The last two identities and commutation relations between elements Kβq and quantum root vectors following from
relations (2.3.5) imply

Tw′

(
(X

+

β′k
l′

)(nk
l′

) . . . (X
+

β′1
)(n1)(X+

β′′k
l′+1

)(nk
l′+1) . . . (X+

β′′D
)(nD)

)
= (4.1.93)
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= Qn1,...,nk
l′

(X−βk
l′

)(nk
l′

) . . . (X−β1
)(n1)(X+

βk
l′+1

)(nk
l′+1) . . . (X+

βD
)(nD),

where Qn1,...,nk
l′

is a monomial in K±1
1 , . . . ,K±1

l .

Recalling basis (4.1.90) we can express X ∈ Uresq (n+) in (4.1.63) as follows

X =
∑

n1,...,nD

Fn1,...,nD (X
+

β′k
l′

)(nk
l′

) . . . (X
+

β′1
)(n1)(X+

β′′k
l′+1

)(nk
l′+1) . . . (X+

β′′D
)(nD),

where Fn1,...,nD ∈ C[q, q−1] and the sum is finite.
Now using (4.1.93) we deduce that in (4.1.63)

Tw′XT
−1
w′ =

∑
n1,...,nD

F ′n1,...,nD (X−βk
l′

)(nk
l′

) . . . (X−β1
)(n1)(X+

βk
l′+1

)(nk
l′+1) . . . (X+

βD
)(nD), (4.1.94)

where F ′n1,...,nD = Fn1,...,nDQn1,...,nk
l′
∈ Uq(H) ⊂ Uresq (H).

Observing that Tγl′ . . . Tγn+1Tγn . . . Tγ1u is a weight vector and using Lemma 2.8.6, formula (4.1.63) can be
rewritten as follows

(u, (X+
γ1)(m1) . . . (X+

γn)(mn)(X+
γn+1

)(mn+1) . . . (X+
γl′

)(ml′ )v) = (4.1.95)

=
∑

n1,...,nD

Fn1,...,nD (u, Tγ1 . . . TγnTγn+1 . . . Tγl′ (X
−
βk
l′

)(nk
l′

) . . . (X−β1
)(n1)(X+

βk
l′+1

)(nk
l′+1) . . . (X+

βD
)(nD)v) =

= (u, Tγ1 . . . TγnTγn+1 . . . Tγl′Y v),

where
Y =

∑
n1,...,nD

Fn1,...,nD (X−βk
l′

)(nk
l′

) . . . (X−β1
)(n1)(X+

βk
l′+1

)(nk
l′+1) . . . (X+

βD
)(nD) ∈ Uresq (w′(b+)),

Fn1,...,nD ∈ C[q, q−1] and the sum is finite. This proves the first formula in the statement of this lemma.
To justify the last formula in the statement of the lemma we observe that Tγl′ . . . Tγn+1Tγn . . . Tγ1 and T−1

s act
as the same transformations of h ⊂ Uh(h) and apply Lemma 2.8.7. This completes the proof.

In the course of the proof of the previous lemma we obtained the following result.

Corollary 4.1.9. The products

(X−βk
l′

)(nk
l′

) . . . (X−β1
)(n1)(X+

βk
l′+1

)(nk
l′+1) . . . (X+

βD
)(nD) (4.1.96)

or
(X+

βk
l′+1

)(nk
l′+1) . . . (X+

βD
)(nD)(X−βk

l′
)(nk

l′
) . . . (X−β1

)(n1) (4.1.97)

form Uresq (H)–bases in the subalgebra Uresq (w′(b+)) of Uresq (g) generated over Uresq (H) by the elements

(X−βk
l′

)(nk
l′

), . . . , (X−β1
)(n1), (X+

βk
l′+1

)(nk
l′+1), . . . , (X+

βD
)(nD), ni ∈ N, i = 1, . . . , D. (4.1.98)

Proof. If Y ∈ Uresq (w′(b+)) then by (4.1.91) and (4.1.92) we have T−1
w′ (Y ) ∈ Uresq (b+). By (4.1.94) Y =

Tw′(T
−1
w′ (Y )) can be represented as a Uresq (H)–linear combination of elements (4.1.96). By Kostant’s formula

they form a Uresq (H)–basis in Uresq (w′(b+)).
The case of elements (4.1.97) is considered in a similar way. This completes the proof.

Remark 4.1.10. The use of the symbol Uresq (w′(b+)) is motivated by the fact that the algebra Uresq (w′(b+)) is
generated by elements (4.1.98) which are defined with the help of the quantum root vectors corresponding to the

roots −βkl′ , . . . ,−β1, βkl′+1, . . . , βD. They form a system of positive roots ∆w′

+ in ∆ such that w′
−1

∆w′

+ = ∆+.

Indeed, recalling (4.1.73) we obtain that ∆w′−1 = {β1, . . . , βkl′} by Lemma 1.6.3 (iv), and hence w′
−1

∆w′

+ = ∆+ as

the number of the roots in ∆w′

+ is the same as in ∆+. So, we infer that ∆w′

+ = w′∆+. Thus w′(b+) := Adw′(b+)
is the Borel subalgebra of g the nilradical of which is generated by the root vectors corresponding to the roots from
∆w′

+ , and Uresq (w′(b+)) is the restricted version of the quantum counterpart of the enveloping algebra U(w′(b+)).



150 CHAPTER 4. ZHELOBENKO TYPE OPERATORS FOR Q-W–ALGEBRAS

4.2 Some auxiliary results on the quantized algebra of regular func-
tions on an algebraic Poisson–Lie group

In this section we give several formulas related to the adjoint action and commutation relations in the algebra
CsB[G].

Let β1, . . . , βN be a normal order on ∆+, fβ1
, . . . , fβD ∈ U

s,res
B (g) the corresponding root vectors defined with

the help of this normal ordering.
Firstly, following [12], Theorem I.8.16 we recall the commutation relations in the algebra CsB[G] which follow

from the fact that Ush(g) is quasitriangular. Namely, if V , V ′ are finite rank representations of Uh(g), (V )η, (V
′)ρ,

(V )β , (V
′)γ their weight subspaces of weights η, ρ, β and γ, respectively, and v ∈ (V )η, v1 ∈ (V ′)ρ, u ∈ (V )β , u1 ∈

(V ′)γ then evaluating the identity ∆opp
s (x)Rs = Rs∆s(x) on the matrix element (u, · v) ⊗ (u1, · v1) and recalling

formula (2.6.16) we obtain

q((κ 1+s
1−sPh′+id)η∨,ρ∨)

(u1, · v1)⊗ (u, · v) +
∑

ν∈Q+,ν 6=0

∑
n1, . . . , nD ∈ N,

n1β1 + . . . + nDβD = ν

(u1, · un1,...,nDv1)⊗ (u, · u−n1,...,−nDv)

 =

= q((κ 1+s
1−sPh′+id)β∨,γ∨)(u, · v)⊗ (u1, · v1)+ (4.2.1)

+
∑

ν∈Q+,ν 6=0

∑
n1, . . . , nD ∈ N,

n1β1 + . . . + nDβD = ν

q((κ 1+s
1−sPh′+id)(β∨+ν∨),γ∨−ν∨)(ω(u−n1,...,−nD )u, · v)⊗ (ω(un1,...,nD )u1, · v1),

where
u−n1,...,−nD = c−n1,...,−nDf

(n1)
β1

. . . f
(nD)
βD

,

un1,...,nD = cn1,...,nDe
n1

β1
. . . enDβD ,

c±n1,...,±nD ∈ B, and similarly evaluating the identity ∆opp
s (x)Rs21

−1 = Rs21
−1∆s(x) on the matrix element (u, · v)⊗

(u1, · v1) we get

q((κ 1+s
1−sPh′−id)η∨,ρ∨)

(u1, · v1)⊗ (u, · v) +
∑

ν∈Q+,ν 6=0

∑
n1, . . . , nD ∈ N,

n1β1 + . . . + nDβD = ν

(u1, · u′−n1,...,−nDv1)⊗ (u, · u′n1,...,nDv)

 =

= q((κ 1+s
1−sPh′−id)β∨,γ∨)(u, · v)⊗ (u1, · v1)+

+
∑

ν∈Q+,ν 6=0

∑
n1, . . . , nD ∈ N,

n1β1 + . . . + nDβD = ν

q((κ 1+s
1−sPh′−id)(β∨+ν∨),γ∨−ν∨)(ω(u′n1,...,nD )u, · v)⊗ (ω(u′−n1,...,−nD )u1, · v1),

where
u′−n1,...,−nD = c′−n1,...,−nDf

(nD)
βD

. . . f
(n1)
β1

,

u′n1,...,nD = c′n1,...,nDe
nD
βD

. . . en1

β1
,

c′±n1,...,±nD ∈ B.
If v = T−1

s vλ ∈ (V )s−1λ, v1 = T−1
s vµ ∈ (V ′)s−1µ, u ∈ (V )β , u1 = vµ ∈ (V ′)µ, where vλ ∈ V and vµ ∈ V ′ are

highest weight vectors, then the previous identity yields

q((κ 1+s
1−sPh′−id)λ∨,µ∨)(vµ, · T−1

s vµ)⊗ (u, · T−1
s vλ) = (4.2.2)

= q((κ 1+s
1−sPh′−id)β∨,µ∨)(u, · T−1

s vλ)⊗ (vµ, · T−1
s vµ).

The next lemma shows how the adjoint action behaves with respect to the multiplication in CsB[G].

Lemma 4.2.1. For any f, g ∈ CsB[G], x ∈ Us,resB (g) we have

Ad0
sx(f ⊗ g)(· , · ) = (Ad0

sx
2f)(· )⊗ g((ω0S

−1
s )(x1) · ω0x

3),

where ∆2
sx = (∆s ⊗ id)∆sx = x1 ⊗ x2 ⊗ x3 in the Sweedler notation.
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In particular,

Ad0
sfβ(f⊗g)(· , · ) = f(· )⊗g((ω0S

−1
s )(fβ)· )+(Ad0

sfβf)(· )⊗g(Gβ · )+
∑
i

(Ad0
sxif)(· )⊗g((ω0S

−1
s )(yi)· )+ (4.2.3)

+f(Gβ · G−1
β )⊗ g(Gβ · ω0(fβ)) +

∑
i

(Ad0
sy

2
i f)(· )⊗ g((ω0S

−1
s )(y1

i ) · ω0xi) =

= f(· )⊗ g((ω0S
−1
s )(fβ) · ) + (Ad0

sfβf)(· )⊗ g(Gβ · ) + f(Gβ · G−1
β )⊗ g(Gβ · ω0(fβ))+

+
∑
i

(Ad0
syif)(· )⊗ g(Gβ · ω0xi) +

∑
i

(Ad0
sx

1
i f)(· )⊗ g((ω0S

−1
s )(yi) · ω0x

2
i )

and

Ad0
sf

(n)
β (f ⊗ g)(· , · ) =

n∑
k=0

n−k∑
p=0

q
−k(n−k)−p(n−k−p)
β (Ad0

s(G
−k
β f

(p)
β )f)(· )⊗ g(ω0S

−1
s (G−k−pβ f

(n−k−p)
β ) · ω0(f

(k)
β ))+

+

n−1∑
k=0

∑
i

q
−k(n−k)
β (Ad0

s(G
−k
β x

(n−k)
i )f)(· )⊗ g((ω0S

−1
s )(G−kβ y

(n−k)
i ) · ω0(f

(k)
β ))+ (4.2.4)

+
∑
i

(Ad0
s(y

(n)
i

2
)f)(· )⊗ g((ω0S

−1
s )(y

(n)
i

1
) · ω0(x

(n)
i )),

where Gβ, xi, yi, x
(p)
i , y

(p)
i are defined in (2.8.13) and (2.8.16), and ∆s(xi) = x1

i ⊗ x2
i , ∆s(yi) = y1

i ⊗ y2
i ,

∆s(y
(p)
i ) = y

(p)
i

1
⊗ y(p)

i

2
in the Sweedler notation.

Proof. Denote, using the Sweedler notation,

∆3
sx = (∆s ⊗ id⊗ id)(∆s ⊗ id)∆sx = x1 ⊗ x2 ⊗ x3 ⊗ x4

and observe that the definition of Ad′s implies that for any x, z ∈ Us,resB (g)

∆opp
s (Ad′sxz) = (x2 ⊗ x1)(z2 ⊗ z1)(Ssx

3 ⊗ Ssx4) = Ad′sx
2z2 ⊗ x1z1Ssx

3.

Let z = Ssω0y, y ∈ Us,resB (g). Then, since ω0S
−1
s is an algebra homomorphism and a coalgebra anti-

homomorphism, we deduce

∆sω0S
−1
s (Ad′sxSsω0y) = (ω0S

−1
s ⊗ ω0S

−1
s )∆opp

s (Ad′sxz) = (ω0S
−1
s ⊗ ω0S

−1
s )Ad′sx

2z2 ⊗ x1z1Ssx
3 =

= (ω0S
−1
s ⊗ ω0S

−1
s )Ad′sx

2(Ssω0)(y1)⊗ x1(Ssω0)(y2)Ssx
3 = ω0S

−1
s Ad′sx

2((Ssω0)(y1))⊗ (ω0S
−1
s )(x1)y2ω0x

3.

Evaluating the last identity on f ⊗ g we get the first formula in the statement of the lemma. (4.2.3) and (4.2.4)
are obtained from it using (2.8.13) and (2.8.16).

It will be convenient to consider a left action Ads of Us,resB (g) on CsB[G] defined as follows

(Adsxf)(w) = f(Adsx(w)). (4.2.5)

It is related to Ad0
s by the formula

(Adsxf)(w) = (Ad0
sω0(x)f)(w). (4.2.6)

To define quantum analogues of the ideals Jjk we need to introduce quantum counterparts of matrix elements
(3.5.3). By Proposition 8.3 in [48] there exist integral dominant weights µp, p = 1, . . . , D, and elements vp ∈
(Vµp)µp−βp such that (vp, ·vµp) ∈ CsB[G], and

(vp, ω0S
−1
s (f

(nD)
βD

. . . f
(n1)
β1

)vµp) =

{
1 if f

(nD)
βD

. . . f
(n1)
β1

= fβp
0 otherwise

, (4.2.7)

where the highest weight vectors vµp ∈ Vµp are normalized by the condition (vµp , vµp) = 1.
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Since ω(ω0S
−1
s (fβp))vp ∈ (Vµp)µp and the subspace (Vµp)µp is one–dimensional this definition implies

ω(ω0S
−1
s (fβp))vp = vµp . (4.2.8)

In particular, (vµp , ·vµp) ∈ CsB[G], and

(vp, ω0S
−1
s (fβp) · T−1

s vµp) = (vµp , ·T−1
s vµp). (4.2.9)

Let
Ap = (vp, ·T−1

s vµp), A0
p = (vµp , ·T−1

s vµp). (4.2.10)

From (4.2.2) we deduce

(vµp , ·T−1
s vµp)⊗ (vp, ·T−1

s vµp) = q((−2Ks+id)β∨p ,µ
∨
p )(vp, ·T−1

s vµp)⊗ (vµp , ·T−1
s vµp),

i.e.
A0
p ⊗Ap = q((−2Ks+id)β∨p ,µ

∨
p )Ap ⊗A0

p. (4.2.11)

More generally, denote ∆s
µ(·) = (vµ, ·T−1

s vµ) ∈ CsB[G], µ ∈ P+, where vµ ∈ Vµ are highest weight vectors
normalized by (vµ, vµ) = 1. Then

∆s
µ ⊗Ap = q

((−2Ks+id)α∨ip ,µ
∨)
Ap ⊗∆s

µ, (4.2.12)

The following statement is a quantum counterpart of Lemma 3.5.1. In fact Lemma 3.5.1 can be proved by

specializing the statement of Lemma 4.2.2 at q
1
dr2 = 1.

Lemma 4.2.2. (i) For any 1 ≤ q < p ≤ D, y ∈ ω0S
−1
s (Us,resB ([−βp,−βD])) of the form y = ω0S

−1
s (f

(nD)
βD

. . . f
(np)
βp

),

ni ∈ N, y 6= 1, and any u ∈ Us,resB (g) one has

(vq, yuvµq ) = 0. (4.2.13)

In particular, ω(y)vq = 0 in this case.

(ii) For any 1 ≤ p ≤ D, y ∈ ω0S
−1
s (Us,resB ([−βp,−βD])) of the form y = ω0S

−1
s (f

(nD)
βD

. . . f
(np)
βp

), ni ∈ N,

y 6= 1, ω0S
−1
s (fβp), and any u ∈ Us,resB (g) one has

(vp, yuvµp) = 0. (4.2.14)

In particular, ω(y)vp = 0 in this case.

Proof. (i) Observe that, by the definitions of ω0 and of Ss, ω0S
−1
s is an algebra automorphism of Us,resB (g) such

that ω0S
−1
s (Us,resB (n±)) ⊂ Us,resB (b±) and ω0S

−1
s (Us,resB (h)) = Us,resB (h). Therefore, since vµp ∈ Vµp is a highest

weight vector generating Vµp , by Lemmas 2.8.2 (iii), 2.8.4 (ii) and 2.8.6 we have

Vµp = ω0S
−1
s (Us,resB (g))vµp = ω0S

−1
s (Us,resB (n−))ω0S

−1
s (Us,resB (h))ω0S

−1
s (Us,resB (n+))vµp = (4.2.15)

= ω0S
−1
s (Us,resB (n−))Us,resB (h)Us,resB (b+)vµp = ω0S

−1
s (Us,resB (n−))vµp .

Therefore we can write (4.2.13) in the form

(vq, yu)vµq ) = (vq, yω0S
−1
s (y′)vµq ) (4.2.16)

for some y′ ∈ Us,resB (n−). We claim that that the right hand side of (4.2.16)vanishes.

Indeed, yω0S
−1
s (y′) = ω0S

−1
s (f

(nD)
βD

. . . f
(np)
βp

y′) and f
(nD)
βD

. . . f
(np)
βp

y′ belongs to the right ideal Yp in Us,resB (n−)

generated by f
(nu)
βu

, u ≥ p > q and nu > 0. By Lemma 2.8.2 (vii) the elements f
(nD)
βD

. . . f
(n1)
β1

with at least one
nu > 0 for u ≥ p > q form a linear basis of this ideal, and this basis does not contain multiples of fβq . So by (4.2.7)
we have

(vq, ω0S
−1
s (f

(nD)
βD

. . . f
(np)
βp

y′)vµq ) = 0.

The result that we proved implies that ω(y)vq is orthogonal, with respect to the contravariant form, to any
element of the form uvµq , u ∈ U

s,res
B (g). Since any element of Vµq is of this form and the contravariant form is

non–degenerate we deduce that ω(y)vq = 0.
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(ii) By (4.2.15) we can write, similarly to (4.2.16),

(vp, yuvµp) = (vp, yω0S
−1
s (y′)vµp) = (vp, ω0S

−1
s (f

(nD)
βD

. . . f
(np)
βp

y′)vµp) (4.2.17)

for some y′ ∈ Us,resB (n−).

If at least one ni > 0 for some i > p, f
(nD)
βD

. . . f
(np)
βp

y′ belongs to the right ideal Yp+1 of Us,resB (n−) generated by

f
(mu)
βu

, u > p and mu > 0. By Lemma 2.8.2 (vii) the elements f
(mD)
βD

. . . f
(m1)
β1

with at least one mu > 0 for u > p
form a linear basis of this ideal, and this basis does not contain multiples of fβp . Therefore according to (4.2.7)

(vp, ω0S
−1
s (y′′)vµp) = 0, for any y′′ ∈ Yp+1, (4.2.18)

and hence the right hand side of (4.2.17) vanishes if at least one ni > 0 for some i > p.

If ni = 0 for all i > p we have f
(nD)
βD

. . . f
(np)
βp

y′ = f
(np)
βp

y′, np > 1. By Lemma 2.8.2 (ix) y′ ∈ Us,resB (n−) =

Us,resB ([−βp+1,−βD])Us,resB ([−β1,−βp]), and hence by Lemma 2.8.2 (viii)

f
(np)
βp

y′ ∈ f (np)
βp

Us,resB ([−βp+1,−βD])Us,resB ([−β1,−βp]) ⊂
np−1∑
i=0

(Us,resB ([−βp+1,−βD]))0f
(i)
βp
Us,resB ([−β1,−βp])+

+Us,resB ([−βp+1,−βD])f
(np)
βp

Us,resB ([−β1,−βp]),

where (Us,resB ([−βp+1,−βD]))0 = Yp+1 ∩ Us,resB ([−βp+1,−βD]), so for i < np one has

(Us,resB ([−βp+1,−βD]))0f
(i)
βp
Us,resB ([−β1,−βp]) ⊂ Yp+1.

Thus by (4.2.18)

(vp, ω0S
−1
s (f

(np)
βp

y′)vµp) = (vp, ω0S
−1
s (y′′′)vµp), y′′′ ∈ Us,resB ([−βp+1,−βD])f

(np)
βp

Us,resB ([−β1,−βp]).

By Lemma 2.8.2 (vi) and by Remark 2.8.3 the decompositions of elements of Us,resB ([−βp+1,−βD])f
(np)
βp

Us,resB ([−β1,−βp])
with respect to the basis f

(mD)
βD

. . . f
(m1)
β1

only contain non-zero multiples of elements of the basis with mp ≥ np > 1.
None of these elements is equal to fβp . Therefore by (4.2.7)

(vp, yuvµp) = (vp, yω0S
−1
s (y′)vµp) = (vp, ω0S

−1
s (f

(np)
βp

y′)vµp) = (vp, ω0S
−1
s (y′′′)vµp) = 0.

Thus
(vp, yuvµp) = (vp, f

(nD)
βD

. . . f
(np)
βp

uvµp) = 0

if y = ω0S
−1
s (f

(nD)
βD

. . . f
(np)
βp

) 6= 1, ω0S
−1
s (fβp).

The result that we proved implies that ω(y)vp is orthogonal, with respect to the contravariant form, to any
element of the form uvµp , u ∈ Us,resB (g). Since any element of Vµp is of this form and the contravariant form is
non–degenerate we deduce that ω(y)vp = 0.

This completes the proof of Lemma 4.2.2.

In order co define quantum counterparts of functions ϕp we have to introduce a certain localization Cs,locB [G]
of CsB[G]. By Lemma 9.1.10 in [59] it is possible to define a localization of CsB[G] in the sense of localization for
non–commutative algebras which contains the quantum counterparts of the denominators in the definition of the
functions ϕp given by (4.2.10). We shall not need these results in full generality. In fact we shall only need right

denominators and Cs,locB [G] will be defined as a “right” localization of CsB[G]. The exact meaning of this term will
be explained below.

We start by introducing a subalgebra CsB[G]0 ⊂ CsB[G] a proper localization of which contains all the required
denominators.

Lemma 4.2.3. The set of elements (u, ·T−1
s v) ∈ CsB[G], where v is a highest weight vector in a finite rank

representation V of Uh(g) and u ∈ V form a subalgebra CsB[G]0 in CsB[G].
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Proof. It suffices to show that the product of two elements from CsB[G]0 belongs to CsB[G]0. Let s = si1 . . . sik be
a reduced decomposition of s. Then by (2.6.17)

∆s(Ts) =

k∏
p=1

θsβpFs(Ts ⊗ Ts)(F
−1
s )Ts ⊗ Ts, (4.2.19)

where in the products θsβp appears on the left from θsβq if p < q, and for p = 1, . . . , k

eβp = ψ−1
{nij}(X

+
βp
ehKsβ

∨
p ), fβ = ψ−1

{nij}(e
−hKsβ∨pX−βp), βp = si1 . . . sip−1

αip ,

X±βp = Ti1 . . . Tip−1
X±ip ,

θsβp = expqβp [(1− q−2
βp

)eβpe
−hκ 1+s

1−sPh′β
∨
p ⊗ fβp ].

Next,

Fs(Ts ⊗ Ts)(F−1
s ) = q

∑l
i=1(TsYi⊗TsKsHi−Yi⊗KsHi) = q

∑l
i=1(TsYi⊗KsTŝpHi−Yi⊗KsHi) = q

∑l
i=1(Yi⊗KsHi−Yi⊗KsHi) = 1.

(4.2.20)

Here we also used the identity
∑l
i=1 TsYi ⊗KsTsHi =

∑l
i=1 Yi ⊗KsHi which holds since TsYi, TsHi, i = 1, . . . , l

is a pair of dual bases in h.
Now by (4.2.20) formula (4.2.19) takes the form

∆s(Ts) =

k∏
p=1

θsβpTs ⊗ Ts, (4.2.21)

and for two highest weight vectors v ∈ V, v′ ∈ V ′ we have by Lemma 2.8.4 (ii)

∆s(T
−1
s )v ⊗ v′ = T−1

s v ⊗ T−1
s v′. (4.2.22)

Therefore for any u ∈ V, u′ ∈ V ′ we have by (4.2.22)

(u, ·T−1
s v)⊗ (u′, ·T−1

s v′) = (u⊗ u′, ·T−1
s v ⊗ T−1

s v′) = (u⊗ u′, ·T−1
s (v ⊗ v′)). (4.2.23)

Since v ⊗ v′ is a highest weight vector in V ⊗ V ′, the last identity implies (u, ·T−1
s v)⊗ (u′, ·T−1

s v′) ∈ CsB[G]0. This
completes the proof.

From formulas (4.2.2) and (4.2.23) it follows that the set Ss = {cqn
1
dr2 ∆s

µ|µ ∈ P+, c ∈ C∗, n ∈ Z} is a
multiplicative set of normal elements in CsB[G]0.

In particular, if vλ ∈ V and vµ ∈ V ′ are highest weight vectors, u ∈ (V )β , then by (4.2.2)

∆s
µ ⊗ (u, · T−1

s vλ) = q((κ 1+s
1−sPh′−id)(β∨−λ∨),µ∨)(u, · T−1

s vλ)⊗∆s
µ. (4.2.24)

For u = vp, λ = λp this yields

∆s
µ ⊗Ap = q−((κ 1+s

1−sPh′−id)β∨p ,µ
∨)Ap ⊗∆s

µ, (4.2.25)

and for u = vλ we obtain
∆s
µ ⊗∆s

λ = ∆s
λ ⊗∆s

µ. (4.2.26)

Let Cs,locB [G]0 be the localization of CsB[G]0 by Ss. Denote S∗s = {f ⊗ g−1 ∈ Cs,locB [G]0|f, g ∈ Ss}, S−1
s =

{f−1 ∈ Cs,locB [G]0|f ∈ Ss}.
We shall need more information on the structure of subalgebras Uk in Cs,locB [G]0 generated by the elements

Bp = A0
p
−1 ⊗Ap ∈ Cs,locB [G]0, (4.2.27)

where p = 1, . . . , k, and the multiplication in Cs,locB [G]0 is still denoted by ⊗. The elements Bp are quantum
analogues of functions ϕp. From (4.2.25) and (4.2.26) we also obtain

∆s
µ ⊗Bp = q−((κ 1+s

1−sPh′−id)β∨p ,µ
∨)Bp ⊗∆s

µ. (4.2.28)

The following Lemma is similar to Proposition 8.3 in [48].
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Lemma 4.2.4. Let Uk be the (non-unital) subalgebra in Cs,locB [G]0 generated by the elements Bp = A0
p
−1 ⊗ Ap ∈

Cs,locB [G]0, p = 1, . . . , k, and UkB the (non-unital) subalgebra in CsB[G∗] generated by the elements ep = (q−1
βp
−

qβp)qβ
∨
p eβp , p = 1, . . . , k. Then the map

Bp 7→ ep

gives rise to an algebra isomorphism ϑ : Uk → UkB.
In particular, the elements Bp satisfy the following commutation relations

BpBr − q(βp,βr)+(κ 1+s
1−sPh′∗βp,βr)BrBp =

∑
kp+1,...,kr−1

C(kp+1, . . . , kr−1)B
kp+1

p+1 . . . B
kr−1

r−1 , p < r, (4.2.29)

where C(kp+1, . . . , kr−1) ∈ B.

Proof. First observe that the map

ψ : CsB[G]→ CsB[B−], (u, ·v) 7→ (u⊗ id, (ω0 ⊗ id)(R)v ⊗ id)

is an algebra homomorphism. Indeed, since ω0 is a coautomorphism we have by the first property in (2.5.2) in the
case of ∆s and Rs

(∆s ⊗ id)((ω0 ⊗ id)(Rs)) = (ω0 ⊗ ω0 ⊗ id)(∆s ⊗ id)Rs = (ω0 ⊗ ω0 ⊗ id)(Rs13Rs23) = (ω0 ⊗ id)(Rs13)(ω0 ⊗ id)(Rs23),

and hence

ψ((u, ·v)⊗ (u′, ·v′)) = (u⊗ id, (ω0 ⊗ id)(Rs13)v ⊗ id)(u′ ⊗ id, (ω0 ⊗ id)(Rs23)v′ ⊗ id) = ψ((u, ·v))ψ((u′, ·v′)),

i.e. ψ is an algebra homomorphism.
Recall that by Lemma 4.2.3 elements of the form (u, ·T−1

s v) ∈ CsB[G], where v is a highest weight vector in a
finite rank representation V of Uh(g) and u ∈ V , form a subalgebra CsB[G]0 in CsB[G].

From (4.2.22) we also deduce that the map

CsB[G]0 → CsB[G], (u, ·T−1
s v) 7→ (u, ·v)

is an algebra homomorphism. Composing this map with ψ we obtain another algebra homomorphism ψ0.
Next using (4.1.6), (4.1.8) and the definition of Ap we obtain

ψ0(Ap) = (vp ⊗ id, (ω0S
−1
s Ss ⊗ id)(R)vµp ⊗ id) = (vp ⊗ id, (ω0S

−1
s ⊗ id)(Rs−1)vµp ⊗ id) =

= (q−1
βp
− qβp)q(κ 1+s

1−sPh′+id)µ∨p qβ
∨
p eβp .

Similarly

ψ0(A0
p) = q(κ 1+s

1−sPh′+id)µ∨p .

From the last two formulas we deduce that ψ0 gives rise to an algebra homomorphism ϑ : Uk → UkB such that

ϑ(Bp) = ϑ(A0
p
−1 ⊗Ap) = (q−1

βp
− qβp)qβ

∨
p eβp = ep.

This homomorphism is surjective by construction. ϑ is also injective as ψ0 is injective (see Proposition 8.3 in [48]
and [130], Theorem 2.6 for the proof).

Commutation relations (4.2.29) follow from (3.2.15) by applying ω and by multiplying by qβ
∨
p qβ

∨
r .

Denote Cs,locB [G] = CsB[G]⊗CsB[G]0 C
s,loc
B [G]0. Cs,locB [G] is naturally a left CsB[G]–module and a right Cs,locB [G]0–

module. We denote by ⊗ both the left CsB[G]–action and the right Cs,locB [G]0–action on Cs,locB [G] and call these
actions multiplications. We shall often omit the symbol ⊗ to shorten the notation if it does not lead to a confusion.

From (4.2.25) it follows that

S∗sAp ⊂ BApS∗s,S∗sBp ⊂ BApS∗s, Ur∆s
µ = ∆s

µUr, (4.2.30)

where BApS∗s (resp. BApS∗s) is the B–submodule in Cs,locB [G] generated by ApS
∗
s (resp. by ApS

∗
s).
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By (4.2.29) we also have
UpBr ⊂ BrUr−1 + Ur−1, r > p, (4.2.31)

and hence if we denote by Up the non-unital subalgebra in CsB[G] generated by A1, . . . , Ap then by (4.2.25) and by
the relations Ar = ∆µrBr, r = 1, . . . , D we have

UpAr ⊂ ArUr−1S
∗
s + Ur−1S

∗
s, r > p. (4.2.32)

Also by (4.2.25)
Up∆

s
µ = ∆s

µUp. (4.2.33)

Let Jp = CsB[G]Up ⊂ CsB[G] be the left ideal generated by Up, J
ploc ⊂ Cs,locB [G] the image of Jp ⊗ S∗s ⊂

CsB[G]⊗ Cs,locB [G]0 under the projection CsB[G]⊗ Cs,locB [G]0 → CsB[G]⊗CsB[G]0 C
s,loc
B [G]0 = Cs,locB [G].

Lemma 4.2.5. JplocAr = JplocBr ⊂ Jr−1loc for r > p.

Proof. Firstly, the identity JplocAr = JplocBr follows from the definitions of Ar, Br and of Jploc.
Now we establish the inclusion. Since by the definition Jploc = JpS∗s = CsB[G]UpS

∗
s for any r > p one has by

the first formula in (4.2.30)

JplocAr = JpS∗sAr = JpArS
∗
s. (4.2.34)

By (4.2.32) we have

JpAr = CsB[G]UpAr ⊂ CsB[G]ArUr−1S
∗
s + Ur−1S

∗
s) ⊂ JrBS∗s = Jrloc. (4.2.35)

This completes the proof.

4.3 Quantized vanishing ideals

In this section we introduce and study quantum analogues of the ideals Jj1, j = 2, . . . , R− 1.
Firstly we obtain an alternative description of J11

B
′

which agrees at the classical level with the description of
J11 in Proposition 3.6.2 (ii). We start with a technical lemma.

Lemma 4.3.1. Let ∆s
m+

= ∆m+
∩∆s

s and note that (∆0)+ = ∆0 ∩∆s
+ = ∆0 ∩∆+. Both ∆s

m+
, (∆0)+ ⊂ ∆+ are

minimal segments. Denote by Uresq (−∆s
m+

) and Uresq ((∆0)+) the subalgebras of Uresq (g) corresponding to −∆s
m+

and (∆0)+, respectively (see Proposition 2.4.2 (iv) for their definition). Let b ∈ Uresq (w′(b+)), (u, ·u′) ∈ CsB[G] an
element of CsB[G] such that u is a highest weight vector in a finite rank representation V of Uh(g), u′ ∈ V . Then

(u, Tsbu
′) = (u, Ts

∑
i

zi+x
′
iu
′), (4.3.1)

where zi+ ∈ Uresq ((∆0)+), x′i ∈ Uresq (−∆s
m+

).

Proof. First note that Uresq (w′(b+)) = UresUresq (H)([βkl′+1,−βkl′ ]), and we have a disjoint union of minimal segments

(see Figure 5)
[βkl′+1,−βkl′ ] = (−∆s

m+
) ∪ (−(∆s

+ \ (∆s
s ∪ (∆0)+))) ∪ (∆0)+ ∪ (∆s

s2 \∆m+
),

where the order of the segments in the union agrees with the circular normal ordering of ∆ corresponding to normal
ordering (1.6.9) of ∆s

+.
Applying iteratively Corollary 2.4.4 (i) we obtain using this union

Uresq (w′(b+)) = UresUresq (H)([βkl′+1,−βkl′ ]) =

= UresUresq (H)((−(∆s
+ \ (∆s

s ∪ (∆0)+))) ∪ (∆0)+ ∪ (∆s
s2 \∆m+

))UresUresq (H)(−∆s
m+

) =

= UresUresq (H)((−(∆s
+ \ (∆s

s ∪ (∆0)+)))UresUresq (H)((∆0)+ ∪ (∆s
s2 \∆m+

))UresUresq (H)(−∆s
m+

) =

= UresUresq (H)(−(∆s
+ \ (∆s

s ∪ (∆0)+)))UresUresq (H)(∆
s
s2 \∆m+)UresUresq (H)((∆0)+)UresUresq (H)(−∆s

m+
).
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Note that (∆0)+ ⊂ ∆+ and −∆s
m+
⊂ ∆−. Therefore by Corollary 2.4.4 (ii)

Uresq (w′(b+)) = UresUresq (H)(−(∆s
+ \ (∆s

s ∪ (∆0)+)))UresUresq (H)(∆
s
s2 \∆m+

)UresUresq (H)((∆0)+)Uresq (H)Uresq (−∆s
m+

) =

UresUresq (H)(−(∆s
+ \ (∆s

s ∪ (∆0)+)))UresUresq (H)(∆
s
s2 \∆m+

)Uresq (H)Uresq ((∆0)+)Uresq (−∆s
m+

) = (4.3.2)

= UresUresq (H)(−(∆s
+ \ (∆s

s ∪ (∆0)+)))UresUresq (H)(∆
s
s2 \∆m+)Uresq ((∆0)+)Uresq (−∆s

m+
).

Now observe that by the definition of ∆s
s we have s(−(∆s

+ \ (∆s
s ∪ (∆0)+))) ⊂ −∆s

+, and that s−1(s(−(∆s
+ \

(∆s
s ∪ (∆0)+)))) = −(∆s

+ \ (∆s
s ∪ (∆0)+)) ⊂ ∆s

−, so in fact s(−(∆s
+ \ (∆s

s ∪ (∆0)+))) ⊂ −(∆s
+ \ ∆s

s−1) ⊂ ∆−,
where the last inclusion follows from the definition of ∆− (see also Figure 5). Recalling that for µ ∈ Q one has
Ts(U

res
q (g))µ = (Uresq (g))sµ we deduce

Ts(U
res
Uresq (H)(−(∆s

+ \ (∆s
s ∪ (∆0)+)))) ⊂

⊕
µ≤0

(Uresq (g))µ. (4.3.3)

Next, ∆s
s2 \∆m+

⊂ ∆s
s2 , so

s(∆s
s2 \∆m+) ⊂ s1s2(∆s

s2) = −s1(∆s
s2),

where at the last step we used the fact that s2 is an involution, and hence s2(∆s
s2) = −∆s

s2 . Now by Proposition
1.6.6 (i)

s(∆s
s2 \∆m+

) ⊂ −s1(∆s
s2) ⊂ −(∆s

s−1 \∆s
s1) ⊂ ∆−,

where at the last step we used the definition of ∆− (see also Figure 5). Similarly to (4.3.3) the last inclusion implies

Ts(U
res
Uresq (H)(∆

s
s2 \∆m+)) ⊂

⊕
µ≤0

(Uresq (g))µ. (4.3.4)

Now we can express any b ∈ Uresq (w′(b+)) using (4.3.2) as follows

b =
∑
i

yiwiz
i
+xi, (4.3.5)

where yi ∈ UresUresq (H)(−(∆s
+ \ (∆s

s ∪ (∆0)+))), wi ∈ UresUresq (H)(∆
s
s2 \∆m+

), zi+ ∈ Uresq ((∆0)+), xi ∈ Uresq (−∆s
m+

).

Let (u, · u′) ∈ CsB[G] be such that u is a highest weight vector in a finite rank representation V of Uh(g), and
u′ ∈ V . Using (4.3.5) we obtain

(u, Tsbu
′) = (u,

∑
i

Ts(yi)Ts(wi)Tsz
i
+xiu

′).

Note that by (4.3.3) and (4.3.4) the weights of the elements Ts(yi) and Ts(wi) are non–positive, and hence Lemma
2.8.4 yields

(u, Tsbu
′) = (u,

∑
i

Ts(y
′
i)Ts(w

′
i)Tsz

i
+xiu

′), (4.3.6)

where y′i ∈ UresUresq (H)(−(∆s
+ \ (∆s

s ∪ (∆0)+))), w′i ∈ UresUresq (H)(∆
s
s2 \∆m+

) have zero weights. Recalling that −(∆s
+ \

(∆s
s ∪ (∆0)+)) and ∆s

s2 \∆m+
are minimal segments we deduce that the only zero weight elements of the algebras

UresUresq (H)(−(∆s
+ \ (∆s

s ∪ (∆0)+))) and UresUresq (H)(∆
s
s2 \∆m+

) belong to Uresq (H). Therefore y′i, w
′
i ∈ Uresq (H), and by

Lemma 2.8.6 (4.3.6) takes the form

(u, Tsbu
′) =

∑
i

ki(u, Tsz
i
+xiu

′) = (u,
∑
i

Tsz
i
+x
′
iu
′),

where ki ∈ C[q, q−1], zi+ ∈ Uresq ((∆0)+), x′i = kixi ∈ Uresq (−∆s
m+

). This completes the proof

The following description of J11
B
′

is analogous to the description of J11 in Proposition 3.6.2 (ii).

Lemma 4.3.2. J11
B
′

coincides with the left ideal generated by the elements (u, ·v) ∈ CsB[G] such that u is a
highest weight vector in a finite rank representation V of Uh(g), and v ∈ V satisfies (u, tszxv) = 0 for any
z ∈ Us,resB ((∆0)+), x ∈ Us,resB (−∆m+) and any element ts of the braid group acting on h ⊂ Uh(h) in the same way
as s.
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Proof. Firstly we prove the statement for ts = Ts as in the definition of J11
B
′
.

Assume that (u, Tsbv) = 0 for any b ∈ Uresq (w′(b+)). Observe that Us,resB ((∆0)+) ⊂ Us,resB (h)Uresq ((∆0)+) and
Us,resB (−∆m+) ⊂ Us,resB (h)Uresq (−∆m+). Thus

Us,resB ((∆0)+)Us,resB (−∆m+
) ⊂ Us,resB (h)Uresq ((∆0)+)Us,resB (h)Uresq (−∆m+

) = (4.3.7)

= Us,resB (h)Uresq ((∆0)+)Uresq (−∆m+)

as Uresq ((∆0)+)Us,resB (h) = Us,resB (h)Uresq ((∆0)+).
Since (∆0)+,−∆m+ ⊂ [βkl′+1,−βkl′ ], we have Uresq ((∆0)+)Uresq (−∆m+) ⊂ UresUresq (H)([βkl′+1,−βkl′ ]) = Uresq (w′(b+)).

Thus by (4.3.7)
Us,resB ((∆0)+)Us,resB (−∆m+

) ⊂ Us,resB (h)Uresq (w′(b+)),

and for any z ∈ Us,resB ((∆0)+), x ∈ Us,resB (−∆m+
) one has zx =

∑
i hibi, hi ∈ U

s,res
B (h), bi ∈ Uresq (w′(b+)). So by

Lemma 2.8.6
(u, Tsz+xv) =

∑
i

(u, hibiv) =
∑
i

ci(u, biv) = 0,

where ci ∈ B are defined by ciu = hiu.
Conversely, if (u, Tsz+xv) = 0 for any z ∈ Us,resB ((∆0)+), x ∈ Us,resB (−∆s

m+
) then by Lemma 4.3.1 with u′ = v

(u, Tsbv) = (u, Ts
∑
i

zixiv), (4.3.8)

where for all i zi ∈ Uresq ((∆0)+), xi ∈ Uresq (−∆s
m+

) ⊂ Uresq (−∆m+
).

Observe that Us,resB (h)Us,resB ((∆0)+) ⊃ Uresq ((∆0)+) and Us,resB (h)Us,resB (−∆m+
) ⊃ Uresq (−∆m+

). Thus

Uresq ((∆0)+)Uresq (−∆m+) ⊂ Us,resB (h)Us,resB ((∆0)+)Us,resB (h)Us,resB (−∆m+) = (4.3.9)

= Us,resB (h)Us,resB ((∆0)+)Us,resB (−∆m+
)

as Us,resB ((∆0)+)Us,resB (h) = Us,resB (h)Us,resB ((∆0)+).
By (4.3.9) formula (4.3.8) takes the form

(u, Tsbv) = (u, Ts
∑
i

h′iz
′
ix
′
iv),

where for any z′i ∈ U
s,res
B ((∆0)+), x′i ∈ U

s,res
B (−∆m+), h′i ∈ U

s,res
B (h).

Thus by Lemma 2.8.6

(u, Tsbv) =
∑
i

(u, h′iz
′
ix
′
iv) =

∑
i

c′i(u, z
′
ix
′
iv) = 0,

where c′i ∈ B are defined by c′iu = h′iu.

Hence J11
B
′
coincides with the left ideal generated by the elements (u, ·v) ∈ CsB[G] such that u is a highest weight

vector in a finite rank representation V of Uh(g), and v ∈ V satisfies (u, Tszxv) = 0 for any z ∈ Us,resB ((∆0)+),
x ∈ Us,resB (−∆m+).

Finally by Lemma 2.8.7 Ts used in the definition of J11
B
′

can be replaced in the statement of this lemma with
any element ts of the braid group acting on h ⊂ Uh(h) in the same way as s. This completes the proof.

We proceed with the definition of the quantum analogues of the ideals Jj1, j = 2, . . . , R − 1. Denote δjmj =

(w1 . . . wj−1)−1βR−1nR−1
= (w1 . . . wj−1)−1βc. Let U

ŝj ,res
B ([−δjk,−δjmj ]) = T−1

w1...wj−1
Us,resB ([−βjk,−βc]) be the

subalgebra in U
ŝj ,res
B (g) generated by the elements T−1

w1...wj−1
f

(n)
β , β ∈ [−βjk,−βR−1nR−1

], n ∈ N. Note that from

the definition of the elements fβ it follows that T−1
w1...wj−1

f
(n)
β (s) = f

(n)
(w1...wj−1)−1β(ŝj) for β ∈ [−βj1,−βD], where for

α ∈ ∆+ and j > 1 the elements fα(ŝj) are defined using the element ŝj and the normal ordering on ∆+ introduced

in Remark 3.5.4. To shorten the notation we write from now on f
(n)
α (ŝj) = f

(n)
α for β ∈ [−δj1,−δjD] if it does not

cause a confusion. We shall also need the subalgebra U
ŝj ,res
B ([−δjk,−δjD]) ⊂ U ŝj ,resB (g).

In complete analogy with the definition of the ideals Jj1 for j = 1, . . . , R − 1 we define Jj1B
′

as the left ideal

generated by the elements (u, ·v) ∈ CŝjB [G] such that u is a highest weight vector in a finite rank representation
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V of Uh(g), and v ∈ V satisfies (u, tŝjz+xv) = 0 for any z+ ∈ U
ŝj ,res
B (zj+) := T−1

w1...wj−1
Us,resB ((∆0)+), x ∈

U
ŝj ,res
B ([−δj1,−δjmj ]) and an arbitrary fixed element tŝj of the braid group acting on h ⊂ Uh(h) in the same way

as ŝj .
Note that by Lemma 2.8.7 this definition does not depend on the choice of tŝj . For j = 1 this definition agrees

with the previously given definition of J11
B
′

due to Lemma 4.3.2.

Also similarly to I11
B defined in Proposition 4.1.1 we introduce left ideals Ij1B = Jj1q

′ ∩ CŝjB [G] in CŝjB [G], where

Jj1q
′

= Jj1B
′
⊗B C(q

1
dr2 ), j = 1, . . . , R− 1.

Next, for the left ideals Ij1B we obtain a description similar to the one given in Proposition 3.6.2 (i). We start
with a technical lemma which will allow us to use properties of the vanishing ideals Jjk to prove some properties
of their quantum counterparts.

Lemma 4.3.3. Let X be a free B–module, V ⊂ V ′ ⊂ X two its submodules such that V = V ′ mod (q
1
dr2 − 1)V ′.

Let Vq = V ⊗B C(q
1
dr2 ), V ′q = V ′ ⊗B C(q

1
dr2 ). Then Vq = V ′q .

Proof. First observe that by Theorem 6.5 in [102] V ′ ⊂ X is B–free, as B is a principal ideal domain, and V ⊂ V ′
is a free submodule of V ′. Let ea, a ∈ A be a basis of V ′. As noted in the proof of Theorem 6.5 in [102], A is a well
ordered set, i.e. it is a totally ordered set in which any nonempty subset has a smallest element. Then as shown
in the proof of Theorem 6.5 in [102] V has a basis elements of which have the form fa =

∑
b≤a c

b
aeb, a ∈ B ⊂ A,

where caa 6= 0, cba ∈ B, and the sum is finite. Since V = V ′ mod (q
1
dr2 − 1)V ′ we must have B = A, and caa 6= 0 mod

(q
1
dr2 − 1) for all a ∈ A.
Now using a simple transfinite induction we can express the elements of the basis ea regarded as elements of V ′q

in terms of fa. Indeed, if a0 ∈ A is the minimal element then ea0 = ca0a0
−1fa0 , and assuming that ed =

∑
b≤d g

b
dfb,

gbd ∈ C(q
1
dr2 ), gdd 6= 0 holds for all d < a we get ea = caa

−1(fa−
∑
b<a c

b
aeb) = caa

−1(fa−
∑
b<a c

b
a

∑
h≤b g

h
b fh), where

all sums are finite. This establishes the induction step and completes the proof.

Lemma 4.3.4. (i) For j = 1, . . . , R− 1, let tŝj be an arbitrary element of the braid group acting on h ⊂ Uh(h) in

the same way as ŝj. Let Jj1B be the left ideal in CŝjB [G] generated by the elements (w, ·v) such that (w, ytŝjz+xv) = 0

for any y ∈ U ŝj ,resB (b−), z+ ∈ U
ŝj ,res
B (zj+), x ∈ U ŝj ,resB ([−δj1,−δjmj ]).

Then Jj1B
′
⊂ Jj1B and Jj1B

′
= Jj1B = Jj1 mod (q

1
dr2 − 1)Jj1B .

(ii) Denote Jj1q
′

= Jj1B
′
⊗B C(q

1
dr2 ), Jj1q = Jj1B ⊗B C(q

1
dr2 ). Then Jj1q

′
= Jj1q . Thus Ij1B = Jj1q ∩ CŝjB [G] =

Jj1q
′ ∩ CŝjB [G].

(iii) Jj1B
′
, Jj1B and Ij1B are stable under the Ad0

ŝj -action of U
ŝj ,res
B ([−δj1,−δjmj ]). Thus CŝjB [G]/Jj1B

′
and

CŝjB [G]/Ij1B are naturally equipped with the U
ŝj ,res
B ([−δj1,−δjmj ])–action induced by the Ad0

ŝj -action of U
ŝj ,res
B ([−δj1,−δjmj ])

on CŝjB [G].

Proof. (i) If (u, ·v) ∈ Jj1B
′

is one of the elements generating Jj1B
′
, i.e. u is a highest weight vector in a finite rank

representation V of Uh(g), and v ∈ V obeys (u, tŝjz+xv) = 0 for any z+ ∈ U
ŝj ,res
B (zj+), x ∈ U ŝj ,resB ([−δj1,−δjmj ]),

then for any y ∈ U ŝj ,resB (b−), z+ ∈ U
ŝj ,res
B (zj+), x ∈ U ŝj ,resB ([−δj1,−δjmj ]) one has by Lemma 2.8.4 (i) and by the

definition of Jj1B
′

that
(u, ytŝjz+xv) = (u, y0tŝjz+xv) = c(u, tŝjz+xv) = 0,

where y0 ∈ U
ŝj ,res
B (h) is the zero weight component of y, and c ∈ B is defined by cu = y0u.

Thus (u, ·v) is also one of the elements generating Jj1B , so that Jj1B
′
⊂ Jj1B . This proves the first claim of part

(i) of the lemma.

Next, observe that the specializations of U
ŝj ,res
B (zj+) and of U

ŝj ,res
B ([−δj1,−δjmj ]) at q

1
dr2 = 1 are isomorphic to

U(zj+) and U(mj−), respectively, the quotient of the specialization of U
ŝj ,res
B (b−) at q

1
dr2 = 1 by the ideal generated

by Li−1, and by ti−1, i = 1, . . . , l is isomorphic to U(b−), and the elements Li and ti act by identity transformations

on the specialization of any module V res at q
1
dr2 = 1. Therefore recalling Proposition 2.8.5 (ii) we deduce that the

specialization of Jj1B at q
1
dr2 = 1 is generated by the matrix elements of the form (w, ·v) ∈ C[G], where w, v ∈ V ,

V is a finite-dimensional representation of g, and (w, yŝjz+xv) = 0 for any y ∈ U(b−), z+ ∈ U(zj+), x ∈ U(mj−),
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and the specialization of Jj1B
′

at q
1
dr2 = 1 is generated by the matrix elements of the form (u, ·v) ∈ C[G], where u

is a highest weight vector in a finite-dimensional representation V of g, and v ∈ V satisfies, and (v, ŝjz+xv) = 0 for

any z+ ∈ U(zj+), x ∈ U(mj−).
Since the enveloping algebra of any Lie subalgebra of g is also a Hopf subalgebra of U(g), the product of

any element of C[G] and of (w, ·v) ∈ C[G], where w, v ∈ V , V is a finite-dimensional representation of g, and
(w, yŝjz+xv) = 0 for any y ∈ U(b−), z+ ∈ U(zj+), x ∈ U(mj−) satisfies the same condition. So in fact the

specialization of Jj1B at q
1
dr2 = 1 consists of the matrix elements of the form (w, ·v) ∈ C[G], where w, v ∈ V , V is a

finite-dimensional representation of g, and (w, yŝjz+xv) = 0 for any y ∈ U(b−), z+ ∈ U(zj+), x ∈ U(mj−).

Now from parts (i) and (ii) of Proposition 3.6.2 it follows that Jj1B
′

= Jj1B = Jj1 mod (q
1
dr2 − 1)Jj1B .

(ii) Note that by part (i) Jj1B
′
⊂ Jj1B are submodules of the B–module CŝjB [G] which is free by Proposition 3.2.7

(iv). Also, by part (i) Jj1B = Jj1B
′

= Jj1 mod (q
1
dr2 − 1)Jj1B . Therefore by Lemma 4.3.3 Jj1q = Jj1q

′
.

(iii) Firstly we prove the statement for Jj1B
′
.

From formula (4.2.4) with s = ŝj we have for any β ∈ [−δj1,−δjmj ]

Ad0
ŝjf

(n)
β (f ⊗ g)(· , · ) =

n∑
k=0

n−k∑
p=0

q
−k(n−k)−p(n−k−p)
β (Ad0

ŝj (G
−k
β f

(p)
β )f)(· )⊗ g(ω0S

−1
ŝj

(G−k−pβ f
(n−k−p)
β ) · ω0(f

(k)
β ))+

+

n−1∑
k=0

∑
i

q
−k(n−k)
β (Ad0

ŝj (G
−k
β x

(n−k)
i )f)(· )⊗ g((ω0S

−1
ŝj

)(G−kβ y
(n−k)
i ) · ω0(f

(k)
β ))+ (4.3.10)

+
∑
i

(Ad0
ŝj (y

(n)
i

2
)f)(· )⊗ g((ω0S

−1
ŝj

)(y
(n)
i

1
) · ω0(x

(n)
i )).

Assume that g(· ) = (u, · v) ∈ CŝjB [G], where u is a highest weight vector in a finite rank representation V of

Uh(g), and v ∈ V is such that (u, tŝjz+xv) = 0 for any z+ ∈ U
ŝj ,res
B (zj+), x ∈ U ŝj ,resB ([−δj1,−δjmj ]), and f ∈ CŝjB [G]

is arbitrary.

We claim now that all terms in the right hand side of the last formula belong to Jj1B
′
. More generally, one can

prove the following statement.

Lemma 4.3.5. Let g(· ) = (u, · v) ∈ CŝjB [G], where u is a highest weight vector in a finite rank representation V

of Uh(g), and v ∈ V is such that (u, tŝjz+xv) = 0 for any z+ ∈ U
ŝj ,res
B (zj+), x ∈ U ŝj ,resB ([−δj1,−δjmj ]). Then for

any y′ ∈ U ŝj ,resB (b−) and b ∈ U ŝj ,resB ([−δj1,−δjmj ]) the element g(y′ · b) satisfies the same properties as g.

Proof. By Lemma 2.8.6

g(y′ · b) = (u, y · bv) = (u, y′0 · bv) = c0(u, ·bv),

where y′0 ∈ U
ŝj ,res
B (h) is the zero weight component of y′ and c0 ∈ B is defined by y′0u = c0u.

Also, for any z+ ∈ U
ŝj ,res
B (zj+), x ∈ U ŝj ,resB ([−δj1,−δjmj ]) we have xb ∈ U ŝj ,resB ([−δj1,−δjmj ]), and hence by

the definition of g

(u, y′tŝjz+xbv) = c0(u, tŝjz+xbv) = 0.

Since Sŝj (G
−k−p
β f

(n−k−p)
β ), Sŝj (G

−k
β y

(n−k)
i ), Sŝj (y

(n)
i

1
) ∈ U ŝj ,resB (b−) and f

(k)
β , x

(n)
i ∈ U ŝj ,resB ([−δj1,−δjmj ]) the

previous lemma implies that all terms in the right hand side of (4.3.10) belong to Jj1B
′
, i.e. Ad0

ŝjf
(n)
β (f⊗g)( · , · ) ∈

Jj1B
′
. Since the elements f ⊗ g, with f, g ∈ CŝjB [G] as in (4.3.10), span Jj1B

′
we obtain Ad0

ŝjf
(n)
β (Jj1B

′
) ⊂ Jj1B

′
. The

elements f
(n)
β , β ∈ [δj1, δjmj ] generate U

ŝj ,res
B ([−δj1,−δjmj ]), and hence Jj1B

′
is stable under the Ad0

ŝj -action of

U
ŝj ,res
B ([−δj1,−δjmj ]).

If we naturally extend the Ad0
ŝj -action of U

ŝj ,res
B ([−δj1,−δjmj ]) to Cq[G] we immediately deduce that Jj1q =

Jj1B
′
⊗B C(q

1
dr2 ) is stable under this action.

Hence Ij1B = Jj1q ∩ CŝjB [G] is also stable under this action as clearly CŝjB [G] is Ad0
ŝj–stable.
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Assume now that g(· ) = (w, · v) ∈ CŝjB [G] is such that (w, ytŝjz+xv) = 0 for any y ∈ U
ŝj ,res
B (b−), z+ ∈

U
ŝj ,res
B (zj+), x ∈ U ŝj ,resB ([−δj1,−δjmj ]), and f ∈ CŝjB [G] is arbitrary.

We claim again that all terms in the right hand side of the last formula belong to Jj1B . More generally, one can
prove the following statement.

Lemma 4.3.6. Let g(· ) = (w, · v) ∈ CŝjB [G] is such that (w, ytŝjz+xv) = 0 for any y ∈ U
ŝj ,res
B (b−), z+ ∈

U
ŝj ,res
B (zj+), x ∈ U ŝj ,resB ([−δj1,−δjmj ]). Then for any y′ ∈ U ŝj ,resB (b−) and b ∈ U ŝj ,resB ([−δj1,−δjmj ]) the element

g(y′ · b) satisfies the same properties as g.

Proof. The results is obvious as for any y ∈ U ŝj ,resB (b−), x ∈ U ŝj ,resB ([−δj1,−δjmj ]) one has y′y ∈ U ŝj ,resB (b−), xb ∈
U
ŝj ,res
B ([−δj1,−δjmj ]), and hence

g(y′ytŝjz+xb) = 0.

Since Sŝj (G
−k−p
β f

(n−k−p)
β ), Sŝj (G

−k
β y

(n−k)
i ), Sŝj (y

(n)
i

1
) ∈ U

ŝj ,res
B (b−) and f

(k)
β , x

(n)
i ∈ U

ŝj ,res
B ([−δj1,−δjmj ])

the previous lemma implies that all terms in the right hand side of (4.3.10) belong to Jj1B , i.e. Ad0
ŝjf

(n)
β (f ⊗

g)( · , · ) ∈ Jj1B . Since the elements f ⊗ g, with f, g ∈ CŝjB [G] with g as in the previous lemma span Jj1B
′

we obtain

Ad0
ŝjf

(n)
β (Jj1B ) ⊂ Jj1B . The elements f

(n)
β , β ∈ [δj1, δjmj ] generate U

ŝj ,res
B ([−δj1,−δjmj ]), and hence Jj1B is stable

under the Ad0
ŝj -action of U

ŝj ,res
B ([−δj1,−δjmj ]).

This completes the proof.

4.4 Higher quantized vanishing ideals

The next step in our approach is the definition and the study of quantum analogues JjkB and JjkB
′

of the ideals Jjk

and Jjk
′

for k > 1.
Firstly, for each j = 1, . . . , R− 1, k = 1, . . . , nj we define the matrix elements (vjk, ·vµjk) ∈ CŝjB [G] by condition

(4.2.7), where for j = 1 the normal ordering on ∆+ introduced in Definition 1.6.19 is used, and for j > 1 the normal
ordering on ∆+ defined in Remark 3.5.4 is used, and βp = δjk. Let

Ajk(·) = (vjk, ·T−1
ŝj
vµjk).

Lemma 4.4.1. For j = 1, . . . , R − 1, k = 1, . . . , nj + 1, let JjkB
′

be the left ideal in CŝjB [G] generated by Jj1B
′

and
by Ajp, p = 1, . . . , k − 1.

Let tŝj be an arbitrary element of the braid group acting on h ⊂ Uh(h) in the same way as ŝj, J
jk
B the left ideal in

CŝjB [G] generated by the elements (w, ·v) ∈ CŝjB [G] such that (w, yhtŝjz+xv) = 0 for any y ∈ ω0S
−1
ŝj

(U
ŝj ,res
B ([−δjk,−δjD])),

h ∈ U ŝj ,resB (h), z+ ∈ U
ŝj ,res
B (zj+), x ∈ U ŝj ,resB ([−δj1,−δjmj ]).

Then the following statements are true.

(i) If p < k then for any y′ ∈ ω0S
−1
ŝj

(U
ŝj ,res
B ([−δjk,−δjD])) of the form y′ = ω0S

−1
ŝj

(f
(njD)

δjD
. . . f

(njk)

δjk
), nji ∈ N,

b ∈ U ŝj ,resB ([−δj1,−δjmj ]), h′ ∈ U
ŝj ,res
B (h) one has

Ajp(y
′h′ · b) ∈ JjkB .

If in addition y′ 6= 1, ω0S
−1
ŝj

(fδjk) or the zero weight component of b is zero then

Ajk(y′h′ · b) ∈ JjkB . (4.4.1)

Ajk(S−1
ŝj

(fδjk)·) = ∆µjk(·) = A0
jk(·). (4.4.2)

(ii) Jj1B
′
⊂ Jj1B ⊂ J

jk
B and Jj1B

′
⊂ JjkB

′
⊂ JjkB .
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(iii) For any y′ ∈ U ŝj ,resB (b−), b ∈ U ŝj ,resB ([−δj1,−δjmj ]), h′ ∈ U
ŝj ,res
B (h), if the zero weight component of y′ is

zero or the zero weight component of b is zero then

∆ŝj
µ (y′ · b) ∈ Jj1B

′
⊂ JjkB

′
⊂ JjkB .

(iv) Ad0
ŝj (U

ŝj ,res
B ([−δjk,−δjmj ])J

jk
B
′
⊂ JjkB .

Proof. (i) If p < k and y′ 6= 1 then Ajp(y
′h′ · b) = 0 by Lemma 4.2.2 (i).

If y′ = 1 we have to show that Ajp(h
′yhtŝjz+xb) = 0 for any y ∈ ω0S

−1
ŝj

(U
ŝj ,res
B ([−δjk,−δjD])), h ∈ U ŝj ,resB (h),

z+ ∈ U
ŝj ,res
B (zj+), x ∈ U ŝj ,resB ([−δj1,−δjmj ]).

By linearity it suffices to check this condition for y of the form y = ω0S
−1
ŝj

(f
(njD)

δjD
. . . f

(njk)

δjk
), nji ∈ N as these

elements form a basis of ω0S
−1
ŝj

(U
ŝj ,res
B ([−δjk,−δjD])).

Again if y 6= 1 then Ajp(h
′yhtŝjz+xb) = 0 by Lemma 4.2.2 (i).

If y = 1

Ajp(h
′yhtŝjz+xb) = (vjp, h

′htŝjz+xbT
−1
ŝj
vµjp) = cjpc

′
jp(vjp, tŝjz+xbt

−1
ŝj
vµjp) = cjpc

′
jp(vjp, tŝj (z+xb)vµjp),

where h′hvjp = cjpvjp and T−1
ŝj
vµjp = c′jpt

−1
ŝj
vµjp , cjp, c

′
jp ∈ B.

Lemma 4.4.2. (i) For any v ∈ U ŝj ,resB (zj+)U
ŝj ,res
B ([−δj1,−δjmj ]) the element tŝj (v) has no weight components of

weights which belong to −(w1 . . . wj−1)−1∆j.

(ii) For any v ∈ U ŝj ,resB (zj+)U
ŝj ,res
B ([−δj1,−δjmj ])and any b ∈ U ŝj ,resB (zj+)U

ŝj ,res
B ([−δj1,−δjmj ]) which has no

non–trivial zero weight component the element tŝj (vb) has no non–trivial zero weight component.

Proof. (i) The weights of the weight components of tŝj (v) belong to −N(w1 . . . wj−1)−1s(∆j
+∪∆0), and by Lemma

1.6.22 (ii) this set has empty intersection with −(w1 . . . wj−1)−1∆j .
(ii) The weights of the weight components of tŝj (vb) belong to N(ŝj([−δj1,−δjmj ])∪ (w1 . . . wj−1)−1s(∆0)+) =

N(w1 . . . wj−1)−1s(([−βj1,−βc]) ∪ (∆0)+), and the set [−βj1,−βc] ∪ (∆0)+ is contained in the minimal segment
[β0

1 ,−βc]. Therefore if b has no non–trivial zero weight component the element vb has no non–trivial zero weight
component as well. Hence tŝj (vb) has no non–trivial zero weight component.

Since z+xb ∈ U
ŝj ,res
B (zj+)U

ŝj ,res
B ([−δj1,−δjmj ]) by part (i) of the previous lemma the element tŝj (z+xb) has no

weight components of weights which belong to −(w1 . . . wj−1)−1∆j , and −δjp ∈ −(w1 . . . wj−1)−1∆j . Since vjp has
weight µjp − δjp,

Ajp(h
′htŝjz+xb) = cjpc

′
jp(vjp, tŝj (z+xb)vµjp) = 0

by orthogonality of different weight subspaces with respect to the contravariant form. This proves part (i) for
p < k.

If p = k y′ 6= 1, ω0S
−1
ŝj

(fδjk) then Ajk(y′ · b) = 0 by Lemma 4.2.2 (ii).

If y′ = 1 we have to show that Ajk(h′yhtŝjz+xb) = 0 for any y = ω0S
−1
ŝj

(f
(njD)

δjD
. . . f

(njk)

δjk
), nji ∈ N, h ∈ U ŝj ,resB (h),

z+ ∈ U
ŝj ,res
B (zj+), x ∈ U ŝj ,resB ([−δj1,−δjmj ]).

Again if y 6= 1, ω0S
−1
ŝj

(fδjk) then Ajk(h′yhtŝjz+xb) = 0 by Lemma 4.2.2 (i).

If y = 1

Ajk(h′yhtŝjz+xb) = (vjk, h
′htŝjz+xbT

−1
ŝj
vµjk) = cjkc

′
jk(vjk, tŝjz+xbt

−1
ŝj
vµjk) = cjkc

′
jk(vjk, tŝj (z+xb)vµjk),

where hh′vjk = cjkvjk and T−1
ŝj
vµjk = c′jkt

−1
ŝj
vµjk , cjk, c

′
jk ∈ B.

Since z+xb ∈ U
ŝj ,res
B (zj+)U

ŝj ,res
B ([−δj1,−δjmj ]) by Lemma 4.4.2 (i) the element tŝj (z+xb) has no weight com-

ponents of weights which belong to −(w1 . . . wj−1)−1∆j , and −δjk ∈ −(w1 . . . wj−1)−1∆j . Since vjk has weight
µjk − δjk,

Ajk(h′yhtŝjz+xb) = cjkc
′
jk(vjk, tŝj (z+xb)vµjk) = 0

by orthogonality of different weight subspaces with respect to the contravariant form.
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If y = ω0S
−1
ŝj

(fδjk) then

Ajk(h′yhtŝjz+xb) = (vjk, h
′ω0S

−1
ŝj

(fδjk)htŝjz+xbT
−1
ŝj
vµjk) =

= c′′jkc
′
jk(vjk, ω0S

−1
ŝj

(fδjk)htŝjz+xbt
−1
ŝj
vµjp) = c′′′jkc

′′
jkc
′
jk(vµjk , tŝj (z+xb)vµjk),

where h′vjk = c′′jkvjk, hvµjk = c′′′jkvµjk and T−1
ŝj
vµjk = c′jkt

−1
ŝj
vµjk , c′′jk, c

′′′
jk ∈ B.

The element tŝj (z+xb) has no non–trivial zero weight component by Lemma 4.4.2 (ii) as by the assumption b
has no zero weight components in this case. So we deduce that

Ajk(y′h′yhtŝjz+xb) = c′′′jkc
′′
jkc
′
jk(vµjk , tŝj (z+xb)vµjk) = 0

by orthogonality of different weight subspaces with respect to the contravariant form.

If p = k y′ = ω0S
−1
ŝj

(fδjk) we have to show thatAjk(S−1
ŝj

(fδjk)h′yhtŝjz+xb) = 0 for any y = ω0S
−1
ŝj

(f
(njD)

δjD
. . . f

(njk)

δjk
),

nji ∈ N, h ∈ U ŝj ,resB (h), z+ ∈ U
ŝj ,res
B (zj+), x ∈ U ŝj ,resB ([−δj1,−δjmj ]).

In this case

Ajk(S−1
ŝj

(fδjk)h′yhtŝjz+xb) = (vµjk , h
′yhtŝjz+xbT

−1
ŝj
vµjk) = djkc

′
jk(vµjk , yhtŝj (z+xb)vµjk),

where h′vµjk = djkvµjk .
Again if y 6= 1 then

Ajk(S−1
ŝj

(fδjk)h′yhtŝjz+xb) = djkc
′
jk(vµjk , yhtŝj (z+xb)vµjk) = 0

as vµjk is a highest weight vector.
If y = 1

Ajk(S−1
ŝj

(fδjk)h′yhtŝjz+xb) = djkc
′′′
jkc
′
jk(vµjk , tŝj (z+xb)vµjk).

The element tŝj (z+xb) has no non–trivial zero weight component by Lemma 4.4.2 (ii) as by the assumption b has
no zero weight components in this case. We deduce that

Ajk(S−1
ŝj

(fδjk)h′yhtŝjz+xb) = djkc
′′′
jkc
′
jk(vµjk , tŝj (z+xb)vµjk) = 0

by orthogonality of different weight subspaces with respect to the contravariant form.
Formula (4.4.2) follows from (4.2.9).
This completes the proof of part (i).

(ii) We show that JjkB
′
⊂ JjkB . Indeed, by Lemma 4.3.4 (i) any element from Jj1B

′
belongs to Jj1B . We claim that

Jj1B ⊂ J
jk
B , where the same braid group element tŝj is used in the definitions of both algebras.

Let (w, ·v) ∈ Jj1B be one of the elements generating Jj1B , i.e. (w, ytŝjz+xv) = 0 for any for any y ∈ U ŝj ,resB (b−), z+ ∈
U
ŝj ,res
B (zj+), x ∈ U ŝj ,resB ([−δj1,−δjmj ]). Then (w, yhtŝjz+xv) = 0 for any y ∈ ω0S

−1
ŝj

(U
ŝj ,res
B ([−δjk,−δjD])), h ∈

U
ŝj ,res
B (h), z+ ∈ U

ŝj ,res
B (zj+), x ∈ U ŝj ,resB ([−δj1,−δjmj ]) as ω0S

−1
ŝj

(U
ŝj ,res
B ([−δjk,−δjD]))U

ŝj ,res
B (h) ⊂ U

ŝj ,res
B (b−).

Thus (w, ·v) ∈ JjkB is one of the elements generating JjkB .

We deduce using Lemma 4.3.4 (ii) that Jj1B
′
⊂ Jj1B ⊂ J

jk
B .

By part (i) Ajp ∈ JjkB for p = 1, . . . , k−1. Since Jj1B
′

and Ajp with p < k generate JjkB
′

as a left ideal, we obtain

that JjkB
′
⊂ JjkB .

(iii) In order to show that ∆
ŝj
µ (y′ · b) ∈ Jj1B

′
we shall check that it is one of the generating elements of Jj1B

′
.

More precisely, we verify that ∆
ŝj
µ (y′ · b) = c(vµ, ·bT−1

ŝp
vµ) for some c ∈ B, and

∆ŝj
µ (y′tŝpz+xb) = (vµ, y

′tŝpz+xbT
−1
ŝp
vµ) = (ω(y′)vµ, tŝpz+xbT

−1
ŝp
vµ) = 0 (4.4.3)

for any z+ ∈ U
ŝj ,res
B (zj+), x ∈ U ŝj ,resB ([−δj1,−δjmj ]).

Since ω changes the signs of the weights, the weights of the weight components of ω(y′) belong to N(∆+). Thus

∆ŝj
µ (y′ · b) = (ω(y′0)vµ, ·bT−1

ŝp
vµ) = c(vµ, ·bT−1

ŝp
vµ),
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where y′0 is the zero weight component of y′, c ∈ B is defined by y′0vµ = cvµ.

Next, for any z+ ∈ U
ŝj ,res
B (zj+), x ∈ U ŝj ,resB ([−δj1,−δjmj ]) one has using the previous formula

∆ŝj
µ (y′tŝpz+xb) = c(vµ, tŝjz+xbT

−1
ŝj
vµ) = cc′′(vµ, tŝjz+xbt

−1
ŝj
vµ) = cc′′(vµ, tŝp(z+xb)vµ), (4.4.4)

where c′′ ∈ CqZ, c′′ 6= 0 is given by Lemma 2.8.7 using the condition T−1
ŝj
vµ = c′′t−1

ŝj
vµ.

If the zero weight component of y′ is zero then c = 0. Thus (4.4.3) holds. In fact ∆
ŝj
µ (y′ · b) = 0 in this case.

By Lemma 4.4.2 (ii), if the zero weight component of b is zero then the zero weight component of tŝp(z+xb) is
zero as well, and hence the right hand side of (4.4.4) vanishes as different weight subspaces are orthogonal with
respect to the contravariant form. Thus (4.4.3) holds.

This completes the proof of part (iii).

(iv) Firstly, the ideal Jj1B
′

is stable under the Ad0
ŝj–action of U

ŝj ,res
B ([−δj1,−δjmj ]), and hence under the Adŝj–

action of U
ŝj ,res
B ([−δjk,−δjmj ]) ⊂ U

ŝj ,res
B ([−δj1,−δjmj ]). Therefore by part (ii) and by the definition of JjkB

′
we

infer

Ad0
ŝj (U

ŝj ,res
B ([−δjk,−δjmj ]))J

j1
B
′
⊂ Jj1B

′
⊂ JjkB

′
⊂ JjkB .

Since the elements f
(n)
β , β ∈ [−δjk,−δjmj ], n ∈ N generate U

ŝj ,res
B ([−δjk,−δjmj ]), and Jj1B

′
and Ajp with

p < k generate JjkB
′
, it remains to show that for arbitrary f ∈ CŝjB [G], β ∈ [−δjk,−δjmj ], and n ∈ N one has

Ad0
ŝjf

(n)
β (f ⊗Ajp) ∈ JjkB for p < k.

Indeed, consider formula (4.3.10) with arbitrary f ∈ CŝjB [G], g = Ajp, p < k, n ∈ N, and β ∈ [−δjk,−δjmj ]. By

part (i) the second factors in all ⊗–products in CŝjB [G] in the terms in the right hand side of (4.3.10) belong to JjkB .

Thus Ad0
ŝjf

(n)
β (f ⊗Ajp) ∈ JjkB . This completes the proof of Lemma 4.4.1.

Lemma 4.4.3. For any j ∈ {1, . . . , R− 1}, 1 ≤ k ≤ nj + 1 the following statements are true.

(i) Jj1B
′
Ajk ⊂ JjkB .

(ii) For any µ ∈ P+ Jj1B
′
∆
ŝj
µ ⊂ Jj1B ⊂ J

jk
B .

(iii) For any µ ∈ P+ JjkB
′
∆
ŝj
µ ⊂ JjkB .

Proof. (i) To show that Jj1B
′
Ajk ⊂ JjkB it suffices to verify that for any (u, ·v) ∈ CŝjB [G], where u is a highest

weight vector in a finite rank representation V of Uh(g), and v ∈ V is such that (u, tŝjz+xv) = 0 for any z+ ∈
U
ŝj ,res
B (zj+), x ∈ U ŝj ,resB ([−δj1,−δjmj ]) one has

((u, ·v)⊗Ajk)(yhtŝpz+x) = 0 (4.4.5)

for any y ∈ ω0S
−1
ŝj

(U
ŝj ,res
B ([−δjk,−δjD])), h ∈ U ŝj ,resB (h), z+ ∈ U

ŝj ,res
B (zj+), x ∈ U ŝj ,resB ([−δj1,−δjmj ]).

We shall use this condition with tŝj = T ŝj .

From (2.8.13) and the fact that ω0S
−1
ŝj

is an anti-coautomorphism preserving weights we obtain

∆ŝj (y) = 1⊗ y +
∑
i

vi ⊗ wi, (4.4.6)

where the weights of the elements vi are strictly negative.
From formula (2.6.18) with k equal to the length of ŝj we have

∆ŝj (T ŝj ) =

k∏
p=1

θ
ŝj
βp

′
q
∑l
i=1(−Yi⊗KŝjHi+TŝjYi⊗TŝjKŝjHi)T ŝj ⊗ T ŝj =

k∏
p=1

θ
ŝj
βp

′
T ŝj ⊗ T ŝj (4.4.7)

where we used the fact that Kŝjh = κ
2

1+ŝj
1−ŝjw

−1
j−1Ph′wj−1h for any h ∈ h, so have Kŝjsŝj = sŝjKŝj , and hence by

(4.2.20)

q
∑l
i=1(TŝjYi⊗TŝjKŝjHi−Yi⊗KŝjHi) = 1. (4.4.8)
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Since u is a highest weight vector we obtain using Lemma 2.8.4 (i), (4.4.7), the definition of θ
s

βp

′
after (2.6.18),

and (4.4.6) that the left hand side of (4.4.5) takes the form

((u, ·v)⊗Ajk)(yhT ŝjz+x) = (u, h1T ŝjz
1
+x

1v)(vjk, yh
2T ŝjz

2
+x

2T−1
ŝj
vµjk) =

= t(u, h1T ŝjz
1
+x

1v)(vjk, yh
2T ŝjz

2
+x

2T
−1

ŝj vµjk) = t(u, h1T ŝjz
1
+x

1v)(vjk, yh
2T ŝj (z

2
+x

2)vµjk), (4.4.9)

where t is a non–zero multiple of a power of q defined in Lemma 2.8.7 by the condition T−1
ŝj
vµjk = tT

−1

ŝj vµjk and

we use the Sweedler notation for the coproducts.

By linearity it suffices to check condition (4.4.5) for y ∈ y ∈ ω0S
−1
ŝj

(U
ŝj ,res
B ([−δjk,−δjD])) of the form

y = ω0S
−1
s (f

(njD)

δjD
. . . f

(njk)

δjk
), nji ∈ N.

In this case by Lemma 4.2.2 (i) the second factor in the right hand side of (4.4.9) vanishes if y 6= 1, ω0S
−1
s (fδjk),

and hence (4.4.5) holds.
If y = 1 (4.4.9) takes the form

((u, ·v)⊗Ajk)(yhT ŝjz+x) = tt′(u, T ŝjz
1
+x

1v)(vjk, T ŝj (z
2
+x

2)vµjk), (4.4.10)

where t′ ∈ B is defined by t1u⊗ t2vjk = t′u⊗ vjk.

From (2.8.13) or (2.8.16) it follows that x2 ∈ U ŝj ,resB ([−δ1k,−δjmj ]), so the weights of x2 belong to N[−δj1,−δjmj ] ⊂
N(w1 . . . wj−1)−1(−∆j

+ ∪ (∆0)+). The first line in (2.8.17) implies that the weights of the weight components of

z2
+ belong to N(w1 . . . wj−1)−1((∆0)+ ∪ [−βjk,−β0

D0
]) ⊂ N(w1 . . . wj−1)−1(−∆j

+ ∪ (∆0)+). We conclude that the

weights of T ŝj (z
2
+x

2) belong to N(w1 . . . wj−1)−1s(−∆j
+ ∪ (∆0)+), and by Lemma 1.6.22 (ii) this set has empty

intersection with the set −(w1 . . . wj−1)−1∆j which contains −δjk. Since the weight of vjk is µjk − δjk the right
hand side of (4.4.10) vanishes as different weight spaces of Vµjk are orthogonal with respect to the contravariant
form.

If y = ω0S
−1
ŝj

(fδjk) then by (4.4.2) formula (4.4.9) takes the form

((u, ·v)⊗Ajk)(yhT ŝjz+x) = t(u, h1T ŝjz
1
+x

1v)(vµjk , h
2T ŝj (z

2
+x

2)vµjk) = tt′′(u, T ŝjz
1
+x

1v)(vµjk , T ŝj (z
2
+x

2)vµjk),
(4.4.11)

where t′′ ∈ B is defined by t1u⊗ t2vµjk = t′′u⊗ vµjk .

Recall that from (2.8.13) or (2.8.16) it follows that x2 ∈ U ŝj ,resB ([−δj1,−δjmj ]) = U
ŝj ,res
B ((w1 . . . wj−1)−1[−βj1,−βc]),

and the second line in (2.8.17) implies that z2
+ ∈ U

ŝj ,res
B ((w1 . . . wj−1)−1[β0

1 ,−βj−1nj−1
])U

ŝj ,res
B (h). Since [−βj1,−βc],

[β0
1 ,−βj−1nj−1

] ⊂ [β0
1 ,−βc], and [β0

1 ,−βc] is a minimal segment, the zero weight component (z2
+x

2)0 of z2
+x

2 belongs

to U
ŝj ,res
B (h), and by (2.8.13) or (2.8.16), and by the second line in (2.8.17) we have z1

+x
1⊗(z2

+x
2)0 =

∑
n znxn⊗hn,

zn ∈ U
ŝp,res
B ((w1 . . . wj−1)−1(∆0)+), xn ∈ U

ŝp,res
B ((w1 . . . wj−1)−1[−βj1,−βc]), hn ∈ U

ŝj ,res
B (h). Thus (4.4.11) takes

the form
((u, ·v)⊗Ajk)(yhT ŝjz+x) = tt′′(u, T ŝjz

1
+x

1v)(vµjk , T ŝj (z
2
+x

2)0vµjk) =

= tt′′
∑
n

(u, T ŝjznxnv)(vµjk , T ŝjhnvµjk) = 0

since (u, T ŝjznxnv) = 0 for all n by the choice of u and v. Thus (4.4.5) holds, and the proof of part (i) is completed.

The proof of part (ii) is similar to that of part one. The same arguments are applied with Ajk replaced by ∆
ŝj
µ .

Formula (4.4.11) will be replaced with

((u, ·v)⊗∆ŝj
µ )(yhT ŝjz+x) = tt̂(u, T ŝjz

1
+x

1v)(vµ, T ŝj (z
2
+x

2)vµ),

where t̂ is defined by the condition ∆ŝj (yh)u⊗ vµ = t̂u⊗ vµ. The rest of the proof is repeated verbatim.

For part (iii) we recall that JjkB
′

is the left ideal in CŝjB [G] generated by Jj1B
′

and by Ajp, p < k. By part (ii)

Jj1B
′
∆
ŝj
µ ⊂ Jj1B ⊂ J

jk
B .

Using commutation relations (4.2.12) we deduce that the left ideal in CŝjB [G] generated by Ajp, p < k is invariant

with respect to multiplication by ∆
ŝj
µ from the right. This observation together with the inclusion Jj1B

′
∆
ŝj
µ ⊂ JjkB

imply the inclusion in part (iii).
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4.5 Localizations

Let JjkB
loc

and JjkB
′loc

the images of JjkB ⊗ S∗ŝj ⊂ CŝjB [G] ⊗ Cŝj ,locB [G]0 and of JjkB
′
⊗ S∗ŝj ⊂ CŝjB [G] ⊗ Cŝj ,locB [G]0,

respectively, in Cŝj ,locB [G] under the projection CŝjB [G]⊗ Cŝj ,locB [G]0 → CŝjB [G]⊗
C
ŝj
B [G]0

Cŝj ,locB [G]0 = Cŝj ,locB [G].

Lemma 4.5.1. Let Jjkq
loc

= JjkB
loc
⊗B C(q

1
dr2 ), Jjkq

′loc
= JjkB

′loc
⊗B C(q

1
dr2 ).

Then Jjkq
loc

= Jjkq
′loc

. Thus IjkB
loc

:= Jjkq
′loc ∩ Cŝj ,locB [G] = Jjkq

loc ∩ Cŝj ,locB [G].

Proof. Let ιj : CŝjB [G]→ Cŝj ,locB [G] be the canonical B–module homomorphism. Since JjkB ⊂ JjkB
′

by Lemma 4.4.1

(ii), JjkB
loc
⊂ JjkB

′loc
, and hence

ι−1
j (JjkB

loc
) ⊂ ι−1

j (JjkB
′loc

). (4.5.1)

When specializing q
1
dr2 to 1 the matrix elements Ajk become (vjk, ·ŝ−1

j vµjk), and the set Sŝj becomes the set

Sj by their definitions. By Lemma 4.3.4 (i) Jj1B
′

= Jj1B = Jj1 mod (q
1
dr2 − 1)Jj1B . Therefore JjkB

′
= Jjk

′
mod

(q
1
dr2 − 1) and JjkB

′loc
= Jjk

loc
mod (q

1
dr2 − 1) by Lemma 3.6.1 (ii).

On the other hand JjkB = Jjk mod (q
1
dr2 − 1) by Lemma 3.6.2 (i), and hence JjkB

loc
= Jjk

loc
mod (q

1
dr2 − 1) by

Lemma 3.6.1 (i).

Thus JjkB
′loc

= JjkB
loc

= Jjk
loc

mod (q
1
dr2 − 1), and hence ι−1

j (JjkB
loc

) = ι−1
j (JjkB

′loc
) mod (q

1
dr2 − 1). But

ι−1
j (JjkB

loc
), ι−1

j (JjkB
′loc

) ⊂ CŝjB [G] which is B–free. Thus by Lemma 4.3.3 ι−1
j (JjkB

loc
)⊗B C(q

1
dr2 ) = ι−1

j (JjkB
′loc

)⊗B
C(q

1
dr2 ), or

ι−1
j (Jjkq

loc
) = ι−1

j (Jjkq
′loc

), (4.5.2)

where we denote by the same symbol the natural extension

ιj : CŝjB [G]⊗B C(q
1
dr2 )→ Cŝj ,locB [G]⊗B C(q

1
dr2 ).

Formula (4.5.2) implies that Jjkq
loc

= Jjkq
′loc

. This completes the proof.

Corollary 4.5.2. For any j ∈ {1, . . . , R− 1}, 1 ≤ k ≤ nj + 1 the following statements are true.

(i) For any j ∈ {1, . . . , R − 1}, 1 ≤ k ≤ nj + 1 one has IjmB
loc
Ajk = IjmB

loc
Bjk ⊂ IjkB

loc
, m ≤ k, where

Bjk = A0
jk
−1 ⊗Ajk, A0

jk = ∆µjk .

(ii) For any j ∈ {1, . . . , R− 1}, 1 ≤ k ≤ nj + 1, µ ∈ P+ one has IjkB
loc

∆
ŝj
µ ⊂ IjkB

loc
.

(iii) For any j ∈ {1, . . . , R− 1}, 1 ≤ k ≤ nj one has IjkB
loc
⊂ Ijk+1
B

loc
.

Proof. Part (i) follows from Lemma 4.4.3 (i), Lemma 4.2.5 with s = ŝj , Up being the algebra generated by Ajn,
n < m, and from Lemma 4.5.1.

Part (ii) follows the definition of IjkB
loc

.

Pert (iii) follows from the obvious inclusion JjkB
′
⊂ Jjk+1

B
′

and from Lemma 4.5.1

For j ∈ {1, . . . , R− 1}, 1 ≤ k ≤ nj + 1 let

Clocjk [G] = Cŝj ,locB [G]/IjkB
loc
.

Clocjk [G] is naturally a left CŝjB [G]–module.
From Corollary 4.5.2 (i) and (ii) we deduce the following statement.

Lemma 4.5.3. For j ∈ {1, . . . , R − 1}, 1 ≤ k ≤ nj multiplication from the right on Cŝj ,locB [G] induces a natural

action of ∆
ŝj
µ ∈ Sŝj , µ ∈ P+ on Clocjk [G], and for k ≥ m, right multiplication by Ajk and by Bjk gives rise to

well–defined homomorphisms of left CŝjB [G]–modules Clocjm[G]→ Clocjk [G].
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In the next two lemmas we study the properties of the adjoint action. These properties will be needed to study
properties of quantum analogues of the operators Πjk defined in (3.5.19).

Lemma 4.5.4. (i) For any j = 1, . . . , R− 1, n ∈ N, β ∈ [δj1, δjmj ] and f ∈ CŝjB [G] we have

Ad0
ŝjf

(n)
β (f ⊗∆ŝj

µ ) = qn((2Kŝj−id)β∨,µ∨)Ad0
ŝjf

(n)
β (f)⊗∆ŝj

µ (4.5.3)

in CŝjB [G]/Jj1B
′
.

(ii) The adjoint action of U
ŝj ,res
B ([−δj1,−δjmj ]) on CŝjB [G]/Jj1B

′
defined in Lemma 4.3.4 (iii) induces an action

on Clocj1 [G] satisfying

Ad0
ŝjf

(n)
β (f ⊗∆ŝj

µ

−1
) = q−n((2Kŝj−id)β∨,µ∨)Ad0

ŝjf
(n)
β (f)⊗∆ŝj

µ

−1
, f ∈ Clocj1 [G]. (4.5.4)

This action is locally finite.

Proof. The proof of part (i) follows from formula (4.2.4) applied to g = ∆
ŝj
µ . By Lemma 4.4.1 (iii) all terms in the

right hand side of (4.2.4) belong to Jj1B
′
, except for term in the first sum which corresponds to p = n, k = 0. It

gives the right hand side of (4.5.3).
Part (ii) follows from Lemma 4.5.1 and from part (i).

Local finiteness of the action of U
ŝj ,res
B ([−δj1,−δjmj ]) on Clocj1 [G] follows from the local finiteness of the action

of U
ŝj ,res
B ([−δj1,−δjmj ]) on CŝjB [G] and from formula (4.5.4).

Lemma 4.5.5. The Ad0
ŝj–action of U

ŝj ,res
B ([−δjk,−δjmj ]) on CŝjB [G] induces a locally finite action on Clocjk [G] =

Cŝj ,locB [G]/IjkB
loc

satisfying (4.5.4) for any f ∈ Clocjk [G].

Proof. By Lemma 4.4.1 (iv) Ad0
ŝj (U

ŝj ,res
B ([−δjk,−δjmj ])J

jk
B
′
⊂ JjkB . Since Jj1B

′
⊂ JjkB

′
the adjoint action on

CŝjB [G]/Jj1B
′

defined in Lemma 4.5.4 (i) satisfies the property Ad0
ŝj (U

ŝj ,res
B ([−δjk,−δjmj ])(J

jk
B
′
/Jj1B

′
) ⊂ JjkB /J

j1
B
′
.

Hence by Lemma 4.5.1 the action of U
ŝj ,res
B ([−δjk,−δjmj ]) on Clocj1 [G] defined in part (ii) of Lemma 4.5.4 satisfies

Ad0
ŝj (U

ŝj ,res
B ([−δjk,−δjmj ])(I

jk
B
loc
/Ij1B

loc
) ⊂ IjkB

loc
/Ij1B

loc
.

Thus this action induces an action on Clocjk [G] = Cŝj ,locB [G]/IjkB
loc

. This action is locally finite as Ad0
ŝj–action of

U
ŝj ,res
B ([−δjk,−δjmj ] on CŝjB [G] is locally finite.

Proposition 4.5.6. For j = 1, . . . , R− 2 the morphism of C[[h]]–modules T−1
wj ψ

θ
ŝj
wj

−1

: U
ŝj
h (g)→ U

ŝj+1

h (g) induces

an invertible morphism of B–modules φj : Cŝj+1

B [G]→ CŝjB [G] which is defined by

(φjf)(x) = f(T−1
wj ψ

θ
ŝj
wj

−1

(x)), x ∈ U ŝj ,resB (g), f ∈ Cŝj+1

B [G] (4.5.5)

and satisfies

φjAdsj+1(T−1
wj x) = Adsj (x)φj , x ∈ U

ŝj ,res
B (g), (4.5.6)

φj(f ⊗ g) =
∑
m,n

(Adsj (d1
mcn)φjf)(·)⊗ g(T−1

wj (vSŝj (cm) · d2
mdn)), f, g ∈ Cŝj+1

B [G], y ∈ U ŝj ,resB (g), (4.5.7)

where θ
ŝj
wj

−1
=
∑
m am ⊗ bm, vŝj =

∑
m amSŝj (bm), θ

ŝj
wj =

∑
n cn ⊗ dn, ∆ŝjdm = d1

m ⊗ d2
m.

The inverse to φj is given by

(φ−1
j f)(x) = f((ψθ

ŝj
wj

−1

)−1Twj (x)), x ∈ U ŝj ,resB (g), f ∈ CŝjB [G]. (4.5.8)
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Proof. Recall that by (2.6.17) for the reduced decomposition wj = snj1 . . . snjnj and Twj = Tnj1 . . . Tnjnj we defined

θŝjwj =

nj∏
k=1

θ
ŝj
δjk
, (4.5.9)

where in the products θ
ŝj
δjk

appears on the left from θ
ŝj
δjm

if k < m, and

θ
ŝj
δjk

= expqδjk
[(1− q−2

δjk
)eδjke

−2Kŝj δ
∨
jk ⊗ fδjk ], θ

ŝj
δjk

−1
= expq−1

δjk

[(1− q2
δjk

)eδjke
−2Kŝj δ

∨
jk ⊗ fδjk ],

eδjk = (X+
δjk
ehKŝj δ

∨
jk), fδjk = (e−hKŝj δ

∨
jkX−δjk), δjk = snj1 . . . snjk−1

αijk ,

X±δjk = Tnj1 . . . Tnjk−1
X±ijk .

Observe that for f ∈ Cŝj+1

B [G] one has f(T−1
wj ·Twj ) ∈ Cŝj+1

B [G] as the braid group acts on finite rank U
ŝj+1,res
B (g)–

modules.

Formula (2.7.5) for ψθ
ŝj
wj

−1

is expressed in terms of θ
ŝj
wj and of vŝj the definitions of which contain infinite series

in divided powers of quantum root vectors (see (4.5.9)). Only finitely many such divided powers act on a given

finite rank U
ŝj+1,res
B (g)–module in a non–trivial way. Therefore only finitely many terms in the infinite series will

contribute to formula (4.5.5).

The elements e−2Kŝj δ
∨
jk which appear in the formula for θ

ŝj
wj also act on finite rank U

ŝj+1,res
B (g)–modules as such

modules are direct sums of their weight subspaces, and e−2Kŝj δ
∨
jk acts on a subspace of weight λ by multiplication

by eλ(−2Kŝj δ
∨
jk) ∈ B.

We conclude that (4.5.5) defines a morphism of B–modules φj : Cŝj+1

B [G]→ CŝjB [G].
Formulas (4.5.6) and (4.5.7) follow from (2.7.26) and (2.7.27), respectively.

Lemma 4.5.7. (i) For j = 1, . . . , R− 2 one has φj(J
j+11
B

′
) ⊂ Jjnj+1

B .

(ii) For j = 1, . . . , R − 2, f ∈ Cŝj+1

B [G] one has φj(f ⊗ ∆
ŝj+1
µ ) = (φjf) ⊗ T−1

wj (∆
ŝj+1
µ ) mod J

jnj+1
B , where

T−1
wj (∆

ŝj+1
µ )(·) := ∆

ŝj+1
µ (T−1

wj · Twj ).

(iii) If µ, ν ∈ P+ are such that wjµ + ν ∈ P+ and j = 1, . . . , R − 2 then T−1
wj (∆

ŝj+1
µ ) ⊗ ∆

ŝj
ν = ∆

ŝj
wjµ+ν mod

J
jnj+1
B .

Proof. (i) By the definition of J
jnj
B and of Jj+11

B
′

it suffices to show that for any f ∈ Cŝj+1

B [G] and g(·) = (u, ·v) ∈
Cŝj+1

B [G] such that u is a highest weight vector in a finite rank representation V of Uh(g), and v ∈ V satisfies

(u, tŝj+1
z+xv) = 0 for any z+ ∈ U

ŝj+1,res
B (zj+1

+ ), x ∈ U ŝj+1,res
B ([−δj+11,−δj+1]) and some element tŝj+1

of the braid
group acting on h ⊂ Uh(h) in the same way as ŝj one has

φj(f ⊗ g)(w ⊗ yhtŝjz+x) = 0

for any w ∈ U ŝj ,resB (g), y ∈ ω0S
−1
ŝj

(U
ŝj ,res
B ([−δjnj+1,−δjD])), h ∈ U ŝj ,resB (h), z+ ∈ U

ŝj ,res
B (zj+), x ∈ U ŝj ,resB ([−δj1,−δjmj ]).

Indeed, from the explicit formula for vŝj and for θ
ŝj
wj and from the fact that Sŝj preserves weights, and for

k = 1, . . . nj T
−1
wj (eδjk) has strictly negative weights it follows by Lemma 2.8.4 (i) and by formula (4.5.7) that

φj(f ⊗ g)(w ⊗ yhtŝjz+x) =
∑
m,n

(Adsj (d1
mcn)φjf)(w)g(T−1

wj (vSŝj (cm)yhtŝjz+xd
2
mdn)) =

=
∑
m,n

(Adsj (d1
mcn)φjf)(w)(u, T−1

wj (vSŝj (cm)yhtŝjz+xd
2
mdn)v) =

∑
n

(Adsj (cn)φjf)(w)(u, T−1
wj (yhtŝjz+xdn)v).

Since wj
−1[−δjnj+1,−δjD] ⊂ ∆− Lemma 2.8.4 (i) implies that the right hand side of the last formula takes the

form
φj(f ⊗ g)(w ⊗ yhtŝjz+x) = y0

∑
n

(Adsj (cn)φjf)(w)(u, T−1
wj (htŝjz+xdn)v), (4.5.10)



4.5. LOCALIZATIONS 169

where y0 ∈ B is the zero weight component of y.

Next, xdn ∈ U
ŝj ,res
B ([−δj1,−δjmj ]), therefore by Lemma 2.8.2 (ix) we can write xdn =

∑
p xnpx

′
np + yn, where

xnp ∈ U
ŝj ,res
B ([−δj1,−δjnj ]) have strictly negative weights, yn, x

′
np ∈ U

ŝj ,res
B ([−δjnj+1,−δjmj ]), and (4.5.10) can be

rewritten as follows

φj(f ⊗ g)(w ⊗ yhtŝjz+x) = y0

∑
p,n

(Adsj (cn)φjf)(w)(u, T−1
wj (htŝjz+xnpx

′
np)v)+ (4.5.11)

+y0

∑
n

(Adsj (cn)φjf)(w)(u, T−1
wj (htŝjz+yn)v) =

= y0

∑
p,n

(Adsj (cn)φjf)(w)(u, T−1
wj (htŝj (z+xnp))T

−1
wj (tŝjx

′
np)v) + y0c

∑
n

(Adsj (cn)φjf)(w)(u, tŝj+1
T−1
wj (z+yn)v),

where c ∈ B is defined by the condition T−1
wj (h)u = cu and tŝj+1

= T−1
wj tŝjT

−1
wj .

The weights of the weight components of tŝj (z+xnp) belong to Nŝj((w1 . . . wj−1)−1(∆0)+ ∪ [−δj1,−δjnj ]) =
N(w1 . . . wj−1)−1(s(−∆j ∪ (∆0)+)) and by the choice of xnp they do not belong to N(w1 . . . wj−1)−1(∆0)+. Since

by Lemma 1.6.22 (i) s(∆j) ⊂ ∆j+1
+ , and (w1 . . . wj)

−1∆j+1
+ = ∆+ we deduce that the weights of the weight

components of T−1
wj (htŝj (z+xnp)) are non–zero; they belong to N(∆− ∪ (w1 . . . wj)

−1(∆0)+) and do not belong to

N(w1 . . . wj)
−1(∆0)+ ⊂ ∆+. In particular, these weights are not non–negative, and hence by Lemma 2.8.4 (i) the

first term in the left hand side of (4.5.11) vanishes as u is a highest weight vector.
For the second term we note that by the definition

T−1
wj (U

ŝj+1,res
B (zj+)) = U

ŝj+1,res
B (zj+1

+ ), T−1
wj (U

ŝj ,res
B ([−δjnj+1,−δjmj ])) = U

ŝj+1,res
B ([−δj+11,−δj+1]),

so that T−1
wj (z+yn) ∈ U ŝj+1,res

B (zj+1
+ )U

ŝj+1,res
B ([−δj+11,−δj+1]). Therefore the second term in the right hand side

of (4.5.11) vanishes by the choice of u and v. This completes the proof of part (i)

(ii) By the definition of J
jnj
B it suffices to show that for any f ∈ Cŝj+1

B [G] one has

φj(f ⊗∆ŝj+1
µ )(w ⊗ yhtŝjz+x) = (φjf)(w)∆ŝj+1

µ (T−1
wj yhtŝjz+xTwj )

for any w ∈ U ŝj ,resB (g), y ∈ ω0S
−1
ŝj

(U
ŝj ,res
B ([−δjnj+1,−δjD])), h ∈ U ŝj ,resB (h), z+ ∈ U

ŝj ,res
B (zj+), x ∈ U ŝj ,resB ([−δj1,−δjmj ]).

Similarly to (4.5.10) we obtain

φj(f ⊗∆ŝj+1
µ )(w ⊗ yhtŝjz+x) = y0

∑
n

(Adsj (cn)φjf)(w)(vµ, T
−1
wj (htŝjz+xdn)tŝj+1

vµ) = (4.5.12)

= y0

∑
n

(Adsj (cn)φjf)(w)(vµ, T
−1
wj (htŝj (z+xdn))vµ),

where y0 ∈ B is the zero weight component of y, and we assume without loss of generality that tŝj+1
= T−1

wj tŝjT
−1
wj .

Note that only the zero degree component of z+xdn can contribute to the right hand side of (4.5.12). Since

z+xdn ∈ U
ŝj ,res
B (zj+)U

ŝj ,res
B ([−δj1,−δjmj ]), the weights of the weight components of z+xdn belong to

N((w1 . . . wj−1)−1(∆0)+ ∪ [−δj1,−δjmj ] = N(w1 . . . wj−1)−1((∆0)+ ∪ [−βj1,−βc]).

Observe that (∆0)+ ∪ [−βj1,−βc] ⊂ [β0
1 ,−βc] which is a minimal segment. Therefore only the product of the zero

degree components of z+, x and dn can contribute to the right hand side of (4.5.12). From the formula (4.5.9) for

θ
ŝj
wj =

∑
n cn ⊗ dn it follows that only one term with dn = 1 has this property, and the corresponding cn = 1 as

well. We conclude that (4.5.12) takes the form

φj(f ⊗∆ŝj+1
µ )(w ⊗ yhtŝjz+x) = y0(φjf)(w)(vµ, T

−1
wj (htŝj (z+x))vµ).

Finally since wj
−1[−δjnj+1,−δjD] ⊂ ∆− and y ∈ ω0S

−1
ŝj

(U
ŝj ,res
B ([−δjnj+1,−δjD])), Lemma 2.8.4 (i) implies

that the right hand side of the last formula takes the form

φj(f ⊗∆ŝj+1
µ )(w ⊗ yhtŝjz+x) = (φjf)(w)(vµ, T

−1
wj yhtŝjz+xTwj tŝj+1

vµ) = (φjf)(w)∆ŝj+1
µ (T−1

wj yhtŝjz+xTwj ).



170 CHAPTER 4. ZHELOBENKO TYPE OPERATORS FOR Q-W–ALGEBRAS

This completes the proof of part (ii).

(iii) By the definition of J
jnj
B it suffices to show that

(∆ŝj+1
µ (T−1

wj · Twj )⊗∆ŝj
ν )(yhtŝjz+x) = ∆

ŝj
wjµ+ν(yhtŝjz+x) (4.5.13)

for any w ∈ U ŝj ,resB (g), y ∈ ω0S
−1
ŝj

(U
ŝj ,res
B ([−δjnj+1,−δjD])), h ∈ U ŝj ,resB (h), z+ ∈ U

ŝj ,res
B (zj+), x ∈ U ŝj ,resB ([−δj1,−δjmj ]).

We shall use this condition with tŝj = Tŝj .

From (2.8.13) and the fact that ω0S
−1
ŝj

is an anti-coautomorphism preserving weights we obtain

∆ŝj (y) = y0 +
∑
i

yi ⊗ h′i +
∑
k

vk ⊗ wk, (4.5.14)

where the weights of the elements wk are strictly negative, yi ∈ ω0S
−1
ŝj

(U
ŝj ,res
B ([−δjnj+1,−δjD])) have non–zero

weights, h′i ∈ U
ŝj ,res
B (h), and y0 ∈ B is the zero weight component of y.

By (4.2.21)

∆ŝj (Tŝj ) = θ
ŝj
ŝj
Tŝj ⊗ Tŝj

Recalling the definition of θ
ŝj
ŝj

and observing that vµ and vν are highest weight vectors and that the weights of

the elements of T−1
wj (ω0S

−1
ŝj

(U
ŝj ,res
B ([−δjnj+1,−δjD]))) are non–positive as wj

−1[−δjnj+1,−δjD] ⊂ ∆− we deduce

using also (4.5.14) that the left hand side of (4.5.13) takes the form

(∆ŝj+1
µ (T−1

wj · Twj )⊗∆ŝj
ν )(yhTŝjz+x) = y0(vµ, T

−1
wj h

1Tŝjz
1
+x

1TwjTŝj+1
vµ)(vν , h

2Tŝjz
2
+x

2Tŝjvν) = (4.5.15)

= y0(vµ, T
−1
wj (h1Tŝj (z

1
+x

1))vµ)(vν , h
2Tŝj (z

2
+x

2)vν).

We deduce that only the zero weight components of z1
+x

1 and of z2
+x

2 can contribute to the right hand side of the

last formula. Since the comultiplication preserves weights and z+x ∈ U
ŝj ,res
B (zj+)U

ŝj ,res
B ([−δj1,−δjmj ]), the weights

of the weight components of z+x belong to

N((w1 . . . wj−1)−1(∆0)+ ∪ [−δj1,−δjmj ] = N(w1 . . . wj−1)−1((∆0)+ ∪ [−βj1,−βc]).

Observe that (∆0)+ ∪ [−βj1,−βc] ⊂ [β0
1 ,−βc] which is a minimal segment. Therefore only the product of the zero

degree components (z+)0 and x0 of z+ and x, respectively, can contribute to the right hand side of (4.5.15). By the

definition of the algebras U
ŝj ,res
B (zj+) and U

ŝj ,res
B ([−δj1,−δjmj ]) we have (z+)0, x0 ∈ B. Therefore we can rewrite

(4.5.15) as follows

(∆ŝj+1
µ (T−1

wj · Twj )⊗∆ŝj
ν )(yhTŝjz+x) = y0(z+)0x0(vµ, T

−1
wj (h1)vµ)(vν , h

2vν) = (4.5.16)

= y0(z+)0x0(Twjvµ ⊗ vν , hTwjvµ ⊗ vν) = y0(z+)0x0(vwjµ+ν , hvwjµ+ν) = y0(vwjµ+ν , hTŝj (z+x)vwjµ+ν) =

= (vwjµ+ν , yhTŝjz+xT
−1
ŝj
vwjµ+ν) = ∆

ŝj
wjµ+ν(yhTŝjz+x).

This establishes (4.5.13) and completes the proof.

Proposition 4.5.8. (i) If µ, ν ∈ P+ are such that wjµ + ν ∈ P+ then for j = 1, . . . , R − 2 the following relation
holds in Clocjnj+1[G]:

T−1
wj (∆ŝj+1

µ ) = ∆
ŝj
wjµ+ν ⊗∆ŝj

ν

−1
.

(ii) For j = 1, . . . , R− 2 φj induces a morphism of B–modules

φj : Clocj+11[G]→ Clocjnj+1[G] (4.5.17)

which satisfies

φjAdŝj+1(T−1
wj x) = Adŝj (x)φj , x ∈ U

ŝj ,res
B ([−δjnj+1,−δjmj ]), (4.5.18)

and
φj(f ⊗∆ŝj+1

µ ) = (φjf)⊗∆
ŝj
wjµ+ν ⊗∆ŝj

ν

−1
, f ∈ Clocj+11[G],

φj(f ⊗∆ŝj+1
µ

−1
) = (φjf)⊗∆ŝj

ν ⊗∆
ŝj
wjµ+ν

−1
, f ∈ Clocj+11[G],

where µ, ν ∈ P+ are such that wjµ+ ν ∈ P+.



4.6. ZHELOBENKO TYPE OPERATORS FOR Q-W–ALGEBRAS 171

Proof. (i) follows from Lemma 4.5.7 (iii) and from the definition of Clocjnj+1[G].

(ii) follows from part (i) of this proposition, from Lemma 4.5.7 (i) and (ii), formula (4.5.6) and from the
definitions of Clocj+11[G] and Clocjnj+1[G].

4.6 Zhelobenko type operators for q-W–algebras

This section is central in this part and in the whole book. We are going to introduce and study some quantum
analogues of the operators Πjk and Πc defined in (3.5.19) and (3.5.21). It turns out that the analogues Pjk of Πjk

can be obtained by proper extrapolation of the expansion of the conjugation operator in (3.5.19) in terms of the
adjoint action operator and by replacing the coefficients ϕjk with their quantum counterparts Bjk introduced in
Corollary 4.5.2 (i). However, the proof of Proposition 4.6.1 which asserts that the image of their composition Pc
consists of invariant elements with respect to the adjoint action of Us,resB (m−) is rather complicated. It entirely

relies on the properties of IjkB
loc

, of the quotients Clocjk [G] and of the adjoint action, which were obtained in the
previous sections of this chapter.

The point is that in the quantum case we do not have in our disposal the isomorphism (3.4.32) which plays a
crucial role in the proof of a similar property for the operator Πc, given by (3.5.19), (3.5.21), as one can see from
the proof of Proposition 3.5.6.

We start with the definition of quantum analogues Pjp of the operators Πjp. For technical reasons we shall also
need more general operators P kjp. More precisely, by Lemmas 4.5.3 and 4.5.5 for f ∈ Clocjp [G], j = 1, . . . , R − 1,

p = 1, . . . , nj , n, k ∈ N, n ≥ k, we have a well–defined element Ad0
ŝjf

(n−k)
δjp

(f) ⊗ Bnjp ∈ Clocjp [G]. Note that by

Lemma 4.5.5 for each f ∈ Clocjp [G] Ad0
ŝjf

(n−k)
δjp

(f) = 0 for n− k > N(f), where N(f) ∈ N depends on f . Therefore

we can define define an element P kjp(f) ∈ Clocjp [G] by

P kjp(f) =

∞∑
n=k

(−1)nq
(n−1)(n−2k)

2

δjp
Ad0

ŝjf
(n−k)
δjp

(f)⊗Bnjp. (4.6.1)

In particular, formula (4.6.1) defines an operator

P kjp : Clocjp [G]→ Clocjp [G].

Denote P 0
jp = Pjp.

The following proposition summarizes the main properties of the operators Pjp.

Proposition 4.6.1. (i) For any j = 1, . . . , R− 1, p = 1, . . . , nj the composition

P≤jp = P11 . . . P1n1 ◦ φ1 ◦ P21 . . . P2n2 ◦ φ2 . . . ◦ φj−1 ◦ Pj1 . . . Pjp : Clocjp [G]→ Cloc11 [G] (4.6.2)

is well–defined. In fact P≤jp is well–defined as an operator with the domain Clocjp+1[G].

(ii) For any β ∈ [β11, βjp], n > 0 and for any f ∈ Clocjp+1[G] we have

Ad0
sf

(n)
β (P≤jp(f)) = 0. (4.6.3)

In particular, for any x ∈ Us,resB ([−β11,−βjp]), f ∈ Clocjp+1[G]

Ad0
sx(P≤jp(f)) = εs(x)P≤jp(f),

and if we denote Pc = P≤R−1nR−1
then for any x ∈ Us,resB (m−), f ∈ ClocR−1nR−1+1[G]

Ad0
sx(Pc(f)) = εs(x)Pc(f).

Moreover, for j = 1, . . . , R− 1, p = 1, . . . , nj, (j, p) 6= (R− 1, nR−1) one has

Ad0
sf

(n)
βjp+1

(P≤jp(f)) = cjp+1P≤jp(Ad0
ŝjf

(n)
δjp+1

f), (4.6.4)

where we assume that βjnj+1 = βj+11 and cjp+1 ∈ {±qZ}.
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The proof of Proposition 4.6.1 is quite long. It will be split into several lemmas. Firstly we shall show that

P≤jp is well–defined as an operator with the domain of definition Clocjp+1[G], i.e. Ijp+1
B

loc
/IjpB

loc
⊂ Clocjp [G] belongs

to the kernel of this operator.

Then we prove that for n > 0 Ad0
ŝjf

(n)
δjp
Pjp is the zero operator. This is done using an explicit calculation and

observing that Ad0
ŝjf

(n)
δjp

has some properties analogues to properties of derivations of order n.

Finally to show that for β ∈ [β11, βjp] and n > 0 Ad0
sf

(n)
β (P≤jp(f)) = 0 we shall use the property of the images

of operators Pjp mentioned in the previous paragraph and commutation relations between Pjp and Ad0
ŝjf

(n)
β for

β > δjp which, in particular, lead to commutation relations (4.6.4).

Firstly, we are going to show by an explicit calculation that for n > 0 Ad0
ŝjf

(n)
δjp
Pjp is the zero operator. Since

the right hand side of formula (4.6.1) contains products of elements from Cŝj ,locB [G] and of Bnjp, we have to study
the adjoint action on such products.

Lemma 4.6.2. (i) Let Bjp = A0
jp
−1 ⊗ Ajp ∈ Cŝj ,locB [G]0, f ∈ Clocjp [G], j = 1, . . . , R − 1, p = 1, . . . , nj. Then for

any k, n ∈ N the identity

Ad0
ŝjf

(n)
δjp

(f ⊗Bkjp) =

min(n,k)∑
r=0

q
(2n−r)k+

r(r−1)
2 −rn

δjp

[
k
r

]
qδjp

Ad0
ŝjf

(n−r)
δjp

(f)⊗Bk−rjp (4.6.5)

holds in Clocjp [G].
(ii) For any two roots α, β ∈ ∆ we denote

csαβ = q((2Ks+id)α,β).

Then for any j = 1, . . . , R− 1, p = 1, . . . , nj, m,n ∈ N, f ∈ Clocjp [G], β ∈ [δjp+1, δjmj ] the identity

Ad0
ŝjf

(m)
β (f ⊗Bnjp) = (c

ŝj
δjpβ

)mnAd0
ŝjf

(m)
β (f)⊗Bnjp (4.6.6)

holds in Clocjp [G].

Proof. (i) We prove (4.6.5) by induction over k. We start with the case when f is the image of an element of CŝjB [G]

in Clocjp [G] under the canonical map CŝjB [G]→ Cŝj ,locB [G]→ Clocjp [G]. Firstly by (4.2.4), we have for any n ∈ N

Ad0
ŝjf

(n)
δjp

(f ⊗Ajp) = qn(κ 1+s
1−sPh′δjp−δjp,µjp−δjp)Ad0

ŝj (f
(n)
δjp

)(f)⊗Ajp+

+q(n−1)(κ 1+s
1−sPh′δjp−δjp,µjp−δjp)q

−(n−1)
δjp

Ad0
ŝj (f

(n−1)
δjp

)(f)⊗Ajp(ω0S
−1
ŝj

(fδjp)·)+

+

n∑
k=1

q
−k(n−k)
δjp

qn(κ 1+s
1−sPh′δjp−δjp,µjp−δjp)Ad0

ŝj (G
−k
δjp
f

(n−k)
δjp

)(f)⊗Ajp(·ω0(f
(k)
δjp

))+

+

n∑
k=1

q
−k(n−k)−(n−k−1)
δjp

Ad0
ŝj (G

−k
δjp
f

(n−k−1)
δjp

)(f)⊗Ajp(ω0S
−1
ŝj

(G−n+1
δjp

fδjp) · ω0(f
(k)
δjp

))+ (4.6.7)

+

n∑
k=0

n−k−2∑
p=0

q
−k(n−k)−p(n−k−p)
δjp

Ad0
ŝj (G

−k
δjp
f

(p)
δjp

)(f)⊗Ajp(ω0S
−1
ŝj

(G−k−pδjp
f

(n−k−p)
δjp

) · ω0(f
(k)
δjp

))+

+

n−1∑
k=0

∑
i

q
−k(n−k)
δjp

Ad0
ŝj (G

−k
δjp
x

(n−k)
i )(f)⊗Ajp((ω0S

−1
ŝj

)(G−kδjpy
(n−k)
i ) · ω0(f

(k)
δjp

))+

+
∑
i

Ad0
ŝj (y

(n)
i

2
)(f)⊗Ajp((ω0S

−1
ŝj

)(y
(n)
i

1
) · ω0(x

(n)
i )).

By (4.4.1) all terms in the right hand side of (4.6.7), except for the first two, vanish. Also by (4.4.2) we have
Ajp((ω0S

−1
ŝj

)(fδjp)·) = A0
jp, and hence in both cases we have

Ad0
ŝjf

(n)
δjp

(f ⊗Ajp) = qn(κ 1+s
1−sPh′δjp−δjp,µjp−δjp)Ad0

ŝj (f
(n)
δjp

)(f)⊗Ajp+
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+q(n−1)(κ 1+s
1−sPh′δjp−δjp,µjp−δjp)q

−(n−1)
δjp

Ad0
ŝj (f

(n−1)
δjp

)(f)⊗A0
jp.

Since by definition elements of S−1
ŝj

naturally act on Clocjp [G] by multiplication from the right one can multiply

the last identity by (A0
jp)
−1 from the right. Using commutation relations (4.2.2), formula (4.5.4) and recalling the

definition of Bjp we obtain

Ad0
ŝjf

(n)
δjp

(f ⊗Bjp) = qn−1
δjp

Ad0
ŝjf

(n−1)
δjp

(f) + q2n
δjpAd0

ŝjf
(n)
δjp

(f)⊗Bjp. (4.6.8)

Multiplying the last identity by ∆−1
µ from the right and using the same arguments we get

Ad0
ŝjf

(n)
δjp

(f ⊗∆−1
µ ⊗Bjp) = qn−1

δjp
Ad0

ŝjf
(n−1)
δjp

(f ⊗∆−1
µ ) + q2n

δjpAd0
ŝjf

(n)
δjp

(f ⊗∆−1
µ )⊗Bjp,

Since elements f ⊗∆−1
µ span Clocjp [G] formula (4.6.8) holds for any n ∈ N, f ∈ Clocjp [G], i.e. (4.6.5) holds for any

n ∈ N, k = 1. This establishes the base of induction.
Now we assume that (4.6.5) holds for some natural k and for all natural n and prove that it holds for k + 1

and all natural n. The arguments given below are the same for both cases, and we consider them simultaneously.
Since by Lemma 4.5.3 right multiplication gives rise to a well–defined action of Bjp on Clocjp [G], we have for any

f ∈ Clocjp [G] using the base of induction and the induction assumption

Ad0
ŝjf

(n)
δjp

(f ⊗Bk+1
jp ) = qn−1

δjp
Ad0

ŝjf
(n−1)
δjp

(f ⊗Bkjp) + q2n
δjpAd0

ŝjf
(n)
δjp

(f ⊗Bkjp)⊗Bjp =

= qn−1
δjp

min(n−1,k)∑
r=0

q
(2(n−1)−r)k+

r(r−1)
2 −r(n−1)

δjp

[
k
r

]
qδjp

Ad0
ŝjf

(n−r−1)
δjp

(f)⊗Bk−rjp +

+q2n
δjp

min(n,k)∑
r=0

q
(2n−r)k+

r(r−1)
2 −rn

δjp

[
k
r

]
qδjp

Ad0
ŝjf

(n−r)
δjp

(f)⊗Bk−r+1
jp =

=

min(n,k+1)∑
r=0

q
(2n−r)(k+1)+

r(r−1)
2 −rn

δjp

(
qrδjp

[
k
r

]
qδjp

+ q
r−(k+1)
δjp

[
k

r − 1

]
qδjp

)
Ad0

ŝjf
(n−r)
δjp

(f)⊗Bk−r+1
jp =

=

min(n,k+1)∑
r=0

q
(2n−r)(k+1)+

r(r−1)
2 −rn

δjp

[
k + 1
r

]
qδjp

Ad0
ŝjf

(n−r)
δjp

(f)⊗Bk+1−r
jp ,

where we used the identity

qrδjp

[
k
r

]
qδjp

+ q
r−(k+1)
δjp

[
k

r − 1

]
qδjp

=

[
k + 1
r

]
qδjp

which can be found e.g. in [62], Proposition 6.1. This establishes the induction step and completes the proof of
(4.6.5).

Formula (4.6.6) is proved in a similar way by induction using Lemma 4.4.1 (i), formulas (4.2.4), (4.4.2), (4.5.4),
and the definition of Bjp.

The previous lemma shows that the operator Ad0
ŝjf

(n)
δjp

acts on f ⊗Bkjp as a quantum analogue of a derivation

of order n such that the derivative of Bjp by Ad0
ŝjfδjp is equal to one. Recalling the definition of the classical

counterpart ϕjp of Bjp one can observe that a similar formula can be obtained in the classical case as well. It will

be given by specializing (4.6.5) at q
1
dr2 = 1.

In the next lemma we show that for n > 0 the composition Ad0
ŝjf

(n)
δjp
Pjp is the zero operator. At the same time

this lemma lays a basis for the proof of the fact that the kernel of P≤jp contains Ijp+1
B

loc
/IjpB

loc
.

Lemma 4.6.3. For any f ∈ Clocjp [G], j = 1, . . . , R− 1, p = 1, . . . , nj, k = 0, 1, . . . we have

P kjp(f ⊗Bjp) = 0, (4.6.9)

Ad0
ŝjf

(n)
δjp

(Pjp(f)) = 0, n > 0. (4.6.10)
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Proof. Since by Lemma 4.5.3 right multiplication by Bjp gives rise to an action of Bjp on Clocjp [G] we have by (4.6.1)
and (4.6.5) with k = 1

P kjp(f ⊗Bjp) =

∞∑
n=k+1

(−1)nq
(n−1)(n−2k)

2

δjp
qn−k−1
δjp

Ad0
ŝjf

(n−k−1)
δjp

(f)⊗Bnjp+

+

∞∑
n=k

(−1)nq
(n−1)(n−2k)

2

δjp
q

2(n−k)
δjp

Ad0
ŝjf

(n−k)
δjp

(f)⊗Bn+1
jp =

= −
∞∑
n=k

(−1)nq
n(n+1−2k)

2 +n−k
δjp

Ad0
ŝjf

(n−k)
δjp

(f)⊗Bn+1
jp +

+

∞∑
n=k

(−1)nq
(n−1)(n−2k)

2 +2n−2k

δjp
Ad0

ŝjf
(n−k)
δjp

(f)⊗Bn+1
jp = 0

which proves (4.6.9).

Similarly by (4.6.1) and (4.6.5) we obtain

Ad0
ŝjf

(n)
δjp

(Pjp(f)) = Ad0
ŝjf

(n)
δjp

( ∞∑
k=0

(−1)kq
(k−1)k

2

δjp
Ad0

ŝjf
(k)
δjp

(f)⊗Bkjp

)
=

=

∞∑
k=0

min(n,k)∑
t=0

(−1)kq
(k−1)k

2 +(2n−t)k+
t(t−1)

2 −tn
δjp

[
k
t

]
qδjp

Ad0
ŝj (f

(k)
δjp
f

(n−t)
δjp

)(f)⊗Bk−tjp .

Introducing a new variable of summation k − t = r and using the identity

f
(k)
δjp
f

(n−t)
δjp

=

[
n+ k − t

k

]
qδjp

f
(n+k−t)
δjp

we get

Ad0
ŝjf

(n)
δjp

(Pjp(f)) =

=

∞∑
r=0

n∑
t=0

(−1)r+tq
(r+t−1)(r+t)

2 +(2n−t)(r+t)+ t(t−1)
2 −tn

δjp

[
r + t
t

]
qδjp

[
r + n
r + t

]
qδjp

Ad0
ŝj (f

(n+r)
δjp

)(f)⊗Brjp.

Now recalling that [
r + t
t

]
qδjp

[
r + n
r + t

]
qδjp

=

[
n
t

]
qδjp

[
r + n
r

]
qδjp

we obtain

Ad0
ŝjf

(n)
δjp

(Pjp(f)) =

=

∞∑
r=0

(−1)rq
(r−1)r

2 +2nr

δjp

[
r + n
r

]
qδjp

(
n∑
t=0

(−1)tq−t+tnδjp

[
n
t

]
qδjp

)
Ad0

ŝj (f
(n+r)
δjp

)(f)⊗Brjp = 0,

where we used the identity
n∑
t=0

(−1)tq−t+tnδjp

[
n
t

]
qδjp

= 0

which follows from the q–binomial theorem (see e.g. [43], Ch. 1).

This proves (4.6.10).
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Lemma 4.6.4. (i) Let k ∈ N. Then for any j = 1, . . . , R− 1, p− 1, . . . , nj one has P kjp(I
jp+1
B

loc
/IjpB

loc
) = 0. Thus

P kjp is well–defined as an operator with the domain Clocjp+1[G].
(ii) Moreover, for any 1 ≤ i ≤ j ≤ R − 1 1 ≤ q ≤ ni, 1 ≤ p ≤ nj such that q ≤ p if i = j, and any kij ∈ N the

composition

P
kiq
iq . . . P

kini
ini
◦ φi . . . ◦ φj−1 ◦ P

kj1
j1 . . . P

kjp
jp

is well–defined and gives rise to an operator with domain Clocjp+1[G] , and the target space being Clociq [G].
In particular, the composition P≤jp = P11 . . . Pjp is well–defined and gives rise to an operator with domain

Clocjp+1[G] and the target space being Cloc11 [G].

Proof. Let us show that P kjp(I
jp+1
B

loc
/IjpB

loc
) = 0. Indeed, by the definition of Ijp+1

B
loc

and by commutation relations

(4.2.2) for any element f ∈ Ijp+1
B

loc
there exists an element u ∈ B, u 6= 0 and g, h ∈ IjpB

loc
such that uf = g+h⊗Bjp.

Let f̄ , ḡ, h⊗Bjp and h̄ be the classes of the corresponding elements in Clocjp [G]. Note that h⊗Bjp = h̄⊗Bjp and

ḡ = 0, and by the previous Lemma P
kjp
jp (h⊗Bjp) = P

kjp
jp (h̄ ⊗ Bjp) = 0. Thus P

kjp
jp (uf) = uP

kjp
jp (f̄) = 0. Since

u 6= 0 this implies P
kjp
jp (f̄) = 0. This completes the proof of the first statement.

The remaining statements of the lemma are simple corollaries of the first assertion and of (4.5.17).

Next, we are going to study how the adjoint action of quantum root vectors commutes with the operators Pjp.
For this purpose we shall need some commutation relations between quantum root vectors stated in the following
lemma.

Lemma 4.6.5. Let fβ ∈ Us,resB (g) be quantum root vectors defined with the help of an arbitrary normal ordering
on ∆+. Then for any α < β, α, β ∈ ∆+ and any m,n ∈ N we have

f (m)
α f

(n)
β = (csαβ)mn

m∑
p=0

qp(m−1)
α

∑
α < δ1 < . . . < δn ≤ β

p1, . . . , pn ∈ N

dpp1,...,pnf
(p1)
δ1

. . . f
(pn)
δn

f (m−p)
α , (4.6.11)

where the coefficients dpp1,...,pn ∈ B do not depend on m.

Proof. To prove this lemma it suffices to show that

fmα f
n
β = (csαβ)mn

m∑
p=0

∑
α < δ1 < . . . < δn ≤ β

p1, . . . , pn ∈ N

cpp1,...,pnS
p
mf

p1
δ1
. . . fpnδn f

m−p
α , (4.6.12)

where

Spm = qp(m−1)
α

[
m
p

]
qα

,

and the coefficients cpp1,...,pn ∈ A do not depend on m.
Indeed, dividing (4.6.12) by [n]qα ![m]qβ ! we arrive at an identity of the form (4.6.11) where the coefficients

dpp1,...,pn a priori belong to C(q
1
dr2 ). But by the uniqueness of the Poincaré-Birkhoff-Witt decomposition in

Us,resB (n−) (see Lemma 2.8.2) we have dpp1,...,pn ∈ B.
Now we establish (4.6.12). Firstly we consider the case n = 1. By commutation relations (2.8.12) we have

fmα fβ = (csαβ)mfβf
m
α +

m−1∑
k1=0

(csαβ)m−k1−1fk1α
∑

α < δ1 < . . . < δn < β
p1, . . . , pn ∈ N

C(p1, . . . , pn)fp1δ1 f
p2
δ2
. . . fpnδn f

m−k1−1
α , (4.6.13)

where C(p1, . . . , pn) ∈ A. The first term in the right hand side of this formula agrees with the term in the right
hand side of (4.6.12) corresponding to p = 0. The other terms in the right hand side of (4.6.13) will contribute to
the terms in the right hand side of (4.6.12) with p > 0.

Denote
Dβfα =

∑
α < δ1 < . . . < δn < β

p1, . . . , pn ∈ N

C(p1, . . . , pn)fp1δ1 f
p2
δ2
. . . fpnδn .
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Then (4.6.13) takes the form

fmα fβ = (csαβ)mfβf
m
α +

m−1∑
k1=0

(csαβ)m−k1−1fk1α Dβfαf
m−k1−1
α . (4.6.14)

To get the term in the right hand side of (4.6.12) corresponding to p = 1 we have to move fk1α to the right in
(4.6.13) using commutation relations (2.8.12),

fαfδ = csαδfδfα +
∑

α < δ1 < . . . < δn < δ
p1, . . . , pn ∈ N

C(p1, . . . , pn)fp1δ1 f
p2
δ2
. . . fpnδn = csαδfδfα +Dδfα, α < δ, (4.6.15)

and keep the leading term csαδfδfα for each δ = δ1, . . . , δn. Since for weight reasons δ1p1 + . . .+ δnpn = α + β, so
the weight of Dβfα is α+ β, this yields

fmα fβ = (csαβ)mfβf
m
α +

m−1∑
k1=0

(csαβ)m−k1−1ck1αα+βDβfαf
m−1
α +R, (4.6.16)

where R stands for the terms contributing to the terms in the right hand side of (4.6.12) with p > 1. Now

m−1∑
k1=0

(csαβ)m−k1−1ck1αα+β = (csαβ)m−1
m−1∑
k1=0

(csαβ)−k1(csαβ)k1ck1αα = (csαβ)m−1
m−1∑
k1=0

q2k1
α = (csαβ)m−1 q

2m
α − 1

q2
α − 1

=

= (csαβ)m−1qm−1
α [m]qα = (csαβ)m−1S1

m,

and (4.6.16) takes the form

fmα fβ = (csαβ)mfβf
m
α + (csαβ)m−1S1

m

∑
α < δ1 < . . . < δn < β

p1, . . . , pn ∈ N

C(p1, . . . , pn)fp1δ1 f
p2
δ2
. . . fpnδn f

m−1
α +R. (4.6.17)

The second term in the right hand side of this formula agrees with the term in the right hand side of (4.6.12)
corresponding to p = 1.

To get the term in the right hand side of (4.6.12) corresponding to p = 2 we have to move fk1α to the right in
(4.6.13) using commutation relations (2.8.12),

fk1α fδl = (csαδl)
kfδlf

k1
α +

k1−1∑
k2=0

(csαδl)
k1−k2−1fk2α Dδlfαf

k1−k2−1
α , (4.6.18)

and keep the terms containing one “differentiation” Dδlfα for some l = 1, . . . , n. Since the weight of Dδlfα is α+δl,
this yields

R =

m−1∑
k1=0

k1−1∑
k2=0

n∑
l=1

pl∑
q=1

(csαβ)m−k1−1(csαδ1)k1p1 . . . (csαδl−1
)k1pl−1(csαδl)

k1(pl−q)(csαδl)
k1−k2−1× (4.6.19)

×(csαα+δl
)k2(csαδl)

(k1−1)(q−1)(csαδl+1
)(k1−1)pl+1 . . . (csαδn)(k1−1)pn×

×C(p1, . . . , pn)fp1δ1 . . . f
pl−1

δl−1
fpl−qδl

Dδlfαf
q−1
δl

f
pl+1

δl+1
. . . fpnδn f

m−2
α +R1,

where R1 contains only terms with more than one “differentiation” Dδlfα for some l = 1, . . . , n.
Now by the definition of the coefficients (csαβ) and using the identity δ1p1 + . . .+ δnpn = α+ β we have

(csαβ)m−k1−1(csαδ1)k1p1 . . . (csαδl−1
)k1pl−1(csαδl)

k1(pl−q)(csαδl)
k1−k2−1(csαα+δl

)k2(csαδl)
(k1−1)(q−1)(csαδl+1

)(k1−1)pl+1 . . . (csαδn)(k1−1)pn =

= (csαβ)m−1(csαα)k1+k2(csαδl)
−q(csαδl+1

)−pl+1 . . . (csαδn)−pn ,

so

m−1∑
k1=0

k1−1∑
k2=0

(csαβ)m−k1−1(csαδ1)k1p1 . . . (csαδl−1
)k1pl−1(csαδl)

k1(pl−q)(csαδl)
k1−k2−1(csαα+δl

)k2(csαδl)
(k1−1)(q−1)(csαδl+1

)(k1−1)pl+1 . . .
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. . . (csαδn)(k1−1)pn =

= (csαβ)m−1(csαδl)
−q(csαδl+1

)−pl+1 . . . (csαδn)−pn
m−1∑
k1=0

k1−1∑
k2=0

(csαα)k1+k2 =

= (csαβ)m−1(csαδl)
−q(csαδl+1

)−pl+1 . . . (csαδn)−pn
m−1∑
k1=0

k1−1∑
k2=0

q2(k1+k2)
α ,

and, after combining terms containing the same monomials fp1δ1 f
p2
δ2
. . . fpnδn , equation (4.6.19) takes the form

R = (csαβ)m
∑

α < δ1 < . . . < δn ≤ β
p1, . . . , pn ∈ N

c2p1,...,pnS
2
mf

p1
δ1
. . . fpnδn f

m−2
α +R1, (4.6.20)

where

S2
m =

m−1∑
k1=0

k1−1∑
k2=0

q2(k1+k2)
α ,

and the coefficients c2p1,...,pn ∈ A do not depend on m. The first term in (4.6.20) will agree with with the term in

the right hand side of (4.6.12) corresponding to p = 2 if we show that S2
m = q

2(m−1)
α

[
m
2

]
qα

.

Now we can continue in the same way taking into account more “derivatives” Dδlfα to obtain formula (4.6.12)
with n = 1, where

Spm =

m−1∑
k1=0

k1−1∑
k2=0

. . .

kp−1−1∑
kp=0

q2(k1+k2+...+kp)
α .

From this formula it follows that the coefficients Spm satisfy the following relations

Spm = Spm−1 + q2(m−1)
α Sp−1

m−1. (4.6.21)

On the other hand for the q-binomial coefficients we have[
m
p

]
qα

= q−pα

[
m− 1
p

]
qα

+ qm−pα

[
m− 1
p− 1

]
qα

.

If we denote

Cpm = qp(m−1)
α

[
m
p

]
qα

this implies

Cpm = Cpm−1 + q2(m−1)
α Cp−1

m−1,

i.e. the coefficients Cpm satisfy the same relations (4.6.21) as the coefficients Spm. Since these relations completely
determine them once Sp2 are known and C0

2 = S0
2 = 1, C2

2 = S2
2 = q2

α, C1
2 = S1

2 = qα[2]qα , we deduce that Cpm = Spm
for all m and p (compare with Theorem 6.1 in [62]). Thus formula (4.6.12) is established for n = 1.

For n > 1 we argue by induction over n. The base of the induction is already established. Now assuming that
the statement is true for n− 1 we show that it holds for n. Indeed,

fmα f
n
β = (csαβ)m(n−1)

m∑
q=0

∑
α < δ1 < . . . < δn ≤ β

p1, . . . , pn ∈ N

cqp1,...,pnS
q
mf

p1
δ1
. . . fpnδn f

m−q
α fβ = (4.6.22)

= (csαβ)m(n−1)
m∑
q=0

m−q∑
k=0

∑
α < δ1 < . . . < δn ≤ β

p′1, . . . , p
′
n ∈ N

(csαβ)m−pc′p′1,...,p′nS
q
mS

k
m−qf

p′1
δ1
. . . f

p′n
δn
fm−q−kα ,

where c′p′1,...,p′n
∈ A do not depend on m.
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Now

SqmS
k
m−q =

q−kqα

[k]qα !
Sk+q
m .

Introducing new summation variable p = k + q in (4.6.22) we can rewrite (4.6.22) in the form

fmα f
n
β = (csαβ)mn

m∑
p=0

p∑
q=0

∑
α < δ1 < . . . < δn ≤ β

p′1, . . . , p
′
n ∈ N

(csαβ)−p
q
−(p−q)q
α

[p− q]qα !
Spmc

′
p′1,...,p

′
n
f
p′1
δ1
. . . f

p′n
δn
fm−pα .

Combining terms containing the same monomials f
p′1
δ1
f
p′2
δ2
. . . f

p′n
δn

we arrive at an identity of the form (4.6.12)

where the coefficients cpp1,...,pn a priori belong to C(q
1
dr2 ). But by the uniqueness of the Poincaré-Birkhoff-Witt

decomposition in UsA(n−) (see Lemma 2.8.2) we have cpp1,...,pn ∈ A. This completes the proof of (4.6.12).

The next lemma shows how the adjoint action of the quantum root vectors commutes with the operators Pjp.

Lemma 4.6.6. For any j = 1, . . . , R− 1, p = 1, . . . , nj, p < q ≤ mj, and any f ∈ Clocjp [G] we have

Ad0
ŝjf

(m)
δjq

(Pjp(f)) =

∞∑
k=0

P kjp(Ad0
ŝj (

∑
pjp+1,...,pjq

dkpjp+1,...,pjqf
(pjp+1)
δjp+1

. . . f
(pjq)
δjq

)(f)), (4.6.23)

where only a finite number of terms in the sum are non-zero, dkpjp+1,...,pjq ∈ B,

dkpjp+1,...,pjq−1,m =

{
1 if k = pjp+1 = . . . = pjq−1 = 0
0 otherwise

,

and for 0 ≤ n < m and any k
dk0,...,0,n = 0.

In particular,

Ad0
ŝjf

(m)
δjp+1

(Pjp(f)) = Pjp(Ad0
ŝj (f

(m)
δjp+1

)(f)). (4.6.24)

Proof. By formula (4.6.6) and by the definition of Pjp we have

Ad0
ŝjf

(m)
δjq

(Pjp(f)) =

∞∑
n=0

(−1)nq
(n−1)n

2

δjp
dmnδjpδjqAd0

ŝj (f
(n)
δjp
f

(m)
δjq

)(f)⊗Bnjp.

Using (4.6.11) we can rewrite this formula as follows

Ad0
ŝjf

(m)
δjq

(Pjp(f)) =

=

∞∑
n=0

n∑
k=0

(−1)nq
(n−1)n

2

δjp
q
−k(n−1)
δjp

(c
ŝj
δjpδjq

)mnω0((c
ŝj
δjpδjq

)mn)Ad0
ŝjf

(n−k)
δjp

(Ad0
ŝj (

∑
pjp+1,...,pjq

dkpjp,...,pjqf
(pjp+1)
δjp+1

. . . f
(pjq)
δjq

)(f)).

Now recalling that ω0(q) = q−1 and swapping the order of summation in the last formula we get

Ad0
ŝjf

(m)
δjq

(Pjp(f)) =

=

∞∑
n=0

n∑
k=0

(−1)nq
(n−1)n

2

δjp
q
−k(n−1)
δjp

Ad0
ŝjf

(n−k)
δjp

(Ad0
ŝj (

∑
pjp+1,...,pjq

dkpjp+1,...,pjqf
(pjp+1)
δjp+1

. . . f
(pjq)
δjq

)(f)) =

=

∞∑
k=0

∞∑
n=k

(−1)nq
(n−1)(n−2k)

2

δjp
Ad0

ŝjf
(n−k)
δjp

(Ad0
ŝj (

∑
pjp+1,...,pjq

dkpjp+1,...,pjqf
(pjp+1)
δjp+1

. . . f
(pjq)
δjq

)(f)) =

=

∞∑
k=0

P kjp(Ad0
ŝj (

∑
pjp+1,...,pjq

dkpjp+1,...,pjqf
(pjp+1)
δjp+1

. . . f
(pjq)
δjq

)(f)).

(4.6.24) is obtained in a similar way using the relation f
(n)
δjp
f

(m)
δjp+1

= (c
ŝj
δjpδjp+1

)mnf
(m)
δjp+1

f
(n)
δjp

.
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Now we have all prerequisites to prove Proposition 4.6.1.

Proof of Proposition 4.6.1 Firstly, the composition (4.6.2) is well defined by Lemma 4.6.4 (ii).
By Lemmas 4.6.4, 4.6.6, and formula (4.6.10) we have for any f from the domain of Pjp and δ1q ≤ βjp

Ad0
sf

(n)
δ1q

(P≤jp(f)) =

∞∑
k1=0

P k111

Ad0
s(

∑
p12,...,p1q

dk1p12,...,p1qf
(p12)
δ12

. . . f
(pq)
δ1q

)(P12 . . . Pjp(f))

 =

=

∞∑
k1=0

P k111

 ∑
p12,...,p1q

Ad0
s(d

k1
p12,...,p1qf

(p13)
δ13

. . . f
(p1q)
δ1q

)Ad0
sf

(p12)
δ12

(P12 . . . Pjp(f))

 =

∞∑
k1=0

P k111

 ∑
p13,...,p1q

Ad0
s(d

k1
0,p13,...,p1q

f
(p13)
δ13

. . . f
(p1q)
δ1q

)(P12 . . . Pjp(f))

 ,

where, by weight counting in the left hand side and in the right hand side, for each k1 d
k1
0,0...,0 = 0.

Similarly,

Ad0
sf

(n)
δ1q

(P≤jp(f)) =

∞∑
k1=0

P k111

 ∑
p13,...,p1q

Ad0
s(d

k1
0,p13,...,p1q

f
(p13)
δ13

. . . f
(p1q)
δ1q

)(P12 . . . Pjp(f))

 =

=

∞∑
k1=0

P k111

 ∑
p13,...,p1q

Ad0
s(d

k1
0,p13,...,p1q

f
(p14)
δ14

. . . f
(p1q)
δ1q

)(P12Ad0
s(f

(p13)
δ13

)P13 . . . Pjp(f))

 =

=

∞∑
k1=0

P k111

 ∑
p14,...,p1q

Ad0
s(d

k1
0,0,p14,...,p1q

f
(p14)
δ14

. . . f
(p1q)
δ1q

)(P12P13 . . . Pjp(f))

 .

Now we proceed along the same line,

Ad0
sf

(n)
δ1q

(P≤jp(f)) =

=

∞∑
k1=0

∞∑
k2=0

P k111

 ∑
p14,...,p1q

Ad0
s(d

k1
0,0,p14,...,p1q

f
(p15)
δ15

. . . f
(p1q)
δ1q

)(P k212

∑
p′13,p

′
14

Ad0
s(d

k2
p′13,p

′
14
f

(p′13)
δ13

f
(p′14)
δ14

)P13 . . . Pjp(f))

 =

=

∞∑
k1=0

∞∑
k2=0

P k111

 ∑
p14,...,p1q

Ad0
s(d

k1
0,0,p14,...,p1q

f
(p15)
δ15

. . . f
(p1q)
δ1q

)(P k212

∑
p′14

Ad0
s(d

k2
0,p′14

f
(p′14)
β14

)P13 . . . Pjp(f))

 =

=

∞∑
k1=0

∞∑
k2=0

P k111

 ∑
p14,...,p1q

Ad0
s(d

k1
0,0,p14,...,p1q

f
(p15)
δ15

. . . f
(p1q)
δ1q

)(P k212

∑
p′14

P13Ad0
s(d

k2
0,p′14

f
(p′14)
δ14

)P14 . . . Pjp(f))

 =

=

∞∑
k1=0

∞∑
k2=0

P k111

 ∑
p14,...,p1q

ω0(dk20,0)Ad0
s(d

k1
0,0,p14,...,p1q

f
(p15)
δ15

. . . f
(p1q)
δ1q

)(P k212 P13P14 . . . Pjp(f))

 .

But dk20,0 is zero if p14 > 0 and we infer

Ad0
sf

(n)
δ1q

(P≤jp(f)) =

=

∞∑
k1=0

P k111

 ∑
p15,...,p1q

Ad0
s(d

k1
0,0,0,p15,...,p1q

f
(p15)
δ15

. . . f
(p1q)
δ1q

)(P12P13 . . . Pjp(f))

 .

Now we repeat the same steps until we reach φ1 in the composition (4.6.2). When Ad0
s(f

(a)
δ1q

) with q > n1 needs

to be moved on the right from φ1 in (4.6.2) we use formulas (4.5.18) and (4.2.6) and the fact that for q > n1

T−1
w1

(fδ1q (s)) = fδ2q−n1
(ŝ2).
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Similar arguments work for the compositions Pi1 . . . Pini , i > 1 and for fδiq (ŝi) with q > ni and T−1
wi .

Repeating these arguments we arrive at

Ad0
sf

(n)
δ1q

(P≤jp(f)) =

∞∑
k1=0

ω0(dk10,0,...,0)P k111 . . . P1n1
◦ φ1 ◦ P21 . . . P2n2

◦ φ2 . . . ◦ φj−1 ◦ Pj1 . . . Pjp(f) = 0

as dk10,0,...,0 = 0 for all k1. This proves (4.6.3).
(4.6.4) is established in a similar way using (4.6.23), Lemma 4.6.4, (4.5.18), (4.2.6), and formula (4.6.10).

In conclusion, using the operators Pjp and the elements Bjp we define proper quantum analogues of monomials
in functions ϕjp. They will play a crucial rule in establishing a quantum group version of the Skryabin equivalence
in Section 5.2 and in the proof of the De–Concini–Kac–Procesi conjecture.

Proposition 4.6.7. For mij , kij ∈ N the elements

B{mij} = P11(. . . P1n1−1(P1n1(φ1(P21(. . . P2n2−1(P2n2(φ2(. . . φR−2(PR−11(. . .

. . . PR−1nR−1−2(PR−1nR−1−1(B
mR−1nR−1

R−1nR−1
)B

mR−1nR−1−1

R−1nR−1−1 ) . . . B
mR−11

R−11 )) . . .))B
m2n2
2n2

) . . .)Bm21
21 ))B

m1n1
1n1

) . . .)Bm11
11 ∈ Cloc11 [G]

satisfy

Ad0
s(f

(k11)
β11

. . . f
(kR−1nR−1

)

βR−1nR−1
)(B{mij}) =

{
c{mij}

∏R−1
i=1

∏ni
j=1 q

mij(mij−1)

2

δij
if mij = kij for i = 1, . . . , R− 1, j = 1, . . . ni

0 if kij = mij if (ij) < (pq) and kpq > mpq for some (pq)
,

where the pairs (ij) are ordered according to the lexicographic order and c{mij} ∈ {±qZ}. Thus

Ad0
s(f

k11
β11

. . . f
kR−1nR−1

βR−1nR−1
)(B{mij}) =

{
c{mij}

∏R−1
i=1

∏ni
j=1 q

mij(mij−1)

2

δij
[mij ]qδij ! if mij = kij for i = 1, . . . , R− 1, j = 1, . . . ni

0 if kij = mij if (ij) < (pq) and kpq > npq for some (pq)
.

In particular, the elements B{mij} are linearly independent for different {mij}, i = 1, . . . , R− 1, j = 1, . . . ni.

Proof. The proof follows from Lemmas 4.4.3, 4.5.5, 4.6.4, 4.6.6, formula (4.6.10) and Proposition 4.6.1. We shall
prove the statement by induction.

First observe that by Proposition 4.6.1

Ad0
sf

(k)
β11
P11(. . . P1n1−1(P1n1

(φ1(P21(. . . P2n2−1(P2n2
(φ2(. . . φR−2(PR−11(. . .

. . . PR−1nR−1−2(PR−1nR−1−1(B
mR−1nR−1

R−1nR−1
)B

mR−1nR−1−1

R−1nR−1−1 ) . . . B
mR−11

R−11 )) . . .))B
m2n2
2n2

) . . .)Bm21
21 ))B

m1n1
1n1

) . . . Bm12
12 ) = 0

for any k > 0 and recall that right multiplication by B11 gives rise to an operator on Cloc11 [G] by Lemma 4.5.3.
Therefore from (4.6.5) for (jp) = (11) we have

Ad0
sf

(k11)
β11

(B{mij}) =

= q
k11(k11−1)

2

δ11
P11(. . . P1n1−1(P1n1(φ1(P21(. . . P2n2−1(P2n2(φ2(. . . φR−2(PR−11(. . .

. . . PR−1nR−1−2(PR−1nR−1−1(B
mR−1nR−1

R−1nR−1
)B

mR−1nR−1−1

R−1nR−1−1 ) . . . B
mR−11

R−11 )) . . .))B
m2n2
2n2

) . . .)Bm21
21 ))B

m1n1
1n1

) . . . Bm12
12 )

if k11 = m11 and
Ad0

sf
(k11)
β11

(B{mij}) = 0

if k11 > m11.
Now assume that for some 1 ≤ p ≤ R− 1, 1 ≤ q ≤ ni

Ad0
s(f

(k11)
β11

. . . f
(mpq)
βpq

)(B{k11,...,kpq,mpq+1,...,mR−1nR−1
}) = (4.6.25)

= dpq
∏

(ij)≤(pq)

q
kij(kij−1)

2

δij
P≤pq(Ppq+1 . . . Ppnp−1(Ppnp(φp(Pp+11 . . . Pp+1np+1−1(Pp+1np+1

(φp+1(. . . φR−2(PR−11 . . .



4.6. ZHELOBENKO TYPE OPERATORS FOR Q-W–ALGEBRAS 181

. . . PR−1nR−1−2(PR−1nR−1−1(B
mR−1nR−1

R−1nR−1
)B

mR−1nR−1−1

R−1nR−1−1 ) . . . B
mR−11

R−11 )) . . .)B
mp+2np+2

p+2np+2
) . . . B

mp+11

p+11 ))B
mpnp
pnp ) . . . B

mpq+1

pq+1 ),

where we assume that mpnp+1 = mp+11, and dpq ∈ {±qZ}.
Then by (4.6.4) and by the induction assumption

Ad0
s(f

(k11)
β11

. . . f
(kpq+1)
βpq+1

)(B{k11,...,kpq,mpq+1,...,mR−1nR−1
}) =

= dpqcpq+1

∏
(ij)≤(pq)

q
kij(kij−1)

2

δij
P≤pqAd0

ŝp(f
(kpq+1)
δpq+1

)(Ppq+1 . . . Ppnp−1(Ppnp(φp(Pp+11 . . . Pp+1np+1−1(Pp+1np+1
(φp+1(. . . φR−2(PR−11 . . .

. . . PR−1nR−1−2(PR−1nR−1−1(B
mR−1nR−1

R−1nR−1
)B

mR−1nR−1−1

R−1nR−1−1 ) . . . B
mR−11

R−11 )) . . .)B
mp+2np+2

p+2np+2
) . . . B

mp+11

p+11 ))B
mpnp
pnp ) . . . B

mpq+1

pq+1 ),

where cpq+1 ∈ {±qZ} is defined in (4.6.4). Denote dpq+1 = dpqcpq+1 ∈ {±qZ}.
The last formula can be simplified using (4.6.5), the fact that

Ad0
ŝp(f

(k)
δpq+1

)(Ppq+1(. . . Ppnp−1(Ppnp(φp(Pp+11 . . . Pp+1np+1−1(Pp+1np+1
(φp+1(. . . φR−2(PR−11 . . .

. . . PR−1nR−1−2(PR−1nR−1−1(B
mR−1nR−1

R−1nR−1
)B

mR−1nR−1−1

R−1nR−1−1 ) . . . B
mR−11

R−11 )) . . .)B
mp+2np+2

p+2np+2
) . . . B

mp+11

p+11 ))B
mpnp
pnp ) . . . B

mpq+2

pq+2 )) = 0

for any k > 0, Lemma 4.6.4 and recalling that right multiplication by Bpq+1 gives rise to an operator on Cpq + 1locG
by Lemma 4.5.3. This yields

Ad0
s(f

(k11)
β11

. . . f
(kpq+1)
βpq+1

)(B{k11,...,kpq,mpq+1,...,mR−1nR−1
}) =

= dpq+1

∏
(ij)≤(pq+1)

q
kij(kij−1)

2

δij
(P≤pq+1(. . . Ppnp−1(Ppnp(φp(Pp+11 . . . Pp+1np+1−1(Pp+1np+1(φp+1(. . .

. . . φR−2(PR−11 . . . . . . PR−1nR−1−2(PR−1nR−1−1(B
mR−1nR−1

R−1nR−1
)B

mR−1nR−1−1

R−1nR−1−1 ) . . . B
mR−11

R−11 )) . . .

. . .)B
mp+2np+2

p+2np+2
) . . . B

mp+11

p+11 ))B
mpnp
pnp ) . . . B

mpq+2

pq+2 ))

if kpq+1 = mpq+1 and

Ad0
s(f

(k11)
β11

. . . f
(kpq+1)
βpq+1

)(B{k11,...,kpq,mpq+1,...,mR−1nR−1
}) = 0

if kpq+1 > mpq+1. This establishes the induction step and completes the proof of the proposition.

Since the ordering on the set of roots βij , i = 1, . . . , R− 1, j = 1, . . . , ni induced by the lexicographic ordering
of the pairs (ij) coincides with the normal ordering on the segment ∆m+ , we can rewrite the properties of the
elements B{mij} as follows to simplify the notation for later use.

Corollary 4.6.8. For n1, . . . , nc, k1, . . . , kc ∈ N there are elements

Bn1...nc ∈ Cloc11 [G]

which satisfy

Ad0
s(f

(k1)
β1

. . . f
(kc)
βc

)(Bn1...nc) =

{
cn1...nc(q) if np = kp for p = 1, . . . , c
0 if ki = ni, i = 1, . . . , p− 1 and kp > np for some p ∈ {1, . . . , c} ,

where cn1...nc(q) ∈ {±qZ}, and hence

Ad0
s(f

k1
β1
. . . fkcβc )(Bn1...nc) =

{
c′n1...nc if np = kp for p = 1, . . . , d
0 if ki = ni, i = 1, . . . , p− 1 and kp > np for some p ∈ {1, . . . , c} ,

where c′n1...nc(q) = cn1...nc(q)
∏c
p=1[np]qβp !.
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4.7 A description of q-W–algebras in terms of Zhelobenko type oper-
ators

Now we are in a position to describe q-W–algebras in terms of the operator P introduced in the previous section.
Recall that q-W–algebras are only defined when the value of the parameter κ is equal to one. Therefore in this
section we always assume that κ = 1. As a B–module the q-W–algebra W s

B(G) is the space of CsB[M+]–invariants
in QB with respect to the adjoint action. In order to use the operator Pc for the description of this space we shall
transfer the results of Proposition 4.6.1 from Cloc11 [G] to a localization QlocB of QB using a natural extension of the

CsB[M+]–module homomorphism φ : CsB[G] → QB to a homomorphism Cs,locB [G] → QlocB . Recall that according

to Proposition 4.1.2 I11
B belongs to the kernel of the homomorphism φ, and as we shall see I11

B
loc

belongs to the

kernel of the extension of φ to Cs,locB [G]. Therefore one can compose this extension with the operator Pc, and by
Proposition 4.6.1 the image of this composition is invariant with respect to the natural extension of the CsB[M+]–
adjoint action to QlocB . The operator Πc is a classical counterpart of this composition and using the description of
Πc given in Corollary 3.5.8 we shall show that the image of the composition is a localization of the algebra W s

B(G).
More precisely, formula (4.1.19) and the surjectivity of the map φ imply that one can define a natural action of

the algebra generated by the elements q2P
h′⊥λ

∨
∈ CsB[G∗], λ ∈ P+ on QB as follows

q2P
h′⊥λ

∨
φ(f) = ϕ(Ad0

s(q
−2P

h′⊥λ
∨

)(f))q2P
h′⊥λ

∨
1 = (4.7.1)

= c−1
λ Ads(q

−2P
h′⊥λ

∨
)(ϕ(f))q2P

h′⊥λ
∨

1,

where the last identity follows from part (i) of Proposition 3.2.6. Let QlocB be the localization of QB by the elements

q2P
h′⊥λ

∨
, λ ∈ P+.

Now consider the subalgebra Cs,locB [G∗] ⊂ CsB[G∗] generated by CsB[G∗] and by the elements q2P
h′⊥λ

∨
, λ ∈ P .

Note that the adjoint action of these elements normalizes CsB[G∗] in CsB[G∗] as CsB[G∗] is the direct sum of its weight

components. Therefore QlocB is the image of Cs,locB [G∗] under the natural projection ρχsq : CsB[G∗] → CsB[G∗]/IB,

and hence the adjoint action of CsB[M+] on QB naturally extends to QlocB .

Lemma 4.7.1. Let κ = 1. Assume that for i = 1, . . . l′ ki ∈ B∗, where ki are defined in (3.2.16). Then cλ ∈ B∗
for any λ ∈ P+, and φ extends to a CsB[M+]–module homomorphism φ : Cs,locB [G]→ QlocB ,

φ(f ⊗∆s
λ
−1) = c−1

λ q2(Ph′λ
∨,λ∨)−2P

h′⊥λ
∨
φ(Ad0

s(q
( 1+s
1−s s

−1Ph′−s
−1)λ∨)(f)), f ∈ CsB[G], (4.7.2)

and I11
B
loc

belongs to the kernel of this homomorphism, so

φ : Cloc11 [G]→ QlocB .

Proof. From formula (4.1.19) it follows that φ extends to a CsB[M+]–module homomorphism φ : Cs,locB [G] → QlocB
which is defined by (4.7.2), and by Proposition 4.1.2 I11

B
loc

belongs to the kernel of this homomorphism.

By (4.5.3) for λ ∈ P+ ∆s
λ is CsB[M+]–invariant with respect to the Ad0

s–action on Cloc11 [G], and hence φ(∆s
λ) =

q2P
h′⊥λ

∨
1 is CsB[M+]–invariant with respect to the Ads–action on QlocB . Thus by (4.1.19) and (3.2.24) we have for

β ∈ ∆m+

φ(Ad0
s(f̃β)(f ⊗∆s

λ)) = cλAds(f̃β)(ϕ(Ad0
s(q
−( 1+s

1−sPh′+id)λ∨)(f)))q2P
h′⊥λ

∨
1,

and
φ(Ad0

s(f̃β)(f ⊗∆s
λ
−1)) = c−1

λ q2(Ph′λ
∨,λ∨)Ads(f̃β)(ϕ(Ad0

s(q
( 1+s
1−sPh′+id)λ∨)(f)))q−2P

h′⊥λ
∨

1.

The last formula completely determines the adjoint action of CsB[M+] on QlocB .
Now we can describe q-W–algebras in terms of the operator P .

Theorem 4.7.2. Suppose that κ = 1 and ki ∈ B∗ for i = 1, . . . l′, where ki are defined in (3.2.16). Then the
composition φPc gives rise to a well–defined operator

Πq
c = φPc : ClocR−1nR−1+1[G]→W s,loc

B (G), (4.7.3)
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where W s,loc
B (G) = HomCsB[M+](CB, QlocB ).

Moreover, we have an imbedding of CsB[M+]–modules, QlocB ⊂ CsB[G∗]/IB, multiplication in CsB[G∗] induces a

multiplication in W s,loc
B (G) and we have an imbedding of algebras W s

B(G) ⊂W s,loc
B (G).

Let W s,loc
q (G) = W s,loc

B (G)⊗B C(q
1
dr2 ), ImΠq

c the image of Πq
c and denote ImqΠ

q
c = ImΠq

c ⊗B C(q
1
dr2 ).

Then W s,loc
q (G) = ImqΠ

q
c and W s,loc

B (G) = W s,loc
B (G) ∩ ImqΠ

q
c.

Proof. By Lemma 4.7.1 and by Proposition 4.6.1 the composition Πq
c = φP : ClocR−1nR−1+1[G] → W s,loc

B (G) is

well–defined. All other claims of this theorem, except for the isomorphisms W s,loc
q (G) = ImqΠ

q
c and W s,loc

B (G) =

W s,loc
B (G) ∩ ImqΠ

q
c follow from the definitions and are established similarly to Proposition 3.2.12.

Using Lemma 4.3.3 one sees that in order to establish these isomorphisms it suffices to verify that the special-

ization of Πq
c at q

1
dr2 = 1 is surjective.

In order to do that we observe that by the definition and by Theorem 3.4.5 the specialization of QlocB at q
1
dr2 = 1

is isomorphic to the localization Cloc[N−ZsM−] of the algebra C[N−ZsM−] by the classical counterparts of the ele-
ments ∆s

λ which we denote by the same symbols, ∆s
λ = (vλ, ·s−1vλ). Denote by Cloc[(w1 . . . wR−2)−1N−ZsM−(w1 . . . wR−2)]

the image of Cloc[N−ZsM−] under the map f 7→ (w1 . . . wR−2)(f). This map sends ∆s
λ to a function which we

denote ∆
ŝR−1

(w1...wR−2)−1λ.

By (4.5.3) for λ ∈ P+ ∆s
λ regarded as elements of Cloc11 [G] are CsB[M+]–invariant with respect to the Ad0

s–action

on Cloc11 [G], and hence φ(∆s
λ) = q2P

h′⊥λ
∨

1 is CsB[M+]–invariant with respect to the Ads–action on QlocB . Therefore
their classical counterparts ∆s

λ = (vλ, ·s−1vλ) ∈ C[N−ZsM−] are M−–invariant, and hence Cloc[N−ZsM−]M− is
the localization of C[N−ZsM−]M− by the elements ∆s

λ, λ ∈ P+.
This result and explicit formulas (3.5.19), (3.5.20), (3.5.18), (3.5.21) for the operator Πc, formulas (4.6.1) with

k = 0 and the definition of the operator Pc imply that the specialization of the operator Πq
c at q

1
dr2 = 1 gives

rise to a natural extension of the operator Πc : C[(w1 . . . wR−2)N−ZsM−(w1 . . . wR−2)−1]→ C[N−ZsM−]M− to an
operator Πloc

c : Cloc[(w1 . . . wR−2)−1N−ZsM−(w1 . . . wR−2)]→ Cloc[N−ZsM−]M− given by

Πloc
c (f∆

ŝR−1

(w1...wR−2)−1λ

−1
) = Πc(f)∆s

λ
−1, f ∈ C[(w1 . . . wR−2)N−ZsM−(w1 . . . wR−2)−1].

Since the operator Πc is surjective, Πloc
c is also surjective.

From the surjectivity of the specialization of the operator Πq
c at q

1
dr2 = 1 it follows that W s,loc

B (G) = ImΠq
c

mod (q
1
dr2 − 1)W s,loc

B (G). Note also that ImΠq
c ⊂ W s,loc

B (G) are submodules of the B–module QlocB , and QlocB is a
B–submodule of the B–module CsB[G∗]/IB which is free over B by Proposition 3.2.10. Since B is a principal ideal
domain QlocB is B–free by Theorem 6.5 in [102].

The properties mentioned in the previous paragraph and Lemma 4.3.3 imply that W s,loc
q (G) = ImqΠ

q
c and

W s,loc
B (G) = W s,loc

B (G) ∩ ImqΠ
q
c . This completes the proof.

4.8 Bibliographic comments

The results presented in this chapter are entirely new.
Commutation relations in the algebra CsB[G] which appear in Section 4.2 can be found, for instance, in [12],

Theorem I.8.16.
The definition of the Zhelobenko type operators for q-W–algebras was inspired by the construction of extremal

projection operators and of the Zhelobenko operators due to Zhelobenko. The definitions and the statements in
this chapter are conceptually close to the definition and the properties of the Zhelobenko operators introduced and
studied in [133]–[141] (see also [66]). Below, for the convenience of the reader who is familiar with these papers, we
give references to similar statements from them. However, the results of [133]–[141] and [66] are not used in this
book and not directly related to it.

For k = 0 the operators P kjp are counterparts of the Zhelobenko operators qα introduced in [133], §2 and §5,

in [141], Definition 5.2.1, and for k > 0 the operators P kjp are counterparts of the operators q
(k)
α,m defined in [66],

formula (4.9).
Properties of the Zhelobenko operators similar to those of the operators Pjp mentioned in Proposition 4.6.1 can

be found in [133], §5, Proposition 1 (iii) and (iv), [141], Proposition 5.2.4 (b) and (c), [66], Lemma 4.5 (ii), (iv) and
(v).
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Zhelobenko operators qw conceptually analogous to P≤jp were defined in [133], §5, Definition 1, [141], Definition
5.2.4.

Properties (4.6.9) and (4.6.10) are counterparts of Proposition 3, parts (i) and (iii) in [133], §2, and of properties
(α) and (β) in Section 5.2.4 in [141].

Lemma 4.6.4 is analogous to a similar property for the Zhelobenko operators stated in [141], Proposition and
Corollary 5.2.3, and in [66], Lemmas 4.3 and 4.5 (iii).

Formulas similar to (4.6.23) are used in the proof of Proposition 5.2.4 in [141] and in Proposition 4.4 in [66].
Theorem 4.7.2 is analogous to Theorem 2 in [133], §6 and to Theorem 5.5.1 in [141] for the Zhelobenko operators.



Chapter 5

Application of q-W–algebras to the
description of the category of
equivariant modules over a quantum
group

In this rather short chapter we apply Corollary 4.6.8 to establish an equivalence between the category of finitely

generated representations of a q-W–algebra and a category Cs,locε [G∗] −mod
χsε
Csε[M+] of equivariant modules over a

quantum group. Categories of this kind were denoted A − modχB in the introduction. The structure of modules

from the category Cs,locε [G∗]−mod
χsε
Csε[M+] is similar to that of g−K–modules or of principal series representations

over complex semisimple Lie algebras.
The proof of the main theorem of this chapter, Theorem 5.2.1, is based on Corollary 4.6.8. In this framework

one can give precise values of ε for which the categorical equivalence holds. Remarkably, with slight modifications
this method is also applicable to the study of the structure of finite–dimensional representations over quantum
groups at roots of unity. This will be done in the next chapter.

5.1 A category of equivariant modules over a quantum group

In this section we define a category of equivariant representations over a quantum group.

Suppose that κ = 1 and let ε ∈ C. Fix a root ε
1
dr2 of ε of order 1

dr2 . Let Usε (g), Usε (m−), Cs,locε [G∗], Csε[M+],

Csε[B+], Csε[G∗], Qlocε , W s,loc
ε (G), χsε, Cεs , Iε, φε, Bεn1...nc , C

loc
11 [G]ε be the natural specializations at q

1
dr2 = ε

1
dr2 of

UsA(g), UsA(m−), Cs,locB [G∗], CsB[M+], CsB[B+], CsB[G∗], QlocB , W s,loc
B (G), χsq, Bεs , IB, φ, Bn1...nc , Cloc11 [G], respectively.

We shall always assume that [n]εαi 6= 0 and ε2di 6= 1 for i = 1, . . . , l, n ∈ N. Then Csε[M+] = Usε (m−)=Us,resε (m−),
Usε (g) = Us,resε (g) and Csε[G∗] is a subalgebra in Us,resε (g) as CsB[G∗] is a subalgebra in Us,resB (g).

Let J = Ker εs|Csε[M+] be the augmentation ideal of Csε[M+] related to the counit εs, and Cεs the trivial

representation of Csε[M+] given by the counit. Let V be a finitely generated Cs,locε [G∗]–module which satisfies the
following conditions:

1. V is a right Csε[M+]–module with respect to an action Ads such that the action of the augmentation ideal J
on V is locally nilpotent.

2. The following compatibility condition holds for the two actions

Adsx(yv) = Adsx
1(y)Adsx

2(v), x ∈ Csε[M+], y ∈ Cs,locε [G∗], v ∈ V, (5.1.1)

where ∆s(x) = x1 ⊗ x2, Adsx
1(y) is the adjoint action of x1 ∈ Csε[B+] on y ∈ Cs,locε [G∗].

An element v ∈ V is called a Whittaker vector if Adsxv = εs(x)v for any x ∈ Csε[M+]. The space

HomCsε[M+](Cεs , V ) = Wh(V ). (5.1.2)

185
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is called the space of Whittaker vectors of V .

Consider the induced Csε[G∗]–module W = Csε[G∗]⊗Cs,locε [G∗]
V . Using the adjoint action of Csε[G∗] on itself

one can naturally extend the adjoint action of Csε[M+] from V to W in such a way that compatibility condition
(5.1.1) is satisfied for the natural action of Csε[G∗] and the adjoint action Ad of Csε[M+] on W . As we observed
in Section 3.2 ∆s(Csε[M+]) ⊂ Csε[B+]⊗ Csε[M+].

We shall require that

3. For any x ∈ Csε[M+] the natural action of the element (Ss ⊗ χsε)∆s(x) ∈ Csε[G∗] on W coincides with the
adjoint action Adsx of x on W .

As in the second part of the proof of Proposition 3.2.12 one can check that the last condition implies that for
any z ∈ Cs,locε [G∗] ∩ Iε and v ∈Wh(V ) zv = 0.

Denote by Cs,locε [G∗]−mod
χsε
Csε[M+] the category of finitely generated Cs,locε [G∗]–modules which satisfy conditions (1)–

(3) above. Morphisms in the category Cs,locε [G∗]−mod
χsε
Csε[M+] are Cs,locε [G∗]- and Csε[M+]–module homomorphisms.

We call Cs,locε [G∗]−mod
χsε
Csε[M+] the category of (Csε[M+], χsε)–equivariant modules over Cs,locε [G∗].

Note that the algebra W s,loc
B (G) naturally acts in the space of Whittaker vectors for any object V of the category

Cs,locε [G∗] − mod
χsε
Csε[M+]. Indeed, if w,w′ ∈ Cs,locε [G∗] are two representatives of an element from W s,loc

B (G) then

w − w′ ∈ Cs,locε [G∗] ∩ Iε, and hence for any v ∈ Wh(V ) wv = w′v. Moreover, by the definition of the algebra

W s,loc
B (G) and by condition (5.1.1) we have

Adsx(wv) = Adsx
1(w)Adsx

2(v) = Adsx
1(w)εs(x

2)v = Adsx(w)v = εs(x)wv.

Therefore wv is a Whittaker vector independent of the choice of the representative w.
For any C–module R we denote by homC(Csε[M+]), R) the subspace in HomC(Csε[M+], R) which consists of

the linear maps vanishing on some power of the augmentation ideal J = Ker εs of Csε[M+], homC(Csε[M+], R) =
{f ∈ HomC(Csε[M+], R) : f(Jn) = 0 for some n > 0}. Note that for every element f of homC(Csε[M+], R) one
has f(x) = 0 if x does not belong to a finite–dimensional subspace of Csε[M+], and hence homC(Csε[M+], R) =
homC(Csε[M+],C)⊗R.

Equip the space homC(Csε[M+], R) with the right action of Csε[M+] induced by the multiplication in Csε[M+] from
the left. To study the properties of this module we shall need a special filtration on the algebra Csε[M+] = Usε (m−).

Recall that the algebra Usε (g) can be equipped with the DeConcini–Kac filtration such that the associated
graded algebra is almost commutative. For r, t ∈ ND define the height of the element ur,t,t = ertf t, t ∈ Usε (h) as

follows ht (ur,t,t) =
∑D
i=1(ti + ri)ht βi ∈ N, where ht βi is the height of the root βi. Introduce also the degree of

ur,t,t by
d(ur,t,t) = (r1, . . . , rD, tD, . . . , t1,ht (ur,t,t)) ∈ N2D+1.

By Lemma 2.8.2 the elements ertf t span Usε (g) as a linear space.
Equip N2D+1 with the total lexicographic order and denote by (Usq (g))k the span of elements ur,t,t with

d(ur,t,t) ≤ k in Usq (g). Then Proposition 1.7 in [23] implies that (Usε (g))k is a filtration of Usε (g) such that

the associated graded algebra is the complex associative algebra with generators eα, fα, α ∈ ∆+, t±1
i , i = 1, . . . l

subject to the relations

titj = tjti, tit
−1
i = t−1

i ti = 1, tieαt
−1
i = ε

Hi(α)

d eα, tifαt
−1
i = ε−

Hi(α)

d fj ,

eαfβ = ε( 1+s
1−sPh′∗α,β)fβeα,

eαeβ = ε(α,β)+( 1+s
1−sPh′∗α,β)eβeα, α < β,

fαfβ = ε(α,β)+( 1+s
1−sPh′∗α,β)fβfα, α < β.

(5.1.3)

Such algebras are called semi–commutative.

Lemma 5.1.1. Let J = Ker εs be the augmentation ideal of Csε[M+], R a C–module, homC(Csε[M+], R) = {f ∈
HomC(Csε[M+], R) : f(Jp) = 0 for some p > 0}. Equip homC(Csε[M+], R) with the right action of Csε[M+] induced
by multiplication on Csε[M+] from the left. Then the Csε[M+]–module homC(Csε[M+], R) is injective.
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Proof. First observe that the algebra Csε[M+] ' Usε (m−) is Notherian and ideal J satisfies the so-called weak
Artin–Rees property, i.e. for every finitely generated left Usε (m−)–module M and its submodule N there exists an
integer n > 0 such that JnM ∩N ⊂ JN .

Indeed, observe that the algebra Usε (m−) can be equipped with a filtration induced by the De Concini–Kac
filtration on the algebra Usε (g) in such a way that the associated graded algebra is finitely generated and semi–
commutative (see (5.1.3)). The fact that Usε (m−) is Notherian follows from the existence of the filtration on it for
which the associated graded algebra is semi–commutative and from Theorem 4 in Ch. 5, §3 in [57] (compare also
with Theorem 4.8 in [92]). The ideal J satisfies the weak Artin–Rees property because the subring Usε (m−) + Jt+
J2t2 + . . . ⊂ Usε (m−)[t], where t is a central indeterminate, is Notherian (see [94], Ch. 11, §2, Lemma 2.1). The
last fact follows from the existence of a filtration on Usε (m−) + Jt+ J2t2 + . . . induced by the filtration on Usε (m−)
for which the associated graded algebra is semi–commutative and again from Theorem 4 in Ch. 5, §3 in [57].

Finally, the module HomC(Csε[M+], R) is obviously injective. By Lemma 3.2 in Ch. 3, [50] the module
homC(Csε[M+], R) = {f ∈ HomC(Csε[M+], R) : f(Jp) = 0 for some p > 0} is also injective since the ideal J
satisfies the weak Artin–Rees property.

5.2 Skryabin equivalence for equivariant modules over a quantum
group

Now we can formulate the main theorem on the structure of the category Cs,locε [G∗] − mod
χsε
Csε[M+] and on the

properties of its objects.

Theorem 5.2.1. If [n]εαi 6= 0 and ε2di 6= 1 for i = 1, . . . , l, n ∈ N then the functor E 7→ Qlocε ⊗W s,loc
ε (G) E, is an

equivalence of the category of finitely generated left W s,loc
ε (G)–modules and of the category Cs,locε [G∗]−mod

χsε
Csε[M+].

The inverse equivalence is given by the functor V 7→Wh(V ). In particular, the latter functor is exact.

Every module V ∈ Cs,locε [G∗] − mod
χsε
Csε[M+] is isomorphic to homC(Csε[M+],C) ⊗Wh(V ) as a right Csε[M+]–

module, where homC(Csε[M+],C) is equipped with the right action of Csε[M+] induced by the multiplication in
Csε[M+] from the left. Qlocε is isomorphic to homC(Csε[M+],C) ⊗ W s,loc

ε (G) as a Csε[M+]–W s,loc
ε (G)–bimodule,

where the right W s,loc
ε (G)–action is induced by the multiplication in W s,loc

ε (G) from the right. In particular, V is
Csε[M+]–injective, and Ext•Csε[M+](Cεs , V ) = Wh(V ).

Proof. First we prove that Qlocε is an object in Cs,locε [G∗] −mod
χsε
Csε[M+]. We shall prove that the adjoint action of

the augmentation ideal J of Csε[M+] on Qlocε is locally nilpotent. All the other properties of objects of the category

Cs,locε [G∗]−mod
χsε
Csε[M+] for Qlocε were already established in Proposition 3.2.13.

Indeed, recalling the Csε[M+]–module homomorphism of φε : Cloc11 [G]ε → Qlocε and the definition of the adjoint
action on Cloc11 [G]ε in formula (4.5.4) we deduce that in order to show that the adjoint action of the augmentation
ideal J of Csε[M+] on Qlocε is locally nilpotent it suffices to show that the Ad0

s–action of the augmentation ideal
J of Csε[M+] on Cε[G] is locally nilpotent. But the last fact is true as Cε[G] =

⊕
λ∈P+

V ∗λ ⊗ Vλ, where Vλ is the

finite–dimensional irreducible representation of Usε (g) of highest weight λ, and the action of Csε[M+] on V ∗λ ⊗ Vλ
induced by the adjoint action is locally nilpotent since the action of Csε[M+] on finite–dimensional irreducible
representations is locally nilpotent.

Now let V be an object in the category Cs,locε [G∗] − mod
χsε
Csε[M+]. Fix any linear map ρ : V → Wh(V ) the

restriction of which to Wh(V ) is the identity map, and let for any v ∈ V σε(v) : Csε[M+]→Wh(V ) be the C–linear
homomorphism given by σε(v)(x) = ρ(Adsx(v)). Since the adjoint action of J on V is locally nilpotent σε(v) ∈
homC(Csε[M+],Wh(V )), and we have a map σε : V → homC(Csε[M+],Wh(V )) ' homC(Csε[M+],C)⊗Wh(V ).

By definition σε is a homomorphism of right Csε[M+]–modules, where the right action of Csε[M+] on

homC(Csε[M+],Wh(V ))

is induced by multiplication in Csε[M+] from the left. We claim that σε is an isomorphism.
First we prove that σε is injective. The proof will be based on the following lemma that will be also used later.

Lemma 5.2.2. Let φ : X → Y be a homomorphism of Usε (m−)–modules. Denote by Wh(X) the subspace of
Whittaker vectors of X, i.e. the subspace of X which consists of elements v such that xv = εs(x)v, x ∈ Usε (m−).
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Assume that the action of the augmentation ideal of Usε (m−) on X is locally nilpotent and that the restriction of φ
to the subspace of Whittaker vectors of X is injective. Then φ is injective.

Proof. Let Z ⊂ X be the kernel of φ. Assume that Z is not trivial. Observe that Z is invariant with respect to the
action induced by the action of Usε (m−) on X, and that the augmentation ideal of Usε (m−) acts on X by locally
nilpotent transformations. Therefore by Engel theorem Z must contain a nonzero Usε (m−)–invariant vector which
is a Whittaker vector v ∈ X. But since the restriction of φ to the subspace of Whittaker vectors of X is injective
φ(v) 6= 0. Thus we arrive at a contradiction, and hence φ is injective.

Now recall that the action of J on V is locally nilpotent. All non–zero Whittaker vectors in V belong to Wh(V )
and by the definition of σε their images in homC(Csε[M+],Wh(V )) are non–zero homomorphisms non-vanishing at
1. Therefore by Lemma 5.2.2 σε is injective.

Next we show that σε is also surjective. Denote xn1...nc = c′n1...nc(ε)
−1
φε(B

ε
n1...nc), where c′n1...nc(ε) are the

values of c′n1...nc(q)at q
1
dr2 = ε

1
dr2 which are all non–zero by the choice of ε

1
dr2 . By Corollary 4.6.8

Ads(f
k1
β1
. . . fkcβd )(xn1...nc) =

{
1 if np = kp for p = 1, . . . , c
0 if ki = ni, i = 1, . . . , p− 1 and kp > np for some p ∈ {1, . . . , c} . (5.2.1)

Since for any v ∈ Wh(V ) and z ∈ Cs,locε [G∗] ∩ Iε we have zv = 0, the elements xn1...ncv are well–defined and
satisfy Adsx(xn1...ncv) = Adsx(xn1...nc)v, x ∈ Csε[M+]. For the same reason formula (5.2.1) implies

Ads(f
k1
β1
. . . fkcβc )(xn1...ncv) =

{
v if np = kp for p = 1, . . . , c
0 if ki = ni, i = 1, . . . , p− 1 and kp > np for some p ∈ {1, . . . , c} ,

and hence

σε(xn1...ncv)(fk1β1
. . . fkcβc ) =

{
v if np = kp for p = 1, . . . , c
0 if ki = ni, i = 1, . . . , p− 1 and kp > np for some p ∈ {1, . . . , c} . (5.2.2)

Observe that the elements fk1β1
. . . fkcβc form a linear basis of Csε[M+]. Elements of this basis are labeled by

elements of the set Nc. Introduce the lexicographic order on this set, so that (k1, . . . , kc) > (n1, . . . , nc) if ki = ni
for i = 1, . . . , p− 1 and kp > np for some p ∈ {1, . . . , c}.

Now let k = (k1, . . . , kc) ∈ Nc, v ∈Wh(V ) and denote

σε(xk1...kcv) = fkv .

Since fkv ∈ homC(Csε[M+],Wh(V )) it does not vanish only on a finite number of the elements fn1

β1
. . . fncβc with

k = (k1, . . . , kc) > (n1, . . . , nc) = n. Also by (6.3.8) fkv (fn1

β1
. . . fncβc ) = 0 for k < n = (n1, . . . , nc).

Let n1 = (n1
1, . . . , n

1
c) ∈ Nc be the largest element such that k > n1 and

fkv (f
n1
1

β1
. . . f

n1
c

βc
) = v1 6= 0. (5.2.3)

Denote
fn

1

v1 = −σε(xn1
1...n

1
c
v1).

Then (5.2.2) and (5.2.3) imply that for g1 = fkv + fn
1

v1 ∈ homC(Csε[M+],Wh(V )) one has

g1(fn1

β1
. . . fncβc ) =

{
0 if n = (n1, . . . , nc) ≥ n1,n 6= k
v if n = k

. (5.2.4)

Since g1 ∈ homC(Csε[M+],Wh(V )) it does not vanish on a finite number of the elements fn1

β1
. . . fncβc with

n1 > n = (n1, . . . , nc). Let n2 = (n2
1, . . . , n

2
c) ∈ Nc be the largest element such that n1 > n2 and

g1(f
n2
1

β1
. . . f

n2
c

βc
) = v2 6= 0. (5.2.5)

Denote
fn

2

v2 = −σε(xn2
1...n

2
c
v2).
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Then (5.2.2) and (5.2.5) imply that for g2 = fkv + fn
1

v1 + fn
2

v2 = g1 + fn
2

v2 ∈ homC(Csε[M+],Wh(V )) one has

g2(fn1

β1
. . . fncβc ) =

{
0 if n = (n1, . . . , nc) ≥ n2,n 6= k
v if n = k

. (5.2.6)

Iterating this procedure we obtain a sequence of elements k > n1 > n2 > . . . > ni > . . ., ni ∈ Nc and a sequence
of elements gi ∈ homC(Csε[M+],Wh(V )) such that

gi(f
n1

β1
. . . fncβc ) =

{
0 if n = (n1, . . . , nc) ≥ ni,n 6= k
v if n = k

. (5.2.7)

Since by Theorem 1.13 in [51] (see also Theorem 2.4.2 in [6]) the lexicographic order on Nc is a well–order the
sequence k > n1 > n2 > . . . > ni > . . . must be finite, i.e. for some i ∈ N

gi(f
n1

β1
. . . fncβc ) =

{
0 if n = (n1, . . . , nc) ≥ ni,n 6= k
v if n = k

, (5.2.8)

and there is no element n = (n1, . . . , nc) < ni such that

gi(f
n2
1

β1
. . . f

n2
c

βc
) 6= 0. (5.2.9)

Therefore hkv = gi satisfies

hkv (fn1

β1
. . . fncβc ) =

{
v if (n1, . . . , nc) = (k1, . . . , kc),
0 if (n1, . . . , nc) 6= (k1, . . . , kc)

.

This implies that the elements hkv with (k1, . . . , kc) ∈ Nc, v ∈ Wh(V ) generate homC(Csε[M+],Wh(V )). We
deduce that the elements σε(xn1...ncv) with (n1, . . . , nc) ∈ Nc, v ∈Wh(V ) generate homC(Csε[M+],Wh(V )) as well.
Therefore σε is surjective.

Next, we shall need another lemma.

Lemma 5.2.3. Let φ : X → Y be an injective homomorphism of Usε (m−)–modules. As above, denote by Wh(X)
the subspace of Whittaker vectors of X, i.e. the subspace of X which consists of elements v such that xv = εs(x)v,
x ∈ Usε (m−). Assume that φ induces an isomorphism of the spaces of Whittaker vectors of X and of Y , and that
Ext1

Usε (m−)(Cεs , X) = 0, where Cεs is the trivial representation of Usε (m−). Suppose also that the action of the
augmentation ideal J of Usε (m−) on the cokernel of φ is locally nilpotent. Then φ is surjective.

Proof. Consider the exact sequence

0→ X → Y →W ′ → 0,

where W ′ is the cokernel of φ, and the corresponding long exact sequence of cohomology,

0→ Ext0
Usε (m−)(Cεs , X)→ Ext0

Usε (m−)(Cεs , Y )→ Ext0
Usε (m−)(Cεs ,W ′)→

→ Ext1
Usε (m−)(Cεs , X)→ . . . .

Since φ induces an isomorphism of the spaces of Whittaker vectors of X and of Y , and
Ext1

Usε (m−)(Cεs , X) = 0, the initial part of the long exact cohomology sequence takes the form

0→Wh(X)→Wh(Y )→Wh(W ′)→ 0,

where the second map in the last sequence is an isomorphism. Using the last exact sequence we deduce that
Wh(W ′) = 0. But the augmentation ideal J acts on W ′ by locally nilpotent transformations. Therefore, by Engel
theorem, if W ′ is not trivial there should exists a nonzero Usε (m−)–invariant vector in it. Thus we arrive at a
contradiction, and W ′ = 0. Therefore φ is surjective.
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Now we show that Qlocε is isomorphic to homC(Csε[M+],C)) ⊗ W s,loc
ε (G) as a Csε[M+]–W s,loc

ε (G)–bimodule.
Indeed, by the definitions of the spaces homC(Usε (m−),W s

ε (G)) and homC(Usε (m−),C) we have an obvious right
Usε (m−)–module isomorphism homC(Usε (m−),W s,loc

ε (G)) = homC(Usε (m−),C)⊗W s,loc
ε (G).

Now consider the Usε (m−)–submodule σ−1
ε (homC(Usε (m−),C)) of Qlocε , where

homC(Usε (m−),C) ⊂ homC(Usε (m−),W s,loc
ε (G)).

Obviously σ−1
ε (homC(Usε (m−),C)) ' homC(Usε (m−),C) as a right Usε (m−)–module.

Let φε : σ−1
ε (homC(Usε (m−),C)) ⊗W s,loc

ε (G) → Qlocε be the map induced by the action of W s,loc
ε (G) on Qlocε .

Since this action commutes with the adjoint action of Usε (m−) on Qlocε we infer that φε is a homomorphism of
Usε (m−)–W s,loc

ε (G)–bimodules.
We claim that φε is injective. This follows straightforwardly from Lemma 5.2.2 because all Whittaker vectors

of σ−1
ε (homC(Usε (m−),C))⊗W s,loc

ε (G) belong to the subspace

1⊗W s,loc
ε (G) ⊂ σ−1

ε (homC(Usε (m−),C))⊗W s,loc
ε (G),

and the restriction of φε to this subspace is injective.
Now we show that φε is surjective. By Lemma 5.1.1 one can immediately deduce that the right Usε (m−)–module

σ−1
ε (homC(Usε (m−),C))⊗W s,loc

ε (G) ' homC(Usε (m−),W s,loc
ε (G)) is injective. In particular,

Ext1
Usε (m−)(Cε, σ−1

ε (homC(Usε (m−),C))⊗W s,loc
ε (G)) = 0.

One checks straightforwardly, similarly the case of the map σε, that the other conditions of Lemma 5.2.3 for the
map φε are satisfied as well. Therefore φε is surjective.

Thus Qlocε is isomorphic to homC(Csε[M+],C))⊗W s,loc
ε (G) as a Csε[M+]–W s,loc

ε (G)–bimodule.
Now we prove the main claim of this theorem. Let E be a finitely generated W s,loc

ε (G)–module. Since Qlocε '
homC(Csε[M+],C))⊗W s,loc

ε (G) as a Csε[M+]–W s,loc
ε (G)–bimodule, we have

Qlocε ⊗W s,loc
ε (G) E ' homC(Csε[M+],C))⊗W s,loc

ε (G)⊗W s,loc
ε (G) E ' homC(Csε[M+],C))⊗ E

as a Csε[M+]–module. This implies

Wh(Qlocε ⊗W s,loc
ε (G) E) ' HomCsε[M+](Cεs , Qlocε ⊗W s,loc

ε (G) E) ' HomCsε[M+](Cεs ,homC(Csε[M+],C)⊗ E) '

' HomCsε[M+](Cεs ,homC(Csε[M+], E)) ' homC(Csε[M+]⊗Csε[M+] Cεs , E) ' E. (5.2.10)

Therefore to prove the theorem it suffices to check that for any V ∈ Cs,locε [G∗] − mod
χsε
Csε[M+] the canonical map

f : Qlocε ⊗W s,loc
ε (G) Wh(V )→ V is an isomorphism.

In order to do this we observe that Qlocε ⊗W s,loc
ε (G) Wh(V ) is an object of the category Cs,locε [G∗]−mod

χsε
Csε[M+]

since Qlocε is an object of this category. The action of the augmentation ideal J on Qlocε ⊗W s,loc
ε (G) Wh(V ) is locally

nilpotent. By (5.2.10) the space of Whittaker vectors of Qlocε ⊗W s,loc
ε (G) Wh(V ) is 1⊗Wh(V ), and the restriction

of f to 1⊗Wh(V ) induces an isomorphism of the spaces of Whittaker vectors of Qlocε ⊗W s,loc
ε (G) Wh(V ) and of V .

Therefore f is injective by Lemma 5.2.2.
As we proved above σε : V → homC(Csε[M+],Wh(V )) ' homC(Csε[M+],C) ⊗Wh(V ) is an isomorphism of

Csε[M+]–modules for any module V ∈ Cs,locε [G∗] − mod
χsε
Csε[M+]. By Lemma 5.1.1 homC(Csε[M+],C) ⊗Wh(V ) is

injective over Csε[M+]. Therefore V is injective as an Csε[M+]–module with respect to the adjoint action. In
particular, Qlocε ⊗W s,loc

ε,ξ (G) Wh(V ) is injective over Csε[M+], and hence Ext1
Csε[M+](Cεs , Qlocε ⊗W s,loc

ε (G) Wh(V )) = 0.

Recall also that f induces an isomorphism of the spaces of Whittaker vectors of Qlocε ⊗W s,loc
ε (G) Wh(V ) and

of V and that the adjoint action of J on V is locally nilpotent. Therefore f is surjective by Lemma 5.2.3 with
X = Qlocε ⊗W s,loc

ε (G) Wh(V ), Y = V , φ = f . This completes the proof of the theorem.

5.3 Bibliographic comments

A categorical equivalence for Lie algebras, called the Skryabin equivalence, similar to that considered in this chapter
was established in the Appendix to [97].



5.3. BIBLIOGRAPHIC COMMENTS 191

The main theorem of this chapter is an improvement of Theorem 7.7 in [116] where a similar equivalence was
established in a quantum group case for q specialized to generic values q = ε ∈ C. The proof of Theorem 7.7 in
[116] relies on homological methods and arguments related to the properties of the quasiclassical limits W s(G) of
q-W–algebras. In this book we use the approach similar to the original Skryabin’s idea.

The definition of the category of equivariant representations over a quantum group given in Section 5.1 is a
slight modification of a similar definition given in Section 7 in [116], minor changes being related to the fact that
in Corollary 4.6.8, and more generally in the previous chapter, we dealt not with quantum groups themselves but
with their localizations.
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Chapter 6

Application of q-W–algebras to quantum
groups at roots of unity and the proof of
De Concini–Kac–Procesi conjecture

In this chapter we are going to use the elements Bn1...nc introduced in Corollary 4.6.8 to study the structure
of representations of quantum groups at roots of unity. De Concini and Kac observed that every irreducible
representation of a quantum group Uε(g) at a root of unity ε is in fact a representation of a finite–dimensional
quotient Uη(g) of the quantum group, and hence every such representation is finite–dimensional itself. The quotient
Uη(g) here depends on the representation. Later De Concini, Kac and Procesi also conjectured that the dimension
of every such representation is divisible by a number b which depends on (an isomorphism class of) Uη(g); a precise
definition of b will be given in Theorem 6.3.2.

Our main goal in this chapter is to prove this conjecture. We shall also obtain other related results on the
structure of finite–dimensional representations of Uη(g). Firstly we are going to use an observation that every
finite–dimensional representation of Uη(g) can be equipped with a second right action of a finite–dimensional
subalgebra Uη1(m−) of the so–called small quantum group, and the dimension of this subalgebra is equal to
b. The choice of the subalgebra Uη1(m−) depends on Uη(g) and the action of Uη1(m−) satisfies a compatibility
condition similar to condition (5.1.1) for equivariant modules over quantum groups at generic ε. Thus every
finite–dimensional representation of Uη(g) is in fact an equivariant Uη(g) − Uη1(m−)–bimodule. Next we prove
that every finite–dimensional representation of Uη(g) is cofree over the corresponding subalgebra Uη1(m−) which
confirms, in particular, the De Concini–Kac–Procesi conjecture. Remarkably, to prove this statement one can
apply almost verbatim the arguments from the proof of Theorem 5.2.1 on the quantum group version of the
Skryabin equivalence for generic ε which overemphasizes again a striking similarity between the categories of
finite–dimensional representations of algebras Uη(g) and the categories of equivariant modules over quantum groups
introduced in Section 5.1.

The peculiarity of the quantum group case is that one can explicitly construct cofree bases of finite–dimensional
Uη(g)–modules using the elements Bn1...nc from Corollary 4.6.8.

6.1 Quantum groups at roots of unity

In this section we recall some results on representation theory of quantum groups at roots of unity.
Let m be an odd positive integer number such that m > di is coprime to all di for all i, ε a primitive m-th root

of unity. An appropriate number d, which appears in the definiton of the algebras Uε(g) and Usε (g), can be found
from the following proposition.

Proposition 6.1.1. Let ∆ be an irreducible root system, ∆s
+ the system of positive roots associated to the conjugacy

class of a Weyl group element s ∈ W in Theorem 1.5.2, s = sγ1 . . . sγl′ representation (1.2.1) for s, α1, . . . , αl the
system of simple roots in ∆s

+. Then

(i) if ∆ is of exceptional type the lowest common multiple d′ of the denominators of the numbers 1
dj

(
1+s
1−sPh′∗αi, αj

)
,

where i, j = 1, . . . , l is given in the tables in Appendix 2;

193
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(ii) if ∆ is of classical type then the conjugacy class of s corresponds to the sum of a number of blocks as in
(1.4.7), (1.4.8), (1.4.12) or (1.4.15). To each block of type X we associate an integer dij(X), i, j = 1, . . . , l as
follows:

if ∆ is not of type Al, Dl, an orbit with the smallest number of elements for the action of the group 〈s〉 on E
corresponds to a block of type An and s does not fix any root from ∆ then

for ∆ = Bl

dij(An) =


2p+ 1 if n = 2p is even;
p+ 1 if n = 2p+ 1, n 6= 4p− 1 is odd;
p if n = 4p− 1 is odd and i < j;
2p if n = 4p− 1 is odd and i > j;

(6.1.1)

for ∆ = Cl

dij(An) =


2p+ 1 if n = 2p is even;
p+ 1 if n = 2p+ 1, n 6= 4p− 1 is odd;
2p if n = 4p− 1 is odd and i < j;
p if n = 4p− 1 is odd and i > j;

(6.1.2)

for ∆ = Dl if Al−1 ⊂ Dl is the only nontrivial block of the conjugacy class of s then

dij(Al−1) =

 2p+ 1 if l = 2p+ 1 is odd;
p+ 1 if l = 2p+ 2, l 6= 4p is even;
p if l = 4p is even;

(6.1.3)

for ∆ = Al if s is a representative in the Coxeter conjugacy class, i.e. the conjugacy class of s corresponds to
the block of type Al, then

dij(Al) = 1; (6.1.4)

in all other cases

dij(Ak) =

{
k + 1 if k is even;
k−1

2 + 1 if k is odd;
(6.1.5)

in all cases
dij(Cn) = dij(Bn) = dij(Dv+w(aw−1)) = 1,

where, as before, we use the notation of [18], Section 7 for (blocks of) Weyl group conjugacy classes.

Then a common multiple d′ of the denominators of the numbers 1
dj

(
1+s
1−sPh′∗αi, αj

)
, where i, j = 1, . . . , l is the

lowest common multiple of the numbers dij(X), i, j = 1, . . . , l for all blocks X of the conjugacy class of s.
If α′1, . . . α

′
l is another system of simple roots then a common multiple of the denominators of the numbers

1
dj

(
1+s
1−sPh′∗αi, αj

)
will be also a common multiple of the denominators of the numbers 1

dj

(
1+s
1−sPh′∗α

′
i, α
′
j

)
and

vice versa.

Proof. First observe that if ∆′+ is another system of positive roots with the simple roots α′1, . . . , α
′
l then αi =∑l

k=1 c
k
i α
′
k, α∨j =

∑l
k=1 b

k
i α
′∨
k , where cki , b

k
i are integer coefficients. Hence

1

dj

(
1 + s

1− s
Ph′∗αi, αj

)
=

(
1 + s

1− s
Ph′∗αi, α

∨
j

)
=

l∑
k,p=1

cki b
p
j

(
1 + s

1− s
Ph′∗α

′
k, α
′∨
p

)
=

l∑
k,p=1

cki b
p
j

1

dp

(
1 + s

1− s
Ph′∗α

′
k, α
′
p

)
,

and a common multiple of the denominators of the numbers 1
dj

(
1+s
1−sPh′∗α

′
i, α
′
j

)
will be also a common multiple of

the denominators of the numbers 1
dj

(
1+s
1−sPh′∗αi, αj

)
and vice versa.

In case of classical irreducible root systems we shall compute a common multiple d′ of the denominators of the

numbers 1
dj

(
1+s
1−sPh′∗α

′
i, α
′
j

)
, where ∆′+ is chosen in such a way that s is elliptic in a parabolic Weyl subgroup

W ′ ⊂ W generated by the simple reflections corresponding to roots from a subset of α′1, . . . , α
′
l (for instance, one

can take ∆′+ = ∆+(ms1 , hs1) from the proof of Theorem 1.5.2).
Since different blocks of the conjugacy class of s correspond to different disjoint mutually orthogonal subsets of

simple roots in α′1, . . . , α
′
l it suffices to consider the case when the conjugacy class of s corresponds to a diagram

with a single nontrivial block. We shall compute d′ in case when this block is of type Ak, k > 1. Other cases
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can be considered in a similar way. Assume that the root system ∆ is realized as in Section 1.5, where V is a
real Euclidean n–dimensional vector space equipped with the standard scalar product, with an orthonormal basis
ε1, . . . , εn. In that case simple roots are

An

α′i = εi − εi+1, 1 ≤ i ≤ n;

Bn

α′i = εi − εi+1, 1 ≤ i < n, α′n = εn;

Cn

α′i = εi − εi+1, 1 ≤ i < n, α′n = 2εn;

Dn

α′i = εi − εi+1, 1 ≤ i < n, α′n = εn−1 + εn;
Then s is of the form

s = s1s2, s1 = sα′p+1
sα′p+3

. . . , s2 = sα′p+2
sα′p+4

. . . ,

where in the formulas for si, i = 1, 2 the products are taken over mutually orthogonal simple roots labeled by
indexes of the same parity; the last simple root which appears in those products is α′p+k = εp+k − εp+k+1, so
γ1, . . . , γk = α′p+1, α

′
p+3, . . . , α

′
p+2, α

′
p+4, . . ..

We have to compute the numbers
(

1+s
1−sPh′∗α

′
i, α
′∨
j

)
. We consider the case when i < j. The case when i > j

can be obtained from it by observing that(
1 + s

1− s
Ph′∗α

′
i, α
′∨
j

)
= −

(
1 + s

1− s
Ph′∗α

′
j , α
′∨
i

)
(α′i, α

′
i)

(α′j , α
′
j)
. (6.1.6)

First recall that by Lemma 2.8.1 (
1 + s

1− s
Ph′∗γi, γj

)
= εij(γi, γj), (6.1.7)

where

εij =

 −1 i < j
0 i = j
1 i > j

.

Let ω′t be the fundamental weights of the root subsystem Ak ⊂ ∆ with respect to the basis of simple roots α′i,
i = p+ 1, . . . , p+ k,

ω′t = εp+1 + . . .+ εp+t −
t

k + 1

k+1∑
j=1

εp+j , t = 1, . . . , k.

Since α′p+t, t = 1, . . . , k form a linear basis of h′
∗
, and ω′t, t = 1, . . . , k form the dual basis we have

(
1 + s

1− s
Ph′∗α

′
i, α
′∨
j

)
=

k∑
t,u=1

(ω′∨t , α
′
i)

(
1 + s

1− s
Ph′∗α

′
p+t, α

′∨
p+u

)
(ω′u, α

′∨
j ).

Since the scalar product in V is normalized in such a way that α′∨p+u = α′p+u, u = 1, . . . , k we obtain using (6.1.7)

(
1 + s

1− s
Ph′∗α

′
i, α
′∨
j

)
=

k∑
t,u=1

(ω′∨t , α
′
i)

(
1 + s

1− s
Ph′∗α

′
p+t, α

′
p+u

)
(ω′u, α

′∨
j ) = (6.1.8)

=

k∑
t=1

(−1)t(ω′∨t , α
′
i)(ω

′
t−1 + ω′t+1, α

′∨
j ),



196 CHAPTER 6. APPLICATION TO QUANTUM GROUPS AT ROOTS OF UNITY

where we assume that ω′0 = ω′k+1 = 0.
Now one has to consider several cases.
If one of the roots α′i, α

′
j is orthogonal to h′

∗
then the left hand side of the last equality is zero.

If α′i, α
′
j ∈ {γ1, . . . , γk} then by (6.1.7) the left hand side of (6.1.8) is equal to ±1.

If α′i = α′p+t, 1 < t < k, α′j = α′p+k+1 then(
1 + s

1− s
Ph′∗α

′
i, α
′∨
j

)
= (−1)t(ω′t−1 + ω′t+1, α

′∨
p+k+1) = (−1)t(ϑ− δ 2t

k + 1
), (6.1.9)

where δ = 2 if α′∨j = 2εp+k+1 or α′∨j = εp+k + εp+k+1, ϑ = 0 in the former case, and ϑ = 1 in the latter case. In
all other cases ϑ = 0 and δ = 1. Note that δ 6= 1 only in case when ∆ is of type Bn or Dn; for arbitrary s this
situation can only be realized if an orbit with the smallest number of elements for the action of the group 〈s〉 on
E corresponds to a block of type Ak and s does not fix any root from ∆. The denominator r of the number in the
right hand side of (6.1.9) is given by

r =


2p+ 1 if k = 2p is even;
p+ 1 if k = 2p+ 1, k 6= 4p− 1 is odd;
2p
δ if k = 4p− 1 is odd.

(6.1.10)

If α′i = α′p+1, α′j = α′p+k+1 then(
1 + s

1− s
Ph′∗α

′
i, α
′∨
j

)
= −(ω′2, α

′∨
p+k+1) = δ

2

k + 1
− ϑ,

where δ = 2 if α′∨j = 2εp+k+1 or α′∨j = εp+k + εp+k+1, ϑ = 0 in the former case, and ϑ = 1 in the latter case if
k = 2. In all other cases ϑ = 0 and δ = 1. We again obtain (6.1.10).

If α′i = α′p+k, α′j = α′p+k+1 then(
1 + s

1− s
Ph′∗α

′
i, α
′∨
j

)
= (−1)k(ω′k−1, α

′∨
p+k+1) = −(−1)kδ

k − 1

k + 1
,

and we obtain (6.1.10).
If α′i = α′p, α

′
j = α′p+k+1 then(

1 + s

1− s
Ph′∗α

′
i, α
′∨
j

)
=

k∑
t=1

(−1)t(ω′t, α
′∨
p )(ω′t−1 + ω′t+1, α

′∨
p+k+1) =

= −
k−1∑
t=1

(−1)t
(
−1 +

t

k + 1

)
2tδ

k + 1
− (−1)k

(
−1 +

k

k + 1

)
k − 1

k + 1
δ + (−1)k−1ϑ

(
−1 +

k − 1

k + 1

)
.

Using the fact that

n∑
r=1

(−1)r+1r2 = (−1)n+1n(n+ 1)

2
and

n∑
r=1

(−1)r+1r =

{
n+1

2 if n is odd;
−n2 if n is even

we obtain (
1 + s

1− s
Ph′∗α

′
i, α
′∨
j

)
=

{
− δ
k+1 + ϑ 2

k+1 if k is even;

−ϑ 2
k+1 if k is odd.

The denominator r of the number in the right hand side of the last equality is given by

r =

 2p+ 1 if k = 2p is even;
1 if k = 2p+ 1, n is odd and ϑ = 0;
p+ 1 if k = 2p+ 1 is odd and ϑ = 1.

Summarizing all cases considered above and adding the case i > j (see (6.1.6)) we arrive at (6.1.1), (6.1.2),
(6.1.3), (6.1.4) and (6.1.5).

Other cases can be treated in a similar way.
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Now one can choose d = 2d′, where d′ is defined in the previous proiposition. However, we shall not always
assume that d is chosen in this way and that the system of positive roots ∆s

+ will not be chosed as in Proposition
6.1.1 unless it is explicitly specified.

We shall always assume that d and m are coprime. This condition is equivalent to the existence of an integer n
such that εnd−1 = 1. From now on we shall also assume that κ = nd. With this choice of κ we have the following
relation between the generators ti and Li of the quantum group UA(g), ti = Lni . In particular, the specialization
Uε(g) of UA(g) coincides with the specialization of the simply connected form of the standard Drinfeld–Jimbo
quantum group without generators ti at q = ε.

Let Zε be the center of Uε(g). In the following proposition we summarize the results on the structure of Zε. In
particular, we recall that in case when ε is a root of unity Zε is much larger than in case of a generic ε. In fact in
the former case Zε contains a remarkable subalgebra Z0 the properties of which impose very strong restrictions on
the structure of irreducible representations of Uε(g).

Proposition 6.1.2. Fix the normal ordering in the positive root system ∆+ corresponding a reduced decomposition
w = si1 . . . siD of the longest element w of the Weyl group W of g and let X±α be the corresponding quantum
root vectors in Uε(g), and Xα the corresponding root vectors in g. Let x−α = (εα − ε−1

α )m(X−α )m, x+
α = (εα −

ε−1
α )mT0(X−α )m, where T0 = Ti1 . . . TiD , α ∈ ∆+, and li = Lmi , i = 1, . . . , l.

Then the following statements are true.
(i) The elements x±α , α ∈ ∆+, li, i = 1, . . . , l lie in Zε.
(ii) Let Z0 (Z±0 and Z0

0 ) be the subalgebras of Zε generated by the x±α and the l±1
i (respectively by the x±α and

by the l±1
i ). Then Z±0 ⊂ Uε(n±), Z0

0 ⊂ Uε(h), Z±0 is the polynomial algebra with generators x±α , Z0
0 is the algebra

of Laurent polynomials in the li, Z
±
0 = Uε(n±) ∩ Z0, and multiplication defines an isomorphism of algebras

Z−0 ⊗ Z0
0 ⊗ Z+

0 → Z0.

The subalgebra Z0 is independent of the choice of the reduced decomposition w = si1 . . . siD .
(iii) Uε(g) is a free Z0–module with basis the set of monomials (X+)rLs(X−)t for which 0 ≤ rk, tk, si < m for

i = 1, . . . , l, k = 1, . . . , D, where for s = (s1, . . . sl) ∈ Zl,

Ls = Ls11 . . . Lsll .

(iv) Spec(Z0) = C2D × (C∗)l is a complex affine space of dimension equal to dim g.
(v) The subalgebra Z0 is preserved by the action of the braid group automorphisms Ti.
(vi) Let G be the connected simply connected Lie group corresponding to the Lie algebra g and G∗0 the solvable

algebraic subgroup in G×G which consists of elements of the form (L+, L−) ∈ G×G,

(L+, L−) = (t, t−1)(n+, n−), n± ∈ N±, t ∈ H.

Then Spec(Z0
0 ) can be naturally identified with the maximal torus H in G, and the map

π̃ : Spec(Z0) = Spec(Z+
0 )× Spec(Z0

0 )× Spec(Z−0 )→ G∗0,

π̃(u+, t, u−) = (tX+(u+), t−1X−(u−)−1), u± ∈ Spec(Z±0 ), t ∈ Spec(Z0
0 ),

X± : Spec(Z±0 )→ N±,

X− = exp(x−βDX−βD ) exp(x−βD−1
X−βD−1

) . . . exp(x−β1
X−β1),

X+ = exp(x+
βD
T0(X−βD )) exp(x+

βD−1
T0(X−βD−1

)) . . . exp(x+
β1
T0(X−β1

)),

where x±βi should be regarded as complex-valued functions on Spec(Z0), is an isomorphism of varieties independent
of the choice of reduced decomposition of w.

Parts (ii) and (iii) of Proposition 6.1.2 can also be reformulated in terms of the quantum root vectors eα and
fα.

Proposition 6.1.3. Let s ∈W be a Weyl group element, and eα, fα the quantum root vectors defined in Proposition
2.6.2. Then the following statements are true.

(i) The subalgebra Z0 is the tensor product of the polynomial algebra with generators emα , fmα , α ∈ ∆+ and of
the algebra of Laurent polynomials in li, i = 1, . . . , l.

(ii) Uε(g) is a free Z0–module with basis the set of monomials frLset for which 0 ≤ rk, tk, si < m for i = 1, . . . , l,
k = 1, . . . , D.
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Let K : Spec(Z0
0 )→ H be the map defined by K(h) = h2, h ∈ H.

Proposition 6.1.4. Let G0 = N−HN+ be the big cell in G. Then the map

π = X−KX+ : Spec(Z0)→ G0

is independent of the choice of reduced decomposition of w, and is an unramified covering of degree 2l.

Denote by λ0 : G∗0 → G0 the map defined by λ0(L+, L−) = L−1
− L+. Then obviously π = λ0 ◦ π̃.

Another important property of quantum groups at roots of unity, which distinguishes the root of unity case, is
the existence of the so–called quantum coadjoint action which is an automorphism group action on an extension of
Uε(g). It is defined with the help of derivations x±i of UA(g) given by

x+
i (u) =

[
(X+

i )m

[m]qi !
, u

]
, x−i (u) = T0x

+
i T
−1
0 (u), i = 1, . . . , l, u ∈ UA(g). (6.1.11)

Let Ẑ0 be the algebra of formal power series in the x±α , α ∈ ∆+, and the l±1
i , i = 1, . . . , l, which define

holomorphic functions on Spec(Z0) = C2D × (C∗)l. Let

Ûε(g) = Uε(g)⊗Z0
Ẑ0, Ẑε = Zε ⊗Z0

Ẑ0.

Proposition 6.1.5. (i)On specializing to q = ε, (6.1.11) induces a well–defined derivation x±i of Uε(g).
(ii)The series

exp(tx±i ) =

∞∑
k=0

tk

k!
(x±i )k

converges for all t ∈ C to a well–defined automorphism of the algebra Ûε(g).
(iii)Let G be the group of automorphisms generated by the one–parameter groups exp(tx±i ), i = 1, . . . , l. The

action of G on Ûε(g) preserves the subalgebras Ẑε and Ẑ0, and hence G acts by holomorphic automorphisms on the
complex algebraic varieties Spec(Zε) and Spec(Z0).

(iv)Let O be a conjugacy class in G. The intersection O0 = O ∩ G0 is a smooth connected variety, and the
variety π−1(O0) is a G–orbit in Spec(Z0).

Given a homomorphism η : Z0 → C, let
Uη(g) = Uε(g)/Iη,

where Iη is the ideal in Uε(g) generated by elements z− η(z), z ∈ Z0. By part (iii) of Proposition 6.1.2 Uη(g) is an
algebra of dimension mdim g with linear basis the set of monomials (X+)rLs(X−)t for which 0 ≤ rk, tk, si < m for
i = 1, . . . , l, k = 1, . . . , D.

If g̃ ∈ G then for any η ∈ Spec(Z0) we have g̃η ∈ Spec(Z0) by part (iii) of Proposition 6.1.5, and by part (ii) of
the same proposition g̃ induces an isomorphism of algebras,

g̃ : Uη(g)→ Ug̃η(g). (6.1.12)

Since on every irreducible representation of Uε(g) the subalgebra Z0 of the center Zε acts by a character
η : Z0 → C, every irreducible representation of Uε(g) is a representation of some algebra Uη(g) for a unique η.
This reduces the study of irreducible representations of Uε(g) to the study of representations of finite–dimensional
algebras Uη(g). Moreover, taking into account isomorphisms (6.1.12) it suffices to consider a representative in each
isomorphism class of these algebras under the isomorphisms induced by the action of the elements of the group G
on Ûε(g).

6.2 Whittaker vectors in modules over quantum groups at roots of
unity

It turns out that any finite–dimensional representation V of Uη(g) can be equipped with another action of a
subalgebra Uη1(m−) of a small quantum group which is a root of unity “truncated” version of the algebra UsA(m−)
for an appropriate s depending on η. The new action is compatible with the original action of Uη(g) in a certain
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equivariant way, and the dimension of Uη1(m−) is equal to b = m
1
2 dim Oπη = mdim m− , where Oπη is the conjugacy

class of πη ∈ G. The existence of the second action is crucial for the proof of the De Concini–Kac–Procesi conjecture
and for the study of other properties of finite–dimensional representations of Uη(g).

In this section we define the algebras Uη1(m−) and their actions on finite–dimensional representations of Uη(g).
These definitions are related to the notion of Whittaker vectors for finite–dimensional Uη(g)–modules which are
defined using root of unity versions of characters χsq. We start by reminding the definitions of these characters.

Firstly let us observe that Usε (m−) can be regarded as a subalgebra in Uε(g). Therefore for every character
η : Z0 → C one can define the corresponding subalgebra in Uη(g) generated by fα, α ∈ ∆m+ . We denote this
subalgebra by Uη(m−). By part (ii) of Proposition 6.1.3 we have dim Uη(m−) = mdim m− .

In order to define analogues of characters χsq for quantum groups at roots of unity we shall need some properties
of the finite dimensional algebras Uη(g) and Uη(m−) and auxiliary results on non–zero irreducible representations
of the algebra Uη(m−).

Observe that by Proposition 1.6.6 for any two roots α, β ∈ ∆m+ such that α < β the sum α + β can not be
represented as a linear combination

∑q
k=1 ckγik , where ck ∈ N and α < γi1 < . . . < γik < β, and hence from

commutation relations (2.8.12) one can deduce that

fαfβ − ε(α,β)+nd( 1+s
1−sPh′∗α,β)fβfα =

∑
α<δ1<...<δn<β

C ′(k1, . . . , kn)fknδn f
kn−1

δn−1
. . . fk1δ1 ∈ J , (6.2.1)

where at least one of the roots δi in the right hand side of the last formula belongs to Θ = {α ∈ ∆m+
: α 6∈

{γ1, . . . , γl′}}, J is the ideal in Uη(m−) generated by the elements fβ ∈ Uη(m−), β ∈ Θ. Thus from part (ii) of
Proposition 6.1.3 and commutation relations (6.2.1) it follows that if β1 < β2 < . . . < βc are the roots in the
segment ∆m+ , the elements

xk1,...,kb = fkcβc f
kc−1

βc−1
. . . fk1β1

(6.2.2)

for ki ∈ N, ki < m form a linear basis of Uη(m−), and elements (6.2.2) for ki ∈ N, ki < m and ki > 0 for at least
one βi ∈ Θ form a linear basis of J .

Lemma 6.2.1. Let η be an element of Spec(Z0). Assume that η(fmγi ) = ai 6= 0 for i = 1, . . . , l′and that and
η(fmβ ) = 0 for β ∈ ∆m+

, β 6∈ {γ1, . . . , γl′}, and hence fmγi = η(fmγi ) = ai 6= 0 in Uη(m−) for i = 1, . . . , l′ and fmβ = 0
in Uη(m−) for β ∈ ∆m+

, β 6∈ {γ1, . . . , γl′}. Then the ideal J is the Jacobson radical of Uη(m−) and Uη(m−)/J is
isomorphic to the truncated polynomial algebra

C[fγ1 , . . . , fγl′ ]/{f
m
γi = ai}i=1,...,l′

.

Proof. First we show that J is nilpotent.
Let i be the largest number such that kj = 0 for j > i in (6.2.2) and ki 6= 0. Then we define the degree of

xk1,...,kc by
deg(xk1,...,kc) = (ki, i) ∈ {1, . . . ,m− 1} × {1, . . . , c}.

Equip {1, . . . ,m− 1} × {1, . . . , c} with the order such that (k, i) < (k′, j) if j > i or j = i and k′ > k.
For any given (k, i) ∈ {1, . . . ,m−1}×{1, . . . , c} denote by (Uη(m−))(k,i) the linear span of the elements xk1,...,kc

with deg(xk1,...,kc) ≤ (k, i) and define J(k,i) = J ∩ (Uη(m−))(k,i). We also have (Uη(m−))(k,i) ⊂ (Uη(m−))(k′,j) and
J(k,i) ⊂ J(k′,j) if (k, i) < (k′, j), and J(m−1,c) = J . Note that for the first few i linear spaces J(k,i) may be trivial,
and these are all possibilities when those spaces can be trivial.

We shall prove that J is nilpotent by induction over the order in {1, . . . ,m − 1} × {1, . . . , c}. Let (k, i) be
minimal possible such that J(k,i) is not trivial. Then we must have k = 1. If y ∈ J(1,i) then y must be of the form

y = fβv, (6.2.3)

where v is a linear combination of elements of the form fk1βi1
. . . fkrβir

for βi1 , . . . , βir ∈ {γ1, . . . , γn}, β > βi1 , and β

is the first root from the set Θ greater than γ1 in the normal ordering of ∆+ associated to s. Here it is assumed
that fk1βi1

. . . fkrβir
= 1 if the set {γ1, . . . , γn} is empty.

Now equation (6.2.1) implies that for any fβij which appears in the expression for v one has

fβfβij − ε
(β,βij )+nd( 1+s

1−sPh′∗β,βij )fβij fβ ∈ J(m−1,i−1) = 0 (6.2.4)
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as by our choice of i J(m−1,i−1) = 0.
Formula (6.2.4) implies that the product of m elements of type (6.2.3) can be represented in the form

fmβ v
′,

where v′ is of the same form as v. Since fmβ = 0 we deduce that Jm(1,i) = 0.

Now assume that JK(k,i) = 0 for some K > 0. Let (k′, i′) be the smallest element of {1, . . . ,m− 1} × {1, . . . , c}
which satisfies (k, i) < (k′, i′). Then by Propositions 2.6.2 and 6.1.3, and by (6.2.1), any element of J(k′,i′) is of the
form fβi′u+ u′, where u′ ∈ J(k,i) and if βi′ ∈ Θ then u ∈ (Uη(m−))(k,i); if βi′ 6∈ Θ then u ∈ J(k,i).

Now equation (6.2.1) together with (2.8.12) imply that for any u ∈ (Uη(m−))(k,i) one has

ufβi′ = cfβi′u+ w, (6.2.5)

where c is a non–zero constant depending on u, and w ∈ J(k,i). By formula (6.2.5) the product of m elements
fβi′up + u′p, p = 1, . . . ,m of the type described above can be represented in the form

m∑
j=0

f jβi′ cj , (6.2.6)

where cj ∈ J(k,i) for j = 0, . . . ,m − 1 and if βi′ ∈ Θ then cm ∈ (Uη(m−))(k,i); if βi′ 6∈ Θ then cm ∈ J(k,i). In the
former case fmβi′ = 0, and the last term in sum (6.2.6) is zero; in the latter case fmβi′ = η(fmβi′ ) 6= 0, and the last

term in sum (6.2.6) is from J(k,i). So we can combine it with the term corresponding to j = 0. In both cases sum
(6.2.6) takes the form

m−1∑
j=0

f jβi′ c
′
j , (6.2.7)

where c′j ∈ J(k,i). By (6.2.5) the product of K sums of type (6.2.7) is of the form

(m−1)K∑
j=0

f jβi′ c
′′
j ,

where each c′′j is a linear combination of elements from JK(k,i). By our assumption JK(k,i) = 0, and hence the product
of any mK elements of J(k′,i′) is zero. This justifies the induction step and proves that J(m−1,c) = J is nilpotent.
Hence J is contained in the Jacobson radical of Uη(m−).

Using commutation relations (2.8.12) we also have (see the proof of Proposition 3.2.9)

fγifγj − fγjfγi ∈ J .

Therefore the quotient algebra Uη(m−)/J is isomorphic to the truncated polynomial algebra

C[fγ1 , . . . , fγl′ ]/{f
m
γi = ai}i=1,...,l′

which is semisimple. Therefore J coincides with the Jacobson radical of Uη(m−).

In Proposition 3.2.9 we constructed some characters of the algebra Usε (m−). Now we show that the algebra
Uη(m−) has a finite number of irreducible representations which are one–dimensional, and all those representations
can be obtained from each other by twisting with the help of automorphisms of Uη(m−).

Proposition 6.2.2. Let η be an element of Spec(Z0). Assume that η(fmγi ) = ai 6= 0 for i = 1, . . . , l′and that and
η(fmβ ) = 0 for β ∈ ∆m+

, β 6∈ {γ1, . . . , γl′}, and hence fmγi = η(fmγi ) = ai 6= 0 in Uη(m−) for i = 1, . . . , l′ and fmβ = 0
in Uη(m−) for β ∈ ∆m+

, β 6∈ {γ1, . . . , γl′}. Then all non–zero irreducible representations of the algebra Uη(m−)
are one–dimensional and have the form

χ(fβ) =

{
0 β 6∈ {γ1, . . . , γl′}
ci β = γi, i = 1, . . . , l′

, (6.2.8)

where complex numbers ci satisfy the conditions cmi = ai, i = 1, . . . , l′. Moreover, all non–zero irreducible repre-
sentations of Uη(m−) can be obtained from each other by twisting with the help of automorphisms of Uη(m−).
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Proof. Let V be a non–zero finite–dimensional irreducible Uη(m−)–module. By Corollary 54.13 in [31] elements of
the ideal J ⊂ Uη(m−) act by zero transformations on V . Hence V is in fact an irreducible representation of the
algebra Uη(m−)/J which is isomorphic to the truncated polynomial algebra

C[fγ1 , . . . , fγl′ ]/{f
m
γi = ai}i=1,...,l′ .

The last algebra is commutative and all its complex irreducible representations are one–dimensional. Therefore V
is one–dimensional, and if v is a nonzero element of V then fγiv = civ, for some ci ∈ C, i = 1, . . . , l′. Note that
η(fmγi ) = ai 6= 0, i = 1, . . . , l′ and hence cmi = ai 6= 0, i = 1, . . . , l′. In particular, the elements fγi act on V by
semisimple automorphisms.

If we denote by χ : Uη(m−)→ C the character of Uη(m−) such that

χ(fβ) =

{
0 β 6∈ {γ1, . . . , γl′}
ci β = γi, i = 1, . . . , l′

and by Cχ the corresponding one–dimensional representation of Uη(m−) then we have V = Cχ.
Now we have to prove that the representations Cχ for different characters χ are obtained from each other by

twisting with the help of automorphisms of Uη(m−).
Since cmi = ai, i = 1, . . . , l′ there are only finitely many possible characters χ corresponding to the given η in

the statement of this proposition. If χ and χ′ are two such characters, χ(fγi) = ci, i = 1, . . . , l′ and χ′(fγi) = c′i,
i = 1, . . . , l′ then the relations cmi = c′i

m
= ai, i = 1, . . . , l′ imply that c′i = εmici, 0 ≤ mi ≤ m − 1, mi ∈ Z,

i = 1, . . . , l′.
Now observe that for any h ∈ h the map defined by fα 7→ εα(h)fα, α ∈ ∆m+ is an automorphism of the algebra

Usε (m−) generated by elements fα, α ∈ ∆m+
with defining relations (2.8.12). Here the principal branch of the

analytic function εz is used to define εα(h), so that εα(h)εβ(h) = ε(α+β)(h) for any α, β ∈ ∆m+
. If in addition

εmγi(h) = 1, i = 1, . . . , l′ the above defined map gives rise to an automorphism ς of Uη(m−). Indeed in that case
(εγi(h)fγi)

m = fmγi , i = 1, . . . , l′ and all the remaining defining relations fmγi = η(fmγi ) = ai 6= 0, i = 1, . . . , l′,
fmβ = η(fmβ ) = 0, β ∈ ∆m+

, β 6∈ {γ1, . . . , γl′} of the algebra Uη(m−) are preserved by the action of the above
defined map ς.

Now fix h ∈ h such that γi(h) = mi, i = 1, . . . , l′. Obviously we have εmmi = 1, i = 1, . . . , l′. We claim that the
representation Cχ twisted by the corresponding automorphism ς coincides with Cχ′ . Indeed, we obtain

χ(ςfγi) = χ(εmifγi) = εmici = c′i, i = 1, . . . , l′.

This completes the proof of the proposition.

Now we can define the notion of Whittaker vectors. Let V be a Uη(g)–module, where η is an element of
Spec(Z0) such that η(fmγi ) = ai 6= 0 for i = 1, . . . , l′and that and η(fmβ ) = 0 for β ∈ ∆m+ , β 6∈ {γ1, . . . , γl′}. Let
χ : Uη(m−) → C be a character defined in the Proposition 6.2.2, Cχ the corresponding one–dimensional Uη(m−)–
module. Then the space Vχ = HomUη(m−)(Cχ, V ) is called the space of Whittaker vectors of V . Elements of Vχ
are called Whittaker vectors.

Now we describe the space of Whittaker vectors in terms of a nilpotent action of the unital subalgebra Uη1(m−)
generated by fα, α ∈ ∆m+

in the small quantum group Uη1(g) = Usε (g)/Iη1 corresponding to the trivial central
character η1 such that π̃(η1) = 1 ∈ G∗0 and η1(x±α ) = 0, α ∈ ∆+, η1(li) = 1, i = 1, . . . , l.

Recall that Usε (m−) is a right coideal in Usε (g). One can also equip the algebra Usε (m−) with a character given
by formula (3.2.17), where the numbers ci are the same as in the definition of the character χ. We denote this
character by the same letter, χ : Usε (m−)→ C.

Note that V can be regarded as a Uε(g)–module and a Usε (g)–module assuming that the ideal Iη acts on V in
the trivial way. Now observe that ∆s : Usε (m−) → Usε (g) ⊗ Usε (m−) is a homomorphism of algebras. Composing
it with the tensor product Ss ⊗ χ of the anti–homomorphism Ss and of the character χ, which can be regarded
as an anti–homomorphism as well, one can define an anti–homomorphism, Usε (m−) → Usε (g), x 7→ Ss(x1)χ(x2),
∆s(x) = x1 ⊗ x2, x ∈ Usε (m−).

Using this anti–homomorphism one can introduce a right Usε (m−)–action on V which we call the adjoint action
and denote it by Ad. It is given by the formula

Ads xv = Ss(x1)χ(x2)v, x ∈ Usε (m−), v ∈ V, (6.2.9)
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where ∆s(x) = x1 ⊗ x2.
Note that using the Swedler notation for the comultiplication, (∆s⊗ id⊗ id)(∆s⊗ id)∆s(x) = x1⊗x2⊗x3⊗x4,

the coassiciativity of the comultiplication and the definition of the antipode we have for any x ∈ Usε (m−), y ∈ Usε (g),
v ∈ V (compare with the proof of Lemma 2.2 in [60])

Adsx(yv) = Ss(x1)χ(x2)yv = Ss(x1)yx2Ss(x3)χ(x4)v = Adsx1(y)Adsx2(v). (6.2.10)

We shall need the following formula for the action of the comultiplication on the quantum root elements fβ ,

β =
∑l
i=1 ciαi ∈ ∆m+ , ci ∈ N,

∆s(fβ) =

l∏
i=1

Kci
i

l∏
i,j=1

L
−nddj ( 1+s

1−sPh′∗αi,αj)ci

j ⊗ fβ + fβ ⊗ 1 + (6.2.11)

+
∑
i

yi ⊗ xi, xi ∈ U<β , yi ∈ U>βUs
−1

ε (h),

where U<β is the subalgebra (without unit) in Usε (m−) generated by fα, α < β and U>β is the subalgebra (without
unit) in Usε (n−) generated by fα, α > β. Formula (6.2.11) is a straightforward consequence of (2.8.13).

Similarly to the Proposition in Section 5.6 in [25] we infer that Z0 is a Hopf subalgebra in Usε (g). Namely,

∆s(f
m
i ) = Km

i

l∏
j=1

L
−mnd

dj
( 1+s
1−sPh′∗αi,αj)

j ⊗ fmi + fmi ⊗ 1,

∆s(e
m
i ) = emi ⊗K−mi +

l∏
j=1

L
mnd
dj

( 1+s
1−sPh′∗αi,αj)

j ⊗ emi ,

∆s(L
m
i ) = Lmi ⊗ Lmi .

Therefore recalling that by the definition of χ for x ∈ Usε (m−) ∩ Z0 one has χ(x) = η(x) we deduce

Ads xv = Ss(x1)χ(x2)v = η(Ss(x1)x2)v = εs(x)v, v ∈ V,

where εs is the counit of Usε (g). Note that by the definition of the ideal Iη1 the ideal Usε (m−) ∩ Iη1 ⊂ Usε (m−) is
generated by the elements fmα , α ∈ ∆m+ and εs(f

m
α ) = 0 for α ∈ ∆m+ by the definition of εs. Hence the adjoint

action of Usε (m−) on V induces an action of the subalgebra Uη0(m−) of the small quantum group Uη0(g). We call
this action the adjoint action as well.

Note that the small quantum group Uη0(g) is a Hopf algebra with the comultiplication inherited from Usε (g).
The space of Whittaker vectors Vχ can be characterized in terms of the adjoint action as follows.

Lemma 6.2.3. The space of Whittaker vectors Vχ coincides with the space of Uη1(m−)–invariants for the adjoint
action on V ,

Vχ = {v ∈ V : Ads x(v) = εs(x)v ∀x ∈ Uη1(m−)}. (6.2.12)

Proof. Indeed, denote by Tβ the factor
∏l
i=1K

ci
i

∏l
i,j=1 L

−nddj ( 1+s
1−sPh′∗αi,αj)ci

j which appears in (6.2.11), Tβ =∏l
i=1K

ci
i

∏l
i,j=1 L

−nddj ( 1+s
1−sPh′∗αi,αj)ci

j . Then simiularly to (2.8.18) we obtain

Ss(fβ) = −Ss(Tβ)fβ −
∑
i

Ss(yi)xi. (6.2.13)

Now for β ∈ ∆m+
, (6.2.11), (6.2.13) and definition (6.2.9) of the adjoint action imply

Ads fβv = T−1
β χ(fβ)v − T−1

β fβv −
∑
i

Ss(yi)xiv +
∑
i

Ss(yi)χ(xi)v =

= T−1
β (χ(fβ)− fβ)v +

∑
i

Ss(yi)(χ(xi)− xi)v, xi ∈ U<β , yi ∈ U>βUsε (h). (6.2.14)

If v ∈ Vχ we immediately obtain from (6.2.14) that Ads fβv = 0 for any β ∈ ∆m+ , i.e. v belongs to the right
hand side of (6.2.12).
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Conversely, suppose that v belongs to the right hand side of (6.2.12). We shall show that xv = χ(x)v for
any x ∈ Usε (m−). Let U<β be the subalgebra with unit generated by U<β . We proceed by induction over the
subalgebras U<δk , k = 1, . . . b + 1, where as before δ1 < . . . < δb is the normally ordered segment ∆m+ and we

define U<δb+1
to be the subalgebra Usε (m−).

Observe that δ1 is a simple root and hence U<δ1 = 0. Therefore we deduce from (6.2.14) for β = δ1

Ads fδ1v = T−1
δ1

(χ(fδ1)− fδ1)v = 0.

Since T−1
δ1

acts on V by an invertible transformation this implies (χ(fδ1) − fδ1)v = 0, and hence xv = χ(x)v for

any x ∈ U<δ2 as U<δ2 is generated by fδ1 .
Now assume that for some k ≤ b xv = χ(x)v for any x ∈ U<δk . Then by (6.2.14)

Ads fδkv = T−1
δk

(χ(fδk)− fδk)v = 0.

As above this implies
(χ(fδk)− fδk)v = 0. (6.2.15)

By Proposition 2.6.2 any element y ∈ U<δk+1
can be uniquely represented in the form y = fδky

′ + y′′, where

y′, y′′ ∈ U<δk . Now by (6.2.15) and by the induction assumption

yv = (fδky
′ + y′′)v = χ(fδk)χ(y′)v + χ(y′′)v = χ(y)v,

i.e. yv = χ(y)v for any x ∈ U<δk+1
. This establishes the induction step and completes the proof.

The following proposition is an analogue of the Engel theorem for quantum groups at roots of unity.

Proposition 6.2.4. Let η be an element of Spec(Z0). Assume that η(fmγi ) = ai 6= 0 for i = 1, . . . , l′ and that
η(fmβ ) = 0 for β ∈ ∆m+

, β 6∈ {γ1, . . . , γl′}, and hence fmγi = η(fmγi ) = ai 6= 0 in Uη(m−) for i = 1, . . . , l′ and fmβ = 0
in Uη(m−) for β ∈ ∆m+ , β 6∈ {γ1, . . . , γl′}. Let χ : Uη(m−) → C be any character defined in Proposition 6.2.2.
Then any non–zero finite–dimensional Uη(g)–module contains a non–zero Whittaker vector.

Proof. We begin the proof with the following lemma.

Lemma 6.2.5. The augmentation ideal J 1 of Uη1(m−) coincides with its Jacobson radical which is nilpotent.

Proof. The proof of this fact is similar to that of Lemma 6.2.1, and we shall keep the notation used in that proof.
We define J 1

(k,i) = J 1 ∩ (Uη1(m−))(k,i), so that J 1
(k,i) ⊂ J

1
(k′,j) if (k, i) < (k′, j), and J 1

(m−1,c) = J 1.

We shall prove that J 1 is nilpotent by induction over the order in {1, . . . ,m − 1} × {1, . . . , c}. Note that
(k, i) = (1, 1) is minimal possible such that J(k,i) is not trivial. If y ∈ J(1,1) then y must be of the form

y = afβ1
, a ∈ C. (6.2.16)

The product of m elements of type (6.2.16) is equal to zero,

fmβ1
am = 0,

as fmβ1
= 0 in Uη1(m−). We deduce that (J 1

(1,1))
m = 0.

Now assume that (J 1
(k,i))

K = 0 for some K > 0. Let (k′, i′) be the smallest element of {1, . . . ,m−1}×{1, . . . , c}
which satisfies (k, i) < (k′, i′). Then by Propositions 2.6.2 and 6.1.3 any element of J 1

(k′,i′) is of the form fβi′u+u′,

where u′ ∈ J 1
(k,i) and u ∈ (Uη1(m−))(k,i).

Now equation (2.8.12) implies that for any u ∈ (Uη1(m−))(k,i) one has

ufβi′ = bfβi′u+ w, (6.2.17)

where b is a non–zero constant depending on u, and w ∈ J 1
(k,i). By the formula (6.2.17) the product of m elements

fβi′up + u′p, p = 1, . . . ,m of the type described above can be represented in the form

m∑
j=0

f jβi′ cj , (6.2.18)
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where cj ∈ J 1
(k,i) for j = 0, . . . ,m− 1 and cm ∈ (Uη1(m−))(k,i). Since fmβi′ = 0 the last term in sum (6.2.18) is zero.

So sum (6.2.18) takes the form
m−1∑
j=0

f jβi′ c
′
j , (6.2.19)

where c′j ∈ J 1
(k,i). By (6.2.17) the product of K sums of type (6.2.19) is of the form

(m−1)K∑
j=0

f jβi′ c
′′
j ,

where each c′′j is a linear combination of elements from (J 1
(k,i))

K . By our assumption (J 1
(k,i))

K = 0, and hence the

product of any mK elements of J 1
(k′,i′) is zero. This justifies the induction step and proves that J 1

(m−1,c) = J 1 is

nilpotent. Hence J 1 is contained in the Jacobson radical of Uη1(m−).
The quotient algebra Uη1(m−)/J 1 is isomorphic to C. Therefore J 1 coincides with the Jacobson radical of

Uη1(m−).

Now let V be a finite–dimensional Uη(g)–module. Then V is also a finite–dimensional Uη1(m−)–module with
respect to the adjoint action. Thus V must contain a non–trivial irreducible Uη1(m−)–submodule with respect to
the adjoint action on which the Jacobson radical J 1 must act trivially. From (6.2.12) it follows that this non–trivial
irreducible submodule consists of Whittaker vectors. This completes the proof of the proposition.

Now we show that for any η ∈ Spec(Z0) subalgebras and characters which appear in Propositions 6.2.2, 6.2.4
and in Lemma 6.2.3 indeed exist. Moreover, we shall see that to each η ∈ Spec(Z0) one can associate a subalgebra

of this type the dimension of which is equal to m
1
2 dim Oπη , where Oπη is the conjugacy class of πη ∈ GC .

Proposition 6.2.6. Let

G =
⋃

C∈C(W )

GC .

be the Lusztig partition of G, η ∈ Spec(Z0) be an element such that πη ∈ GC, C ∈ C(W ) and s−1 ∈ C. Let ∆s
+ be

the system of positive roots defined for s in Theorem 1.5.2, ∆+ the corresponding system of positive roots associated
to s, d = 2d′, where d′ is defined in Proposition 6.1.1. Assume that m and d are coprime.

Then there exists a quantum coadjoint transformation g̃ such that ξ = g̃η satisfies ξ(fmγi ) = ai 6= 0 for i = 1, . . . , l′

and ξ(fmβ ) = 0 for β ∈ ∆m+ , β 6∈ {γ1, . . . , γl′}, where fα ∈ Uξ(m−) are generators of the corresponding algebra
Uξ(m−) ⊂ Uξ(g). Let χ : Uξ(m−)→ C be any character defined in Proposition 6.2.2. Then any finite–dimensional
Uξ(g)–module contains a non–zero Whittaker vector with respect to the subalgebra Uξ(m−) and the character χ, and
any Uη(g)–module contains a non–zero Whittaker vector with respect to the subalgebra U g̃η (m−) = g̃−1Uξ(m−) and

the character χg̃ given by the composition of χ and g̃, χg̃ = χ ◦ g̃ : U g̃η (m−)→ C.

Moreover, dim Uξ(m−) = dim U g̃η (m−) = m
1
2 dim Oπη = m

1
2 dim Oπξ = mdim m− , where Oπη is the conjugacy

class of πη ∈ GC, and Oπξ is the conjugacy class of πξ ∈ GC.

Proof. First observe that the system of positive roots ∆s
+ satisfies the conditions of Theorem 1.5.2 when s is replaced

with s−1. Indeed, in the case of classical root systems its definition only depends on the spectral decomposition of
h under the action of s which is the same as the spectral decomposition of h under the action of s−1. In the case of
exceptional root systems one has to note in addition that obviously dim Σs = dim Σs−1 , and hence all properties
of ∆s

+ used in the proof of Theorem 1.5.2 are satisfied if s is replaced with s−1 in the proof.

Let Ns−1 = {n̄ ∈ N : s−1n̄s ∈ N}. Applying Theorem 1.5.2 to s−1 and to the system of positive rootrs
∆s

+ and swapping the roles of N and of N we deduce that all conjugacy classes in the stratum GC intersect the

variety s−1H0Ns−1 which is a subvariety of the transversal slice Σs−1 = s−1ZNs−1 to the set of conjugacy classes
in G. Note that Ns−1 is not a subgroup in N+. But every element of n̄s−1 ∈ Ns−1 can be uniquely factorized
as follows n̄s−1 = n̄+

s−1 n̄
−
s−1 , n̄±s−1 ∈ Ns−1 ∩ N±, Ns−1 ∩ N− = N ∩ N−, Ns−1 ∩ N+ ⊂ M+, where M+ ⊂ N+ is

the subgroup corresponding to the Lie subalgebra m+. Therefore every element s−1h0n̄s−1 ∈ s−1H0Ns−1 can be
represented as follows s−1h0n̄s−1 = s−1h0n̄

+
s−1 n̄

−
s−1 , and conjugating by n̄−s−1 we obtain that s−1h0n̄s−1 is conjugate

to n̄−s−1s
−1h0n̄

+
s−1 .
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Since the decomposition s = s1s2 is reduced

s(Ns−1 ∩N−)s−1 = s(N ∩N−)s−1 ⊂M+.

Taking into account that H0 normalizes M+ we have n̄−s−1s
−1h0n̄

+
s−1 = s−1h0h

−1
0 sn̄−s−1s

−1h0n̄
+
s−1 = s−1h0ms,

ms = h−1
0 sn̄−s−1s

−1h0n̄
+
s−1 ∈ M+. We deduce that all conjugacy classes in the stratum GC intersect the variety

s−1H0M+.
Recall that by (3.4.25) with the roles of N+ and N− swapped we have v = n′sm for some n′ ∈ N,m ∈ M+,

where v ∈ G is an element of the form

v =

l′∏
i=1

exp[tiX−γi ],

ti ∈ C are non–zero constants depending on the choice of the representative s ∈ G and the product over roots is
taken in the normal order (1.6.9) associated to s. We deduce that s−1 = mv−1n′.

Now let s−1h0ms, h0 ∈ H0,ms ∈ M+ be an element of s−1H0M+. Using the previous expression for s−1 we
can write s−1h0ms = mu−1n′h0ms. Conjugating this element by m−1 and recalling that H0 normalizes N+ we
infer that s−1h0ms is conjugate to

v−1n′h0msm = v−1h0n = λ0(h
1
2
0 n, h

− 1
2

0 v),

where n = h−1
0 n′msm ∈ N+, h

1
2
0 ∈ H0 is any element such that h

1
2
0 h

1
2
0 = h0, λ0 is defined immediately after

Proposition 6.1.4. We deduce that all conjugacy classes in the stratum GC intersect the variety v−1H0N+.
By part (iv) of Proposition 6.1.5 we conclude that if η ∈ Spec(Z0) satisfies πη ∈ GC then there is a quantum

coadjoint transformation g̃ such that π̃(g̃η) = (h
1
2
0 n, h

− 1
2

0 v) for some n ∈ N+, h
1
2
0 ∈ H0.

Denote ξ = g̃η. From the definition of the map π̃ and of the element v it follows that

exp(ξ(x−βD )X−βD ) exp(ξ(x−βD−1
)X−βD−1

) . . . exp(ξ(x−β1
)X−β1

) = v−1

which implies ξ((X−γi)
m) = − ti

(εγi−ε
−1
γi

)m
6= 0 for i = 1, . . . , l′ and that ξ((X−β )m) = 0 for β ∈ ∆m+

, β 6∈ {γ1, . . . , γl′}.

By the definition of the elements fβ with β =
∑l
i=1miαi we have fβ =

∏l
i,j=1 L

minij
j X−β . Therefore the

commutation relations between elements Lj and X−β imply that fmβ = cβ
∏l
i,j=1 L

mminij
j (X−β )m, where cβ are non–

zero constants, and hence ξ(fmβ ) = cβ
∏l
i,j=1 ξ(L

m
j )minijξ((X−β )m). Since ξ(Lj) 6= 0 for j = 1, . . . , l, ξ((X−γi)

m) =

− ti
(εγi−ε

−1
γi

)m
6= 0 for i = 1, . . . , l′ and ξ((X−β )m) = 0 for β ∈ ∆m+ , β 6∈ {γ1, . . . , γl′} we deduce ξ(fmγi ) = ai 6= 0 for

i = 1, . . . , l′ and ξ(fmβ ) = 0 for β ∈ ∆m+ , β 6∈ {γ1, . . . , γl′}. Thus ξ satisfies the condition of Propositions 6.2.2 and
6.2.4. Let Ug̃η(m−) = Uξ(m−) be the corresponding subalgebra in Uξ(g).

Note that by Theorem 1.5.2 for any g ∈ GC we have

dim ZG(g) = dim Σs−1 ,

where ZG(g) is the centralizer of g in G.

By the definition of Σs−1 we also have dim Σs−1 = l(s)+2D0 +dim h′
⊥

. Observe also that dim G = 2D+dim h

and dim h − dim h′
⊥

= dim h′ = l′, and hence from (1.6.15) we deduce that dim m− = D −D0 − 1
2 (l(s) − l′) =

1
2 (dim G − dim Σs−1) = 1

2dim Og and dim U g̃η (m−) = dim Ug̃η(m−) = mdim m− = m
1
2 dim Og , where Og is the

conjugacy class of any g ∈ GC .
In particular, dim U g̃η (m−) = m

1
2 dim Oπη , where Oπη is the conjugacy class of πη ∈ GC .

The remaining statements of this proposition are consequences of Proposition 6.2.4.

6.3 Skryabin equivalence for quantum groups at roots of unity and
the proof of De Concini–Kac–Procesi conjecture

In this section we shall study the Uη1(m−)–action on finite–dimensional Uη(g)–modules introduced in the previous
section. We shall show that each such module is Uη1(m−)–cofree. Taking into account that dim Uη1(m−) =

m
1
2 dim Oπη this will imply the De Concini–Kac–Procesi conjecture.
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The main observation with the help of which we shall prove these statements is that the structure of Uη(g)–
modules is similar to that of a root of unity analogue Qχ of the module QlocB , and the results of Propositions 4.6.1 and

4.6.8 can be specialized to q
1
dr2 = ε

1
dr2 and transferred to Qχ and, more generally, to any finite–dimensional Uη(g)–

module using root of unity analogues of the homomorphism φ. In particular, using images of the specializations
Bεn1...nc of the elements Bn1...nc in finite–dimensional Uη(g)–modules one can construct their Uη1(m−)–cofree bases.

To realize this program for any given η ∈ Spec(Z0) we assume that ∆s
+ is the system of positive roots defined

for s in Theorem 1.5.2, ∆+ the corresponding system of positive roots associated to s, d = 2d′, where d′ is defined
in Proposition 6.1.1. Assume that m and d are coprime. Fix a quantum coadjoint transformation g̃ ∈ G as in
Theorem 6.2.6 and denote ξ = g̃η ∈ Spec(Z0). Since according to (6.1.12) g̃ gives rise to an isomorphism of the
algebras Uη(g) and Uξ(g) it suffices to consider the case of the algebra Uξ(g).

Our first objective is to obtain root of unity analogues of Proposition 4.1.2 and Lemma 4.7.1. We start by
introducing the notions required for the formulations of these statements. For indeterminate q these notions were
introduced in Section 4.1.

Let χ be a character of Uξ(m−) defined in Proposition 6.2.2, Cχ the corresponding representation of Uξ(m−).
Denote by Qχ the induced left Uξ(g)–module, Qχ = Uξ(g) ⊗Uξ(m−) Cχ. Qχ can also be naturally regarded as a
Usε (g)–module via the natural projection Usε (g) = Uε(g)→ Uξ(g).

Let Clocε [G], Cs,locε [G∗], Csε[G∗], Bεn1...nc , Cloc11 [G]ε be the natural specializations at q
1
rd2 = ε

1
rd2 of ClocB [G],

Cs,locB [G∗], CsB[G∗], Bn1...nc , Cloc11 [G], respectively.
Define the twisted adjoint action of Us,resε (g) on Csε[G] by

(Ad0
sxf)(w) = f(ω0S

−1
s (Ad′sx(Ssω0w))) = f((ω0S

−1
s )(x1)wω0(x2)), f ∈ Csε[G], x, w ∈ Us,resε (g). (6.3.1)

Specializing isomorphism (3.2.14) at q
1
dr2 = ε

1
dr2 and twisting it by ω0S

−1
s we obtain a Us,resε (g)–module homo-

morphism
ϕε : Csε[G]→ Csε[G∗], f 7→ (id⊗ f)(id⊗ ω0S

−1
s )(Rs21Rs). (6.3.2)

Observe that the subalgebra in Us,resε (g) generated by f̃β , β ∈ ∆m+ is isomorphic to Uη1(m−). Therefore composing
homomorphism (6.3.2) with the natural projection Csε[G∗] ⊂ Usε (g)→ Uξ(g)→ Qχ we obtain a homomorphism of
Uη1(m−)–modules

φξ : Csε[G]→ Qχ, φξ(f) = ϕε(f)1, (6.3.3)

where Csε[G] is equipped with the restriction of action (6.3.1) to Uη1(m−) and Qχ with the action induced by the
adjoint action Ad of Uη1(m−) and 1 is the image of 1 ∈ Csε[G∗] in Qξ under the map Csε[G∗]→ Qξ.

Similarly, for any finite–dimensional Uξ(g)–module V and any w ∈ Vχ one can define a Uη1(m−)–module
homomorphism φwξ : Csε[G]→ V by

φwξ : Csε[G]→ V, φξ(f) = ϕε(f)w.

Proposition 6.3.1. The specialization I11
ε ⊂ Csε[G] of the left ideal I11

B ⊂ CsB[G] at q
1
dr2 = ε

1
dr2 lies in the kernel

of φwξ .

Moreover, if u is a highest weight vector in the specialization at q
1
dr2 = ε

1
dr2 of a finite rank indecomposable

representation Vλ of UresB (g) of highest weight λ and such that (u, u) = 1 then for any f ∈ Csε[G]

φwξ (f ⊗ (u, ·T−1
s u)) = ϕε(Ad0

s(ε
−(nd 1+s

1−sPh′+id)λ∨)(f))φwξ ((u, ·T−1
s u)), (6.3.4)

where Ad0
s(ε
−(nd 1+s

1−sPh′+id)λ∨)(f) is the adjoint action of the element

ε−(nd 1+s
1−sPh′+id)λ∨ = q−(nd 1+s

1−sPh′+id)λ∨ (mod (q
1
r2d − ε

1
r2d )), ε−(nd 1+s

1−sPh′+id)λ∨ ∈ Csε[G∗]

on f ∈ Csε[G].

One can define an action of an operator ε(id+s−1)(id−ndPh′ )λ
∨

on the image of Csε[G] in V by the formula

ε(id+s−1)(id−ndPh′ )λ
∨
φwξ (f) = ϕε(Ad0

s(ε
−(id+s−1)(id−ndPh′ )λ

∨
)(f))φwξ ((u, ·T−1

s u)), (6.3.5)

where Ad0
s(ε
−(id+s−1)(id−ndPh′ )λ

∨
)(f) is the adjoint action of the element

ε−(id+s−1)(id−ndPh′ )λ
∨

= q−(id+s−1)(id−ndPh′ )λ
∨

(mod (q
1
r2d − ε

1
r2d )), ε−(id+s−1)(id−ndPh′ )λ

∨
∈ Csε[G∗]
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on f ∈ Csε[G].
Using this operator formula (6.3.4) can be rewritten as follows

φwξ (f ⊗ (u, ·T−1
s u)) = ε(id+s−1)(id−ndPh′ )λ

∨
φwξ (Ad0

s(ε
(−nd 1+s

1−s s
−1Ph′+s

−1)λ∨)(f)). (6.3.6)

The operator ε(id+s−1)(id−ndPh′ )λ
∨

is invertible. More precisely, for some n0 ∈ N the action of (ε(id+s−1)(id−ndPh′ )λ
∨

)n0

coincides with the action of the element

εn0(id+s−1)(id−ndPh′ )λ
∨

= qn0(id+s−1)(id−ndPh′ )λ
∨

(mod (q
1
r2d − ε

1
r2d )), εn0(id+s−1)(id−ndPh′ )λ

∨
∈ Usε (h),

and hence (ε(id+s−1)(id−ndPh′ )λ
∨

)n0m = ξ(εn0m(id+s−1)(id−ndPh′ )λ
∨

) = cλ ∈ C∗.
φwξ extends to a Uη1(m−)–module homomorphism φwξ : Cs,locε [G]→ V ,

φwξ (f ⊗∆s
λ
−1) = ε(

(1−nd)s−1+(1+nd)s−2
1−s Ph′λ

∨,λ∨)
(
ε(id+s−1)(id−ndPh′ )λ

∨
)−1

φwξ (Ad0
s(ε

(nd 1+s
1−s s

−1Ph′−s
−1)λ∨)(f)),

(6.3.7)

and the specialization I11
ε
loc ⊂ Cs,locε [G] of I11

B
loc ⊂ Cs,locB [G] at q

1
dr2 = ε

1
dr2 belongs to the kernel of this homomor-

phism, so
φwξ : Cloc11 [G]ε → V.

Proof. In order to prove this proposition one can apply Proposition 4.1.1 for κ = nd and q
1
dr2 specialized to ε

1
dr2 ,

and the appropriately modified arguments before Proposition 4.1.2 and from the proof of Lemma 4.7.1.
Indeed, by the definition of IkB with κ = nd, ki = ci, i = 1, . . . , l′ for ci, i = 1, . . . , l′ used in the definition

of χ, the specialization of IkB at q
1
dr2 = ε

1
dr2 belongs to the annihilator of w, and hence by Proposition 4.1.1 the

specialization I11
ε ⊂ Csε[G] of the left ideal I11

B ⊂ CsB[G] at q
1
dr2 = ε

1
dr2 lies in the kernel of φwξ .

Formulas (6.3.4), (6.3.5) and (6.3.6) are obtained by specializing the corresponding formulas in Proposition

4.1.1 at q
1
dr2 = ε

1
dr2 with κ = nd.

The only essential difference is that the operator ε(id+s−1)(id−ndPh′ )λ
∨

is invertible and for some n0 ∈ N its

action coincides with the action of the element εn0(id+s−1)(id−ndPh′ )λ
∨
∈ Usε (h). This can be justified as follows.

Recall that elements γ∨i , i = 1, . . . , l′ form a linear basis of h′. Let γ∗i , i = 1, . . . , l′ be the basis of h′ dual
to γ∨i , i = 1, . . . , l′ with respect to the restriction of the bilinear form (·, ·) to h′. Since the numbers (γ∨i , γ

∨
j ) are

integer each element γ∗i has the form γ∗i =
∑l′

j=1mijγ
∨
j , where mij ∈ Q. Therefore Ph′λ

∨ =
∑l′

p=1(λ∨, γ∨p )γ∗p =∑l′

p,q=1(λ∨, γ∨p )mpqγ
∨
q belongs to the rational span of the set of simple coweights Yi, i = 1, . . . , l, and hence

(id + s−1)(id − ndPh′)λ
∨ belongs to the rational span of the set of simple coweights Yi, i = 1, . . . , l as well. We

conclude that there exists an integer n0 ∈ N such that n0(id+s−1)(id−ndPh′)λ
∨ belongs to the integer span of the

set of simple coweights Yi, i = 1, . . . , l, and qn0(id+s−1)(id−ndPh′ )λ
∨
∈ UsB(h). So if we define εn0(id+s−1)(id−ndPh′ )λ

∨
=

qn0(id+s−1)(id−ndPh′ )λ
∨

mod (q
1
r2d − ε

1
r2d ) then εn0(id+s−1)(id−ndPh′ )λ

∨
∈ Usε (h).

Now using (6.3.4) and (6.3.5) one immediately verifies that

(ε(id+s−1)(id−ndPh′ )λ
∨

)n0φwξ (f) = ϕε(Ad0
s(ε
−n0(id+s−1)(id−ndPh′ )λ

∨
)(f))φwξ ((u, ·T−1

s u)n0)

and that
φwξ ((u, ·T−1

s u)n0) = εn0(id+s−1)(id−ndPh′ )λ
∨
w.

Recalling the equivariance of ϕε with respect to the action of Us,resε (g) ⊃ Usε (h) we obtain from the last two
identities that

(ε(id+s−1)(id−ndPh′ )λ
∨

)n0φwξ (f) =

= εn0(id+s−1)(id−ndPh′ )λ
∨
ϕε(f)ε−n0(id+s−1)(id−ndPh′ )λ

∨
εn0(id+s−1)(id−ndPh′ )λ

∨
w =

= εn0(id+s−1)(id−ndPh′ )λ
∨
ϕε(f)w = εn0(id+s−1)(id−ndPh′ )λ

∨
φwξ (f).

Finally applying verbatim the arguments from the proof of Lemma 4.7.1 we deduce that φwξ extends to a

Uη1(m−)–module homomorphism φwξ : Cs,locε [G] → V in such a way that (6.3.7) holds, and the specialization

I11
ε
loc ⊂ Cs,locε [G] of I11

B
loc ⊂ Cs,locB [G] at q

1
dr2 = ε

1
dr2 belongs to the kernel of this homomorphism, so

φwξ : Cloc11 [G]ε → V.
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Note that due to invertibility of the operator ε(id+s−1)(id−ndPh′ )λ
∨

no localization of V , which appears in Lemma
4.7.1 for QB in the case of indeterminate q, is required.

Now we define root of unity counterparts of q-W–algebras. Let W s
ε,ξ(G) = EndUξ(g)(Qχ)opp be the algebra

of Uξ(g)–endomorphisms of Qχ with the opposite multiplication. The algebra W s
ε,ξ(G) is also called a q-W–

algebra associated to s ∈ W and to ξ ∈ Spec(Z0). Denote by Uξ(g) −mod the category of finite–dimensional left
Uξ(g)–modules and by W s

ε,ξ(G) − mod the category of finite–dimensional left W s
ε,ξ(G)–modules. Observe that if

V ∈ Uξ(g)−mod then the algebraW s
ε,ξ(G) naturally acts on the finite–dimensional space Vχ = HomUξ(m−)(Cχ, V ) =

HomUξ(g)(Qχ, V ) by compositions of homomorphisms.
The following theorem is a root of unity analogue of the Skryabin equivalence for equivariant modules over

quantum groups. This theorem uncovers some striking similarity between the structure of the category of finite–
dimensional representations of Uξ(g) and of the category of equivariant modules over a quantum group for generic
ε.

Theorem 6.3.2. Every module V ∈ Uξ(g)−mod is isomorphic to HomC(Uη1(m−), Vχ) as a right Uη1(m−)–module,
where the right action of Uη1(m−) on HomC(Uη1(m−), Vχ) is induced by the multiplication in Uη1(m−) from the left.
Qχ is isomorphic to HomC(Uη1(m−)) ⊗W s

ε,ξ(G) as a Uη1(m−)–W s
ε,ξ(G)–bimodule. In particular, V is Uη1(m−)–

injective, Ext•Uη1 (m−)(Cε, V ) = Vχ and the dimension of V is divisible by dim Uξ(m−) = m
1
2 dim Oπξ .

The functor E 7→ Qχ ⊗W s
ε,ξ(G) E establishes an equivalence of the category of finite–dimensional left W s

ε,ξ(G)–

modules and the category Uξ(g)−mod. The inverse equivalence is given by the functor V 7→ Vχ. In particular, the
latter functor is exact, and every finite–dimensional Uξ(g)–module is generated by Whittaker vectors.

Proof. Let V be an object in the category Uξ(g) −mod. Fix any linear map ρ : V → Vχ the restriction of which
to Vχ is the identity map, and let for any v ∈ V σε(v) : Uη1(m−) → Vχ be the C–linear homomorphism given by
σε(v)(x) = ρ(Adsx(v)), and we have a map σε : V → HomC(Uη1(m−), Vχ).

By definition σε is a homomorphism of right Uη1(m−)–modules, where the right action of Uη1(m−) on

HomC(Uη1(m−), Vχ)

is induced by multiplication in Uη1(m−) from the left.
We claim that σε is an isomorphism. Firstly, σε is injective for otherwise its kernel would contain a non–zero

Whittaker vector. Indeed by Lemma 6.2.5 the augmentation ideal of Uη1(m−) coincides with its Jacobson radical
which is nilpotent. Therefore its action on the kernel of σε is nilpotent, and hence the kernel, if it is non–trivial,
must contain a non–zero Whittaker vector annihilated by the augmentation ideal of Uη1(m−). But all non–zero
Whittaker vectors in V belong to Vχ and by the definition of σε their images in HomC(Uη1(m−), Vχ) are non–zero
homomorphisms non-vanishing at 1.

Next we show that σε is also surjective. Indeed, for n1, . . . , nc = 1, . . .m − 1 and any v ∈ Vχ the elements

vn1...nc = c′n1...nc(ε)
−1
φvξ(B

ε
n1...nd

) are well–defined, all c′n1...nc(ε) being non–zero by the choice of ε, and Corollary
4.6.8 for k1, . . . , kc = 1, . . .m− 1 implies

Ads(f
k1
β1
. . . fkcβc )vn1...nc =

{
v if np = kp for p = 1, . . . , c
0 if ki = ni, i = 1, . . . , p− 1 and kp > np for some p ∈ {1, . . . , c} ,

and hence

σε(v
n1...nc)(fk1β1

. . . fkcβc ) =

{
v if np = kp for p = 1, . . . , c
0 if ki = ni, i = 1, . . . , p− 1 and kp > np for some p ∈ {1, . . . , c} . (6.3.8)

Observe that the elements fk1β1
. . . fkcβc , k1, . . . , kc = 1, . . .m− 1 form a linear basis of Uη1(m−). Elements of this

basis are labeled by elements of the set Ncm, where Nm = {0, 1, . . . ,m − 1}. Introduce the lexicographic order on
this set, so that (k1, . . . , kc) > (n1, . . . , nc) if ki = ni for i = 1, . . . , p− 1 and kp > np for some p ∈ {1, . . . , c}.

Note that for any (k1, . . . , kc) ∈ Ncm the number of elements (n1, . . . , nc) ∈ Nc such that (k1, . . . , kc) >
(n1, . . . , nc) is finite.

Now let (k1, . . . , kc) ∈ Ncm, v ∈ Vχ. If for (n1, . . . , nc) ∈ Ncm such that (k1, . . . , kc) ≥ (n1, . . . , nc) we denote

σε(v
n1...nc
n1...nc ) = fn1...nc ,
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where for (k1, . . . , kc) ≥ (n1, . . . , nc) vn1...nc ∈ Vχ are defined by induction starting from vk1...kc = v as follows

vn1...nc = −
∑

(k1,...,kc)≥(n′1,...,n
′
c)>(n1,...,nc)

fn′1...n′c(f
n1

β1
. . . fncβc ), (6.3.9)

then using (6.3.8) one obtains

fn1...nc(f
n′1
β1
. . . f

n′c
βc

) =

{
vn1...nc if (n′1, . . . , n

′
c) = (n1, . . . , nc),

0 if (n′1, . . . , n
′
c) > (n1, . . . , nc)

.

From this property and from (6.3.9) one immediately checks that if we define

fk1...kcv =
∑

(k1,...,kc)≥(n1,...,nc)

fn1...nc

then for any (n1, . . . , nc) ∈ Ncm

fk1...kcv (fn1

β1
. . . fncβc ) =

{
v if (n1, . . . , nc) = (k1, . . . , kc),
0 if (n1, . . . , nc) 6= (k1, . . . , kc)

. (6.3.10)

Since the elements fk1β1
. . . fkcβc , k1, . . . , kc = 1, . . .m− 1 form a linear basis of Uη1(m−) (6.3.10) implies that the

elements fk1...kcv with (k1, . . . , kc) ∈ Ncm, v ∈ Vχ generate HomC(Uη1(m−), Vχ), and hence the elements σε(v
n1...nc)

with (n1, . . . , nc) ∈ Ncm, v ∈ Vχ generate HomC(Uη1(m−), Vχ) as well. Therefore σε is surjective, and the first part
of the theorem is proved.

Similarly to the case of generic ε (see last part of the proof of Theorem 5.2.1) one shows that Qχ is isomorphic
to HomC(Uη1(m−))⊗W s

ε,ξ(G) as a Uη1(m−)–W s
ε,ξ(G)–bimodule.

Let E be a finite–dimensional W s
ε,ξ(G)–module. Using the isomorphism Qχ ' HomC(Uη1(m−)) ⊗W s

ε,ξ(G) of
Uη1(m−)–W s

ε,ξ(G)–bimodules and the linear space isomorphismW s
ε,ξ(G) = EndUξ(g)(Qχ)opp = HomUξ(m−)(Cχ, Qχ) =

(Qχ)χ, one immediately deduces similarly to the case of generic ε in the proof of Theorem 5.2.1 that (Qχ ⊗W s
ε,ξ(G)

E)χ = E. Therefore to prove the second statement of the theorem it suffices to check that for any V ∈ Uξ(g)−mod
the canonical map f : Qχ ⊗W s

ε,ξ(G) Vχ → V is an isomorphism.

Indeed, f is injective because otherwise by Proposition 6.2.4 its kernel would contain a non–zero Whittaker
vector with respect to χ. But all Whittaker vectors of Qχ ⊗W s

ε,ξ(G) Vχ belong to the subspace 1 ⊗ Vχ, and the

restriction of f to 1⊗ Vχ induces an isomorphism of the spaces of Whittaker vectors of Qχ ⊗W s
ε,ξ(G) Vχ and of V .

In order to prove that f is surjective we consider the exact sequence

0→ Qχ ⊗W s
ε,ξ(G) Vχ → V →W → 0,

where W is the cokernel of f , and the corresponding long exact sequence of cohomology,

0→ Ext0
Uη1 (m−)(Cε, Qχ ⊗W s

ε,ξ(G) Vχ)→ Ext0
Uη1 (m−)(Cε, V )→ Ext0

Uη1 (m−)(Cε,W )→

→ Ext1
Uη1 (m−)(Cε, Qχ ⊗W s

ε,ξ(G) Vχ)→ . . . .

Now recall that f induces an isomorphism of the spaces of Whittaker vectors of Qχ ⊗W s
ε,ξ(G) Vχ and of V .

As we proved above the finite–dimensional Uξ(g)–module Qχ ⊗W s
ε,ξ(G) Vχ is injective over Uη1(m−), and hence

Ext1
Uη1 (m−)(Cε, Qχ ⊗W s

ε,ξ(G) Vχ) = 0. Therefore the initial part of the long exact cohomology sequence takes the

form
0→ Vχ → Vχ →Wχ → 0,

where the second map in the last sequence is an isomorphism. Using the last exact sequence we deduce that
Wχ = 0. But if W were non–trivial it would contain a non–zero Whittaker vector by Proposition 6.2.4. Thus
W = 0, and f is surjective. This completes the proof of the theorem.

By the previous theorem every module V ∈ Uξ(g)−mod is isomorphic to

HomC(Uη1(m−), Vχ) = HomC(Uη1(m−),C)⊗ Vχ
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as a right Uη1(m−)–module. In fact, one can show that the algebra Uη1(m−) is Frobenius, i.e. its left regular
representation is isomorphic to the dual of the right regular representation and its right regular representation is
isomorphic to the dual of the left regular representation. Thus as a right Uη1(m−)–module V is isomorphic to
Uη1(m−) ⊗ Vχ, where the right action of Uη1(m−) on Uη1(m−) ⊗ Vχ is induced by the multiplication in Uη1(m−)
from the right. In particular, V is Uη1(m−)–free.

More generally, we have the following proposition.

Proposition 6.3.3. For any character η : Z0 → C the algebra Uη(g) and its subalgebra Uη(m−) are Frobenius
algebras.

Proof. The proof of this proposition is parallel to the proof of a similar statement for Lie algebras over fields of
prime characteristic (see Proposition 1.2 in [41]) and for the restricted form of the quantum group in [74]. We shall
only briefly outline the main steps of the proof for Uη(g). The proof for Uη(m−) is similar.

The key ingredient of the proof is the De Concini-Kac filtration on Uε(g) ' Usε (g) defined as in Section 5.1.
For r, t ∈ ND introduce the element ur,t,t = ertf t, t ∈ Uε(h), where we use the notation of Lemma 2.8.2. Here
the generators fα, eα, α ∈ ∆+ and the ordered products of them are defined with the help of the normal ordering

of ∆+ associated to s. Define also the height of the element ur,t,t as follows ht (ur,t,t) =
∑D
i=1(ti + ri)ht βi ∈ N,

where ht βi is the height of the root βi. Introduce also the degree of ur,t,t by

d(ur,t,t) = (r1, . . . , rD, tD, . . . , t1,ht (ur,t,t)) ∈ N2D+1.

Equip N2D+1 with the total lexicographic order and for k ∈ N2D+1 denote by (Uε(g))k the span of elements ur,t,t
with d(ur,t,t) ≤ k in Uε(g). Then Proposition 1.7 in [23] implies that (Uε(g))k is a filtration of Uε(g) such that
the associated graded algebra is the associative algebra over C with generators eα, fα, α ∈ ∆+, L±1

i , i = 1, . . . l
subject to the relations

LiLj = LjLi, LiL
−1
i = L−1

i Li = 1, LieαL
−1
i = εα(Yi)eα, LifαL

−1
i = ε−α(Yi)fα,

eαfβ = εnd( 1+s
1−sPh′∗α,β)fβeα,

eαeβ = ε(α,β)+nd( 1+s
1−sPh′∗α,β)eβeα, α < β,

fαfβ = ε(α,β)+nd( 1+s
1−sPh′∗α,β)fβfα, α < β.

(6.3.11)

Such algebras are called semi–commutative.
By Theorem 61.3 in [31] it suffices to show that there is a non–degenerate bilinear form Bη : Uη(g)×Uη(g)→ C

which is associative in the sense that

Bη(ab, c) = Bη(a, bc), a, b, c ∈ Uη(g).

Consider the free Z0–basis of Uε(g) introduced in part (ii) of Proposition 6.1.3. This basis consists of the
monomials xI = frLset, I = (r1, . . . , rD, s1, . . . , sl, t1, . . . , tD) for which 0 ≤ rk, tk, si < m for i = 1, . . . , l,
k = 1, . . . , D. Set I ′ = (m − 1 − r1, . . . ,m − 1 − rD,m − 1 − s1, . . . ,m − 1 − sl,m − 1 − t1, . . . ,m − 1 − tD) and
P = (m− 1, . . . ,m− 1).

Let Φ : Uε(g)→ Z0 be the Z0–linear map defined on the basis xI of monomials by

Φ(xI) =

{
1 I = P
0 otherwise

.

Let x =
∑
I cIxI , cI ∈ Z0 be an element of Uε(g), and cK 6= 0 a coefficient such that d(xK) is maximal possible

with cK 6= 0 in the sum defining x.
Using the definition of the De Concini–Kac filtration and commutation relations (6.3.11) one can check that

Φ(xxK′) = axcK , where ax is a nonzero complex number (see [74], proof of Theorem 2.2, Assertion I for details).
Therefore the bilinear form Bη : Uη(g) × Uη(g) → C associated to the associative Z0–bilinear pairing B :

Uε(g)⊗Z0 Uε(g)→ Z0, B(x, y) = Φ(xy) is non–degenerate and associative. This completes the proof.

We restate the results of the discussion before the previous proposition as its corollary.

Corollary 6.3.4. As a right Uη1(m−)–module, every module V ∈ Uξ(g) − mod is isomorphic to Uη1(m−) ⊗ Vχ,
where the right action of Uη1(m−) on Uη1(m−)⊗ Vχ is induced by the multiplication in Uη1(m−) from the right. In
particular, V is Uη1(m−)–free.
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6.4 Properties of q-W–algebras associated to quantum groups at roots
of unity

In conclusion we study some further properties of q-W–algebras at roots of unity and of the module Qχ. We keep
the notation introduced in the previous section. First we prove the following lemma.

Lemma 6.4.1. The left Uξ(g)–module Qχ is projective in the category Uξ(g)−mod.

Proof. We have to show that the functor HomUξ(g)(Qχ, ·) is exact. Let V • be an exact complex of finite–dimensional
Uξ(g)–modules. Since by the previous theorem any object V of Uξ(g)−mod is isomorphic to HomC(Uη1(m−), Vχ)
as a right Uη1(m−)–module we have

V • ' HomC(Uη1(m−), V
•
),

where V
•

is an exact complex of vector spaces and the action of Uη1(m−) on HomC(Uη1(m−), V
•
) is induced by

multiplication from the left on Uη1(m−).
Now by the Frobenius reciprocity we have obvious isomorphisms of complexes,

HomUξ(g)(Qχ, V
•) ' HomUξ(g)(Qχ, V

•) = HomUξ(m−)(Cχ, V •) '

' HomUη1 (m−)(Cε,HomC(Uη1(m−), V
•
)) ' HomC(Uη1(m−)⊗Uη1 (m−) Cε, V

•
) = V

•
,

where the last complex is exact, and we used the fact that by Lemma 6.2.3 for any finite–dimensional Uξ(g)–module
V one has HomUξ(m−)(Cχ, V ) ' HomUη1 (m−)(Cε, V ). We conclude that the functor HomUξ(m−)(Qχ, ·) is exact.

The properties of q-W–algebras at roots of unity are summarized in the following proposition.

Proposition 6.4.2. Denote b = mdim m− = m
1
2 dim Oπξ . Then Qbχ ' Uξ(g) as left Uξ(g)–modules, Uξ(g) '

Matb(W
s
ε,ξ(G)) as algebras and Qχ ' (W s

ε,ξ(G)opp)b as right W s
ε,ξ(G)–modules.

Proof. Let Ei, i = 1, . . . , C be the simple finite–dimensional modules over the finite–dimensional algebra Uξ(g).
Denote by Pi the projective cover of Ei. Since by Theorem 6.3.2 the dimension of Ei is divisible by b we have
dim Ei = bri, ri ∈ N, where ri is the rank of Ei over Uη1(m−) equal to the dimension of the space of Whittaker
vectors in Ei. By Proposition 2.1 in [97]

Uξ(g) = Matb(EndUξ(g)(P )opp),

where P =
⊕C

i=1 P
ri
i . Therefore to prove the second statement of the proposition it suffices to show that P ' Qχ.

Since by the previous lemma Qχ is projective we only need to verify that

ri = dim HomUξ(g)(P,Ei) = dim HomUξ(g)(Qχ, Ei).

Indeed, by the Frobenius reciprocity we have

dim HomUξ(g)(Qχ, Ei) = dim HomUξ(m−)(Cχ, Ei) = ri.

This proves the second statement of the proposition. From Proposition 2.1 in [97] we also deduce that P b ' Uξ(g)
as left Uξ(g)–modules. Together with the isomorphism P ' Qχ this gives the first statement of the proposition.

Using results of Section 6.4 in [95] and the fact that Qχ is projective one can find an idempotent e ∈ Uξ(g) such
that Qχ ' Uξ(g)e as modules and (W s

ε,ξ(G))opp ' eUξ(g)e as algebras.
By the first two statements of this proposition one can also find idempotents e = e1, e2, . . . , eb ∈ Uξ(g) such

that e1 + . . .+eb = 1, eiej = 0 if i 6= j and eiUξ(g) ' eUξ(g) as right Uξ(g)–modules. Therefore eiUξ(g)e ' eUξ(g)e
as right eUξ(g)e–modules, and

Qχ ' Uξ(g)e =

b⊕
i=1

eiUξ(g)e ' (eUξ(g)e)b ' (W s
ε,ξ(G)opp)b

as right W s
ε,ξ(G)–modules. This completes the proof of the proposition
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Corollary 6.4.3. The algebra W s
ε,ξ(G) is finite–dimensional, and dim W s

ε,ξ(G) = mdim Σs .

Proof. By Proposition 3.4.5 2dim m− + dim Σs = dim G. Therefore by the definition of Qχ we have dim Qχ =
mdim G−dim m− = mdim m−+dim Σs . Finally from the last statement of the previous theorem one obtains that
dim W s

ε,ξ(G) = dim Qχ/m
dim m− = mdim Σs .

Using Proposition 6.1.1 we deduce from Proposition 6.4.2 the following statement on the structure of the algebra
Uη(g).

Corollary 6.4.4. Let η ∈ Spec(Z0) be an element such that πη ∈ GC, C ∈ C(W ) and s−1 ∈ C, d = 2d′, where d′

is defined in Proposition 6.1.1. Assume that m and d are coprime.
Then Uη(g) ' Matb(W

s
ε,ξ(G)), where ξ ∈ SpecZ0 is chosen as in Proposition 6.4.2, and b = m

1
2 dim Oπη .

Let L be a sheaf of algebras over SpecZ0 the stalk of which over η ∈ SpecZ0 is Uη(g). Assume that the conditions
imposed on m are satisfied for all Weyl group conjugacy classes in C(W ). Then the sheaf L is isomorphic to a
sheaf the stalk of which over any η ∈ SpecZ0 with πη ∈ G0 ∩GC, C ∈ C(W ) is Matb(W

s
ε,ξ(G)), where ξ ∈ SpecZ0

is chosen as in Proposition 6.4.2, s−1 ∈ C, b = m
1
2 dim Oπη .

6.5 Bibliographic comments

The study of representations of quantum groups at roots of unity was initiated in [23], where the quantum coadjoint
action was defined as well. This action was studied in detail in [25] where the De Concini–Kac–Procesi conjecture
on the dimensions of irreducible representations of quantum groups at roots of unity was formulated.

The results on quantum groups at roots of unity stated in Section 6.1 can be found in [23] and [25]. Proposition
6.1.1 first appeared in Appendix A to [118]. The statements of Proposition 6.1.2 can be found in [23], Corollary
3.3, [25], Theorems 3.5, 7.6 and Proposition 4.5. Proposition 6.1.4 is Corollary 4.7 in [25], and the statements of
Proposition 6.1.5 appear in Propositions 3.4, 3.5, [23], and in Proposition 6.1 and Theorem 6.6 in [25]. Finite–
dimensional quotients Uη(g) were introduced in [24].

The notions of Whittaker vectors for representations of quantum groups at roots of unity, of the algebras
Uη1(m−), and of their actions on finite–dimensional representations of Uη(g) were introduced in [117], and the
exposition in Section 6.2 follows [117] as well.

In the representation theory of Lie algebras in prime characteristic there is a conjecture similar to the De
Concini–Kac–Procesi conjecture. It is called the Kac–Weisfeiler conjecture. Our proof of the De Concini–Kac–
Procesi conjecture is conceptually similar to the proof of the Kac–Weisfeiler conjecture given in [120] which is in
turn a straightforward prime characteristic generalization of the proof of the Skryabin equivalence for reductive Lie
algebras over algebraically closed fields of zero characteristic suggested in the Appendix to [96]. All these proofs
go back to the original Kostant’s idea on the proof of the classification theorem for Whittaker representations of
complex semisimple Lie algebras in [72], the proof of the Skryabin equivalence in [96] being a significantly refined
and simplified version of the proof of the main Theorem 3.3 in [72].

The properties of q-W–algeras at roots of unity are similar to those of W–algebras associated to semisimple Lie
algebras in prime characteristic proved in [97], Proposition 6.4.2 being an analogue of Theorem 2.3 in [97].
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Appendix 1. Normal orderings of root systems compatible with invo-
lutions in Weyl groups

By Theorem A in [101] every involution w in the Weyl group W of the pair (g, h) is the longest element of the
Weyl group of a Levi subalgebra in g with respect to some system of positive roots, and w acts by multiplication
by −1 in the Cartan subalgebra hw ⊂ h of the semisimple part mw of that Levi subalgebra. By Lemma 5 in [18] the
involution w can also be expressed as a product of dim hw reflections from the Weyl group of the pair (mw, hw),
with respect to mutually orthogonal roots, w = sγ1 . . . sγn , and the roots γ1, . . . , γn span the subalgebra hw.

If w is the longest element in the Weyl group of the pair (mw, hw) with respect to some system of positive
roots, where mw is a simple Lie algebra and hw is a Cartan subalgebra of mw, then w is an involution acting by
multiplication by −1 in hw if and only if mw is of one of the following types: A1, Bl, Cl, D2n, E7, E8, F4, G2.

Fix a system of positive roots ∆+(mw, hw) of the pair (mw, hw). Let w = sγ1 . . . sγn be a representation of w
as a product of dim hw reflections from the Weyl group of the pair (mw, hw), with respect to mutually orthogonal
positive roots. A normal ordering of ∆+(mw, hw) is called compatible with the decomposition w = sγ1 . . . sγn if it
is of the following form

β1, . . . , β p−n
2
, γ1, . . . , γ2, . . . , γ3, . . . , γn,

where p is the number of positive roots, and for any two positive roots α, β ∈ ∆+(mw, hw) such that γ1 ≤ α < β the
sum α+ β cannot be represented as a linear combination

∑q
k=1 ckγik , where ck ∈ N and α < γi1 < . . . < γik < β.

Note that from the definition it also follows that

|[β1, β p−n
2

]| = p− n
2

, |[γ1, . . . , γn]| = p+ n

2
. (A1.1)

Existence of such compatible normal orderings is checked straightforwardly for all simple Lie algebras of types
A1, Bl, Cl, D2n, E7, E8, F4 and G2. In case A1 this is obvious since there is only one positive root. In the other cases
normal orderings defined by the properties described below for each of the types Bl, Cl, D2n, E7, E8, F4, G2 exist
and are compatible with decompositions of nontrivial involutions in Weyl group. We use the Bourbaki notation for
the systems of positive and simple roots (see [10]).

• Bl

Dynkin diagram:

α1 α2 αl−2 αl−1 αl

• • · · · • • •

Simple roots: α1 = ε1 − ε2, α2 = ε2 − ε3, . . . , αl−1 = εl−1 − εl, αl = εl.

Positive roots: εi (1 ≤ i ≤ l), εi − εj , εi + εj (1 ≤ i < j ≤ l).
The longest element of the Weyl group expressed as a product of dim hw reflections with respect to mutually
orthogonal roots: w = sε1 . . . sεl .

Normal ordering of ∆+(mw, hw) compatible with expression w = sε1 . . . sεl :

ε1 − ε2, . . . , εl−1 − εl, ε1, . . . , ε2, . . . , εl,
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where the roots εi − εj (1 ≤ i < j ≤ l) forming the subsystem ∆+(Al−1) ⊂ ∆+(Bl) are situated to the left
from ε1, and the roots εi + εj (1 ≤ i < j ≤ l) are situated to the right from ε1.

• Cl

Dynkin diagram:

α1 α2 αl−2 αl−1 αl

• • · · · • • •

Simple roots: α1 = ε1 − ε2, α2 = ε2 − ε3, . . . , αl−1 = εl−1 − εl, αl = 2εl.

Positive roots: 2εi (1 ≤ i ≤ l), εi − εj , εi + εj (1 ≤ i < j ≤ l).
The longest element of the Weyl group expressed as a product of dim hw reflections with respect to mutually
orthogonal roots: w = s2ε1 . . . s2εl .

Normal ordering of ∆+(mw, hw) compatible with expression w = s2ε1 . . . s2εl :

ε1 − ε2, . . . , εl−1 − εl, 2ε1, . . . , 2ε2, . . . , 2εl,

where the roots εi − εj (1 ≤ i < j ≤ l) forming the subsystem ∆+(Al−1) ⊂ ∆+(Cl) are situated to the left
from 2ε1, and the roots εi + εj (1 ≤ i < j ≤ l) are situated to the right from 2ε1.

• D2n

Dynkin diagram:

α2n−1

•

α1 α2 α2n−3 α2n−2

• • · · · • •

•

α2n

Simple roots: α1 = ε1 − ε2, α2 = ε2 − ε3, . . . , α2n−1 = ε2n−1 − ε2n, α2n = ε2n−1 + ε2n.

Positive roots: εi − εj , εi + εj (1 ≤ i < j ≤ 2n).

The longest element of the Weyl group expressed as a product of dim hw reflections with respect to mutually
orthogonal roots:

w = sε1−ε2sε1+ε2 . . . sε2n−1−ε2nsε2n−1+ε2n .

Normal ordering of ∆+(mw, hw) compatible with expression

w = sε1−ε2sε1+ε2 . . . sε2n−1−ε2nsε2n−1+ε2n :

ε2 − ε3, ε4 − ε5, . . . , ε2n−2 − ε2n−1, . . . , ε1 − ε2, ε3 − ε4, . . . , ε2n−1 − ε2n−2,

ε1 + ε2, . . . , ε3 + ε4, . . . , ε2n−1 + ε2n,

where the roots εi − εj (1 ≤ i < j ≤ l) forming the subsystem ∆+(Al−1) ⊂ ∆+(Cl) are situated to the left
from ε1 + ε2, and the roots εi + εj (1 ≤ i < j ≤ l) are situated to the right from ε1 + ε2.
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• E7

Dynkin diagram:

α1 α3 α4 α5 α6 α7

• • • • • •

•

α2

Simple roots: α1 = 1
2 (ε1 + ε8)− 1

2 (ε2 + ε3 + ε4 + ε5 + ε6 + ε7), α2 = ε1 + ε2, α3 = ε2 − ε1, α4 = ε3 − ε2, α5 =
ε4 − ε3, α6 = ε5 − ε4, α7 = ε6 − ε5.

Positive roots: ±εi + εj (1 ≤ i < j ≤ 6), ε8 − ε7, 1
2 (ε8 − ε7 +

∑6
i=1(−1)ν(i)εi) with

∑6
i=1 ν(i) odd.

The longest element of the Weyl group expressed as a product of dim hw reflections with respect to mutually
orthogonal roots:

w = sε2−ε1sε2+ε1sε4−ε3sε4+ε3sε6−ε5sε6+ε5sε8−ε7 .

Normal ordering of ∆+(mw, hw) compatible with expression

w = sε2−ε1sε2+ε1sε4−ε3sε4+ε3sε6−ε5sε6+ε5sε8−ε7 :

α1, ε3 − ε2, ε5 − ε4, . . . , ε8 − ε7, . . . , ε2 − ε1, ε4 − ε3, ε6 − ε5, . . . ,

ε6 + ε5, . . . , ε4 + ε3, . . . , ε2 + ε1,

where the roots ±εi + εj (1 ≤ i < j ≤ 6) forming the subsystem ∆+(D6) ⊂ ∆+(E7) are placed as in case of
the compatible normal ordering of the system ∆+(D6), the only roots from the subsystem ∆+(A5) ⊂ ∆+(D6)
situated to the right from the maximal root ε8−ε7 are ε2−ε1, ε4−ε3, ε6−ε5, the roots εi+εj (1 ≤ i < j ≤ 6)
are situated to the right from ε6 + ε5, and a half of the positive roots which do not belong to the subsystem
∆+(D6) ⊂ ∆+(E7) are situated to the left from ε8 − ε7 and the other half of those roots are situated to the
right from ε8 − ε7.

• E8

Dynkin diagram:

α1 α3 α4 α5 α6 α7 α8

• • • • • • •

•

α2

Simple roots: α1 = 1
2 (ε1 + ε8)− 1

2 (ε2 + ε3 + ε4 + ε5 + ε6 + ε7), α2 = ε1 + ε2, α3 = ε2 − ε1, α4 = ε3 − ε2, α5 =
ε4 − ε3, α6 = ε5 − ε4, α7 = ε6 − ε5, α8 = ε7 − ε6.

Positive roots: ±εi + εj (1 ≤ i < j ≤ 8), 1
2 (ε8 +

∑7
i=1(−1)ν(i)εi) with

∑7
i=1 ν(i) even.

The longest element of the Weyl group expressed as a product of dim hw reflections with respect to mutually
orthogonal roots:

w = sε2−ε1sε2+ε1sε4−ε3sε4+ε3sε6−ε5sε6+ε5sε8−ε7sε8+ε7 .

Normal ordering of ∆+(mw, hw) compatible with expression

w = sε2−ε1sε2+ε1sε4−ε3sε4+ε3sε6−ε5sε6+ε5sε8−ε7sε8−ε7 :
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α1, ε3 − ε2, ε5 − ε4, ε7 − ε6, . . . , ε2 − ε1, ε4 − ε3, ε6 − ε5,

ε8 − ε7, . . . , ε8 + ε7, . . . , ε6 + ε5, . . . , ε4 + ε3, . . . , ε2 + ε1,

where the roots ±εi + εj (1 ≤ i < j ≤ 8) forming the subsystem ∆+(D8) ⊂ ∆+(E8) are placed as in case
of the compatible normal ordering of the system ∆+(D8), the roots εi + εj (1 ≤ i < j ≤ 8) are situated to
the right from ε8 + ε7; the positive roots which do not belong to the subsystem ∆+(D8) ⊂ ∆+(E8) can be
split into two groups: the roots from the first group contain 1

2 (ε8 + ε7) in their decompositions with respect
to the basis εi, i = 1, . . . , 8, and the roots from the second group contain 1

2 (ε8 − ε7) in their decompositions
with respect to the basis εi, i = 1, . . . , 8; a half of the roots from the first group are situated to the left from
ε2 − ε1 and the other half of those roots are situated to the right from ε8 + ε7; a half of the roots from the
second group are situated to the left from ε2 − ε1 and the other half of those roots are situated to the right
from ε8 − ε7.

• F4

Dynkin diagram:

α1 α2 α3 α4

• • • •

Simple roots: α1 = ε2 − ε3, α2 = ε3 − ε4, α3 = ε4, α4 = 1
2 (ε1 − ε2 − ε3 − ε4).

Positive roots: εi (1 ≤ i ≤ 4), εi − εj , εi + εj (1 ≤ i < j ≤ 4), 1
2 (ε1 ± ε2 ± ε3 ± ε4).

The longest element of the Weyl group expressed as a product of dim hw reflections with respect to mutually
orthogonal roots: w = sε1sε2sε3sε4 .

Normal ordering of ∆+(mw, hw) compatible with expression w = sε1sε2sε3sε4 :

α4, ε1 − ε2, . . . , ε3 − ε4, . . . , ε1, . . . , ε2, . . . , ε4,

where the roots εi ± εj (1 ≤ i < j ≤ l) forming the subsystem ∆+(B4) ⊂ ∆+(F4) are situated as in case of
B4, and a half of the positive roots which do not belong to the subsystem ∆+(B4) ⊂ ∆+(F4) are situated to
the left from ε1 and the other half of those roots are situated to the right from ε1.

• G2

Dynkin diagram:

α1 α2

• •

Simple roots: α1 = ε1 − ε2, α2 = −2ε1 + ε2 + ε3.

Positive roots: α1, α1 + α2, 2α1 + α2, 3α1 + α2, 3α1 + 2α2, α2.

The longest element of the Weyl group expressed as a product of dim hw reflections with respect to mutually
orthogonal roots: w = sα1

s3α1+2α2
.

Normal ordering of ∆+(mw, hw) compatible with expression w = sα1s3α1+2α2 :

α2, α1 + α2, 3α1 + 2α2, 2α1 + α2, 3α1 + α2, α1.
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Appendix 2. Transversal slices for simple exceptional algebraic groups.

In this appendix, for simple exceptional algebraic groups we present the data related to the varieties Σk,s defined
in Theorem 1.5.2. Let Gk be a connected simple algebraic group of an exceptional type over an algebraically closed
field k, and O ∈ N̂ (W ). Let Hk be a maximal torus of Gk, W the Weyl group of the pair (Gk, Hk), and s ∈W an
element from the conjugacy class ΨW (O).

Let ∆ be the root system of the pair (Gk, Hk) and ∆s
+ the system of positive roots in ∆ associated to s and

defined in Section 1.2 with the help of decomposition (1.2.14) where the subspaces hi are ordered in such a way
that in sum (1.2.14) h0 is the linear subspace of hR fixed by the action of s, the one–dimensional subspaces hi
on which s1 acts by multiplication by −1 are immediately preceding h0 in (1.2.14), and if hi = hkλ, hj = hlµ and
0 ≤ λ < µ < 1 then i < j. We also use a decomposition s = s1s2 for which the direct sum

⊕r
k=0,ik>0 hik of the

one–dimensional subspaces hik on which s1 acts by multiplication by −1 is trivial. Such decomposition always
exists. As a consequence condition (1.6.8) is satisfied. Let Σk,s be the corresponding variety defined in Proposition
1.3.4 (ii).

Then straightforward calculation shows that

dim ZGp(n) = dim Σk,s

for any n ∈ O ∈ N (Gp) ⊂ N̂ (W ). The numbers dim ZGp(n) can be found in [75], Chapter 22 (note, however,
that the notation in [75] for some classes is different from ours; we follow [85, 123]). The numbers dim Σk,s are
contained in the tables below. These two numbers coincide in all cases. The tables below contain also the following
information for each O ∈ N̂ (W ):
– The Weyl group conjugacy class ΨW (O) which can be found in [85];
– The two involutions s1 and s2 in the decomposition s = s1s2 ∈ ΨW (O); they are represented by sets of natural
numbers which are the numbers of roots appearing in decompositions s1 = sγ1 . . . sγn , s2 = sγn+1

. . . sγl′ , where
the system of positive roots ∆s

+ is chosen as in Theorem 1.5.2, and the numeration of positive roots is given in
Appendix 3;
– The dimension of the fixed point space h0 for the action of s on h;
– The number |∆0| of roots fixed by s;
– The type of the root system ∆0 fixed by s;
– The Dynkin diagram Γs0 of ∆0, where the numbers at the vertices of Γs0 are the numbers of simple roots in ∆s

+

which appear in Γs0; the numeration of simple roots is given in Appendix 3;
– The length l(s) of s with respect to the system of simple roots in ∆s

+;
– dim Σk,s = dim h0 + |∆0|+ l(s);

– The lowest common multiple d′ of the denominators of the numbers 1
dj

(
1+s
1−sPh′∗αi, αj

)
, where i, j = 1, . . . , l;

G2.

O ΨW (O) s1 s2 dim h0 |∆0| ∆0 Γs0 l(s) dim Σk,s d′

A1 A1 – 6 1 2 A1 1

•
5 8 1

(Ã1)3 Ã1 – 4 1 2 A1 2

•
5 8 1

Ã1 A1 + Ã1 –
1
6

0 0 – – 6 6 1

G2(a1) A2 5 2 0 0 – – 4 4 3

G2 G2 1 2 0 0 – – 2 2 1
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F4.

O ΨW (O) s1 s2 dim h0 |∆0| ∆0 Γs0 l(s) dim Σk,s d′

A1 A1 – 24 3 18 C3 4 3 2

• • •
15 36 1

(Ã1)2 Ã1 – 21 3 18 B3 1 2 3

• • •
15 36 1

Ã1 2A1 –
16
24

2 8 B2 2 3

• •
20 30 1

A1 + Ã1 4A1 –

5
11
18
23

0 0 – – 24 24 1

A2 A2 23 1 2 6 A2 3 4

• •
14 22 3

Ã2 Ã2 19 4 2 6 A2 1 2

• •
14 22 3

(B2)2 B2 16 8 2 8 B2 2 3

• •
10 20 2

A2 + Ã1 A2 + Ã1 23
1
7

1 0 – – 17 18 3

(Ã2 +A1)2 Ã2 +A1 19
4
5

1 0 – – 17 18 3

Ã2 +A1 A2 + Ã2
23
3

1
4

0 0 – – 16 16 3

B2 A3 16
1
14

1 2 A1 3

•
13 16 2

(C3(a1))2 B2 +A1 16
8
9

1 2 A1 2

•
13 16 2

C3(a1) A3 + Ã1 16
5
6
11

0 0 – – 14 14 2

F4(a3) D4(a1)
16
2

5
11

0 0 – – 12 12 1

B3 D4 1
16
9
2

0 0 – – 10 10 1

C3 C3 +A1 4
1
3
14

0 0 – – 10 10 1

F4(a2) F4(a1)
1
3

9
10

0 0 – – 8 8 1

F4(a1) B4
9
2

1
4

0 0 – – 6 6 1

F4 F4
1
3

2
4

0 0 – – 4 4 1
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E6.

O ΨW (O) s1 s2 dim h0 |∆0| ∆0 Γs0 l(s) dim Σk,s d′

A1 A1 – 36 5 30 A5 1 3 4 5 6

• • • • •
21 56 1

2A1 2A1 –
23
36

4 12 A3 3 4 5

• • •
30 46 1

3A1 4A1 –

8
19
27
35

2 0 – – 36 38 1

A2 A2 35 2 4 12 2A2 1 3

• •
5 6

• •
20 36 3

A2 +A1 A2 +A1 35
2
7

3 6 A2 5 6

• •
23 32 3

2A2 2A2
1
35

2
3

2 6 A2 5 6

• •
22 30 3

A2 + 2A1 A2 + 2A1 35
2
7
11

2 0 – – 26 28 3

A3 A3 23
2
24

3 4 2A1 3 5

• •
19 26 2

2A2 +A1 3A2

1
6
35

2
3
5

0 0 – – 24 24 3

A3 +A1 A3 + 2A1 23

2
3
5
24

1 0 – – 21 22 2

D4(a1) D4(a1)
4
23

8
19

2 0 – – 18 20 2

A4 A4
21
24

1
2

2 2 A1 5

•
14 18 5

D4 D4 2
23
4
15

2 0 – – 16 18 1

A4 +A1 A4 +A1
21
24

1
2
5

1 0 – – 15 16 5

A5 A5 +A1
1
6

8
9
10
19

0 0 – – 14 14 1

D5(a1) D5(a1)
2
7

15
12
16

1 0 – – 13 14 2

A5 +A1 E6(a2)
1
2
6

9
10
19

0 0 – – 12 12 1
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O ΨW (O) s1 s2 dim h0 |∆0| ∆0 Γs0 l(s) dim Σk,s d′

D5 D5
4
15

1
2
6

1 0 – – 9 10 2

E6(a1) E6(a1)
6
8
9

1
2
5

0 0 – – 8 8 1

E6 E6

1
4
6

2
3
5

0 0 – – 6 6 1

E7.

O ΨW (O) s1 s2 dim h0 |∆0| ∆0 Γs0 l(s) dim Σk,s d′

A1 A1 – 63 6 60 D6 3

•
7 6 5 4

• • • •
•
2

33 99 1

2A1 2A1 –
49
63

5 26 A1 +D4 3

•
7 2 4

• • •
•
5

50 81 1

(3A1)′′ (3A1)′ –
7
49
63

4 24 D4 3

•
2 4

• •
•
5

51 79 1

(3A1)′ (4A1)′′ –

19
40
41
63

3 6 3A1 2 3 6

• • •
60 69 1

A2 A2 62 1 5 30 A5 2 4 5 6 7

• • • • •
32 67 3

4A1 7A1 –

21
62
33
44
18
19
16

0 0 – – 63 63 1

A2 +A1 A2 +A1 62
1
30

4 12 A3 4 5 6

• • •
41 57 3

A2 + 2A1 A2 + 2A1 62
1
18
30

3 2 A1 5

•
46 51 3
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O ΨW (O) s1 s2 dim h0 |∆0| ∆0 Γs0 l(s) dim Σk,s d′

A2 + 3A1 A2 + 3A1 62

1
5
18
30

2 0 – – 47 49 3

2A2 2A2
23
62

1
7

3 6 A2 4 5

• •
40 49 3

A3 A3 49
1
37

4 14 A1 +A3 7 2 4 5

• • • •
31 49 2

(A3 +A1)′′ (A3 +A1)′ 49
1
7
37

3 12 A3 2 4 5

• • •
32 47 2

2A2 +A1 3A2

5
25
62

1
2
6

1 0 – – 42 43 3

(A3 +A1)′ (A3 + 2A1)′′ 49

7
14
26
28

2 2 A1 3

•
37 41 2

A3 + 2A1 A3 + 3A1 49

1
4
7
16
37

1 0 – – 38 39 2

D4(a1) D4(a1)
3
49

8
32

3 6 3A1 2 5 7

• • •
30 39 2

D4(a1) +A1 D4(a1) +A1
3
49

7
8
32

2 4 2A1 2 5

• •
31 37 2

D4 D4 1
3
28
49

3 6 3A1 2 5 7

• • •
28 37 1

(A3 +A2)2 A3 +A2
22
49

4
20
21

2 2 A1 7

•
33 37 6

A3 +A2 D4(a1) + 2A1
3
49

2
7
8
32

1 2 A1 5

•
32 35 2

A3 +A2 +A1 2A3 +A1
3
49

7
9
11
14
26

0 0 – – 33 33 2

A4 A4
37
45

1
6

3 6 A2 2 4

• •
24 33 5

A′′5 A′5
6
40

7
20
21

2 6 A2 3 4

• •
23 31 3
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O ΨW (O) s1 s2 dim h0 |∆0| ∆0 Γs0 l(s) dim Σk,s d′

D4 +A1 D4 + 3A1 1

5
18
28
29
30
31

0 0 – – 31 31 1

A4 +A1 A4 +A1
37
45

1
6
9

2 0 – – 27 29 5

A4 +A2 A4 +A2

4
37
45

1
2
6

1 0 – – 26 27 15

D5(a1) D5(a1)
1
18

24
28
36

2 2 A1 5

•
23 27 2

(A5 +A1)′′ A5 +A2

22
23
24

4
7
20
21

0 0 – – 25 25 3

A′5 (A5 +A1)′′
6
19

8
15
17
32

1 0 – – 24 25 3

D5(a1) +A1 D5(a1) +A1
1
18

5
24
28
36

1 0 – – 24 25 2

D6(a2) D6(a2) +A1
1
2

4
6
15
31
40

0 0 – – 23 23 1

(A5 +A1)′ E6(a2)
1
4
16

28
29
31

1 0 – – 22 23 3

D5 D5
3
28

1
6
19

2 2 A1 2

•
17 21 2

D6(a2) +A1 E7(a4)
1
4
7

12
22
31
35

0 0 – – 21 21 1

D5 +A1 D5 +A1
3
28

1
2
6
19

1 0 – – 18 19 2

A6 A6

11
19
26

6
9
10

1 0 – – 18 19 7

D6(a1) D6(a1)
3
5
28

1
12
13

1 2 A1 2

•
16 19 1
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O ΨW (O) s1 s2 dim h0 |∆0| ∆0 Γs0 l(s) dim Σk,s d′

D6(a1) +A1 A7

1
12
13

9
10
11
22

0 0 – – 17 17 1

D6 D6 +A1
1
6

2
3
5
7
28

0 0 – – 15 15 1

E6(a1) E6(a1)
8
19
22

1
4
6

1 0 – – 14 15 3

E6 E6

3
6
19

1
9
11

1 0 – – 12 13 3

D6 +A1 E7(a3)
1
2
6

7
10
11
22

0 0 – – 13 13 1

E7(a2) E7(a2)
1
4
16

2
3
12
13

0 0 – – 11 11 1

E7(a1) E7(a1)
6
9
10

1
2
5
7

0 0 – – 9 9 1

E7 E7

1
4
6

2
3
5
7

0 0 – – 7 7 1

E8.

O ΨW (O) s1 s2 dim h0 |∆0| ∆0 Γs0 l(s) dim Σk,s d′

A1 A1 – 120 7 126 E7 1 3 4 5 6 7

• • • • • •

•
2

57 190 1

2A1 2A1 –
97
120

6 60 D6 2

•
7 6 5 4

• • • •
•
3

90 156 1
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O ΨW (O) s1 s2 dim h0 |∆0| ∆0 Γs0 l(s) dim Σk,s d′

3A1 (4A1)′ –

7
61
97
120

4 24 D4 3

•
2 4

• •
•
5

108 136 1

A2 A2 119 8 6 72 E6 1 3 4 5 6

• • • • •

•
2

56 134 3

4A1 8A1 –

9
13
19
50
67
69
83
119

0 0 – – 120 120 1

A2 +A1 A2 +A1 119
8
69

5 30 A5 1 3 4 5 6

• • • • •
77 112 3

A2 + 2A1 A2 + 2A1 119
8
31
69

4 12 A3 3 4 5

• • •
86 102 3

A3 A3 97
8
74

5 40 D5 2

•
6 5 4

• • •
•
3

55 100 2

A2 + 3A1 A2 + 4A1 119

2
8
32
45
57

2 0 – – 92 94 3

2A2 2A2
63
119

2
8

4 12 2A2 1 3 5 6

• • • •
76 92 3

2A2 +A1 3A2

6
63
119

2
5
8

2 6 A2 1 3

• •
78 86 3

A3 +A1 (A3 + 2A1)′ 97

7
22
61
62

3 12 A3 2 4 3

• • •
69 84 2

D4(a1) D4(a1)
7
97

15
68

4 24 D4 3

•
2 4

• •
•
5

54 82 2
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O ΨW (O) s1 s2 dim h0 |∆0| ∆0 Γs0 l(s) dim Σk,s d′

D4 D4 8
7
61
97

4 24 D4 3

•
2 4

• •
•
5

52 80 1

2A2 + 2A1 4A2

1
6
63
119

2
3
5
8

0 0 – – 80 80 3

A3 + 2A1 A3 + 4A1 97

5
7
32
36
50
61

1 0 – – 75 76 2

D4(a1) +A1 D4(a1) +A1
7
97

15
32
68

3 6 3A1 2 3 5

• • •
63 72 2

(A3 +A2)2 A3 +A2
55
97

6
29
56

3 4 2A1 2 3

• •
65 72 6

A3 +A2 (2A3)′
7
97

13
22
40
62

2 4 2A1 2 3

• •
64 70 2

A4 A4
74
93

1
8

4 20 A4 2 4 5 6

• • • •
44 68 5

A3 +A2 +A1 2A3 + 2A1
7
97

5
26
27
32
36
50

0 0 – – 66 66 2

D4(a1) +A2 D4(a1) +A2

7
25
97

4
15
68

2 0 – – 62 64 6

D4 +A1 D4 + 4A1 8

9
13
25
35
59
63
80

0 0 – – 64 64 1

2A3 2D4(a1)

2
3
7
97

11
12
15
68

0 0 – – 60 60 1

A4 +A1 A4 +A1
74
93

1
8
26

3 6 A2 4 5

• •
51 60 5
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O ΨW (O) s1 s2 dim h0 |∆0| ∆0 Γs0 l(s) dim Σk,s d′

D5(a1) D5(a1)
8
31

39
61
75

3 12 A3 3 4 5

• • •
43 58 2

(D4 +A2)2 D4 +A2
8
63

2
49
59
71

2 0 – – 54 56 3

A4 + 2A1 A4 + 2A1
74
93

1
8
12
26

2 0 – – 54 56 5

A4 +A2 A4 +A2

18
74
93

1
6
8

2 2 A1 4

•
50 54 15

A4 +A2 +A1 A4 +A2 +A1

18
74
93

1
4
6
8

1 0 – – 51 52 15

A5 (A5 +A1)′
1
44

15
34
35
68

2 6 A2 4 5

• •
44 52 3

D5(a1) +A1 D5(a1) +A1
8
31

19
39
61
75

2 2 A1 4

•
48 52 2

D4 +A2 D4 +A3
8
31

2
32
53
61
64

1 0 – – 49 50 2

(A5 +A1)′′ E6(a2)
1
8
44

34
35
68

2 6 A2 4 5

• •
42 50 3

D5 D5
7
61

1
8
44

3 12 A3 2 4 5

• • •
33 48 2

A4 +A3 2A4

2
5
74
93

1
4
6
8

0 0 – – 48 48 5

D5(a1) +A2 D5(a1) +A3

4
8
31

3
5
39
61
75

0 0 – – 46 46 2

(A5 +A1)′ A5 +A2 +A1

23
24
25

1
15
34
35
68

0 0 – – 46 46 3
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O ΨW (O) s1 s2 dim h0 |∆0| ∆0 Γs0 l(s) dim Σk,s d′

D6(a2) 2D4
2
8

11
12
31
53
61
64

0 0 – – 44 44 1

A5 + 2A1 E6(a2) +A2

1
5
8
44

4
34
35
68

0 0 – – 44 44 3

A5 +A2 E7(a4) +A1

2
5
8

9
19
41
59
76

0 0 – – 42 42 1

D5 +A1 D5 + 2A1
7
61

3
8
16
30
32

1 0 – – 39 40 2

2A4 E8(a8)

1
2
6
8

19
41
59
76

0 0 – – 40 40 1

D6(a1) D6(a1)
3
7
61

8
9
37

2 4 2A1 2 5

• •
32 38 2

A6 A6

40
44
62

1
13
14

2 2 A1 2

•
34 38 7

A6 +A1 A6 +A1

40
44
62

1
2
13
14

1 0 – – 35 36 7

D6(a1) +A1 A′7

8
9
37

20
33
34
35

1 2 A1 5

•
33 36 2

(D5 +A2)2 D5 +A2

7
25
61

4
8
23
24

1 0 – – 35 36 6

D5 +A2 A7 +A1

8
9
37

5
20
33
34
35

0 0 – – 34 34 2

E6(a1) E6(a1)
15
44
55

1
6
8

2 6 A2 2 4

• •
26 34 3
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O ΨW (O) s1 s2 dim h0 |∆0| ∆0 Γs0 l(s) dim Σk,s d′

D6 D6 + 2A1
1
8

4
14
17
26
27
55

0 0 – – 32 32 1

D7(a2) D7(a2)
4
7
61

3
8
16
30

1 0 – – 31 32 2

E6 E6

1
7
44

8
26
27

2 6 A2 4 5

• •
24 32 3

(A7)3 A′′7

24
38
48

10
11
14
15

1 0 – – 31 32 4

A7 D8(a3)

3
5
7
61

4
8
23
24

0 0 – – 30 30 1

E6(a1) +A1 E6(a1) +A1

15
44
55

1
6
8
10

1 0 – – 29 30 3

D8(a3) A8

22
23
26
31

7
11
12
25

0 0 – – 28 28 3

D6 +A1 E7(a3)
1
2
8

27
28
32
41

1 2 A1 5

•
25 28 1

(D7(a1))2 D7(a1)
1
8
12

19
21
33
49

1 0 – – 27 28 2

D7(a1) D8(a2)
1
6
8

12
21
25
27
49

0 0 – – 26 26 1

E6 +A1 E6 +A2

1
4
7
44

5
8
26
27

0 0 – – 26 26 3

E7(a2) E7(a2) +A1

6
8
48

7
10
12
16
30

0 0 – – 24 24 1
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O ΨW (O) s1 s2 dim h0 |∆0| ∆0 Γs0 l(s) dim Σk,s d′

A8 E8(a6)

1
2
5
8

21
25
27
49

0 0 – – 24 24 1

D7 D8(a1)

10
11
15
25

1
20
21
22

0 0 – – 22 22 1

E7(a2) +A1 E8(a7)

4
7
23
24

5
8
20
33

0 0 – – 22 22 1

E7(a1) E7(a1)
1
13
14

3
5
8
32

1 2 A1 2

•
17 20 1

D8(a1) E8(a3)

3
7
23
24

4
8
26
27

0 0 – – 20 20 1

E7(a1) +A1 D8

1
13
14

4
8
17
18
19

0 0 – – 18 18 1

D8 E8(a5)

10
16
20
22

2
3
5
7

0 0 – – 16 16 1

E7 E7 +A1

1
6
8

2
3
5
7
32

0 0 – – 16 16 1

E7 +A1 E8(a4)

7
11
12
25

1
2
6
8

0 0 – – 14 14 1

E8(a2) E8(a2)

2
3
5
7

1
8
10
20

0 0 – – 12 12 1

E8(a1) E8(a1)

6
8
10
11

1
2
5
7

0 0 – – 10 10 1

E8 E8

1
4
6
8

2
3
5
7

0 0 – – 8 8 1
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Appendix 3. Irreducible root systems of exceptional types.

In this Appendix we give the lists of positive roots in irreducible root systems of exceptional types. All simple roots
are numbered as shown at the Dynkin diagrams. The other roots in each list are given in terms of their coordinates
with respect to the basis of simple roots. The coordinates are indicated in the brackets ( ). Each set of coordinates
is preceded by the number of the corresponding root. These numbers are used to indicate roots which appear in
the columns s1, s2 and Γs0 in the tables in Appendix 2.

G2.

1 2

• •

1 (1 0)

2 (0 1)

3 (1 1)

4 (2 1)

5 (3 1)

6 (3 2)

F4.

1 2 3 4

• • • •

1 (1 0 0 0)

2 (0 1 0 0)

3 (0 0 1 0)

4 (0 0 0 1)

5 (1 1 0 0)

6 (0 1 1 0)

7 (0 0 1 1)

8 (1 1 1 0)

9 (0 1 2 0)

10 (0 1 1 1)

11 (1 1 2 0)

12 (1 1 1 1)

13 (0 1 2 1)

14 (1 2 2 0)

15 (1 1 2 1)

16 (0 1 2 2)

17 (1 2 2 1)

18 (1 1 2 2)

19 (1 2 3 1)

20 (1 2 2 2)

21 (1 2 3 2)

22 (1 2 4 2)

23 (1 3 4 2)

24 (2 3 4 2)

E6.

1 3 4 5 6

• • • • •

•

2
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1 (1 0 0 0 0 0)

2 (0 1 0 0 0 0)

3 (0 0 1 0 0 0)

4 (0 0 0 1 0 0)

5 (0 0 0 0 1 0)

6 (0 0 0 0 0 1)

7 (1 0 1 0 0 0)

8 (0 1 0 1 0 0)

9 (0 0 1 1 0 0)

10 (0 0 0 1 1 0)

11 (0 0 0 0 1 1)

12 (1 0 1 1 0 0)

13 (0 1 1 1 0 0)

14 (0 1 0 1 1 0)

15 (0 0 1 1 1 0)

16 (0 0 0 1 1 1)

17 (1 1 1 1 0 0)

18 (1 0 1 1 1 0)

19 (0 1 1 1 1 0)

20 (0 1 0 1 1 1)

21 (0 0 1 1 1 1)

22 (1 1 1 1 1 0)

23 (1 0 1 1 1 1)

24 (0 1 1 2 1 0)

25 (0 1 1 1 1 1)

26 (1 1 1 2 1 0)

27 (1 1 1 1 1 1)

28 (0 1 1 2 1 1)

29 (1 1 2 2 1 0)

30 (1 1 1 2 1 1)

31 (0 1 1 2 2 1)

32 (1 1 2 2 1 1)

33 (1 1 1 2 2 1)

34 (1 1 2 2 2 1)

35 (1 1 2 3 2 1)

36 (1 2 2 3 2 1)

E7.

1 3 4 5 6 7

• • • • • •

•

2

1 (1 0 0 0 0 0 0)

2 (0 1 0 0 0 0 0)

3 (0 0 1 0 0 0 0)

4 (0 0 0 1 0 0 0)

5 (0 0 0 0 1 0 0)

6 (0 0 0 0 0 1 0)

7 (0 0 0 0 0 0 1)

8 (1 0 1 0 0 0 0)

9 (0 1 0 1 0 0 0)

10 (0 0 1 1 0 0 0)

11 (0 0 0 1 1 0 0)

12 (0 0 0 0 1 1 0)

13 (0 0 0 0 0 1 1)

14 (1 0 1 1 0 0 0)

15 (0 1 1 1 0 0 0)

16 (0 1 0 1 1 0 0)

17 (0 0 1 1 1 0 0)

18 (0 0 0 1 1 1 0)

19 (0 0 0 0 1 1 1)

20 (1 1 1 1 0 0 0)

21 (1 0 1 1 1 0 0)

22 (0 1 1 1 1 0 0)

23 (0 1 0 1 1 1 0)

24 (0 0 1 1 1 1 0)

25 (0 0 0 1 1 1 1)

26 (1 1 1 1 1 0 0)

27 (1 0 1 1 1 1 0)

28 (0 1 1 2 1 0 0)

29 (0 1 1 1 1 1 0)

30 (0 1 0 1 1 1 1)

31 (0 0 1 1 1 1 1)

32 (1 1 1 2 1 0 0)

33 (1 1 1 1 1 1 0)

34 (1 0 1 1 1 1 1)

35 (0 1 1 2 1 1 0)

36 (0 1 1 1 1 1 1)

37 (1 1 2 2 1 0 0)

38 (1 1 1 2 1 1 0)

39 (1 1 1 1 1 1 1)

40 (0 1 1 2 2 1 0)

41 (0 1 1 2 1 1 1)

42 (1 1 2 2 1 1 0)

43 (1 1 1 2 2 1 0)

44 (1 1 1 2 1 1 1)

45 (0 1 1 2 2 1 1)
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46 (1 1 2 2 2 1 0)

47 (1 1 2 2 1 1 1)

48 (1 1 1 2 2 1 1)

49 (0 1 1 2 2 2 1)

50 (1 1 2 3 2 1 0)

51 (1 1 2 2 2 1 1)

52 (1 1 1 2 2 2 1)

53 (1 2 2 3 2 1 0)

54 (1 1 2 3 2 1 1)

55 (1 1 2 2 2 2 1)

56 (1 2 2 3 2 1 1)

57 (1 1 2 3 2 2 1)

58 (1 2 2 3 2 2 1)

59 (1 1 2 3 3 2 1)

60 (1 2 2 3 3 2 1)

61 (1 2 2 4 3 2 1)

62 (1 2 3 4 3 2 1)

63 (2 2 3 4 3 2 1)

E8.

1 3 4 5 6 7 8

• • • • • • •

•

2

1 (1 0 0 0 0 0 0 0)

2 (0 1 0 0 0 0 0 0)

3 (0 0 1 0 0 0 0 0)

4 (0 0 0 1 0 0 0 0)

5 (0 0 0 0 1 0 0 0)

6 (0 0 0 0 0 1 0 0)

7 (0 0 0 0 0 0 1 0)

8 (0 0 0 0 0 0 0 1)

9 (1 0 1 0 0 0 0 0)

10 (0 1 0 1 0 0 0 0)

11 (0 0 1 1 0 0 0 0)

12 (0 0 0 1 1 0 0 0)

13 (0 0 0 0 1 1 0 0)

14 (0 0 0 0 0 1 1 0)

15 (0 0 0 0 0 0 1 1)

16 (1 0 1 1 0 0 0 0)

17 (0 1 1 1 0 0 0 0)

18 (0 1 0 1 1 0 0 0)

19 (0 0 1 1 1 0 0 0)

20 (0 0 0 1 1 1 0 0)

21 (0 0 0 0 1 1 1 0)

22 (0 0 0 0 0 1 1 1)

23 (1 1 1 1 0 0 0 0)

24 (1 0 1 1 1 0 0 0)

25 (0 1 1 1 1 0 0 0)

26 (0 1 0 1 1 1 0 0)

27 (0 0 1 1 1 1 0 0)

28 (0 0 0 1 1 1 1 0)

29 (0 0 0 0 1 1 1 1)

30 (1 1 1 1 1 0 0 0)

31 (1 0 1 1 1 1 0 0)

32 (0 1 1 2 1 0 0 0)

33 (0 1 1 1 1 1 0 0)

34 (0 1 0 1 1 1 1 0)

35 (0 0 1 1 1 1 1 0)

36 (0 0 0 1 1 1 1 1)

37 (1 1 1 2 1 0 0 0)

38 (1 1 1 1 1 1 0 0)

39 (1 0 1 1 1 1 1 0)

40 (0 1 1 2 1 1 0 0)

41 (0 1 1 1 1 1 1 0)

42 (0 1 0 1 1 1 1 1)

43 (0 0 1 1 1 1 1 1)

44 (1 1 2 2 1 0 0 0)

45 (1 1 1 2 1 1 0 0)

46 (1 1 1 1 1 1 1 0)

47 (1 0 1 1 1 1 1 1)

48 (0 1 1 2 2 1 0 0)

49 (0 1 1 2 1 1 1 0)

50 (0 1 1 1 1 1 1 1)

51 (1 1 2 2 1 1 0 0)

52 (1 1 1 2 2 1 0 0)

53 (1 1 1 2 1 1 1 0)

54 (1 1 1 1 1 1 1 1)

55 (0 1 1 2 2 1 1 0)

56 (0 1 1 2 1 1 1 1)

57 (1 1 2 2 2 1 0 0)

58 (1 1 2 2 1 1 1 0)

59 (1 1 1 2 2 1 1 0)

60 (1 1 1 2 1 1 1 1)

61 (0 1 1 2 2 2 1 0)

62 (0 1 1 2 2 1 1 1)

63 (1 1 2 3 2 1 0 0)

64 (1 1 2 2 2 1 1 0)

65 (1 1 2 2 1 1 1 1)
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66 (1 1 1 2 2 2 1 0)

67 (1 1 1 2 2 1 1 1)

68 (0 1 1 2 2 2 1 1)

69 (1 2 2 3 2 1 0 0)

70 (1 1 2 3 2 1 1 0)

71 (1 1 2 2 2 2 1 0)

72 (1 1 2 2 2 1 1 1)

73 (1 1 1 2 2 2 1 1)

74 (0 1 1 2 2 2 2 1)

75 (1 2 2 3 2 1 1 0)

76 (1 1 2 3 2 2 1 0)

77 (1 1 2 3 2 1 1 1)

78 (1 1 2 2 2 2 1 1)

79 (1 1 1 2 2 2 2 1)

80 (1 2 2 3 2 2 1 0)

81 (1 2 2 3 2 1 1 1)

82 (1 1 2 3 3 2 1 0)

83 (1 1 2 3 2 2 1 1)

84 (1 1 2 2 2 2 2 1)

85 (1 2 2 3 3 2 1 0)

86 (1 2 2 3 2 2 1 1)

87 (1 1 2 3 3 2 1 1)

88 (1 1 2 3 2 2 2 1)

89 (1 2 2 4 3 2 1 0)

90 (1 2 2 3 3 2 1 1)

91 (1 2 2 3 2 2 2 1)

92 (1 1 2 3 3 2 2 1)

93 (1 2 3 4 3 2 1 0)

94 (1 2 2 4 3 2 1 1)

95 (1 2 2 3 3 2 2 1)

96 (1 1 2 3 3 3 2 1)

97 (2 2 3 4 3 2 1 0)

98 (1 2 3 4 3 2 1 1)

99 (1 2 2 4 3 2 2 1)

100 (1 2 2 3 3 3 2 1)

101 (2 2 3 4 3 2 1 1)

102 (1 2 3 4 3 2 2 1)

103 (1 2 2 4 3 3 2 1)

104 (2 2 3 4 3 2 2 1)

105 (1 2 3 4 3 3 2 1)

106 (1 2 2 4 4 3 2 1)

107 (2 2 3 4 3 3 2 1)

108 (1 2 3 4 4 3 2 1)

109 (2 2 3 4 4 3 2 1)

110 (1 2 3 5 4 3 2 1)

111 (2 2 3 5 4 3 2 1)

112 (1 3 3 5 4 3 2 1)

113 (2 3 3 5 4 3 2 1)

114 (2 2 4 5 4 3 2 1)

115 (2 3 4 5 4 3 2 1)

116 (2 3 4 6 4 3 2 1)

117 (2 3 4 6 5 3 2 1)

118 (2 3 4 6 5 4 2 1)

119 (2 3 4 6 5 4 3 1)

120 (2 3 4 6 5 4 3 2)
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